[image: image3.jpg]Doc# OMA-ARC-2004-0027-POZ comments on 0005 Architecture,-Requirements,-Common-Functions

Submitted to OMA Arch
25 Jan 2004
Doc# OMA-ARC-2004-0027-POZ comments on 0005 Architecture,-Requirements,-Common-Functions
Submitted to ARC
25 Jan 2004

Input Contribution

	Title:
	POZ Comments on Entities defined in the OMA Architecture Requirements (ARC-2004-0005)
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA Architecture Group

	Source:
	Mark Pozefsky, poz@us.ibm.com +1 919 254-6051

	Attachments:
	n/a
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	n/a

1 Reason for Contribution

The OMA Architecture Group has developed a set of requirements on a future architecture. From these requirements, and the OMA Architecture Principles, a number of architectural components can be derived.

Some of these are common to several enablers or use cases. A discussion on these can be found in chapter 3:2.

2 Summary of Contribution

A set of architectural components can be derived from the OMA Architecture Requirements. Given that they are actually described in the Architecture Requirements document, this implies that they are indeed required to be present in the architecture, and interrelate in certain ways, which are also specified in the document. This document outlines them, describes how they could be specified, and how they could relate to other components in the OMA architecture.

Given that we (by approving the RD) already have decided to have these components in the architecture, I propose that the enclosed text in section 3:1be included in the OSE specification. The discussion in section 3:2 should be used as the basis for a section on “common functions” in the OSE specification.

3 Detailed Proposal

1 Deriving an OMA Service Environment architecture

The OMA architecture, to be documented in the OSE document, can actually be found in a number of places – if you look hard enough. First, there is the OMA specifications, which actually contain a number of architecture design points. Second, there are the OMA Architecture Requirements. Here, I begin with the specifications. Note that a more throrough analysis of the existing RD:s might uncover some very interesting design points, which are not highlighted here (since no such analysis has been done).

1.1 Analysis of existing specifications

Given the set of specifications that have been grouped in the first OMA release (in essence, looking at the OMA enablers – e.g. MMS and Browsing, but also others), a number of design points can be derived [MMS][BR]:

· There is a standardized, XML-based, model for at least parts of the user presentation:
XHTML as markup language, W-CSS as language for placement of objects on the screen, SMIL for synchronization of data objects, SVG and a set of raster formats for graphics.

· The system used to handle traffic in OMA enablers is based on a request-response
 protocol (i.e. it is not event-driven; this may change with the introduction of SIP). The primary
 protocol used is HTTP (and its derivation WSP), but there is also specifications using SMTP.

· Data can be retrieved from data sources not under the direct control of the user
, but pertaining to the user
, and used in applications, for example location, group management, etc.

From the discussions in the OMA Architecture Framework subgroup [FW], a set of agreements can also be derived:

· There is a standardized model for handling at least some types of system data, e.g. authentication and authorization (i.e. the “plumbing”). These data are derived
 from a user/subscription database in some standardized way.

· There is a system to handle charging for service access.

· Services which are to use these system data are required to register.

· The “plumbing” consists of a set of reference points to functions which includes policy enforcement.

From the discussions in the OMA Web Services group[OWSER], the following agreement can be derived:

· At least some OMA enablers will have web services interfaces.

· These interfaces will be handled in a standardized manner.

The OMA interoperability (IOP) group has also come up with a set of implicit agreements [IOP]:

· There will be testing of enablers to verify that they function together.

· There will be end-to-end testing of enablers, to verify that the entire delivery chain of the system functions.

Based on the specification of the existing OMA enablers, a 3-tier generic OMA architecture can be derived

:

[image: image1.wmf]Common Functions shared between enablers

(e.g. subscriber data base management)

OMA Enablers (e.g Location, MMS, etc)

Application environment (optional)

Enablers interacting

with the end

-

user

(e.g. MMS)

User agent(s)

Interfaces to network entities (e.g HLR)

–

Out of scope

We will use this as the basis for further analysis. Note that there are some enablers which are exposed through applications exclusively (e.g. Location, Presence); and some which are exposed directly to the end-user (MMS) through their own user agent (which is included in the specification).
 Although it is possible to build MMS applications (based on MM7), this is not shown here.

1.2 Requirements analysis

Having done this, we can go on to analyze the OMA Architecture Requirements document[ARD], and abstract requirements which state that an entity must be present, or give a constraint on an interface. They are the following:

6.1#5 The OMA Service Environment MUST provide interfaces towards backend systems (e.g. charging, accounting, payment, provisioning, Operations & Management, etc.).

6.1# 16. When authorized, Principals MUST be able to set policies (e.g. charging policies and privacy policies) on any request (including discovery)

6.1.1#1 The OMA Service Environment MUST provide mechanisms for authentication of users, applications and third-party service providers, and authorization for the use of service enablers across and within service provider domains.

6.1.1#5. The OMA Service Environment MUST enable single sign-on and single log-out to span enablers in a single domain or across multiple Service Provider domains. One-time authentication or a SSO MUST remain valid throughout a continuous session

6.1.1#11. The OMA Service Environment MUST support a mechanism to federate and de-federate identity information across Service Provider domains.

6.1.1#14. The OMA Service Environment MUST provide an interface between the authorization function and the charging enabler.

6.1.2#2 The OMA Service Environment MUST provide an interface where Accounting and Charging information is to be gathered.

6.1.3#3 The OMA Service Environment MUST enable the communication of service monitoring data (e.g. performance measurements) between actors.

6.1.3#5 The OMA Service Environment MUST provide the means to manage the activation, registration, authentication, and authorization of users and service components.

6.1.3#8. The OMA Service Environment MUST provide a mechanism by which device and network information can be communicated to an authorized third-party (with respect to the information holder) in a manageable way. This mechanism MUST allow for the automated discovery of new devices and new characteristics in existing devices.

6.1.3#9 The OMA Service Environment MUST provide a mechanism to enable third-parties to obtain an identification for an end-user who uses a particular device to access authorized third-party applications.

6.1.3#10 The OMA Service Environment MUST provide a mechanism to allow third-parties to discover the device(s) currently used by an end-user, if registered on a network (e.g. where to send a notification to the employee).

6.1.3#11 The OMA Service Environment MUST provide a mechanism for an authorized third-party to discover the conditions for using a service enabler exposed by a particular service provider in a dynamic manner.

6.1.3#12 The OMA Service Environment MUST support a mechanism for service providers and other authorized actors to enforce the conditions for use of a service enabler.

6.1.3#13 The OMA Service Environment MUST have a single logical point that handles subscriber and subscription information.

6.1.5#4 The OMA Service Environment MUST provide a common mechanism for Provisioning of services, service enablers and user parameters.

6.1.5#5 The OMA Service Environment SHOULD provide a mechanism to manage and use policies (e.g. access policies, charging polices, service level agreements, etc.).

6.3.2#1 The OMA Service Environment MUST have a single logical access point (e.g. Common Directory) to handle: 1) registration, 2) discovery and 3) functions and data that handle information relevant to more than one single service enabler.

6.3.2.1#1 The OMA Service Environment MUST support Service Registration for Services visible to the end-user.

6.3.2.1 #2 The OMA Service Environment MUST support Service Discovery for services visible to the end user.

6.3.2.1#3 The OMA Service Environment MUST support Discovery for an implementation of a Service Enabler.

6.3.2.1#4 The OMA Service Environment MUST support Registration for an implementations of a Service Enabler.

6.3.2.1#5 Within the OMA Service Environment it MUST be possible to register, discover, and retrieve information (e.g. a service enabler’s address) using a resource identifier (e.g. a user identifier).

6.3.3#1 The OMA Service Environment MUST define a common interface for the operations and management (O&M) of both common and service-specific enablers or applications (including service monitoring and end-to-end service delivery).

1.3 Derived architecture

From this follows that the architecture must (MUST) have (at least) the following entities:

· Interface
for operations and management towards common and service-specific enablers (6.3.3#1)

· Common directory (6.3.2#1; 6.2.3.1 #1,2,3,4,5; 6.1.3#11)

· Policy management mechanism (6.3.1#5; 6.1.3#12)

· Common provisioning mechanism (6.1.5#4)

· Subscription management (single logical point for)(6.1.3#13)

· Identity management mechanism connected to device identity management mechanism and enabling federation of identity (6.1.3 #8, 9,10; 6.1.1#11)

· Interface to network exposing network characteristics (6.1.3#8)

· Interface(s) to gather accounting and charging information (6.1.2#2)

· Authentication function (6.1.1#1)

· Authorization function (6.1.1#14)

· Charging enabler (6.1.1#14)

· Interface from authorization function to charging enabler (and the reverse?) (6.1.1#14)

· Session level mechanism
 connected to the identity management, authorization, and authentication mechanisms (i.e. providing single sign-on)(6.1.1#1)

· Policy (constraints) in all interfaces (6.1.1#16)

· Interfaces to “back-end systems” (charging
, accounting, payment, provisioning
, Operations & Management
, etc.)

Given this, the following architecture can be derived (mapping the derived entities onto the 3-tiered architecture). Note that this of course only represents one possible realization, i.e. it is a use case framework. It also only represents those entities which are required by the OMA Architecture requirements document. It is quite possible that there are other entities which are required to make it work. Also note that strictly speaking, any architecture defined in OMA should be an interface architecture, i.e. we are required to define the interfaces, data structures, and data flows between entities, but not the functions
 themselves (See further architecture principle #3)[AP].

[image: image2.wmf]OMA Enablers (e.g Location, MMS, etc)

Application environment (optional)

Enablers interacting

with the end

-

user

(e.g. MMS)

User agent(s)

Interfaces to back

-

end systems (

charging, accounting, payment, provisioning, Operations & Manage

ment (includes network

characteristics, etc.)

Common Directory

:

Policy Management

Subscription

management

Identity

management

Common

Provisioning

Authentication

,

Authorization

,

Accounting

Charging

O&M Interface

Session

management

2 Common Functions

OMA is also in the process of defining a set of “common functions”. These are tantamount to data structures and methods exposed through interfaces. It should be noted that a common function does not have to be expressed through an existing enabler (or combination of enablers); it might as well be required to realize a use case, combining several enablers to fulfill a set of requirements on a service or solution.

There are two sets of requirements on common functions: Those that define “common”, and those that define “function”.

On the first point, for something to be usable as a “common function”, it will have to be re-used (or re-usable) by several enablers
 (i.e. a module which will be re-used from multiple enablers or common functions). This
 can be described in a specification, or a requirements document (i.e. as use cases). For the modules to be re-usable, they must either be designed in such a way that they integrate with any other interface
; or they have to be discoverable
, callable, and manageable
 (as any OMA enabler would have to be, as per the OMA Architecture requirements, see above). The discovery could be done through the module being registered in a directory, housed in a repository, or some other means. The manageability implies that the module has to be possible to handle
 using a policy, e.g. an SLA, that determines its availability, and under which conditions.

On the second point, the design of the common function enabler (interface) needs to be if not unified, at least not divergent. This implies that “Common function” modules also need to use a common namespace (or at least have a common concept of namespaces
), use the same units for measurements
etc., the same data types (formally defined somewhere), and follow a common set of rules for defining the way they are written (i.e. how the XML is written). Some of these rules are laid down in the OMA Web Services specification [OWSER]. This should be a mandatory reference in the definition and use of these modules. The OMA Architecture group should work with the MWS and other relevant groups to refine these definitions.

4 Intellectual Property Rights Considerations

To the best of my present personal knowledge, no IPR is affected by this document.

5 Recommendation

The text in section 3:1 should be included in the OSE specification.

The discussion in section 3:2 should be used as the basis for a section on “common functions” in the OSE specification.

6 References:

[AP] Architecture Principles, OMA-ArchitecturePrinciples-V1_1_0-20030820-A.doc

[ARD] OMA Architecture Requirements, OMA-RD_Architecture-V1_0-20031021-A

[BR] OMA Browsing Enabler v 2.2, OMA-Browsing-V2_2-20031127-D

[FW] Architecture Framework Group minutes from Boston meeting in March 2003, OMA-ARC-AF-2003-0065-minutesBostonArchFW.zip
[IOP] OMA IOP Group,

[MMS] MMS Architecture, OMA-MMS-ARCH-V1_2-20030920-C

[OWSER] OWSER, OMA-OWSER-Overview-V1_0-20031218-D

�is PUSH a request-response?

�session?

�what does "user" have to do with data retrieval. can be initiated by application?

�where is such a limitation noted? I can ask for any data, tho the owner might not authorize me to get it

�is "extracted" or "stored" a better word?

�"required" is too strong, I think it is optional

�no guarantee that the WGs will do this, but we can hope the MWS work is not wasted

�again up to us to make sure this happens. different parts can be standardized – just the headers, parts of the data payload,

�might an enabler go directly to a network entity without going through a CF?

�can enablers call enablers (ie horizontally)?

�are the common functions assumed to be in the same domain (area of single ownership control) as the Enablers? As the network entities?

�MMS appears as both "enabler interacting with end user" and as "OMA enabler" – different?

�another way to view this is that the MMS there is an application (on terminal) that invokes the enabler (which is the user agent that happens to reside on the device) which invokes the other half of the enabler on the server

�I think the reasoning is flawed – you go from the requirement that there needs to be an interface, to the conclusion that each interface has to be associated with an independent entity/function/mechanism. Why can't we combine authentication and authorization into a single entity. Likewise combine directory and charging? Or in fact, we could have ONE entity that exposes all these interfaces?

�sometimes you use "enabler", sometimes mechanism, sometimes function – are they different?

�I dont view an interface as the "entity". It is a feature or capability of the entity which is being operated/managed

�this is very broad – what types of information is contained in the common directory? user info, subscription info, services catalog, partner list, It is not clear that these should all be combined into the same entity?

�is this different from "charging enabler" (3rd bullet below this)

�is it different from the "authorization" function above – don't these words imply "interface into a"? Likewise for charging? Delete this bullet.

�what does session mean here? Could do these operations without this session level mechanism?

�is this different from "charging enabler" above?

�how is this different from 4th bullet above?

�how is this different from first bullet above?

�huh? By defining the interfaces, doesn't this imply defining what operations are performed behind the interface – just an interface with no functional description has no purpose

�you made each new interface into a CF without a corresponding enabler – why not make them also into enablers? Are they only accessible through other enablers – for ex, charging or directory?

�could it be used by multiple common functions?

�this what == the advantage of having a reusable entity that appears in multiple use cases?

�what does this mean – they are callable from other entities?

�must be discoverabl—optional, I think. is manually discoverable OK, or must it be programmable?

�why do they have to be manageable – we could be like all other specs and not specify how they are managed?

�don't know what "handle" means

�namespace for what – the name of the module being called (Java format, or C formatted module names)?

�huh – we won't permit Euros and dollars? Feet and meters?

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 9)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20031003]

© 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 9)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20031003]

_1132492655.ppt

Common Functions shared between enablers (e.g. subscriber data base management)

OMA Enablers (e.g Location, MMS, etc)

Application environment (optional)

Enablers interacting with the end-user (e.g. MMS)

User agent(s)

Interfaces to network entities (e.g HLR) – Out of scope

_1132492731.ppt

OMA Enablers (e.g Location, MMS, etc)

Application environment (optional)

Enablers interacting with the end-user (e.g. MMS)

User agent(s)

Interfaces to back-end systems (charging, accounting, payment, provisioning, Operations & Management (includes network characteristics, etc.)

Common Directory: Policy Management

Subscription management

Identity management

Common Provisioning

Authentication, Authorization, Accounting

Charging

O&M Interface

Session management

