[image: image2.jpg]"sOMaQa

Open Mobile Alliance

Doc# OMA-ARC-2004-0167-OSE_principles
Submitted to ARCH WG
28. May 2004
Doc# OMA-<grp>-2004-<num>-<desc>
Submitted to <Group Name>
dd mmm 2004

Input Contribution

	Title:
	OSE principles
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	ARCH WG

	Source:
	Christian Herzog, Siemens

	Attachments:
	n/a
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	n/a

1 Reason for Contribution

Recent work on the OSE has revealed some key concepts / principles. These concepts should be made more explicit in the section on principles in the OSE.
2 Summary of Contribution

The following key concepts should be added to the principles section of the OSE:
1. access control through policy enforcement concept
2. reuse concept
3. intrinsic concept

3 Detailed Proposal

7.1 Architecture Principles

The OSE architecture is based upon a number of key principles, designed to satisfy the aims and Architecture requirements as described previously. This architecture can be realized in many technologies, including but not limited to, Parlay and web services. These key principles are described in the following subclauses.

7.1.1 Extensibility

New enablers can be introduced by developing an enabler implementation that connects to an underlying resource in the service provider.

The enabler application development interfaces can be communicated to third party developers directly (e.g. by written documents so the applications can statically bind to the destination enabler) or registered with the discovery enabler to allow the application to dynamically bind to the destination enabler.

Policies can be loaded dynamically for OSE evaluation and enforcement to protect the new enabler.

When required, Policy definitions may help in extensibility by using the mechanisms of delegation.

Life cycle management interfaces are expected to provide support for upgrade of enablers when new releases are installed and deployed.

7.1.2

7.1.3 Intrinsic Functionality

Any requirements or features that are not intrinsic to an enabler should not be specified within the enabler's specification. An enabler's specification should only specify the intrinsic functionality required to fulfull its actual function.
For example, some enablers require having an identifier for the requesting entity. The requirement to perform the enabler's function is actually that there be a way to distinguish one requestor from another, not actually that the requestor's identity be verified using any particular mechanism (e.g., password, certificate, biometrics). The authentication process is outside the scope of the enabler specification.
In the current “silo” architectures, often there is more functionality specified for each enabler than necessary to perform its intrinsic function. Today's architectures do not clearly distinguish between intrinsic and non-intrinsic functionality (e.g. an enabler specifies the intrinsic function of providing a certain information on request and also the non-intrinsic function of authenticating the request, and perhaps group management for its specific purpose)
Interfaces used by implementations are split into the intrinsic parameters (called I0, see section 6.2 Classification of the OSE Interfaces) and the SP selected parameters based on policies (called I1). OMA WG’s should specify the intrinsic parameters (I0). The SP specific parameters may be added individually to each I0 by the SP to meet its policies.
7.1.4 Delegation and Reuse of Functionality
Enabler specifications should reuse existing specifications when possible. This approach includes reuse of existing OMA enabler specifications whenever possible (e.g., re-use of presence and group management enablers by the PoC enabler). Enabler specifications must specify how to interface to (i.e., invoke) their functions.

As a result of enabler specifications reusing other enabler specifications, the vertical “silo” problem can be reduced. The integration of new applications and enablers into the service provider domain can be simplified. Enabler implementations may reuse other enablers located in either the same service provider domain or different service provider domains.

An enabler implementation can invoke any standardized function such as authentication or group management that it needs to satisfy its intrinsic functions defined in its specifications.
7.1.5 Application development interfaces

The application development interfaces (I0, see 7.1.2) are the interfaces offered by the enabler implementations for the development of applications or other enabler implementations that use them. The application development interfaces follow the OMA specifications and they are technology specific realizations of the specified interfaces (e.g. web services, Java, .Net and CORBA).

7.1.6 Life cycle management

In the service provider domain, certain functions are needed to provide basic support to the enabler implementations. These life-cycle management functions include but are not limited to:

· Creation

· Deployment

· Activation & deactivation

· Management:

· Dependency management

· Upgrade

· Removal

The OSE provides the necessary infrastructure to perform these functions. Each enabler implementation may expose life cycle management interfaces as specified by OMA.

For an extensive list of life cycle management functions please refer to the TeleManagement Forum (TMF).

7.1.7 Application and Enabler Exposure management

The OSE exposes functionality and resources to third party application and enablers in a controlled manner. The OSE provides a policy-based mechanism (called EPEM) to protect the underlying Service Provider's resources from unauthorized requests and manages their use (e.g. through appropriate charging, logging and enforcement of user privacy or preferences). The OSE provides a consistent and centralized management mechanism if the Service Provider requires such control.

The OSE architecture also manages the procedures applied for both hosted (in the same domain) and third party applications and enablers. This is achieved by having the OSE able to process all requests to and from the enabler implementations and enforce the appropriate policies.

Figure 2 illustrates the logical flow view of the service provider portion the OSE architecture.

[image: image1.wmf]SP portion of OSE Picture

Other bindings

Other bindings

Web service bindings

Web service bindings

…

…

Enabler

implementation

Enabler

implementation

Enabler

implementation

EPEM

Applications

…

…

Enabler

implementation

SP Domain

To Resources in

operators, terminals,

SPs

Execution

Environment

(Life Cycle Mgmt,

Load balancing,

caching, O&M,

etc.)

Execution

Environment

(Life Cycle Mgmt,

Load balancing,

caching, O&M,

etc.)

Figure: 2 logical view of the elements and functions of the OSE architecture (Service Provider portion).

Figure 2 illustrates the relationship between applications and requests and resources in the service provider domain. In fact, the concepts and picture are the same even if the requesting element is an enabler situated in the same service provider domain or in a different service provider domain. All enablers in the service provider domain operate the same whether the request comes from applications or enabler, in the same domain or a different one. The specific results of authentication or authorization of the requestor might yield different constraints on what the request might achieve, but the policy evaluation and enabler execution always follow the same process.

The dotted line across EPEM, as illustrated in Figure 2, represents the fact that EPEM is a single logical entity but that it may be implemented with multiple components. The OSE does not mandate any OMA Enabler in the SP domain, which therefore allows flexibility in how OMA Enablers are implemented and deployed.

In the service provider environment, implementations of the OMA enablers expose standard interfaces for application use. These enabler implementations connect to the actual resources present in the service provider domain. Through this abstraction, it is possible to add or modify the underlying resources without having to affect the application development interfaces exposed by the enabler implementations (and therefore without affecting the applications), something especially important when using multiple vendors, supporting different network technologies or relying on different providers.

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

Agree and improve the text provided and replace chapter 6.3 of the OSE (Architecture Principles) with it.
Note that the numbering is not correct due to automated numbering, but will align again when inserting the text into the OSE.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 4)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20040305]

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 4)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20040122]

_1143529645.ppt

SP portion of OSE Picture

Other bindings

Web service bindings

…

Enabler

implementation

Enabler

implementation

Enabler

implementation

EPEM

Applications

…

Enabler

implementation

SP Domain

To Resources in

operators, terminals, SPs

Execution

Environment

(Life Cycle Mgmt,

Load balancing,

caching, O&M,

etc.)

Execution

Environment

(Life Cycle Mgmt,

Load balancing,

caching, O&M,

etc.)

Other bindings

Web service bindings

…

Enabler

implementation

Enabler

implementation

Enabler

implementation

Applications

…

Enabler

implementation

I0+I1

I0

I3

SP Domain

EPEM

I2

Execution

Environment

(Life Cycle Mgmt,

Load balancing,

caching, O&M,

etc.)

Execution

Environment

(Life Cycle Mgmt,

Load balancing,

caching, O&M,

etc.)

To Resources in

operators, terminals, SPs

Other bindings

Web service bindings

…

Enabler

implementation

Enabler

implementation

Enabler

implementation

Applications

…

Enabler

implementation

Application

Execution Environment

Execution

Environment

(Life Cycle Mgmt,

Load balancing,

caching, O&M,

etc.)

I0+I1

I0

I3

User

I1

SP Domain

EPEM

I2

Execution

Environment

(Life Cycle Mgmt,

Load balancing,

caching, O&M,

etc.)

To Resources in

operators, terminals, SPs

SP portion of OSE Picture

Other bindings

Web service bindings

…

Enabler

implementation

Enabler

implementation

Enabler

implementation

Applications

…

Enabler

implementation

Third Party – Un-trusted Domain

SP Domain

Request to enabler through enabler application development interface

Appropriate request reach target enabler

EPEM

EPEM enforces policies on request (relying on available enablers)

Request affects the target resource

To Resources in

operators, terminals, SPs

Other bindings

Web service bindings

…

Enabler

implementation

Enabler

implementation

Enabler

implementation

…

Enabler

implementation

Third Party – Un-trusted Domain

SP Domain

Request to enabler through enabler application development interface

Appropriate request reach target enabler

Enabler

implementation

…

EPEM

EPEM enforces policies on request (relying on available enablers)

Request affects the target resource

To Resources in

operators, terminals, SPs

Other bindings

Web service bindings

…

Enabler

implementation

Enabler

implementation

Enabler

implementation

Applications

…

Enabler

implementation

SP Domain

Request to enabler through enabler application development interface

Appropriate request reach target enabler

SP Domain

Enabler implementation issues a request to another enabler resource

Appropriate request reach target enabler

EPEM

EPEM enforces policies on request (relying on available enablers)

EPEM enforces policies on requests between enabler implementations

Request affects the target resource

Request affects the target resource

To Resources in

operators, terminals, SPs

Other bindings

Web service bindings

…

Enabler

implementation

Enabler

implementation

Enabler

implementation

Applications

…

Discovery

enabler

implementation

SP Domain

Possible discovery of

Interface by application

developer

Uses bindings

Possible interface description provided through another communication

Application calls enabler

Possible discovery of

Interface by application at execution

Application

Developer

EPEM

Enforces policies

1b

2

4

1c

1

1a

To Resources in

operators, terminals, SPs

5

3

