Doc# OMA-ARC-2005-0146-Comeback_on_0094[image: image5.jpg]
Input Contribution

Doc# OMA-ARC-2005-0146-Comeback_on_0094[image: image6.png]
Input Contribution



Input Contribution

	Title:
	Comeback on document OMA-ARC-2005-0094-After_thoughts_on_ARC-0078
	 FORMCHECKBOX 
 Public       FORMCHECKBOX 
 OMA Confidential

	To:
	OMA ARC

	Submission Date:
	3 Apr 2005

	Source:
	Stéphane H. Maes, Oracle Corporation
P: +1-20-300-7786
stephane.maes@oracle.com  

	Attachments:
	N/A
	 FORMCHECKBOX 
 Public       FORMCHECKBOX 
 OMA Confidential

	Replaces:
	N/A


1 Reason for Contribution

Document OMA-ARC-2005-0094-After_thoughts_on_ARC-0078 was discussed and noted at the March 22, 2005 ARCH conference call. It was recommended to produce a revision based on the comments received. A summary is captured in OMA-ARC-2005-0133-Minutes-2005-03-22-ConfCall. 
This new document contribution is provided to avoid agenda / numbering confusion with the amount of document that ARCH must currently dispose. A revision of document OMA-ARC-2005-0094-After_thoughts_on_ARC-0078 is separately provided to discuss another aspect of the contribution that was not discussed during the March 22, 2005 call.
2 Summary of Contribution

The present contribution discusses in deeper details and motivates the recommended changes initially proposed in OMA-ARC-2005-0094-After_thoughts_on_ARC-0078. 

To address concerns raised at the March 22, 2005 call, it also provides explicit text and figure changes. 
The recommendations and text changes are more detailed, following the conclusion of the contribution.

3 Detailed Proposal

3.1 Comments received on OMA-ARC-2005-0094-After_thoughts_on_ARC-0078
The comments were (see OMA-ARC-2005-0133-Minutes-2005-03-22-ConfCall):

· Need for explicit text change

· Request to track changes in figure

· ISSUE1: what do we represent with an arrow?

· ISSUE2: I0+P should not be grouped with the other two?

3.2 Motivation for grouping interfaces in PEEM

3.2.2 Original proposal

A critical aspect of contribution OMA-ARC-2005-0094-After_thoughts_on_ARC-0078 related to the request to group the three interfaces of PEEM (Proxy mode) (a), (b) and (c) into one single interface; where the interfaces are defined as:
a) Interface “Enablers’ I0+P PEEM Proxy intercept of requests to other enablers”

b) Interface “Enablers’ I0 PEEM delegation requests to other enablers”

c) Interface “Enablers’ I0 PEEM forward after processing”

3.2.3 Original motivation

OMA-ARC-2005-0094-After_thoughts_on_ARC-0078 motivated that proposal based on the observation that these interfaces are solely decided by the other end point and will change role depending on the policies and change depending on the use case: a clear sign that they form a single interface.

This observation was disputed or not understood by some.

3.2.4 Detailed analysis and motivation

According to the OMA Dictionary, interfaces are defined as:

Interface: The common boundary between two associated systems (source: GSM 01.04, ITU-T I.112).

An interface of a system does not contain a dependency on the other end point like reference point does.
Reference Point: A conceptual point at the conjunction of two non-overlapping functional groups (source: ITU-T I.112). It consists of none or any number of interfaces of any kind.
3.2.4.1  Interfaces b) and c) are the same
· If PEEM is used in proxy mode, based on the use case (i.e. the request from the requester) and the policies associated to it, PEEM will send request to an enabler implementation to perform a delegated function as prescribed by the policies or pass a request to that enabler implementation after successful enforcement of the policies. For example, a request to a charging enabler implementation may be first authenticated and authorized. A request for determining the location of the user may be first authenticated and authorized then charged before being passed to the location enabler implementation. There are no ways to distinguish the interface with charging between the two cases.
· If the PEEM is in callable mode and policies require delegation to an enabler implementation, this delegation cannot be distinguished from the delegation in proxy mode. 

· As an interface is not distinguished based on the end point, whenever the reasoning is repeated with another target or delegated interface the same interface is used. The interface is therefore common across all target or delegated enabler implementations.
· The interface sends messages to the enabler implementations and in both cases receives similar responses formatted according to the I0 interface of the enabler implementation that is involved.

This completes the explanation of why interfaces b) and c) are the same. 

We will denote that common interface BC) in the rest of the contribution.

3.2.4.2 Interfaces a) and BC) are the same

Observations: 

Interface a) is by definition only present in proxy mode. 

We will therefore limit the explanation to use cases where PEEM is used in proxy mode.
Step 1:

Consider as requester an application A1 that formulates a request to enabler implementation E1. By definition, A1 creates a message that conforms to the format imposed by I0(E1) + P (E1), with I0(E1) as the standard I0 interface associated to E1 and P (E1) as the additional set of parameters resulting from the application of policies (set up by the owner / manager / administrator of the access to the enabler implementation E1) to the I0(E1) interface. 
This message is “processed” by PEEM (in proxy mode). The message is received by interface a). This is to be true for any enabler implementation Ek and any set of policies associated to it by the owner / manager / administrator of the access to the enabler implementation Ek. So the interface a) must be able to process almost any type of message.
Actually, nothing forces the application A1 to follow any format I0(Ek) + P (Ek) for any k that correspond to an enabler implementation. It can send any message with any content and format to any address. In such case, PEEM must still processes the incoming message and it will have to apply policies for unauthorized / not understandable messages. 

But based on the above, it should be clear that the format and content of the input data is dictated by the requester that can send whatever it wishes. Of course acceptable messages are dictated by the targets and applied policies.

Note that OMA-ARC-2005-0119-OSE-fix further illustrates that the acceptable formats cannot be restricted to I0(Ek) + P (Ek) for any k that correspond to an enabler implementation as almost any C0 interface may be generated via composition and become “legit” for PEEM.

This shows that a) must support any incoming data format.
Step 2: 

By definition, PEEM enforces policies on incoming data format and as identified in the PEEM RD it is able to associate policy to the request (i.e. the data format). Clearly if the input data does not conform to any format I0(Ek) + P (Ek) for any k that correspond to an enabler implementation, then the default policy will be enforced if provided
. In all cases, the format and content of the input data determine the policy to enforce.
In all these cases, PEEM enforces policies associated to the input data received through interface a). To do so, PEEM may delegate functions by calling other enabler implementations and if the policies are successfully enforced it then passes a request to the target. This is passed through interface BC). The actual requests are dictated by the steps of the enforced policies that formulate the request to the delegated enabler implementation or target. In other words, the policies dictate the format and content of the output data sent to other enabler implementation. 

It can be any output data. However if when sending data to an enabler implementation Ek it does not format it as specified by I0(Ek), the request to the enabler implementation Ek will fail
.

It is also noted that PEEM must be able to protect any enabler or any resource
. Therefore, there are no specific restrictions imposed on the output data format sent through BC).

This explanation shows that BC) must support any output data format.

Step 3:
The reasoning of step 2 can be repeated on the response data from the delegated or target enabler implementation. 

Again C0 as proposed in OMA-ARC-2005-0119-OSE-fix further illustrates that the acceptable input formats can not be restricted to I0(Ek) for any k that correspond to an enabler implementation.

This explanation shows that BC) must support any input data format.

Step 4: 

As for step 2, the policies dictate the content and format of the data output through interface a). Any format is allowed (as any policy is possible and therefore any changes P to the exposed interface or as any composed interface C0 is possible as proposed in OMA-ARC-2005-0119-OSE-fix).

This explanation shows that a) can must support any output data format.

Step 5:

We have the following facts shown above:

· Requesters can be any application or enabler implementation. 
· Targets can be any requester or enabler implementation. 
· By definition, interfaces are independent of the end-point.

· Both a) and BC) interface can be at the input or output end point of data messages that may have any format and content. 
· Also in the OSE, PEEM can process message from outside as well as within a domain so that the side where the interface might be (e.g. requester or target) is not distinguishable.
Therefore, there are no ways to distinguish between interface a) and BC).

This completes the explanation of why interfaces a) and BC) are the same.

We will denote this interface ABC).
3.3 Implications

3.3.2 Interface grouping

The interfaces a), b) and c)
 must be grouped as the same interface in the architecture figures in the PEEM AD.

Text in the AD may explain the different reference points when using PEEM, however it should clearly state that there is only one interface ABC).

3.3.3 Interface characteristics

The explanation provided in section 3.2.3.2 also illustrated that interface ABC) is a “binary BLOB
” interface
: it accepts and can produce any input or output data format.
3.3.4 Revisiting the discussion

This was actually predictable without requiring the discussion above. Indeed: 

· Proxy mode must accept any formed input (i.e. BLOB)

· PEEM sends out “inputs” to delegated/targeted enablers without knowing their content.  

· So in both cases PEEM does not know inner format/syntax so both are binary BLOB interfaces
· Nothing else allows distinguishing the interfaces further, so they are one same interface.
3.3.5 Proposed changes to PEEM AD
5.2 Architectural Diagram

[… Figure 1]

Figure 1. PEEM enabler in OSE

[image: image1]

Figure 2. PEEM Enabler - interfaces
In Figure 2, the binary blob interface can be involved in three different categories of reference points:  
a) Interface “Enablers’ I0+P PEEM Proxy intercept of requests to other enablers”

b) Interface “Enablers’ I0 PEEM delegation requests to other enablers”

c) Interface “Enablers’ I0 PEEM forward after processing”

This interface can accept any data format and content as input and generates output, based on its policies. PEEM does not understand any particular data format and content.

Editor’s note: Description of the other interfaces is to be added.


[image: image4]
Figure 3. PEEM Enabler – interfaces and components
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification.  This obligation does not imply an obligation on Members to conduct IPR searches.  This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn.  Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration.  These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

We recommend that ARCH agrees that a), b) and c) are one and a same PEEM interface.

We recommend that ARCH agrees to the changes to the PEEM AD proposed in section 3.3.3.
































































� A priori, one would expect that this default policy will reject the request; possibly logging it (e.g. to avoid DOS attacks); but theoretically it could also be allowed to pass through or have other type of policies enforced… Even if this behaviour was to be left to the implementation or deployment of PEEM, the behaviour will either be a default policy (e.g. reject or pass through or an error).

� Ways to ensure that the policies do not generate illegal output data format and content could include: limiting the set of output data format and content to a fixed set of I0(Ek), providing policy validation tools that test that the appropriateness of policies in terms of output data format and content or enforcing additional policies at output that check appropriateness of the output data content and format before any output data leaves PEEM (this could be a default policy added to all policies).

� See indeed the use of “resource” in most PEEM RD as well as the definition of resources used in that RD.  In particular, see requirement #1 in section 6.2.

� The nomenclature actually used to designate these interfaces and references point a), b) and c) and ABC) is not important and left to the decision of the group / editor.

� BLOB: Binary Large Object.

� Note that this observation is consistent with the notion of proxy. Typically a proxy will accept any input or output message with the appropriate binding and process the message based on its internal logic. As PEEM proxy is at the logical level supporting any binding, any input or output data format can be exchanged



NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2004 Open Mobile Alliance Ltd.  All Rights Reserved.
Page 1 (of 7)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20040917]

© 2004 Open Mobile Alliance Ltd.  All Rights Reserved.
Page 7 (of 7)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20040917]

[image: image7.png]_1169968325.ppt








Bindings–req’d by PEEM 



Bindings–req’d by PEEM 





Bindings





PEEM I1

Life Cycle Management



PEEM I0

Callable



Enablers’ I0+P

PEEM Proxy intercept of requests to other enablers



PEEM I0 

Management





Enablers’ I0

PEEM

delegation

requests to other

enablers



PEEM



Enablers’ I0

PEEM forward after processing

Resources’ I2

PEEM

requests to other

resources

Bindings - TBD



Bindings - required by other enablers








_1169968259.ppt








Bindings–req’d by PEEM 



Bindings–req’d by PEEM 







Bindings - required by other enablers





PEEM I1

Life Cycle Management



PEEM I0

Callable



Enablers’ I0+P

PEEM Proxy intercept of requests to other enablers



PEEM I0 

Management





Enablers’ I0

PEEM

delegation

requests to other

enablers





Enablers’ I0

PEEM forward after processing

Resources’ I2

PEEM

requests to other

resources





PEEM - Evaluation and Execution

		Select policy rules (expressed in PEEM Policy Expression Language)

		Evaluate policies using I0+P and other context (use delegation where appropriate) 

		Execute policies (use delegation where appropriate)

		For proxy mode, forward to enabler destination if it passes policies

		For callable mode, return decision based on policy evaluation



PEEM

Management



		Create

		Delete

		Update



   …

PEEM








