Doc# OMA-ARC-2005-0147-Comment_0142[image: image2.jpg]"sOMaQa

Open Mobile Alliance

Input Contribution

Doc# OMA-ARC-2005-0147-Comment_0142[image: image3.png]Requestor
(application or

Enabler or
other resource)

Execution
Environment
(Software
Cycle Mgmt,
Load balancing,
caching,
etc)

Requestor

(application or
Enabler or
other resource)

Policy Enforcer

SP Environment

Enabler
implementation

implementation | ||| implementation

‘ ‘ ’ Enabler Enabler

Enabler
implementation

To Resources in
Operators, terminals, Service Providers

Input Contribution

Input Contribution

	Title:
	Comments on OMA-ARC-2005-0142-OSE-Abstraction-Fix
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA ARCH

	Submission Date:
	3 Apr 2005

	Source:
	Stéphane H. Maes, Oracle Corporation
P: +1-20-300-7786
stephane.maes@oracle.com
Mark Pozefsky, IBM

poz@us.ibm.com

	Attachments:
	N/A
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	N/A

1 Reason for Contribution

Document OMA-ARC-2005-0142-OSE-Abstraction-Fix has been submitted to ARCH.
2 Summary of Contribution

This document provides comments to OMA-ARC-2005-0142-OSE-Abstraction-Fix.
3 Detailed Proposal

3.1 Issues with OMA-ARC-2005-0142-OSE-Abstraction-Fix
3.1.2 Summary of issues

We agree with the need to mention that enabler implementations may be designed or deployed in different modes.
However, we note the following fundamental issues with the contributions that we then detail below:

· The key aspect of an enabler is what function it provides; not how it is designed nor how can it be deployed. Logical architectures and their pictures do not describe deployment options. Therefore no change should be made to the picture.

· The list of deployment or design options is not complete. Indeed not only can we have enabler designed or used in callable mode, proxy mode or both; but we also have enabler that are not used in any of these modes (e.g. enablers without interfaces like DTDs, Schemas, ….).

· The main example provided in the contribution is not correct: a push gateway is not a proxy but a callable enabler with a callable interface and an interface to the terminal.

· The notions of PE functionality and PEEM enabler implementations are confused.

Section 3.2 provides proposals for a way forward.
3.1.3 Details
3.1.3.1 Issues with motivations presented in OMA-ARC-2005-0142-OSE-Abstraction-Fix

There is no analysis or explanation in OMA-ARC-2005-0142-OSE-Abstraction-Fix about “different level of abstractions” among the OSE elements. Indeed, each of the identified entities in section 1 of OMA-ARC-2005-0142-OSE-Abstraction-Fix are in fact different layers in the separation of concerns inherent to the OSE:
Enabler Implementations, Enabler Bindings and Execution Environment represent different functional groupings, as does the policy enforcement mechanism.

As stated in OMA-ARC-2005-0142-OSE-Abstraction-Fix, Enabler Bindings can be implemented / achieved / realized with many technologies, as can any other function including PE.

The possible challenge of representing an actor (application) can be addressed with a proposal to replace in figure 1 of OSE the different application with one box stating: “Requester (application or enabler or other resources)”. This is proposed again in more detail below.
3.1.3.2 Issues with proposal to add proxy enabler element and proposed text
We do agree with the analysis that some enabler implementation may be designed for usage as callable enabler, as proxy enabler or as both. This was widely discussed in 2003 and beginning of 2004 when we tried to appropriately narrow down the definition of enabler / enabler implementation and to define if the OSE addresses all enablers. But as stated in section 5.2.3 of OSEv1.0: “The OSE makes no restrictions on how enabler specifications are implemented”.
Note that a push gateway is not a proxy but a callable enabler with a callable interface and an interface to the terminal

As such, there are no reasons to distinguish in the OSE basic architecture figure between enablers that are of different deployment models. Of course text could be added to section 5.2.3 to clarify and indeed mention existence of these different cases if it helps comprehension of the OSE.

We note also that PE is not an enabler implementation; it may be achieved by an OMA enabler (PEEM). So it is not PE that is callable or proxy but PE that can be achieved using PEEM in proxy mode or in callable mode.

3.1.3.3 Issues with proposed figure changes / additions
OMA-ARC-2005-0142-OSE-Abstraction-Fix proposes to add proxy elements to figure 1/new figure in OSEv1.0; with the same representation convention as the PE. This is not correct. PE is identified as a fundamental functionality of the OSE. Its purpose is to protect and control access to the enablers and other resources of the domain.
Individual enabler implementations in general do not constitute a layer. Accordingly, enabler implementations (that they be callable, proxy, both or none) are to be represented within the set of enabler implementation. Their mode of usage being solely decided by either what their role is or how they are deployed…

Anyway, as pointed out above the distinctions are only relevant to deployment models not to logical architecture diagrams.

3.2 Proposed way forward

We would propose the following changes to the text.

5.2.2 Enabler

The enabler (or its long form Service Enabler) concept is pervasive in OMA because enablers are the primary products of OMA (e.g. Enabler Releases and Enabler Packages). An enabler should specify one or more public interfaces.

Examples of OMA enablers include Location or Device Management.

The term enabler is formally defined in [OMA-DICT] but is copied here for the convenience of the reader:

Service Enabler - A technology intended for use in the development, deployment or operation of a Service; defined in a specification, or group of specifications, published as a package by OMA.

OMA enablers may be defined for usage in callable mode, proxy mode, both or in none of these modes.
5.2.3 Enabler implementation

Although specifications created by OMA are technology-agnostic regarding their implementation (as described by [ARCH-PRIN]), the reality is that enablers will be implemented in real deployments of service environments. Consequently, this document defines Enabler Implementations as an element in the OSE and it literally represents an implementation of an enabler, e.g. either in a Service Provider domain or in a terminal. An enabler implementation can be viewed as a template that represents an implementation of any enabler (e.g. MMS) as defined by OMA. When an enabler specifies multiple entities (e.g. client and server, multiple clients or multiple servers) and their interactions, each of these entities can be implemented as separate enabler implementations (e.g. client enabler implementation and server enabler implementation).

The OSE makes no restrictions on how enabler specifications are implemented.

Enabler implementations provide standardized functions. The enabler implementation may amalgamate, abstract and/or repackage a resource, and present its functions through an interface after binding to a particular syntax.

Enabler implementations expose life cycle management interfaces (e.g. start, stop, trace, etc) that allow the Service Provider to use infrastructure capabilities to manage the enabler's components.
OMA defines many enablers such as location and device management. In addition, other functions (e.g. authentication, access control, discovery and directories) may be provided either through enabler implementations, infrastructure features or applications (e.g. Third Party management and transaction management) available in the environment.

Enabler implementations may be invoked by applications or other enabler implementations. As mentioned earlier, OMA enablers may be defined for usage in callable mode, proxy mode, both or in none of these modes. They are all represented in the OSE as enabler implementations (see figure 1). Depending on their role or deployment model they will present an interface and be used as proxies or callable enablers.
The enabler implementations process the messages as defined by the enabler specification. The binding elements provide the specific syntax to express these messages in the selected format such as web services, Java or .Net.

3.2.2 Figure change

We are also proposing to change figure 1 as follows:

3.2.3 General

[…]

Figure 1 – Generic view of the OSE architecture.

[…]
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

We do not accept that document OMA-ARC-2005-0142-OSE-Abstraction-Fix be agreed at this stage in terms of proposed text or figure changes / additions. We recommend that it be noted.
A revision could be produced that addresses the changes proposed in the present contribution (section 3.2). It is of course also possible that ARCH directly agrees to these changes proposed in the present contribution (section 3.2).

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 4)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20040917]

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 4)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20040917]

_1154453062.ppt

SP portion of OSE Picture

Other bindings

Web service bindings

…

Enabler

implementation

Enabler

implementation

Enabler

implementation

Policy Enforcer

Applications

…

Enabler

implementation

Service Provider

 Domain

To Resources in

Operators, terminals, Service Providers

Execution

Environment

(Software Life Cycle Mgmt,

Load balancing,

caching, O&M,

etc.)

Execution

Environment

(Software Life Cycle Mgmt,

Load balancing,

caching, O&M,

etc.)

Applications

