Doc# OMA-ARC-2005-0241-Comments on 0213R01-Evolving-an-enabler's-I0-interface.doc[image: image2.jpg]"sOMaQa

Open Mobile Alliance

Input Contribution

Doc# OMA-ARC-2005-0241-Comments on 0213R01-Evolving-an-enabler's-I0-interface.doc
Input Contribution

Input Contribution

	Title:
	Comments on “0213R01: Evolving an enabler’s I0 interface”
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA ARC WG

	Submission Date:
	22 June 2005

	Source:
	Mark Pozefsky, IBM poz@us.ibm.com

	Attachments:
	n/a
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	n/a

1 Reason for Contribution

This contribution provides questions and comments about contribution 0213R01 from Brenner et al.

2 Summary of Contribution

Though we support the notion of a separate document with insights about implementations, deployments, etc., we think that this contribution is flawed in the way it considers mandatory vs optional features/parameters and migration. We agree that PE can perform many transformations, for many reasons, as described in 0213R01, however, material about I0, P, and other parameters needs further discussion/explanation.
3 Detailed Proposal

Transforming an enabler’s interface

Disclaimer: the following is considered an Architecture Application Note. While considered technically correct, it is described here solely for the purpose of information for the standards, vendors, operators and other service providers’ community; it is non-normative and it does not represent a usage recommendation by Architecture WG.

The OSE V1.0 document defines the Policy Enforcer as an element that can intercept requests/responses to/from a resource in order to enforce the domain owner’s policies before continuing with the request/response.

Applications are presented with an I0+P interface through which to send a request to an enabler. This interface results from a combination between the I0 interface exposed by an enabler and the P parameters needed to satisfy the domain owner’s policies. Applications are blissfully unaware of the fact that this is actually the I0 of the enabler or not, namely they cannot (or rather don’t have to) distinguish between messages and parameters imposed by the I0 of an enabler and messages and parameters imposed by P (as required to satisfy the domain owner’s policies).

Abstracting for a moment from the main intent of the Policy Enforcer, one realizes that the capability and the placement of the Policy Enforcer architecture element in the OSE makes it possible for it to perform other interface transformations, beyond those dictated by domain owner’s policies
. Another way to phrase this would be to consider the P parameters as the superset of all changes performed to the I0 interface, regardless of the reason behind those changes.

One possible application of this capability is that this architecture can be exploited to allow for an enabler’s interface design/definition to change over time (for example from one release to another) (possibly by offering certain messages/parameters as options).
 The potential architectural changes of an enabler’s interface and of the P parameter are depicted in Figure x.

[image: image1.wmf]I0+P = I0+(Op+Pd)

bindings

bindings

I0

I1

To Resources in

Operators,

terminals,

Service Providers

I2

Execution

Environment

(Software Life

Cycle Mgmt,

Load balancing,

caching, O&M,

etc.)

Applications

Enabler

implementation

Applications

Policy

Enforcer

bindings

bindings

I0

’

=I0+Op

I1

To Resources in

Operators,

terminals,

Service Providers

I2

Execution

Environment

(Software Life

Cycle Mgmt,

Load balancing,

caching, O&M,

etc.)

Applications

Enabler

implementation

Applications

Policy

Enforcer

I0+P = I0+(Op+Pd)

I0

’

+Pd = (I0+Op)+Pd=I0+P

I0

’

+Pd = (I0+Op)+Pd=I0+P

I0+P = I0+(Op+Pd)

Legend

Pd = P domain owner subset

Op = Enabler Interface Options

P= P parameters superset

Figure x: Enabler interface evolution

The concept is based on the fact that an enabler’s I0 interface can be initially defined anywhere within a range of possibilities, starting from a basic interface including only the minimal mandatory messages/parameters, and going all the way to an interface including all the possible optional messages/parameters.
 Optional messages/parameters can be needed because of multiple factors (e.g. re-use by the enabler of existing specifications that require such options
, multiple underlying network technologies
, and so on).

In order to simplify the explanation of the concept, the already known definitions for I0, Parameter P, I0+P will be re-used, and some new notations will be introduced:

· I0 will be considered the “basic” I0 interface (including the minimal mandatory set of messages/parameters)

· I0’ will be considered the “extended” I0 interface (including the superset of all options)

· Op is defined as the enabler’s interface options. When those options are added to the basic I0 interface, this evolves into an I0’ interface (i.e. I0’ = I0+Op)

· Pd will be defined as the “true” set of domain owner parameters, needed to satisfy the domain owner’s policies. This includes those parameters that truly could not be construed as options of the enabler’s interface, but rather driven by the domain owner’s policies with respect to handling in general requests to its resources. When Op is added to this set, the resulting set is Parameter P (i.e. P = Op+Pd).

· P will be considered the superset of all possible P parameters that can be added
 to I0
, regardless of the reason (whether to satisfy the domain owner’s policies, or for other uses of such messages/parameters). Note that we include in this both the domain owner’s “true” set of parameters (Pd) as well as the ones that could be construed and implemented as options
 to the enabler’s interface. When the enabler exposes I0, P may include the total subset of enabler’s options Op (or a subset of these options – that is the domain owner’s choice, depending on their needs and the deployed enabler implementation).

Note that I0+P, the interface exposed to applications (which is the same as I0+Op+Pd), may remain unchanged, if so desired by the domain owner, regardless whether the enabler’s exposed interface is the basic I0, or the extended I0’=I0+Op, since the difference can be adjusted using the set of parameters needed to satisfy domain owner’s policies.
 In the first case, the set of P parameters exposed is P = Op + Pd, in the second case it is only Pd. Also note that an entire range of enabler’s interface definitions, between I0 and I0’ is possible, still without changing the interface exposed to applications, if so desired.

The advantage of using this concept is reflected in significant flexibility in different development phases and for different entities in the OSE:

1. Impact on enabler’s I0 interface specification:

· There are situations when an enabler’s initial interface is defined as a minimal, basic I0. The additional optional messages/parameters may be all known or not, but there is the distinct possibility that even if they are all known it may be initially difficult to decide whether they all belong with the enabler’s defined interface, or rather be handled elsewhere
 – hence it may be convenient to define those options as an Op set of options (Op could be anywhere from null, to a superset of options) that will be defined initially similar to P parameters, and handled appropriately according to the OSE architecture. As opposed to other “true” domain owners P parameters (the Pd set), defining the Op set is still the responsibility of the OMA WG.
 When ready to include the entire, or a part of the Op set into the enabler’s interface, a new release of the enabler may do so, and the enabler interface would then evolve to the new I0’ (or something in-between, if not the entire Op set is to be included in the new enabler’s interface). Note that the WG defining the enabler may decide whether the new I0’ replaces the I0, or whether both the initial I0 and I0’ need to be supported. This mechanism will allow for expedited decisions on the specification, because of the knowledge that a migration path exists.

· The reverse situations, in which an enabler’s initial interface is the superset I0’(I0+Op), including the basic messages/parameters, and the complete set of optional messages/parameters. This situation most likely may exist when the work is starting with a very mature specification for the interface in mind. Over time however, this enabler’s interface may evolve in the opposite direction, namely to reduce the number of options and allow those to be exposed via P parameters required to satisfy domain owner’s policies instead.
 That may happen if a more generic, rather than specific interface is desirable (see deployment impact). As in a previous case, note that initially one could start with something less than the superset, and also that one could end up in the new release with something less than the basic minimal I0 – the entire range of options is available to the architects of the interface.
 As before, note that the WG defining the enabler may decide whether the new I0 replaces the I0’, or whether both the initial I0’ and I0 need to be supported. This mechanism will allow for expedited decisions on the specification, because of the knowledge that a smooth migration path exists. .

2. Impact on implementation

· The decision on a particular implementation, from a vendor’s perspective will be dictated by how the enabler’s interface is defined (see the explanations before). The enabler could be defined in such a way that only one I0 is to be supported going forward, multiple I0 are to be supported and/or one of the supported interfaces may be mandatory and the other optional.

3. Impact on deployment

· This approach will give significant added flexibility to the domain owner. It will practically allow the domain owner to expose a practically unchanged interface, if so desired, to applications, while internally the domain owner may have a variety of deployment choices to explore for the benefit of its own particular situation.
 The domain owner will ultimately be able to have a range of choices from using a significant set of options implemented in an enabler, or implemented differently by declaring those options as part of its P parameters required to satisfy their policies. Among other advantages, a domain owner could deploy a richer interface to the applications, earlier than otherwise expected,
 and handle the support of such an interface as convenient by distributing options between the P parameters and the enabler’s interface. The use of early options exposed to applications via the P parameters may also influence the evolution of the interface’s specification based on practical field results. All this is invaluable for a Service Provider that needs to support, for the same type of applications, multiple underlying network infrastructures
, while at the same time trying to optimize performance for all of them. A case could be made that in certain cases the use of the Policy Enforcer and the use of a subset of P parameters are not necessary to allow options, outside the I0 specification to be exposed to an application. For example, this could be done in the case where a Discovery Enabler is present,
 and an enabler implementation that provides such additional options. In this case, the enabler would publish its interface (the combination of the I0 conforming to specifications, plus the additional optional messages/parameters offered by the particular implementation). This spec+ interface could then be discovered by the requesting applications. Presumably “true” Pd parameters could be added to such interface by the domain owner via administrative commands or via posting through the Policy Enforcer, thus allowing for an I0+Op+Pd to finally be exposed to the applications. Policy Enforcer would only have to handle the Pd at interception of messages, because all the rest would be sent to the enabler that exposes an I0 interface specification, plus unspecified options.
 While this scenario is indeed possible, the work on discovery enabler has not started yet, so it may be premature to assume whether and how it would cover such situations.
 Furthermore, since ANY enabler implementation is optional in deployment, there may be cases in which a Policy Enforcer may be deployed, but not a Discovery Enabler, or vice-versa. In the cases where both are deployed, the choice of how to implement such an application could still be left to the deployer.
 Finally note that, while the use of a Discovery Enabler may be a valid option instead of the use of the Policy Enforcer for the sub-case described above (when more options than the specification allows are to be exposed), it does not help in the case when the I0 specification requires all the options to be exposed,
 but the deployer does not want to pass the optional parameters to the enabler, for whatever reason (the case of “reducing” the interface).
 This is the case in which an application may send all messages/parameters, but the domain owner wants for example to replace the optional parameters sent by the applications with domain defaults. The Policy Enforcer can perform ANY such transformations, since it is in the path of the request/response, while the Discovery Enabler cannot – since it is only a
”means of communication” of the messages/parameters, and never processes a request/response. Similarly, the use of a Discovery Enabler is not helpful when the enabler implementation does not support any additional options, but the domain owner still may want to expose such options to the applications. This may be the case in which a domain owner may want to collect statistical information on the use of options,
 in order to see how useful those would be to be later on implemented as part of the next I0 specification.
 In this case, such options passed on by the applications would be detected by PE, and processed through delegation to architectural elements deployed by the domain owner for collecting such statistics, while the target enabler would only be forwarded the pure I0 specified messages/parameters.

4. Last but not least, impact on applications

· Depending on the domain owner’s decision, use of this concept may ensure minimal or no changes to the exposed interfaces to applications, over time – therefore ensuring stability of the exposed environment, with all its positive revenue-related implications for all segments of the value chain. Also, note that it is expected that over time applications developers may also want to influence the interface exposed to them. We have not explored this situation in the OSE, but it is likely that an application developer may propose to the domain owner a certain interface, that will include messages/parameters as required by a particular enabler, but also other proposed messages/parameters specific to the application, that are not part of the current enabler specification, or part of the P parameter set needed to satisfy domain owner’s policies. Such applications developers may also provide the domain owner with architectural elements (e.g. servers
) to be deployed in the OSE, in order to handle the additional parameters. All such additional messages/parameters need to be detected and directed appropriately when the request enters the OSE, and the Policy Enforcer could be the mechanism to do this, given its properties.
 Over time, if the use of those messages/parameters proves to be widely accepted, they may be added to one or another enabler’s interface specification – thus helping the evolution of the interface.

Note that another possible transformation, mentioned in the OSE V1.0 document is “composition”. While this may be worthwhile of a separate application note, the current application note lays the ground for a larger number of variations, where “composition” is one of them. The case of “composition” is the case where the Policy Enforcer takes the I0 enabler interfaces from several enablers, transforms those as needed, adds to that combined set yet other messages/parameters (including P parameters dictated by domain owner’s policies, but also other potential messages/parameters, as explained in this application note) and exposes the resulting set of messages/parameters to the applications.

In conclusion, this application note is intended to raise awareness to the fact that the Policy Enforcer architectural element has significant capabilities to transform interfaces specified by enablers into (potentially different) interfaces exposed to applications. What transformations are performed is encoded in the domain owner’s policies, and those are completely under control of the domain owner. No such transformation will occur if none is desired by the domain owner (hence not encoded in their policies); at the same time almost any transformation can occur if so desired by the domain owner (hence encoded in the domain owner policies). Ultimately, it is the domain owner’s choice whether to use or not such a capability, for differentiation from other Service Providers or for any other reasons (some of them mentioned in the contribution).

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

The recommendation is for ARC to better understand what IC 0213R01 says before accepting it as an architecture application note. We don’t think the current IC should be agreed.

�Who other than domain owner can dictate the changes?

�This mixes the notion of evolution of the interface and optionality. These concepts are quite different.

�This is similar to misconception about arch vs deployment. The arch contains ALL of the components (ignoring which are optional and which mandatory). Deployments/implementations might contain a subset of the full arch. Likewise here, the I0 is the full set of messages and parameters. A specific deployment/implementation will have a subset of the full I0. [NOTE: “subset” means either all of the original set or some part of it.]

�Is this notion of composition? What does it have to do with optionality?

�We are supposed to be network neutral

�No idea what the prior sentence means.

�This is confusing because I don’t think you reuse the existing definitions of I0 or P.

�In this case I0’ is what the OSE refers to as I0

�Just to be clear – this is what we today refer to as P since we don’t care why the parameters are added.

�PE transformations can include deletions, not just additions

�This is an infinite set??

�I just don’t understand how “option” is being used here? Optional features/parameters of the enabler, as defined in the spec?

�Does this mean “ask appl for all possible parameters and pass to the enabler impl only those that it understands”?

�This only happens if you always expose only the full set of enabler parameters. But this has nothing to do with release-to-release evolution – it only deals with optional and mandatory features.

�Handled where? Don’t understand this notion.

�Huh? If the WG defines the parameters/interface, then it is part of the enabler interface and is in I0.

�The normal question is whether a feature/parameter is mandatory or not. If not, the parameter is still defined by WG in the spec. This is not a migration (release-to-release question).

�This situation is better characterized as the deployment includes vendor/operator-specific extensions beyond the standard.

�Again, a different view of mandatory vs optional

�Ignoring the difference in view of optional vs mandatory, I don’t understand the notion of “smooth migration”. What provides the migration, who is it smooth for, when and how does it happen?

�Seems to me that the implementation is completely independent of these questions since it only seems the parameters that it understands. PE handles all other parameters, filtering unused ones before the enabler impl sees them.

�Don’t understand this – if the domain deploys a subset implementation, the domain (PE) might expose the full parameter set, but then all the functions will NOT be implemented. Won’t the requesting application recognize this sometimes? A counter-example is a location enabler that does not implement a Z coordinate (height) – PE could always put a 0 in there. However, other functions might not work so easily be masqueraded.

�“earlier” – note that there is still a discontinuity when the interface changes, it is just earlier.

�This is a basic goal of OMA (network neutrality) – we don’t need anything from PE to achieve this.

�If there is no Discovery, then there needs to be a manual method to determine an enabler’s interface – so the whole discussion is moot (this manual method gives the right answer).

�Yes, this all works even without a Discovery enabler – what is the point?

�Easy to understand – look at existing discovery enablers like UDDI or JINI or ….

�This sounds like the problem can be solved either by Discovery or PE, I don’t understand.

�Mandatory vs optional?

�Why would the domain do this – it in fact is “lying” to the requestor if some parameters are ignored.

�Please explain this reasoning – trying to figure out which or how many appls use the options? I don’t see how any of this discussion affects a domain’s ability to do this?

�Discovery can handle this – just define the expanded interface to Discovery (even if underlying implementation does not support it all). Gathering statistics seems like an unlikely reason.

�“servers” are not architectural elements as defined by OSE

�this is an example of the domain constructing composite services or workflows that go beyond OMA definitions. Just fine. But what does it have to do with the above discussion?

�This para could be the basis for this contribution, not optional/mandatory or migration.

�This para is just fine.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 5)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20050101-I]

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 5 (of 5)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20050101-I]

_1179131914.ppt

I0+P = I0+(Op+Pd)

bindings

I0

I1

To Resources in

Operators,

terminals,

Service Providers

I2

Execution

Environment

(Software Life Cycle Mgmt,

Load balancing,

caching, O&M,

etc.)

Applications

Enabler

implementation

Applications

Policy

Enforcer

bindings

I0’=I0+Op

I1

To Resources in

Operators,

terminals,

Service Providers

I2

Execution

Environment

(Software Life Cycle Mgmt,

Load balancing,

caching, O&M,

etc.)

Applications

Enabler

implementation

Applications

Policy

Enforcer

I0+P = I0+(Op+Pd)

I0’+Pd = (I0+Op)+Pd=I0+P

I0’+Pd = (I0+Op)+Pd=I0+P

I0+P = I0+(Op+Pd)

Legend

 Pd = P domain owner subset

Op = Enabler Interface Options

 P= P parameters superset

