Doc# OMA-ARC-2005-0292R01-Comments_0283R01_0284R01_0285R01[image: image1.jpg]
Input Contribution

Doc# OMA-ARC-2005-0292R01-Comments_0283R01_0284R01_0285R01
Input Contribution

Input Contribution

	Title:
	Comments ARC-2005-0283R1, ARC-2005-0284R01 and ARC-2005-0285R01
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA ARC (PEEM Activity)

	Submission Date:
	20 August 2005

	Source:
	Stéphane H. Maes, Oracle Corporation
P: +1-203-300-7786
stephane.maes@oracle.com

Mark Pozefsky, IBM

P: +1-919-929-9051

poz@us.ibm.com

	Attachments:
	N/A
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	N/A

1 Reason for Contribution

Contributions OMA-ARC-2005-0283R01-Criteria-for-PEEM-Policy-Management-Interface, OMA-ARC-2005-0284R01-Criteria-for-PEEM-Callable-Interface and OMA-ARC-2005-0285R01-Criteria-for-PEEM-Policy-Expression-Language have been submitted late for Montreal.

Some comments were privately made to the initial versions of these contributions.
R01 correct an error in the header.

2 Summary of Contribution

We appreciate the updates that have been made based on some of the comments that we provided.

This contribution provides some comments remaining on the revised contribution. It should be considered when these three contributions are considered and disposed; especially if the Montreal schedule lead to conflicts with other activities when this is discussed.
3 Detailed Proposal

3.1 Overall comments

We do appreciate the approach of these contributions, namely looking at the RD, extracting the related requirements and deriving some considerations. These are useful analyses and approaches.

However, we are very concerned with the present analyses that may seem to aim at extracting from the requirement technical criteria and features that the components must support or do not have to support. This may be related to different views on the role of RD and what should be design best practices. In our view, a RD defines use cases and high level requirements that an enabler must or should support and may prioritize such support. It does not define the technical capabilities that must be provider or design option choices that must be made. It is therefore problematic to read the requirements to extract the feature that in this case the interface are to provide or not. We contend that in fact what needs to be done is to read the requirements and derive the implications in terms of what are the options or features that should be provide. Similarly read the use cases and see what their implications are. Eventually the pieces are to be put together into a correct, complete, useful and minimally constraining design. It is this whole process that determines what are the enabler technical feature to provide and choices to make.
3.2 Comments to OMA-ARC-2005-0283R01-Criteria-for-PEEM-Policy-Management-Interface
3.2.3 Section on PEM-2 interface properties
· Bullet 1: It is not clear that the analysis can conclude that need to be able to update ONLY the action (or the condition) of a policy rule, rather than update the whole rule.

· Bullet 1: It should be clear that the analysis does not define the notion of updating or editing policies. We can not infer from this analysis if rules are to be update or whole policies. This argument can not be used to determine if retrieve, edit, upload is better than update / edit in place.

· Bullet 1: we agree with the set of function to perform: Add, Remove, Update. It is not clear if there is need for anything else…
· Bullet 2: We do not read the prioritization of policies the same way. This is in our view a feature of the policy expression language in the form of meta data captured in the policy (or associated to it).
· Bullet 2: We disagree with the new conclusion. This is “business as usual” or rather “PEEM execution model as usual”: the policy enforces the policy by interpreting its expression in the PEEM policy expression language. Any meta data that guides the traversal of the policy graph (e.g prioritizations, input data match, etc…) is part of that execution model and the enforcement of the policy. No special treatment is involved.

· Bullet 3: Such requirements simply denote that usage of PEEM enabler is similar to usage of any other enabler or resources: authorization and authentication steps may apply (through policies) before allowing access. This is no different from any other enabler and from a PEEM point of view it is “non – intrinsic”; even if in practice it may involve recurrent policy enforcement (as policies may apply on a request prior to enforcing the policy for the request). If some behaviors are specific to a policy this is still from a PEEM point of view, simply having to perform request-specific policy enforcement. We agree that we may have to agree on how this meta-data will be represented and related to the policy.

· Bullet 3: We note that in our view Global Permission management is solely a PEEM and Security function: Policies are written for PEEM. PEEM enforces the policies in proxy or callable mode and delegate to an authentication / authorization enabler. So although phrased differently, we agree with the conclusion.

· Bullet 3: We do not believe these are implementation considerations rather intrinsic versus non-intrinsic considerations.
3.2.4 Section on PEM-2 candidate
We agree that we should consider XDM/XCAP as well as any other appropriate candidate. We believe however that no convincing case has yet been made so far for this.

Indeed, as discussed above and even in 283R01 there are no requirements yet that would require any functionality above simple FTP… The subset of XDM/XCAP functions that satisfy the requirements amounts to FTP or FTP over HTTP…

In addition, and at the level of the AD work, we have not agreed that policies are XML documents. Actually other contributions and existing languages would rather point towards scripting languages or clever combination of declarative languages and scripts. As far as we understand XDM would not be suitable in such case. In any case no decision or determination of such a candidate can be made until the policy language it self it sketched and stabilized.

Note however that FTP does not have such a dependency…

It is very unclear also if the use cases and design point for XDM (between what actor and what actor) apply for PEM-2. For example, it is doubtful that PEM-2 is something to provide to mobile clients / use agents for repeated / periodic accesses…
We are also puzzle about the mention of SIP notification. Reading the requirements and analysis in 0283R01, we did not manage to find requirement for notifications mechanisms at the level of PEM-2… We do not understand the use on XDM documents… or on PEM-2. At best related requirements would rather apply on PEM-3 and PEM-3…
3.2.5 Section on recommendations
We do not believe that the text under PEM-2 interface properties is ready for introduction into the AD. We would accept identifying the functions as done for bullet 1 in that section but just the list without the policy, versus policy rules versus condition / actions. The other bullets do not pertain to a PEM-2 discussion.
We do not agree that at this stage we can identify XDM as a candidate. If we decide to create such an informative appendix as suggested, we request that it be identified as related technology with text that solely indicates that XDM/XCAP is a related technology to provide remote manipulation of declarative documents. The issues that we identify in section 3.2.2 should also be added. No mention should be made of SIP notification at this stage.
3.3 Comments to OMA-ARC-2005-0284R01-Criteria-for-PEEM-Callable-Interface

3.3.3 Section on PEM-1 interface properties
· We do not agree with the initial analysis “We note that some of the requirements focus on the pre-processing of a request (before getting to the policy rules themselves) and some distinguish between a request for evaluation only, versus the need for evaluation and execution”. No such requirement does this. Actually we believe that none of the requirement identify such preprocessing but solely discuss the enforcement of the policies (i.e. walking the graph of policy rules – conditions and actions).

· We assume, PEM-1 is the target in the next sentence?

· We note that the requirements do not focus on the type of type of requestors allowed but instead indicate that any requestor may be involved…

· Bullet 1: We could not disagree more with the analysis. There are absolutely no requirements stating that PEM-1 must distinguish between evaluation and evaluation and execution at the level of PEM-1. In addition such a distinction at the level of the specification would be design error. Policy enforcement means walking / traversing the graph of conditions and action for the policy that is enforced. The RD is crystal clear in stating that going through the combination of conditions and actions is the same operation for evaluation and for evaluation and execution. In fact the only difference is that in one case the policies only contain conditions and no actions! PEM-1 is clearly to be used for both. Also nothing at the level of the requirements hints in any way that the requestor may be aware of what policy / operation it requests when requesting policy enforcement via PEM-1; unless of course if it passes itself the policy
. So:

· PEM-1 must not distinguish between evaluation requests and evaluation and execution requests; both are the same. They only differ by the policy that is enforced.

· Requesting such a distinction is in our view unjustified, a bad design practice and as a result unnecessarily constraining.

· We do want to point out that this does not restrict implementations and deployments to introduce such distinctions, and many others proper to the implementation or deployment, by the way that they pass input data parameters
.

· Bullet 1-a: Therefore the sentence “the evaluation-only interface may be a subset of the evaluation and execution callable interface and it has to be clearly distinguishable from the interface if the request is a request for evaluation only, or for both evaluation and execution” is problematic and should rather read: “the evaluation-only interface is undistinguishable from the evaluation and execution callable interface. The same PEM-1 interface is used for requests for evaluation only, or for both evaluation and execution”.

· Bullet 1-b: This proposal is not acceptable based on the analysis above.

· Bullet 1: Regarding “For deployment and optimization reasons, there should not be a need to go through the process of processing the policies in order to determine the type of processing needed”, we do not believe that this has anything to do with distinguishing at the request level between evaluation and evaluation and execution. Optimization gain mainly from being able at implementation to optimize the topology of policies based on optimization criteria. If a vendor or service provider believes that optimization comes from knowing if a policy is for evaluation or execution only, it should just make sure that its policy is written such that such decision is rapidly made for a particular request. Any other scheme is constraining, for no particular gain or not generic (i.e. this will not work whenever the requester does not know about if it is evaluation or evaluation and execution or in proxy mode which is really the case when responsiveness and optimization are the most critical to avoid unnecessarily delaying a request to a target resource…)

· Bullet 2: We disagree with this statement. It is not motivated. A policy is written so that (as mentioned in the requirements) it can match and extract relevant input information from the input data (the BLOB). A request must pass the information that it is told to pass. This depends on the policy. If there is a match the policy is enforced. If there is no match (i.e. requester sent other data in its request), the traversal of the policy will result into some actions / responses as specified in the policy for such a case.
· Bullet 3: There are no restrictions to synchronous interface, nor any limitation that would prevent asynchronous behaviors. In fact, one may question if some of the use cases in the RD would not benefit from asynchronous support. Note also that synchronous introduces “blockage” of the requestor till its gets an answer. We do not believe that we want impose such a behavior. In any case synchronous or asynchronous usage is an issue for the requestor not for PEEM…
· Bullet 3: We agree that PEM-3 provides responses. Note however that no response is a form of response and that the response is solely dictated by the policy. The requestor is expected to be able to handle the expected response; not the other way around. Of course the policy should be written so that it produces the expected responses…

· Bullet 3: because of the explanation in the previous bullet, we disagree with the statement “he exact nature of the information returned with the response may depend upon the type of request (in particular if a request for evaluation-only or a request for both evaluation and execution)”. Indeed, the policy determines what is returned. The request determines how the policy is traversed (how its graphs are walked). Different requests result into different paths that may result into different responses.
· Bullet 3: Regarding “In the case of an evaluation-only request, the response will signify that the evaluation (of all applicable policy rules) succeeded or failed, but it also may also need to provide additional information – very dependent on the nature of the specific request for an evaluation decision (e.g. since in this case the enforcement is done by the requester, the request could be of the nature “tell me which of the n possible decisions needs to be carried out, based on the evaluation of given conditions”).”

· We see no reason to restrict to evaluation.

· The policy dictates the response

· Nothing limits the response to be Boolean.

· The model of having the policy dictating the response as part of its traversal covers this. The above is just a particular use case of this model.

· Bullet 3: Regarding “In the case of evaluation and execution, it is not so clear what the result may be – although it would probably be indicative of success or failure (depending on specific policies, additional information indicating partial success or partial failure may be needed).”

· As discussed above, we disagree with any distinction between evaluation case and evaluation and execution cases. Again the situation is rigorously the same:

· The policy dictates the response

· Nothing limits the response to be Boolean.

· Note that the notion of success and fail is also a red herring… the policy graph is traversed in all cases (by the way that it be evaluation or evaluation and execution) and something is done as intended by the policy…

· Bullet 3: We disagree with the statement “The different type of information potentially received as a response in the case of an evaluation-only request and a request for evaluation and execution strengthen the point that there may differences in the processing of both input and output, in the case of evaluation-only, as opposed to evaluation-and-execution.” It should be clear that the analysis above explicitly illustrates that there is no difference in response or execution model between the two cases… The opposite of the conclusion derived for bullet 3 in 0284R01.
· Bullet 4: We disagree with the implications that an access mechanism is needed. We contend that PEM-1 is no different from any other enabler I0 interface: it must be protected via policies when exposed. We note indeed as we did in section 3.2.1 that this may recurrently involve PEEM. It should therefore be clear that “While the access control mechanism may be a PEEM implementation, rather than PEEM specification requirement, the requests need to include parameters that would convey enough information to support access control (e.g. work under Global Permission Management work item may be be appropriate for such implementation, when available)” must be nothing more than relying on I0 and I0+P where PEM-1 is I0…
3.3.4 Section on recommendations

We do not believe that the text under PEM-1 interface properties is ready for introduction into the AD. We have fundamental disagreement on the result of the analysis. At best it is very implementation / deployment specific and should not be introduced as generic constraints on the specifications and vendors / deployments that would not believe / require / exploit distinctions between evaluation and “evaluation and execution” but treat both as a same enforcement operation, consistent with the RD…

3.4 Comments to OMA-ARC-2005-0284R01-Criteria-for-PEEM-Callable-Interface

3.4.3 Section on Policy Expression Language interface properties
· First paragraph: We agree with the essence of this summary. We believe however that it is the conclusion of the whole RD and not of the majority of the requirements and we believe that this is good:

· The RD is solely saying:

· In terms of policy expression language:

· There is a need for one

· It should be standard

· It should exchangeable and still be enforceable

· It represents policies

· Enforcement means interpretation and execution of the language (i.e. executing the appropriate combination of conditions and actions = policy enforcement)

· That includes evaluation only and evaluation and execution

· All these cases are covered as “enforcement of a policy”.

· In terms of PEEM:

· PEEM is a box that enforces a policy expressed in the policy expression language and it does what the policy dictates

· There are PEEM interfaces to support callable and proxy mode as well as policy management.

· Providing examples of how this is to be used and therefore help guide the next step.

· AD and specs will determine the next steps…

· Based on the above we caution about trying to design the policy expression language based on what the requirements identify as its feature and what it does not identify as features…

· Bullet 1: conditions and actions involve type of data. They are not types of data but rather executable expression that can involve anything (Turing complete executable).
· Bullet 1-a and 1-b: We do not understand what a component of condition or action might be. We believe that we should rather refer to variables populated from the input parameters via appropriate parameter matching techniques…

· Bullet 2: We could not disagree more with the first statement “other language constructs are not directly required”.

· Firstly we should rather state that they are not mentioned

· Secondly they are actually mentioned and required as actions and conditions are widely discussed and both conditions and actions are not to be limited in anyway in terms of what they entail.

· They can clearly involve delegation

· Because no restriction is introduced and motivated, they must support any turing complete executables…

· Therefore they both explicitly cover all the construct required to support delegation and Turing complete executables…

· Bullet 2: As discussed in the comments about bullet 2 above, the statement “or other possibilities in which only the “data” is being identified (as described before)” is not motivated. We disagree that conditions and actions can be expressed solely based on data or a data model. At the minimum, a concrete example will have to be provided before we can even just accept that this is a possibility. We would then challenge the possibility to indeed support the use cases covered by RD and OSE based on such a language. Only when both these examples are provided can we count this as a possibility and move on to considering this as another option.

· We actually challenges that specifying only these data while supporting the use cases and maintaining interoperability / exchangeability is not possible without also specifying its container language that will be and must be Turing complete.
· We believe that this is actually solely suggesting that different Turing complete language can be used and transformed into each others. That is probably true but specifying or supporting such a set of language seems not required by the RD, not useful to implementer and service provider and an overall disservice to the industry… We should specify one and only one policy expression language! We should actually endeavor to use it beyond mobile domains…

· Bullet 2-a: This is not an acceptable option for us as discussed above, nor is it motivated. OMA can not support two ways to do the same thing without a good reason to do so. None has been provided so far.
· Bullet 2-b: This bullet mixes numerous issues and discusses a solution path (meta-data) that we do not understand or agree with. Existing languages as far as we know are domain specific. The PEEM policy expression language is a generic policy expression language that must also support the expression of rules specific to OMA domains (and be extensible to support new domain or non OMA specific domains). That means that the language must have ways to support the semantics of these languages. That does not mean that it must support its syntax. The RD is not mentioning any such requirement. It definitively does not mention supporting multiple policy expression languages.

· If the language is well designed it will be possible to express legacy domain specific policies in that language and tools can be provided to automate this process.

· Vendors could specialize their PEEM offering and support legacy languages for specific domain through their own mapping or interpretation engine.

· But only one policy expression language is to be specified and the only burden on it is to make sure that it can support domain specific semantics and be extensible. We may design it so that mapping etc to and from legacy language be facilitated. But that is a nice to have design guideline; not a design requirement.
· Bullet 2-b: The term interworking is undefined in this context and hardly a concept derived from the RD.

· Bullet 2-b: Why would meta-data be required? The language should be able to express the domain specific semantics; nothing more… These semantics are not meta-data as far as we can tell…

· Bullet 2-c: We dispute and believe that the following assertion is incorrect “Since some of the policies would only need to express evaluations (decision rendering), such policies clearly need a less rich set of data (and possible constructs) than policies that need to express evaluations and executions”. Conditions can also involve the same delegations and Turing complete executable as actions. In addition, we do not agree with the notion that the policy expression language would differ for policies that involved only evaluation versus policies that involve execution and evaluation.

· The RD is crystal clear on this: we must define a language to express policies (6.1#9) and a policy expression language is a language to express policies i.e. a combination of policy rules that involve combinations of a condition and an action. No lee ways for subsets there…
· Bullet 2-c: We dispute the statement “Given this, any specified policy expression language should clearly identify the subset of the data (and possible constructs) needed for an implementation that may support evaluation-only”. Indeed, policies are clearly defined in the RD. A policy may have only conditions. In such case, PEEM performs evaluation only. If a vendor decides to support only evaluation or if a deployment only involves evaluation, then the burden is on to make sure that the policies that are to be enforced consist only of evaluation clauses. These may be Turing complete and involve delegation. The language (and the PEEM enabler) supports that but must be agnostic to it. It would be unacceptable that the language further designate what is relevant to an evaluation beyond the fact that it involves one or multiple conditions to evaluate! This would be an inefficient design of the language with unnecessary constraints that have not been motivated.
· We also claim and argued that PEEM must not know if it performs evaluation or evaluation and execution. Both are enforcement steps. We have argued against any distinctions at the level of PEM-1. If PEM-1 is the same there is no way that the language may differ.

· Bullet 2-c: The discussion in the two bullet above indicate why the notion of separate languages for evaluation and evaluation and executions are totally unacceptable, unmotivated and against the RD requirements. The impact on implementation, deployment and service providers plus the implication in terms of interoperability are such that this can never be motivated. In addition technically there are no reasons for doing so as explained above.

· Bullet 2-d: We agree. We have actually advocated that in 0227R04 when introducing the notion of supporting policy topology re-arrangement. We are quite happy to see this to be supported by the requirement analysis presented in 0285R01.

· Bullet 2-e: Unfortunately as discussed above, to support the RD requirements, the language can’t just express data but allow expression of Turing complete executable. We also refer to our discussion in section 3.1 and the first bullet in section 3.4.1: The RD states that a policy expression language must be specified it does not designs its feature. However the use cases in the RD and the OSE usage must be supported.

· Bullet 2-e: Therefore, “PEEM should not adopt a language that supports more than is needed by PEEM requirements because this would be an unnecessary imposition on the vendors, as well as it could result into a suboptimal and costly implementation” is to be understood that way! Now it is clear that a language may have more than needed and in such a case, unnecessary features may not be motivated. In such a case, we should consider if it is appropriate to profile the adopted language. Note in such case it is very important to understand the implication on interworking, adoption, risks of confusion etc before deciding to do so versus simply reusing the language. It is also important to understand that adopting a widely use (even if richer) language is not necessarily leading to worse burden and implementation. Widely used standard languages (or technology in general) lead to wider experienced programmer and user, performing products, debugged and improved specifications with real world validations and public scrutiny, better interworking, wider set of interoperating products, more vendors, open source solutions etc… These may actually invalidate the concern in 0285R01 and be reasons for explicitly choosing to reuse such a language even if it may appear to be sometimes more powerful than needed.
· Bullet 2-e: Regarding “If certain features of the considered language can be considered potentially valuable to accommodate future needs, although they are not needed based on the current PEEM requirements, any such features should be clearly identified as optional in the PEEM policy expression language specification”, please refer to discussion above.

· Italic text: Regarding “An alternative based on meta-data would allow for identification of the main components of a policy rule – namely “conditions” and “actions”, while leaving the precise syntax inside those components flexible to accommodate internal implementation of PEEM”, we can not agree with that approach. As stated above we do not believe that it is even possible to model conditions and actions without Turing complete executable. The constraints and limitations are unmotivated and way too constraining… In any case this would amount to multiple language and this would prevent exchange of policies and interoperability. It would require mapping across languages something that had been stated by some or all of the authors of 0285R01 in the past explicitly stated in discussions and in input contributions as not desired (and something that we also dispute: avoiding mapping is not a requirement in our view). So we are definitively confused by this proposal. Until a workable example is provided we do not believe that this is to be considered.
· Italic text: In the same vain we challenge the validity of the following sentence “Such an alternative would have the advantage to easier accommodate support for currently existing deployed policies, because of the relative ease of migration”. Again, assuming that the proposed model might work, it is not clear that mapping the stated data in a legacy language (something that would always have to be done) would be better than expressing in a single policy expression language and being able to map some rules / clauses to legacy languages when needed. Both seem equivalent tasks…
· Italic text, following sentence: Agreed this is one of the issues… This would mean failure of the PEEM activity!
· Italic text: Regarding “The alternative of including all constructs in the language would result into a Turing complete type of language, which would require perfect conformance for all policies written for any type of current or future resources. This would have the advantage in the long-term of having a policy portable across vendor implementations, but the disadvantage in the short-term of having difficulties in supporting the large variety of policy expressions existing in the industry”:

· Supporting the semantics of existing languages does not implies these problems

· Supporting PEEM requirements and use cases imply supporting among other things Turing complete executable as constructs of both conditions and actions

· The statement is therefore challenged from both angle: it is not possible not to be Turing complete and no to be Turing complete does not bring additional challenges. Definitively not with respect to the alternatives proposed here that are in our view not defensible.
3.4.4 Section on recommendations

We do not agree at all with most of the analysis present. This material is definitively not ready for inclusion in the AD.

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

We have commented on 0283R01, 0284R01 and 0285R01.
We have described our recommendation with respect to the recommendations provided in these contributions respectively in sections 3.2.3, 3.3.2 and 3.4.2.

We recommend that ARCH agrees to these propose disposition of the recommendations and we recommend noting documents 0283R01, 0284R01 and 0285R01. We disagree with them.

� Note: That does not mean that the requestor would not be aware of the type of response that it will receive. But that applies again both for evaluation and evaluation and execution.

� After reading OMA-ARC-2005-0287R01-PEEM_Interfaces_Features it should be easy to construct an example where the input BLOB contains such information if the policy is written such that it expects such input as part of the input BLOB. It is therefore available for implementation / deployment specific optimizations that would rely on it.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 8)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20040917]

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 8)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20040917]

