[image: image2.jpg]
Liaison Statement

	Liaison Statement Title:
	GSMA RCS Liaison to OMA
Approved API Specification and next CC

	Source Meeting Information

	Meeting Number
	Meeting Date
	Meeting Location

	RCS SVD Group
	Jan. 26th, 2011
	SVD #29 Conf Call

	
	
	

	Document Details

	Document Number:
	Creation Date:
	Document Author:

	SVDG29_007
	26/01/2011
	JF Labal

	Originating GSMA Source:
	Sent To:
	Copied To:

	Mark Hogan
	OMA ARC
	RCS MG

	Action Required by Recipient: (Please Tick a box under desired action)

	None – For Info Only
	None – Reply to Earlier LS
	Info/Clarification Required

	x
	x
	

	Decision Required
	Approval Required
	Deadline for Response

	x
	
	N/A

RCS SVD thanks in advance OMA ARC to consider for the RC WI the attached RCS API requirements specification version (v0.5) which still needs to be considered as an informative document. The RCS API requirement specification will be subject to modifications and will be as well revised according to OMA ARC feedbacks before it is apporved by SVD.
In addition with respect to the proposal from OMA ARC as captured in the LS OMA-ARC RC APIs WID discussions with GSMA RCS (Jan. 19th, 2011) RCS SVD confirms his participation in the Joint conf call on Feb. 02nd, 2011.

[image: image1.emf]SVDG29_004-RCS_A

PI_requirements.DRAFT_v0.5.doc

Page 1 of 1

[image: image2.jpg]_1357561808.doc
		GSM Association

Official Document BA.61

		RESTRICTED

[image: image1.png]

Rich Communication Suite

RCS API Detailed Requirements DRAFT

0.5

20 January 2011

This is a binding/non-binding permanent reference document of the GSM Association.

		Security Classification – NON CONFIDENTIAL GSMA MATERIAL

Copyright Notice

Copyright © 2011 GSM Association

Antitrust Notice

The information contain herein is in full compliance with the GSM Association’s antitrust compliance policy.

Table of Contents

21
Introduction

21.1
Overview

21.2
Scope

21.3
Definition of Terms

31.4
Document Cross-References

32
RCS high-level requirements

43
Architecture requirements

54
Security framework

54.1
General requirements

64.2
Authorization using OAuth

85
UNI API requirements

85.1
General requirements

115.2
Network Address Book UNI API requirements

135.3
Presence UNI API requirements

155.4
Messaging (SMS/MMS) UNI API requirements

165.5
Chat UNI API requirements

185.6
File Transfer UNI API requirements

215.7
Call UNI API requirements

235.8
Video & Image Share UNI API requirements

275.9
Capability Query UNI API requirements

286
Annex 1: RCS API Authentication & Authorization – Use Cases

286.1
Overview

286.2
Application registration – Developer view

316.3
Application authorization – User view

366.4
Application usage – User view

376.5
Application authorization control – User view

397
Document Management

397.1
Document History

397.2
Other Information

1 Introduction

1.1 Overview

GSMA RCS main objective is to bring a suite of services (using enablers from OMA and other SDOs), to market.

RCS is entering a new phase in its evolution; the introduction of APIs to bring RCS to the market has been identified in RCS as a key priority.

RCS is looking for defined APIs to reference, which includes exposing of RCS capabilities to Web and Internet based developers, offering a set of commonly supported, lightweight, Web-friendly API to allow mobile (and other network) operators to expose useful information and capabilities to application developers. It aims to reduce the effort and time needed to create applications and content that is portable across mobile operators.

This Document details the functional requirements on the RCS API.

1.2 Scope

GSMA RCS has divided the APIs into three categories based on the target application developers, business model and location of the APIs. The definition is somewhat rough but has been very instrumental in the discussions:

· Device APIs

· B2B/Wholesale APIs

· UNI/Long Tail APIs

The first category (Device APIs) is an API residing in a device meant for an application executing in that very same device. The two latter categories access the service through an interface within the network and where the service could be executing in many different locations including the end-user devices.

When it comes to the second category we believe that these APIs are more in line with the approach taken by the industry traditionally. It is possible that many B2B scenarios are covered by current requirements, with appropriate policy and security mechanisms. The B2B APIs will be considered a future work item for GSMA RCS and should be considered for a later stage.

The intention with the UNI/Long Tail API is to put the threshold at the lowest possible level 1) for “anyone” or any application developer to develop a service/application that embeds one or several RCS enablers; 2) allowing to embed RCS enablers in very lightweight environments (such as pure web browser applications). The provocative analogy used has been “any pimpled 16 year old that can develop Facebook applications should also be able to embed RCS enablers into his applications”.

Throughout the rest of this document the focus will be on the UNI/Long Tail APIs.

1.3 Definition of Terms

		Term

		Description

		API

		Application Programming Interface

		NNI

		Network-to-Network Interface

		RCS

		Rich Communication Suite

		REST

		Representational State Transfer

		SME

		Small and Medium Enterprises

		UNI

		User-to-Network Interface

1.4 Document Cross-References

		Ref

		Title

		

		

		[LPDRAFT]

		Known issues and best practices for the Use of Long Polling and Streaming in Bidirectional HTTP - DRAFT

http://tools.ietf.org/html/draft-loreto-http-bidirectional-05

		[OAUTH20]

		The OAuth 2.0 Protocol Framework - DRAFT

http://tools.ietf.org/html/draft-ietf-oauth-v2

		[RCSR1FD]

		RCS Release 1 Functional Description

http://www.gsmworld.com/our-work/mobile_lifestyle/rcs/rcs_specification_documents.htm

		[RCSR1TR]

		RCS Release 1 Technical Realization

http://www.gsmworld.com/our-work/mobile_lifestyle/rcs/rcs_specification_documents.htm

		[RCSR3FD]

		RCS Release 3 Functional Description

http://www.gsmworld.com/our-work/mobile_lifestyle/rcs/rcs_specification_documents.htm

		[RCSR3TR]

		RCS Release 3 Technical Realization

http://www.gsmworld.com/our-work/mobile_lifestyle/rcs/rcs_specification_documents.htm

		[RCSR2TR]

		RCS Release 2 Technical Realization

http://www.gsmworld.com/our-work/mobile_lifestyle/rcs/rcs_specification_documents.htm

		[RCSR3IMEND]

		RCS Release 3 OMA IM Endorsement

http://www.gsmworld.com/our-work/mobile_lifestyle/rcs/rcs_specification_documents.htm

		[IR74]

		GSMA IR.74 - Video Share Interoperability Specification

http://gsmworld.com/documents/IR7413.pdf

		[IR79]

		GSMA [IR79] Image Share Interoperability Specification

http://gsmworld.com/documents/IR7912.pdf

		[IR84]

		GSMA IR.84 - Video Share Phase 2 Interoperability Specification

http://gsmworld.com/documents/IR2460(1).pdf

2 RCS high-level requirements

1. The API SHALL be HTTP/REST based

a) REST URIs and primitives names SHALL have an intuitive relationship with the functions and resources they are intended to represent

b) Architecture SHOULD be able to support future bindings (e.g. SOAP)

c) Architecuture SHALL support REST URIs that are independent from the RCS API version

2. The API SHALL mimic the functional level an RCS Client uses and not the underlying protocols

3. The API SHALL be implementation friendly for ”thin” clients such as web clients

d) SHALL support primarily ”server”-based application deployments; and secondarily ”device”-based application deployments, that is, applications accessing the RCS API may either be deployed on an server (where the user interacts with the application via a web-browser) or as a ”widget” (executing on a mobile or fixed device) or as a native application

4. Users SHALL authorize usage of said RCS functionality with their home operator only

e) OAuth authorization mechanism SHALL be supported

5. Users SHALL be authenticated by their home operator

f) Authentication mechanisms are out of scope of this document

6. Applications SHALL NOT be aware of the user’s real RCS identity and of his contacts’ real RCS identities. In particular, mobile telephone numbers (MSISDNs) or identities SHALL NOT be exposed neither for users nor for their contacts. Subject to service provider policies, only trusted applications will be authorized to know that information.

7. There SHALL be possible for a service provider to deploy developer security mechanisms and engagement/registration processes aimed to individual developers

g) Developer security mechanisms out of the scope of this document

3 Architecture requirements

[image: image2.emf]Operator

RCS

Enablers

(Presence, IM,

…)

RCS API GW

(REST)

RCS standard

client

UNI

User

agent

CRM

Enterprise

apps

OAUTH

Auth.

“Thin”RCS client“Thin”RCS client

Social

Net

UNI

Back-end

systems

RCS API

Developer

RCS User

In Scope

Figure 1: RCS API architecture

The RCS API Architecture as shown in Figure 1 SHALL support:

8. Application authorization to access the RCS methods/functions by the RCS user

9.

10.

11. End-user management of applications user has granted access to, which resource that is granted and the possibility to revoke the access for a given application

12. Operating on the RCS user’s services via the existing RCS UNI using the defined API primitives.

h) Strictly, as there is no specific RCS UNI for voice calls, i.e. call control related APIs do not use RCS UNI, see section 5.7.

13. Developer security mechanisms and engagement/registration processes aimed to individual or SME developers (out of scope)

i) Mechanisms and policies defined by service provider, existing developer portals and communities could accommodate RCS

14. Application authentication (out of scope)

15. User authentication (out of scope)

j) EDITOR NOTE: It is foreseen that in an RCS deployement authentication mechanisms will be defined by the service provider, it could reuse the same authentication used for “regular” clients.

4 Security framework

4.1 General requirements

16. The security framework SHALL enable a user owning network resources exposed by a REST API, to authorize third-party applications to access these resources on his/her behalf, via this REST API.

17. Supported third-party applications SHALL include network-side web applications, accessed to from user’s Web browser.

18. Supported third-party applications SHOULD include stand-alone widget applications installed on user’s terminal, and running outside of a Web browser.

19. Supported third-party applications SHOULD include native applications installed on user’s terminal.

20. The user SHALL NOT be required to reveal to third-party application the credentials he/she besides uses to authenticate to the service provider.

21. The third-party application SHALL be able to obtain from RCS service provider (by e.g. provisioning or dynamic discovery) the parameters required to request user’s authorization and to access user’s network resources.

22. The third-party application SHALL initiate the authorization request by directing the user to RCS service provider’s portal.

23. The RCS service provider SHALL present third-party application’s authorization request to the user in a form of an explicit authorization dialog or user content request.

24. The user SHALL authenticate to RCS service provider, before granting authorization.

25. The authorization dialog SHALL present at least the third-party application identity, the resources and the operations on these resources for which authorization is requested.

26. The authorization dialog SHALL allow the user to authorize or deny access for each requested (operations on) his/her resources.

27. The authorization dialog MAY allow the user to specify the duration for which his/her access authorization is granted.

28. The authorization dialog SHOULD be tailored according to user’s preferred language and user’s terminal user interface.

29. In case the user authorizes access to the third-application, the third-party application SHALL be able to obtain from the service provider an access token representing this user’s authorization.

30. The access token SHALL only be usable by the third-party application for the restricted scope (operations on resources) authorized by the user at the time of authorization request.

31. The authorization framework SHALL enable the user to invalidate at any time (e.g. upon user’s request on service provider’s portal) an access token representing a user’s authorization to a third-party application.

32. When accessing a protected resource via the REST API, the third-party application SHALL include in the request the access token obtained from service provider for the scope of this request.

33. The RCS Service Provider SHALL provide the possibility for the user to view the third-party applications and which resources have been authorized by the user

34. The RCS Service Provider SHALL provide the possibility for the user to remove the authorization for any application that has previously been authorized.

For an informative example, see Appendix A.

4.2 Authorization using OAuth

35. The RCS API SHALL support OAuth 2.0 as specified in [OAUTH20]

36. The RCS API SHALL support the OAuth “Web Server flow”

37. 3.
The RCS API SHALL support the OAuth Native Application flow, where the types of native applications can either be widget applications or native code applications.

38. 4.
For the authorization response delivery to the Native Application, the RCS API SHALL support at least one OS-agnostic and application-type agnostic delivery mechanism, which besides does not require end-user interaction such as manual input of authorization code. Section 6.3.5 of this document provides an example of such mechanism, based on binary-SMS.

39. 5.
The RCS API MAY support other OAuth flows

40. The RCS API SHALL support the OAuth 2.0 “Authorization Server” and “Resource Server” roles

41. The RCS API SHALL regard the users RCS services as the OAuth “Protected Resource”

42. The RCS API SHALL generate a OAuth Authorization Code as a result of the user authorization

43. The RCS API SHALL support the exchange of a Authorization Code to a Access Token according to OAuth .

44. The RCS API SHALL bind the authenticated RCS user identity to the generated authorization code and access token.

45. The RCS API SHALL be able to find the RCS user identity (for example MSISDN) via access token received from the application

46. The RCS API SHALL validate the access token received from the application according to OAuth

47. The values of the OAuth “scope” parameter SHALL reflect selected granularity in the usage of RCS enablers/resources via the API

48. The values of “scope” parameter Shall have a direct mapping (1-to-1 or 1-to-many or many-to-many) to the available RCS API primitives

49. The following minimum set of "scope" values SHALL be supported:

· Rcs_presence_publish_spi

· Rcs_presence_publish_servicecapabilities

· Rcs_presence_subscriptions

· Rcs_chat

· Rcs_filetransfer

· Rcs_videoshare

· Rcs_imageshare

· Rcs_voice_call

50. In addition to the values defined in the previous requirement, it SHOULD be possible to define per operator values of “scope” parameter to accommodate different granularity levels

·

·

·

·

·

·

·

·

[image: image3.emf]Social

NW

Social

NW

App

(Server)

OAuth: Client

Select “Set Tagline”App

OAUTH: Found, Location = /Authorize (App ID, scope=”publish_spi”, Redirect URI)

OAUTH: HTTP GET /Authorize (App ID, scope=”publish_spi”, Redirect URI)

OAUTH: Found, Location = Redirect URI (authorization code)

User A sign-in to home “operator portal”

User A grants access to app to

Set Tagline on User A’s account

OAUTH:OK, (Access-Token)

OAuth: Resource

Owner

User A

User A

Home OP3

Enabler

OAuth: Protected

Resource

OAUTH: HTTP GET /Redirect URI (authorization code)

Ok

OAuth: Authorization/

Resource Server

Comment::

re-directingto home operator

by constructing a URL based

on end-user authorization

endpoint URL provided to the

web app following

registration.

Store Access-token for next time service

is used (No need to grant access again)

Token can be time-limited

authorization code valid

New in v0.3:GW needs to bind

request to RCS user identity

(MSISDN) at logon via

authorization/access token

GW needs to bind request to

RCS user identity at logon via

authorization code/access token

HTTP POST /Token (App credentials, authorization code, Redirect URI)

RCS API GW

(REST)

User

agent

Auth.

RCS API GW

(REST)

User

agent

Auth.

Figure 2: Example of application authorization of OAuth in RCS using OAuth web server

[image: image4.emf]Social

NW

Social

NW

App

(Server)

OAuth: Client

OAuth: Resource

Owner

User A

User A

Home OP3

Enabler

Ok

Ok

Ok

Access Token stored

Access token valid

OAuth: Protected

Resource

OAuth: Authorization /

Resource Server

Ok

“Set Tagline”(text=“Enjoying weekend”, …)

HTTP REST URL: Set Tagline (text= “Enjoying weekend”, Access-token)

NOTIFY

XCAP PUT permanent presence <note> element for MSISDN-A

RCS API GW

(REST)

User

agent

Auth.

RCS API GW

(REST)

User

agent

Auth.

GW finds RCS user identity

(MSISDN) via access token

Figure 3: Example of application usage of OAuth in RCS

5 UNI API requirements

5.1 General requirements

5.1.1 Common notification channel

1. RCS API shall support a common notification (or event, or push) channel. All notifications for all RCS services are coordinated into one common HTTP-based Notification channel.

Background: Different RCS services needs to alert a user of an event (incoming chat invite, presence update from buddy etc.). If each RCS service has their own notification channel, a multi-service application would need to manage multiple such notification channels. This results in increased complexity and would be impossible to manage in some environments (web browsers have a limitation in the number of open HTTP connections).

2. Two methods for an application to receive notifications on the Notification channel SHALL be supported.

a) “Subscription”: The Application establishes a subscription to notifications by providing a call-back URL where the notifications are to be received.

This method follows the well-known subscription/notification pattern using REST primitives. It is foreseen to be used mainly for server-server notifications. Emerging industry standards like pubsubhubbub (http://code.google.com/p/pubsubhubbub/) could be taken in consideration.

b) “Long Polling”: The Application issues a “long” polling request to establish a notification channel for receiving notifications.

3. Both notification methods SHALL use the same data format and schemes for notifications.

4. Notifications sent SHALL be filtered based on authorization granted to the application, so server SHALL NOT send notifications regarding a resource for which the application has no authorization

5. Applications SHALL be able to select the notifications they are interested about, subject to consistency check by the RCS API GW.

As an example, an application that only reads / sets the free text field is probably not interested on Video Share related notifications or contact list updates notifications.

5.1.1.1 Connection handling for “long polling” notification channel

6. The connection SHALL be closed on reception of response from RCS API GW with notification.

7. The application SHALL re-open the connection to the RCS API GW after each response.

8. If nothing is to be delivered by the RCS API GW within a specified time period, or the RCS API GW drops the connection (for example returning “204 No Content”), the application SHALL issue another request to the RCS API GW.

9. If no new request is received by the RCS API GW after a calculated time, the RCS API GW SHALL assume that the application has disappeared (not connected any longer).

The time-out value SHOULD be dynamically calculated with respect to the application time-out and time-outs in the intermediate nodes (closing the connection)

10. Recommendations and best practices in [LPDRAFT] for “long polling” SHOULD be considered

5.1.1.2 Event notifications for "long polling" notification channel

11. Each notification from the RCS API GW can include one or more events. An event notification SHALL include a reference to the relevant resource.

12. The application SHALL use the received resource reference to perform relevant action on the object (e.g. accept invite, get presence data from buddies)

13. Notification events SHALL be able to include details where applicable (e.g. session progress information such as “Chat answered”).

EDITOR NOTE: It is foreseen that some events will be self-included, meaning they contain all information the application requires for further processing. Others might require querying a resource, which URL SHALL be included in the event notification.

5.1.1.3 Examples (informative)

[image: image5.emf]Request

200 OK with Resource

Functional

(Data)

session

GET https://URL/Resource/ResourceId

RCS EnablersRCS Enablers

Request: mapped to the

REST object (resource):

•SIP

•MSRP

•RTP

200 OK

Request

RCS API GW

User

agent

Auth.

RCS API GW

User

agent

Auth.

Social

NW

Social

NW

App

(Server)

“UNI”

PUT https://Appserver/RCSApp/AppInstance/notifications /

with URL identifying the resource to be retrieved,

e.g. https://URL/Resource/objectId

Operate on

Object

To perform

Required

actions

Establish

notification

Channel

201 Created

SIP Register

sip:alice@opDomain.com

…

SIP Register only

needed if application

needs receiving

incoming notifications

PUT https://url/Notifications/subscription/

notification-url=https://Appserver/RCSApp/AppInstance/notifications /

200 OK

RCS GW sends

notification to

application on

registered URL

PUT https://Appserver/RCSApp/AppInstance/notifications /

with URL identifying the resource to be retrieved,

e.g. https://URL/Resource/objectId

Notification

(Control)

session

Figure 4: Notification channel using “subscription” method, example

[image: image6.emf]Request

200 OK with URL identifying the

resource to be retrieved,

e.g. https://URL/Resource/objectId

200 OK with Resource

Functional

(Data)

session

GET https://URL/Resource/ResourceId

RCS EnablersRCS Enablers

Request: mapped to the

REST object (resource):

•SIP

•MSRP

•RTP

200 OK

200 OK with URL identifying the

resource to be retrieved,

e.g. https://URL/Resource/objectId

Request

RCS API GW

User

agent

Auth.

RCS API GW

User

agent

Auth.

Social

NW

Social

NW

App

(Server)

“UNI”

GET https://url/Notifications

Poll

notification

Channel

Operate on

Object

To perform

Required

actions

GET https://url/Notifications

PUT https://url/Notifications

Establish

notification

Channel

200 OK

SIP Register

sip:alice@opDomain.com

…

SIP Register only

needed if application

needs receiving

incoming notifications

Notification

(Control)

session

Figure 5: Notification channel using “long polling” method, example

5.2 Network Address Book UNI API requirements

5.2.1 General considerations (informative)

51. NAB API main use case is to allow applications to get contact information and to receive updates on contact information (i.e. new contact added, contact information modified and so on). Additional operations are defined to allow applications to update the address book.

52. Depending on service provider policies, in general, retrieve operations return a list of contacts, but not the complete information for each one of the contacts. The contact identity returned is the one that should be used by rest of APIs.

Two different identities can be returned: 1) a human readable identity that the Application can show to the user; and 2) identity for use by rest of APIs (could be a tokenized id, not intended to be human readable).

53. Depending on service provider policies, trusted applications can get complete information (potentially including MSISDN or URI). OAuth mechanisms can be leveraged to that end.

54. Retrieve address book allows optionally filtering. Only contacts or fields that match the condition will be returned.

EDITOR NOTE: It is recommended that filtering re-uses existing OMA filtering syntax as much as possible.

5.2.2 RCS NAB basic operations

		RCS functionality

		REST resource

		Comment

		Create address book query entity

		Required parameters:
 oauth_token={access-token}

		This creates an address book entity, to be used in subsequent operations and notifications.

Access permissions will be controlled by the oauth-token.

		Cancel address book query entity

		Required parameters:
 oauth_token={access-token}

		This closes the address book query entity. All resources related to the entity are freed.

		Retrieve address book

		Required parameters:
 oauth_token={access-token}

Optionally:

filtering parameters

Result: list of contacts / tokens to contacts in the address book

		Retrieve in the answer the list of contacts in the address book, possibly with some filtering.

If filtering is requested, only matching contacts will be returned.

Subject to service provider policy, the retrieved list might not include the underlying identifiers (MSISDN or URI) but tokenized strings that hidden that info.

The contact identity returned is the one to be used by the rest of APIs (chat, file transfer, etc.).

Contact name (or display name) is envisaged as the way for the human user to identify the contacts (not the MSISDN or URI).

		Retrieve contact from address book

		Required parameters:
 oauth_token={access-token}
 contact={contactid}

Result: Contact information in format={vcard, …}

		Retrieve information about an individual contact from the address book.

Default format vCard.

		Receive notifications about address book updates

		Result: "contact modified" indication received

		See “RCS API notification channel” for establishment of notification channel.

5.2.3 RCS NAB additional operations

		RCS functionality

		REST resource

		Comment

		Add contact to the address book

		Required parameters:
 oauth_token={access-token}
 contact={contactid}

Result: Contact added

		Contact added to the address book.

The answer will contain the contact identity assigned by the server to the new contact.

If the contact already exists, operation will be rejected.

		Update contact in address book

		Required parameters:
 oauth_token={access-token}
 contact={contactid}

Result: Contact updated

		Contact is updated.

5.3 Presence UNI API requirements

5.3.1 Publish Presence

		RCS functionality

		API Parameters

		Comment

		Set free-text

		Required parameters:
 oauth_token={access-token}
 text={text} (e.g. “My picture is updated!”)

Result: free-text updated

		Ref: [RCSR1FD] ch 2.1.3, [RCSR1TR] ch 4.2.2

		Set portrait icon

		Required parameters:
 oauth_token={access-token}
 image={image} (jpeg/png etc.)

Result: portrait icon updated

		RCS specific requirements on size, aspect ratio, file type, etc. should be verified by RCS API GW.
Ref: [RCSR1FD] ch 2.1.3, [RCSR1TR] ch 4.2.2, 4.8.1

		Set Favourite Link

		Required parameters:
 oauth_token={access-token}
 url={url} (e.g. “http://myblog.blogspot.com”)
 label={text} (e.g. “My blog”)

Result: link updated

		Ref: [RCSR1FD] ch 2.1.3, [RCSR3TR] ch 6.1.1.1

		Set Location

		Required parameters:
 oauth_token={access-token}
 text={text} (e.g. “Herentals, Belgium”)
 map_coordinate={coordinate} (format following RCS e.g. “51.1644 4.7880”)
 map_radius={radius} (e.g. “10”)
 timezone={offset} (e.g. “+120”)

Result: location updated

		Ref: [RCSR3FD] ch 3.3.4, [RCSR3TR] ch 6.1.1.2

		Set Availability status

		Required parameters:
 oauth_token={access-token}
 status=”Available” / “Not Available”

Result: availability state updated

		Ref: [RCSR1FD] ch 2.1.3, [RCSR1TR] ch 4.2.2

Editor’s Note: Further references pending RCS Availability CR publication

5.3.2 Subscriptions

		RCS functionality

		REST resource

		Comment

		Invite a contact to share presence

		Required parameters:
 oauth_token={access-token}
 contact={contactid}
 allow_location=true (or false)

Result: invitation sent

		Adding an additional user to the “rcs” list will trigger a presence invitation towards the other party.
Contact can be any URI (MSISDN, SIP URI or reference/object to a contact received via the Address Book API)
Ref: [RCSR1FD] ch 2.1.4, [RCSR1TR] ch 4.4.3

		Cancel invitation

		Required parameters:
 oauth_token={access-token}
 contact={contactid}

Result: invitation cancelled

		An presence sharing invitation can only be cancelled before the invitation has been accepted by the presentity (TBD if needed)
Ref: [RCSR1FD] ch 2.1.4, [RCSR1TR] ch 4.4.3

		Receive presence sharing invitation notification

		Retrieve pending presence invitations:

Required parameters:
 oauth_token={access-token}

Result: Structured data containing contacts for which pending presence invitations exist

		See “RCS API notification channel” for establishment of notification channel

Ref: [RCSR1FD] ch 2.1.4, [RCSR1TR] ch 4.4.1

		Accept presence sharing invitation (with/without location)

		Required parameters:
 oauth_token={access-token}
 contact={contactid}
 allow_location=true (or false)

Result: Invitation accepted

		Authorizing a presence invitation is done by adding the user to the “rcs” list or “basic spi only” list
Ref: [RCSR1FD] ch 2.1.4, [RCSR1TR] ch 4.4.3

		Block presence sharing invitation

		Required parameters:
 oauth_token={access-token}
 contact={contactid}

Result: Contact blocked

		Adding a contact to blocked list should automatically result in removing the same contact from “rcs” or “basic spi only“ list
Ref: [RCSR1FD] ch 2.1.4, [RCSR1TR] ch 4.4.3

		Ignore presence sharing invitation

		N/A

		Ref: [RCSR1FD] ch 2.1.4, [RCSR1TR] ch 4.4.3

		Revoke presence sharing relation

		Required parameters:
 oauth_token={access-token}
 contact={contactid}

Result: Contact revoked

		Adding a contact to revoke list should automatically result in removing the same contact from “rcs” or “basic spi only“ list
Ref: [RCSR1FD] ch 2.1.4, [RCSR1TR] ch 4.4.4

		Fetch (own) Presence Data

		Required parameters:
 oauth_token={access-token}

Result: Structured presence data

		The returned presence data structure to be defined, but must be on higher abstraction level than the existing protocol (possibly JSON)
Ref: [RCSR1FD] ch 2.1.4, [RCSR2TR] ch 6.2, 11.4

		Receive Notification of Presence changes (from “buddies”)

		Retrieve present pending presence changes from the contacts sharing presence:

Required parameters:
 oauth_token={access-token}

Result: Structured presence data from contacts that the user share presence information with

		See “RCS API notification channel” for establishment of notification channel

The returned presence data structure to be defined but must be on higher abstraction level than the existing protocol (possibly JSON)
Ref: [RCSR1FD] ch 2.1.4, [RCSR1TR] ch 4.4.1

5.3.3 Services capabilities

The operations allow to read (own) Service Capabilities and to request service capabilities for a contact (“who can I invite”).

		RCS functionality

		REST resource

		Comment

		Read (own) Service Capabilities

		Required parameters:
 oauth_token={access-token}

Result: Structured data indicating services supported for this user

		Ref: [RCSR1FD] ch 2.1.7, [RCSR2TR] ch 6.2, 11.4

		Request service capabilities for a contact (“who can I invite”)

		Required parameters:
 oauth_token={access-token}
 contact={contactid}

Result: Structured data indicating services supported for this user, alternatively no data or indication of not an RCS subscriber

		Contact can be any URI (MSISDN, SIP URI or reference/object to a contact received via the Address Book API).

Ref: [RCSR1FD] ch 2.1.4, R3 FD ch 3.3.3, [RCSR1TR] ch 4.9.3, [RCSR3TR] ch 6.4.4

5.4 Messaging (SMS/MMS) UNI API requirements

The operations allow sending and receiving SMS and MMS messages, and being notified about the message delivery status.

		RCS functionality

		REST resource

		Comment

		Send message

		Required parameters:
 oauth_token={access-token}
 recipient = {contact(s)}
 deliveryNotification = “yes”/”no”
 {content}

Result: Message sent

		A Message send request resource is created which will exist until the delivery confirmation is provided to the client.

Content can be text (delivery via SMS) or multimedia (delivery via MMS).

This resource will be automatically deleted by the Gateway once the delivery confirmation has been provided to the client (regardless of mechanism used – see receive message)

		Receive message or receive delivery notification

		Retrieve actual message content:
 oauth_token={access-token}
Result: {content} / {Delivery Notification}

		See “RCS API notification channel” for establishment of notification channel

5.5 Chat UNI API requirements

5.5.1 Originating side

The operations below allow the originating side of a chat to manage the chat session.

		RCS functionality

		REST resource

		Comment

		Start a 1-1 chat (including initial message in subject header)

		Required parameters:
 oauth_token={access-token}
 recipient={contactid}
 subject={text} (e.g. “Hi”)

Result: Chat initiated

		Use case: Start a chat.
Arguments must contain at least Recipient & Subject (initial message).
Contact can be any URI (MSISDN, SIP URI or reference/object to a contact received via the Address Book API)
Chat object instance created at reception of indication that invite & initial message is delivered (SIP 180), and is received in POST response.
Ref: [RCSR2TR] ch 10.2.1.1, [RCSR3IMEND] ch 7.1.1.2

		Start a group chat (ad-hoc group)

		Required parameters:
 oauth_token={access-token}
 recipient={contact1}, {contact2}, …
 subject={text} (e.g. “Hi”)

Result: Chat initiated

		Use case: Start a group chat.
Arguments must contain at least (list of) Recipients & Subject (initial message). Conference focus id must be returned to application
Ref: [RCSR2TR] ch 10.2.1.1 , [RCSR3IMEND] ch 7.1.1.3

		Cancel chat invitation

		Required parameters:
 oauth_token={access-token}

Result: Chat invitation cancelled

		Ref: [RCSR3IMEND] ch 7.1.1.13

		Chat accepted (Receive notifications about chat progress)

		Result: “chat accepted” indication received.

		Use case: Remote user accepts chat invite
See “RCS API notification channel” for establishment of notification channel.
Ref: [RCSR3IMEND] ch 7.1.1.2, 7.1.1.3

		Chat declined
(Receive notifications about chat progress)

		Result: “chat declined” indication received.

		Use case: Remote user declines chat invite
See “RCS API notification channel” for establishment of notification channel.
Ref: [RCSR3IMEND] ch 7.1.1.2, 7.1.1.3

		Chat ended
(Receive notifications about chat progress)

		Result: “chat ended” indication received.

		Use case: Remote user ends chat
See “RCS API notification channel” for establishment of notification channel..
Ref: [RCSR3IMEND] ch 7.1.2.3

		End chat

		Required parameters:
 oauth_token={access-token}

Result: Chat ended

		Use case: User ends chat
Ref: [RCSR3IMEND] ch 7.1.1.16

5.5.2 Terminating side

The operations below allow the terminating side of a chat to manage their participation in a chat session.

		RCS functionality

		REST resource

		Comment

		Receive incoming chat invite

		Result: information about inviting contact, subject header, and other invited participants (in case of group chat).

		See “RCS API notification channel” for establishment of notification channel

Ref: [RCSR2TR] ch 10.2.1.2 , [RCSR3IMEND] ch 7.1.2.1

		Accept chat invitation

		Required parameters:
 oauth_token={access-token}

Result: chat accepted

		Use Case: User accepts chat invitation
Ref: [RCSR2TR] ch 10.2.1.1, , [RCSR3IMEND] ch 7.1.2.1

		Decline chat invitation

		Required parameters:
 oauth_token={access-token}

Result: Chat invitation declined

		Use Case: User declines chat invitation
Ref: [RCSR2TR] ch 10.2.1.1 , [RCSR3IMEND] ch 7.1.2.1

		End chat

		Required parameters:
 oauth_token={access-token}
Result: Chat ended

		Use case: User ends chat
Ref: [RCSR2TR] ch 10.2.1.1, [RCSR3IMEND] ch 7.1.1.16

		Leave group chat

		Required parameters:
 oauth_token={access-token}
Result: Chat ended (for this user)

		Use Case: User leaves a group chat
Ref: [RCSR3IMEND] ch 7.1.1.12

		Chat ended
(Receive notifications about chat progress)

		Result: “chat ended” indication received.

		Use case: Remote user ends chat
See “RCS API notification channel” for establishment of notification channel.
Ref: [RCSR3IMEND] ch 7.1.2,3

5.5.3 Group chat

The operations below allow managing a group chat.

		RCS functionality

		REST resource

		Comment

		Extend 1-1 chat to group chat

		Required parameters:
 oauth_token={access-token}
 recipient={contact1}, {contact2}, …
Result: New participant invited

		Use Case: User adds another participant to the chat
Ref: [RCSR3IMEND] ch 7.1.1.6

		Add a set of users to a group chat

		Required parameters:
 oauth_token={access-token}
 recipient={contact1}, {contact2}, …
Result: New participant invited

		Use Case: User adds another participant to the chat
Ref: [RCSR3IMEND] ch 7.1.1.7

		Re-join group chat

		Required parameters:
 oauth_token={access-token}
 chat conference id={sessionid}

Result: User successfully re-joined chat (if chat/session found), alternatively a indication that chat/session not found (due to expiry)

		Use Case: User want to join a chat where the invitation has expired.

Ref: [RCSR3IMEND] ch 7.1.1.9

		Get participant info group chat (Subscribe)

		Retrieve present group participant info:

Required parameters:
 oauth_token={access-token}
Result: structured chat participant information

		See “RCS API notification channel” for establishment of notification channel

Ref: [RCSR3IMEND] ch 7.1.1.11

5.5.4 Media

The operations below allow handle the media in a chat.

		RCS functionality

		REST resource

		Comment

		Send message

		 oauth_token={access-token}
 content={content}
Result: Successful response when message sent

		Content can be text or a small file according to RCS specifications.
Ref: [RCSR3IMEND] ch 7.1.3.2

		Send isComposing

		Required parameters:
 oauth_token={access-token}
 isComposing=“active”/”idle” “timeout=xx”” …
Result: Successful response when message sent

		“isComposing” regarded as a special kind of content. Parameters according to RFC 3994.
Ref: [RCSR3IMEND] ch 7.1.3.4

		Receive message

		Retrieve present incoming chat messages

Required parameters:
 oauth_token={access-token}
Result: {content}

		See “RCS API notification channel” for establishment of notification channel

Ref: [RCSR3IMEND] ch 7.1.3.3

		Receive isComposing

		Same as “Receive message”

		“isComposing” regarded as a special kind of content. Ref: [RCSR3IMEND] ch 7.1.3.5

5.6 File Transfer UNI API requirements

5.6.1 Originating side

		RCS functionality

		REST resource

		Comment

		Initiate file transfer

		Required parameters:
 oauth_token={access-token}
 recipient={contactid}
 file-icon={reduced image}
 file-name={file name}
 file-size={size}
 file-type={type}
 file={file}
Result: File Transfer request sent

		Initiate a file transfer session with the selected recipient.

Contact can be any URI (MSISDN, SIP URI or reference/object to a contact received via the Address Book API).

A file is (optionally) included.

A SIP INVITE request is sent to the remote party (the contact).

A file transfer instance is created at reception of indication that invite & initial message is delivered (SIP 180).
Ref: R3 FD 3.4.2, [RCSR3IMEND] ch 10.1

		Upload file (optional)

		Required parameters:
 oauth_token={access-token}
 file={file}
Result: File uploaded

		Optional separate upload of actual file.

This must be done after creation of File Transfer object (after reception of file transfer acceptance by recipient)

		Cancel file transfer invitation

		Required parameters:
 oauth_token={access-token}
Result: Invitation cancelled

		Selected resource, that is, the file transfer session, is to be cancelled.

Only the user that created the invitation can cancel it, and it is only offered before the file transfer is accepted or rejected.

A SIP CANCEL request for the selected session is sent to the remote party. All resources associated to the session are released.
Ref: [RCSR3IMEND] ch 10.1

		File Transfer accepted
(Receive notifications about File Transfer progress)

		Result: “File Transfer accepted” indication received

		Use case: Remote user accepts File Transfer request
See “RCS API notification channel” for establishment of notification channel
Ref: [RCSR3IMEND] ch 10.1

		File Transfer declined
(Receive notifications about File Transfer progress)

		Result: “File Transfer declined” indication received

		Use case: Remote user declines File Transfer request
See “RCS API notification channel” for establishment of notification channel.

Ref: [RCSR3IMEND] ch 10.1

		File Transfer ended (file sent)
(Receive notifications about File Transfer progress)

		See ” File Transfer accepted” how to receive a ”end” notification

Result: URL to the File Transfer object instance together with an “File sent” indication

		Use case: File Transferred
RCS API GW sends in notification channel a URL to the “File Transfer” object instance together with a “File sent” indication.
Ref: [RCSR3IMEND] ch 10.2

		Cancel ongoing file transfer (terminate transfer)

		Required parameters:
 oauth_token={access-token}
Result: Object deleted

		The selected resource, that is, the file transfer session, is to be closed.

A SIP BYE request for the selected session is sent to the remote party. All resources associated to the session are released. Ongoing file transfer can only be cancelled once the session is established. Ref: [RCSR3IMEND] ch 10.1

5.6.2 Terminating

		RCS functionality

		REST resource

		Comment

		Receive file transfer invitation

		Result: information about inviting contact, file information (see ”initiate file transfer”).

		See “RCS API notification channel” for establishment of notification channel
Ref: [RCSR3IMEND] ch 10.3

		Accept file transfer invitation

		Required parameters:
 oauth_token={access-token}
Result: Invitation accepted, file transfer may begin.

		File transfer session is to be accepted.

Editors Note: An alternative for file delivery to terminating side would be to accept the file transfer invitation and receive the file in the response.
Ref: [RCSR3IMEND] ch 10.3

		Decline file transfer invitation

		Required parameters:
 oauth_token={access-token}

Result: File Transfer declined

		File transfer session is to be rejected.

The SIP INVITE request is then rejected with a SIP 603 response
Ref: [RCSR3IMEND] ch 10.3

		Cancel ongoing file transfer (terminate transfer)

		Required parameters:
 oauth_token={access-token}

Result: File Transfer cancelled

		File transfer session is to be closed.

A SIP BYE request for the selected session is sent to the remote party. All resources associated to the session are released.

Ongoing file transfer can only be cancelled once the session is established
Ref: [RCSR3IMEND] ch 10.1

		File Transfer cancelled
(Receive notifications about File Transfer progress)

		Result: “File transfer cancelled” indication received

		Use case: Remote user cancels File Transfer
See ”Receive incoming File Transfer invite” how to receive a ”cancel” notification

Ref: [RCSR3IMEND] ch 10.2

		Receive file

		See “media” handling for chat

		The notification will include the means to retrieve the file (e.g. an URL so the terminating can issue a GET).

Ref: [RCSR3IMEND] ch 10.3
Editor’s Note: Not needed with alternative file transfer acceptance approach (receive file in the answer to acceptance).

Editor’s Note: Align with image sharing.

5.7 Call UNI API requirements

The Call UNI API requirements are based on OMA ParlayREST Third Party Call Control and Call Notification APIs.

5.7.1 Originating side

The operations below allow the originating side (“calling participant”, “A-Party”) to manage a call session and to receive call progress notifications.

		RCS functionality

		REST resource

		Comment

		Initiate Call

		Required parameters:
 oauth_token={access-token}
 recipient={contactid}
Result: Call Initiated

		Use case: User initiates a call between a own terminal and another user.

Initiating user’s terminals all ring. User answers on one of his terminals. After this the call is set up to the intended recipient.

		Cancel call

		Required parameters:
 oauth_token={access-token}
Result: Call disconnected

		Use case: User interrupts call attempt.

		Call alerting
(Receive notification about call progress)

		Result: “call alerting” indication received.

		Use case: User gets a call ringing notification.
See “RCS API notification channel” for establishment of notification channel.

		Call answer
(Receive notification about call progress)

		Result: “call accepted” indication received.

		Use case: Remote user accepts call
See “RCS API notification channel” for establishment of notification channel.

		Call decline
(Receive notification about call progress)

		Result: “call declined” indication received.

		Use case: Remote user declines call
See “RCS API notification channel” for establishment of notification channel.

		Call ended
(Receive notification about call progress)

		Result: “call ended” indication received.

		Use case: User receives remote user on-hook notification

See ’Call alerting” how to receive a call end notification.

		End call

		Same operation as “Cancel call”

		Use case: User on-hooks during call

5.7.2 Terminating side

The operations below allow the terminating side (“called participant”, “B-Party”) to receive call progress notifications.

		RCS functionality

		REST resource

		Comment

		Receive call (notification)

		Result: information of inviting contact received

		Use case: Application receives call invitation notification that the user’s own phone is ringing

See “RCS API notification channel” for establishment of notification channel

		Call Answer

(notification)

		Result: “call accepted” indication received.

		Use case: Application receives notification that the user’s own phone accepts call

See “RCS API notification channel” for establishment of notification channel

To be decided by OMA if feasible.

An Action parameter may be required for Supplementary Service actions on call object (e.g. Hold or Resume). The Action for “answer” is not required and is regarded as default.

		Call Decline

(notification)

		Result: “call declined” indication received.

		Use case: Application receives notification that the user’s own phone declines call.

See “RCS API notification channel” for establishment of notification channel

To be decided by OMA if feasible.

		Call ended

(notification)

		Result: “call ended” indication received.

		Use case: Application receives notification that the user’s own phone has ended the call (or ringing has timed out or so on)

See “RCS API notification channel” for establishment of notification channel

To be decided by OMA if feasible

5.7.3 Media

Out of scope

5.8 Video & Image Share UNI API requirements

5.8.1 RCS Video Share (VS), Originating

GSMA IR.74/IR.84, [IR74], [IR84] (as endorsed by RCS)

		RCS functionality

		REST resource (between application and API GW)

		Comment

		Initiate VideoShare

		Required parameters:
 oauth_token={access-token}
 recipient={contactid}
 call={callObjectID}
 supported media={video, audio codecs in order of preference}

Result: Video Share Session initiated

		Use case: Application initiates VideoShare.
Arguments must contain at least either a reference to an existing call for [IR74]VideoShare or a Recipient for [IR84] VideoShare without call.
For a [IR74] Video Share (with a related Call, the application would link the “initiate VideoShare” request to the ongoing call.

VideoShare object instance created and returned immediately to accommodate cancelling before alerting.

		Cancel VideoShare

		Required parameters:
 oauth_token={access-token}

Result: Video Share Session cancelled

		Use case: User interrupts VideoShare attempt. It is only offered before the session is accepted

		VideoShare alerting
(Receive notification about VS progress)

		Result:: “alerting” indication received.

		Use case: User gets a VideoShare ringing notification.
Caused by SIP 180 from terminating side.
See “RCS API notification channel” for establishment of notification channel.

		VideoShare answer
(Receive notification about VS progress)

		Result: “accepted” indication and preferred video codecs from remote end received.

		Use case: Remote user accepts VideoShare
Caused by SIP 200 from remote end
Preferred video codecs included in answer

See “RCS API notification channel” for establishment of notification channel.

		VideoShare decline
(Receive notification about VS progress)

		Result: “declined” indication received.

		Use case: Remote user declines VideoShare
Caused by SIP 603 from terminating side.

See “RCS API notification channel” for establishment of notification channel.

		VideoShare ended
(Receive notification about VS progress)

		Result: “ended” indication received.

		Use case: User receives remote user VideoShare stopped notification
Caused by SIP BYE from terminating end.

See “RCS API notification channel” for establishment of notification channel.

		End VideoShare

		Same operation as “Cancel VideoShare”

		Use case: User stops VideoShare
Causes SIP BYE to remote end

5.8.2 RCS Video Share (VS), Terminating side

GSMA IR.74/IR.84 [IR74], [IR84] (as endorsed by RCS)

		RCS functionality

		REST resource (between application and API GW)

		Comment

		Receive VideoShare

		Result: information of inviting contact and additionally a reference to an ongoing call (in case of IR.74 Video Share) received

		Use case: User receives VideoShare invitation

See “RCS API notification channel” for establishment of notification channel

		VideoShare Answer

		Required parameters:
 oauth_token={access-token}
 supported meda={video codecs in order of preference}

Result: Invitation accepted

		Use case: User accepts VideoShare. Causes SIP 200 to originating side

An Action parameter may be required for Supplementary Service actions (e.g. Hold or Resume). The Action for “answer” is not required and is regarded as default operation.

		VideoShare Decline

		Required parameters:
 oauth_token={access-token}

Result: Invitation declined

		Use case: User declines VideoShare.

Causes SIP 603 to remote end

		VideoShare ended

		Result:: “ended” indication received

		Use case: User receives remote user VideoShare stopped notification
Caused by SIP BYE from remote end

See “RCS API notification channel” for establishment of notification channel.

		End VideoShare

		Same operation as “VIdeoShare decline”

		Use case: User stops VideoShare
Causes SIP BYE to remote end

5.8.3 RCS Video Share (VS), Media

GSMA IR.74/IR.84, [IR74], [IR84] (as endorsed by RCS)

		RCS functionality

		REST resource (between application and API GW)

		Comment

		Send Video

		To be determined by OMA

		Low priority.

		Receive Video

		To be determined by OMA

		Low priority.

5.8.4 RCS Image Share (IS), Originating

GSMA [IR79] [IR79] (with simultaneous call) and OMA SIMPLE IM (without simultaneous call) (as endorsed by RCS)

		RCS functionality

		REST resource (between application and API GW)

		Comment

		Initiate ImageShare

		Required parameters:
 oauth_token={access-token}
 recipient={contactid}
 call={callObjectID}
 Image={image}
Result: Image Share Session initiated

		Use case: User makes ImageShare.

Arguments must contain at least either a reference to a existing call (call Object Id) for [IR79] IS or a Recipient for IS without call (i.e. using OMA IM File Transfer).
For a [IR79] Image Share (with a related Call), the application would link the “initiate ImageShare” request to the call object of an ongoing call.
ImageShare object instance created and returned immediately to accommodate cancelling before alerting.

		Cancel ImageShare

		Required parameters:
 oauth_token={access-token}
Result: Image Share Session cancelled

		Use case: User interrupts ImageShare attempt.

		ImageShare alerting (Receive notification about call progress)

		Result:: “alerting” indication received.

		Use case: User gets a VideoShare ringing notification.
Caused by SIP 180 from remote end

See “RCS API notification channel” for establishment of notification channel.

		ImageShare answer

		Result: “accepted” indication and preferred video codecs from remote end received.

		Use case: Remote user accepts ImageShare
Caused by SIP 200 from remote end

See “RCS API notification channel” for establishment of notification channel.
Preferred video codecs included in answer

		ImageShare declined

		Result: “declined” indication received..

		Use case: Remote user declines ImageShare
Caused by SIP 603 from remote end

See “RCS API notification channel” for establishment of notification channel.

		ImageShare ended

		See ’ImageShare alerting’ how to receive a call end notification
Result: URL to ImageShare object instance together with an “ended” indication

		Use case: User receives remote user ImageShare stopped notification
Caused by SIP BYE from remote end

See “RCS API notification channel” for establishment of notification channel..

		Cancel ongoing ImageShare

		Same operation as “cancel ImageShare”

		Use case: User stops ImageShare
Causes SIP BYE to remote end

5.8.5 5.7.5
RCS Image Share (IS), Terminating

GSMA IR.79 [IR79] (with simultaneous call) and OMA SIMPLE IM (without simultaneous call) (as endorsed by RCS)

		RCS functionality

		REST resource (between application and API GW)

		Comment

		Receive ImageShare

		Result: information of inviting contact and additionally a reference to an ongoing call (in case of [IR79] Image Share) received

		Use case: User receives ImageShare invitation

See “RCS API notification channel” for establishment of notification channel

		ImageShare Answer

		Required parameters:
 oauth_token={access-token}

Result: Session accepted

		Use case: User accepts ImageShare.

Editor’s note: Align with File Transfer receive mechanism,

		ImageShare Decline

		Required parameters:
 oauth_token={access-token}
Result:: Session declined

		Use case: User declines ImageShare.

Causes SIP 603 to remote end

		ImageShare ended

		Result: “ended” indication received.

		Use case: User receives remote user ImageShare stopped notification
Caused by SIP BYE from remote end

See “RCS API notification channel” for establishment of notification channel.

		Cancel ongoing ImageShare

		Same operation as “ImageShare Decline”

		Use case: User stops ImageShare during image transfer.
Causes SIP BYE to remote end

		ImageShare cancelled

		Result: “ended” indication received.

		Use case: Remote user cancels ImageShare

See “RCS API notification channel” for establishment of notification channel

		Receive file

		See “media” handling for chat

		Editor’s Note: Not needed with alternative image share acceptance approach

5.8.6 RCS Content Management (IR.84)

GSMA IR.84 (as endorsed by RCS)

		RCS functionality

		REST resource (between application and API GW)

		Comment

		Upload Video to server (using streaming)

		Required parameters:
 oauth_token={access-token}
 filename={filename}
Result: As for “Initiate Video Share”.
In addition is a reference to the actual uploaded file returned when VideoShare upload session is finished

		Use case: User uploads video
Arguments contains no Recipient, as this taken care of by GW.
Purpose of ‘File-name’ (optional and may contain password) is for user to select the name of the uploaded video to the server-

The session handling operations are the same as for the VideoShare” originating side operations.

		Share video stored on NW server

		Required parameters:
 oauth_token={access-token}
 recipient={contactid}
 call={callObjectID}
 supported media={video codecs in order of preference}
 filename={filename}
 fileobject={VideoObjectId}

Result: Video Share session established

		Use case: User shares NW stored video, thus client will receive same video as recipient.

This is reusing the “Initiate VideoShare” oeration with additional arguments, which must contain a filename OR reference to uploaded video (received at “upload video to server”) to identify the NW stored video to stream towards the initiating user & remote user.

5.9 Capability Query UNI API requirements

GSMA IR.74/IR.79/IR.84 (as endorsed by RCS).

Refer to section 5.3.3 (Services capabilities).

6 Annex 1: RCS API Authentication & Authorization – Use Cases

6.1 Overview

Use case examples and flows for detailing requirements on

· Application Registration (Developer)

· Application Usage (End-User)

· Application Authentication

· User Authorization

· Application Authentication control

Using MSISDN for user authentication and OAuth for application authorization

Type of application: network-side web application, illustrated with two variant, both of them following the OAuth Web Server flow.

(A) Generic Web App, aggregating RCS (& other) resources

·
The developer creates and deploys an RCS Set Tagline web app on e.g. his web site

·
(in practice, the Web App would offer more RCS primitives than just “Set Tagline”)

·
The end-user has an account on RCS Set Tagline web app

·
The end-user accesses to RCS Set Tagline web app from any browser

(B) “App on Facebook”

· The developer creates and hosts an RCS Set Tagline App on e.g. his web site

· Facebook imports and publishes the RCS Set Tagline App as a “Facebook App”

· The end-user has an account on Facebook

· The end-user accesses to (the App on) Facebook from any browser

6.2 Application registration – Developer view

6.2.1 General

· The developer (”Mats Persson”) has developed an RCS Set Tagline Web App, offering to RCS users the ability to set their RCS tagline from a Web browser

· The developer has established a developer-account with operator-x (as in example)

· The developer may also have a RCS subscription at the operator that may be linked to the developer account (optional)

· The developer registers the application in the operator’s portal

· Provided information: Application Name, Description

[image: image7.emf]http://developer.operator -x.com

You are logged in as: ”Mats Persson”

RCS operator-x developer zone

Application Registration

App Name:

Description:

Icon file:

ok

RCS Set Tagline

Sets the RCS tagline…

· The portal generates unique Application credentials (Client Identifier, Shared Secret) to be used to identify & authenticate the application when used

· The portal also provides the endpoint URLs specific to the operator’s Authorization Server (end-user authorization endpoint and token endpoint)

· The Application is then deployed in target environment (e.g. developer’s website or Facebook)

· Application credentials & endpoint URLs are stored as per operator with whom the developer has registered the application

· The developer has to undergo the above registration procedure with all operators with whom the developer wants to engage the application

[image: image8.emf]http://developer.operator -x.com

You are logged in as: ”Mats Persson”

RCS operator-x developer zone

Application Registration ok

App Name: RCS Set Tagline

Description: Sets the RCS tagline …

Icon:

Client Id: 2401234588586zjkdSEDAs

Shared Secret: zc340fe19UdNreriGTEmcvI

End-user authorization endpoint:

http://portal.operator-x.com/oauth/authorize

Token endpoint:

http://portal.operator-x.com/oauth/access_token

6.2.2 (B) Additional step in case of Facebook variant

· The developer (”Mats Persson”) wants to publish his ”RCS Set Tag Line” web app as an ”App on Facebook”.

· The developer logs in to his Facebook account

· The developer provides in the Facebook registration form information such as the “Canvas Callback URL”, pointing the “start” resource of his web app, hosted on his web site

· Note: Facebook will besides assign to this app some OAuth 2.0 credentials, but which are only used when the web app calls Facebook APIs (access to photos, wall, etc.). Not to be confused with the OAuth credentials used by the web app to call RCS APIs).

· See http://developers.facebook.com/docs/guides/canvas/

[image: image9.emf]http://www.facebook.com

Application registration

App Name:

Description:

Canvas

Page

URL:

…

You are logged in as: Mats Persson

RCS Set Tagline

Sets the RCS Tagline

http://apps.facebook.com

/rcssettagline/

6.3 Application authorization – User view

6.3.1 Application discovery - (A): Generic Web App variant

· An RCS user has discovered the “RCS Set Tagline” web app on the web.

· The process of discovery is out of scope. As an example, it could be accomplished through an “RCS Application Store” portal setup by the service provider.

· The user may have to create an account on this app portal to use the application (not in scope of RCS)

· The user must authorize the application to access to his RCS resources on his account, and indicate his/her (RCS) service provider

· The latter for the application to select the right operator portal to connect to (if supporting multiple operators)

· When pressing “send” button, the user’s browser is re-directed to the user’s operator portal

· Endpoint URL to the operator portal was obtained from app registration

· In the authorization request, the application provides Application ID, target RCS resources (scope), and Redirect URI

[image: image10.emf]http://www.rcswebapp.com

Use RCS Set Tagline App

Select Your

RCS Service

Provider:

Send

You are logged in as: Daniel Glifberg

Orange...

6.3.2 Application discovery - (B): Facebook variant

· A (Facebook) user has discovered the “RCS Set Tagline” application

· Following app selection in Facebook, the user must authorize the application to Set Tag Line on his account, and indicate his/her (RCS) service provider

· The latter for the application to select the right operator portal to connect to (if supporting multiple operators)

· When pressing “send” button, the user’s browser is re-directed to the user’s operator portal

· Endpoint URL to operator portal was obtained from app registration

· In the authorization request, the application provides Application ID, target RCS resources (scope), and Redirect URI

[image: image11.emf]http://www.facebook.com

Use RCS Set tagline App

Select Your

RCS Service

Provider:

Send

You are logged in as: Daniel Glifberg

Orange...

6.3.3 User Authentication (informative)

User authentication is out of the scope of RCS API requirements. Following is an example included for completeness.

· At the user’s home operator portal, the user has to log in providing his user credentials

· If the user has no password, the portal can offer the possibility to create one

· If the user has no RCS/operator account, the portal can offer the possibility to create one

[image: image12.emf]http://portal.operator -x.com

RCS operator

Please log in!

Username

Mobile number:

Password:

46 705191170

ok

No password? Click here

Not a subscriber yet? Click here

Daniel’s

credentials

6.3.4 Application authorization - (B): Facebook variant

· When logged in, the user is requested to grant the application access (i.e. authorize the application to access) the requested resource (e.g. my Location, SMS or Presence)

· This Authorization Dialog is constructed from client_id and scope values supplied in the Authorization Request previously sent to operator portal

· The client_id, which identifies the application, was obtained from this operator in previous application registration

· The scope value(s), which identifies a set of access permissions on resource(s), is typically found by the developer in API documentation, and coded in the app

· The Authorization Dialog may be tailored according to end-user’s preferred language and device/browser type

· After granting access, the user is redirected back to original page, passing an authorization code to the app

· The portal/GW stores the binding between user identity, scope, authorization code and application credentials

· The web app can authenticate to portal/GW to obtain an access token from the authorization code

· The application authorization can also be e.g. time-limited or [to be standardized] based usage (number of requests) etc.

· When expired, the user must again authorize the application to use the requested resource

[image: image13.emf]http://portal.operator -x.com

I allow ”RCS Set Tagline”App

to Update my RCS Tagline on

my account

I allow ”RCS Set Tagline”App

to Update my RCS Tagline on

my account

You are logged in as: Daniel Glifberg

RCS operator

Please confirm application

access to your Presence service

App Name: RCS Set Tagline

Description: Sets the RCS presence

tagline…

ok

Authorization Dialog

·
The application is now authorized to access to the resource of the user’s RCS account

· The RCS presence tagline can now be published from this app via the Presence enabler of the user’s RCS service provider

· The user can be charged for the request according to his service provider's policy (e.g. status updates through the API are included in his RCS subscription)

[image: image14.emf]http://www.facebook.com

You are logged in as: Daniel Glifberg

Use RCS Set tagline App

App Authorized!

Note: Generic Web App variant is similar.

6.3.5 Application Authorization - (C): Native Application on SMS-capable Device

In the case of Native application the return of the Authorization Code from the user agent (browser) to the application may not be possible depending on the characteristics of the application and device OS. In order to overcome this issue it is possible to deliver the Authorization Code directly to the application via a binary SMS, provided that the device is SMS-capable. Alternatively other Push technologies can also be used (e.g. OMA connectionless Push over SMS, SIP Push)

The mechanism to be used in this case only differs from the OAuth “Web Server flow” used in the Facebook App and Generic Web App cases at the Authorization Response step. In this case the Authorization Server does not redirect the User Agent to the OAuth Client in order to provide the Authorization Code but instead it provides the code directly to the OAuth Client by sending it in a binary-SMS to the device aimed at a previously agreed port.

It is for further study at the technical specification phase the means by which the application and the Authorization Server agree on the delivery of the Authorization Code via binary-SMS and the specific port where the binary SMS is to be delivered. This can be done at the application registration phase or otherwise indicated at the Authorization Request.

This mechanism is valid for applications residing in non-RCS devices as well as in RCS devices. However in the latter case it is only valid for applications installed in the RCS primary device.

The following picture depicts the Authorization mechanism for Native Apps described above.

[image: image16.emf]Select “Set Tagline” AppOAUTH: Found, Location = /Authorize (App ID, scope=”publish_spi”, Redirect URI)OAUTH: HTTP GET /Authorize (App ID,scope=”publish_spi”, Redirect URI) User A sign-in to home “operator portal”User A grants access to app toSet Tagline on User A’s accountOAUTH:OK, (Access-Token)OkStore Access-token for next time service is used (No need to grant access again)Token can be time-limitedauthorization code validHTTP POST/Token (App credentials, authorization code, Redirect URI)

123456978

SMSC

Binary SMS carrying the authorization codeSend SMS

Non-web Applicationin user

device

OAuth: ClientOAuth: Resource Owner

User A

OAuth: Authorization/ Resource Server

RCS API GW (REST)

User agent

Auth.

Additionally User Addressing Information (e.g. MSISDN/Nickname, Port

number) may need to be conveyed

Figure 6: Application Authorization – Native app on SMS capable device

6.4 Application usage – User view

· The (Facebook) user can now use the “RCS Set Tagline” application

· As the application has now a valid authorization (connected to the users RCS service provider), the user will no longer be asked to authorize the application to Set Tagline on his account

· The user does thus neither need to select his service provider again

· The application is granted a priori to access the user’s RCS account

· The new RCS presence tagline is now published via the Presence enabler of the user’s RCS service provider

· The user can be charged for the request according to his service provider's policy (e.g. status updates through the API are included in his RCS subscription)

[image: image17.emf]http://www.facebook.com

You are logged in as: Daniel Glifberg

Set your RCS presence tagline

Tagline:

Your Service

Provider:

Send

Enjoying workday

Orange...

[image: image18.emf]http://www.facebook.com

You are logged in as: Daniel Glifberg

Set your RCS presence tagline

RCS Set Tagline

Tagline:

Send

Enjoying workday

Tagline updated!

6.5 Application authorization control – User view

· The user is managing which application he has granted access

· The user can log on to his operator portal and get a list over applications he has granted access to, which resource that is granted for each app and the possibility to revoke the access for an application

[image: image19.emf]http://portal.operator.com

You are logged in as: Daniel Glifberg

My apps at RCS operator

You have granted the following application

access to your RCS services

Submit

RCS Set Tagline

Description: Sends SMS…

RCS Get Social Presence

Description: Retrieve

RCS SPI..…

Get Location

Description: Retrieve

mobile position

Location

RCS

Presence

SMS

Authorized applications ResourceRevoke

access?

7 Annex 2: Topics for next releases (Informative)

8 Introduction

9 This annex compiles requirements and topics that for several reasons have been left out of the normative part of the document but are considered relevant enough to be documented, so they are readily taken in account in next releases.

10 The contents of this annex are informative, but can be read as a guidance on what might be expected on next releases.

11 List of topics

12 Inclusion of additional push mechanisms for delivering notifications, like OMA Push.

13 Document Management

13.1 Document History

		Version

		Date

		Brief Description of Change

		Approval Authority

		Editor / Company

		0.1

		30 Nov 2010

		Initial version based on SVDG24_011-RCS API detailed requirements v0.3

		RCS Programme

		Mats Persson, Mats Stille, Ericsson

		0.2

		29 Dec 2010

		RCS Plenary #11 comments and contributions

		RCS Programme

		Jose M Recio, Solaiemes

		0.3

		31 Dec 2010

		Early review comments

		RCS Programme

		Jose M Recio, Solaiemes

		0.4

		19 Jan 2011

		Comments and corrections after SVD 26, SVD 27 and discussions on reflector

		RCS Programme

		Jose M Recio, Solaiemes

		0.5

		20 Jan 2011

		Comments and corrections after SVD 28 and discussions on reflector

		RCS Programme

		Jose M Recio, Solaiemes

13.2 Other Information

		Type

		Description

		Document owner

		Rich Communication Suite Programme

		Editor/company

		Jose M Recio / Solaiemes

� Similar requirements from disparate domains have driven the development of so called bidirectional HTTP technologies (Comet, Reverse AJAX, long polling….), see [LPDRAFT].

		RESTRICTED

		VERSION 1.0

		Page 1 of 8

