OMA-TS-PEEM_PEM1-V1_0-20070506-D
Page 5 V(39)

	[image: image1.jpg]«“+OMa

Open Mobile Alliance

	

	Policy Evaluation, Enforcement and Management Callable Interface (PEM-1) Technical Specification

	Draft Version 1.0 – 6 May 2007

	Open Mobile Alliance

	OMA-TS-PEEM_PEM1-V1_0-20070506-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

71.
Scope

2.
References
8
2.1
Normative References
8
2.2
Informative References
9
3.
Terminology and Conventions
10
3.1
Conventions
10
3.2
Definitions
10
3.3
Abbreviations
11
4.
Introduction
12
5.
PEM-1 Interface
13
5.1
Specification of the PEM-1 interface
13
5.1.1
BLOB behavior
13
5.1.2
PEM-1 Templates
13
5.1.3
Standard PEM-1 Templates
13
5.1.4
Custom PEM-1 Templates
14
5.1.5
Encapsulating PEM-1 Templates in PEM-1 BLOB Parameters
14
5.1.6
Encoding Scheme for PEM-1 Parameters in PEM-1 BLOB Parameters
15
5.1.6.1 Encoding of Principal ID (Informative)
15
5.1.6.2 Encoding of context-based authorization request (Informative)
16
5.2
Input / Output Standard PEM-1 Templates
18
5.3
Error / status code Standard PEM-1 Template
18
5.4
Internal Policy reference Standard PEM-1 Template
19
5.5
External Policy reference Standard PEM-1 Template
19
5.6
I/O parameters
20
5.6.1
Template-Identification
20
5.6.2
Message-Handling
20
5.6.3
Origin-Identification
21
5.6.4
Target-Identification
21
5.6.5
Resource-Identification
21
5.6.6
Charging-Identification
22
5.6.7
Environment-Identification
22
5.7
PEM-1 Template Bindings
22
Appendix A.
Change History (Informative)
23
A.1
Approved Version History
23
A.2
Draft/Candidate Version 1.0 History
23
Appendix B.
Static Conformance Requirements (Normative)
24
B.1
SCR for XYZ Client
24
B.2
SCR for XYZ Server
24
Appendix C.
Communicating PEM-1 details to the requester [Informative]
25
C.1
Use cases
25
C.1.1
Template selection
25
C.1.2
BLOB
26
C.2
Best Practices / Guidelines
26
Appendix D.
Normative PEM-1 Template Bindings [Normative]
27
D.1
Analysis of data types supported in XML
27
D.1.1
Background
27
D.1.2
XML data types
27
D.1.3
XML data types versus common programming languages supported data types
31
D.1.4
Conclusion on XML data types
32
D.2
Analysis of use of Diameter, and data types supported in Diameter
32
D.2.1
Diameter AVP related background information
32
D.2.1.1
Diameter AVP data formats
34
D.2.1.2
Diameter AVP data formats versus common programming languages supported data types
36
Appendix E.
Informative PEM-1 Template Bindings [Informative]
39

Figures

Error! No table of figures entries found.
Tables

Error! No table of figures entries found.
1. Scope

This document provides the PEEM enabler specification that defines the PEEM interface for requesting PEEM policy processing (PEM-1). The specification supports any kind of input/output needed by the policy, and in addition it describes generic data formats of the interface, PEEM specific input/output parameters , detailed message flows, and mapping of generic data format and message flows to selected protocols. While this specification fully defines the PEM-1 interface, this interface is extensible in the sense that it may be enhanced to support additional input/output parameters defined in other enablers, which plan to re-use the PEM-1 interface specification for their specific purposes. The PEM-1 interface may also be extended outside the OMA, through vendors’ and/or Service Providers’ customization.

Because such extensibility may result in both mandatory and optional parameters, a Service Provider may be expected to store, publish and/or advertise the details of the supported PEM-1 interface, so that entities that request policy processing know what is expected of them; however, mechanisms for storing, publishing and/or advertising the supported PEM-1 specification options are out-of-scope for the PEM-1 specification. Finally, it is also out-of-scope for the PEM-1 specification to define how PEM-1 input parameters are processed by a PEEM enabler implementation, or how PEM-1 output parameters are processed by a resource that requested PEEM policy processing.
2. References

Editor’s note: To be done

The policy for reference lists is:

1.
OMA documents listed should have at least one approved version – draft-only docs should not be referenced. Exception exists for documents that will be approved with or after the referenced doc is approved (may be part of same enabler package). In short – approved docs should not reference unapproved docs.

2.
When a reference is made to an OMA specification, then Open Mobile Alliance with the TM symbol (™) should be used in the description.

3.
The name + version (no date) for OMA specifications are generally sufficient – dates should be used only if there is a specific reason to limit the usage.

4.
For references to WAP Forum docs, dates should not be included as DID's for the old WAP Forum specifications are enough and the reference description should refer to WAP Forum™.

5.
References to other affiliate docs should similarly provide sufficient information to uniquely determine the needed document and should provide the appropriate source information.

6.
The URL for OMA material (new OMA and affiliate) should always be http://www.openmobilealliance.org (an exception is OMNA that is reached through http://www.openmobilealliance.org/tech/omna)

Models to use

[REFLABEL]
<General Model> “Ref Title”, Ref information (source, date, id),
URL:http//<ref-source>/

[OMADOC]
<OMA Model> “OMA Document Title”, Open Mobile Alliance™, OMA‑<docname>{‑<version>}, URL:http//www.openmobilealliance.org/

If there are no entries in the table – enter ‘none’ to be clear.
DELETE THIS COMMENT

2.1 Normative References

	[ASN.1 Notation]
	· ASN.1 notation:

· ITU-T Rec. X.680 | ISO/IEC 8824-1

· ITU-T Rec. X.681 | ISO/IEC 8824-2

· ITU-T Rec. X.682 | ISO/IEC 8824-3

· ITU-T Rec. X.683 | ISO/IEC 8824-4

http://www.itu.int/ITU-T/studygroups/com17/languages/

	[ASN.1 encoding]
	· ASN.1 encoding rules:
· ITU-T Rec. X.690 | ISO/IEC 8825-1 (BER, CER and DER)
· ITU-T Rec. X.691 | ISO/IEC 8825-2 (PER)

· ITU-T Rec. X.693 | ISO/IEC 8825-4 (XER)

· ITU-T Rec. X.694 | ISO/IEC 8825-5 (XSD mapping)
http://www.itu.int/ITU-T/studygroups/com17/languages/
· RFC 3641 (GSER) , http://tools.ietf.org/html/rfc3641

	[IOPPROC]
	“OMA Interoperability Policy and Process”, Version 1.1, Open Mobile Alliance™, OMA-IOP-Process-V1_1, URL:http://www.openmobilealliance.org/

	[PEEM RD]
	“Policy Evaluation, Enforcement and Management Requirements”, Open Mobile Alliance, OMA-RD_Policy_Evaluation_Enforcement_Management-V1_0,
URL: http://www.openmobilealliance.org/release_program/docs/CopyrightClick.asp?pck=RD&file=OMA-RD-Policy_Evaluation_Enforcement_Management-V1_0-20050112-C.pdf

	[PEEM AD]
	“Policy Evaluation, Enforcement and Management Architecture”, Open Mobile Alliance, OMA-AD_Policy_Evaluation_Enforcement_Management-V1_0,
URL: http://www.openmobilealliance.org/ftp/Public_documents/ARCH/Permanent_documents/OMA-AD-Policy_Evaluation_Enforcement_Management-V1_0_0-20060625-D.zip

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2234]
	“Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell. November 1997, URL:http://www.ietf.org/rfc/rfc2234.txt

	[J2SEBLOB]
	“Interface Blob”, java.sql, J2SE v.1.4.2, URL: http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Blob.html

	
	<< Add/Remove reference rows as needed! >>

2.2 Informative References

	
	

	
	<< Add/Remove reference rows as needed! >>

3. Terminology and Conventions

Editor’s note: To be done

3.1 Conventions

<< If doc includes normative material keep the next two paragraphs. DELETE THIS COMMENT >>

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

<< OR if doc is informative just keep the next line. DELETE THIS COMMENT>>

This is an informative document, which is not intended to provide testable requirements to implementations.

<< If needed, describe or declare using appropriate normative references the additional conventions that are used. DELETE THIS COMMENT >>

3.2 Definitions

<< Add definitions in new rows of the following table as needed. DELETE THIS COMMENT >>

	Binary Large OBject
	An object that can hold any digitized information. A Binary Large Object (BLOB) does not define a specific data structure but instead can convey / contain any data structure.

	PEM-1 BLOB Parameter
	A protocol independent PEM-1 interface parameter that is passed as a BLOB between a PEEM requestor and a PEEM enabler implementation.

	PEM-1 Input BLOB Parameter
	A PEM-1 BLOB Parameter sent by a PEEM requestor to a PEEM enabler implementation, as part of a policy evaluation request message.

	PEM-1 Output BLOB Parameter
	A PEM-1 BLOB Parameter sent by a PEEM enabler implementation to a PEEM requestor, as part of a policy evaluation response message.

	PEM-1 Template Binding
	A PEM-1 Template representation associated with a specific technology.

	Standard PEM-1 Template
	A PEM-1 Template specified by OMA. A Standard PEM-1 Template is composed from one or more PEM-1 Templates.

	Custom PEM-1 Template
	A PEM-1 Template specified outside OMA (e.g. by Service Providers). A Custom PEM-1 Template is composed from one or more PEM-1 Templates.

	Standard PEM-1 Template Binding
	A PEM-1 Template Binding specified by OMA.

	Custom PEM-1 Template Binding
	A PEM-1 Template Binding specified outside OMA (e.g. by Service Providers).

	Internal Policy
	A policy made available to a PEEM implementation using the PEEM Policy Management interface (PEM-2), prior to a PEM-1 request to make use of the policy.

	External Policy
	A policy made available to a PEEM implementation as a PEM-1 Parameter that is part of a PEM-1 request.

	Policy
	An ordered combination of policy rules that defines how to administer, manage, and control access to resources [Derived from [RFC 3060], [RFC 3198] and [RFC 3460]].

	Policy Action
	Action (e.g. invocation of a function, script, code, workflow) that is associated to a policy condition in a policy rule and that is executed when its associated policy condition results in "true" from the policy evaluation step.

	Policy Condition
	A condition is any expression that yields a Boolean value.

	Policy Enforcement
	The process of executing actions, which may be performed as a consequence of the output of the policy evaluation process or during the policy evaluation process.

	Policy Evaluation
	The process of evaluating the policy conditions and executing the associated policy actions up to the point that the end of the policy is reached.

	Policy Management
	The act of describing, creating, updating, deleting, provisioning and viewing policies.

	Policy Processing
	Policy evaluation or policy evaluation and enforcement

	Policy Rule
	A combination of a condition and actions to be performed if the condition is true

	Request
	An articulation of the need to access a resource (e.g. asynchronous events).

	Requestor
	Any entity that issues a request to a resource.

	Resource
	Any component, enabler, function or application that can receive and process requests.

3.3 Abbreviations

<< Add abbreviations as needed to the following table. DELETE THIS COMMENT >>

	ASN.1
	Abstract Syntax Notation One

	OMA
	Open Mobile Alliance

	BLOB
	Binary Large Object

	PEEM
	Policy Evaluation, Enforcement and Management

	PEM-1
	PEEM Callable interface

	PEM-2
	PEEM Management interface

	PEL
	(PEEM) Policy Expression Language

4. Introduction

The PEM-1 (PEEM callable interface) specification is defined to support exchanges between requesters for policy processing , and a PEEM enabler implementation. Since there is great variability amongst resources, it is expected that policies will be quite diverse, and therefore may require different input information to be supplied with each request, and in turn, may provide different output information in response. As a consequence, the input and output parameters that may be passed to/from a PEEMenabler implementation may vary greatly with the policy being processed. PEEM requirements [PEEM RD] include the need to define an interface through which resources can invoke policy processing. Having an interface separately defined for each specific policy is impractical, because it implies a difficulty in implementation for both the PEEM enabler implementation, as well as for the resources that may invoke policy processing. The solution to this is described in PEEM architecture [PEEM AD] which defines PEM-1 as a generic interface, that has a well-defined structure of requests and responses, where each request or response message always carries, from the protocol perspectivea binary large object, encompassing the collection of input parameters (in the case of a request message) or the collection of output parameters (in the case of a response message).

The variability, depending on policy, of potential input and output parameters is hidden from the interface, by encoding all input or output parameters in the binary large object, according to a well-defined convention. Such convention is based on standard templates, defined in PEEM, and possibly extended by other enabler releases, and/or on custom templates. The PEM-1 specification defines the generic interface, the input and output binary large object that carry the input/output payload, a number of standard templates that can be encapsulated in such binary large objects, and the binding of request/response messages and input/output templates to specific protocol options. Given the deliberate approach of defining PEM-1 as an extensible interface, it is expected that new templates, and input/output parameters that are part of such templates will continue to be specified either in later PEEM releases, or in other enabler releases, or by Service Provider, therefore extending PEM-1 to accommodate the specific needs of policies deployed in all domains, or in a specific domain.

The PEM-1 specification is loosely coupled to other PEEM specifications and can evolve independent of the others. There is no coupling between PEM-1 specification and PEM-2 (PEEM management interface) specification. PEM-1 specification and Policy Expression Language (PEL) specification share an interest in supporting the same set of input/output variables. In other words, if PEL specification adds support for certain input/output variables because of specific policies instances, then in order for such instances to be processed, PEM-1 may need to be capable of supporting the corresponding input/output parameters. However, PEM-1 is unaware of the detailed language constructs in PEL. Similarly, adding support for bindings to additional protocols is not impacting the PEL specification.
5. PEM-1 Interface

5.1 Specification of the PEM-1 interface

5.1.1 BLOB behavior

The PEM-1 interface MUST support a BLOB interface [J2SEBLOB] for input and output:

· Any input can be passed via PEM-1 by a requester

· Any output may be returned via PEM-1 to the requester

Inputs are parsed and examined and outputs are generated based on the Policy processed by PEEM.Interpretation of the BLOB input data structure and generation of output data is always driven by the policy that is processed. If a PEM-1 Template is used within a BLOB, as described in section 5.1.2, the data structure is expected to follow the PEM-1 Template and the policy is expected to be designed to interpret the data structure accordingly.
When a policy is written, it should take into account any existing constraints that a requestor may have in providing and processing the BLOB internal data structure.

Editor’s note: need explanation for “existing constraints”

There needs to be a way for the requester to know the BLOB’s data structure to send as input and expect as output. This may be for example according to PEM-1 Templates as discussed in sections 5.1.2 and after.

In order to use the PEM-1 interface of PEEM, the requester is aware of the input it needs to provide, and the output behaviour. How the requester is made aware of these details, (e.g. the PEM-1 Template to follow and expect) is out of scope of PEEM specifications and it is assumed to be communicated in a separate communication channel. Some informative considerations are provided in Appendix C.

BLOBs allow for any bindings to the interface.

5.1.2 PEM-1 Templates

The policies determine how to interpret the incoming data PEM-1 Parameters and how to construct outgoing PEM-1 Parameters. PEM-1 Templates define what input PEM-1 Parameters are expected to be provided as input by the requestor for the consumption by the policy and what output PEM-1 Parameters may be generated by the policy for the requestor’s consumption.

PEM-1 Templates are defined to permit binding of the PEM-1 interface to as many of the known bindings as possible.

A PEM-1 Template is Standard, as defined in section 5.1.3, (i.e. defined by OMA and included with the PEEM specifications) or Custom (e.g. defined by the Service Provider which deploys PEEM). A PEM-1 Template defines the input and output data structure. The actual input is interpreted by the policy, and the generated output is determined by the policy. Policy and PEM-1 Templates should be designed considering the constraints of the requester and service provider who defines the policies.

PEM-1 parameters and Standard PEM-1 Templates are specified as part of some OMA enablers. PEEM PEM-1 TS should capture those PEM-1 Parameters/ PEM-1 Templates (e.g. identified by other OMA enablers) which can be reused by other OMA enablers.

5.1.3 Standard PEM-1 Templates

The PEM-1 interface MUST support the set of Standard PEM-1 Templates (i.e. understand the data structure of associated input and output and support policies that interpret such data structures).

To support a PEM-1 Standard Template means that a policy can interpret the incoming data and/or generate outgoing outputs as defined by the PEM-1 Template. Standard PEM-1 Templates are not mutually exclusive. A PEEM implementation MUST support all the Standard PEM-1 Templates. PEM-1 Templates are expressed independently of the binding to a particular technology. Specific bindings are discussed in section 5.6.

5.1.4 Custom PEM-1 Templates

Custom PEM-1 Templates are outside the scope of the PEEM specification, but provide a similar way for service providers to define SP-specific PEM-1 Templates that would be processed by a set of policies used by the service provider.

Custom PEM-1 Templates are PEM-1 Templates defined by the Service Provider in order to support their specific policy needs. Custom PEM-1 Templates are similar to the Standard PEM-1 Templates and similarly used. They may re-use some or all of the input/output PEM-1 Parameters specified in the Standard PEM-1 Templates, and/or may add new input/output PEM-1 parameters.

 Custom PEM-1 Templates are not mutually exclusive, neither are they mutually exclusive when considered in combination with Standard PEM-1 Templates. A PEEM implementation MUST support any number of Standard PEM-1 Templates, and MAY support any number of Custom PEM-1 Templates.

5.1.5 Encapsulating PEM-1 Templates in PEM-1 BLOB Parameters
PEM-1 parameters (input or output) are combined to form PEM-1 Templates (Standard or Custom).

A PEM-1 Template is encapsulated in BLOB as a binary string. An input binary string is referred to as the PEM-1 Input BLOB Parameter. An output binary string is referred to as the PEM-1 Output BLOB Parameter. Each PEM-1 parameter representation in a PEM-1 Template will be in the form of an “Attribute-Value-Pair”: it will include an identifier (which has an associated data type, as per the PEM-1 Parameter definition, see section 5.6.1) and the actual value of the PEM-1 Parameter, and will be encoded according to a specific scheme (see following section). In case of two or more PEM-1 Parameters, pairs of identifier-value are encoded and concatenated to form the PEM-1 Input or Output BLOB Parameter. The PEM-1 Parameter identifiers are all specified as part of the PEM-1 Template description (see section 5.6.1 for details), and therefore are known by the PEEM requestors and by the PEEM enabler implementation. The specified nature of the PEM-1 Parameter identifiers allows the PEEM enabler implementation, respectively the PEEM requestors to appropriately interpret the encoded PEM-1 Parameter representation during parsing of the PEM-1 Input BLOB Parameter, respectfully the PEM-1 Output BLOB Parameter. It is assumed that each PEEM enabler implementation will have access to a repository that defines all supported PEM-1 Templates, all supported PEM-1 Parameters, their associated identifiers and their corresponding data types, and optional allowable values, in accordance to the PEM-1 Templates definition (see section 5.6.1). The implementation of such a repository, and how PEEM requestors and/or PEEM enabler implementation accesses the information in such repository is out-of-scope for the PEM-1TS. Similarly, how a Service Provider (SP) publishes and advertises the supported Standard and Custom PEM-1 Templates and Parameters is out-of-scope for the PEM-1 TS.

Figure 1 below illustrates through an informative flow the use of the PEM-1 interface when passing a single binary string BLOB in which a PEM-1 Template was binary encoded. The details of the evaluation process in the PEEM enabler implementation, and the enforcement process of the decision in the Policy Evaluation Requestor have been left out intentionally.

Error! Objects cannot be created from editing field codes.
Figure 1: Handling input/output-policy-data as encapsulated PEM-1 templates in a BLOB

A Policy Evaluation Requestor has access to SP published/supported PEM-1 Templates specification (the specification follows the PEM-1 TS, but the form it is represented and accessed in the PEEM enabler implementation is out-of-scope for the PEM-1 TS). All the steps that make up flow 1 can be performed at runtime or ahead of runtime. The Policy Evaluation Requestor selects a PEM-1 Template applicable to its application and uses the published specification to obtain the PEM-1 Parameters that it needs to pass, their types and optionally, allowable values. It then encodes each of the attributes by concatenating them and using the specified binary encoding method (details in a separate following section) (flow 1) to form the PEM-1 Input BLOB Parameter. It then uses the protocol of choice, out of those supported by the PEM-1 TS specification, to forward the request for evaluation, including the single PEM-1 Input BLOB parameter (flow 2). The PEEM enabler implementation receives the request using the binding to the supported protocol. It extracts the PEM-1 Input BLOB Parameter and parses it with the help of the SP published/supported PEM-1 Templates specification (flow 3). That specification allows the PEEM implementation to know how to interpret each attribute in the PEM-1 Input BLOB Parameter, using the binary encoding specification (details in a separate following section). It identifies the PEM-1 Template used by the Policy Evaluation Requestor, to determine what PEM-1 Parameters may be expected. It may identify a PEM-1 Parameter that references an internal or external policy to be used (see section 5.4 and 5.5) in order to identify the applicable policy rules (flow 4). PEEM enabler implementation then processes the evaluation request which may result in a response (flow 5). The response is then encoded in a PEM-1 Output BLOB Parameter, again with help from the information available from a SP published/supported PEM-1 Template specification (flow 6). The response is sent using the selected protocol, to the Policy Evaluation Requestor (flow 7). The Policy Evaluation Requestor parses the PEM-1 Output BLOB Parameter, using the SP published/supported PEM-1 Templates specification and obtains the decision issued by PEEM (flow 8).

This mechanism allows the entire PEM-1 Template to be passed as a single interface parameter (a PEM-1 Input BLOB or PEM-1 Output BLOB) by any protocol chosen to support the PEM-1 requests and responses. Both input PEM-1 Template and output PEM-1 Template are handled in a similar way, although the content of the templates may be quite different, according to the PEM-1 Template definition. This allows complete decoupling of the PEM-1 interface specification from the particular PEM-1 Templates that it needs to transport, and from the particular PEM-1 Parameters inside the templates. It also supports the principle of neutrality to technology, since a binary string parameter (a PEM-1 BLOB Parameter) is the only parameter that needs to be transported over any binding, and any considered binding for the PEM-1 TS supports the passing of a binary string data type. Furthermore, this also significantly reduces the complexity of mapping the interface to different bindings, and provides a true scalable way to deal with adding new PEM-1 Templates and parameters. Finally, supported by a simple binary encoding mechanism, this is the most efficient way to transport parameters, and alleviates the need on policy evaluation requestors and on the PEEM enabler implementations of stopping/re-compiling/re-starting a deployed system, since the PEM-1 interface does not have to change; the only adaptation needed for a PEEM implementation and/or the policy evaluation requestors is to be able to interpret and handle the content of a PEM-1 Template. That ensures stability of an implementation for the one part of the implementation that handles the communication protocol, and moves the burden of adaptability to the part that needs to deal with the understanding of the PEM-1 parameters, which is unavoidable anyway, since new policies, with new parameters, need to be continuously supported. The binary encoding scheme of PEM-1 Parameters into PEM-1 BLOB Parameters is described in the following section. The mapping to and use of the PEM-1 Input BLOB Parameter and PEM-1 Output BLOB Parameter for specific bindings are described in section 5.7.

5.1.6 Encoding Scheme for PEM-1 Parameters in PEM-1 BLOB Parameters
PEM-1 uses ASN.1 syntax [ASN.1 Notation] to represent the parameters passed through the BLOB and encodes the notation with one of the standard ASN.1 encoding schemes [ASN.1 encoding]. The structure declaration and the encoding scheme must be known by the requester.

Editor note: The encoding schemes FFS.

Illustrative examples are provided below

5.1.6.1 Encoding of Principal ID (Informative)

The following is example ASN.1 syntax for describing a principal containing a userid and domainid, along with an example instantiation.
BCAS DEFINITIONS ::= BEGIN

 Principal ::= SEQUENCE {

 userId IA5String,

 domainId IA5String

 }

 myPrincipal Principal ::= {

 userId "johnsmith",

 domainId "someprovider.com"

 }

END

The resulting XER encoding after running it through an ASN.1 compiler

is:

<Principal><userId>johnsmith</userId><domainId>someprovider.com</domainId></Principal>

Length: 86 bytes.

The resulting of encoding with BER is:

30801609 6A6F686E 736D6974 68161073 6F6D6570 726F7669 6465722E 636F6D00 00

Length: 33 bytes.
The result of using DER as the encoding rules is:

301D1609 6A6F686E 736D6974 68161073 6F6D6570 726F7669 6465722E 636F6D

Length: 31 bytes

Finally, the result of using Packaged Encoding Rules (PER) yields:

09D5BF46 EE7B74F4 D021CF7E DCBC396F EDA7265E 4BB1EFDA

Length: 24 bytes
5.1.6.2 Encoding of context-based authorization request (Informative)

The following is a more sophisticated example of an Authorization Request, containing a requesting principal, a target principal, a targetAttribute enumeration, and an intervals field (integer).

BCAS DEFINITIONS ::= BEGIN

 AuthorizationRequest ::= SEQUENCE {

 reqUserId IA5String,

 reqDomainId IA5String,

 targUserId IA5String,

 targDomainId IA5String OPTIONAL,

 targetAttribute ENUMERATED

 { location(0), presence(1) },

 intervals INTEGER

 }

 myReq AuthorizationRequest ::= {

 reqUserId "johnsmith",

 reqDomainId "someprovider.com",

 targUserId "janedoe",

 targetAttribute location,

 intervals 60

 }

END

Note that the targetDomainId is optional if the users are in the same domain.

The resulting encodings are for XER:

<AuthorizationRequest><reqUserId>johnsmith</

reqUserId><reqDomainId>someprovider.com</

reqDomainId><targUserId>janedoe</

targUserId><targetAttribute><location/></

targetAttribute><intervals>60</intervals></AuthorizationRequest>

Length: 223 bytes

DER encoding:

302C1609 6A6F686E 736D6974 68161073 6F6D6570 726F7669 6465722E 636F6D16 076A616E 65646F65 0A010002 013C

Length: 46 bytes

PER encoding:

04EADFA3 773DBA7A 6810E7BF 6E5E1CB7 F6D3932F 25D8F7ED 07D58776 5C9BF280 4F00

Length: 34 bytes

5.2 Input / Output Standard PEM-1 Templates

The following Standard PEM-1 Templates MUST be supported PEM-1 as explained in section 5.1.3.

Editor’s note: This section will contain templates selected by the WG. Template details may be put in appendices - TBD. The following sections describe templates that have been pre-identified as necessary, but others such sections may be added as this concept develops.

5.3 Error / status code Standard PEM-1 Template

Editor’s note: consider to make level 3 headings

This section specifies how error or status codes can be returned as part of the PEM-1 output.

A PEEM implementation MUST support such a Standard PEM-1 Template.

These error codes MAY be used as a preamble (i.e. separate PEM-1 parameter from rest of returned data value(s)) to an output BLOB or as part of an input/output Standard PEM-1 Template as specified in section 5.2.

An explicit indication identifying the internal policy to be applied is realized using the following template:

	Output Standard PEM-1 Template:
Status_Code_Template
	

	Output PEM-1 Parameter Name
	 Output Parameter Value

	StatusCode
	Status code value set by policy

	AdditionalInfo
	Additional Info value

	…
	…

Where:

· StatusCode is of data type STRING, and is mandatory when this template is used.

· Status code value is of data type UNSIGNED INTEGER, and is mandatory since it is the actual value associated with the StatusCode parameter name.

· The Status code pre-defined supported values are:

· An INTEGER value of 1 (the equivalent of TRUE) indicates SUCCESS (e.g. “GRANT”)

· An INTEGER value of 0 (the equivalent of FALSE) indicates FAILURE (e.g. “DENY”)

Editor’s note: do we need other codes? Do we need to pick different integer values? Do we prefer to pick reserved names for the status codes (e.g. SUCCESS/FAIL or TRUE/FALSE or GRANT/DENY, or any other suggestions) and let the Servi ce Provider decide the true values of these codes ? Any other ideas ? FFS – to decide whether PEL/PEM-1 should distinguish between lower and upper case
· AdditionalInfo is a placeholder to indicate that any number of optional additional output parameters may be provided, as dictated by specific policy needs. The AdditionalInfo parameter names are always of data type STRING, but the exact names and number of such additional parameters need to be determined and published/advertised by the Service Provider for each specific policy. A possible alternative is to have a pre-determined number of additional output parameters names, supporting values of different data types.

· Additional Info value is a placeholder to indicate the values associated with the AdditionalInfo parameter names. The values data types are determined by specific policy, and/or by Service Provider published conventions.

Note: The Output Standard PEM-1 template (Status_Code) will be passed encapsulated in an output BLOB.

Editor’s note: Depending on specific bindings used, the output parameter StatusCode value may also populate an equivalent field in the appropriate protocol (see Template Bindings section). This is FFS.
Editor’s note: StatusCode and any other output parameter names need to be a reserved parameter name in PEL in order to match its input value to the appropriate internal variable.
Editor’s note: FFS – to decide whether PEL/PEM-1 should distinguish between lower and upper case

5.4 Internal Policy reference Standard PEM-1 Template

This section specifies how a reference to an internal policy can be passed with a request through PEM-1. It can be combined with any other Standard PEM-1 Template. A PEEM implementation then uses the reference to identify a specific policy as managed by PEM-2.

A PEEM implementation MUST support such a Standard PEM-1 Template.

These PEM-1 parameters MAY be used as a preamble to an input BLOB or as part of an input/output Standard PEM-1 Template as specified in section 5.2.

In general, a PEEM implementation may use a combination of template parameters, in addition to other sources of information, to determine the policies to be evaluated. An explicit indication identifying the internal policy to be applied may be useful (see following parameter):
· InternalPolicyID - reference to the internal policy

Editor’s note: This section will contain templates for passing a reference to an internal policy as part of the request to PEM-1.

5.5 External Policy reference Standard PEM-1 Template

This section specifies how a reference to an external policy can be passed with a request through PEM-1. It can be combined with any other Standard PEM-1 Template. A PEEM implementation then uses the external policy for the policy evaluation or evaluation and enforcement.

A PEEM implementation MUST support such a Standard PEM-1 Template.

These PEM-1 parameters MAY be used as a preamble to an input BLOB or as part of an input/output Standard PEM-1 Template as specified in section 5.2.

A PEEM implementation may be configured to refuse input that include such a Standard PEM-1 Template, if the service provider or vendor wants to prevent passing policies as part of PEM-1 requests.

The use of an external policy is indicated by passing either a reference to the external policy, or passing the external policy itself by value, via a PEM-1 Parameter:

· ExternalPolicyID - reference to the external policy

· ExternalPolicy – external policy

Editor’s note: This section will contain templates for passing a reference to an external policy as part of the request to PEM-1.

5.6 I/O parameters
Input/output parameters listed will be replicated over one or more templates. For convenience, they have been grouped here by the nature of the information they convey (e.g. parameters relative to template identification, originator identity, etc). PEEM PEM-1 templates contain different combinations of parameters specified in this document.
Editor’s note: The parameters included in a specific grouping are preliminary and therefore subject to changes. The type of the parameters (int, string, Boolean, etc …) and the nature of the parameters (mandatory, optional) has not been established yet – this will happen at a later stage (e.g. after all potential parameters are collected, and the final templates are agreed, or by the time we have a good justification for each parameter).
5.6.1 Template-Identification

This section specifies how to define and identify the data structure of a template (for requests to PEEM, as well as responses from PEEM). The following parameters are used in the templates when conveying this type of information:

· TemplateID – a parameter that uniquely identifies the use of a specific template

· TemplateVersion – a parameter that identifies the version of the template used

Editor’s note: Parameters details may be put in appendices - TBD. Another parameter in this set could be VendorID (or Namespace) – to be considered via a separate contribution. We need to discuss whether we will ask OMNA to administer a potential VendorID or Namespace parameter.
5.6.2 Message-Handling

In general, when faced with multiple simultaneous requests, a PEEM implementation may use a combination of template parameters, in addition to other sources of information, to determine the priority in which requests should be handled. In such cases, an explicit indication by the requester with respect to the priority of the request may be useful (see following parameter):
· MsgPriority – a parameter that indicates the priority of the message

Editor’s note: we could possibly include here parameters that would indicate a PEEM instance “specialization”, although this could also be done via other means
Editor’s note: Parameters details may be put in appendices - TBD.

5.6.3 Origin-Identification

This section identifies how to pass information about the origin and identity related to the original request for access to a resource (the resource being the one that invokes the help of PEEM). This includes information about a possible principal (e.g. end-user), the device the principal is using, and the application used by the principal to make the request. The following parameters are used in the templates when conveying this type of information:

· OriginatorID – a parameter that identifies a principal that issued a request, or on behalf of whom a request was issued (name, pseudonym, other)

· OriginatorDomain – a parameter that identifies the originating principal’s domain (realm)

· OriginatorDeviceID – a parameter that identifies the originating principal’s device

· OriginatingApplicationID – a parameter that identifies the application via which the request for accessing a resource was made (ApplicationIDs would be assigned by the Service Provider and must be unique within the scope of that Service Provider)

· OriginatingApplicationDomain – a parameter that identifies the domain from which the application made the request

Editor’s note: Parameter details may be put in appendices - TBD.

5.6.4 Target-Identification

This section identifies how to pass information about the destination and identity related to the original request for access to a resource (the resource being the one that invokes the help of PEEM). This includes information about a possible principal (e.g. end-user), the device the principal is using, and the application used by the principal to make the request. The following parameters are used in the templates when conveying this type of information:

· TargetID – a parameter that identifies a principal that is the target of a request (name, pseudonym, other)

· TargetDomain – a parameter that identifies the target principal’s domain (realm)

· TargetDeviceID – a parameter that identifies the target principal’s device

· TargetApplicationID – a parameter that identifies the application via which the target principal may be reached (ApplicationIDs would be assigned by the Service Provider and must be unique within the scope of that Service Provider)

· TargetApplicationDomain – a parameter that identifies the domain in which the target application operates

Editor’s note: Parameter details may be put in appendices - TBD.
5.6.5 Resource-Identification

This section identifies how to pass information about the resource that needs policy enforcement. This includes information useful in identifying the resource that issues a request to PEEM, the operation that was requested from this resource by some other application, the type of service that is involved in that original request. The following parameters are used in the templates when conveying this type of information:

· ResourceID – a parameter that identifies the resource that is accessed by the originating principal (or an application representing that principal). This is the resource that issues the request towards PEEM (ResourceIDs would be assigned by the Service Provider and must be unique within the scope of that Service Provider)

· ResourceDomain – a parameter that identifies the domain in which that resource resides

· RequestedOperation – a parameter that identifies the request that was made against this resource

· RequestType – a parameter that categorizes the type of request that was made against this resource (e.g. end-user to end user, end-user to group, etc)

Editor’s note: Parameters details may be put in appendices - TBD.

5.6.6 Charging-Identification
This section identifies how to pass information about the entity that would be potentially charged in conjunction with handling a policy evaluation request. The following parameters are used in the templates when conveying this type of information:

•
ChargedPrincipalID – a parameter that identifies the principal that should be charged in conjunction with this request

•
ChargedPrincipalDomain – a parameter that indicates the domain to which the charged principal belongs
Editor’s note: Parameters details may be put in appendices - TBD.
5.6.7 Environment-Identification
This section identifies how to pass state information about the environment in which the request to the resource has been made. The following parameters are used in the templates when conveying this type of information:

· TimeofDay – a parameter that defines the time-of-day the original request was made

· OriginatorSphere – a parameter that defines the originating principal’s environment (home, work, other)

Editor’s note: Parameters details may be put in appendices - TBD.

5.7 PEM-1 Template Bindings

PEEM enabler implementations shall offer, at least, one of the following bindings for the PEM-1 Interface:

· Diameter

· SOAP

Other bindings are not precluded, but are not to be described in this specification.
Appendix A. Change History
(Informative)

<< The following is a model of a revision table. DELETE THIS COMMENT >>

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

A.2 Draft/Candidate Version 1.0 History

<< This section is available in pre-approved versions – it should be removed in the actual approved versions. DELETE THIS COMMENT >>

	Document Identifier
	Date
	Sections
	Description

	Draft Versions

OMA-TS-PEEM-V1_0-20051127-D
	 27 Nov 2005
	All
	Initial Baseline

	OMA-TS-PEEM_PEM1-V1_0-20060430-D
	30 apr 2006
	All
	Initial PEM-1 baseline based on OMA-ARC-2006-0093R03-Formalizing_BLOB_and_Templates_for_PEEM_TS

	
	13 Oct 2006
	See descripton
	Agreed input from:
· OMA-ARC-2006-0121R03-Normative-PEM-1-template-parameters
· OMA-ARC-2006-0147R05-PEM-1-TS-clarifying-definitions
· OMA-ARC-2006-0142R03-PEM-1-TS-baseline-update
· OMA-ARC-2006-0143R02-PEM-1-TS-definition-of-template
· OMA-ARC-2006-0200R01-PEM-1-Bindings Agreed

	
	3 Feb 2007
	See desecription
	Agreed input from:
· OMA-ARC-2006-0354R02-INP_EEM_PEM_1_TS_Diameter_datatypes_for_consideration
· OMA-ARC-2006-0355R02-INP_PEEM_PEM_1_TS_XML_datatypes_for_consideration

	
	6 Aprl 2007
	Section 1
	Agreed input from:

· OMA-ARC-PEEM-2007-0001R01-INP_PEM_1_TS_Scope_Section
· OMA-ARC-2007-0022R01-INP_PEM_1_TS_Encapsulation_of_templates_in_BLOB
· OMA-ARC-2007-0021R01-INP_PEM_1_TS_New_definitions

	
	5 May 2007
	All
	Agreed input from Frankfurt:

· OMA-ARC-PEEM-2007-0015-INP_PEM1_TS_Status_Code_template
· OMA-ARC-PEEM-2007-0016R01-INP_PEM1_TS_Introduction
· OMA-ARC-PEEM-2007-0017-INP_PEEM_TS_normative_references
· OMA-ARC-PEEM-2007-0018-INP_PEEM_TS_additional_terminology
· OMA-ARC-PEEM-2007-0026R01-INP_PEM1_TS_BLOB_Encoding_ASN1

Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [IOPPROC].

The following is a model of a set of SCR tables. DELETE THIS COMMENT

B.1 SCR for XYZ Client

	Item
	Function
	Reference
	Status
	Requirement

	XYZ-C-001
	Something mandatory
	Section x.y
	M
	(XYZ-C-001 OR XYZ-C-003) AND
 XYZ-C-002

	XYZ-C-002
	Something optional
	Section x.y
	O
	

	XYZ-C-003
	Dependencies on ZYX
	Section x.y
	M
	ZYX:MCF

	XYZ-C-004
	Dependencies on ZYX
	Section x.y
	O
	ZYX:OCF

B.2 SCR for XYZ Server

	Item
	Function
	Reference
	Status
	Requirement

	XYZ-S-001
	Something mandatory
	Section x.y
	M
	XYZ-S-001 OR XYZ-S-002 OR XYZ-S-003

	XYZ-S-002
	Something optional
	Section x.y
	O
	

	XYZ-S-003
	Dependencies on ZYX
	Section x.y
	M
	ZYX:MSF

	XYZ-S-004
	Dependencies on ZYX
	Section x.y
	O
	ZYX:OSF

Appendix C. Communicating PEM-1 details to the requester [Informative]

C.1 Use cases

Editor’s note: Details to be added.

Interpretation of the BLOB input data structure and generation of output data is always driven by the policy that is processed. If a PEM-1 Template is used within a BLOB, as described in section 5.1.2, the data structure is expected to follow the PEM-1 Template and the policy is expected to be designed to interpret the data structure accordingly.
To facilitate management and interaction by a requestor, PEM-1 Templates may be used to determine the BLOB internal format. In such case all or a subset of policies are expected to follow a specific PEM-1 Template. PEM-1 Templates can be Standard (included with the PEEM specification) or Custom (e.g. vendor specific, defined by the Service Provider which deploys PEEM). Inputs and outputs to be provided as part of the PEM-1 Template are determined by an established convention put in place to meet the needs of the policy, while considering the constraints of the requester.

In order to use PEEM in callable mode, the PEEM requestor is expected to be aware of the input it needs to provide, and the output behaviour. How this is achieved is out of scope of PEEM specifications, but it is assumed to be communicated in a separate communication channel.

When PEM-1 Templates are not used, until the policies’ expected input and output are defined and made available to a requestor, he may not know the data structure of the input to generate and output to expect.

When using PEM-1 Templates the PEEM requestor may know the data structure of the input to be generated and of the output that is expected as a response, before the policies are actually produced.

With certain PEM-1 Templates, until the policies’ logic and variables are defined and made available the PEEM requestor may not always know the complete data structure of the input to generate, or the complete data structure of the output to expect as a response. This may be the case if a PEM-1 Template does not fully specify each and every input/output PEM-1 Parameter to be exchanged (e.g. the precise number of input/output PEM-1parameters for each category of PEM-1 Parameters expected). In this latter case, the use cases will show different ways of handling such a case:

· The SP and the implementations can have their own proprietary understandings/conventions of what data to put into the PEM-1 Templates and how to interpret that data

· The policy provides definition to input/output PEM-1 Parameters needed, but left undefined by the PEM-1 Template

The I?O data structure has to be communicated to the PEEM requestor. See examples in C.1.1 C1.2 on how to achieve that.

The following describe use cases or approaches that can be used to address these challenges.

C.1.1 Template selection

Editor’s note: Details to be added.

A service provider can limit its policies to follow a (or a few) Standard or Custom PEM-1 Template(s). The details (the complete PEM-1 Templates) are communicated to the requester:

· At the time the policy’s design is complete and therefore all input and output PEM-1 Parameters are determined

· At authoring of the applications or at subscription to the an exposed service (via a separate manual or automate mechanism (e.g. discovery))

· At execution of the application (via a separate manual or automate mechanism (e.g. discovery))

C.1.2 BLOB

Editor’s note: Details to be added.

A service provider can decide not to follow any PEM-1 Template (each policy may expect different input and generate different output). The details for each case are still to be communicated to the requestor:

· At the time the policy’s design is complete and therefore all input and output PEM-1 Parameters are defined

· At authoring of the applications or at subscription to the an exposed service (via a separate manual or automate mechanism (e.g. discovery))

· At execution of the application (via a separate manual or automate mechanism (e.g. discovery))

C.2 Best Practices / Guidelines

The input is interpreted by the policy and output details are determined by the policy.

From the requestor point of view, the input and output details are defined by pre-determined PEM-1 Parameters (in the case a PEM-1 Template is being used).

In some cases the input and output details are defined by a combination of pre-determined PEM-1 Template including defined PEM-1 Parameters in combination with additional parameters needed as determined by the logic of the policy. This combination also needs to take into account the constraints of the requester (some parameters desired by the policy may not be always be provided by the requester).

Editor’s note: Details to be added.

Appendix D. Normative PEM-1 Template Bindings [Normative]

This appendix has the detailed schema, whereas the sections in the main body have high-level intro. This requires further clarification.

D.1 Analysis of data types supported in XML
This is an analysis of data types supported in XML [XML Datatypes].

D.1.1 Background

SOAP protocol does not introduce any new data types. It relies on data types supported by XML

D.1.2 XML data types

This contains an analysis of the XML supported data types, as per [XML Datatypes]. In XML there are documented several data types dychotomies:

1. Atomic vs. list vs. union data types
· Atomic datatypes are those having values which are regarded by [XML Datatypes] as being indivisible.
· Atomic data types can be either primitive or derived
· List data types are those having values each of which consists of a finite-length (possibly empty) sequence of values of an atomic datatype.

· List data types are always derived
· Union data types are those whose value spaces and lexical spaces are the union of the value spaces and lexical spaces of one or more other datatypes.

· Union data types are always derived
2. Primitive vs. derived data types
· Primitive data types are those that are not defined in terms of other data types.
· Derived data types are those that are defined in terms of other data types.
3. Built-in vs. user-derived data types
· Built-in data types are those which are defined in [XML Datatypes], and can be either primitive or derived.
· Built-in data types can be derived:
· By restriction (ur types)

· By extension

· By extension or restriction

· there are also derived Complex Types (not derived from anySimpleType, but directly from anyType – which is the root for all data types)
· User-derived data types are those derived data types that are defined by individual schema designers.

There are indeed different ways to analyze XML data types, the one chosen in this analysis is to analyze the XML primitive and derived types, which would ensure coverage of all data types, except user-derived types and complex types, which are not further specified as part of the [XML Datatypes] specification, but can be created and documented as needed later on.

XML Primitive types are presented in the table below:

	XML Primitive Data Types
	Description

	string
	The string datatype represents character strings in XML.

	boolean
	boolean has the value space required to support the mathematical concept of binary-valued logic: {true, false}.

	decimal
	decimal represents a subset of the real numbers, which can be represented by decimal numerals.

	float
	float is patterned after the single-precision 32-bit floating point type

	double
	double is patterned after the double-precision 64-bit floating point type

	duration
	duration represents a duration of time. The value space of duration is a six-dimensional space where the coordinates designate the Gregorian year, month, day, hour, minute, and second components. All but the “seconds” components are arbitrary assigned integers; the “seconds” component is a decimal.

	dateTime
	dateTime values may be viewed as objects with integer-valued year, month, day, hour and minute properties, a decimal-valued second property, and a boolean timezoned property. Each such object also has one decimal-valued method or computed property, timeOnTimeline, whose value is always a decimal number; the values are dimensioned in seconds, the integer 0 is 0001-01-01T00:00:00 and the value of timeOnTimeline for other dateTime values is computed using the Gregorian algorithm as modified for leap-seconds. The timeOnTimeline values form two related "timelines", one for timezoned values and one for non-timezoned values. Each timeline is a copy of the value space of decimal, with integers given units of seconds.

	time
	time represents an instant of time that recurs every day. The value space of time is the space of time of day values. Specifically, it is a set of zero-duration daily time instances.

	date
	The value space of date consists of top-open intervals of exactly one day in length on the timelines of dateTime, beginning on the beginning moment of each day (in each timezone), i.e. '00:00:00', up to but not including '24:00:00' (which is identical with '00:00:00' of the next day). For nontimezoned values, the top-open intervals disjointly cover the nontimezoned timeline, one per day. For timezoned values, the intervals begin at every minute and therefore overlap.

	gYearMonth
	gYearMonth represents a specific gregorian month in a specific gregorian year. The value space of gYearMonth is the set of Gregorian calendar months. Specifically, it is a set of one-month long, non-periodic instances e.g. 1999-10 to represent the whole month of 1999-10, independent of how many days this month has.

	gYear
	gYear represents a gregorian calendar year. The value space of gYear is the set of Gregorian calendar years. Specifically, it is a set of one-year long, non-periodic instances e.g. lexical 1999 to represent the whole year 1999, independent of how many months and days this year has.

	gMonthDay
	gMonthDay is a gregorian date that recurs, specifically a day of the year such as the third of May. Arbitrary recurring dates are not supported by this datatype. The value space of gMonthDay is the set of calendar dates. Specifically, it is a set of one-day long, annually periodic instances.

	gDay
	gDay is a gregorian day that recurs, specifically a day of the month such as the 5th of the month. Arbitrary recurring days are not supported by this datatype. The value space of gDay is the space of a set of calendar dates. Specifically, it is a set of one-day long, monthly periodic instances.

	gMonth
	gMonth is a gregorian month that recurs every year. The value space of gMonth is the space of a set of calendar months. Specifically, it is a set of one-month long, yearly periodic instances.

	hexBinary
	hexBinary represents arbitrary hex-encoded binary data. The value space of hexBinary is the set of finite-length sequences of binary octets.

	base64Binary
	base64Binary represents Base64-encoded arbitrary binary data. The value space of base64Binary is the set of finite-length sequences of binary octets. For base64Binary data the entire binary stream is encoded using the Base64 Alphabet.

	anyURI
	anyURI represents a Uniform Resource Identifier Reference (URI). An anyURI value can be absolute or relative, and may have an optional fragment identifier (i.e., it may be a URI Reference). This type should be used to specify the intention that the value fulfills the role of a URI as defined by [RFC 2396], as amended by [RFC 2732].

	QName
	QName represents XML qualified names. The value space of QName is the set of tuples {namespace name, local part}, where namespace name is an anyURI and local part is an NCName. The lexical space of QName is the set of strings that match the QName production of [Namespaces in XML].

	NOTATION
	NOTATION represents the NOTATION attribute type from [XML 1.0 (Second Edition)]. The value space of NOTATION is the set of QNames of notations declared in the current schema. The lexical of NOTATION is the set of all names of notations declared in the current schema (in the form of QNames).

Table 1: XML primitive types

XML derived types are presented in the table below:

	XML Primitive Data Types
	Description

	normalizedString

	normalizedString represents white space normalized strings. The value space of normalizedString is the set of strings that do not contain the carriage return (#xD), line feed (#xA) nor tab (#x9) characters. The ·lexical space· of normalizedString is the set of strings that do not contain the carriage return (#xD), line feed (#xA) nor tab (#x9) characters.

	token

	token represents tokenized strings. The value space of token is the set of strings that do not contain the carriage return (#xD), line feed (#xA) nor tab (#x9) characters, that have no leading or trailing spaces (#x20) and that have no internal sequences of two or more spaces. The lexical space of token is the set of strings that do not contain the carriage return (#xD), line feed (#xA) nor tab (#x9) characters, that have no leading or trailing spaces (#x20) and that have no internal sequences of two or more spaces. The base type of token is normalizedString.

	language

	language represents natural language identifiers as defined by by [RFC 3066] . The value space of language is the set of all strings that are valid language identifiers as defined [RFC 3066] . The lexical space of language is the set of all strings that conform to the pattern [a-zA-Z]{1,8}(-[a-zA-Z0-9]{1,8})* . The base type of language is token.

	NMTOKEN
	NMTOKEN represents the NMTOKEN attribute type from [XML 1.0 (Second Edition)]. The value space of NMTOKEN is the set of tokens that match the Nmtoken production in [XML 1.0 (Second Edition)]. The lexical space of NMTOKEN is the set of strings that match the Nmtoken production in [XML 1.0 (Second Edition)]. The base type of NMTOKEN is token.

	NMTOKENS
	NMTOKENS represents the NMTOKENS attribute type from [XML 1.0 (Second Edition)]. The value space of NMTOKENS is the set of finite, non-zero-length sequences of NMTOKENs. The lexical space of NMTOKENS is the set of space-separated lists of tokens, of which each token is in the lexical space of NMTOKEN. The item type of NMTOKENS is NMTOKEN.

	Name
	Name represents XML Names. The value space of Name is the set of all strings which match the Name production of [XML 1.0 (Second Edition)]. The lexical space of Name is the set of all strings which match the Name production of [XML 1.0 (Second Edition)]. The value space of Name is token.

	NCName
	NCName represents XML "non-colonized" Names. The value space of NCName is the set of all strings which match the NCName production of [Namespaces in XML]. The lexical space of NCName is the set of all strings which match the NCName production of [Namespaces in XML]. The base type of NCName is Name.

	ID
	ID represents the ID attribute type from [XML 1.0 (Second Edition)]. The value space of ID is the set of all strings that match the NCName production in [Namespaces in XML]. The lexical space of ID is the set of all strings that match the NCName production in [Namespaces in XML]. The base type of ID is NCName.

	IDREF
	IDREF represents the IDREF attribute type from [XML 1.0 (Second Edition)]. The value space of IDREF is the set of all strings that match the NCName production in [Namespaces in XML]. The lexical space of IDREF is the set of strings that match the NCName production in [Namespaces in XML]. The base type of IDREF is NCName.

	IDREFS
	IDREFS represents the IDREFS attribute type from [XML 1.0 (Second Edition)]. The value space of IDREFS is the set of finite, non-zero-length sequences of IDREFs. The lexical space of IDREFS is the set of space-separated lists of tokens, of which each token is in the lexical space of IDREF. The itemType of IDREFS is IDREF.

	ENTITY
	ENTITY represents the ENTITY attribute type from [XML 1.0 (Second Edition)]. The value space of ENTITY is the set of all strings that match the NCName production in [Namespaces in XML] and have been declared as an unparsed entity in a document type definition. The lexical space of ENTITY is the set of all strings that match the NCName production in [Namespaces in XML]. The base type of ENTITY is NCName.

	ENTITIES
	ENTITIES represents the ENTITIES attribute type from [XML 1.0 (Second Edition)]. The value space of ENTITIES is the set of finite, non-zero-length sequences of ·ENTITY·s that have been declared as unparsed entities in a document type definition. The lexical of ENTITIES is the set of space-separated lists of tokens, of which each token is in the lexical space of ENTITY. The itemType of ENTITIES is ENTITY.

	integer
	integer is derived from decimal by fixing the value of fractionDigits to be 0and disallowing the trailing decimal point. This results in the standard mathematical concept of the integer numbers. The value space of integer is the infinite set {...,-2,-1,0,1,2,...}. The base type of integer is decimal.

	nonPositiveInteger
	nonPositiveInteger is derived from integer by setting the value of maxInclusive to be 0. This results in the standard mathematical concept of the non-positive integers. The value space of nonPositiveInteger is the infinite set {...,-2,-1,0}. The base type of nonPositiveInteger is integer.

	negativeInteger
	negativeInteger is derived from nonPositiveInteger by setting the value of maxInclusive to be -1. This results in the standard mathematical concept of the negative integers. The value space of negativeInteger is the infinite set {...,-2,-1}. The base type of negativeInteger is nonPositiveInteger.

	long
	long is derived from integer by setting the value of maxInclusive to be 9223372036854775807 and minInclusive to be -9223372036854775808. The base type of long is integer.

	int
	int is derived from long by setting the value of maxInclusive to be 2147483647 and minInclusive to be -2147483648. The base type of int is long.

	short
	short is derived from int by setting the value of maxInclusive to be 32767 and minInclusive to be –32768.

	byte
	byte is derived from short by setting the value of maxInclusive to be 127 and minInclusive to be -128. The base type of byte is short.

	nonNegativeInteger
	nonNegativeInteger is derived from integer by setting the value of minInclusive to be 0. This results in the standard mathematical concept of the non-negative integers. The value space of nonNegativeInteger is the infinite set {0,1,2,...}. The base type of nonNegativeInteger is integer.

	unsignedLong
	unsignedLong is derived from nonNegativeInteger by setting the value of maxInclusive to be 18446744073709551615. The base type of unsignedLong is nonNegativeInteger.

	unsignedInt
	unsignedInt is derived from unsignedLong by setting the value of maxInclusive to be 4294967295. The base type of unsignedInt is unsignedLong.

	unsignedShort
	unsignedShort is derived from unsignedInt by setting the value of maxInclusive to be 65535. The base type of unsignedShort is unsignedInt.

	unsignedByte
	unsignedByte is derived from unsignedShort by setting the value of maxInclsuive to be 255. The base type of unsignedByte is unsignedShort.

	positiveInteger
	positiveInteger is derived from nonNegativeInteger by setting the value of minInclusive to be 1. This results in the standard mathematical concept of the positive integer numbers. The value space of positiveInteger is the infinite set {1,2,...}. The base type of positiveInteger is nonNegativeInteger.

Table 2: XML derived types
D.1.3 XML data types versus common programming languages supported data types

This section presents a comparison between common programming languages supported data types (from an analysis in a separate contribution) and the data types documented in [XML Datatypes] in order identify the differences and draw appropriate conclusions.

	C/C++/Java “Supported” Data Types
	XML primitive or derived data types
	Comments/conclusion

	void
	No equivalent
	Not a problem; there is no need to support void in XML for the purpose of PEEM, since void is only use as a convenience to be consistent for a function that does not return a value – so it will be data type internal to the policy only (if needed)

	int
	int
	Match

	unsigned int
	unsignedInt
	Match

	signed int
	int
	Match

	short int
	short
	Match

	unsigned short int
	unsignedShort
	Match

	signed short int
	short
	Match

	long int
	long
	Match

	unsigned long int
	unsignedLong
	Match

	signed long int
	long
	Match

	float
	float
	Match

	double
	double
	Match

	long double
	double
	Match

	char
	byte
	Match

	unsigned char
	unsignedByte
	Match

	signed char
	byte
	Match

	enum
	No equivalent
	Not a problem to support, if needed. There are several derivation methods possible (e.g. it could be defined as an XML complex type, and using Integer or int to derive from).

	array
	No equivalent (except for “strings” – which are arrays of bytes only)

	Not a problem to support, it may have to be added as a user-derived XML complex type.

	function
	No equivalent
	Not a problem; there is no need to support functions in XML as data types.

	struct
	No equivalent
	Not a problem to support, it may have to be added as a a user-derived XML complex type.

	union
	No equivalent.
	Unlikely to be needed when passing a parameter. If needed, may need more investigation.

	string
	string
	Match

	wchar_t
	No equivalent
	Not a problem to support, may be derived from string or from byte.

	bool
	boolean
	Match

Table 3: XML derived types
The comparison shows that practically all supported data types used in programming languages either have a direct match in a specified XML data type (basic or derived), or they can be derived using the specified XML data types.

The reverse is no trivial task to assess since there is an enormous amount of XML derived data types, that may not have an immediate equivalent in a basic data type in a programming language. Such work (deriving data types in PEL to support additional XML data types) may only be needed however if the policy needs such data types – since it is the policy that dictates the data types needed, and not the protocol that may be able to carry them; therefore it is not something requiring immediate attention.

D.1.4 Conclusion on XML data types

As with any binding, what is of interest is that the data types that the PEL needs to support can be supported by the protocol. The analysis is showing that is indeed the case with XML data types, albeit some additional work on deriving some user-derived XML data types will likely be needed. However, to minimize unnecessary work in PEL and PEM-1 specifications and their later implementations, in reality only a subset of the data types supported in programming languages is needed initially, rather then supporting the entire super-set of data types available in programming languages.

Other types can be derived and added to PEL on a need-basis later on.

D.2 Analysis of use of Diameter, and data types supported in Diameter
This is an analysis of data types supported in Diameter [RFC 3588].

D.2.1 Diameter AVP related background information

The Diameter protocol consists of a header followed by one or more Attribute-Value-Pairs (AVPs). An AVP includes a header and is used to encapsulate protocol-specific data (e.g., routing information) as well as authentication, authorization or accounting information. The set of AVPs included in a message is determined by a particular Diameter application. Application Identifiers are advertised during the capabilities exchange phase (see [RFC 3588], Section 5.3). For a given application, advertising support of an application implies that the sender supports all command codes, and the AVPs specified in the associated ABNFs, described in the specification. An implementation MAY add arbitrary non-mandatory AVPs to any command defined in an application, including vendor-specific AVPs.

Each Diameter application MUST have an IANA assigned Application Identifier (see [RFC 3588], Section 11.3). The base protocol does not require an Application Identifier since its support is mandatory. During the capabilities exchange, Diameter nodes inform their peers of locally supported applications. Furthermore, all Diameter messages contain an Application Identifier, which is used in the message forwarding process.

For the purpose of this analysis, some fields in the Diameter header are presented. See [RFC 3588] for the complete information. The fields of interest here are:

<snip>

Command-Code: this field is 3 octets, and is used in order to communicate the command associated with the message. The 24-bit address space is managed by IANA (see [RFC 3588], Section 11.2.1).

Application-ID: this field is 4 octets and is used to identify to which application the message is applicable for. The application can be an authentication application, an accounting application or a vendor specific application. See Section 11.3 for the possible values that the application-id may use. The application-id in the header MUST be the same as what is contained in any relevant AVPs contained in the message.
<snip>

AVPs: they represent a method of encapsulating information relevant to the Diameter message. See RFC 3588 Section 4 for more information on AVPs.

<snip>

Every Command Code defined MUST include a corresponding ABNF specification, which is used to define the AVPs that MUST or MAY be present. See [RFC 3588], Section 3.2 for Command Code ABNF specification.

Diameter AVPs carry specific authentication, accounting, authorization, routing and security information as well as configuration details for the request and reply. Some AVPs MAY be listed more than once. The effect of such an AVP is specific, and is specified in each case by the AVP description.

Each AVP of type OctetString MUST be padded to align on a 32-bit boundary, while other AVP types align naturally. A number of zero-valued bytes are added to the end of the AVP Data field till a word boundary is reached. The length of the padding is not reflected in the AVP Length field.

For the purpose of this analysis, some fields in the Diameter header are presented. See [RFC 3588] for the complete information. The fields of interest here are:

AVP Code: this field, combined with the Vendor-Id field, identifies the attribute uniquely. AVP numbers 1 through 255 are reserved for backward compatibility with RADIUS, without setting the Vendor-Id field. AVP numbers 256 and above are used for Diameter, which are allocated by IANA (see [RFC 3588], Section 11.1).

AVP Flags: this field informs the receiver how each attribute must be handled. See [RFC 3588], Section 4.1 for ‘P’ bit and ‘M’ bit

<snip>

The 'V' bit, known as the Vendor-Specific bit, indicates whether the optional Vendor-ID field is present in the AVP header. When set the AVP Code belongs to the specific vendor code address space.

Unless otherwise noted, AVPs will have the following default AVP Flags field settings:

The 'M' bit MUST be set. The 'V' bit MUST NOT be set.

AVP Length: this field is three octets, and indicates the number of octets in this AVP including the AVP Code, AVP Length, AVP Flags, Vendor-ID field (if present) and the AVP data. If a message is received with an invalid attribute length, the message SHOULD be rejected.

The AVP Header contains one optional field. This field is only present if the respective bit-flag is enabled.

Vendor-ID: this field is present if the 'V' bit is set in the AVP Flags field. The optional four-octet Vendor-ID field contains the IANA assigned "SMI Network Management Private Enterprise Codes" [ASSIGNNO] value, encoded in network byte order. Any vendor wishing to implement a vendor-specific Diameter AVP MUST use their own Vendor-ID along with their privately managed AVP address space, guaranteeing that they will not collide with any other vendor's vendor-specific AVP(s), nor with future IETF applications. A vendor ID value of zero (0) corresponds to the IETF adopted AVP values, as managed by the IANA. Since the absence of the vendor ID field implies that the AVP in question is not vendor specific, implementations MUST NOT use the zero (0) vendor ID.

D.2.1.1 Diameter AVP data formats

This contains an analysis of the Diameter supported AVP data types. Diameter supports basic AVP data formats and derived AVP data formats.

The Data field of a AVP is zero or more octets and contains information specific to the Attribute. The format and length of the Data field is determined by the AVP Code and AVP Length fields. The format of the Data field MUST be one of the following base data types or a data type derived from the base data types. In the event that a new Basic AVP Data Format is needed, a new version of this RFC must be created.

Given the statement above, it is highly recommended for PEEM to avoid the need to add basic AVP data format, since this may become a lengthy and less than guaranteed to succeed path.

The basic AVP data formats are presented in the table below:

	Diameter Basic AVP Data Formats
	Description

	OctetString
	Arbitrary data of variable length.

Unless otherwise noted, the AVP Length field MUST be set to at least 8 (12 if the 'V' bit is enabled). AVP Values of this type that are not a multiple of four-octets in length is followed by the necessary padding so that the next AVP (if any) will start on a 32-bit boundary.

	Integer32
	32 bit signed value, in network byte order. The AVP Length field MUST be set to 12 (16 if the 'V' bit is enabled).

Values in the range: −2,147,483,648 to +2,147,483,647

	Integer64
	64 bit signed value, in network byte order. The AVP Length field MUST be set to 16 (20 if the 'V' bit is enabled).

−9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

	Unsigned32
	32 bit unsigned value, in network byte order.

0 to +4,294,967,295

	Unsigned64
	32 bit unsigned value, in network byte order.

0 to +18,446,744,073,709,551,615

	Float32
	This represents floating point values of single precision as

described by [FLOATPOINT]. The 32-bit value is transmitted in network byte order.

	Float64
	This represents floating point values of double precision as

described by [FLOATPOINT]. The 64-bit value is transmitted in network byte order.

	Grouped
	The Data field is specified as a sequence of AVPs. Each of these AVPs follows – in the order in which they are specified – including their headers and padding. This is basically a way to represent what is called in programming languages a record or structure.

Analyzing the basic AVP data formats leads to the conclusion that all of them, with some caveats, have some equivalent in the typical programming language data types supported (see the last table). The caveats are related to the fact that some basic AVP data formats also include specific handling of the AVP length and aligning at 4 octets boundary. That is especially true for the Grouped basic AVP data format, which could be close to a “struct”, but incorporates also the AVP code, flags and length of each member within the construct. However, these issues can be addressed by the Diameter receiver/responder implementation when dealing with transfers between Diameter receiver/responder and the policy itself.

In addition to using the Basic AVP Data Formats, applications may define data formats derived from the Basic AVP Data Formats. An application that defines new AVP Derived Data Formats MUST include them in a section entitled "AVP Derived Data Formats", using the same format as the definitions in [RFC 3588]. Each new definition must be either defined or listed with a reference to the RFC that defines the format. The below AVP Derived Data Formats are commonly used by applications.

	Diameter Derived AVP Data Formats
	Description

	Address

	The Address format is derived from the OctetString AVP Base Format. It is a discriminated union, representing, for example a 32-bit (IPv4) [IPV4] or 128-bit (IPv6) [IPV6] address, most significant octet first. The first two octets of the Address AVP represents the AddressType, which contains an Address Family defined in [IANAADFAM]. The AddressType is used to discriminate the content and format of the remaining octets.

	Time
	The Time format is derived from the OctetString AVP Base Format. The string MUST contain four octets, in the same format as the first four bytes are in the NTP timestamp format

	UTF8String
	The UTF8String format is derived from the OctetString AVP Base Format. This is a human readable string represented using the ISO/IEC IS 10646-1 character set, encoded as an OctetString using the UTF-8 [UFT8] transformation format described in RFC 2279. For information encoded in 7-bit US-ASCII, the UTF-8 charset is identical to the US-ASCII charset.

UTF-8 may require multiple bytes to represent a single character / code point; thus the length of an UTF8String in octets may be different from the number of characters encoded.

Note that the AVP Length field of an UTF8String is measured in octets, not characters.

	DiameterIdentity
	The DiameterIdentity format is derived from the OctetString AVP Base Format.

DiameterIdentity value is used to uniquely identify a Diameter node for purposes of duplicate connection and routing loop detection.

	DiameterURI
	The DiameterURI MUST follow the Uniform Resource Identifiers (URI) syntax [URI] rules specified in [RFC 3588]

	Enumerated
	Enumerated is derived from the Integer32 AVP Base Format. The definition contains a list of valid values and their interpretation and is described in the Diameter application introducing the AVP.

	IPFilterRule
	The IPFilterRule format is derived from the OctetString AVP Base Format. It uses the ASCII charset. Packets may be filtered based on information described in [RFC 3588]

	QoSFilterRule
	The QosFilterRule format is derived from the OctetString AVP Base Format. It uses the ASCII charset. Packets may be marked metered based on information described in [RFC 3588]

Analyzing the derived AVP data formats leads to the conclusion that many of them are derived from OctetString, which is relatively equivalent to a programming language “string” – so this should not be an issue. Enumerated is derived from Integer32, and seems to be equivalent to the programming language “enum” data type. The [RFC 3588] conspicuously misses to state that DiameterURI is derived from OctetString, but at careful reading of the details, it proves to be the case – so that should not be an issue either. As before, similar caveats apply caveats apply, and some processing will have to take place when dealing with transfers between Diameter receiver/responder and the policy itself.

D.2.1.2 Diameter AVP data formats versus common programming languages supported data types

This section presents a comparison between common programming languages supported data types (from an analysis in a separate contribution) and the data formats supported by Diameter, in order identify the differences and draw appropriate conclusions.

	C/C++/Java “Supported” Data Types
	Diameter basic or derived AVP data formats
	Comments/conclusion

	void
	No equivalent
	Not a problem; there is no need to support void in Diameter, since void is only use as a convenience to be consistent for a function that does not return a value – so it will be data type internal to the policy only (if needed)

	int
	Integer32
	Match

	unsigned int
	Unsigned32
	Match

	signed int
	Integer32
	Match

	short int
	No equivalent
	No match. Will need to decide whether there is a need to support in PEL. Possibilities include to not support, or to support with the caveat that Diameter implementation will need to verify that an Integer32 passed instead is indeed in the range that fits into a short int.

	unsigned short int
	No equivalent
	Similar to above.

	signed short int
	No equivalent
	Same as above.

	long int
	Integer64
	Match

	unsigned long int
	Unsigned64
	Match

	signed long int
	Integer64
	Match

	float
	Float32
	Match

	double
	Float64
	Match

	long double
	Float64
	Match

	char
	Could be derived from OctetString
	Not a problem to support, needs some work. Possibilities include defining a derived AVP (an OctetString of 1) or just verifying that indeed an OctetString passed only has 1 character, before passing it to the policy.

	unsigned char
	Could be derived from OctetString
	Similar to above

	signed char
	Could be derived from OctetString
	Similar to above

	enum
	Enumerated
	Match

	array
	OctetString (for arrays of bytes only)

For others, or in general, could be derived from existing AVP formats.

	Not a problem to support, needs some work. Probably define derived AVPs (one for each possible type of member in the array – e.g. one for int, one for float, etc …) using Grouped data formats.

	function
	No equivalent
	Not a problem; there is no need to support functions in Diameter, since there is no need to pass functions as parameters.

	struct
	Could be derived from Grouped
	Not a problem to support, needs some work. Probably define derived AVPs for specific structures.

	union
	No equivalent.
	Not sure how to support, but maybe it is not needed. May need more investigation.

	string
	OctetString
	Match

	wchar_t
	Could be derived from OctetString
	Not a problem to support, needs some work. Probably define derived AVP from OctetString.

	bool
	Could be derived from Integer32.
	Not a problem to support, needs some work. Probably define derived AVP from Int32.

	See string
	OctetString
	Match

	See int
	Integer32
	Match

	See long
	Integer64
	Match

	See unsigned int
	Unsigned32
	Match

	See unsigned long
	Unsigned64
	Match

	See float
	Float32
	Match

	See double
	Float64
	Match

	See struct
	Grouped
	Not a problem to support, needs support in Diameter.

	Derived from string
	Address

	Not a problem to support in PEL via a “typedef” from string (if needed; probably consumed at Diameter protocol level).

	Derived from string
	Time
	Not a problem to support in PEL via a “typedef” from string (if needed)

	Derived from string
	UTF8String
	Not a problem to support in PEL via a “typedef” from string (if needed)

	Derived from string
	DiameterIdentity
	Not a problem to support in PEL via a “typedef” from string (if needed)

	Derived from string
	DiameterURI
	Not a problem to support in PEL via a “typedef” from string (if needed)

	See enum
	Enumerated
	Match

	Derived from string
	IPFilterRule
	Not a problem to support in PEL via a “typedef” from string (if needed)

	Derived from string
	QoSFilterRule
	Not a problem to support in PEL via a “typedef” from string (if needed)

The conclusion is that, should a subset of the basic and some complex data types analyzed for programming languages be supported in PEL, Diameter can match the parameters data types as dictated by the policy with a few exceptions (short int, unsigned short int, signed short int, function, union), but may require some work for some of the others. Of course, the more data types are supported in PEL, the more work in new AVPs to be supported in Diameter. Likewise, a PEL that supports the typical programming language data types can support all passed parameters data types from/to Diameter (in some cases the use typedef may be needed to cast some derivations of data types in PEL in order to do so – but this can be done on a need basis). In principle, any of the parameters passed via Diameter can be matched with existing basic data types and structures supported in programming languages.

A subset of the data types supported in programming languages would be in general a much preferable way to start with, rather then supporting the entire super-set of data types available in programming languages. Other types can be derived and added to PEL on a need-basis later on

A special note on the use of Vendor-ID qualifier. If the ‘V’ flag is set in the Diameter header, the Vendor-ID parameter acts as a “namespace” to allow a different interpretation for a certain AVP, then the standard interpretation as per IETF specifications (such AVPs are no longer managed by IANA, but by the organization that owns that particular Vendor-ID). Several scenarios related to additional AVP codes could happen:

1. ARC could decide at PEEM PEL TS time that some additional AVP codes are needed
2. A Service Provider that deploys PEEM may decide that additional PEEM derived data types, and hence additional AVP codes, are needed,.

 The process for defining additional AVP codes is documented in [RFC 3588]..

Appendix E. Informative PEM-1 Template Bindings [Informative]

Same as note in appendix D

(2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20050101-I]
(2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20050101-I]

