 STYLEREF ZDID * MERGEFORMAT
Page 29 V(37)

	[image: image1.jpg]
	

	RESTful Network API for
Anonymous Customer Reference Management

	Draft Version 1.0 – 8 Oct 2012

	Open Mobile Alliance

	OMA-TS-REST_NetAPI_ACR-V1_0-20121008-D
<< In the flow text in this template, yellow marks are used for placeholders that need to be replaced by real-world text, and cyan marks are used for explanations that need to be deleted in the final document.
This is a special version of the Technical Specification (TS) template, intended to be used only for RESTful Network application programming interface (API) specifications.
Delete this comment.>>

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2012 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

51.
Scope

2.
References
6
2.1
Normative References
6
2.2
Informative References
6
3.
Terminology and Conventions
7
3.1
Conventions
7
3.2
Definitions
7
3.3
Abbreviations
7
4.
Introduction
8
4.1
Version 1.0
8
5.
Anonymous Customer Reference Management API definition
9
5.1
Resources Summary
9
5.2
Data Types
12
5.2.1
XML Namespaces
12
5.2.2
Structures
12
5.2.2.1
Type: AcrList
12
5.2.2.2
Type: Acr
12
5.2.2.3
Type: Status
13
5.2.3
Enumerations
13
5.2.3.1
Enumeration: AcrStatus
13
5.2.4
Values of the Link “rel” attribute
13
5.3
Sequence Diagrams
14
5.3.1
Operations on Anonymous Customer Refences
14
6.
Detailed specification of the resources
16
6.1
Resource: [Description of the resource]
16
6.1.1
Request URL variables
17
6.1.1.1
Light-weight relative resource paths
17
6.1.2
Response Codes and Error Handling
17
6.1.3
GET
18
6.1.3.1
Example 1: [Example title] (Informative)
18
6.1.3.1.1
Request
19
6.1.3.1.2
Response
19
6.1.3.2
Example 2: [Example title] (Informative)
20
6.1.3.2.1
Request
20
6.1.3.2.2
Response
20
6.1.4
PUT
20
6.1.4.1
Example 1: [Example title] (Informative)
20
6.1.4.1.1
Request
20
6.1.4.1.2
Response
20
6.1.4.2
Example 2: [Example title] (Informative)
21
6.1.4.2.1
Request
21
6.1.4.2.2
Response
21
6.1.5
POST
21
6.1.5.1
Example 1: [Example title] (Informative)
21
6.1.5.1.1
Request
21
6.1.5.1.2
Response
22
6.1.5.2
Example 2: [Example title] (Informative)
22
6.1.5.2.1
Request
22
6.1.5.2.2
Response
22
6.1.6
DELETE
22
6.1.6.1
Example 1: [Example title] (Informative)
22
6.1.6.1.1
Request
22
6.1.6.1.2
Response
23
6.1.6.2
Example 2: [Example title] (Informative)
23
6.1.6.2.1
Request
23
6.1.6.2.2
Response
23
7.
Fault definitions
24
7.1
Service Exceptions
24
7.2
Policy Exceptions
24
Appendix A.
Change History (Informative)
25
A.1
Approved Version History
25
A.2
Draft/Candidate Version 1.0 History
25
Appendix B.
Static Conformance Requirements (Normative)
26
B.1
SCR for REST.ACR Server
26
B.1.1
SCR for REST.FUNCAREA.FUNCTION Server
26
Appendix C.
Application/x-www-form-urlencoded Request Format for POST Operations (Normative)
27
C.1
[Operation]
27
C.1.1
Example (Informative)
28
C.1.1.1
Request
28
C.1.1.2
Response
28
Appendix D.
JSON examples (Informative)
29
D.1
[Example Title] (section [section number cross reference])
29
Appendix E.
Operations mapping to a pre-existing baseline specification (Informative)
30
Appendix F.
Light-weight resources for Anonymous Customer Reference Management (Informative)
31
Appendix G.
Authorization aspects (Normative)
32
G.1
Use with OMA Authorization Framework for Network APIs
32
G.1.1
Scope values
32
G.1.1.1
Definitions
32
G.1.1.2
Downscoping
32
G.1.1.3
Mapping with resources and methods
33
G.1.2
Use of ‘acr:Authorization’
33

Figures

13Figure 1 Resource structure defined by this specification

19Figure 2 [Caption of this flow]

Tables

36Table 1: Scope values for RESTful Anonymous Customer Reference Management API

37Table 2: Required scope values for: Management of Anonymous Customer Reference

37Table 3: Required scope values for: Querying Anonymous Customer Reference

1. Scope

This specification defines a RESTful API for Anonymous Customer Reference Management using HTTP protocol bindings.
2. References

2.1 Normative References

	[IETF_ACR_draft]
	“The acr URI for anonymous users”, S.Jakobsson, K.Smith, January 2010, URL: http://tools.ietf.org/html/draft-uri-acr-extension-00

	[RD-REST_NetAPI_ACR]
	“OMA RESTful Network API for Anonymous Customer Reference Management”, Open Mobile Alliance™, OMA-RD-REST_NetAPI_ACR-V1_0, URL: http://www.openmobilealliance.org/

	[REST_NetAPI_Common]
	“Common definitions for RESTful Network APIs”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_Common-V1_0, URL: http://www.openmobilealliance.org/

	[REST_NetAPI_NotificationChannel]
	Include if the use of Notification Channel is supported, otherwise delete this reference. “RESTful Network API for Notification Channel”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_NotificationChannel-V1_0, URL: http://www.openmobilealliance.org/

	[REST_SUP_ACR]
	“XML schema for the RESTful Network API for Anonymous Customer Reference Management”, Open Mobile Alliance™, OMA-SUP-XSD_rest_netapi_acr-V1_0, URL: http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2616]
	“Hypertext Transfer Protocol -- HTTP/1.1”, R. Fielding et. al, January 1999, URL:http://www.ietf.org/rfc/rfc2616.txt

	[RFC3966]
	“The tel URI for Telephone Numbers”, H.Schulzrinne, December 2004, URL: http://www.ietf.org/rfc/rfc3966.txt

	[RFC3986]
	“Uniform Resource Identifier (URI): Generic Syntax”, R. Fielding et. al, January 2005, URL:http://www.ietf.org/rfc/rfc3986.txt

	[RFC4627]
	“The application/json Media Type for JavaScript Object Notation (JSON)”, D. Crockford, July 2006, URL: http://www.ietf.org/rfc/rfc4627.txt

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL: http://www.openmobilealliance.org/

	[XMLSchema1]
	W3C Recommendation, XML Schema Part 1: Structures Second Edition, URL: http://www.w3.org/TR/xmlschema-1/

	[XMLSchema2]
	W3C Recommendation, XML Schema Part 2: Datatypes Second Edition, URL: http://www.w3.org/TR/xmlschema-2/

2.2 Informative References
	[OMADICT]
	“Dictionary for OMA Specifications”, Version 2.8, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2_8, URL:http://www.openmobilealliance.org/

	[REST_WP]
	“Guidelines for RESTful Network APIs”, Open Mobile Alliance™, OMA-WP-Guidelines_for_RESTful_Network_APIs, URL:http://www.openmobilealliance.org/

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

For the purpose of this TS, all definitions from the OMA Dictionary apply [OMADICT]. If the use of Notification Channel is supported, include also the definitions below, otherwise delete them.

	Client-side Notification URL
	An HTTP URL exposed by a client, on which it is capable of receiving notifications and that can be used by the client when subscribing to notifications.

	Long Polling
	A variation of the traditional polling technique, where the server does not reply to a request unless a particular event, status or timeout has occurred. Once the server has sent a response, it closes the connection, and typically the client immediately sends a new request. This allows the emulation of an information push from a server to a client.

	Notification Channel
	A channel created on the request of the client and used to deliver notifications from a server to a client. It is represented as a resource and provides means for the server to post notifications and for the client to receive them via specified delivery mechanisms.

For example in the case of Long Polling the channel resource is defined by a pair of URLs. One of the URLs is used by the client as a call-back URL when subscribing for notifications. The other URL is used by the client to retrieve notifications from the Notification Server.

	Notification Server
	A server that is capable of creating and maintaining Notification Channels.

	Server-side Notification URL
	An HTTP URL exposed by a Notification Server, that identifies a Notification Channel and that can be used by a client when subscribing to notifications.

3.3
Abbreviations
	ACR
	Anonymous Customer Reference

	API
	Application Programming Interface

	HTTP
	HyperText Transfer Protocol

	JSON
	JavaScript Object Notation

	OMA
	Open Mobile Alliance

	REST
	REpresentational State Transfer

	SCR
	Static Conformance Requirements

	TS
	Technical Specification

	URI
	Uniform Resource Identifier

	URL
	Uniform Resource Locator

	XML
	eXtensible Markup Language

	XSD
	XML Schema Definition

4. Introduction

The Technical Specification of the RESTful Network API for Anonymous Customer Reference Management contains HTTP protocol bindings for Anonymous Customer Reference Management, using the REST architectural style based on [RD-REST_NetAPI_ACR]. The specification provides resource definitions, the HTTP verbs applicable for each of these resources, and the element data structures, as well as support material including flow diagrams and examples using the various supported message body formats (i.e. XML, JSON, and form-urlencoding).
4.1 Version 1.0

Version 1.0 of this specification supports the following operations:
· Manage Anonymous Customer Reference
· Two
In addition, this specification provides:

· Support for scope values used with authorization framework defined in [Autho4API_10]
· Support for Anonymous Customer Reference (ACR) as an end user identifier
· Support for “acr:Authorization” as a reserved keyword in a resource URL variable that identifies an end user
5. Anonymous Customer Reference Management API definition
This section is organized to support a comprehensive understanding of the Anonymous Customer Reference Management API design. It specifies the definition of all resources, definition of all data structures, and definitions of all operations permitted on the specified resources.
Common data types, naming conventions, fault definitions and namespaces are defined in [REST_NetAPI_Common].

The remainder of this document is structured as follows:

Section 5 starts with a diagram representing the resources hierarchy followed by a table listing all the resources (and their URL) used by this API, along with the data structure and the supported HTTP verbs (section 5.1). What follows are the data structures (section 5.2). A sample of typical use cases is included in section 5.3, described as high level flow diagrams.

Section 6 contains detailed specification for each of the resources. Each such subsection defines the resource, the request URL variables that are common for all HTTP methods, and the supported HTTP verbs. For each supported HTTP verb, a description of the functionality is provided, along with an example of a request and an example of a response. For each unsupported HTTP verb, the returned HTTP error status is specified, as well as what should be returned in the Allow header.
All examples in section 6 use XML as the format for the message body. JSON examples are provided in Appendix D.
Section 7 contains fault definition details such as Service Exceptions and Policy Exceptions.
Appendix B provides the Static Conformance Requirements (SCR).
Appendix E provides the operations mapping to a pre-existing baseline specification, where applicable.
Appendix F provides a list of all light-weight resources. [This sentence applies if there are light-weight resources defined in this specification. Wording if there are no light-weight resources defined in this specifications is as follows:Appendix F provides a list of all light-weight resources, where applicable.]
Appendix G defines authorization aspects to control access to the resources defined in this specification.

Note: Throughout this document client and application can be used interchangeably.
5.1 Resources Summary

This section summarizes all the resources used by the RESTful Network API for Anonymous Customer Reference Management.

The "apiVersion" URL variable SHALL have the value "v1" to indicate that the API corresponds to this version of the specification. See [REST_NetAPI_Common] which specifies the semantics of this variable.

[image: image2.emf]//{serverRoot}/acrmanagement/{apiVersion}/{userId}

/application

/{ACR}

/status

Figure 1 Resource structure defined by this specification

The following tables give a detailed overview of the resources defined in this specification, the data type of their representation and the allowed HTTP methods.
Purpose: Operations on Anonymous Customer Reference
	Resource
	URL
Base URL: http://{serverRoot}/acrmanagement/{apiVersion}/{userId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	End User’s Application
	/application
	AcrList for GET

Acr for POST
	Returns the issued ACR for the given end user identified by the {userId} in the context of a given App.

	no

	Creates an ACR for the user identified by the {userId}.

Editor’s note 1: To be shifted in the proper section: AppId is recorded in Acr data structure

Editor’s note 2: Define proper error codes for creation attempts when ACR (expired, valid, revoked) still exists.
	no

	Anonymous Customer Reference
	/application/{ACR}
	Acr
	Retrieves the ACR data.

Editor’s note 3:If ACR does not exist, HTTP 404 “Not Found “ response is retuned
	no
	no
	Remove an ACR.

	ACR Status
	/application/{ACR}/status
	Status
	Retrieves the ACR status.

	Refresh an “expired” ACR. (set the ACR status to “valid”)
	no
	no

Editors note 4: This version supports management of own ACRs. FFS whether and how to support management of contacts’ ACRs.

5.2 Data Types
5.2.1 XML Namespaces

The XML namespace for the Anonymous Customer Reference Management data types is:

urn:oma:xml:rest:netapi:acrmanagement:1

The 'xsd' namespace prefix is used in the present document to refer to the XML Schema data types defined in XML Schema [XMLSchema1, XMLSchema2]. The 'common' namespace prefix is used in the present document to refer to the data types defined in [REST_NetAPI_Common]. The use of namespace prefixes such as 'xsd' is not semantically significant.
The XML schema for the data structures defined in the section below is given in [REST_SUP_ACR].
5.2.2 Structures

The subsections of this section define the data structures used in the Anonymous Customer Reference Management API.
Some of the structures can be instantiated as so-called root elements.

5.2.2.1 Type: AcrList
 This type represents a list of Anonymous Customer References.

	Element
	Type
	Optional
	Description

	acr

	Acr

[0..unbounded]
	Yes
	A list of ACRs

	resourceURL
	xsd:anyURI
	No
	Self referring URL

A root element named acrList of type AcrList is allowed in response bodies.
5.2.2.2 Type: Acr
This type represents an individual Anonymous Customer Reference and associated meta data.
	Element
	Type
	Optional
	Description

	value

	xsd:anyURI
	No
	The string comprising the ACR, as per [IETF_ACR_draft]

	acrStatus
	AcrStatus
	Yes
	Validity of the ACR

	expiry
	xsd:dateTime
	Yes
	The time at which the ACR will expire.
The expiry date can be overwritten by service provider’s policies. The actual duration of the time until an expired ACR is removed is at the discretion of the service provider.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL
The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST also be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named acr of type ACR is allowed in request and/or response bodies.

5.2.2.3 Type: Status
This type represents the status of an Anonymous Customer Reference.
	Element
	Type
	Optional
	Description

	acrStatus
	AcrStatus
	Yes
	Validity of the ACR

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL
The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST also be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named status of type Status is allowed in request and/or response bodies.

5.2.3 Enumerations

The subsections of this section define the enumerations used in the Anonymous Customer Reference Management API.
5.2.3.1 Enumeration: AcrStatus

This enumeration defines possible values to describe the status of the validity of an ACR.
	Enumeration
	Description

	Valid
	Indicates that the ACR is recognised by the server and may be used as the userId part within requests managed by that server.

	Revoked
	The ACR has been revoked by the server, and may not be used as the userId part of other requests. A new ACR must be obtained for that MSISDN/User.

	Expired
	The ACR has expired, and a request can be made to refresh it. An expired ACR will have to be refreshed (see section 6.X.Y) before it can be used as part of any other API request.

5.2.4 Values of the Link “rel” attribute
The “rel” attribute of the Link element is a free string set by the server implementation, to indicate a relationship between the current resource and an external resource. The following are possible strings (list is non-exhaustive, and can be extended):
· AcrList

· Acr
These values indicate the kind of resource that the link points to.
5.3 Sequence Diagrams
The following subsections describe the resources, methods and steps involved in typical scenarios.
5.3.1 Operations on Anonymous Customer Refernces

This figure below shows a scenario for retrieving, issuing and managing ACRs and ACR data.
The resources:

· To retrieve the issued ACR for the given end user identified by the {userId} in the context of a given App, read resource under
http://{serverRoot}/acrmanagement/{apiVersion}/{userId}/application

· To issue (create) an ACR for the user identified by the {userId}, create resource under
http://{serverRoot}/acrmanagement/{apiVersion}/{userId}//application
· To retrieve ACR data , read resource under
http://{serverRoot}/acrmanagement/{apiVersion}/{userId}//application/{ACR}
· To remove an ACR, delete resource under
http://{serverRoot}/acrmanagement/{apiVersion}/{userId}//application/{ACR}
· To retrieve the ACR status, read resource under
http://{serverRoot}/acrmanagement/{apiVersion}/{userId}//application/{ACR}/status

· To refresh an “expired” ACR (i.e. set the ACR status to “valid”), update resource under
http://{serverRoot}/acrmanagement/{apiVersion}/{userId}//application/{ACR}/status

[image: image3.emf]3. GET ACR data

ApplicationServer

1. GET issuedACR foruserId/app

Response withAcrListorerrormessage

2. POST to createan ACR

Response withAcrdataorerrormessage

Returns issued

ACR

CreateACR

foruserId

4. DELETE an ACR

Response orerrormessage

Remove

an ACR

5. GET Status of an ACR

Response withACR Status orerrormessage

Retrievesstatus

of an ACR

Response withAcrdataorerrormessage

Retrieve

ACR data

6. PUT Status “valid“

Response withactualstatusorerrormessage

Refresh the

“expired”ACR

Figure 1 Management of own service capabilities
1. An application requests the ACR for the given user using GET method and receives the already issued app-specific ACR.

2. An application requests creation of an app-specific ACR for the given user identified by the userId using POST method and receives the resulting ACR.

3. An application requests the ACR data (value, status, expiry) using GET method and receives the ACR data.

4. An application deletes (removes) an ACR with data by using DELETE method and receives response with the result of operation.

5. An application requests the status of an ACR using GET method and receives the actual status of the ACR.

6. An application refreshes an “expired” ACR (i.e. sets the ACR status to “valid”) by using PUT method and receives response with updated ACR status.
5.4

5.4.1

·
·

1.
a)
b)
2.
3.
6. Detailed specification of the resources
The following applies to all resources defined in this specification regardless of the representation format (i.e. XML, JSON, x-www-form-urlencoded):
· Reserved characters in URL variables (parts of a URL denoted below by a name in curly brackets) MUST be percent-encoded according to [RFC3986]. Note that this always applies, no matter whether the URL is used as a Request URL or inside the representation of a resource (such as in “resourceURL” and “link” elements).
· If a user identifier (e.g. address, userId, etc) of type anyURI is in the form of an MSISDN, it MUST be defined as a global number according to [RFC3966] (e.g. tel:+19585550100) and the use of characters other than digits SHOULD be avoided in order to ensure uniqueness of the resource URL. This applies regardless of whether the user identifier appears in a URL variable or in a parameter in the body of an HTTP message.
· If a user identifier (e.g. address, userId, etc) of type anyURI is in the form of an Anonymous Customer Reference (ACR), it MUST be defined according to [IETF_ACR_draft], i.e. it MUST include the protocol prefix 'acr:' followed by the ACR.
· For requests and responses that have a body, the following applies: in the requests received, the server SHALL support JSON and XML encoding of the parameters in the body, and MAY support www-form-urlencoded parameters in the body. The Server SHALL return either JSON or XML encoded parameters in the response body, according to the result of the content type negotiation as specified in [REST_NetAPI_Common]. In notifications to the Client, the server SHALL use either XML or JSON encoding, depending on which format the client has specified in the related subscription. The generation and handling of the JSON representations SHALL follow the rules for JSON encoding in HTTP Requests/Responses as specified in [REST_NetAPI_Common].
6.1 Resource: [Description of the resource]
<< Description of the resource in the title heading should match the description of the resource from the first column of the purpose table in section 5.1 >>

The resource used is:
[resource URL]

[without light-weight resources usually http://{serverRoot}/funcarea/{apiVersion}/...]
[with light-weight resources usually http://{serverRoot}/funcarea/{apiVersion}/.../[ResourceRelPath]]
This resource is used for [descriptive explanation of the resource].
If the resource is on the server side and supports creating a subscription for notifications, and if the use of Notification Channel is supported, include/adapt this paragraph, otherwise delete it. This resource can be used in conjunction with a Client-side Notification URL, or in conjunction with a Server-side Notification URL. In this latter case, the application MUST first create a Notification Channel (see [REST_NetAPI_NotificationChannel]) before creating a subscription.
Alternatively, if the resource is a notification resource to which the server provides notifications based on a previously created subscription, and if the use of Notification Channel is supported, include/adapt this paragraph and the following Note, otherwise delete them. This resource is a callback URL provided by the client for notification about Anonymous Customer Reference Management. The RESTful Anonymous Customer Reference Management API does not make any assumption about the structure of this URL. If this URL is a Client-side Notification URL, the server will POST notifications directly to it. If this URL is a Server-side Notification URL, the server uses it to determine the address of the Notification Server to which the notifications will subsequently be POSTed. The way the server determines the address of the Notification Server is out of scope of this specification.

Note: In the case when the client has set up a Notification Channel in order to use Long Polling to obtain the notifications, in order to retrieve the notifications, the client needs to use the Long Polling mechanism described in [REST_NetAPI_NotificationChannel], instead of the mechanism described below in section 6.x.y. 6.x.y to be replaced by the reference to the section that describes the actual POST method on THIS resource (e.g. in this case 6.1.5)
6.1.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: http://example.com/exampleAPI

	apiVersion
	version of the API client wants to use. The value of this variable is defined in section 5.1

	[ResourceRelPath]
	Relative resource path for a light-weight resource, consisting of a relative path down to an element in the data structure. For more information about the applicable values (strings) for this variable see [section number entitled “Light-weight relative resource paths” applicable for the current resource]. [This row is only present in case the resource has light-weight child resources]

	<< Add/Remove rows to this table as needed - DELETE This Row>>

See section 5 for a statement on the escaping of reserved characters in URL variables.
<< Light-weight resource relative paths. This subsection is only applicable if the resource allows accessing individual sub-trees in the data structure using the light-weight resource mechanism (i.e. [ResourceRelPath is part of the resourceURL]>>
6.1.1.1 Light-weight relative resource paths

The following table describes the types of light-weight resources that can be accessed by using this resource, applicable methods, and links to data structures that contain values (strings) for those relative resource paths.

	Light-weight resource type
	Method supported
	Description

	[Description of the type]

	[list of HTTP methods, POST not allowed]
	[Description and reference to the allowed values]

	<< Example - DELETE This Row>>

	Person attributes
	GET, PUT, DELETE
	Enables access to a single presence attribute related to a person.

See data structure 5.2.2.4 for possible values for the light-weight relative resource path.

6.1.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].
For Policy Exception and Service Exception fault codes applicable to [Functional Area], see [BASELINE_REF].
<< Note that the second sentence is applicable if there is Parlay X legacy, but may be adopted if there are exceptions coming from other underlying systems. In case there are no error handling mechanisms / exceptions from underlying systems, the second sentence can be omitted..>>

6.1.3 GET
<< This is a blueprint for GET in case it is not a valid operation>>

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: [PUT/POST/DELETE]’ field in the response as per section 14.7 of [RFC 2616].

<< This is a blueprint for GET in case it is a valid operation>>

This operation is used for [description of operation].

<< The following table is optional and is used only if query parameters are supported in request URL for GET, otherwise it needs to be deleted >>

Supported parameters in the query string of the Request URL are:

	Name
	Type/Values
	Optional
	Description

	[Parameter name]
	[Type/Values]
	[Yes/No]
	[Parameter description]

	<< Add/Remove rows to this table as needed - DELETE This Row>>

When using query parameters the following conventions apply: >>

· Query parameters are appended to the resource URL starting with a question mark “?” character and then followed by query parameter name – value pairs.

· Multiple query parameter name-value pairs are separated by an ampersand "&" character. Example: ?par1=par1Val&par2=par2Val&..

· Multiple values for the same query parameters are specified as a list of name-value pairs using the same name, separated by an ampersand “&” character. Example: ?par1=par1Val1&par1=par1Val2&...

6.1.3.1 Example 1: [Example title]
(Informative)
<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove the sequence number from the title heading >>

<< Prior to Candidate approval, a TS with XML examples MUST be submitted to the OMA XML validation service for validation of the examples: http://www.openmobilealliance.org/xml/. It is RECOMMENDED to do the same prior to or as part of CONR.
The examples must use real-world values. See document OMA-ARC-REST-2010-0675R01

The following conventions apply:

· {serverRoot} http://example.com/exampleAPI also to be updated in the tables where {serverRoot} is defined in section 6.x.

· {version} In our case this is v1 matching the TS version.

· {userId} E-mail names: mailto:alice@example.com mailto:bob@example.com or phone numbers: tel:+1-555-555-0100 to tel:+1-555-555-0199. In fact, only 555-0100 through 555-0199 are now specifically reserved for fictional use, with the other numbers having been released for actual assignment.

· {deviceAddress}, {senderAddress} Typically a phone number

· {equipmentId} Typically a manufacturer type name or serial number

· {memberListId} Typically a group name, “friend”, “list123”

· {contactId} Typically a person’s name, “bob”

· {memberId} Typically a phone number or e-mail address or SIP URI

· {subscriptionId} Typically a number or a sequence of digits and letters, “sub123”

· {messageId} Typically a number or a sequence of digits and letters, “msg123”

· {interactionId} Typically a number or a sequence of digits and letters, “int123”

· {registrationId} Typically a number or a sequence of digits and letters, “reg123”

· {requestId} Typically a number or a sequence of digits and letters, “req123”

· {ruleId} Typically a number or a sequence of digits and letters, “rule123”>>

6.1.3.1.1 Request

	[HTTP headers]
[XML request (if applicable), starting with <?xml]

6.1.3.1.2 Response

	[HTTP headers]
[XML response (if applicable), starting with <?xml]

6.1.3.2 Example 2: [Example title]
(Informative)
<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove this section >>

6.1.3.2.1 Request

	[HTTP headers]
[XML request (if applicable), starting with <?xml]

6.1.3.2.2 Response

	[HTTP headers]
[XML response (if applicable), starting with <?xml]

6.1.4 PUT

<< This is a blueprint for PUT in case it is not a valid operation>>

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: [GET/POST/DELETE]’ field in the response as per section 14.7 of [RFC 2616].
<< This is a blueprint for PUT in case it is a valid operation>>

This operation is used for [description of operation].

6.1.4.1 Example 1: [Example title]
(Informative)
<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove the sequence number from the title heading >>

6.1.4.1.1 Request

	[HTTP headers]
[XML request (if applicable), starting with <?xml]

6.1.4.1.2 Response

	[HTTP headers]
[XML response (if applicable), starting with <?xml]

6.1.4.2 Example 2: [Example title]
(Informative)
<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove this section >>

6.1.4.2.1 Request

	[HTTP headers]
[XML request (if applicable), starting with <?xml]

6.1.4.2.2 Response

	[HTTP headers]
[XML response (if applicable), starting with <?xml]

6.1.5 POST
<< This is a blueprint for POST in case it is not a valid operation>>

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: [GET/PUT/DELETE]’ field in the response as per section 14.7 of [RFC 2616].

<< This is a blueprint for POST in case it is a valid operation>>

This operation is used for [description of operation].
If the resource is on the server side and it supports creating a subscription for notifications, and if the use of Notification Channel is supported, include/adapt this paragraph, otherwise delete it. The notifyURL in the callbackReference either contains the Client-side Notification URL (as defined by the client) or the Server-side Notification URL (as obtained during the creation of the Notification Channel [REST_NetAPI_NotificationChannel]).
6.1.5.1 Example 1: [Example title]
(Informative)
<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove the sequence number from the title heading >>

6.1.5.1.1 Request

	[HTTP headers]
[XML request (if applicable, starting with <?xml]

6.1.5.1.2 Response

	[HTTP headers]
[XML response (if applicable, starting with <?xml]

6.1.5.2 Example 2: [Example title]
(Informative)
<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove this section >>

6.1.5.2.1 Request

	[HTTP headers]
[XML request (if applicable, starting with <?xml]

6.1.5.2.2 Response

	[HTTP headers]
[XML response (if applicable, starting with <?xml]

6.1.6 DELETE

<< This is a blueprint for DELETE in case it is not a valid operation>>

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: [GET/PUT/POST]’ field in the response as per section 14.7 of [RFC 2616].
<< This is a blueprint for DELETE in case it is a valid operation>>

This operation is used for [description of operation].

6.1.6.1 Example 1: [Example title]
(Informative)
<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove the sequence number from the title heading >>

6.1.6.1.1 Request

	[HTTP headers]
[XML request (if applicable, starting with <?xml]

6.1.6.1.2 Response

	[HTTP headers]
[XML response (if applicable, starting with <?xml]

6.1.6.2 Example 2: [Example title]
(Informative)
<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove this section >>

6.1.6.2.1 Request

	[HTTP headers]
[XML request (if applicable, starting with <?xml]

6.1.6.2.2 Response

	[HTTP headers]
[XML response (if applicable, starting with <?xml]

7. Fault definitions

7.1 Service Exceptions

For common Service Exceptions refer to [REST_NetAPI_Common].
The additional Service Exception codes defined for the RESTful Anonymous Customer Reference Management API are TBD.
7.2 Policy Exceptions

For common Policy Exceptions refer to [REST_NetAPI_Common].
The additional Policy Exception codes defined for the RESTful Anonymous Customer Reference Management API ate TBD.
Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No previous version within OMA

A.2 Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Version:

REST_NetAPI_ACR-V1_0
	13 Mar 2012
	all
	Initial baseline. Incorporates input to committee:

OMA-ARC-2012-0060-INP_BaselineREST_NetAPI_ACR_TS

	
	17 Jul 2012
	5., 7.
	Incorporated:

OMA-ARC-REST-ACR-2012-0004-CR_TS_section5_section7

	
	24 Sep 2012
	5.1, 5.2
	Incorporated:

OMA-ARC-REST-ACR-2012-0008R01-CR_resource_summary_section
OMA-ARC-REST-ACR-2012-0009R02-CR_Data_types_section

	
	8 Oct 2012
	5.3
	Incorporated:

OMA-ARC-REST-ACR-2012-0010R01-CR_Sequence_flows

Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].

B.1 SCR for REST.ACR Server

	Item
	Function
	Reference
	Requirement

	REST-ACR-SUPPORT-S-001-M
	Support for the RESTful Anonymous Customer Reference Management API
	[section(s)]
	

	REST-ACR-SUPPORT-S-002-M
	Support for the XML request & response format
	[section(s)]
	

	REST-ACR-SUPPORT-S-003-M
	Support for the JSON request & response format
	[section(s)]
	

	REST-ACR-SUPPORT-S-004-O
	Support for the application/form-urlencoded format
	[section(s)]
	

B.1.1 SCR for REST.FUNCAREA.FUNCTION Server
	Item
	Function
	Reference
	Requirement

	
	
	
	

	
	
	
	

<<

If an Item is MANDATORY (-M) it has no requirement.

If an Item is OPTIONAL (-O), but other OPTIONAL items are conditional on that first item i.e. MUST be implemented if the first item is implemented, then the conditional items are listed in the Requirements column of the first item, linked by “AND”

Example: optional resource with conditional GET and DELETE operations
	REST-CN-SUBSCR-INDCALLDIR-S-001-O
	Support for access to an individual subscription to call direction notifications
	5.8
	REST-CN-SUBSCR-INDCALLDIR-S-002-O
AND
REST-CN-SUBSCR-INDCALLDIR-S-003-O

	REST-CN-SUBSCR-INDCALLDIR-S-002-O
	Retrieving an individual subscription to call direction notifications – GET
	5.8.3
	

	REST-CN-SUBSCR-INDCALLDIR-S-003-O
	Deleting an individual subscription to call direction notifications – DELETE
	5.8.6
	

>>

Appendix C. Application/x-www-form-urlencoded Request Format for POST Operations
(Normative)
<< Some APIs do support form-url-encoded parameters, some don’t. Pick the right text block. >>

<< The text below is a blueprint of Appendix C for no support of url-encoding. >>

In most OMA RESTful Network API specifications, Appendix C defines a format for API requests where the body of the request is encoded using the application/x-www-form-urlencoded MIME type.

In this particular specification, Appendix C has been intentionally left empty.

Note: The use case for x-www-form-urlencoded parameters is the submission of the parameters directly to the REST resource from an HTML form in a web browser. The web browser submits forms using the POST method. Therefore, this section only applies to the POST method. As there are no POST methods defined in this specification, there are no x-www-form-urlencoded parameters to specify.

<< The text below is a blueprint of Appendix C for support of url-encoding. >>

This section defines a format for the RESTful Anonymous Customer Reference Management API requests where the body of the request is encoded using the application/x-www-form-urlencoded MIME type.

Note: only the request body is encoded as application/x-www-form-urlencoded, the response is still encoded as XML or JSON depending on the preference of the client and the capabilities of the server. Names and values MUST follow the application/x-www-formurlencoded character escaping rules from [W3C-URLENC].
The encoding is defined below for the following Anonymous Customer Reference Management REST operations which are based on POST requests:
<< List the operations for which url-encoded is supported. For those TSs where ALL the POST operations are described in the Appendix C, it is left to the editor to use either the sentence above, followed by a list operations, or alternatively use the sentence: “The encoding is defined for all [Functional Area] REST operations which are based on POST requests.” , in which case the list of operations can be omitted in this section.
Note that the parameters are all of simple types. In case a parameter is of complex type in the original XML data structure, the structure needs to be “flattened” >>
C.1 [Operation]
This operation is used for [description of operation], see section 6.z.w. . 6.z.w to be replaced by the reference to section where the equivalent method is defined in section 6 (e.g. 6.1.5).
If the resource supports creating a subscription for notifications (i.e. includes a notifyURL parameter), and if the use of Notification Channel is supported, include/adapt this paragraph, otherwise delete it. The notifyURL either contains the Client-side Notification URL (as defined by the client) or the Server-side Notification URL (as obtained during the creation of the Notification Channel [REST_NetAPI_NotificationChannel]).
The request parameters are as follows:

	Name
	Type/Values
	Optional
	Description

	[Parameter name]
	[Type and cardinality or allowed values for that parameter]
	[Yes/No]
	[Parameter description]

	<< Example - DELETE this and next Row>>

	address
	xsd:anyURI [1…unbounded]
	No
	Destination address(es) for the message

	<< Add/Remove rows to this table as needed - DELETE This Row>>

C.1.1 Example

(Informative)

C.1.1.1 Request

	[HTTP headers]
[url-encoded request]

C.1.1.2 Response

	[HTTP headers]
[xml response]

Appendix D. JSON examples
(Informative)

JSON (JavaScript Object Notation) is a light-weight, text-based, language-independent data interchange format. It provides a simple means to represent basic name-value pairs, arrays and objects. JSON is relatively trivial to parse and evaluate using standard JavaScript libraries, and hence is suited for REST invocations from browsers or other processors with JavaScript engines. Further information on JSON can be found at [RFC 4627].

The following examples show the request and response for various operations using the JSON data format. The examples follow the XML to JSON serialization rules in [REST_NetAPI_Common]. A JSON response can be obtained by using the content type negotiation mechanism specified in [REST_NetAPI_Common].

For full details on the operations themselves please refer to the section number indicated.

D.1 [Example Title] (section [section number cross reference])
<< Example title should be copied from title heading of the section with the corresponding XML example. And that section number should be added in brackets to the end of the example title >>

Request:
	[HTTP headers copied from referenced example, type specific signalling updated for JSON]
[JSON example generated from the equivalent XML example using the JSON2XML utility]

Response:

	[HTTP headers copied from referenced example, type specific signalling updated for JSON]
[JSON example generated from the equivalent XML example using the JSON2XML utility]

Appendix E. Operations mapping to a pre-existing baseline specification
(Informative)
As this specification does not have a baseline specification, this appendix is empty.
Appendix F. Light-weight resources for Anonymous Customer Reference Management
(Informative)

<< This appendix lists light-weight resources defined in this specification. Delete this comment>>

<<If there are no light-weight resource in the spec, the following wording is used. Delete this comment.>>

As this version of the specification does not define any light-weight resources, this Appendix is empty.
<<If there are no light-weight resource in the spec, the following wording is used. Delete this comment.>>

The following table lists all Anonymous Customer Reference Management data structure elements that can be accessed individually as light-weight resources.
For each light-weight resource, the following information is provided: corresponding root element name, root element type and [ResourceRelPath] string.

	Type of light-weight resources (and references to data structures)
	Element/attribute
that can be accessed as light-weight resource
	Root element name for the light-weight resource
	Root element type for the light-weight resource
	[ResourceRelPath] string that needs to be appended to the corresponding heavy-weight resource URL

	[Resource Type]
([section ref])
	[child element name]
	[root element name]
	[root element type]
	[ResourceRelPath]

	
	[child element name]
	[root element name]
	[root element type]
	[ResourceRelPath]

	<< Example below - DELETE this and following Row>>

	Presence data

(5.2.3)
	person
	person
	PersonAttributes
	person

	
	service
	service
	ServiceAttributes
	service/{serviceId}/{version}

	
	device
	device
	DeviceAttributes
	device/{deviceId}

<<If [ResourceRelPath] strings in the above table include variables in curly brackets “{}” then the following paragraph shall be included also; otherwise it should be deleted. Delete this comment >>

Note: When appending [ResourceRelPath] string to its heavy-weight resource URL, all variables within curly brackets “{}” such as: [list of variable names from ResourceRelPath strings] have to be replaced by their real values
Appendix G. Authorization aspects
(Normative)

<< This appendix lists authorization aspects specific of the particular API, such as OAuth scope values. It is mandatory but may be empty (“None specified in this version of the specification”) >>

This appendix specifies how to use the RESTful Anonymous Customer Reference Management API in combination with some authorization frameworks.

G.1 Use with OMA Authorization Framework for Network APIs
The RESTful Anonymous Customer Reference Management API MAY support the authorization framework defined in [Autho4API_10].

A RESTful Anonymous Customer Reference Management API supporting [Autho4API_10]:

· SHALL conform to section D.1 of [REST_NetAPI_Common];

· SHALL conform to this section G.1.

G.1.1 Scope values

G.1.1.1 Definitions

In compliance with [Autho4API_10], an authorization server serving clients requests for getting authorized access to the resources exposed by the RESTful Anonymous Customer Reference Management API:

· SHALL support the scope values defined in the table below;

· MAY support scope values not defined in this specification.

	Scope value
	Description
	For one-time access token

	oma_rest_acrm.all_{apiVersion}
	Provide access to all defined operations on the resources in this version of the API. The {apiVersion} part of this identifier SHALL have the same value as the “apiVersion” URL variable which is defined in section 5.1. This scope value is the union of the other scope values listed in next rows of this table.
	No

	oma_rest_acrm
	Provide access to all operations defined for using
	No

Table 1: Scope values for RESTful Anonymous Customer Reference Management API

G.1.1.2 Downscoping

In the case where the client requests authorization for “oma_rest_acrm.all_{apiVersion}” scope, the authorization server and/or resource owner MAY restrict the granted scope to some of the following scope values:

· “oma_rest_acrm
G.1.1.3 Mapping with resources and methods

Tables in this section specify how the scope values defined in section G.1.1.1for the RESTful Anonymous Customer Reference Management API map to the REST resources and methods of this API. In these tables, the root “oma_rest_acrm.” of scope values is omitted for readability reasons.

	Resource
	URL
Base URL: http://{serverRoot}/acrm/{apiVersion}
	Section refe-rence
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	
	
	6.1
	all_{apiVersion}
	n/a
	all_{apiVersion}
	n/a

	
	
	6.2
	all_{apiVersion}
	n/a
	n/a
	all_{apiVersion}

Table 2: Required scope values for: Management of Anonymous Customer Reference
	Resource
	URL
< specified by the server >
	Section refe-rence
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	
	
	6.3
	n/a
	n/a
	all_{apiVersion}
	n/a

Table 3: Required scope values for: Querying Anonymous Customer Reference
G.1.2 Use of ‘acr:Authorization’
This section specifies the use of ‘acr:Authorization’ in place of an end user identifier in a resource URL path.

An ‘acr’ URI of the form ‘acr:Authorization’, where ‘Authorization’ is a reserved keyword MAY be used to avoid exposing a real end user identifier in the resource URL path.

A client MAY use ‘acr:Authorization’ in a resource URL in place of the{userId} resource URL variable in the resource URL path, when the RESTful Anonymous Customer Reference Management API is used in combination with [Autho4API_10].
In the case the RESTful Anonymous Customer Reference Management API supports [Autho4API_10], the server:

· SHALL accept ‘acr:Authorization’ as a valid value for the resource URL variable {userId}.
SHALL conform to [REST_Common_TS] section 5.8.1.1 regarding the processing of ‘acr:Authorization’

(2012 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-RESTNetAPI-20120101-I]
(2012 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec_RESTNetAPI-20120101-I]

_1410008835.ppt

//{serverRoot}/acrmanagement/{apiVersion}/{userId}

/application

/{ACR}

/status

_1410600529.ppt

3. GET ACR data

Application

Server

1. GET issued ACR for userId/app

Response with AcrList or error message

2. POST to create an ACR

Response with Acr data or error message

Returns issued

ACR

Create ACR

for userId

4. DELETE an ACR

Response or error message

Remove

an ACR

5. GET Status of an ACR

Response with ACR Status or error message

Retrieves status

of an ACR

Response with Acr data or error message

Retrieve

ACR data

6. PUT Status “valid“

Response with actual status or error message

Refresh the

“expired” ACR

_1357634611/example-flow.zip

example-flow.ppt

3. Remove a call participant (including

resourceURL with participantId) from the session

Application

Server

1. POST CallSessionInformation

Response with created call session

resource incl. callSessionId

2. POST CallParticipantInformation to

resourceURL of new call session

Response with information about added call

Participant incl. resourceURL with participantId

Create a new call

session

Add participant to

session

4. GET participant list for callSessionId

Response with information about each

participant incl. their status

Fetch participants

5. Terminate the call session

Response or error message

Terminate call

session

Request removal

of participant

Response whether removal was successful

Delete participant

from session

