Doc# OMA-ARC-REST-NetAPI-2013-0070R01-CR_Multiple_WebSocket_requests.doc[image: image1.jpg]
Change Request

Doc# OMA-ARC-REST-NetAPI-2013-0070R01-CR_Multiple_WebSocket_requests.doc
Change Request

Change Request

	Title:
	Multiple WebSocket requests
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	ARC

	Doc to Change:
	OMA-TS-REST_NetAPI_NotificationChannel-V1.0_20130927-D

	Submission Date:
	20 Nov 2013

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Editorial

	Source:
	Keith Wansbrough, Metaswitch, Keith.Wansbrough@metaswitch.com

	Replaces:
	CR70

1 Reason for Change

In Bangkok, ARC discussed the correct behaviour in the case that there are multiple simultaneous connections to a single channel URL. Whereas for Long Polling this may make sense (see CR69), it was agreed that for WebSockets it made no sense.

This CR clarifies this position by explicitly forbidding multiple simultaneous WebSocket connections to a single channel URL.

This change is limited to two areas. It removes the relevant FFS, and adds text to the Section 5 section discussing WebSocket.

If these changes are not accepted, the notification channel spec will remain ambiguous as to how multiple WebSocket connections to a single channel URL should be handled.
R01 contains changes made online in Las Vegas to add a Policy Exception.
2 Impact on Backward Compatibility

None.
3 Impact on Other Specifications

None.
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

The ARC group is recommended to accept the proposed changes to the NMS TS.
6 Detailed Change Proposal

Change 1: Add restriction to WebSockets behaviour summary.
5.
Notification Channel API definition

This section is organized to support a comprehensive understanding of the Notification Channel API design. It specifies the definition of all resources, definition of all data structures, and definitions of all operations permitted on the specified resources.
This specification introduces methods for a client (e.g. a browser or a native application) to receive asynchronous notifications from a Notification Server about the events the client has subscribed to with one or more Enabler servers. The notification delivery methods specified in this document fall into two groups: Pull and Push methods. For Pull, the notification delivery method specified is based on HTTP requests and often referred as “HTTP Long Polling” [RFC6202]. For Push, two notification delivery methods are defined: WebSockets [RFC6455] and OMA Push [PUSH_ARCH]. For OMA Push delivery, this specification assumes the Notification Server, as a Push Initiator, knows how to interact with PPG using Push Access Protocol (PAP) [OMA PUSH] and as such not in the scope of this document.

For all notification delivery methods, as notifications are conveyed through a Notification Channel, the channel must be created first before any further interaction can be invoked, such as a Long Polling request invoked by the client, or an asynchronous event-push initiated by the channel onto PPG for OMA Push.
A single Notification Channel may handle notifications from several Enabler servers. Note that the client subscriptions to notifications are specific for each Enabler server and they are not in the scope of this specification.
The following applies selectively to the different types of notification channels.

1) Long Polling:
In response to a channel creation request containing channelType = LongPolling, the Notification Server will provide two URLs: callback URL and channel URL. The client uses callback URL as the notification endpoint when subscribing to notifications from the Enabler server(s). Thus, each Enabler server will send subsequent notifications using this callback URL referring to the Notification Server. The channel URL is used to retrieve notifications from the Notification Server using the HTTP Long Polling mechanism. When the Notification Server receives a notification from an Enabler server, it possibly groups multiple notifications prior to delivery, and conveys the notification(s) to the client with the response to the pending HTTP Long Polling request.

 A Notification Channel has certain time-to-live and therefore in order to continue using it, the channel has to be maintained (”refreshed”) by the client. For the Long Polling delivery method, the channel is refreshed implicitly: With each Long Polling request, the Notification Server will reset the channel life time to its original value.

2) OMA Push:

In response to a channel creation request containing channelType = OMAPush, the Notification Server will only provide a callback URL. That is, for the OMA Push notification delivery method, the notification server does not provide a channel URL as the client application is expected to asynchronously receive notifications via the OMA Push enabler [OMA_PUSH]. As explained earlier above, the client application would use the callback URL as notification endpoint when subscribing to notifications from the Enabler server(s).
Additionally, the request for a channel creation of type OMA Push may contain a unique application Id (appId) which is required by the OMA Push infrastructure [OMA_PUSH] to direct the asynchronous push messages to a particular client application on the device. However, if the application Id is not present in the channel creation request, it is assumed that the Notification Sever has other means of retrieving the application Id (e.g. through the usage of the available OAuth token in the Notification Channel creation request).

When the Notification Server receives a notification from an Enabler server, it possibly groups multiple notifications prior to delivery, and conveys the notification(s) to the client via the PPG.
A Notification Channel has certain time-to-live and therefore in order to continue using it, the channel has to be maintained (”refreshed”) by the client. For this purpose, a resource is provided that the application can use to explicitly refresh the channel.

3) WebSockets:
In response to a channel creation request containing channelType = WebSockets, the Notification Server will provide a callback URL and a channel URL. The client uses the callback URL as notification endpoint when subscribing to notifications from the Enabler server(s). Thus, each Enabler server will send subsequent notifications using this callback URL referring to the Notification Server. The channel URL is used to establish a WebSockets connection to receive notifications from the Notification Server, whereas the transmission of a (set of) notification(s) is initiated by the Notification Server.
At most one simultaneous WebSockets connection to the channel URL is allowed. If the Notification Server receives a request to establish a WebSockets connection on a particular channel URL when a connection on this channel URL already exists, the request MUST be rejected with HTTP error 409 Conflict and a POL1030 exception.
When the Notification Server receives a notification from an Enabler server, it possibly groups multiple notifications prior to delivery, and conveys the notification(s) to the client in the server-to-client leg of the bidirectional WebSockets connection. The client-to-server leg of the connection is currently unused.

A Notification Channel has certain time-to-live and therefore in order to continue using it, the channel has to be maintained (”refreshed”) by the client. For this purpose, a resource is provided that the application can use to explicitly refresh the channel.
It should be noted that in order not to disclose underlying network topology, the Notification Server usually sends to the client a mapped version of the real callback URL. Later, when the Enabler server receives such mapped callback URL, it will apply de-mapping of the URL before it can be used. How this mapping and de-mapping is performed on the server is out of scope for this specification.

Change 2: Remove FFS.
6.1.5.5. Example: Attempt to create Notification Channel of unsupported type
(Informative)
Request

	POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels HTTP/1.1
Host: example.com

Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<nc:notificationChannel xmlns:nc="urn:oma:xml:rest:netapi:notificationchannel:1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <clientCorrelator>123</clientCorrelator>

 <applicationTag>myApp</applicationTag>

 <channelType>LongPolling</channelType>

 <channelData xsi:type="nc:LongPollingData">

 <maxNotifications>1</maxNotifications>

 </channelData>
<channelLifetime>7200</channelLifetime>
</nc:notificationChannel>

Response

	HTTP/1.1 400 Bad Request
Date: Thu, 28 Jun 2013 02:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<common:requestError xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <serviceException>

 <messageId>POL1023</messageId>

 <text>Notification channel type %1 not supported. Supported types: %2.</text>

 <variables>LongPolling</variables>

 <variables>OMAPush, WebSockets</variables>

 </serviceException>

</common:requestError>

Change 3: Add exception

7.2.x POL1030: Multiple connections not allowed
	Name

	Description

	MessageID
	POL1030

	Text
	Multiple connections to the same Notification Channel not allowed

	Variables
	none

	HTTP status code(s)
	409 Conflict , 403 Forbidden

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2013 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 4)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20130101-I]

© 2013 Open Mobile Alliance Ltd. All Rights Reserved.
Page 4 (of 4)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20130101-I]

