OMA-AD-Policy_Evaluation_Enforcement_Management-V1_0-20051026-D
Page 30 V(32)

	[image: image1.jpg]«“+OMa

Open Mobile Alliance

	

	Policy Evaluation, Enforcement and Management Architecture

	Draft Version 1.0 – 25 Oct 2005

	Open Mobile Alliance

	OMA-AD-Policy_Evaluation_Enforcement_Management-V1_0-20051026-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

51.
Scope (Informative)

62.
References

62.1
Normative References

62.2
Informative References

83.
Terminology and Conventions

83.1
Conventions

83.2
Definitions

83.3
Abbreviations

94.
Introduction (Informative)

94.1
Planned Phases

94.2
Security Considerations

105.
Architectural Model

105.1
Dependencies

105.2
Architectural Diagram

115.3
Functional Components and Interfaces

125.3.1
PEEM (Policy Evaluation, Execution and Management component)

135.3.2
PEM-1 (PEEM specified callable interface)

135.3.3
PEM-2 (PEEM specified management interface)

135.3.4
Proxy Interface

135.3.5
Interface to other resources

135.3.6
I1 (PEEM supported lifecycle management interface)

135.3.7
Bindings required by other resources

145.4
Flows

145.5
Policy Expression Language

145.5.1
PEEM Policy information model

155.5.2
Properties of an appropriate policy expression language

165.6
Mapping IETF PEP-PDP model to the PEEM model (informative)

165.6.1
Essence of the PEP/PDP behavior

175.6.2
Recap of PEEM model

195.6.3
Support for PEP/PDP behaviors: Impacts on PEEM model

205.6.4
Mapping IETF PEP-PDP model to PEEM architecture

22Appendix A.
Change History (Informative)

22A.1
Approved Version History

22A.2
Draft/Candidate Version <current version> History

24Appendix B.
Related technologies for policy expression languages (Informative)

25Appendix C.
Policy Expression Languages and other relevant specifications to be considered when selecting a PEEM policy expression language (Informative)

26Appendix D.
Source material for consideration for PEM-2 interface specification

26D.1
PEM-2 candidate X

26D.2
PEM-2 candidate Y

27Appendix E.
Informative detail

27E.1
PEEM decomposition choices

29E.2
Functional components and interfaces

29E.2.1
PEX (Policy Evaluation and Execution component)

30E.2.2
PEX (Policy Evaluation and Execution component) with decomposition

30E.2.3
PM (Policy Management)

31Appendix F.
Assessment of OMA enabler’s policy language needs

31F.1
PoC User Access Policies

31F.1.1
Properties of PoC User Access Policies

31F.1.2
PoC Condition elements

31F.1.3
PoC Action elements

31F.2
PAG Authorization Policies

31F.2.1
Properties of Presence Authorization policies

32F.2.2
Types of Presence Authorization policies

32F.3
Common Denominator of the OMA enabler’s policy needs

Figures

11Figure 1. PEEM Enabler architecture

14Figure 2. An Example of a graph that describes the topology of a policy (composed of multiple policy rules).

15Figure 3. Example of evaluation only policy

16Figure 4. Essence of PEP/PDP behaviour at RunTime

17Figure 5. PEEM support for PEP/PDP behaviour - Scenario A

18Figure 6. PEEM support for PEP/PDP behaviour - Scenario B

19Figure 7. Different deployment options exist on the PEP side

21Figure 8. Callable PEEM for evaluation only: PEP-PDP model when only the PDP is incorporated in PEEM

27Figure 9. PEEM Enabler architecture

28Figure 10. PEEM Evaluation and Execution (PEX) illustrated as two logical components, PEEM Evaluation (PV) and PEEM Execution (PX)

28Figure 11. PEEM Enabler – relevant interfaces and components, when the PEEM Enabler performs Evaluation only

Tables

20Table 1. IETF definitions

1. Scope
(Informative)

2. References

2.1 Normative References

	[OSE-TS]
	“OMA Service Environment”, Open Mobile Alliance, OMA-TS-Service-Environment-V1_0_1,
URL: http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997,
URL: http://www.ietf.org/rfc/rfc2119.txt

	[PEEM-RD]
	“Policy Evaluation, Enforcement and Management Requirements”, Open Mobile Alliance, OMA-RD_Policy_Evaluation_Enforcement_Management-V1_0,
URL: http://www.openmobilealliance.org/

2.2 Informative References

	[ARCH-PRINC]
	“OMA Architecture Principles”, <doc ref>, URL:http://www.openmobilealliance.org/

	[ARCH-REVIEW]
	“OMA Architecture Review Process”, <doc ref>, URL:http://www.openmobilealliance.org/

	[OMA-DICT]
	“OMA Dictionary”, <doc ref>,URL:http://www.openmobilealliance.org/

	[RFC 2753]
	“A Framework for Policy-based Admission Control”, R. Yavatkar et al, January 2000, URL: http://www.ietf.org/rfc/rfc2753.txt

	[RFC 3060]
	“Policy Core Information Model -- Version 1 Specification”, B. Moore et al, February 2001, URL: http://www.ietf.org/rfc/rfc3060.txt

	[RFC 3198]
	“Terminology for Policy-Based Management”, A. Westerinen et al, November 2001, URL: http://www.ietf.org/rfc/rfc3198.txt

	[RFC 3460].
	“Policy Core Information Model (PCIM) Extensions”, B. Moore, Ed., January 2003, URL: http://www.ietf.org/rfc/rfc3460.txt

	[BPEL].
	“Business Process Expression Language”, OASIS,
URL: http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel

	[XACML].
	“XACML - eXtensible Access Control Markup Language”, OASIS,
URL: http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml

	[PoC_XDM-V1_0 TS]
	“PoC XDM Specification”, Open Mobile Alliance, OMA-TS-PoC_XDM-V1_0,
URL: http://www.openmobilealliance.org/

	[3GPP TS 22.071]
	“Location Services (LCS); Service description; Stage 1 (Release 7)”,
URL: http://www.3gpp.org/ftp/Specs/latest/Rel-7/22_series/22071-720.zip

	[3GPP TS 23.125]
	“Overall high level functionality and architecture impacts of flow based charging; Stage 2 (Release 6)”,
URL: http://www.3gpp.org/ftp/Specs/archive/23_series/23.125/23125-650.zip

	[simple-presence-rules]
	“Presence Authorization Rules”, J. Rosenberg, June 2005,
URL: http://www.jdrosen.net/papers/draft-ieft-simple-presence-rules-03.txt

	[geopriv-common-policy]
	“A Document Format for Expressing Privacy Preferences”, M. Isomaki and E. Leppanen, October 2004,
URL: http://www.ietf.org/internet-drafts/draft-ietf-geopriv-common-policy-05.txt

	[XDM Core 1.0 TS]
	“XML Document Management (XDM) Specification”, Open Mobile Alliance, OMA-TS-XDM_Core-V1_0, URL:http://www.openmobilealliance.org/

	[XDM Shared 1.0 TS]
	“Shared XDM Specification”, Open Mobile Alliance, OMA-TS-XDM_Shared-V1_0, URL:http://www.openmobilealliance.org/

	[SIMPLE XCAP]
	“The Extensible Markup Language (XML) Configuration Access Protocol (XCAP)”, J. Rosenberg, June 2005,
URL: http://www.ietf.org/internet-drafts/draft-ietf-simple-xcap-07.txt

	[Presence_SIMPLE-V1_0 TS]
	“Presence XDM Specification”, Open Mobile Alliance, OMA-TS-Presence_SIMPLE-V1_0,
URL: http://www.openmobilealliance.org/

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

<<The Architecture Document is assumed to contain normative material and is expected to use the previous two paragraphs, if not (is it really an AD?), replace it with the following paragraph. DELETE THIS COMMENT >>

This is an informative document, which is not intended to provide testable requirements to implementations.

<<If needed, describe or declare using appropriate normative references the additional conventions that are used. DELETE THIS COMMENT >>

3.2 Definitions

	Interface
	See [OMA-DICT].

	Delegate
	A delegate is a designated resource that performs specified tasks or functions on behalf of (one or more) other resources. To delegate is to designate a resource to perform specified tasks or functions on behalf of (one or more) other resources.

	Policy
	An ordered combination of policy rules that defines how to administer, manage, and control access to resources, [Derived from [RFC 3060], [RFC 3198] and [RFC 3460]].

	Policy Action
	Action (e.g. invocation of a function, script, code, workflow, …) that is associated to a policy condition in a policy rule and that is executed when its associated policy condition results in "true" from the policy evaluation step.

	Policy Condition
	A condition is a Boolean predicate that yields true or false. It may be “complex”.

	Policy Enforcement
	The processes of policy evaluation and policy execution.

	Policy Evaluation
	Determination of whether the policy rules results in “true”

	Policy Execution
	Execution of the action associated to the policy condition selected by policy evaluation

	Policy Expression
	The process of representing a policy

	Policy Management
	The act of describing, creating, updating, deleting, provisioning and viewing policies. A meta-model or representation scheme may be used in this activity.

	Policy Rule
	A combination of a condition and an action to be performed if the condition is true

	Request
	An articulation of the need to access a resource (e.g. asynchronous events).

	Requestor
	Any entity that issues a request to a resource.

	Resource
	Any component, enabler, function or application that can receive and process requests.

3.3 Abbreviations

	OMA
	Open Mobile Alliance

	PEEM
	Policy Evaluation, Enforcement and Management

4. Introduction
(Informative)

<< Describe the high level architecture in greater detail than provided in section 1. From a market perspective, this section should answer the following questions (in prose):

What is the purpose of this architecture?

What problems does this architecture solve?

DELETE THIS COMMENT >>

4.1 Planned Phases

<< Specify where this architecture is within the projected phases (e.g. phase 1.0, phase 2.0, etc.). If the current phase is greater than phase 1.0, briefly describe how this version of the architecture differs from the previous version. It may be appropriate to include a separate sub-section for the various phases.

If no additional phases are planned beyond this architecture then state so.

DELETE THIS COMMENT >>

4.2 Security Considerations

<<Describe possible security considerations that may arise due to the architecture proposed. Particularly please consider the following issues:

Does the AD introduce any functionality that may require a review by the Security Group?

Does the AD define or make use of any security features? (e.g. Authentication, Encryption, etc). If so please list potential security threats that lead to the introduction of these security features. Please reference the relevant security sections

Is any security functionality needed by the enabler and considered outside the scope of the AD? If this is the case please state in this section.

DELETE THIS COMMENT >>

5. Architectural Model

<< This section defines the enabler’s architectural model. The model identifies: a) all internal functional components of this enabler, and b) all of the communication relationships between the components of this enabler and with other enablers and applications (including those specifications not defined by OMA).

This section SHOULD contain a diagram of the architecture. Diagrams in this section should contain logical entities only and not conflate logical entities with physical entities. However, mobile terminals and networks may be shown because of their potential relevance in the design of the architecture. Figure 1 is an illustrative example of an architectural diagram and should be modified to reflect this architecture.

Working Groups SHOULD re-use functions specified by other enablers. Working Groups should consult other Architecture Documents and Specifications to identify any of this architecture’s functionality (e.g. its systems, subsystems, interfaces, etc) that is already specified.

This section MAY include an explanation and/or diagram to show how this architecture relates to the various views (i.e. the reference point view) defined in “Inventory of Architectures and Services”. This diagram and explanation, however, are optional.

DELETE THIS COMMENT >>

5.1 Dependencies

No dependencies identified.
5.2 Architectural Diagram

This section contains architectural diagrams that illustrate PEEM logical components, interfaces and relationships it has with other entities in the OSE.

Figure 1 illustrates the fact that PEEM enabler’s implementation will follow the OSE architecture. PEEM will specify its I0 type interfaces (PEM-1 and PEM-2) and will support an I1 interface to the Execution Environment (not specified in PEEM). A proxy interface supports the PEEM proxy usage pattern. In addition for both proxy and callable usage patterns [PEEM-RD], PEEM may interact with other resources. In the callable usage pattern, PEEM can act as a Policy Decision Point (PDP), as described in the IETF PEP-PDP model [RFC 2753].

Editor’s note: PEEM AD will need to include figures/text to show how it maps to the IETF PEP-PDP model.
This document will describe in further detail the logical components and interfaces from the PEEM enabler perspective; it will defer to OSE for explanations that are generic across multiple enablers.

[image: image2.wmf]I1

PEM

-

1

Proxy interface

PEM

-

2

Interface

to other

resources

PEEM

Target

Resource

Requestor

Target

Resource

Delegated

Resource

Execution

Environment

Bindings

-

required by other

resources

Bindings

–

required by PEEM

E

Requestor

M

Requestor

Legend

Enabler:

Application/Other:

Figure 1. PEEM Enabler architecture

Only components that have an exposed/supported PEEM interface have been represented in Figure 1. Other components may be provided in an implementation (e.g. a policy store to host the policies), but they are not specified by PEEM.

Note that PEEM enabler implementation can enforce policies when exposing any resource (e.g. application, enabler, component, function).

5.3 Functional Components and Interfaces

This section describes the functional components and interfaces identified in Figure 1,. The components and interfaces specified by PEEM are loosely coupled, in the sense that the specification for each of them does not have to be tightly coupled with the specification of the others..

A single PEEM component has been identified which exposes both PEM-1 and PEM-2 interfaces:

· PEEM (Policy Evaluation, Execution and Management)

The following is a list of PEEM interfaces:

· PEM-1 (PEEM specified callable interface)

· PEM-2 (PEEM specified management interface)

· Proxy interface (used for intercepting requests to target resources)

The following are PEEM supported interfaces (a PEEM supported interface is an interface defined elsewhere, that PEEM may have to conform to):

· I1 (PEEM supported lifecycle management interface)

· Interface to other resources (used for delegation and forwarding requests to target resources)

In addition to PEEM components and interfaces, there are other elements represented in Figure 1 for a better understanding of the architectural diagram. The following is a list of other elements identified in Figure 1:

· Bindings required by other resources

· Bindings required by PEEM

· Other entities that interact with PEEM:

· Execution Environment

· The Execution Environment is described in the OSE architecture document [OSE-TS].
· Target Resource Requestor

· Target Resource Requestor represents an entity (application, enabler or other resource) that issues a request to a target resource [PEEM-RD].
· Target Resource

· Target Resource represents the destination resource for a request made by another entity [PEEM-RD].

· Delegated Resource

· Delegated Resource represents the resource to which PEEM may delegate certain actions during the policy enforcement process [PEEM-RD].

· E Requestor

· E Requestor represents an entity (application, enabler or other resource) that issues a request for policy evaluation of for policy evaluation and execution to PEEM [PEEM-RD].

· M Requestor

· M Requestor represents an entity (application, enabler or other resource) that issues a request for policy management to PEEM [PEEM-RD].

5.3.1 PEEM (Policy Evaluation, Execution and Management component)

PEEM has the following features:
· identifies the policies associated with the request. Policies contain policy rules (see definitions for Policy and Policy Rule) expressed in PEEM Policy Expression Language,

· evaluates policies using messages received through the “proxy interface” and other context information (see definition for Policy Evaluation, Policy Rule and Policy Condition). The component may delegate to other resources where appropriate,

· may execute policies when it has all the information needed to complete the execution of the action resulting from a positive evaluation of the policies. The component may use delegation to other resources where appropriate, and

· returns, after completing all previous processing, a policy decision to a requestor and/or allows a request to continue to its original target destination. A request for policy enforcement (which can be an evaluation request, or an evaluation and execution request, see definition for Policy Enforcement) can arrive to PEEM either as a direct request for support from another entity (see also the section describing PEEM specified callable interface) or as a request from another entity to another resource, proxied (or intercepted) by PEEM. In the first case, PEEM completes the processing by returning a policy decision (the result of the evaluation, or evaluation and execution) to the requesting entity. That entity is in control of deciding how to handle the rendered decision. In the second case, PEEM completes the processing by forwarding the original request (stripped of the no longer needed “P” values) to the destination resource (if the processing resulted into a “pass” condition) or returns an error to the originating entity if the processing resulted into a “fail” condition. There is also the notion of a “zero policy” – an enforcement of such a policy would have the net effect of passing through the request to the target resource as though no policies need to be enforced prior to forwarding the request.

· It provides the functions of describing, creating, updating, deleting, provisioning and viewing of policies.

5.3.2 PEM-1 (PEEM specified callable interface)

The PEM-1interface is described as follows:

· This interface is specified and exposed by PEEM, and is used by other entities to make a direct request for policy enforcement. This interface is also referred to as PEEM callable interface. The originating entity is using this interface to issue a request to PEEM. The PEEM implementation processes the request and returns a policy decision (the result of the policy enforcement processing) to the originating entity, using the same interface.
5.3.3 PEM-2 (PEEM specified management interface)

The PEM-2 interface is described as follows:

· This interface is specified and exposed by PEEM, and is used by other entities to make a request for policy management. This interface is also referred to as PEEM management interface. The originating entity is using this interface to pass a management request for policies to PEEM. The PEEM implementation processes the request and returns a policy decision to the originating entity. The PEM-2 interface is designed for the management of policies, which are entities specific to PEEM. The PEM-2 interface is not being used to manage external aspects of PEEM as an enabler (see also I1 description).
5.3.4 Proxy Interface

The Proxy is described as follows:

· This interface is not specified by PEEM, but is used to exchange messages compliant to I0+P of the target enablers or more generally messages compliant to combination of the target resource interface and the set of parameters that must be added to requests through that resource’s interface, as required to satisfy policies that are to be enforced when exposing the resource. The messages exchanged through this interface may be different for each enabler/resource.

Editor’s note: PEEM AD will not further specify or provide any further statement about parameters or messages exchanged across this proxy interface.
5.3.5 Interface to other resources

The Interface to other resources is described as follows:

· This interface is not specified by PEEM, but is used to exchange messages compliant to I0 of the target or delegated enablers or more generally messages compliant to the target or delegated resource interfaces. The messages exchanged through this interface may be different for each enabler/resource.

The “Proxy Interface” and the “Interface to other resources” have similar properties and behaviour.

5.3.6 I1 (PEEM supported lifecycle management interface)

The I1 interface is described as follows:

· This interface is not specified by PEEM, but supported by PEEM. I1 is a symbolic notation representing the lifecycle management interface as described in the OSE architecture document. PEEM as an enabler will be managed using this interface. This interface is yet to be defined somewhere else in OMA.

· The PEX and the PM components in the PEEM enabler may be impacted by the I1 interface. The I1 interface is used to manage the generic external aspects of PEEM as any other enabler, which distinguishes it from the PEM-1 interface (see also PEM-1description).

5.3.7 Bindings required by other resources

The Bindings required by other resources represents the collection of technology bindings dictated by the target and delegated resources

· Bindings required by PEEM

· This Bindings required by PEEM represents the collection of bindings that may be specified by the PEEM, and that apply to the PEM-1 and PEM-2 interfaces

5.4 Flows

<< The objective of this section is to describe the high-level logical flows between the architectural entities.

DELETE THIS COMMENT >>

5.5 Policy Expression Language

5.5.1 PEEM Policy information model

By definition, policies are combinations of policy rules, each of which is defined as a condition and action (i.e., IF condition THEN action).

A condition evaluation can be simple (i.e. if statement on Boolean variable) or complex (e.g. “case of “). In both forms the evaluation may involve arbitrary computations. The conditions and actions in policy rules can require the execution of arbitrary functions which includes delegation to OMA enabler implementations.
The topology of a policy is defined as a graph where each node represents a condition to be evaluated and each outbound branch has an action to be executed if the corresponding condition is true. This is illustrated in Figure 2
.

[image: image3.emf]Condition

If a

If b

If c

Execute A

Execute B

Execute C

Execute D

Execute E

If 0

If 1

Figure 2. An Example of a graph that describes the topology of a policy (composed of multiple policy rules).

Editor’s note: Definition and references to be added to appropriate section.

Editor’s note: The decision is not made whether properties of the language are restricted to a tree or a graph.

Editor’s note: Contributions are invited to add explanation on the meaning of blue and black dots in the figure.

There are 2 execution models described by the IETF policy model defined in RFC 3060 [RFC 3060], one model has a single condition at each node. The second model permits case statements on the nodes where each includes a priority that determines the order of evaluation of these simple conditions.

As mandated in [PEEM-RD], PEEM can also be used to perform only policy evaluation. The case of a simple condition is illustrated in Figure 3
.

[image: image4.emf]Condition

Return TRUE

Return FALSE

Figure 3. Example of evaluation only policy

Note again that branching from a node is not limited to 2 branches (e.g. “case of”).

The topology of a policy graph can be changed in numerous ways without changing the result of its evaluation or enforcement. This may of course modify the conditions and actions from one graph to another equivalent graph..

The policy to be used by PEEM for any invocation of PEM-1 or the Proxy Interface may:

· Be contained within the policy rules provided via PEM-2 interface to PEEM.

· Be provided as part of the call to PEEM by passing the policy that must be processed.

5.5.2 Properties of an appropriate policy expression language

Editor’s Note: Agreeing with the properties listed in this sub-section does not mean that adding other properties is precluded.

A suitable policy expression language must satisfy the following requirements:

· Can express any combination of conditions and actions. In particular:
· It is powerful enough to specify any calculation within a condition or an action

· It can support delegation.
· Can perform pattern matching on input data

· Can specify the format of output data

· Does not preclude any policy topology.

To clarify further, the language may be more easily adopted and deployed if the following options are provided:

· It provides constructs (e.g. function call) to facilitate interface transformation or generation of a new binding.

· It can express OMA existing and/or future conditions and actions such as:

· Security strength must be …

· Authentication is required

· Rating must be checked and charging performed before passing the request

· Users must have a minimum amount in their account

5.6 Mapping IETF PEP-PDP model to the PEEM model (informative)
Essence of the PEP/PDP behavior

Considering the information contained in the sections above, we can conclude that the core of the PEP/PDP behavior that should be supported by PEEM, is the following:

PEP behavior:

· Identifying requests that need an external authorization decision

· Ability to request for external authorization decision

· Enforcing the decision taken in the external authorization function

PDP behavior:

· Receiving a request for taking a decision over an authorization

· Identify relevant policies and take a decision

· Return the decision

[image: image5.emf]PEP

PDP

EnforceDecision:

ProgressRequest(if

OK)

Request

1

3

4

5

6

RequestAuthorisation

Decision

Decision

Enforce

Decision:

Reject(if

notOK)

6

•Identifyrelevant

policiesandtakea

decision

2

Identifyif

Request

needsfor

external

authorisation:

yes

Requested

Resource

Figure 4. Essence of PEP/PDP behaviour at RunTime
Recap of PEEM model

Utilizing the PEEM model for satisfying the PEP/PDP behavior as shown in previous sections may happen in, at least, two possible scenarios.

Using PEEM for PEP/PDP behavior – Scenario A

Is this scenario, the PEP functionality is realized by any enabler (OMA enabler or any other). The mechanisms utilized for this enabler to identify and apply the rules that tells him which requests needs for external authorization could perfectly be unknown.

PDP behavior is realized by PEEM.

[image: image6.emf]Enabler

Withembedded

PEP behaviour

PEEM

in PDP role

Request

1

3

4

5

RequestAuthorisation

Decision

Decision

EnforceDecision:

Requested answer(if

OK)

Reject(ifNOK)

6

•Identifyrelevant

policiesandtakea

decision

2

Identifyif

Request

needsfor

external

authorisation:

yes

PEM-1

Enabler’s

Interface

Figure 5. PEEM support for PEP/PDP behaviour - Scenario A
The support for the PEP/PDP behavior in this scenario take place in the following way.
As we said at the beginning of this section, PEP behavior (as stated in Section 5.6.1), is realized by the enabler in a way that is outside of the PEEM spec:

· It could be specified in an OMA enabler spec that reuses PEEM

· It could be done proprietarily by the legacy enabler

· It could be done by an ad-hoc programming

· Etc.

Additionally, please note that in the figure appears the label “Enabler in PEP role”, but this could be in fact any kind of requester, e.g.: an application.

The PDP behavior (as stated in Section 5.6.1), is realized by the PEEM enabler based on its specs (interfaces defined, policy expression language defined, etc.)

The communications between both elements take place over the PEM-1 interface, where the decision can be of the nature "accept" or "deny" and in addition it can be of the nature of communicating a more complex decision with additional steps to be undertaken by the PEP (e.g. an outgoing message like "ask user consent").
Using PEEM for PEP/PDP behavior – Scenario B

In this scenario, both ends of the flow are played by PEEM compliant elements.

[image: image7.emf]PEEM

in PEP role

PEEM

in PDP role

EnforceDecision:

ProgressRequest(if

OK)

Request

1

3

4

5

6

RequestAuthorisation

Decision

Decision

Enforce

Decision:

Reject(ifnotOK)

6

•Identifyrelevant

policiesandtakea

decision

2

Identifyif

Request

needsfor

external

authorisation:

yes

PEM-1

Requested

Resource

I0+P

Enabler’sI0 Interface

Figure 6. PEEM support for PEP/PDP behaviour - Scenario B

Of course, following the guidelines already written in the PEEM AD annnd PEEM RD, other deployment options may exist for the PEP side, as illustrated in next picture (e.g.: some OMA WGs could decide to fully reutilize the PEEM specs in their defined enablers); the essence is that the PEP role is played by PEEM functions.

[image: image8.emf]Requested

Resource

Embedded PEEM

in PEP role

Requests

I0+P

Figure 7. Different deployment options exist on the PEP side

In this case, the functionality required for the PEP and PDP behaviours are supported by PEEM specs.

Support for PEP/PDP behaviors: Impacts on PEEM model

Scenario A

In this case, the requirements/impacts from supporting the PEP/PDP model fall on the following aspects:

· PEM-1 interface: Well defined interface and protocol need to be specified in order for the different enablers (or applications, etc.) that may require to, to be able to interact with the PEEM enabler in callable mode, asking for a decision.

· PEEM enabler: needs to be able to satisfy PDP behaviour:

· Be able to receive requests in callable mode.

· Be able to identify relevant policies on requests coming through the PEM-1 interface, “calculate” a decision and give it back, without necessarily having to enforce the decision (since in this PEP/PDP behavior, the enforcement of the decision takes place on the PEP side).

· PEEM policy expression language:

· Needs to give support for defining policies for the PDP behaviour (oriented to just give a decision).

Scenario B

In this case, the situation comes down pretty much to one PEEM implementation (realizing the PEP role) delegating the decision onto another PEEM implementation.(implementing the PDP role):

· PEM-1 interface: Interface and protocol will give support to this “decision delegation” flow.

· PEEM enabler: needs to be able to satisfy PDP and PEP behaviours:

· From PEP behavior

· Be able to identify which service requests need for an external authorization decision.

· Be able to delegate the decision to an external PDP element.

· Being able to enforce the decision that was taken in an external PDP element.

· From PDP behavior:

· Be able to receive decision requests when in callable mode.

· Be able to identify relevant policies on decision requests coming through the PEM-1 interface, “calculate” a decision and give it back, without necessarily having to enforce the decision (since in this PEP/PDP behavior, the enforcement of the decision would take place on the PEP side).

· PEEM policy expression language:

· Needs to give support for defining policies for the PDP behaviour (oriented to just give a decision).

· Needs to give support for defining policies for the PEP behaviour (oriented to identify which requests need for external decision).

PEM-2 interface: Interface and protocol will give support to provision these type of policies.

Mapping IETF PEP-PDP model to PEEM architecture
This section provides an explanation on how the IETF policy architecture maps to the PEEM architecture.

Disclaimer: while portions of the following text are copied from [RFC2753], they have been modified to make the show the mapping to the PEEM architecture, where appropriate. Taking into consideration the IETF model that is based on PEP and PDP components, the following table and text applies (copied from [RFC2753]):

Table 1. IETF definitions

	IETF definitions [RFC3198] [RFC2753]

	Policy Decision Point (PDP)

A logical entity that makes policy decisions for itself or for other network elements that request such decisions [RFC2753].

	Policy Enforcement Point (PEP)

A logical entity that enforces policy decisions [RFC2753].

The PEP enforces the policy decision by appropriately accepting or denying the request [RFC2753].

The basic interaction between the components begins with the PEP. The PEP (in Figure 8 the PEP is E Requestor) will receive a notification or a message that requires a policy decision. Given such an event, the PEP then formulates a request for a policy decision and sends it to the PDP (see Figure 8, PEM-1, PEP is E requestor for evaluation only). The PDP returns the policy decision (see Figure 8, PEM-1 to E requestor) and the PEP then enforces the policy decision by appropriately accepting or denying the request (E Requestor will continue its processing, in case of an accepted request). The PDP itself may make use of additional mechanisms and protocols to achieve additional functionality such as user authentication, accounting, policy information storage, etc. For example, the PDP is likely to use an LDAP-based directory service for storage and retrieval of policy information (see Figure 8, delegation via interfaces to other (Delegated) Resource).

Thus Figure 8 illustrates the case where the PEEM enabler performs evaluation only [PEEM-RD]. In the case of evaluation only, a PDP type of function is the only one involved. Typically this applies to a PEEM enabler in callable mode. A PEP (E Requestor) may request evaluation from various delegated PDPs (e.g. from a charging PDP, from a privacy PDP, from a regulatory PDP). The requestor (PEP) will then carry out the decision rendered by the PDP. The components that are “whited out” are not involved in the interactions, and the interfaces to those components are not used. The “bold” interfaces indicate which interfaces are used in this mapping, relevant to the PEEM architecture.

[image: image9.wmf]I1

Policy

Decision

request

via PEM

-

1

PEM

-

2

Interface

to other

resources

PEEM

(PDP)

Delegated

Resource

Execution

Environment

Bindings

-

required by other

resources

Bindings

–

required by PEEM

E

Requestor

(PEP)

M

Requestor

Legend

Enabler:

Application/Other:

Notification/message

that requires policy

enforcement

Proxy interface

Target

Resource

Requestor

Target

Resource

Figure 8. Callable PEEM for evaluation only: PEP-PDP model when only the PDP is incorporated in PEEM
In accordance with the IETF, PEEM may make use of additional mechanisms and protocols to achieve additional functionality. In the case of delegation to OMA enablers such delegations will be done through the enablers I0 interfaces. When the PEP function is performed outside PEEM, that function can also make use of delegation to other resources in the same way as described above.
Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

	OMA-xxyyz-V1_0-20021001-A
	01 Oct 2002
	Initial document to address the basic starting point

 Ref TP Doc# OMA-TP-2002-1234-xxyyzForApproval

	OMA-xxyyz-V1_1-20030405-A
	05 Apr 2003
	description of changed

 Ref TP Doc# OMA-TP-2003-0321-xxyyzV1_1forApproval

A.2 Draft/Candidate Version <current version> History

	Document Identifier
	Date
	Sections
	Description

	OMA-ARC-AD_Policy_Evaluation_Enforcement_Management-V1_0-20050215-D
	15 feb 2005
	n/a
	See OMA-ARC-2005-0078-PEEM-AD-Functional-Architecture

	OMA-ARC-AD_Policy_Evaluation_Enforcement_Management-V1_0-20050412-D
	12 apr 2005
	n/a
	See

· OMA-ARC-2005-0086R02-PEEM-AD-Functional-Architecture-Sections-5.2-and-5.3,,

· OMA-ARC-2005-0085-PEEM-AD-Definitions-and-Abbreviations, and
· corrected the figure cross reference and marked few opportunities for improvement

	OMA-ARC-AD_Policy_Evaluation_Enforcement_Management-V1_0-20050614-D
	14 jun 2005
	n/a
	See

· OMA-ARC-2005-0176R02-PEEM_Beyond_enabler_Protection

· OMA-ARC-2005-0167R01_Acknowledging_PEM3_PEM4_Similarities

· OMA-ARC-2005-0198-PEEM_Beyond_enabler_Protection_figure_update

· Note: editor had to consolidate changes proposed in figure 1 in 198 with original of figure 1 in OMA-AD_Policy_Evaluation_Enforcement_Management-V1_0-20050412-D. Result of consolidation is temporary depicted as underlined text in a different font color.

· OMA-ARC-2005-0226R01-Following_up_0198

	OMA-ARC-AD_Policy_Evaluation_Enforcement_Management-V1_0-20050615-D
	15 jun 2005
	n/a
	See

· OMA-ARC-2005-0208R04-LATE-PEEM-detailing-out-logical-functions

· Note: editor did some editorial updates.

	OMA-ARC-AD_Policy_Evaluation_Enforcement_Management-V1_0-20050823-D
	23 aug 2005
	n/a
	See

· OMA-ARC-2005-0227R05-PEEM_policy_Expression_Language

· OMA-ARC-2005-0262-Remove-I2-from-PEEM-AD

· Note: editor did some editorial updates.

· OMA-ARC-2005-0261R03-Policy-Expression-Languages

· Added (informative) to appendix C

· Removed “comment text” style partially used in Appendix C

· Added missing and updated references

· OMA-ARC-2005-0254R04-PEEM-AD-5.3

· Added an editor’s note to highlight inconsistency in section 5.2

· OMA-ARC-2005-0255R04-PEEM-AD-5.3.2

· OMA-ARC-2005-0256R03-PEEM-AD-5.3.2.2

· OMA-ARC-2005-0283R02-Criteria-for-PEEM-Policy-Management-Interface

· Added as appendix D “Source material for consideration for PEM-2 interface specification”

· Removed inconsistency in D.1

· Added references

· OMA-ARC-2005-0294R01-corrections-to-PEEM-AD

	OMA-ARC-AD_Policy_Evaluation_Enforcement_Management-V1_0-20051017-D
	17 oct 2005
	n/a
	See

· OMA-ARC-2005-0354-PEEM-AD-Simplification
· OMA-ARC-2005-0305-assessment-of-OMA-enabler-policy-needs
· Note: editor did some editorial updates.

	OMA-ARC-AD_Policy_Evaluation_Enforcement_Management-V1_0-20051025-D
	25 oct 2005
	n/a
	See

· Latest AD template applied

· Various editorial updates
· OMA-ARC-2005-0318R03-IETF-PEP-PDP-model-support
· Did not add the appendix as issues were uncovered with the reproduction of RFC texts. The proposed appendix is uploaded as OMA-ARC-2005-0366-Appendix-IETF-PEP-PDP-model
· Editorial updates
· Replaced references to PEM-3 and PEM-4 in newly inserted figures to I0+P

Appendix B. Related technologies for policy expression languages (Informative)
Editor’s notes: Other relevant languages may be identified in this section. These are preliminary considerations. References should be appropriately handled by editor.

This list is currently informative for the purpose of compiling relevant technologies. No decision has been taken or agreed that a language is appropriate.

The following languages may be able to satisfy most of the conditions identified in Section 5.5:

· BPEL – Business Process Expression Language [BPEL]

· XACML - eXtensible Access Control Markup Language [XACML]

Editor’s notes: Contributions are invited.

Appendix C. Policy Expression Languages and other relevant specifications to be considered when selecting a PEEM policy expression language
(Informative)

Various standards bodies have specified resource policies (e.g. enabler policies). The following specifications are examples of specifications that contain ways of expressing policies to describe resource specific policy data:

PoC: OMA TS-PoC_XDM-V1_0 specifies the PoC user access policy expression language [PoC_XDM-V1_0 TS]

Location: 3GPP TS 22.071 specifies a location policy expression language [3GPP TS 22.071]

Charging: 3GPP TS 23.125 specifies a charging policy expression language [3GPP TS 23.125]

Presence: The IETF SIMPLE working group has drafted a presence authorization policy expression language [simple-presence-rules]

Privacy: The IETF GEOPRIV working group has drafted a privacy preference policy expression language [geopriv-common-policy]

These examples of policy expression languages need to be considered when selecting a policy expression language for the PEEM specification.

The PEEM specification should take into account that a service provider may have defined and deployed policies (e.g. according the examples mentioned above), when defining a policy expression language.. Any such PEEM policy expression language needs to support the functions (i.e. semantics) of the existing domain-specific policy languages which would facilitate the use of PEEM while minimizing the efforts needed to support the existing policies.When supporting such policies, there is no requirement that mandates the reformatting of existing policies, neither is there a requirement that prevents reformatting.

Appendix D. Source material for consideration for PEM-2 interface specification

D.1 PEM-2 candidate X

Based on the PEEM RD relevant requirements, a relevant specification is the XDM specification (or the XCAP specification on which XDM is based) – as a potential basis for specifying the PEM-2 interface. Clearly, we need to assess whether XDM (or XCAP):

· meets the PEM-2 requirements. If not all requirements are met, additional specification development may be needed

· is needed in its entirety, or a subset would satisfy the PEM-2 requirements

XDM includes 2 specifications, XDM Core [XDM Core 1.0 TS] and XDM Shared [XDM Shared 1.0 TS].

For XCAP (which stands for XML Configuration Access Protocol) [SIMPLE XCAP].

Based on a summary analysis, XDM (or XCAP) seems to meet at least some of the requirements for the PEM-2 interface. The main issue may be how to use or how to extend XDM (or XCAP) in order to meet other requirements.

XCAP supports:
· XML payload (supports any schema)

· HTTP transport

· Uses XPATH-style URLs to target content using PUT, GET and DELETE

D.2 PEM-2 candidate Y

There is also a SIP Event Notification (“sip-profile” event package allows SUBSCRIBE-NOTIFY model on XDM documents). This may be useful to meet some of the requirements, but this and any other aspects should be analyzed in detail during the specification development cycle.

Appendix E. Informative detail
E.1 PEEM decomposition choices

There are multiple alternative choices for PEEM further decomposition possible for PEEM implementations. As long as they are documented as part of this Appendix, all figures and accompanying text they are considered informative-only.

[image: image10.emf]I1

PEM-1 PEM-3 PEM-2 PEM-4

PEEM - Evaluation and Execution (PEX)

PEEM

Management (PM)

PEEM

Target

Resource

Requestor

Target

Resource

Delegated

Resource

PE

Requestor

PM

Requestor

Execution

Environment

Bindings - required by other resources Bindings – required by PEEM

PEX

Requestor

PM

Requestor

Legend

Enabler:

Application/Other:

Figure 9. PEEM Enabler architecture

Figure 4 illustrates two logical components, the PEEM Evaluation and Execution (PEX) and the PEEM Management (PM) and all interfaces types exposed/supported by PEEM.

In Figure 5, PEX is illustrated as decomposed in two distinguishable logical components, PEEM Evaluation (PV) and PEEM Execution (PX).

[image: image11.emf]I1

PEM-1 PEM-3 PEM-2 PEM-4

PEEM - Evaluation and Execution (PEX)

PEEM

Management (PM)

PEEM

Target

Resource

Requestor

Target

Resource

Delegated

Resource

PE

Requestor

PM

Requestor

Execution

Environment

Bindings - required by other resources Bindings – required by PEEM

PEX

Requestor

PM

Requestor

Legend

Enabler:

Application/Other:

PEEM

Execution

(PX)

PEEM

Evaluation

(PV)

Figure 10. PEEM Evaluation and Execution (PEX) illustrated as two logical components, PEEM Evaluation (PV) and PEEM Execution (PX)

Thus, the PEEM enabler can be used in callable mode for PV only, to accommodate the requirements for policy evaluation only.

Figure 6 illustrates the case where the PEEM enabler performs evaluation only [PEEM-RD]. Typically this applies to a PEEM enabler in callable mode.

[image: image12.emf]I1

PEM-1 PEM-2 PEM-4

PEEM - Evaluation and Execution (PEX)

(PV only)

PEEM

Management (PM)

PEEM

Delegated

Resource

PE

Requestor

PM

Requestor

Execution

Environment

Bindings - required by other resources Bindings – required by PEEM

PEX

Requestor

(PV only)

PM

Requestor

Legend

Enabler:

Application/Other:

PEEM

Execution

(PX)

PEEM

Evaluation

(PV)

PEM-3 PEM-4

Target

Resource

Requestor

Target

Resource

Figure 11. PEEM Enabler – relevant interfaces and components, when the PEEM Enabler performs Evaluation only

The components and interfaces not used in this specific case are shadowed.

NOTE:
the PEM-1 interface is used only for evaluation requests, in this case.

E.2 Functional components and interfaces

This section describes the functional components and interfaces identified in Figure 4, Figure 5, and Figure 6. The components and interfaces specified by PEEM are loosely coupled, in the sense that the specification for each of them does not have to be tightly coupled with the specification of the others (e.g. PEX and PM are completely decoupled, PEM-1 and PEM-2 are completely decoupled, PEX and PEM-1 are only coupled by the content of the incoming request, PEM-2 and PM are only coupled by the content of the incoming request, PEX and PEM-2 are completely decoupled and PM and PEM-1 are completely decoupled).

The following is a list of PEEM components (identified because they interact with an interface specified by PEEM):

· PEX (Policy Evaluation and Execution component). In the particular case depicted by Figure 4 and Figure 5 PEX is illustrated decomposed in two components:

· PV (PEEM Evaluation). In the case of evaluation only (see Figure 6), PV is the only component involved.

· PX (PEEM Execution).

· PM (Policy Management component)

· Other entities:

· PEX Requestor

· PEX Requestor represents an entity (application, enabler or other resource) that issues a direct request for policy evaluation only (PV only) or evaluation and execution to the PEEM PEX component [PEEM-RD].
· PM Requestor

· PM Requestor represents an entity (application, enabler or other resource) that issues a direct request for policy management to the PEEM PEX component [PEEM-RD].

· Other Resources

· Other Resources represents other resources external to OMA – the subset of such resources as described in the OSE architecture document with which PEEM may need to communicate [OSE-TS].

E.2.1 PEX (Policy Evaluation and Execution component)

The PEX (Policy Evaluation and Execution) component is responsible for the policy enforcement portion of the PEEM requirements. This component has the following features:
· identifies the policies associated with the request. Policies contain policy rules (see definitions for Policy and Policy Rule) expressed in PEEM Policy Expression Language,

· evaluates policies using messages received through PEM-3 and other context information (see definition for Policy Evaluation, Policy Rule and Policy Condition). The component may delegate to other resources where appropriate,

· Editor note: PEM-3 is not defined

· may execute policies when it has all the information needed to complete the execution of the action resulting from a positive evaluation of the policies. The component may use delegation to other resources where appropriate, and

· returns, after completing all previous processing, a policy decision to a requestor and/or allows a request to continue to its original target destination. A request for policy enforcement (which can be an evaluation request, or an evaluation and execution request, see definition for Policy Enforcement) can arrive to PEEM either as a direct request for support from another entity (see also the section describing PEEM specified callable interface) or as a request from another entity to another resource, proxied (or intercepted) by PEEM. In the first case, the PEX component completes the processing by returning a policy decision (the result of the evaluation, or evaluation and execution) to the requesting entity. That entity is in control of deciding how to handle the rendered decision. In the second case, the PEX component completes the processing by forwarding the original request (stripped of the no longer needed “P” values) to the destination resource (if the processing resulted into a “pass” condition) or returns an error to the originating entity if the processing resulted into a “fail” condition. There is also the notion of a “zero policy” – an enforcement of such a policy would have the net effect of passing through the request to the target resource as though no policies need to be enforced prior to forwarding the request.

E.2.2 PEX (Policy Evaluation and Execution component) with decomposition

The following paragraphs describe the particular case when PEX is decomposed in PEEM Evaluation (PV) and PEEM Execution (PX).

PV (PEEM Evaluation component)

The PV (PEEM Evaluation) component is responsible for the policy evaluation portion of the PEEM requirements. This component has the following features:
· identifies the policies associated with the request.,

· evaluates these policies using context information provided by the PEX requestor

· The PV component may use delegation to other resources where appropriate.

· returns, after completing all previous processing, the result of the evaluation to the PEX requestor.

PX (PEEM Execution component)

The PX (PEEM Execution) component is responsible for the policy execution portion of the PEEM requirements. This component has the following features:
· PX performs the "action" as a consequence of the result that was returned by PV (PEEM Evaluation component),
· The PX component may use delegation to other resources where appropriate.
E.2.3 PM (Policy Management)

The PM (Policy Management) component provides the functions of describing, creating, updating, deleting, provisioning and viewing of policies.

Appendix F. Assessment of OMA enabler’s policy language needs

F.1 PoC User Access Policies

The PoC XDM specification [PoC_XDM-V1_0 TS] specifies PoC User Access Policies.

Policies are XML Documents which are stored on a XDM server. Policies are retrieved from the XDM server using XCAP (e.g. for policy management purposes).

F.1.1 Properties of PoC User Access Policies

The PoC User Access Policy document SHALL conform to the structure of the policy document described in [geopriv-common-policy], which means that a <ruleset> (synonym for policy) can contain zero or more <rules>. The ordering of the rules is irrelevant.

A <rule> element makes use of the following two elements
:

· <conditions>

· <actions>

The policy scheme is extensible towards specific application domains: each domain can add application specific conditions and actions.

The conditions part is a set of expressions which evaluates to either TRUE or FALSE

Each rule is equipped with a parameter that identifies the rule.

F.1.2 PoC Condition elements

The <conditions> element supports the following PoC application specific XML elements

· the <identity> element.
· the <external-list> element.
· the <other-identity> element.
F.1.3 PoC Action elements

The <actions> element supports the PoC application specific <allow-invite> element, which defines the action the PoC Server is to take when processing a PoC session invitation for a particular user.

F.2 PAG Authorization Policies

The presence XDM specification [Presence_SIMPLE-V1_0 TS] specifies Presence Authorization Policies.

Policies are XML Documents which are stored on a XDM server. Policies are retrieved from the XDM server using XCAP (e.g. for policy management purposes).

F.2.1 Properties of Presence Authorization policies

All policies follow [simple-presence-rules], which means that an authorization policy is in three parts:

· Conditions (‘When to apply the rule’)

· Actions (‘What to do when the condition applies’)

· Transformation (‘How the data needs to be modified if this is true’), where the transformation element could be another type of “Action”.

F.2.2 Types of Presence Authorization policies

There are two types of authorization policies specified:

· Subscription authorisation policies which of which are specified the “action” and “condition” parts of the Subscription Authorization policy

· Presence content policies of which are specified the “transformation” part of the policy.

F.3 Common Denominator of the OMA enabler’s policy needs

The common denominators between PoC and PAG policies are:

· use XML to describe the policy

· distinguish a <rule> that contains a <condtition> and an <action>

· use XDM and XCAP to perform management actions on the policies.

· The policy scheme that the policies are based on allows for extensibility for defining application specific <condition> elements and <action> elements.

� Note that [geoproiv-common-policy] also defines <transformations> but these can (1) be regarded a type of <action> and (2) are not used in PoC User Access policies.

(2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ArchDoc-20050929-I]
(2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ArchDoc-20050929-I]

_1186380242.ppt

Condition

Return TRUE

Return FALSE

_1190144048.ppt

I1

PEM-1

Proxy interface

PEM-2

Interface to other resources

PEEM

Target

Resource

Requestor

Target

Resource

Delegated

Resource

Execution

Environment

Bindings - required by other resources

Bindings – required by PEEM

E

Requestor

M

Requestor

Legend

Enabler:

Application/Other:

_1190476495.ppt

I1

Policy Decision request via PEM-1

PEM-2

Interface to other resources

PEEM

(PDP)

Delegated

Resource

Execution

Environment

Bindings - required by other resources

Bindings – required by PEEM

E

Requestor

(PEP)

M

Requestor

Legend

Enabler:

Application/Other:

Notification/message

that requires policy enforcement

Proxy interface

Target

Resource

Requestor

Target

Resource

_1186394811.ppt

I1

PEM-1

PEM-2

PEM-4

PEEM - Evaluation and Execution (PEX)

(PV only)

PEEM

Management (PM)

PEEM

Delegated

Resource

PE

Requestor

PM

Requestor

Execution

Environment

Bindings - required by other resources

Bindings – required by PEEM

PEX

Requestor

(PV only)

PM

Requestor

Legend

Enabler:

Application/Other:

PEEM

Execution

(PX)

PEEM

Evaluation

(PV)

PEM-3

PEM-4

Target

Resource

Requestor

Target

Resource

_1186321908.ppt

I1

PEM-1

PEM-3

PEM-2

PEM-4

PEEM - Evaluation and Execution (PEX)

PEEM

Management (PM)

PEEM

Target

Resource

Requestor

Target

Resource

Delegated

Resource

PE

Requestor

PM

Requestor

Execution

Environment

Bindings - required by other resources

Bindings – required by PEEM

PEX

Requestor

PM

Requestor

Legend

Enabler:

Application/Other:

PEEM

Execution

(PX)

PEEM

Evaluation

(PV)

_1186380153.ppt

Condition

If a

If b

If c

Execute A

Execute B

Execute C

Execute D

Execute E

If 0

If 1

_1186321885.ppt

I1

PEM-1

PEM-3

PEM-2

PEM-4

PEEM - Evaluation and Execution (PEX)

PEEM

Management (PM)

PEEM

Target

Resource

Requestor

Target

Resource

Delegated

Resource

PE

Requestor

PM

Requestor

Execution

Environment

Bindings - required by other resources

Bindings – required by PEEM

PEX

Requestor

PM

Requestor

Legend

Enabler:

Application/Other:

