OMA-TS-PEEM_PEL-V1_0-20070303-D
Page 13 V(27)

	[image: image1.jpg]«“+OMa

Open Mobile Alliance

	

	PEEM Policy Expression Language Technical Specification

	Draft Version 1.0 – 03 Feb 2007

	Open Mobile Alliance

	OMA-TS-PEEM_PEL-V1_0-20070303-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

61.
Scope

2.
References
7
2.1
Normative References
7
2.2
Informative References
7
3.
Terminology and Conventions
8
3.1
Conventions
8
3.2
Definitions
8
3.3
Abbreviations
8
4.
Introduction
9
5.
Policy Expression Language
10
5.1
Set X of PEL constructs: Support features of policy expression language
10
5.2
Policy Expression Language selection criteria: Constructs and Semantics
10
5.2.1
Ruleset
10
5.2.2
PEL data types for rule sets
12
Appendix A.
Change History (Informative)
13
A.1
Approved Version History
13
A.2
Draft/Candidate Version 1.0 History
13
Appendix B.
Static Conformance Requirements (Normative)
14
B.1
SCR for XYZ Client
14
B.2
SCR for XYZ Server
14
Appendix C.
Future PEL considerations
15
Appendix D.
XML schema for rule set based PEL
16
Appendix E.
Analysis of data types in several programming languages
21
E.1
C and C++ language
21
E.2
Java language
23
E.3
Common data types supported in programming languages
24
E.4
Conclusion: data types needed for PEL
26

Figures

Error! No table of figures entries found.
Tables

Error! No table of figures entries found.
1. Scope

<< Define as it relates to Open Mobile Alliance Activity. If it adds clarity, define what is not in the scope. DELETE THIS COMMENT >>

2. References

The policy for reference lists is:

1.
OMA documents listed should have at least one approved version – draft-only docs should not be referenced. Exception exists for documents that will be approved with or after the referenced doc is approved (may be part of same enabler package). In short – approved docs should not reference unapproved docs.

2.
When a reference is made to an OMA specification, then Open Mobile Alliance with the TM symbol (™) should be used in the description.

3.
The name + version (no date) for OMA specifications are generally sufficient – dates should be used only if there is a specific reason to limit the usage.

4.
For references to WAP Forum docs, dates should not be included as DID's for the old WAP Forum specifications are enough and the reference description should refer to WAP Forum™.

5.
References to other affiliate docs should similarly provide sufficient information to uniquely determine the needed document and should provide the appropriate source information.

6.
The URL for OMA material (new OMA and affiliate) should always be http://www.openmobilealliance.org (an exception is OMNA that is reached through http://www.openmobilealliance.org/tech/omna)

Models to use

[REFLABEL]
<General Model> “Ref Title”, Ref information (source, date, id),
URL:http//<ref-source>/

[OMADOC]
<OMA Model> “OMA Document Title”, Open Mobile Alliance™, OMA‑<docname>{‑<version>}, URL:http//www.openmobilealliance.org/

If there are no entries in the table – enter ‘none’ to be clear.
DELETE THIS COMMENT

2.1 Normative References

	[IOPPROC]
	“OMA Interoperability Policy and Process”, Version 1.1, Open Mobile Alliance™, OMA-IOP-Process-V1_1, URL:http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	
	<< Add/Remove reference rows as needed! >>

2.2 Informative References

	
	

	
	<< Add/Remove reference rows as needed! >>

3. Terminology and Conventions

3.1 Conventions

<< If doc includes normative material keep the next two paragraphs. DELETE THIS COMMENT >>

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

<< OR if doc is informative just keep the next line. DELETE THIS COMMENT>>

This is an informative document, which is not intended to provide testable requirements to implementations.

<< If needed, describe or declare using appropriate normative references the additional conventions that are used. DELETE THIS COMMENT >>

3.2 Definitions

<< Add definitions in new rows of the following table as needed. DELETE THIS COMMENT >>

	Term 1
	

	Term 2
	Definition

	
	

3.3 Abbreviations

<< Add abbreviations as needed to the following table. DELETE THIS COMMENT >>

	OMA
	Open Mobile Alliance

	xxx
	xxx

	
	

4. Introduction

<< From a market perspective...

What can you do with this specification?

What problem does this solve?

How can this specification be applied?

Consider the target audience and provide deployment examples as possible.

DELETE THIS COMMENT >>

5. Policy Expression Language
5.1 Set X of PEL constructs: Support features of policy expression language
A policy expression language must satisfy the following requirements:

· Is composed of CONDITION and ACTION as part of a rule.

· Support policy, rule and ruleset

· Support variables (types and scope)
· Support function call

5.2 Policy Expression Language selection criteria: Constructs and Semantics

This section describes constructs/semantics that need to be supported by a Policy Expression Language (PEL).
5.2.1 Ruleset

A ruleset (also referred to loosely as a policy) is a collection of rules that operate as a whole to satisfy a specific policy evaluation (or evaluation and enforcement). The ruleset is the subset of the policy rules that are applicable in a particular instance (i.e. will become candidates for the evaluation and enforcement process for a particular request). An algorithm that describes how the rules in a ruleset are to be combined is associated with the ruleset construct. The need for such a construct in the language is the result of the necessity to logically identify and separate a set of rules targeted for a specific purpose, from different set of rules targeted at different purposes.

Editor’s note: a new contribution is needed to describe rule combination algorithm associated with the ruleset construct (after 5.2.1.1.2)
A ruleset is characterized by the following:

1. a name

a. the name serves as a means to manage a ruleset, separately from other rulesets. The name is assigned when a ruleset is created, and is used when the ruleset is viewed, modified, or deleted. A ruleset name may also be passed by a requester, to specify a policy that will be used in the evaluation.

2. an optional set of variables. Variables will be described as a language construct in a separate section.

a. the variables shall have global validity across all the rules in the ruleset. They include:

i. variables that may be assigned values as a result of input variables passed through an evaluation request (input variables)

ii. variables that may be assigned values as a result of the evaluation (output variables)

iii. variables that are used to store intermediate results, that may be used in the rules evaluation process across the entire ruleset, and then get discarded at the end of the policy evaluation(intermediate, or internal, variables)

3. a set of rules

a. a ruleset may include one or more rules

b. the rules within a ruleset may be optionally prioritized

4. other optional features

a. the construct may benefit of other features, such as a description and an optional domain that the ruleset is associated with. The domain concept may be useful during provisioning, if a service provider wants to group together ins a “domain” multiple rulesets that are addressing a similar topic, but used in different circumstances.

In conclusion, the ruleset construct is a container for a set of rules, and variables on which the set of rules operate.

Variables are typed, and will be described in a separate section.

5.2.1.1 Rule

A rule consists of a rule condition, and a set of one or more rule actions. A rule evaluation consists of checking if the rule condition is true, and if it is, executing the rule actions in sequence.

A rule is characterized by the following:

1. a rule name, which may be used both during policy management time (e.g. to allow the provisioning tools to point out errors (if any) in a ruleset). The rule name has no role during the evaluation process, other than to help in identifying potential errors through logging).

2. a condition

3. one or more actions

4. an optional usage description. The usage is ignored during the evaluation process.

A rule is part of a ruleset, a higher level construct.

5.2.1.1.1 Condition
A condition is a Boolean expression (formed using variables, constants, mathematical operators and logical operators, and function calls) that evaluates to a Boolean value of TRUE or FALSE. Variables, constants, mathematical operators and logical operators and function calls are language constructs that will be described in separate sections.

A condition is part of the rule construct. Every rule contains a condition.

5.2.1.1.2 Action
An action is an operation that shall be executed if the condition of a rule evaluates to TRUE. Typical actions include:

· assigning a value to a variable

· calling a function

· doing nothing (null action)

An action is part of the rule construct. Every rule contains an action (a null action at the minimum), but may contain multiple actions

Appendix A. PEL data types for rule sets

The PEL data types do not have to reach the complexity of the data types needed in full-blown programming language, since PEL is supposed to be a very specialized language for policy only – not a general programming language. PEL data types are dictated by the type of variables that PEL is likely to use in policies. Some data types supported in many programming languages are very unlikely to ever be needed in PEL, hence there is no need to over-burden PEL with data types that may never be used. Also, an analysis conducted for PEM-1 interface bindings has also concluded that no new data types have to be added to the basic programming languages data types and/or that such data types can be derived from existing data types if need be. Limiting the set of all data types supported in programming languages to a subset, will reduce the need to define a number of derived data types in Diameter AVPs, or XML data tpyes, or other binding that may still be added – at a time when there is no certainty that such data types will ever be needed.

Furthermore, an appendix is documenting all possible data types, hence, if a policy may need additional data types, those could be easy added later when the need is confirmed, rather than incurring the work now when the need is unknown. The data types that are initially included in PEL need to be those that are basic data types, and some more complex types that are likely to be encountered in writing policies. With those data types in place, others can be easily derived later, if needed. The following data types SHALL be supported in the Policy Expression Language:

	PEL Data Types
	Description

	int
	4 byte signed: -2147483648 to 2147483647

	float
	Floating-point number, 3.4e +/- 38 (7 digits)

	char
	Character, 1 byte, signed: -128 to 127

	array
	Arrays (lists) of objects of a given type (e.g. arrays if integers, or characters, or floats).

	function
	A type that returns object of a given type.

	struct
	A complex type that contains a sequence of objects of different types.

	string
	A sequence (array) of characters

	bool
	A type that can only take the values TRUE or FALSE

Appendix B. Change History
(Informative)

<< The following is a model of a revision table. DELETE THIS COMMENT >>

B.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

B.2 Draft/Candidate Version 1.0 History

<< This section is available in pre-approved versions – it should be removed in the actual approved versions. DELETE THIS COMMENT >>

	Document Identifier
	Date
	Sections
	Description

	Draft Versions

OMA-TS-PEEM-V1_0-20051127-D
	 27 Nov 2005
	All
	Initial Baseline

	OMA-TS-PEEM_PEL-V1_0-20060430-D
	30 apr 2006
	All
	Initial PEL TS baseline per April 18, 2006 decision (see OMA-ARC-2006-0138-MINUTES_18Apr2006-CC)

	OMA-TS-PEEM_PEL-V1_0-20060501-D
	1 May 2006
	5.1, 5.2 and Appendix C
	Agreed text from:
· OMA-ARC-2006-0101R01-support-feature-PEL-in-TS
· OMA-ARC-2006-0065R03-TS-PEL-constructs-for-ruleset-rule-condition-action[1]

	OMA-TS-PEEM_PEL-V1_0-20060916-D
	16 Sept
	Appendix D
	Agreed text from:

· :OMA-ARC-2006-0254-INP_PEEM_TS_PEL_Schema_modification that uspersedes OMA-ARC-2006-0181-Policy-expression-language-Schema-

	
	3 Feb 2007
	See desecription
	Agreed input from:

· OMA-ARC-2006-0353R03-INP_PEEM_PEL_TS_datatypes_for_consideration
· OMA-ARC-2006-0362R01-INP_PEEM_PEL_datatypes

Appendix C. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [IOPPROC].

The following is a model of a set of SCR tables. DELETE THIS COMMENT

C.1 SCR for XYZ Client

	Item
	Function
	Reference
	Status
	Requirement

	XYZ-C-001
	Something mandatory
	Section x.y
	M
	(XYZ-C-001 OR XYZ-C-003) AND
 XYZ-C-002

	XYZ-C-002
	Something optional
	Section x.y
	O
	

	XYZ-C-003
	Dependencies on ZYX
	Section x.y
	M
	ZYX:MCF

	XYZ-C-004
	Dependencies on ZYX
	Section x.y
	O
	ZYX:OCF

C.2 SCR for XYZ Server

	Item
	Function
	Reference
	Status
	Requirement

	XYZ-S-001
	Something mandatory
	Section x.y
	M
	XYZ-S-001 OR XYZ-S-002 OR XYZ-S-003

	XYZ-S-002
	Something optional
	Section x.y
	O
	

	XYZ-S-003
	Dependencies on ZYX
	Section x.y
	M
	ZYX:MSF

	XYZ-S-004
	Dependencies on ZYX
	Section x.y
	O
	ZYX:OSF

Appendix D. Future PEL considerations
Editor’s note: Related to set described in section 5.1
· Transaction operation
· Support complex data structure: array, union, structure, …

· Priority of rules

· Support two methods of ACTION:

· Asynchronous (run and return);

· Synchronous (run and wait until the result is given)

· Multiple selections (case…. 0….1…2…)

· Support nesting usage of policy

Appendix E. XML schema for rule set based PEL
This section provides the XML schema definition for the policy expression markup in the case that it is based on rule sets. The header of ruleset includes a variable declaration section which is optional, that identifies all the variables used in the ruleset.

One rule is composed of condition part and action part.
 <?xml version="1.0" encoding="UTF-8"?>

 <xs:schema targetNamespace="urn:ietf:params:xml:ns:common-policy"

 xmlns:cp="urn:ietf:params:xml:ns:common-policy"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified" attributeFormDefault="unqualified">

 <!-- /ruleset -->

 <xs:element name="ruleset">

 <xs:complexType>

 <xs:complexContent>

<xs:restriction base="xs:anyType">

 <xs:sequence>

 <xs:element name="variable" type="cp: variableType"

 minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:restriction>
 <xs:restriction base="xs:anyType">

 <xs:sequence>

 <xs:element name="rule" type="cp:ruleType"

 minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:restriction>

 </xs:complexContent>

 </xs:complexType>

</xs:element>
 <!-- /ruleset/variables -->

 <xs:complexType name="variableType">

 <xs:complexContent>

 <xs:restriction base="xs:anyType">

 <xs:sequence>

 <xs:any namespace="##other"

 minOccurs="0" processContents="lax"/>

 </xs:sequence>

 <xs:attribute name="name"
 type="xs:string" use="required"/>

 </xs:restriction>

 </xs:complexContent>

 </xs:complexType>

 <!-- /ruleset/rule -->

 <xs:complexType name="ruleType">

 <xs:complexContent>

 <xs:restriction base="xs:anyType">

 <xs:sequence>

 <xs:element name="conditions"

 type="cp: extensibleType" minOccurs="0"/>

 <xs:element name="actions"

 type="cp:extensibleType" minOccurs="0"/>

 </xs:sequence>

 <xs:attribute name="id" type="xs:ID" use="required"/>

 </xs:restriction>

 </xs:complexContent>

 </xs:complexType>

 <!-- //rule/condition or //rule/action -->
 <xs:complexType name="extensibleType">

 <xs:complexContent>

 <xs:restriction base="xs:anyType">

 <xs:sequence>

 <xs:any namespace="##other"

 processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:restriction>

 </xs:complexContent>

 </xs:complexType>

 </xs:schema>

In all, here:

 <?xml version="1.0" encoding="UTF-8"?>

D:\Documents and SettingsAdministratorLocal SettingsTemporary Internet FilesContent.IE5OCEM49VG" <xs:schema targetNamespace="urn:ietf:params:xml:ns:common-policy" xmlns:cp="urn:ietf:params:xml:ns:common-policy" xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" attributeFormDefault="unqualified">
 <!-- /ruleset -->

D:\Documents and SettingsAdministratorLocal SettingsTemporary Internet FilesContent.IE5OCEM49VG" <xs:element name="ruleset">
D:\Documents and SettingsAdministratorLocal SettingsTemporary Internet FilesContent.IE5OCEM49VG" <xs:complexType>
D:\Documents and SettingsAdministratorLocal SettingsTemporary Internet FilesContent.IE5OCEM49VG" <xs:complexContent>
D:\Documents and SettingsAdministratorLocal SettingsTemporary Internet FilesContent.IE5OCEM49VG" <xs:restriction base="xs:anyType">
D:\Documents and SettingsAdministratorLocal SettingsTemporary Internet FilesContent.IE5OCEM49VG" <xs:sequence>
 <xs:element name="variable" type="cp:variableType" minOccurs="0" maxOccurs="unbounded" />

 <xs:element name="rule" type="cp:ruleType" minOccurs="0" maxOccurs="unbounded" />

 </xs:sequence>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <!-- /ruleset/variables -->

D:\Documents and SettingsAdministratorLocal SettingsTemporary Internet FilesContent.IE5OCEM49VG" <xs:complexType name="variableType">
D:\Documents and SettingsAdministratorLocal SettingsTemporary Internet FilesContent.IE5OCEM49VG" <xs:complexContent>
D:\Documents and SettingsAdministratorLocal SettingsTemporary Internet FilesContent.IE5OCEM49VG" <xs:restriction base="xs:anyType">
D:\Documents and SettingsAdministratorLocal SettingsTemporary Internet FilesContent.IE5OCEM49VG" <xs:sequence>
 <xs:any namespace="##other" minOccurs="0" processContents="lax" />

 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required" />

 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <!-- /ruleset/rule -->

D:\Documents and SettingsAdministratorLocal SettingsTemporary Internet FilesContent.IE5OCEM49VG" <xs:complexType name="ruleType">
D:\Documents and SettingsAdministratorLocal SettingsTemporary Internet FilesContent.IE5OCEM49VG" <xs:complexContent>
D:\Documents and SettingsAdministratorLocal SettingsTemporary Internet FilesContent.IE5OCEM49VG" <xs:restriction base="xs:anyType">
D:\Documents and SettingsAdministratorLocal SettingsTemporary Internet FilesContent.IE5OCEM49VG" <xs:sequence>
 <xs:element name="conditions" type="cp:extensibleType" minOccurs="0" />

 <xs:element name="actions" type="cp:extensibleType" minOccurs="0" />

 </xs:sequence>
 <xs:attribute name="id" type="xs:ID" use="required" />

 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <!-- //rule/condition or //rule/action -->

D:\Documents and SettingsAdministratorLocal SettingsTemporary Internet FilesContent.IE5OCEM49VG" <xs:complexType name="extensibleType">
D:\Documents and SettingsAdministratorLocal SettingsTemporary Internet FilesContent.IE5OCEM49VG" <xs:complexContent>
D:\Documents and SettingsAdministratorLocal SettingsTemporary Internet FilesContent.IE5OCEM49VG" <xs:restriction base="xs:anyType">
D:\Documents and SettingsAdministratorLocal SettingsTemporary Internet FilesContent.IE5OCEM49VG" <xs:sequence>
 <xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded" />

 </xs:sequence>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 </xs:schema>
Appendix F. Analysis of data types in several programming languages

This is a high-level analysis of data types supported in C, C++, Java – as typical programming languages that use variables.

F.1 C and C++ language

There are some differences between C and C++ data types, but basically C++ inherited all C data types, and added some more, so they are described here together.

C and C++ share the following basic (or fundamental) data types:

	Data Type
	Description

	void
	Associated with no data type. It specifies an empty set of values and is used as the type returned by functions that generate no value. Not terribly important, other than for consistency of the definition of functions.

	int
	integer

	float
	Floating-point number

	double
	Double precision floating-point number

	char
	character

Several of these types can be modified using signed, unsigned, short, and long. When one of these type modifiers is used by itself, a data type of int is assumed. A complete list of possible data types follows:

	Data Type
	Description

	void
	Associated with no data type. It specifies an empty set of values and is used as the type returned by functions that generate no value.

	int
	4 byte signed: -2147483648 to 2147483647

	unsigned int
	4 byte unsigned integer, 0 to 4294967295

	signed int
	4 byte signed integer, -2147483648 to 2147483647

	short int
	2 bytes signed integer, -32768 to 32767

	unsigned short int
	2 byte unsigned integer, 0 to 65535

	signed short int
	2 byte signed Integer, -32768 to 32767

	long int
	8 byte signed integer, −9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

	unsigned long int
	8 byte unsigned integer, 0 to +18,446,744,073,709,551,615

	signed long int
	8 byte signed integer, −9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

	float
	Floating-point number, 3.4e +/- 38 (7 digits)

	double
	Double precision floating-point number, 1.7e +/- 308 (15 digits)

	long double
	Double precision floating-point number, 1.7e +/- 308 (15 digits)

	char
	Character, 1 byte, signed: -128 to 127

	unsigned char
	unsigned character, 0 to 255

	signed char
	signed character, -128 to 127

In addition, C/C++ language has a “unique” data type called enum (enumeration) which only can have integral values (associated with each enumeration is a set of named constants). Enumerations behave like integers.

In addition to basic data types, modifiers and the “unique” type enum, C/C++ support derived types:

	Data Type (derived)
	Description

	array
	Arrays (lists) of objects of a given type (e.g. arrays if integers, or characters, or floats).

	functions
	A type that returns object of a given type.

	pointers
	A complex type that contains a sequence of objects of different types.

	structures
	A complex type that contains a sequence of variables, possibly of different types..

	unions
	Similar to struct, but capable of containing any one of the objects of various types (can be seen as an overlaid set of structures)

Then there’s also the notion of the integral type wchar_t, defined in the standard header <stddef.h>. This data type is added in C++. Also worth noting is that bool (Boolean) is not a data type in C (it is achieved by using constants with values 0 for FALSE, and 1 for TRUE), but is added as a basic data type in C++.

It is worth noting that string is not a data type in C/C++, but is in fact an array of characters. For convenience, we take the license to state that there is support for strings in C/C++, although it is not quite as a data type.

And there is a type called reference in C++ that does not have any equivalent in C.

To summarize, here is the table that includes all the supported data types (either through a data type definition as part of the language, or through some mechanism that allows to support in practice such a data type).

	C/C++ “Supported” Data Types
	Description

	void
	Associated with no data type. It specifies an empty set of values and is used as the type returned by functions that generate no value.

	int
	4 byte signed: -2147483648 to 2147483647

	unsigned int
	4 byte unsigned integer, 0 to 4294967295

	signed int
	4 byte signed integer, -2147483648 to 2147483647

	short int
	2 bytes signed integer, -32768 to 32767

	unsigned short int
	2 byte unsigned integer, 0 to 65535

	signed short int
	2 byte signed Integer, -32768 to 32767

	long int
	8 byte signed integer, −9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

	unsigned long int
	8 byte unsigned integer, 0 to +18,446,744,073,709,551,615

	signed long int
	8 byte signed integer, −9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

	float
	Floating-point number, 3.4e +/- 38 (7 digits)

	double
	Double precision floating-point number, 1.7e +/- 308 (15 digits)

	long double
	Double precision floating-point number, 1.7e +/- 308 (15 digits)

	char
	Character, 1 byte, signed: -128 to 127

	unsigned char
	unsigned character, 0 to 255

	signed char
	signed character, -128 to 127

	enum(eration)
	Enumeration, a unique type that has integral values; associated with each enumeration is a set of named constants. Enumerations behave like integers.

	array
	Arrays (lists) of objects of a given type (e.g. arrays if integers, or characters, or floats).

	function(s)
	A type that returns object of a given type.

	pointer(s)
	

	struct(ures)
	A complex type that contains a sequence of objects of different types.

	union(s)
	Similar to struct, but capable of containing any one of the objects of various types (can be seen as an overlaid set of structures)

	string
	A sequence (array) of characters. In some implementations, the sequence is leading with the length in the 1st character, and a null character as the last character in the sequence. The length of a string usually represents the number of bytes preceding the null character and is always less than the actual size of the string (in other words it is the number of characters in the payload, including the length character itself). In general - it depends on the particular implementation of the language.

	wchar_t
	2 byte Wide character, capable of representing Unicode

	bool
	A type that can only take the values TRUE or FALSE

	reference
	An alternative name for an object (uses character &, as in int& thisObject = newObj; now both thisObject and newObj refer to the same integer).

C/C++ languages also supports type qualifiers. Type qualifiers include

const (e.g. char constant), and volatile (this is only used for compiler optimizations). Const can be an integer, character, floating point, string, or enumeration.

Finally, C/C++ support a “facility” to called typedef for creating new data type names.

F.2 Java language

Java has the concept of primitive types (similar to the C/C++ basic or fundamental data types). Java primitive types are:

	Java Supported Data Types
	Description

	boolean
	

	char
	character

	byte
	

	short
	

	int
	

	long
	

	float
	Floating-point number

	double
	

	void
	Associated with no data type

Any other data types are created in Java using the “class” mechanism, which supports the creation of a new type of object. For example, arrays are a “first-class” type in Java. String is a class, struct (or record) is a class, union can be a class (but not recommended to use). Enumerated types were initially simulated in Java, but are now supported in the latest revision of Java. Java claims not to have pointers (being a dangerous construct), but in fact every object identifier in Java, except for primitives, is a pointer. The exception is, you cannot perform arithmetic operations on them (as you may in C/C++). Therefore, one could say that Java supports “handles” instead of “pointers”. There is no “reference” data type in Java, but all Java types except scalar primitive types are reference types. Functions do not exist in Java, but instead “static methods” (class methods) are used.

Java has no support for unsigned type modifier, but it addresses this on a case-by-case basis (e.g. dependent on the operators involved, using conversion routines, etc).

Java’s char(acter) is a 16 bit character to support “Unicode” (the equivalent of wchar_t in C/C++). There is equivalent in Java for the 8-bit C/C++ char, this could however be done using the Java byte type. There is no support in Java for long double. The "long double" type has always been problematic its size ranges from 80 bits to 128 bits. Can be addressed only through conversion routines.

Aside as a shorthand, the concept of typedefs does not exist in Java, but can be encapsulated in a class scope to provide a generic type; they function as assignments in template meta-programming.

To summarize, most if not all of the C/C++ “supported” data types can also be supported in Java. There are of course other facilities in C++ and Java, since the “class” mechanism allows additional extensions that are not possible in C.

F.3 Common data types supported in programming languages

The analysis concludes that the following data types can be supported in most programming languages, and therefore are the initial source of consideration for PEL data types.

	C/C++/Java “Supported” Data Types
	Description
	Comments

	void
	Associated with no data type. It specifies an empty set of values and is used as the type returned by functions that generate no value.
	Supported as a basic type in C/C++/Java

	int
	4 byte signed: -2147483648 to 2147483647
	Supported as a basic type in C/C++ and as a primitive type in Java.

	unsigned int
	4 byte unsigned integer, 0 to 4294967295
	Supported as a modified basic type in C/C++. Not supported in Java as a type, but there are other mechanisms to support it on a case-by-case basis.

	signed int
	4 byte signed integer, -2147483648 to 2147483647
	Supported as a modified basic type in C/C++ and as equivalent to int basic type in Java.

	short int
	2 bytes signed integer, -32768 to 32767
	Supported as a modified basic type in C/C++ and as a primitive type in Java.

	unsigned short int
	2 byte unsigned integer, 0 to 65535
	Supported as a modified basic type in C/C++. Not supported in Java as a type, but there are other mechanisms to support it on a case-by-case basis.

	signed short int
	2 byte signed Integer, -32768 to 32767
	Supported as a modified basic type in C/C++ and as equivalent to short int primitive type in Java.

	long int
	8 byte signed integer, −9,223,372,036,854,775,808 to +9,223,372,036,854,775,807
	Supported as a modified basic type in C/C++ and as a primitive type in Java.

	unsigned long int
	8 byte unsigned integer, 0 to +18,446,744,073,709,551,615
	Supported as a modified basic type in C/C++. Not supported in Java as a type, but there are other mechanisms to support it on a case-by-case basis.

	signed long int
	8 byte signed integer, −9,223,372,036,854,775,808 to +9,223,372,036,854,775,807
	Supported as a modified basic type in C/C++ and as equivalent to long int primitive type in Java.

	float
	Floating-point number, 3.4e +/- 38 (7 digits)
	Supported as a basic type in C/C++ and as a primitive type in Java.

	double
	Double precision floating-point number, 1.7e +/- 308 (15 digits)
	Supported as a basic type in C/C++ and as a primitivetype in Java.

	long double
	Double precision floating-point number, 1.7e +/- 308 (15 digits)
	Supported as a modified basic type in C/C++ and only through conversions in Java.

	char
	Character, 1 byte, signed: -128 to 127
	Supported in C/C++ as a basic data type; supported as byte in Java

	unsigned char
	unsigned character, 0 to 255
	Supported in C/C++ as a modified basic data type; supported in Java through different methods, on a case-by-case basis

	signed char
	signed character, -128 to 127
	Supported in C/C++ as a modified basic data type; supported as the equivalent of primitive type byte in Java

	enum
	Enumeration, a unique type that has integral values; associated with each enumeration is a set of named constants. Enumerations behave like integers.
	Supported in C/C++ as derived data types, supported as a class in Java.

	array
	Arrays (lists) of objects of a given type (e.g. arrays if integers, or characters, or floats).
	In C it is a derived data type, in C++ it’s a class, in Java it’s a class.

	function
	A type that returns object of a given type.
	Supported in C/C++ as derived data types. Supported in Java as “static methods” (class methods).

	struct
	A complex type that contains a sequence of objects of different types.
	In C it is a derived data type, in C++ it’s a class, in Java it’s a class.

	union
	Similar to struct, but capable of containing any one of the objects of various types (can be seen as an overlaid set of structures)
	In C it is a derived data type, in C++ it’s a class, in Java it’s a class.

	string
	A sequence (array) of characters. In some implementations, the sequence is leading with the length in the 1st character, and a null character as the last character in the sequence. The length of a string usually represents the number of bytes preceding the null character and is always less than the actual size of the string (in other words it is the number of characters in the payload, including the length character itself). In general - it depends on the particular implementation of the language.
	In C/C++, string is not a data type, it simply is an “array of characters” (defined as char [n]). In order to use as a true string (and manipulate it using string libraries, the 1st character shall contain the length of the string, and the last character shall be “null”). Since typically variable strengths need to be supported, string variables are usually declared to be pointers to characters (e.g. char *someString).

In Java, String is achieved through a Class.

	wchar_t
	2 byte Wide character, capable of representing Unicode
	In C, wchar_t is supported it by defining it as an integral type in <stddef.h>

In C++, wchar_t is a basic type.

In Java wchar_t equivalent is the Java char primitive type.

	bool
	A type that can only take the values TRUE or FALSE
	In C, Boolean is supported via declared TRUE and FALSE constant in any program that needs such use.

In C++ bool is a basic data type.

In Java Boolean is a primitive data type.

However, such a list needs to be checked against data types that the protocol bindings selected for PEM-1 can support (Diameter and SOAP/XML). Furthermore, PEL has to start simple, and evolve into something much more complex only if needed, based on true data (policies written using PEL). The following section presents the subset of the identified data types in programming languages, that is likely sufficient for PEL.
Conclusion: data types needed for PEL

The PEL data types do not have to reach the complexity of the data types needed in full-blown programming language, since PEL is supposed to be a very specialized language for policy only – not a general programming language. PEL data types aredictated by the type of variables that PEL is likley to use in policies. Some data types supported in many programming languages are very unlikely to ever be needed in PEL, hence there is no need to over-burden PEL with data types that may never be used.

Furthermore, we have documented in an appendix all possible data types, hence, if need be and a policy may need additional data types, those could be easier added later when needed, rather than including the, now when the need is unknown. The data types that we initially include in PEL be are basic data types, and some more complex tpes that are likley to be encountered in writing policies. With those we can later on derive others, if needed.The following data types need to be supported in the Policy Expression Language:

There is no real need for PEL data types to reach the complexity of the data types needed in full-blown programming language, since PEL is supposed to be a very specialized language for policy only – not a general programming language. PEL data types are dictated by the type of variables that PEL is likely to use in policies. Some data types supported in many programming languages are very unlikely to ever be needed in PEL, hence there is no need to over-burden PEL with data types that may never be used. Of course, analysis needs to be conducted for the Diameter and XML bindings and assess whether there may be a real need to support data types that those protocols support, and may not be included in the data types that are in a basic data types set, typical for programming languages. That said, limiting the set of all data types supported in programming languages to a subset, will reduce the need to define a number of derived data types in Diameter AVPs, or XML data tpyes, or other binding that may still be added – at a time when there is no certainty that such data types will ever be needed.

The data types that are initially included in PEL need to be those that are basic data types, and some more complex types that are likely to be encountered in writing policies. With those data types in place, others can be easily derived later, if needed. The following data types SHALL be supported in the Policy Expression Language:

	PEL Data Types
	Description

	int
	4 byte signed: -2147483648 to 2147483647

	float
	Floating-point number, 3.4e +/- 38 (7 digits)

	char
	Character, 1 byte, signed: -128 to 127

	array
	Arrays (lists) of objects of a given type (e.g. arrays if integers, or characters, or floats).

	function
	A type that returns object of a given type.

	struct
	A complex type that contains a sequence of objects of different types.

	string
	A sequence (array) of characters. In some implementations, the sequence is leading with the length in the 1st character, and a null character as the last character in the sequence. The length of a string usually represents the number of bytes preceding the null character and is always less than the actual size of the string (in other words it is the number of characters in the payload, including the length character itself). In general - it depends on the particular implementation of the language.

	bool
	A type that can only take the values TRUE or FALSE

A typedef construct to facilitate creating additional derived data types is also something that could be considered at a later stage, if policies require the use of such derived data types.

(2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20050101-I]
(2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20050101-I]

