OMA-TS-PEEM_PEM1-V1_0-20070925-D
Page 34 V(50)

	[image: image1.jpg]
	

	Policy Evaluation, Enforcement and Management Callable Interface (PEM-1) Technical Specification

	Draft Version 1.0 – 25 Sep 2007

	Open Mobile Alliance

	OMA-TS-PEEM_PEM1-V1_0-20070925-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

71.
Scope

2.
References
8
2.1
Normative References
8
2.2
Informative References
10
3.
Terminology and Conventions
11
3.1
Conventions
11
3.2
Definitions
11
3.3
Abbreviations
12
4.
Introduction
13
5.
PEM-1 Interface
14
5.1
Specification of the PEM-1 interface
14
5.1.1
BLOB behavior
14
5.1.2
PEM-1 Templates
14
5.1.3
Standard PEM-1 Templates
14
5.1.4
Custom PEM-1 Templates
15
5.1.5
Encapsulating PEM-1 Templates in PEM-1 BLOB Parameters
15
5.1.6
Encoding Scheme for PEM-1 Parameters in PEM-1 BLOB Parameters
16
5.2
Input / Output Standard PEM-1 Templates
16
5.2.1
PEM-1 Template structure
17
5.2.2
Output Status code Standard PEM-1 Template
18
5.2.3
Internal Policy reference Standard PEM-1 Template
20
5.2.4
External Policy reference Standard PEM-1 Template
21
5.3
I/O parameters
22
5.3.1
PEM-1 parameters data types
23
5.4
PEM-1 Template Bindings
23
5.4.1
PEM-1 Diameter binding
23
5.4.2
PEM-1 SOAP binding
29
Appendix A.
Change History (Informative)
38
A.1
Approved Version History
38
A.2
Draft/Candidate Version 1.0 History
38
Appendix B.
Static Conformance Requirements (Normative)
40
B.1
SCR for XYZ Client
40
B.2
SCR for XYZ Server
40
Appendix C.
Communicating PEM-1 details to the requester [Informative]
41
C.1
Use cases
41
C.1.1
Template selection
41
C.1.2
BLOB
42
C.2
Best Practices / Guidelines
42
Appendix D.
Normative PEM-1 Template Bindings [Normative]
43
D.1
Analysis of data types supported in XML
43
D.1.1
Background
43
D.1.2
XML data types
43
D.1.3
XML data types versus common programming languages supported data types
47
D.1.4
Conclusion on XML data types
48
D.2
Analysis of use of Diameter, and data types supported in Diameter
48
D.2.1
Diameter AVP related background information
49
D.2.1.1
Diameter AVP data formats
50
D.2.1.2
Diameter AVP data formats versus common programming languages supported data types
52
Appendix E.
Informative PEM-1 Template Bindings [Informative]
55
Appendix F.
ASN.1 PEM-1 template syntax
56
F.1
ASN.1 Syntax overview
56
F.2
ASN.1 Transfer Encoding Options
57
F.3
Standard PEM-1 Templates syntax
57
F.3.1
InternalPolicyReference
57
F.3.1.1
ASN.1 Abstract Syntax
57
F.3.1.2
ASN.1 Transfer Syntax
57
F.3.2
ExternalPolicyByReference
58
F.3.2.1
ASN.1 Abstract Syntax
58
F.3.2.2
ASN.1 Transfer Syntax
58
F.3.3
ExternalPolicyByValue
58
F.3.3.1
ASN.1 Abstract Syntax
58
F.3.3.2
ASN.1 Transfer Syntax
58
F.3.4
OutputStatus
58
F.3.4.1
ASN.1 Abstract Syntax
59
F.3.4.2
ASN.1 Transfer Syntax
59
…
59
Appendix G.
I/O parameters (Informative)
60
G.1
Origin-Identification
60
G.2
Target-Identification
60
G.3
Resource-Identification
60
G.4
Charging-Identification
61
G.5
Environment-Identification
61

Figures
16Figure 1: Handling input/output-policy-data as encapsulated PEM-1 templates in a BLOB

36Figure 2: Synchronous evaluatePolicyResponse message to original destination

37Figure 3: Asynchronous policyResultRequest message response to same or different destination

Tables

Error! No table of figures entries found.
1. Scope

This document provides the PEEM enabler specification that defines the PEEM interface for requesting PEEM policy processing (PEM-1). The specification supports any kind of input/output needed by the policy, and in addition it describes generic data formats of the interface, PEEM specific input/output parameters , detailed message flows, and mapping of generic data format and message flows to selected protocols. While this specification fully defines the PEM-1 interface, this interface is extensible in the sense that it may be enhanced to support additional input/output parameters defined in other enablers, which plan to re-use the PEM-1 interface specification for their specific purposes. The PEM-1 interface may also be extended outside the OMA, through vendors’ and/or Service Providers’ customization.

Because such extensibility may result in both mandatory and optional parameters, a Service Provider may be expected to store, publish and/or advertise the details of the supported PEM-1 interface, so that entities that request policy processing know what is expected of them; however, mechanisms for storing, publishing and/or advertising the supported PEM-1 specification options are out-of-scope for the PEM-1 specification. Finally, it is also out-of-scope for the PEM-1 specification to define how PEM-1 input parameters are processed by a PEEM enabler implementation, or how PEM-1 output parameters are processed by a resource that requested PEEM policy processing.
2. References

Editor’s note: To be done

The policy for reference lists is:

1.
OMA documents listed should have at least one approved version – draft-only docs should not be referenced. Exception exists for documents that will be approved with or after the referenced doc is approved (may be part of same enabler package). In short – approved docs should not reference unapproved docs.

2.
When a reference is made to an OMA specification, then Open Mobile Alliance with the TM symbol (™) should be used in the description.

3.
The name + version (no date) for OMA specifications are generally sufficient – dates should be used only if there is a specific reason to limit the usage.

4.
For references to WAP Forum docs, dates should not be included as DID's for the old WAP Forum specifications are enough and the reference description should refer to WAP Forum™.

5.
References to other affiliate docs should similarly provide sufficient information to uniquely determine the needed document and should provide the appropriate source information.

6.
The URL for OMA material (new OMA and affiliate) should always be http://www.openmobilealliance.org (an exception is OMNA that is reached through http://www.openmobilealliance.org/tech/omna)

Models to use

[REFLABEL]
<General Model> “Ref Title”, Ref information (source, date, id),
URL:http//<ref-source>/

[OMADOC]
<OMA Model> “OMA Document Title”, Open Mobile Alliance™, OMA‑<docname>{‑<version>}, URL:http//www.openmobilealliance.org/

If there are no entries in the table – enter ‘none’ to be clear.
DELETE THIS COMMENT

2.1 Normative References

	[ASN.1 Notation]
	· ASN.1 notation:

· ITU-T Rec. X.680 | ISO/IEC 8824-1

· ITU-T Rec. X.681 | ISO/IEC 8824-2

· ITU-T Rec. X.682 | ISO/IEC 8824-3

· ITU-T Rec. X.683 | ISO/IEC 8824-4

http://www.itu.int/ITU-T/studygroups/com17/languages/

	[ASN.1 encoding]
	· ASN.1 encoding rules:
· ITU-T Rec. X.690 | ISO/IEC 8825-1 (BER, CER and DER)

· ITU-T Rec. X.691 | ISO/IEC 8825-2 (PER)

· ITU-T Rec. X.693 | ISO/IEC 8825-4 (XER)

· ITU-T Rec. X.694 | ISO/IEC 8825-5 (XSD mapping)
http://www.itu.int/ITU-T/studygroups/com17/languages/
· RFC 3641 (GSER) , http://tools.ietf.org/html/rfc3641

	[IOPPROC]
	“OMA Interoperability Policy and Process”, Version 1.1, Open Mobile Alliance™, OMA-IOP-Process-V1_1, URL:http://www.openmobilealliance.org/

	[PEEM RD]
	“Policy Evaluation, Enforcement and Management Requirements”, Open Mobile Alliance, OMA-RD_Policy_Evaluation_Enforcement_Management-V1_0,
URL: http://www.openmobilealliance.org/release_program/docs/CopyrightClick.asp?pck=RD&file=OMA-RD-Policy_Evaluation_Enforcement_Management-V1_0-20050112-C.pdf

	[PEEM AD]
	“Policy Evaluation, Enforcement and Management Architecture”, Open Mobile Alliance, OMA-AD_Policy_Evaluation_Enforcement_Management-V1_0,
URL: http://www.openmobilealliance.org/ftp/Public_documents/ARCH/Permanent_documents/OMA-AD-Policy_Evaluation_Enforcement_Management-V1_0_0-20060625-D.zip

	[RFC 793]
	“Transmission Control Protocol”, DARPA INTERNET PROGRAM PROTOCOL SPECIFICATION prepared by the Information Sciences Institute, University of Southern California, September 1981, URL:http://www.faqs.org/rfcs/rfc793.html

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2234]
	“Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell. November 1997, URL:http://www.ietf.org/rfc/rfc2234.txt

	[RFC 2396]
	"Uniform Resource Identifiers (URI): Generic Syntax", Berners-Lee, T., Fielding, R. and L. Masinter, August 1998, URL: http://www.rfc-editor.org/rfc/rfc2396.txt

	[J2SEBLOB]
	“Interface Blob”, java.sql, J2SE v.1.4.2, URL: http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Blob.html

	[SOAP 1.1]
	“Simple Object Access Protocol (SOAP 1.1)”, W3C Note, 08 May 2000, URL: http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

	[SOAP 1.2]
	“SOAP Version 1.2 Part 0: Primer”, W3C Recommendation , June 24 2003, URL: http://www.w3.org/TR/2003/REC-soap12-part0-20030624/

	[WSDL 1.1]
	“Web Services Description Language (WSDL) Version 1.1”, W3C Note March 15 2001 , URL: http://www.w3.org/TR/wsdl

	[UDDI 2.0]
	“Universal Description, Discovery, and Integration”, W3C, Month Year , URL:

	[WS-Policy 1.0]
	Web Services Security: SOAP Message Security 1.0 4 (WS-Security 2004)

OASIS Standard 200401, March 2004

	[Username Token Profile 1.0]
	Web Services Security Username Token Profile 1.0 OASIS Standard 200401, March 2004, URL: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0

	[X.509 Token Profile 1.0]
	Web Services Security, 3 X.509 Certificate Token Profile, 4 OASIS Standard 200401, March 2004, URL: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0

	OWSER
	http://www.openmobilealliance.org/release_program/owser_v1_1.html

	
	<< Add/Remove reference rows as needed! >>

2.2 Informative References

	[3GPP TS 29.229]
	3GPP TS 29.229, V7.5.0, 2007-03, "3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Cx and Dx Interfaces based on the Diameter protocol; protocol details (Release 7)"

	[3GPP TS 29.329]
	3GPP TS 29.329, V7.3.0, 2006-09, "3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Sh Interface based on Diameter protocol (Release 7)"

	[HTTP 1.1]
	Hypertext transfer Protocol HTTP/1.1”, RFC 2616, June 1999

	[JAX-RPC]
	“Web Services Description Language (WSDL) Version 1.1”, W3C Note 15 March 2001 , URL: http://www.w3.org/TR/wsdl

	[WS-Addressing Core]
	“Web Services Addressing 1.0 – Core ”, W3C Recommendation 9 May 2006 , URL: http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/

	
	<< Add/Remove reference rows as needed! >>

3. Terminology and Conventions

Editor’s note: To be done

3.1 Conventions

<< If doc includes normative material keep the next two paragraphs. DELETE THIS COMMENT >>

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

<< OR if doc is informative just keep the next line. DELETE THIS COMMENT>>

This is an informative document, which is not intended to provide testable requirements to implementations.

<< If needed, describe or declare using appropriate normative references the additional conventions that are used. DELETE THIS COMMENT >>

3.2 Definitions

<< Add definitions in new rows of the following table as needed. DELETE THIS COMMENT >>

	Binary Large OBject
	An object that can hold any digitized information. A Binary Large Object (BLOB) does not define a specific data structure but instead can convey / contain any data structure.

	PEM-1 BLOB Parameter
	A protocol independent PEM-1 interface parameter that is passed as a BLOB between a PEEM requestor and a PEEM enabler implementation.

	PEM-1 Input BLOB Parameter
	A PEM-1 BLOB Parameter sent by a PEEM requestor to a PEEM enabler implementation, as part of a policy evaluation request message.

	PEM-1 Output BLOB Parameter
	A PEM-1 BLOB Parameter sent by a PEEM enabler implementation to a PEEM requestor, as part of a policy evaluation response message.

	PEM-1 Template Binding
	A PEM-1 Template representation associated with a specific technology.

	Standard PEM-1 Template
	A PEM-1 Template specified by OMA. A Standard PEM-1 Template is composed from one or more PEM-1 Templates.

	Custom PEM-1 Template
	A PEM-1 Template specified outside OMA (e.g. by Service Providers). A Custom PEM-1 Template is composed from one or more PEM-1 Templates.

	Standard PEM-1 Template Binding
	A PEM-1 Template Binding specified by OMA.

	Custom PEM-1 Template Binding
	A PEM-1 Template Binding specified outside OMA (e.g. by Service Providers).

	Internal Policy
	A policy made available to a PEEM implementation using the PEEM Policy Management interface (PEM-2), prior to a PEM-1 request to make use of the policy.

	External Policy
	A policy made available to a PEEM implementation as a PEM-1 Parameter that is part of a PEM-1 request.

	Policy
	An ordered combination of policy rules that defines how to administer, manage, and control access to resources [Derived from [RFC 3060], [RFC 3198] and [RFC 3460]].

	Policy Action
	Action (e.g. invocation of a function, script, code, workflow) that is associated to a policy condition in a policy rule and that is executed when its associated policy condition results in "true" from the policy evaluation step.

	Policy Condition
	A condition is any expression that yields a Boolean value.

	Policy Enforcement
	The process of executing actions, which may be performed as a consequence of the output of the policy evaluation process or during the policy evaluation process.

	Policy Evaluation
	The process of evaluating the policy conditions and executing the associated policy actions up to the point that the end of the policy is reached.

	Policy Management
	The act of describing, creating, updating, deleting, provisioning and viewing policies.

	Policy Processing
	Policy evaluation or policy evaluation and enforcement

	Policy Rule
	A combination of a condition and actions to be performed if the condition is true

	Request
	An articulation of the need to access a resource (e.g. asynchronous events).

	Requestor
	Any entity that issues a request to a resource.

	Resource
	Any component, enabler, function or application that can receive and process requests.

3.3 Abbreviations

<< Add abbreviations as needed to the following table. DELETE THIS COMMENT >>

	ASN.1
	Abstract Syntax Notation One

	OMA
	Open Mobile Alliance

	BLOB
	Binary Large Object

	PEEM
	Policy Evaluation, Enforcement and Management

	PEM-1
	PEEM Callable interface

	PEM-2
	PEEM Management interface

	PEL
	(PEEM) Policy Expression Language

	URI
	Uniform Resource Identifier

	XML
	eXtended Markup Language

4. Introduction

The PEM-1 (PEEM callable interface) specification is defined to support exchanges between requesters for policy processing , and a PEEM enabler implementation. Since there is great variability amongst resources, it is expected that policies will be quite diverse, and therefore may require different input information to be supplied with each request, and in turn, may provide different output information in response. As a consequence, the input and output parameters that may be passed to/from a PEEMenabler implementation may vary greatly with the policy being processed. PEEM requirements [PEEM RD] include the need to define an interface through which resources can invoke policy processing. Having an interface separately defined for each specific policy is impractical, because it implies a difficulty in implementation for both the PEEM enabler implementation, as well as for the resources that may invoke policy processing. The solution to this is described in PEEM architecture [PEEM AD] which defines PEM-1 as a generic interface, that has a well-defined structure of requests and responses, where each request or response message always carries, from the protocol perspectivea binary large object, encompassing the collection of input parameters (in the case of a request message) or the collection of output parameters (in the case of a response message).

The variability, depending on policy, of potential input and output parameters is hidden from the interface, by encoding all input or output parameters in the binary large object, according to a well-defined convention. Such convention is based on standard templates, defined in PEEM, and possibly extended by other enabler releases, and/or on custom templates. The PEM-1 specification defines the generic interface, the input and output binary large object that carry the input/output payload, a number of standard templates that can be encapsulated in such binary large objects, and the binding of request/response messages and input/output templates to specific protocol options. Given the deliberate approach of defining PEM-1 as an extensible interface, it is expected that new templates, and input/output parameters that are part of such templates will continue to be specified either in later PEEM releases, or in other enabler releases, or by Service Provider, therefore extending PEM-1 to accommodate the specific needs of policies deployed in all domains, or in a specific domain.

The PEM-1 specification is loosely coupled to other PEEM specifications and can evolve independent of the others. There is no coupling between PEM-1 specification and PEM-2 (PEEM management interface) specification. PEM-1 specification and Policy Expression Language (PEL) specification share an interest in supporting the same set of input/output variables. In other words, if PEL specification adds support for certain input/output variables because of specific policies instances, then in order for such instances to be processed, PEM-1 may need to be capable of supporting the corresponding input/output parameters. However, PEM-1 is unaware of the detailed language constructs in PEL. Similarly, adding support for bindings to additional protocols is not impacting the PEL specification.
5. PEM-1 Interface

5.1 Specification of the PEM-1 interface

5.1.1 BLOB behavior

The PEM-1 interface MUST support a BLOB interface [J2SEBLOB] for input and output:

· Any input can be passed via PEM-1 by a requester

· Any output may be returned via PEM-1 to the requester

Inputs are parsed and examined and outputs are generated based on the Policy processed by PEEM.Interpretation of the BLOB input data structure and generation of output data is always driven by the policy that is processed. If a PEM-1 Template is used within a BLOB, as described in section 5.1.2, the data structure is expected to follow the PEM-1 Template and the policy is expected to be designed to interpret the data structure accordingly.
When a policy is written, it should take into account any existing constraints that a requestor may have in providing and processing the BLOB internal data structure.

Editor’s note: need explanation for “existing constraints”

There needs to be a way for the requester to know the BLOB’s data structure to send as input and expect as output. This may be for example according to PEM-1 Templates as discussed in sections 5.1.2 and after.

In order to use the PEM-1 interface of PEEM, the requester is aware of the input it needs to provide, and the output behaviour. How the requester is made aware of these details, (e.g. the PEM-1 Template to follow and expect) is out of scope of PEEM specifications and it is assumed to be communicated in a separate communication channel. Some informative considerations are provided in Appendix C.

BLOBs allow for any bindings to the interface.

5.1.2 PEM-1 Templates

The policies determine how to interpret the incoming data PEM-1 Parameters and how to construct outgoing PEM-1 Parameters. PEM-1 Templates define what input PEM-1 Parameters are expected to be provided as input by the requestor for the consumption by the policy and what output PEM-1 Parameters may be generated by the policy for the requestor’s consumption.

PEM-1 Templates are defined to permit binding of the PEM-1 interface to as many of the known bindings as possible.

A PEM-1 Template is Standard, as defined in section 5.1.3, (i.e. defined by OMA and included with the PEEM specifications) or Custom (e.g. defined by the Service Provider which deploys PEEM). A PEM-1 Template defines the input and output data structure. The actual input is interpreted by the policy, and the generated output is determined by the policy. Policy and PEM-1 Templates should be designed considering the constraints of the requester and service provider who defines the policies.

PEM-1 parameters and Standard PEM-1 Templates are specified as part of some OMA enablers. PEEM PEM-1 TS should capture those PEM-1 Parameters/ PEM-1 Templates (e.g. identified by other OMA enablers) which can be reused by other OMA enablers.

5.1.3 Standard PEM-1 Templates

The PEM-1 interface MUST support the set of Standard PEM-1 Templates (i.e. understand the data structure of associated input and output and support policies that interpret such data structures).

To support a PEM-1 Standard Template means that a policy can interpret the incoming data and/or generate outgoing outputs as defined by the PEM-1 Template. Standard PEM-1 Templates are not mutually exclusive. A PEEM implementation MUST support all the Standard PEM-1 Templates. PEM-1 Templates are expressed independently of the binding to a particular technology. Specific bindings are discussed in section 5.3.

5.1.4 Custom PEM-1 Templates

Custom PEM-1 Templates are outside the scope of the PEEM specification, but provide a similar way for service providers to define SP-specific PEM-1 Templates that would be processed by a set of policies used by the service provider.

Custom PEM-1 Templates are PEM-1 Templates defined by the Service Provider in order to support their specific policy needs. Custom PEM-1 Templates are similar to the Standard PEM-1 Templates and similarly used. They may re-use some or all of the input/output PEM-1 Parameters specified in the Standard PEM-1 Templates, and/or may add new input/output PEM-1 parameters.

 Custom PEM-1 Templates are not mutually exclusive, neither are they mutually exclusive when considered in combination with Standard PEM-1 Templates. A PEEM implementation MUST support any number of Standard PEM-1 Templates, and MAY support any number of Custom PEM-1 Templates.

5.1.5 Encapsulating PEM-1 Templates in PEM-1 BLOB Parameters
PEM-1 parameters (input or output) are combined to form PEM-1 Templates (Standard or Custom).

A PEM-1 Template is encapsulated in BLOB as a binary string. An input binary string is referred to as the PEM-1 Input BLOB Parameter. An output binary string is referred to as the PEM-1 Output BLOB Parameter. Each PEM-1 parameter representation in a PEM-1 Template will be in the form of an “Attribute-Value-Pair”: it will include an identifier (which has an associated data type, as per the PEM-1 Parameter definition, see section 5.6.1) and the actual value of the PEM-1 Parameter, and will be encoded according to a specific scheme (see following section). In case of two or more PEM-1 Parameters, pairs of identifier-value are encoded and concatenated to form the PEM-1 Input or Output BLOB Parameter. The PEM-1 Parameter identifiers are all specified as part of the PEM-1 Template description (see section 5.6.1 for details), and therefore are known by the PEEM requestors and by the PEEM enabler implementation. The specified nature of the PEM-1 Parameter identifiers allows the PEEM enabler implementation, respectively the PEEM requestors to appropriately interpret the encoded PEM-1 Parameter representation during parsing of the PEM-1 Input BLOB Parameter, respectfully the PEM-1 Output BLOB Parameter. It is assumed that each PEEM enabler implementation will have access to a repository that defines all supported PEM-1 Templates, all supported PEM-1 Parameters, their associated identifiers and their corresponding data types, and optional allowable values, in accordance to the PEM-1 Templates definition (see section 5.6.1). The implementation of such a repository, and how PEEM requestors and/or PEEM enabler implementation accesses the information in such repository is out-of-scope for the PEM-1TS. Similarly, how a Service Provider (SP) publishes and advertises the supported Standard and Custom PEM-1 Templates and Parameters is out-of-scope for the PEM-1 TS.

Figure 1 below illustrates through an informative flow the use of the PEM-1 interface when passing a single binary string BLOB in which a PEM-1 Template was binary encoded. The details of the evaluation process in the PEEM enabler implementation, and the enforcement process of the decision in the Policy Evaluation Requestor have been left out intentionally.

[image: image2.emf]Policy

Evaluation

Requestor

PEEM

2

RequestDecision(InputBLOB)

Decision(OutputBLOB)

7

SP published spec –Input/Output

Standard and Custom PEM-1 Templates

Parameter-Id-1Parameter-1 TypeValues (optional)

...

PEM-1Template A

Parameter-Id-nParameter-n TypeValues (optional)

PEM-1Template Z

...

Parameter-Id-1Parameter-1 TypeValues (optional)

...

Parameter-Id-nParameter-n TypeValues (optional)

1

Create PEM-1 Input

BLOB using SP

published spec

Parse PEM-1 Input BLOB using

SP published spec

4

3

Identify applicable policy rules

Evaluate policy rules

5

6

Create PEM-1 Output BLOB

using SP

published spec

Parse PEM-1 Output

BLOB using SP

published spec –

obtain decision

8

Figure 1: Handling input/output-policy-data as encapsulated PEM-1 templates in a BLOB

A Policy Evaluation Requestor has access to SP published/supported PEM-1 Templates specification (the specification follows the PEM-1 TS, but the form it is represented and accessed in the PEEM enabler implementation is out-of-scope for the PEM-1 TS). All the steps that make up flow 1 can be performed at runtime or ahead of runtime. The Policy Evaluation Requestor selects a PEM-1 Template applicable to its application and uses the published specification to obtain the PEM-1 Parameters that it needs to pass, their types and optionally, allowable values. It then encodes each of the attributes by concatenating them and using the specified binary encoding method (details in a separate following section) (flow 1) to form the PEM-1 Input BLOB Parameter. It then uses the protocol of choice, out of those supported by the PEM-1 TS specification, to forward the request for evaluation, including the single PEM-1 Input BLOB parameter (flow 2). The PEEM enabler implementation receives the request using the binding to the supported protocol. It extracts the PEM-1 Input BLOB Parameter and parses it with the help of the SP published/supported PEM-1 Templates specification (flow 3). That specification allows the PEEM implementation to know how to interpret each attribute in the PEM-1 Input BLOB Parameter, using the binary encoding specification (details in a separate following section). It identifies the PEM-1 Template used by the Policy Evaluation Requestor, to determine what PEM-1 Parameters may be expected. It may identify a PEM-1 Parameter that references an internal or external policy to be used (see section 5.4 and 5.5) in order to identify the applicable policy rules (flow 4). PEEM enabler implementation then processes the evaluation request which may result in a response (flow 5). The response is then encoded in a PEM-1 Output BLOB Parameter, again with help from the information available from a SP published/supported PEM-1 Template specification (flow 6). The response is sent using the selected protocol, to the Policy Evaluation Requestor (flow 7). The Policy Evaluation Requestor parses the PEM-1 Output BLOB Parameter, using the SP published/supported PEM-1 Templates specification and obtains the decision issued by PEEM (flow 8).

This mechanism allows the entire PEM-1 Template to be passed as a single interface parameter (a PEM-1 Input BLOB or PEM-1 Output BLOB) by any protocol chosen to support the PEM-1 requests and responses. Both input PEM-1 Template and output PEM-1 Template are handled in a similar way, although the content of the templates may be quite different, according to the PEM-1 Template definition. This allows complete decoupling of the PEM-1 interface specification from the particular PEM-1 Templates that it needs to transport, and from the particular PEM-1 Parameters inside the templates. It also supports the principle of neutrality to technology, since a binary string parameter (a PEM-1 BLOB Parameter) is the only parameter that needs to be transported over any binding, and any considered binding for the PEM-1 TS supports the passing of a binary string data type. Furthermore, this also significantly reduces the complexity of mapping the interface to different bindings, and provides a true scalable way to deal with adding new PEM-1 Templates and parameters. Finally, supported by a simple binary encoding mechanism, this is the most efficient way to transport parameters, and alleviates the need on policy evaluation requestors and on the PEEM enabler implementations of stopping/re-compiling/re-starting a deployed system, since the PEM-1 interface does not have to change; the only adaptation needed for a PEEM implementation and/or the policy evaluation requestors is to be able to interpret and handle the content of a PEM-1 Template. That ensures stability of an implementation for the one part of the implementation that handles the communication protocol, and moves the burden of adaptability to the part that needs to deal with the understanding of the PEM-1 parameters, which is unavoidable anyway, since new policies, with new parameters, need to be continuously supported. The binary encoding scheme of PEM-1 Parameters into PEM-1 BLOB Parameters is described in the following section. The mapping to and use of the PEM-1 Input BLOB Parameter and PEM-1 Output BLOB Parameter for specific bindings are described in section 5.7.

5.1.6 Encoding Scheme for PEM-1 Parameters in PEM-1 BLOB Parameters

PEM-1 specifies the use of plain XML text to represent the PEM-1 Templates (Input and/or Output) passed via the BLOB between a PEEM requestor and PEEM. No other binary encoding is specified in this release. The XML representation of the PEM-1 Templates is unique regardless of binding (SOAP or Diameter). The schema used for the PEM-1 Templates must conform to the schema made available by the Service Provider at deployment time..

Editor note: FFS whether PEEM PEM-1 TS will include an XML schema for the Templates (added in an Appendix), and whether such schema would be normative or optional. If we do [provide a schema, it would be likely based on generalizing the Template structure that we indicated for the Template parameters that are currently specified (e.g. TenplateID, Internal Policy Reference, etc …)
5.2 Input / Output Standard PEM-1 Templates

The following Standard PEM-1 Templates MUST be supported PEM-1 as explained in section 5.1.3.

Editor’s note: This section will contain templates selected by the WG. Template details may be put in appendices - TBD. The following sections describe templates that have been pre-identified as necessary, but others such sections may be added as this concept develops.

5.2.1 PEM-1 Template structure
Each PEM-1 Template (Standard or Custom) is composed of two or more PEM-1 parameters.

Template names SHALL be unique strings. In the case of Standard PEM-1 Templates, template names are defined and administered in OMA. In the case of Custom PEM-1 Templates, template names are defined and administered by the Service Provider.

The parameter names in a Standard PEM-1 Template are defined and administered by OMA. The parameter names in a Custom PEM-1 Template are defined and administered by the Service Provider. The parameter names are associated with a value of pre-determined data type.

The PEM-1 Template SHALL have the following structure:
	PEM-1 Template Header:
	

	Input/Output PEM-1 Parameter Name
	 Input/Output Parameter Type

	templateID
	STRING

	templateVersion
	STRING

Table 5.1.1-1: PEM-1 Template Structure
Where:

· templateID is the name of a PEM-1 parameter, representing a unique identifier of the template. It is mandatory for any PEM-1 template to include a templateID parameter.

· For Standard PEM-1 Templates:

· templateID values will be assigned by OMA using the process described in Appendix G.

· For Custom PEM-1 Templates:

· templateID values will be assigned by the Service Provider using their own process.

· templateVersion is the name of a PEM-1 parameter, representing the version of the template, and used to distinguish between multiple versions of the same template. It is mandatory for any PEM-1 template to include a templateVersion parameter.

· For Standard PEM-1 Templates:

· templateVersion values will be assigned by OMA using the process described in Appendix G
· For Custom PEM-1 Templates:

· templateVersion values will be assigned by the Service Provider using their own process.

A PEM-1 Template (Standard or Custom) can have any number of additional I/O parameters. The mandatory parameters described in Table 5.2.1.1 are used to uniquely identify the remainder of the structure of a PEM-1 Template (i.e. identify the additional parameters).

Note: The ASN.1 Abstract syntax and the ASN.1 Transfer syntax of Standard PEM-1 templates are documented in Appendix F.

Editor’s note: FFS. As we understand better how identification & versioning of templates can be expressed in ASN.1, changes to templateID & templateVersion may be necessary (it may even result in removing those parameters if this conflicts with id/versioning mechanisms provided by ASN.1). Future Appendix F will address ASN.1 syntax.
Editor’s note: FFS Appendix G:… do we ask OMNA to administer Standard PEM-1 Template names, parameter names, etc … or do we have a different solution ? I would prefer to allow WGs to self-manage as much as possible, but we need to think how to avoid duplication. An alternative would be for ARC to provide some administration. It’s probably not terrible complex – it depends on how popular defining new templates becomes. In case of Custom PEM-1 Templates, this is SP’s responsibility.

For templateVersion – should we for example specify that the Version is a string that represents the version of the enabler where the Standard PEM-1 Template was specified (possibly including the WI #, to ensure that no 2 enablers that may work on the same template may collide in versions ?)

5.2.2 Output Status code Standard PEM-1 Template

This section specifies how error or status codes can be returned as part of the PEM-1 output.

A PEEM implementation MUST support such a Standard PEM-1 Template.

These error codes MAY be used as a preamble (i.e. separate PEM-1 parameter from rest of returned data value(s)) to an output BLOB or as part of an input/output Standard PEM-1 Template as specified in section 5.2.

An explicit indication identifying the internal policy to be applied is realized using the following template:

	Output Standard PEM-1 Template:
OutputStatus Template
	

	Output PEM-1 Parameter Name
	 Output Parameter Type

	Template Header
	

	
	

	
	

	statusCode
	INTEGER

Table 5.2.4-1: OutputStatus Standard PEM-1 Template
Where:

· Template Header, (see section 5.2.1.

· statusCode is the name of a PEM-1 parameter, representing a final status result of the of the policy processing. This parameter is mandatory.

· statusCode values are assigned as follows:

· The range of values 0x0000-0x7fff SHALL be reserved for OMA use

· The range of values 0x0000-0x0FFF SHALL be reserved to represent different degrees of failure, with 0x0000 indicating UNCONDITIONAL FAILURE (i.e. unconditional DENY).

· Other degrees of failure status may be assigned as needed, using the process described in Appendix G
· The range of values 0x1000-0x1FFF SHALL be reserved to represent different degrees of success, with 0x1000 indicating UNCONDITIONAL SUCCESS (i.e. unconditional GRANT)

· Other degrees of failure status may be assigned as needed, using the process described in Appendix G
· The range of values 0x2000-0x7FFF are reserved for future use

· The range of values 0x8000-0xFFFF SHALL be reserved for Service Provider use

Editor’s note: Specific values/ranges are provided, but we could decide to change them later. A process for assigning any additional values needs to be put in place (will it be administered by OMNA, differently?). Needs to be addressed in a future Appendix G.

FFS: do we need other codes?

· Any number of optional additional output parameters may be provided, as dictated by specific policy needs. The values associated to those parameter names can be of any supported type, as determined by the defined name. As a result of creating an OutputStatus Standard PEM-1Template for a specific enabler, additional parameters may be defined. Also, additional parameters may be created, resulting in additional Custom OutputStatus templates, published/advertised by the Service Provider for each specific policy.

Note: The ASN.1 Abstract syntax and the ASN.1 Transfer syntax of the OutputStatus Standard PEM-1 template are documented in Appendix F.

Note: The OutputStatus Standard PEM-1 template will be passed encapsulated in an output BLOB.

Editor’s note: FFS. As we understand better how PEM-1 templates/parameters can be expressed in ASN.1, changes may be necessary. Future Appendix F will address ASN.1 syntax.

Editor’s note: FFS – to decide whether PEEM/PEM-1 should distinguish between lower and upper case. That is resolved via ASN.1, which does distinguish between upper & lower case, so PEEM will have to distinguish as well. Parameter names identifiers should start with lower case letters, template names should start with upper-case letters.
Editor’s note: FFS – need to pick values for templateID and templateVersion. This section needs to add this, once we have discussed/agreed about the process (OMNA or otherwise)
5.2.3 Internal Policy reference Standard PEM-1 Template

This section specifies how a reference to an internal policy can be passed with a request through PEM-1. This template can be combined with any other Standard PEM-1 Template. A PEEM implementation uses the reference to identify a specific policy managed by PEM-2.

A PEEM implementation MUST support such a Standard PEM-1 Template.

These PEM-1 parameters MAY be used as a preamble to an input BLOB or as part of an input/output Standard PEM-1 Template as specified in section 5.2.

In general, a PEEM implementation may use a combination of template parameters, in addition to other sources of information, to determine the policies to be evaluated. An explicit indication identifying the internal policy to be applied is realized using the following template:

	Input Standard PEM-1 Template: InternalPolicyReference
	

	Input PEM-1 Parameter Name
	 Input Parameter Type

	Template Header
	

	intPolicyID
	URI

Table 5.2.2-1: Internal Policy Reference Standard PEM-1 Template

Where:

· For Template Header, see section 5.2.1

· intPolicyID is the name of a PEM-1 parameter, representing a unique identifier of a policy internal to PEEM (i.e. a policy that can be managed using the PEM-2 interface). This parameter is mandatory.

· intPolicyID values are assigned by the Service Provider

Note: The ASN.1 Abstract syntax and the ASN.1 Transfer syntax of the InternalPolicyReference Standard PEM-1 template are documented in Appendix F.

Editor’s note: FFS. As we understand better how PEM-1 templates/parameters can be expressed in ASN.1, changes may be necessary. Future Appendix F will address ASN.1 syntax.
Editor’s note: FFS – to decide whether PEEM/PEM-1 should distinguish between lower and upper case. That is resolved via ASN.1, which does distinguish between upper & lower case, so PEEM will have to distinguish as well. Parameter names identifiers should start with lower case letters, template names should start with upper-case letters.

Editor’s note: FFS – need to pick values for templateID and templateVersion. This section needs to add this, once we have discussed/agreed about the process (OMNA or otherwise)
5.2.4 External Policy reference Standard PEM-1 Template

This section specifies how a reference to an external policy can be passed with a request through PEM-1. This template can be combined with any other Standard PEM-1 Template. A PEEM implementation then uses the external policy for the policy evaluation or evaluation and enforcement.

A PEEM implementation MUST support such a Standard PEM-1 Template.

These PEM-1 parameters MAY be used as a preamble to an input BLOB or as part of an input/output Standard PEM-1 Template as specified in section 5.2.

A PEEM implementation may be configured to refuse input that include such a Standard PEM-1 Template, if the service provider or vendor wants to prevent passing policies as part of PEM-1 requests.

The use of an external policy is indicated by passing either a reference to the external policy, or passing the external policy itself by value, via a PEM-1 Parameter.

When passing an external policy by reference, an explicit indication identifying the external policy to be applied is realized using the following template:

	Input Standard PEM-1 Template: ExternalPolicyByReference
	

	Input PEM-1 Parameter Name
	Input Parameter Type

	Template Header
	

	
	

	
	

	extPolicyID
	URI

Table 5.2.3-1: External Policy By Reference Standard PEM-1 Template
Where:

· For Template Header, see section 5.2.1.

· extPolicyID is the name of a PEM-1 parameter, representing a policy that is being passed by a URI reference to PEEM. This parameter is mandatory

· extPolicyID values are URIs provided by the PEEM requestor

When passing an external policy by value, an explicit indication identifying the external policy to be applied is realized using the following template:

	Input Standard PEM-1 Template: ExternalPolicyByValue
	

	Input PEM-1 Parameter Name
	Input Parameter Type

	Template Header
	

	
	

	
	

	extPolicyVAL
	STRING

Table 5.2.3-1: External Policy By Value Standard PEM-1 Template
Where:

· For Template Header,(see section 5.2.1.

· extPolicyVAL is the name of a PEM-1 parameter, representing a policy external to PEEM that is being passed by value to PEEM. This parameter is mandatory.

· extPolicyVAL values are binary strings provided by the PEEM requestor
Note: The ASN.1 Abstract syntax and the ASN.1 Transfer syntax of the ExternalPolicyByReference and the ExternalPolicyByValue Standard PEM-1 templates are documented in Appendix F.

Editor’s note: FFS. As we understand better how PEM-1 templates/parameters can be expressed in ASN.1, changes may be necessary. Future Appendix F will address ASN.1 syntax.
Editor’s note: FFS – to decide whether PEEM/PEM-1 should distinguish between lower and upper case. That is resolved via ASN.1, which does distinguish between upper & lower case, so PEEM will have to distinguish as well. Parameter names identifiers should start with lower case letters, template names should start with upper-case letters.

Editor’s note: FFS – need to pick values for templateID and templateVersion. This section needs to add this, once we have discussed/agreed about the process (OMNA or otherwise)
5.3 I/O parameters
Input/output parameters listed will be replicated over one or more templates. For convenience, they have been grouped here by the nature of the information they convey (e.g. parameters relative to template identification, originator identity, etc). PEEM PEM-1 templates contain different combinations of parameters specified in this document.
Editor’s note: The parameters included in a specific grouping are preliminary and therefore subject to changes. The type of the parameters (int, string, Boolean, etc …) and the nature of the parameters (mandatory, optional) has not been established yet – this will happen at a later stage (e.g. after all potential parameters are collected, and the final templates are agreed, or by the time we have a good justification for each parameter).
5.3.1 PEM-1 parameters data types

The PEM-1 parameters data types include basic data types, selected derived data types (e.g. URI data type) and some complex data types. These data types SHALL by any protocol bindings. Additional data types may be derived from these data types, on a need basis.

The table below represents the supported data types:

	PEM-1 Data Types
	Description

	int
	4 byte signed: -2147483648 to 2147483647

	float
	Floating-point number, 3.4e +/- 38 (7 digits)

	array
	Arrays (lists) of objects of a given type (e.g. arrays if integers, or characters, or floats).

	function
	A type that returns object of a given type.

	struct
	A complex type that contains a sequence of objects of different types.

	string
	A sequence (array) of characters

	bool
	A type that can only take the values TRUE or FALSE

	URI
	A type derived from string, with a well-specified structure as per [RFC 2396]

Table 5.3.1-1: PEM-1 parameters data types

Appendix D is documenting all possible data types, hence, if a policy may need additional data types, those could be easy added later when the need is confirmed, rather than incurring the work now when the need is unknown.

5.4 PEM-1 Template Bindings

PEEM enabler implementations shall offer, at least, one of the following bindings for the PEM-1 Interface:

· Diameter

· SOAP

Other bindings are not precluded, but are not to be described in this specification.
5.4.1 PEM-1 Diameter binding

This section defines a transport protocol based on Diameter, to be used for requests/responses for OMA PEEM policy data processing.

The present document is applicable between ANY resource and a PEEM enabler implementation. A Diameter PEEM client is a resource that uses the messages of the Diameter PEEM application to send a request with policy data for processing to another resource. A Diameter PEEM server is a resource that uses the Diameter PEEM application to respond to a request, with an answer that may include policy data. The PEEM enabler implementation may act as both Diameter PEEM server and Diameter PEEM client. Resources sending requests to a PEEM enabler implementation act as Diameter PEEM clients.

Whenever it is possible this document specifies the requirements for this protocol by reference to specifications produced by the IETF within the scope of Diameter, and/or 3GPP within the scope of 3GPP Diameter applications. Where this is not possible, extensions to Diameter are defined within this document.

5.4.1.1 General

The Diameter Base Protocol as specified in IETF RFC 3588 [RFC 3588] shall apply except as modified by the defined support of the methods and the defined support of the commands and AVPs, result and event codes specified in clause 5.7.1.3 of this specification. Unless otherwise specified, the procedures (including error handling and unrecognised information handling) are unmodified. Use of the Diameter base application is detailed in clause 5.7.1.2 of this specification, and is informatively modelled after the 3GPP application Sh [3GPP TS 29.329], which in turn relies on 3GPP application Cx [3GPP TS 29.229].
5.4.1.2 Use of Diameter base application
With the clarifications listed in the following sub-clauses the Diameter Base Protocol defined by IETF RFC 3588 [RFC 3588] shall apply.

5.4.1.2.1 Securing Diameter Messages
This application does not introduce any new security measures. Securing Diameter messages SHALL conform to section 2.2 of IETF RFC 3588 [RFC 3588].

5.4.1.2.2 Accounting functionality
Accounting functionality (Accounting Session State Machine, related command codes and AVPs) is not used on the PEM-1 interface.

5.4.1.2.3 Use of sessions

Between a Diameter PEEM client and a Diameter PEEM server, Diameter sessions are implicitly terminated. An implicitly terminated session is one for which the server does not maintain state information. The client does not need to send any re-authorization or session termination requests to the server.

The Diameter base protocol includes the Auth-Session-State AVP as the mechanism for the implementation of implicitly terminated sessions.

The client (server) shall include in its requests (responses) the Auth-Session-State AVP set to the value NO_STATE_MAINTAINED (1), as described in IETF RFC 3588 [RFC 3588]. As a consequence, the server does not maintain any state information about this session and the client does not need to send any session termination request. Neither the Authorization-Lifetime AVP nor the Session-Timeout AVP shall be present in requests or responses.

5.4.1.2.4 Transport protocol

Diameter messages for the PEEM application SHALL use the mandated transport protocols specified in section 2.0 of IETF RFC 3588 [RFC 3588]. The Diameter server (PEEM implementation) SHALL support both TCP (IETF RFC 793 [RFC 793]) and SCTP (IETF RFC 2960 [RFC 2960]). A Diameter client (a PEEM requestor) MAY use either TCP or SCTP. When using SCTP, the new SCTP checksum method specified in RFC 3309 [RFC 3309] SHALL be used.
5.4.1.2.5 Routing considerations

This clause specifies the use of the Diameter routing AVPs Destination-Realm and Destination-Host. This application supports the routing mechanism specified in section 2. of IETF RFC 3588 [RFC 3588], and does not introduce any changes. In particular, if a PEEM requestor knows the specific address/name of the PEEM enabler implementation for a certain request, both the Destination-Realm and Destination-Host AVPs shall be present in the request. Otherwise, only the Destination-Realm AVP shall be present and the command shall be routed to the next Diameter node, based on the Diameter routing table in the client. Once the redirector function has returned the address of the destination PEEM enabler implementation (using Redirect-Host AVP), the redirected request to the PEEM enabler implementation shall include both Destination-Realm and Destination-Host AVPs. Consequently, the Destination-Host AVP is declared as optional in the ABNF [RFC 2234] for all requests initiated by a PEEM requestor. Host AVP is declared as mandatory in the ABNF [RFC 2234] for all requests initiated by the PEEM enabler implementation.

Destination-Realm AVP is declared as mandatory in the ABNF [RFC 2234] for all requests.

5.4.1.2.6 Advertising Application Support
A Diameter PEEM server shall advertise support of the Diameter PEEM Application by including the value of the application identifier in the Auth-Application-Id AVP within the Vendor-Specific-Application-Id grouped AVP of the Capabilities-Exchange-Request and Capabilities-Exchange-Answer commands.

The vendor identifier value of TBD-Vendor-Id shall be included in the Supported-Vendor-Id AVP of the Capabilities-Exchange-Request and Capabilities-Exchange-Answer commands, and in the Vendor-Id AVP within the Vendor-Specific-Application-Id grouped AVP of the Capabilities-Exchange-Request and Capabilities-Exchange-Answer commands.

Note: The Vendor-Id AVP included in Capabilities-Exchange-Request and Capabilities-Exchange-Answer commands that is not included in the Vendor-Specific-Application-Id AVPs as described above shall indicate the manufacturer of the Diameter node as per IETF RFC 3588 [RFC 3588].
5.4.1.3 Diameter PEEM application

This clause specifies a Diameter application for Policy Evaluation, Enforcement and Management (PEEM).

The Diameter PEEM application is defined as an IETF vendor specific Diameter application, where the vendor is TBD. The vendor identifier assigned by IANA to TBD (http://www.iana.org/assignments/enterprise-numbers) is TBD-Vendor-Id.

The Diameter application identifier assigned to the PEM-1 interface application is TBD-appl-id (allocated by IANA).

Editor’s Note – Decisions is needed on the PEEM: who is TBD. Based on this, TBD-Vendor-Id and TBD-appl-id will be determined using the normal IANA allocation process. This is FFS, possibly subject to a separate contribution. Creative thinking is encouraged to find the optimal solution allowing us to complete PEEM in timely manner.
Note: there are alternative that we need to consider (text above would have to be modified in that case). For example we could attempt to define the PEEM application as a new IETF Diameter application. This is a lengthy process and possibly difficult process, but then we can get new command codes and AVP codes. If we go thr current route (under a Vendor-ID) we would need to re-use existing IETF command codes and AVPs. It may also not be trivial to identify appropriate command-codes and AVPs to change their meaning. The approach is to be addressed in a different contribution.
5.4.1.3.1 Command-Code Values

This section defines Command-Code values for the Diameter PEEM application.

Every command is defined by means of the ABNF [RFC 2234] syntax, according to the rules in IETF RFC 3588 [RFC 3588]. Whenever the definition and use of an AVP is not specified in this document, and no reference is made to another specification, what is stated in IETF RFC 3588 [RFC 3588] shall apply.

The TBD-command codes for the Diameter PEEM application are taken from the range allocated by IANA. For these commands, the Application-ID field shall be set to TBD-appl-id (application identifier of the Diameter PEEM application, allocated by IANA).

The following Command Codes are defined in this specification:

Table 5.7.1.3.1.1: Command-Code values

	Command-Name
	Abbreviation
	Code
	Section

	Policy-Data-Request
	PDR
	TBD-cmd-code
	5.7.1.3.1.1.1

	Policy-Data-Answer
	PDA
	TBD-cmd-code
	5.7.1.3.1.1.2

	Editor’s Note: The command codes are taken marked as TBD, until we decide which way to obtain them (re-use existing codes, or obtain new codes from IANA). Either has associated challenges. If we go with current approach, as a Vendor-specific application, then we need to re-use IETF AVPs and command-codes (we should look at Diameter authentication/authorization applications like NASREQ or DIAMMIP).

5.7.1.3.1.1 Policy-Data-Request (PDR) Command
The Policy-Data-Request (PDR), indicated by the Command-Code field set to TBD-cmd-code and the ‘R’ bit set in the Command Flags field, is sent by a Diameter PEEM client to a Diameter PEEM server in order to request policy data processing.

Message Format

< Policy-Data-Request> ::=
< Diameter Header: TBD-cmd-code, REQ, PXY, TBD-appl-id >

< Session-Id >

{ Vendor-Specific-Application-Id }

{ Auth-Session-State }

{ Origin-Host }

{ Origin-Realm }

[Destination-Host]

{ Destination-Realm }

{Policy-Data}

*[Proxy-Info]

*[Route-Record]

*[AVP]

	Editor’s Note – Vendor-Specific-Application-Id has also been highlighted, just as a reminder that it is a grouped AVP that contains the TBD-VendorID. The highlight is resolved once we decide how to handle Vendor-ID.

The AVPs indicated in bold represent new AVPs defined for this application; the other ones represent AVPs defined and supported by the Diameter base application. In general, Policy-Data is a container for all policy input parameters. The Policy-Data AVP does not encapsulate Diameter base protocol AVPs. Those AVPs are passed in the request as defined by the Diameter base protocol in IETF RFC 3588 [RFC 3588].

The entity acting as the Diameter PEEM server needs to be able to interpret the content of the Policy-Data AVP, according to the PEEM specification and/or the published custom specifications added by the Service Provider that deploys PEEM (see PEM-1 TS section X).
5.7.1.3.1.2 Policy-Data-Answer (PDA) Command

The Policy-Data-Answer (PDA), indicated by the Command-Code field set to TBD-cmd-code and the ‘R’ bit cleared in the Command Flags field, is always sent back to the Diameter PEEM client by a Diameter PEEM server in response to the Policy-Data-Request command. The policy processing determines the content of the Policy-Data AVP.

Message Format

< Policy-Data-Answer > ::=
< Diameter Header: TBD-cmd-code, PXY, TBD-appl-id >

< Session-Id >

{ Vendor-Specific-Application-Id }

[Result-Code]

[Experimental-Result]

{ Auth-Session-State }

{ Origin-Host }

{ Origin-Realm }

{Policy-Data}

*[Failed-AVP]

*[Proxy-Info]

*[Route-Record]

*[AVP]

	Editor’s Note – Vendor-Specific-Application-Id has also been highlighted, just as a reminder that it is a grouped AVP that contains the TBD-VendorID. The highlight is resolved once we decide how to handle Vendor-ID.

The parameters indicated in bold represent new parameters defined for this application; the other ones represent parameters defined and supported by the Diameter base application. In general, Policy-Data is a container for all policy output parameters. The Policy-Data AVP does not encapsulate Diameter base protocol AVPs. Those AVPs are passed in the answer as defined by the Diameter base protocol in IETF RFC 3588 [RFC 3588].

In some cases, only a result code needs to be returned to the original Diameter PEEM client, while a more comprehensive set of results (e.g. including a decision to be enforced) may be sent to a different resource

5.4.1.3.2 Result-Code AVP Values

This section defines new result code values that must be supported by all Diameter implementations that conform to this specification. At present, no other result codes are needed, except the ones defined by the Diameter base application. Any additional result codes determined by the policy processing will be encoded in the Policy-Data parameter.

	

5.4.1.3.3 AVPs

The following table describes the Diameter AVPs defined for the Diameter PEEM application, their AVP Code values, types, possible flag values and whether the AVP may or not be encrypted.

Table 5.7.1.3.3.1: Diameter PEEM Application AVPs

	
	AVP Flag rules
	

	Attribute Name
	AVP Code
	Section defined
	Value Type
	Must
	May
	Should not
	Must not
	May Encrypt

	Policy-Data
	TBD-AVP-code
	5.7.1.3.3.1
	OctetString
	M, V
	
	
	
	No. The Policy-Data is a container for all policy data parameters (input, output or used in exchanges with other resources) and they are encoded in a PEEM specified manner (see 5.7.1.3.3.1 for details)

	NOTE 1: The AVP header bit denoted as ‘M’, indicates whether support of the AVP is required. The AVP header bit denoted as ‘V’, indicates whether the optional Vendor-ID field is present in the AVP header.

5.7.1.3.3.1 Policy-Data

The Policy-Data AVP is of type OctetString. This AVP is a container that can be used for exchanging:

1. policy input parameters forwarded in the policy data request (PDR) by a requestor (acting as a Diameter PEEM client) to PEEM (acting as a Diameter PEEM server).

2. output policy parameters sent in the policy data answer (PDA) by PEEM (acting as a Diameter PEEM server) back to the requestor (Diameter PEEM client), as a response to 1. above.

The parameters described above are octet string representations, serialized in the Policy-Data AVP, using ASN.1 syntax rules, and optionally encoded using specified options (see section X for details). The specific parameters contained by the Policy-Data AVP are dictated by the policy and are either PEEM Standard Parameters or PEEM Custom Parameters, published by the PEEM deployer (see section Y for details).

5.4.1.3.4 Special Requirements
5.7.1.3.4.1 Version Control
The following table shall apply to the Diameter PEEM application; the column Application identifier lists the used application identifiers used in OMA for this application.
Table 5.7.1.3.4.1.1 : Application identifiers used in PEM-1

	Application identifier
	First applied

	TBD-appl-id
	OMA PEEM V1.0

New functionality beyond the OMA PEEM V1.0 release shall be introduced by post-V1.0 versions of this specification to the Diameter applications as follows:

1. If possible, the new functionality shall be defined optional.

2. If backwards incompatible changes can not be avoided, the new functionality should be introduced as a feature, see 5.7.4.3.4.1.1.

3. If the change would be backwards incompatible even as if it was defined as a feature, a new version of the interface shall be created by changing the application identifier of the Diameter application, see 5.7.4.3.4.1.2.

5.7.1.3.4.1.1 New Feature
The base functionality for the Diameter PEEM application interface is the OMA PEEM V1.0 standard and a feature is an extension to that functionality. A feature is a functional entity that has a significant meaning to the operation of a Diameter application i.e. a single new parameter without a substantial meaning to the functionality of the Diameter endpoints should not be defined to be a new feature. If the support for a feature is defined mandatory in a post-V1.0 version of this specification, the feature concept enables interworking between Diameter endpoints regardless of whether they support all, some or none of the features of the application. Features should be defined so that they are independent from one another.

The content of a feature shall be defined as a part of the specification of the affected application messages. If new AVPs are added to the commands because of the new feature, the new AVPs shall have the ‘M’ bit cleared and the AVP shall not be defined mandatory in the command ABNF [RFC 2234]. The support for a feature may be defined to be mandatory behaviour of a node.

5.7.1.3.4.1.2 Changing the version of the interface
The version of an interface shall be changed by a future version of this specification only if there is no technically feasible means to avoid backwards incompatible changes to the Diameter application, i.e. to the current version of the interface. However, if the incompatible changes can be capsulated within a feature, there is no need to change the version of the interface. The versioning of an interface shall be implemented by assigning a new application identifier for the interface. This procedure is in line with the Diameter base protocol (see IETF RFC 3588 [RFC 3588]) which defines that if an incompatible change is made to a Diameter application, a new application identifier shall be assigned for the Diameter application.

5.4.2 PEM-1 SOAP binding

This section defines a messaging protocol based on SOAP, to be used when invoking PEEM policy processing.

The present document is applicable between ANY resource and a PEEM enabler implementation.

SOAP messages will be passed from one SOAP processor to another using HTTP/1.1 as the protocol binding. A SOAP method is an HTTP request/response that complies with the SOAP1.1 encoding rules.

HTTP implicitly correlates its request message with its response message; therefore, an application using this binding can chose to infer a correlation between a SOAP message sent in the body of a HTTP request message and a SOAP message returned in the HTTP response. Similarly, HTTP identifies the server endpoint via a URI [URI], which can also serve as the identification of a SOAP processor at the node.

5.4.2.1 General (Web Services)

The key technologies in relation to PEEM are only considered here. These comply to OWSER [OWSER].

SOAP messages over the PEM-1 interface shall make use of HTTP 1.1 IETF RFC 2616 [HTTP1.1].
SOAP [SOAP1.1] message represents the information needed to invoke a service or reflect the results of a service invocation, and contains the information specified in the service interface definition.

SOAP 1.1 is a standard, extensible, framework for packaging and exchanging XML messages, a convenient mechanism for referencing capabilities (typically by use of headers).

[SOAP 1.1] Part 1 defines an XML-based messaging framework: a processing model and an extensibility model.

[SOAP 1.1] Part 2 defines three optional components: a set of encoding rules for expressing instances of application-defined data types, a convention for representing remote procedure calls (RPC) and responses, and a set of rules for using SOAP with HTTP/1.1

WSDL 1.1 is a language for describing Web services.

WSDL describes Web services starting with the messages that are exchanged between the requester and provider agents. The messages themselves are described abstractly and then bound to a concrete network protocol and message format.

Use of SOAP base application

With the clarifications listed in the following sub-clauses the SOAP Protocol defined by W3C in SOAP V1.1 shall apply.

5.4.2.1.1 Securing SOAP Messages
For secure transport of SOAP messages, see [WS-Security 1.0].

Web Services Security provides end-to-end message-level security for web services through an implementation of the WS-security standard. WS-Security defines a mechanism for adding three levels of security to SOAP messages:

· Authentication tokens. WS-Security authentication tokens [Username Token Profile1.0] let the client provide a user name and password or X509 certificate [X.509 Token Profile 1.0] for the purpose of authentication headers.

· XML encryption. WS-Security's use of W3C's XML encryption standard enables the XML body or portion of it to be encrypted to ensure message confidentiality.

· XML digital signatures. WS-Security's use of W3C's XML digital signatures lets the message be digitally signed to ensure message integrity. The signature is based on the content of the message itself (by applying the hash function and public key), so if the message is altered en route, the signature becomes invalid.

5.4.2.1.2 Routing considerations
This clause specifies the routing considerations for the web services interface.

Every endpoint has an address associated with it, which is used to locate and identify the endpoint. This address consists primarily of a Uniform Resource Identifier (URI), which specifies the location of the endpoint.

The URI is used in conjunction with any Headers to define an endpoint’s SOAP Address Filter. By default, this filter verifies that an incoming message has a To message header that matches the endpoint’s URI and that all of the required endpoint headers are present in the message.

The WSDL of a deployed Web Service (also called dynamic WSDL) includes an <address> element that assigns an address (URI) to a particular Web Service port

5.4.2.2 Web Service for PEM-1 interface
This clause specifies a Web Service that allows a Web Services client and a Web Services provider to send an input request for policy processing to PEEM, and allows the Web Services provider to respond with an output response, if dictated by the invoked policy. The input request contains parameters needed for the policy processing, and the output response contains parameters produced by the policy processing.

The PEM-1 interface protocol is defined as a Web Services as per xmlns:callable_policy=http://www.openmobilealliance.org/wsdl/PEM1/v1_0/service
5.4.2.2.1 Web Services Messages
This section defines the Web Services calls for policy evaluation request and response based on the SOAP [SOAP 1.1] protocol. The Service is specified in WSDL [WSDL1.1].

The policy evaluation interface makes it possible for an external application to evaluate a request containing a set of parameters. The Attributes of Name/Value pairs shall be sent in the XML formatted parameter as a XML formed string. The used XML format shall be specified in the type parameter of the call.

Editor Note: Need to reconcile statement about passing XML formed string with the use of ASN.1

Every Message is defined by means of the [SOAP 1.1] syntax, according to the rules in W3C .

The following messages are defined in this specification:

Table 5.7.1.3.1.1: Messages

	Message-Name
	Section

	evaluatePolicyRequest
	5.7.1.2.1.1

	evaluatePolicyResponse
	5.7.1.2.1.2

	policyResultRequest
	5.7.1.2.1.3

	policyResultResponse
	5.7.1.2.1.4

Below is shown the WSDL service description for policy evaluation and response

 PEEM Request interface

<?xml version="1.0" encoding="UTF-8"?>
<!-- September 7, 2007 -->
<definitions name="PEM1_service"

targetNamespace="http://www.openmobilealliance.org/schema/PEM1/v1_0"

xmlns:tns="http://www.openmobilealliance.org/schema/PEM1/v1_0"

xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:callable_policy="http://www.openmobilealliance.org/wsdl/PEM1/v1_0/service"

xmlns:callable_policy_xsd="http://www.openmobilealliance.org/schema/PEM1/v1_0"

xmlns:callable_common_faults="http://www.openmobilealliance.org/wsdl/PEM1/v1_0/faults"

xmlns:callable_policy_local_xsd="http://www.openmobilealliance.org/wsdl/PEM1/v1_0/local.xsd"
 <import namespace="http://www.openmobilealliance.org/wsdl/PEM1/v1_0/faults" location="pem_1_faults_V1_0.wsdl" ></import>
 <types>
 <xsd:schema elementFormDefault="qualified" targetNamespace="http://www.openmobilealliance.org/wsdl/PEM1/v1_0/local.xsd">
 <xsd:complexType name="evaluatePolicyRequest_type">
 <xsd:sequence>
 <xsd:element name="callbackUrl" type="xsd:string" minOccurs="0" />
 <xsd:element name="timeStamp" type="xsd:dateTime" />
 <!--
 policyData contains an xml based document containing the additional policy data
 e.g. variables and their values.
 -->
 <xsd:element name="policyData" type="xsd:anyType" minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="evaluatePolicyResponse_type">
 <xsd:sequence>

<xsd:element name="correlator" type="xsd:string" minOccurs="0" maxOccurs="1"/>
 <!--
 evaluation Result is the verdict
 FALSE = Policy Denial
 TRUE = Policy Acceptance
 -->
 <xsd:element name="evaluationResult" type="xsd:boolean" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="denyReasonDescription" type="xsd:string" minOccurs="0" maxOccurs="1"/>
 <!--
 policyData contains an xml based document containing the additional policy data
 e.g. variables and their values.
 -->
 <xsd:element name="policyData" type="xsd:anyType" minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:schema>
 </types>
 <message name="PEM1_evaluatePolicyRequest">
 <part name="parameters" type="callable_policy_local_xsd:evaluatePolicyRequest_type" />
 </message>
 <message name="PEM1_evaluatePolicyResponse">
 <part name="result" type="callable_policy_local_xsd:evaluatePolicyResponse_type" />
 </message>
 <portType name="PEM1_evaluatePolicyPortType">
 <operation name="PEM1_evaluatePolicy">
 <input message="tns:PEM1_evaluatePolicyRequest" />
 <output message="tns:PEM1_evaluatePolicyResponse" />
 </operation>
 </portType>
 <binding name="PEM1_evaluateBinding" type="tns:PEM1_evaluatePolicyPortType">
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="PEM1_evaluatePolicy" >
 <soap:operation soapAction="" />
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
</definitions>
PEEM Response interface

<?xml version="1.0" encoding="UTF-8"?>
<!-- September 7, 2007 -->
<definitions name="PEM1_response_service"

targetNamespace="http://www.openmobilealliance.org/schema/PEM1/v1_0"

xmlns:tns="http://www.openmobilealliance.org/schema/PEM1/v1_0"

xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:callable_policy_response="http://www.openmobilealliance.org/wsdl/PEM1/v1_0/resp_service"

xmlns:callable_policy_response_xsd="http://www.openmobilealliance.org/schema/PEM1/v1_0/resp"

xmlns:callable_common_faults="http://www.openmobilealliance.org/wsdl/PEM1/v1_0/faults"

xmlns:callable_policy_resp_local_xsd="http://www.openmobilealliance.org/wsdl/PEM1/v1_0/resp_local.xsd">
 <import namespace="http://www.openmobilealliance.org/wsdl/PEM1/v1_0/faults" location="pem_1_faults_V1_0.wsdl" />
 <types>
 <xsd:schema elementFormDefault="qualified" targetNamespace="http://www.openmobilealliance.org/wsdl/PEM1/v1_0/resp_local.xsd">
 <xsd:complexType name="policyResultRequest">
 <xsd:sequence>

<xsd:element name="correlator" type="xsd:string" />
 <!--
 evaluation Result is the verdict
 FALSE = Policy Denial
 TRUE = Policy Acceptance
 -->
 <xsd:element name="evaluationResult" type="xsd:boolean" />
 <xsd:element name="denyReasonDescription" type="xsd:string" />
 <!--
 policyData contains an xml based document containing the additional policy data
 e.g. variables and their values.
 -->
 <xsd:element name="policyData" type="xsd:anyType" minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="policyResultResponse">
 <xsd:sequence>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:schema>
 </types>
 <message name="PEM1_policyResultRequest">
 <part name="parameters" type="callable_policy_resp_local_xsd:policyResultRequest" />
 </message>
 <message name="PEM1_policyResultResponse">
 <part name="result" type="callable_policy_resp_local_xsd:policyResultResponse" />
 </message>
 <portType name="PEM1_policyResultPortType">
 <operation name="PEM1_policyResult">
 <input message="tns:PEM1_policyResultRequest" />
 <output message="tns:PEM1_policyResultResponse" />
 </operation>
 </portType>
 <binding name="PEM1_policyResultBinding" type="tns:PEM1_policyResultPortType">
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="PEM1_policyResult">

 <soap:operation soapAction="" style="document" />
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
</definitions>

5.7.2.2.1.1 Web services EvaluatePolicyRequest message
The evaluatePolicyRequest, Message is sent by a Web Services client to a server in order to request policy processing.

The policy evaluation interface makes it possible for an external application to evaluate a request containing a set of parameters. The parameters in the request includes a callable URL, a time stamp and a container for arbitrary additional data provided as name-value pairs

[image: image3]
Figure 2: Synchronous evaluatePolicyResponse message to original destination
5.7.2.2.1.2 Web Services EvaluatePolicyResponse Message
The evaluatePolicyResponse message, is returned by a server in response to the evaluatePolicyRequest message as shown in Figure 2. When evaluated, the resulting policy data in the evaluation process is returned to the address included in the callbackURL together with information on the outcome of the requests, that is, if the policy evaluation request was allowed or denied and a description of the deny reason.
If the request was allowed, the application calling the Web Service must use a generated correlator id an evaluationResult specifying success or failure of the policy evaluation and in the case of failure a description of the reason in denyReasonDescription parameter.

5.7.2.2.1.3 Web Services policyResultRequest Message

The policyResultRequest message, is returned by the PEEM implementation server after some time in response to the evaluatePolicyRequest message as shown in Figure 3. When evaluated, the resulting policy data in the evaluation process is returned to the address included in the callbackURL together with information on the outcome of the requests, that is, if the policy evaluation request was allowed or denied and a description of the deny reason.

If the request was allowed, the application calling the Web Service must use a generated correlator id an evaluationResult specifying success or failure of the policy evaluation and in the case of failure a description of the reason in denyReasonDescription parameter.

[image: image4]
Figure 3: Asynchronous policyResultRequest message response to same or different destination
Note that in order for such a 3 way interaction (PEEM requestor, PEEM enabler implementation, PEEM response destination) to be supported by this specification, the PEEM response destination resource needs to fully support this specification, and the PEEM enabler implementation must be able to act as both Web services server and Web Services client. Finally, note that in this case, any interactions between PEEM and other resources than the PEEM requestor can be conducted using this specification (in other words, PEEM enabler implementation would act as a Web Services client, with the other resources acting as Web Services servers)

5.7.2.2.1.4 Web Services PolicyResultResponse Message for responses to a different destination

The PolicyResultResponse message, is returned immediately by the destination as set at the callbackURL and in response to the received policyResultRequest from PEEM implementation server as shown in Figure 3, the concerned message is sent empty.

5.7.2.2.1.5 Version Control

The following table shall apply to the PEM-1 interface; the column Application identifier lists the used application identifiers on PEM-1 and OMA.
Table 5.7.1.3.4.1.1 : WSDL Target Name Space used in PEM-1

	Target Name Space
	First applied

	http://www.openmobilealliance.org/schema/PEM1/v1_0
	OMA PEEM V1.0

Name space versioning will be used for new functionality beyond the OMA PEEM V1.0 release & shall be introduced by post-V1.0 versions of this specification to the SOAP applications as follows:

4. If possible, the new functionality shall be defined optional.

5. If backwards incompatible changes can not be avoided, the new functionality should be introduced as a feature, see 5.7.2.2.1.51.

6. If the change would be backwards incompatible even as if it was defined as a feature, a new version of the interface shall be created by changing the application identifier of the Web Services application, see 5.7.2.2.1.5.2.

5.7.2.2.1.5.1 New Feature

The base functionality for the PEM-1 interface is the OMA PEEM V1.0 standard and a feature is an extension to that functionality.

5.7.2.2.1.5.2 Changing the version of the interface
The version of an interface shall be supported by adding a new namespace.

Appendix A. Change History
(Informative)

<< The following is a model of a revision table. DELETE THIS COMMENT >>

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

A.2 Draft/Candidate Version 1.0 History

<< This section is available in pre-approved versions – it should be removed in the actual approved versions. DELETE THIS COMMENT >>

	Document Identifier
	Date
	Sections
	Description

	Draft Versions

OMA-TS-PEEM-V1_0-20051127-D
	 27 Nov 2005
	All
	Initial Baseline

	OMA-TS-PEEM_PEM1-V1_0-20060430-D
	30 apr 2006
	All
	Initial PEM-1 baseline based on OMA-ARC-2006-0093R03-Formalizing_BLOB_and_Templates_for_PEEM_TS

	
	13 Oct 2006
	See descripton
	Agreed input from:
· OMA-ARC-2006-0121R03-Normative-PEM-1-template-parameters
· OMA-ARC-2006-0147R05-PEM-1-TS-clarifying-definitions
· OMA-ARC-2006-0142R03-PEM-1-TS-baseline-update
· OMA-ARC-2006-0143R02-PEM-1-TS-definition-of-template
· OMA-ARC-2006-0200R01-PEM-1-Bindings Agreed

	
	3 Feb 2007
	See description
	Agreed input from:
· OMA-ARC-2006-0354R02-INP_EEM_PEM_1_TS_Diameter_datatypes_for_consideration
· OMA-ARC-2006-0355R02-INP_PEEM_PEM_1_TS_XML_datatypes_for_consideration

	
	6 Aprl 2007
	Section 1
	Agreed input from:

· OMA-ARC-PEEM-2007-0001R01-INP_PEM_1_TS_Scope_Section
· OMA-ARC-2007-0022R01-INP_PEM_1_TS_Encapsulation_of_templates_in_BLOB
· OMA-ARC-2007-0021R01-INP_PEM_1_TS_New_definitions

	
	5 May 2007
	All
	Agreed input from Frankfurt:

· OMA-ARC-PEEM-2007-0015-INP_PEM1_TS_Status_Code_template
· OMA-ARC-PEEM-2007-0016R01-INP_PEM1_TS_Introduction
· OMA-ARC-PEEM-2007-0017-INP_PEEM_TS_normative_references
· OMA-ARC-PEEM-2007-0018-INP_PEEM_TS_additional_terminology
· OMA-ARC-PEEM-2007-0026R01-INP_PEM1_TS_BLOB_Encoding_ASN1

	
	12 Aug 2007
	See description
	Agreed input from:

· OMA-ARC-PEEM-2007-0030R02-INP_PEM_1_Diameter_binding

· OMA-ARC-PEEM-2007-0032R01-INP_PEM1_TS_Change_outline_for_templates
· OMA-ARC-PEEM-2007-0033-INP_PEM1_TS_Add_support_for_URI_data_type
· OMA-ARC-PEEM-2007-0036R01-INP_PEM1_TS_ASN.1_Template_Syntax
· OMA-ARC-PEEM-2007-0037R01-INP_PEM_1_SOAP_Binding
· OMA-ARC-PEEM-2007-0015R02-INP_PEM1_TS_Status_Code_template

	
	23 Sep 2007
	See description
	Agreed input (missed by 12 August update) from:

· OMA-ARC-PEEM-2007-0013R02-INP_PEL_TS_Internal_Policy_Reference_template
· OMA-ARC-PEEM-2007-0014R02-INP_PEL_TS_External_Policy_Reference_template

	
	24 Sep 2007
	See description
	Agreed input from:

· OMA-ARC-PEEM-2007-0041-INP_PEM1_TS_Parameters_to_Appendix

· OMA-ARC-PEEM-2007-0042-INP_PEM1_TS_Replace_ASN.1_with_XML

· Recovered and placed figure 1, and changed Figure 2 & 3 numbering

	
	25 Sep 2007
	See description
	Agreed input from:

· OMA-ARC-PEEM-2007-0052-INP_PEM1_TS_Diameter_binding_Error_Codes_Issue.doc
· OMA-ARC-PEEM-2007-0053-INP_PEM1_TS_Remove_Appendix_E_Issue.doc
· OMA-ARC-PEEM-2007-0054-INP_PEL_TS_Remove_Appendix_E_Issue.doc
· OMA-ARC-PEEM-2007-0054-INP_PEL_TS_Remove_Appendix_E_Issue.doc

Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [IOPPROC].

The following is a model of a set of SCR tables. DELETE THIS COMMENT

B.1 SCR for XYZ Client

	Item
	Function
	Reference
	Status
	Requirement

	XYZ-C-001
	Something mandatory
	Section x.y
	M
	(XYZ-C-001 OR XYZ-C-003) AND
 XYZ-C-002

	XYZ-C-002
	Something optional
	Section x.y
	O
	

	XYZ-C-003
	Dependencies on ZYX
	Section x.y
	M
	ZYX:MCF

	XYZ-C-004
	Dependencies on ZYX
	Section x.y
	O
	ZYX:OCF

B.2 SCR for XYZ Server

	Item
	Function
	Reference
	Status
	Requirement

	XYZ-S-001
	Something mandatory
	Section x.y
	M
	XYZ-S-001 OR XYZ-S-002 OR XYZ-S-003

	XYZ-S-002
	Something optional
	Section x.y
	O
	

	XYZ-S-003
	Dependencies on ZYX
	Section x.y
	M
	ZYX:MSF

	XYZ-S-004
	Dependencies on ZYX
	Section x.y
	O
	ZYX:OSF

Appendix C. Communicating PEM-1 details to the requester [Informative]

C.1 Use cases

Editor’s note: Details to be added.

Interpretation of the BLOB input data structure and generation of output data is always driven by the policy that is processed. If a PEM-1 Template is used within a BLOB, as described in section 5.1.2, the data structure is expected to follow the PEM-1 Template and the policy is expected to be designed to interpret the data structure accordingly.
To facilitate management and interaction by a requestor, PEM-1 Templates may be used to determine the BLOB internal format. In such case all or a subset of policies are expected to follow a specific PEM-1 Template. PEM-1 Templates can be Standard (included with the PEEM specification) or Custom (e.g. vendor specific, defined by the Service Provider which deploys PEEM). Inputs and outputs to be provided as part of the PEM-1 Template are determined by an established convention put in place to meet the needs of the policy, while considering the constraints of the requester.

In order to use PEEM in callable mode, the PEEM requestor is expected to be aware of the input it needs to provide, and the output behaviour. How this is achieved is out of scope of PEEM specifications, but it is assumed to be communicated in a separate communication channel.

When PEM-1 Templates are not used, until the policies’ expected input and output are defined and made available to a requestor, he may not know the data structure of the input to generate and output to expect.

When using PEM-1 Templates the PEEM requestor may know the data structure of the input to be generated and of the output that is expected as a response, before the policies are actually produced.

With certain PEM-1 Templates, until the policies’ logic and variables are defined and made available the PEEM requestor may not always know the complete data structure of the input to generate, or the complete data structure of the output to expect as a response. This may be the case if a PEM-1 Template does not fully specify each and every input/output PEM-1 Parameter to be exchanged (e.g. the precise number of input/output PEM-1parameters for each category of PEM-1 Parameters expected). In this latter case, the use cases will show different ways of handling such a case:

· The SP and the implementations can have their own proprietary understandings/conventions of what data to put into the PEM-1 Templates and how to interpret that data

· The policy provides definition to input/output PEM-1 Parameters needed, but left undefined by the PEM-1 Template

The I?O data structure has to be communicated to the PEEM requestor. See examples in C.1.1 C1.2 on how to achieve that.

The following describe use cases or approaches that can be used to address these challenges.

C.1.1 Template selection

Editor’s note: Details to be added.

A service provider can limit its policies to follow a (or a few) Standard or Custom PEM-1 Template(s). The details (the complete PEM-1 Templates) are communicated to the requester:

· At the time the policy’s design is complete and therefore all input and output PEM-1 Parameters are determined

· At authoring of the applications or at subscription to the an exposed service (via a separate manual or automate mechanism (e.g. discovery))

· At execution of the application (via a separate manual or automate mechanism (e.g. discovery))

C.1.2 BLOB

Editor’s note: Details to be added.

A service provider can decide not to follow any PEM-1 Template (each policy may expect different input and generate different output). The details for each case are still to be communicated to the requestor:

· At the time the policy’s design is complete and therefore all input and output PEM-1 Parameters are defined

· At authoring of the applications or at subscription to the an exposed service (via a separate manual or automate mechanism (e.g. discovery))

· At execution of the application (via a separate manual or automate mechanism (e.g. discovery))

C.2 Best Practices / Guidelines

The input is interpreted by the policy and output details are determined by the policy.

From the requestor point of view, the input and output details are defined by pre-determined PEM-1 Parameters (in the case a PEM-1 Template is being used).

In some cases the input and output details are defined by a combination of pre-determined PEM-1 Template including defined PEM-1 Parameters in combination with additional parameters needed as determined by the logic of the policy. This combination also needs to take into account the constraints of the requester (some parameters desired by the policy may not be always be provided by the requester).

Editor’s note: Details to be added.

Appendix D. Normative PEM-1 Template Bindings [Normative]

This appendix has the detailed schema, whereas the sections in the main body have high-level intro. This requires further clarification.

D.1

D.1.1

D.1.2

1.
·
·
·
·
·
·
2.
·
·
3.
·
·
·
·
·
·
·

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

D.1.3

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	

	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

D.1.4

D.2

D.2.1

D.2.1.1

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	

	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

D.2.1.2

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	

	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	

	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

1.
2.

Appendix E. Informative PEM-1 Template Bindings [Informative]

Same as note in appendix D

Appendix F. ASN.1 PEM-1 template syntax
F.1 ASN.1 Syntax overview

Abstract syntax is a representation of data (typically either a message passing over a communications link or a computer program being compiled) which is independent of machine-oriented structures and encodings.

Transfer syntax is a representation of data dependent on machine-oriented structures and encodings, typically used in communications between machines. Transfer syntax is sometimes referred to as concrete syntax.

A compiler's internal representation of a program will typically be specified by an abstract syntax in terms of categories such as "statement", "expression" and "identifier". This is independent of the concrete syntax of the language being compiled (though it will often be very similar). A parse tree is similar to an abstract syntax tree but it will typically also contain features such as parentheses which are syntactically significant but which are implicit in the structure of the abstract syntax tree.

The fundamental concepts of ASN.1 are the inter-related notions of type and value. A type is a (non-empty) set of values, and represents a potential for conveying information. Only values are actually conveyed, but their type governs the domain of possibilities. Information is conveyed by selecting a particular value of the type, rather than others. The type may also be associated with pre-defined values (enumerated, or a range of values). Other types may have an infinite number of values.

An abstract syntax can be defined as a type (normally a structured type). Its values a re precisely the set of valid messages under that abstract syntax. Messages are structured into fields, and the fields themselves are defined as types.

A type is a subtype of another type (its parent), if its values are a subset of those of the parent. For example, an URI can be defined as a subtype of a string.

A type may be simple (e.g. Boolean, integer) or structured, which is defined in terms of other types.

Any type can be given a name by which it can be referenced. A type is defined by means of a type assignment, and a value is defined by a value assignment. A type assignment has three syntactic components:

· the type reference (the name being allocated to the new type)
· the symbol “::=” (which can be read as “is defined as”)
· the appropriate type notation.

For example:

User UserIdentification ::=SEQUENCE

{

userName
GenericString,

userDomain
GenericString,

userToken
INTEGER

}

Defines a type called UserIdentification. Everything following the “::=” constitutes valid type notation.

A value assignment is similar, but has additional syntactic component: the type to which the value belongs, and an association between values to the fields within the type.

For example:

sampleUser UserIdentification ::=SEQUENCE

{

userName
“Jane.Doe”,

userDomain
“provider.com”,

userToken
1234

}

Defines a value for of type UserIdentification called sampleUser. Everything following the “::=” constitutes valid notation for a value of UserIdentification.

In an ASN.1 specification, it is the types, and the sets of possible values which are most significant. In instances of of communication (e.g. when conveying information via the PEM-1 interface, it is the values themselves which are most significant).

PEM-1 specification is focusing on types and sets of possible values, and does not specify the values themselves.

The following sections document the ASN.1 Abstract and Transfer syntax for Standard PEM-1 Templates. The ASN.1 Abstract and Transfer syntax for Custom PEM-1 Templates is similar, but the specific types and values are defined and published/advertised by the Service Provider that defines the Custom PEM-1 Templates, and are out-of-scope for this specification.

F.2 ASN.1 Transfer Encoding Options

F.3 Standard PEM-1 Templates syntax
This section documents the ASN.1 Abstract Syntax and the ASN.1 Transfer Syntax for the Standard PEM-1 Templates.
F.3.1 InternalPolicyReference

This section documents the ASN.1 Abstract Syntax and the ASN.1 Transfer Syntax for the InternalPolicyReference Standard PEM-1 Template.
F.3.1.1 ASN.1 Abstract Syntax
The ASN.1 Abstract Syntax for the InternalPolicyReference for the PEM-1 Standard Template is:

InternalPolicyReference ::=SEQUENCE

{

templateID

GenericString,

templateVersion
GenericString,

intPolicyID

GenericString

}
F.3.1.2 ASN.1 Transfer Syntax
F.3.2 ExternalPolicyByReference

This section documents the ASN.1 Abstract Syntax and the ASN.1 Transfer Syntax for the ExternalPolicyByReference Standard PEM-1 Template.
F.3.2.1 ASN.1 Abstract Syntax
The ASN.1 Abstract Syntax for the ExternalPolicyByReference for the PEM-1 Standard Template is:

ExternalPolicyReference ::=SEQUENCE

{

templateID

GenericString,

templateVersion
GenericString,

extPolicyID

URI

}
F.3.2.2 ASN.1 Transfer Syntax
F.3.3 ExternalPolicyByValue
This section documents the ASN.1 Abstract Syntax and the ASN.1 Transfer Syntax for the ExternalPolicyByValue Standard PEM-1 Template.
F.3.3.1 ASN.1 Abstract Syntax
The ASN.1 Abstract Syntax for the ExternalPolicyByValue for the PEM-1 Standard Template is:

ExternalPolicyByValue ::=SEQUENCE

{

templateID

GenericString,

templateVersion
GenericString,

extPolicyID

GenericString

}
F.3.3.2 ASN.1 Transfer Syntax
F.3.4 OutputStatus

This section documents the ASN.1 Abstract Syntax and the ASN.1 Transfer Syntax for the OutputStatus Standard PEM-1 Template.
F.3.4.1 ASN.1 Abstract Syntax
The ASN.1 Abstract Syntax for the OutputStatus PEM-1 Standard Template is:

ExternalPolicyReference ::=SEQUENCE

{

templateID

GenericString,

templateVersion
GenericString,

statusCode

INTEGER

}
F.3.4.2 ASN.1 Transfer Syntax
…
Appendix G. I/O parameters (Informative)

This section is provided as guidance to how to construct I/O parameters for Standard PEM-1 and/or Custom PEM-1 Templates. Input/output parameters listed are non-exhaustive, and may be used in multiple Templates, if and as needed, to complete the Standard PEM-1 Templates documented in the normative sections of the document. For convenience, I/O parameters have been grouped here by the nature of the information they convey (e.g. parameters relative to template identification, originator identity, etc). The datatypes of I/O parameters have not been indicated here, since these parameters are only recommended, hence the parameters themselves, and their types may be added at will by the Service Provider and Vendors. PEM-1 templates may contain different combinations of parameters specified in this document, as well as any other parameters needed by the policy.
G.1 Origin-Identification

This section provides guidance on how to pass information about the origin and identity related to the original request for access to a resource (the resource being the one that invokes the help of PEEM). This may include information about a possible principal (e.g. end-user), the device the principal is using, and the application used by the principal to make the request. The following parameters may be used in the templates when conveying this type of information:

· OriginatorID – a parameter that identifies a principal that issued a request, or on behalf of whom a request was issued (name, pseudonym, other)

· OriginatorDomain – a parameter that identifies the originating principal’s domain (realm)

· OriginatorDeviceID – a parameter that identifies the originating principal’s device

· OriginatingApplicationID – a parameter that identifies the application via which the request for accessing a resource was made (ApplicationIDs would be assigned by the Service Provider and must be unique within the scope of that Service Provider)

· OriginatingApplicationDomain – a parameter that identifies the domain from which the application made the request
G.2 Target-Identification

This section provides guidance on how to pass information about the destination and identity related to the original request for access to a resource (the resource being the one that invokes the help of PEEM). Thi may include information about a possible principal (e.g. end-user), the device the principal is using, and the application used by the principal to make the request. The following parameters may be used in the templates when conveying this type of information:

· TargetID – a parameter that identifies a principal that is the target of a request (name, pseudonym, other)

· TargetDomain – a parameter that identifies the target principal’s domain (realm)

· TargetDeviceID – a parameter that identifies the target principal’s device

· TargetApplicationID – a parameter that identifies the application via which the target principal may be reached (ApplicationIDs would be assigned by the Service Provider and must be unique within the scope of that Service Provider)

TargetApplicationDomain – a parameter that identifies the domain in which the target application operates
G.3 Resource-Identification

This section provides guidance on how to pass information about the resource that needs policy enforcement. This may include information useful in identifying the resource that issues a request to PEEM, the operation that was requested from this resource by some other application, the type of service that is involved in that original request. The following parameters may be used in the templates when conveying this type of information:

· ResourceID – a parameter that identifies the resource that is accessed by the originating principal (or an application representing that principal). This is the resource that issues the request towards PEEM (ResourceIDs would be assigned by the Service Provider and must be unique within the scope of that Service Provider)

· ResourceDomain – a parameter that identifies the domain in which that resource resides

· RequestedOperation – a parameter that identifies the request that was made against this resource

· RequestType – a parameter that categorizes the type of request that was made against this resource (e.g. end-user to end user, end-user to group, etc)
G.4 Charging-Identification
This section provides guidance on how to pass information about the entity that would be potentially charged in conjunction with handling a policy evaluation request. The following parameters may be used in the templates when conveying this type of information:

· ChargedPrincipalID – a parameter that identifies the principal that should be charged in conjunction with this request

· ChargedPrincipalDomain – a parameter that indicates the domain to which the charged principal belongs
G.5 Environment-Identification
This section provides guidance on how to pass state information about the environment in which the request to the resource has been made. The following parameters may be used in the templates when conveying this type of information:

· TimeofDay – a parameter that defines the time-of-day the original request was made

· OriginatorSphere – a parameter that defines the originating principal’s environment (home, work, other)

 : Web App

 : PEEM Server

evaluatePolicyRequest

Perform evaluation

evaluatePolicyResponse

 : Web App

 : PEEM Server

evaluatePolicyRequest

Perform evaluation

evaluatePolicyResponse

policyResultRequest

Create correlation id

With correlator

resultResponse

With correlator

(2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20050101-I]
(2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20050101-I]

