OMA-TS-ParlayREST_Common-V1_0-20100126-D
Page 14 V(21)

	[image: image1.jpg]«“+OMa

Open Mobile Alliance

	

	RESTful bindings for Parlay X Web Services - Common

	Draft Version 1.0 – 26 Jan 2010

	Open Mobile Alliance

	OMA-TS-ParlayREST_Common-V1_0-20100126-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2009 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

51.
Scope

2.
References
6
2.1
Normative References
6
2.2
Informative References
6
3.
Terminology and Conventions
7
3.1
Conventions
7
3.2
Definitions
7
3.3
Abbreviations
7
4.
Introduction
8
4.1
Version 1.0
8
5.
Common Considerations for ParlayREST
9
5.1
Use of REST Guidelines
9
5.2
Namespaces
9
5.3
Unsupported Formats
9
5.4
Authoring Style
9
5.4.1
Names
9
5.4.2
Case usage for names
9
6.
Shared Data Type Definitions
10
6.1
Address data items
10
6.1.1
Charging
10
6.1.2
Charging data type
10
6.2
Common data types
11
6.2.1
Enumeration: TimeMetrics
11
6.2.2
Element: TimeMetric
11
6.2.3
Root element: ChargingInformation
12
6.2.4
Root element: CallbackReference
12
6.2.5
Root element: Link
12
6.2.6
Root element: RequestError
12
6.2.7
Root element: ServiceException
13
6.2.8
Root element: PolicyException
13
6.3
Exception definition
13
6.3.1
HTTP Response Codes
13
6.3.2
GET/PUT/POST/DELETE
13
6.3.3
Service exception
14
6.3.4
Policy exception
14
Appendix A.
Change History (Informative)
15
A.1
Approved Version History
15
A.2
Draft/Candidate Version 1.0 History
15
Appendix B.
Deployment Considerations (Informative)
16
B.1
ParlayREST client application executing in a server execution environment
17
B.2
ParlayREST client application executing in a mobile device execution environment
18
B.3
ParlayREST client application executing in a fixed device execution environment
19
Appendix C.
Security considerations for ParlayREST (Informative)
20

Figures

17Figure 1 ParlayREST API accessed from a server execution environment (e.g. 3rd party Service Provider application)

18Figure 2 ParlayREST API accessed from a mobile device execution environment

19Figure 3 ParlayREST API accessed from by a fixed device execution environment

Tables

11Table 1: Time Metrics Values

12Table 2: TimeMetric Structure

12Table 3: ChargingInformation Structure

12Table 4: CallbackReference Structure

12Table 5: Link Structure

13Table 6 RequestError

13Table 7 ServiceExceptiion

13Table 8 PolicyException

1. Scope
The scope of this specification is to specify an HTTP protocol binding for the set of Parlay X Web Services specifications in OMA, using REST architectural style.

The specification defines an HTTP protocol binding for an abstract API, based on existing OMA enablers and assumes that they primarily are accessed from browsers or other M2M devices. For B2B usage the SOAP based Parlay X specifications are recommended.

The ParlayREST TSs for version 1.0 addresses the following enablers:
· Short Messaging, as defined in PSA V1_0 [PSA]
· Multimedia Messaging, as defined in PSA V1_0 [PSA]
· Terminal Location, as defined in PSA V1_0 [PSA]
· Payment, as defined in PSA V1_0 [PSA]
2. References

2.1 Normative References

	[ISO4217]
	“ISO 4217 currency names and code elements”, URL:http://www.iso.org/

	[PSA]
	“Reference Release Package for Parlay Service Access”, Open Mobile Alliance™, OMA-ERP-PSA-V1_0, URL:http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC3261]
	“SIP: Session Initiation Protocol”, J. Rosenberg, et. Al, June 2002, URL: http://www.ietf.org/rfc/rfc3261.txt

	[RFC3986]
	“Uniform Resource Identifier (URI): Generic Syntax”, T. Berners-Lee, R. Fielding, L. Masinter, January 2005, URL:http://www.ietf.org/rfc/rfc3986.txt

	[RFC3966]
	“The tel URI for Telephone Numbers”, H. Schulzrinne, December 2004, URL:http://www.ietf.org/rfc/rfc3966.txt

	[RFC4234]
	“Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell. October 2005, URL:http://www.ietf.org/rfc/rfc4234.txt

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL:http://www.openmobilealliance.org/

	[XMLSchema1]
	W3C Recommendation, XML Schema Part 1: Structures Second Edition, URL: http://www.w3.org/TR/xmlschema-1/

	[XMLSchema2]
	W3C Recommendation, XML Schema Part 2: Datatypes Second Edition, URL: http://www.w3.org/TR/xmlschema-2/

2.2 Informative References

	[OMADICT]
	“Dictionary for OMA Specifications”, Version x.y, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2_7, URL:http://www.openmobilealliance.org/

	[REST_WP]
	“White Paper on Guidelines for ParlayREST API specifications”, Open Mobile Alliance™,
OMA-WP-Guidelines-for-ParlayREST-API-specifications, URL:http://www.openmobilealliance.org/

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

For the purpose of this TS, all definitions from the OMA Dictionary apply [OMA-DICT].
	[N/A]
	[N/A]

3.3
Abbreviations
	API
	Application Programming Interface

	B2B
	Business-to-business

	DNS
	Domain Name Server

	HTTP
	Hypertext Transfer Protocol

	ID
	Identifier

	IP
	Internet Protocol

	JSON
	JavaScript Object Notation

	M2M
	Machine-to-machine

	OMA
	Open Mobile Alliance

	PSA
	Parlay Service Access

	REST
	Representational State Transfer

	URI
	Uniform Resource Identifier

	URL
	Uniform Resource Locator

	XML
	Extensible Markup Language

4. Introduction

To ensure consistency for developers using the ParlayREST enabler, this “Common” technical specification aims to contain all items that are common across all HTTP protocol bindings using REST architectural style for the various individual interface definitions, such as namespaces, naming conventions and fault definitions. In addition, data types that are shared between two or more protocol bindings are included in this specification as well.

4.1 Version 1.0

This version of the ParlayREST Common Technical Specification contains common namespaces, naming conventions and fault definitions, as well as shared data types for ParlayREST V1_0.

5. Common Considerations for ParlayREST
5.1 Use of REST Guidelines
Representational State Transfer (REST) is an architectural style for defining distributed systems. Entities in these systems communicate using the interfaces they expose. As there is no common understanding in the industry what a REST interface should look like, for the purpose of REST API specification development for the ParlayREST Enabler, guidelines for defining REST bindings for Parlay X have been collected in [REST_WP]. These guidelines include general key principles that are used in mapping the Parlay X SOAP bindings to REST bindings.

5.2 Namespaces

The namespace for the common data types is:

urn:oma:xml:rest:common:1.0

The 'xsd' namespace is used in the present document to refer to the XML Schema data types defined in XML Schema [XMLSchema1, XMLSchema2]. The use of the name 'xsd' is not semantically significant.

5.3 Unsupported Formats

Servers must return a 406 Not Acceptable error if a message body format (e.g. XML or JSON) requested by the application is not supported [RFC2616].
5.4 Authoring Style

5.4.1 Names

Names will be meaningful, and not abbreviated in a way that makes the name hard to understand for users of the REST interfaces that are not literate in computer programming. This does not preclude the use of commonly understood acronyms within names (e.g. ID) or commonly used abbreviations (e.g. max). However, the resulting name must still be meaningful.

5.4.2 Case usage for names

Two general cases are provided for, both using mixed case names; one with a leading capital letter, the other with a leading lowercase letter.

Names for all elements (all cases where the text name='Name' is used) will start with a letter and be mixed case, with the leading letter of each word capitalized. Words will not be separated by white space, underscore, hyphen or other non-letter character.

The following data types will have a leading uppercase letter – complex element names, root element names, element names in an enumeration.

The following data types will have a leading lowercase letter – all other names.

For names consisting of concatenated words, all subsequent words start with a capital. For example “concatenatedWord” or “BothCapitals”.

Resource names are all lowercase.

6. Shared Data Type Definitions

This section contains data type definitions which are shared among two or more REST protocol bindings.
6.1 Address data items

Addresses, unless the specification provides specific additional instruction, MUST conform to the address portion of the URI definition provided in RFC 3966 [RFC3966] for 'tel:' addresses, RFC 3261 [RFC3261] for 'sip:' addresses or the definition given below for shortcodes or aliased addresses. Optional additions to the address portion of these URI definitions MUST NOT be considered part of the address accepted by the ParlayREST interfaces, and an implementation MAY choose to reject an address as invalid if it contains any content other than the address portion.

When processing a 'tel:' URI, as specified in RFC 3966 [RFC3966], ParlayREST interface MUST accept national addresses (those not starting with '+' and a country code) and MUST accept international addresses (those starting with '+' and a country code).

When specified in the definition of a service operation, the URI may contain wildcard characters in accordance with the appropriate specification (i.e. RFC 3966 [RFC3966] or RFC 3261 [RFC3261]).

Shortcodes are short telephone numbers, usually 4 to 6 digits in length reserved for telecom service providers' own functionality. They shall be differentiated from national addresses by the use of a 'short:' rather than 'tel:' URI scheme. The short code defined in the URI consists of a string of digits with no non-digit characters.

Support for aliases in addresses is provided by use of the URI defined in RFC 3986 [RFC3986]. This allows for arbitrary data to be submitted to the ParlayREST interface. The following is an example of how this could be applied:

<uri scheme>:<generic syntax>

An alias is generally a relatively short character string that holds a scrambled address such that only the application identified in the URI can expand it.

6.1.1 Charging

This section deals with in-band charging, i.e. passing charging data as part of the API request. To enable this capability to be provided across a variety of services in a consistent manner, the information to be provided in the message for charging information is defined as a common charging data type.

6.1.2 Charging data type

The charging information is provided in an XML data type, using the following schema.

<xsd:complexType name="ChargingInformation">

 <xsd:sequence>

 <xsd:element name="description" type="xsd:string" minOccurs="1" maxOccurs="unbounded"/>

 <xsd:element name="currency" type="xsd:string" minOccurs="0" maxOccurs="1"/>

 <xsd:element name="amount" type="xsd:decimal" minOccurs="0" maxOccurs="1"/>

 <xsd:element name="code" type="xsd:string" minOccurs="0" maxOccurs="1"/>

 </xsd:sequence>

</xsd:complexType>

The application accessing the Service provides this information:

· Description is an array of text. The first entry of a list will often be used to provide billing text. This text does not have specific required content, but would likely include information on the business, the content or service provided, and a transaction identifier. Credit card statements are a good example of description text provided by different companies.

· When more than one entry is provided, the rest should be references to individual operations relevant to the charging. Reference should be set to a value provided in a response message to the operation as a unique identifier to correlate individual operation.

· Currency in which the charge is to be applied. Values for the currency field are defined by ISO 4217 [ISO4217].

· Defines the amount to be charged.

· Code specifies a charging code which references a contract under which this charge is applied. The code identifier is provided by the Service Provider.

The charging information provided may not be acceptable to the Service Provider. For example, the Service Provider may limit the amount that may be specified for a particular Service or for a particular Service Requester. If the information provided is not acceptable, an appropriate fault message may be returned to the requester (SVC0007 and POL0012 are defined as a generic charging fault).

Especially in case of charging operation such as creating a charge or refund, it is strongly recommended to convey a list of relevant operations related to charging over a description part as described above.

This is useful especially when a charging operation is performed after a certain set of operations.

Some of the services may be meaningful to the user only when a certain set of operations is completed. In that case, service provider may want to charge a user only upon a completion of the entire process, instead of charging per operation. Also, service provider may want to control the actual amount of charging depending on a certain condition, e.g., service usage volume, independent of the volume control provided by the network operators. This is also the case where it is preferable to perform charging operation after a completion of certain set of operations. In these cases where a service provider charges a user for the consumption of a certain service, the service provider is recommended to provide the references to the individual operations performed as evidences. This information can be referenced by the relevant entities to ensure the validity of charging when necessary.

It should be noted that this is for a service provider to provide a list of evidences of their direct use of operations. Any mapping of underlying operations performed internally in the operator must be performed by the operator if necessary. How to maintain the consistency between the information kept at service provider and the operators is out of scope. Also, charging aspects which do not relate to any operations are not covered.

6.2 Common data types

6.2.1 Enumeration: TimeMetrics

List of time metric values.

	Enumeration
	Description

	Millisecond
	Millisecond

	Second
	Second

	Minute
	Minute

	Hour
	Hour

	Day
	Day

	Week
	Week

	Month
	Month

	Year
	Year

Table 1: Time Metrics Values
6.2.2 Element: TimeMetric

For services that provide service based on a time interval or duration or similar metric, this type is used to specify the time metric.

	Element name
	Element type
	Optional
	Description

	Metric
	TimeMetrics
	No
	Metric to use for time measurement

	Units
	xsd:int
	No
	Number of units of TimeMetrics

Table 2: TimeMetric Structure
6.2.3 Root element: ChargingInformation

For services that include charging as an inline message part, the charging information is provided in this data structure.

	Element name
	Element type
	Optional
	Description

	Description
	xsd:string [1..unbounded]
	No
	An array of description text to be use for information and billing text

	Currency
	xsd:string
	Yes
	Currency identifier as defined in ISO 4217 [ISO4217]

	Amount
	xsd:decimal
	Yes
	Amount to be charged

	Code
	xsd:string
	Yes
	Charging code, referencing a contract under which the charge is applied

Table 3: ChargingInformation Structure
6.2.4 Root element: CallbackReference

For a client to receive notification the CallbackReference data structure is used.

	Element name
	Element type
	Optional
	Description

	notifyURL
	xsd:anyURI
	No
	Notify Callback URL

	correlator
	xsd:string
	No
	Correlation information

	interfaceName
	xsd:string
	Yes
	Name of interface: POST, PUT, ...

Table 4: CallbackReference Structure
6.2.5 Root element: Link

The element Link is provided by the server and points to elements external to the current resource.

	Element name
	Element type
	Optional
	Description

	rel
	xsd:string
	No
	Describes the relationship between the URI and the resource

	href
	xsd:anyURI
	No
	URI

Table 5: Link Structure
The Link element is provided by the server and it points to elements external to the current resource.

The rel element is a string. The possible values for the string are defined in each REST enabler.
6.2.6 Root element: RequestError

	Element name
	Element type
	Optional
	Description

	Link
	Link[0..unbounded]
	No
	Link to elements external to the resource

	Detail
	ServiceException

PolicyException
	No
	Exception Details

Table 6 RequestError
6.2.7 Root element: ServiceException

	Element name
	Element type
	Optional
	Description

	messageId
	xsd:string
	No
	Message identifier, with prefix SVC

	text
	xsd:string
	No
	Message text, with replacement variables marked with %#

	variables
	xsd:string [0..unbounded]
	Yes
	Variables to substitute into Text string

Table 7 ServiceExceptiion
6.2.8 Root element: PolicyException

	Element name
	Element type
	Optional
	Description

	messageId
	xsd:string
	No
	Message identifier, with prefix POL

	text
	xsd:string
	No
	Message text, with replacement variables marked with %#

	variables
	xsd:string [0..unbounded]
	Yes
	Variables to substitute into Text string

Table 8 PolicyException
6.3 Exception definition
6.3.1 HTTP Response Codes
HTTP protocol responses.

200 – Success

201 – Created

204 – No Content

400 - Invalid parameters in the request

401 - Authentication failure

403 - Application don't have permissions to access resource due to the policy constraints (request rate limit, etc)

405 - Method not allowed by the resource

6.3.2 500 - Internal server error

6.3.3 GET/PUT/POST/DELETE
If a method is not allowed by the resource, then server should also include the ‘Allow: {GET|PUT|POST|DELETE’ field in the response as per section 14.7 [RFC2616}.
Exceptions are defined with three data items.

The first data item is a unique identifier for the message. This allows the receiver of the message to recognize the message easily in a language-neutral manner. Thus applications and people seeing the message do not have to understand the message text to be able to identify the message. This is very useful for customer support as well, since it does not depend on the reader to be able to read the language of the message.

The second data item is the message text, including placeholders (marked with %) for additional information. This form is consistent with the form for internationalization of messages used by many technologies (operating systems, programming environments, etc.). Use of this form enables translation of messages to different languages independent of program changes.

The third data item is a list of zero or more strings that represent the content to put in each placeholder defined in the message in the second data item.

6.3.4 Service exception

The service exception is provided in an XML data type, using the following schema.

 <xsd:complexType name="ServiceException">

 <xsd:sequence>

 <xsd:element name="messageId" type="xsd:string"/>

 <xsd:element name="text" type="xsd:string"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="variables" type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

When a service is not able to process a request, and retrying the request with the same information will also result in a failure, and the issue is not related to a service policy issue, then the service will issue a fault using the ServiceException fault message. A Service Exception uses the letters 'SVC' at the beginning of the message identifier.

Examples of service exceptions include invalid input, lack of availability of a required resource or a processing error.

6.3.5 Policy exception

The policy exception is provided in an XML data type, using the following schema.

<xsd:complexType name="PolicyException">

 <xsd:sequence>

 <xsd:element name="messageId" type="xsd:string"/>

 <xsd:element name="text" type="xsd:string"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="variables" type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

When a service is not able to complete because the request fails to meet a policy criteria, then the service will issue a fault using the PolicyException fault message. To clarify how a Policy Exception differs from a Service Exception, consider that all the input to an operation may be valid as meeting the required input for the operation (thus no Service Exception), but using that input in the execution of the service may result in conditions that require the service not to complete. A Policy Exception uses the letters 'POL' at the beginning of the message identifier.

Examples of policy exceptions include privacy violations, requests not permitted under a governing service agreement or input content not acceptable to the service provider.

Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

A.2 Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Versions

OMA-TS-ParlayREST-Common-V1_0
	25 May 2009
	All
	Baseline TS as per agreed:

 OMA-ARC-REST-2009-0002-INP_ParlayREST_TS_document

Name changed to ParlayREST-Common

Versionning fixed

	
	11 Nov 2009
	2, 3, 4, 5, 6
	Introduce initial structure (OMA-ARC-REST-2009-0064R01)

	
	2 Dec 2009
	5, 6
	Added OMA-ARC-REST-2009-0085R01-CR_Update_to_COMMON_TS.doc and OMA-ARC-REST-2009-0080R03-INP_ParlayREST_Link_issue.doc and OMA-ARC-REST-2009-0111-INP_Common_TS_Naming_Conventions and OMA-ARC-REST-2009-0100R01-CR_REST_Common_TS.doc

	
	3 Dec 2009
	1
	Update from OMA-ARC-REST-2009-0112-INP_Cleanup_Scope_of_Common_TS.doc

	
	3 Dec 2009
	2
	Updated from OMA-ARC-REST-2009-0114-INP_SMS_TS_Reference_Section

	
	3 Dec 2009
	3
	Updated from OMA-ARC-REST-2009-0115R01-INP_SMS_TS_Section_3.doc

	
	3 Dec 2009
	App. A
	Added from OMA-ARC-REST-2009-0122R01-CR_Deployment_Considerations

	
	7 Dec 2009
	All
	Document clean-up, added lost Exception element tables.

	
	11 Dec 2009
	all
	Update after final CC, see OMA-ARC-REST-2009-0170-MINUTES_11Dec2009_CC for details

 OMA-ARC-REST-2009-0175R01-CR_Authorization_and_protection_of_sensistive_data

	
	16 Dec 2s09
	All
	Editorial Fixes

 History table

Appendix B. Deployment Considerations (Informative)

Applications using the ParlayREST API can be categorized by their execution environment:

· Application is a ParlayREST client application executing in a server execution environment (e.g. a 3rd party application).

· Application is a ParlayREST client application executing in a mobile device execution environment.

· Application is a ParlayREST client application executing in a fixed device execution environment.

ParlayREST API client can execute in any of the above execution environments.

Issues that are dependent on the ParlayREST execution environment and can impact strategic deployment decisions, interoperability, scalability include (non-exhaustive list):

· Notifications sent from ParlayREST server to ParlayREST client application, for example:

i. There must be an active "listener" on the application host (in this case the client device), ready to receive the incoming notification via the HTTP protocol.
ii. This does not have to be the application itself, but at least some host service/client which can invoke the specific application when needed.

iii. In a client-server HTTP binding, this requires that the client has the support of an HTTP listener service.
· Security aspects (e.g. ParlayREST client application authentication)

While solutions to particular issues related to the ParlayREST client application execution environment are out-of-scope for the ParlayREST enabler, other OMA enablers should be re-used (where applicable) to address such particular issues.
B.1 ParlayREST client application executing in a server execution environment
[image: image2.png]Service Provider

R t ¥, " *requestiresponse
eques Response or subscriveinolity

Service Layer

Network Operator Domain

Figure 1 ParlayREST API accessed from a server execution environment (e.g. 3rd party Service Provider application)
The RESTful API exposed by ParlayREST server deployed in the Network Operator service layer domain, may be accessed by a ParlayREST client application executing on a server resident in the Service Provider domain.This deployment can support all resources and operations specified in ParlayREST. There are no particular issues with support of notifications from ParlayREST server to ParlayREST client application. For security aspects, see the Common TS security considerations section.
B.2 ParlayREST client application executing in a mobile device execution environment
[image: image3.png]Mobile
Device

*
“requestiesponse
Response or subseribeiotify

Request *

Service Layer

Network Operator Domain

Figure 2 ParlayREST API accessed from a mobile device execution environment
The RESTful API exposed by ParlayREST server deployed in the Network Operator service layer domain, may be accessed by a ParlayREST client application executing on an end user mobile device. This deployment can support most resources and operations specified in ParlayREST. There are however particular issues with support of notifications from ParlayREST server to ParlayREST client application:
· Typically in mobile devices, the client does not have the support for an HTTP listener service. The specified client notification APIs may have to be delivered by alternative means. OMA Push [Push] should be considered to be used to deliver the notifications to the ParlayREST client application.

· It must be possible to actually deliver the notification to the ParlayREST client application, i.e. there must be no boundary across which the protocol is typically blocked. In a client-server HTTP binding, this will typically be an issue as

· The client is typically within some private network behind a firewall (e.g. PLMN Operator mobile network or home network)

· The client does not have a fixed IP address or an IP address that is resolvable via DNS.
· In such cases, a notification service such as OMA Push should be considered to be used to bridge the firewall border and resolve the target address of the notification to an actual client address.
For security aspects, see the Common TS security considerations section.
B.3 ParlayREST client application executing in a fixed device execution environment

[image: image4.png]EndUser fixed Device

*
*requestiresponse Request *
or subseribehotify Response

Service Layer

Network Operator Domain

Figure 3 ParlayREST API accessed from by a fixed device execution environment
The RESTful API exposed by a ParlayREST server deployed on the Network Operator service layer domain, may be accessed by a ParlayREST client application executing on a fixed device connected to the Network Operator.
This deployment can support most resources and operations specified in ParlayREST. Some issues with support of notifications from ParlayREST server to ParlayREST client applications may be similar to those mentioned in Appendix X.2. Solutions to those issues may however rely on other mechanisms (e.g. use of COMET).

For security aspects, see the Common TS security considerations section.
Appendix C. Security considerations for ParlayREST

(Informative)

This section proposes a common approach for all ParlayREST APIs in handling authorization and protection of sensitive data.

API implementations may have to meet different security requirements and should be able to choose desired level of protection. Therefore API interface design needs to ensure possibility to implement such protection in the most efficient (performance, cost) and convenient for the application way. RESTful architecture style and reliance on the HTTP protocol make it possible to utilize generic and API agnostic components for functions such as security, policy enforcement, load balancing, etc. However, depending on desired level of security, for example, a certain degree of coordination may be required between API implementation and the security proxy gateway that would usually be typically deployed in front of the API server.

In this proposal we assume the following:

1) ParlayREST APIs are resource centric

2) Resources could be identified using short term (e.g. inbound SMS message) or long term (e.g. phone number) URIs.

3) The Application needs to be authorized to access resource and specific CRUD (create/read/update/delete) operations that can be performed on that resource.

4) Due to the strict performance and availability requirements - every request from the application needs to carry all necessary authorization data (the server may have difficulty caching session security data)

5) Long lasting URIs are posing potential security threat and may need to be protected for some implementations. Mainly because they are more likely (as compared to request/reply payloads) to be stored by the application or intermediaries for debugging or audit/log reasons (even if secure channel like HTTPS is used).

Following API usage scenarios where identified:
1) Application (server) -> Security gateway -> API implementation -> Enabler

2) Application (end-user device) -> Security gateway -> API Implementation -> Enabler

3) Application (server) = (web page)-> Browser on end-user device -> Security gateway -> API implementation -> Enabler

4) Application (end-user device) -> Application server -> Security gateway -> API Implementation -> Enabler

5) Browser (end-user device) -> Application server -> Security gateway -> API Implementation -> Enabler

6) Enabler -> API implementation -> Security gateway -> Application server

7) Enabler -> API implementation -> Security gateway -> Application server -> Application (end-user device)
8) Enabler -> API implementation -> Security gateway -> Application (end-user device)
9) Enabler -> API implementation -> Security gateway -> Browser (end-user device)
10) Enabler -> API implementation -> Security gateway -> Application server -> Browser (end-user device)
Depending on the API and usage scenario different forms of authentication, authorization and data protection may be required.

(2009 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20090101-I]
(2009 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20090101-I]

