OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20110702-D
Page 9 V(36)

	[image: image1.jpg]
	

	RESTful Network API for
Notification Channel

	Draft Version 1.0 – 02 Jul 2011

	Open Mobile Alliance

	OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20110702-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

61.
Scope

2.
References
7
2.1
Normative References
7
2.2
Informative References
7
3.
Terminology and Conventions
8
3.1
Conventions
8
3.2
Definitions
8
3.3
Abbreviations
8
4.
Introduction
9
4.1
Version 1.0
9
5.
Notification Channel API definition
10
5.1
Resources Summary
11
5.2
Data Types
13
5.2.1
XML Namespaces
13
5.2.2
Structures
13
5.2.2.1
Type: NotificationChannelList
13
5.2.2.2
Type: NotificationChannel
13
5.2.2.3
Type: NotificationList
14
5.2.2.4
Type: ChannelDataType
14
5.2.2.5
Type: LongPollingData
15
5.2.3
Enumerations
15
5.2.3.1
Enumeration: ChannelType
15
5.2.4
Values of the Link “rel” attribute
15
5.3
Sequence Diagrams
15
5.3.1
Create notification channel
15
5.3.2
Notifications delivered to application using long-polling
16
5.3.3
Request timeout response the to long-polling
18
5.3.4
Multiple notifications delivered to application in response to the long-polling
18
5.3.5
Max number of notifications reached during the long-polling
19
5.3.6
Failed delivered notification due to timeout during the long-polling
21
6.
Detailed specification of the resources
22
6.1
Resource: Notification channels
22
6.1.1
Request URL variables
22
6.1.2
Response Codes and Error Handling
22
6.1.3
GET
22
6.1.3.1
Example: Retrieve active notification channels (Informative)
22
6.1.3.1.1
Request
22
6.1.3.1.2
Response
22
6.1.4
PUT
23
6.1.5
POST
23
6.1.5.1
Example: Create notification channel (Informative)
23
6.1.5.1.1
Request
23
6.1.5.1.2
Response
24
6.1.6
DELETE
24
6.2
Resource: Individual notification channel
24
6.2.1
Request URL variables
24
6.2.2
Response Codes and Error Handling
25
6.2.3
GET
25
6.2.3.1
Example: Retrieve individual notification channel (Informative)
25
6.2.3.1.1
Request
25
6.2.3.1.2
Response
25
6.2.4
PUT
25
6.2.5
POST
26
6.2.6
DELETE
26
6.2.6.1
Example: Removing notification channel (Informative)
26
6.2.6.1.1
Request
26
6.2.6.1.2
Response
26
6.3
Resource: Notification list
26
6.3.1
Request URL variables
26
6.3.2
Response Codes and Error Handling
26
6.3.3
GET
26
6.3.4
PUT
26
6.3.5
POST
26
6.3.5.1
Example 1: Single notification delivered including content (Informative)
27
6.3.5.1.1
Request
27
6.3.5.1.2
Response
27
6.3.5.2
Example 2: Multiple notifications delivered including content (Informative)
27
6.3.5.2.1
Request
27
6.3.5.2.2
Response
27
6.3.5.3
Example 3: Server timeout (Informative)
28
6.3.5.3.1
Request
28
6.3.5.3.2
Response
28
6.3.6
DELETE
29
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
29
Appendix A.
Change History (Informative)
30
A.1
Approved Version History
30
A.2
Draft/Candidate Version 1.0 History
30
Appendix B.
Static Conformance Requirements (Normative)
31
B.1
SCR for REST.NotificationChannel Server
31
B.1.1
SCR for REST.NotificationChannel.FUNCTION Server
31
Appendix C.
Application/x-www-form-urlencoded Request Format for POST Operations (Normative)
32
C.1
[Operation]
32
C.1.1
Example (Informative)
33
C.1.1.1
Request
33
C.1.1.2
Response
33
Appendix D.
JSON examples (Informative)
34
D.1
[Example Title] (section [section number cross reference])
34
Appendix E.
Light-weight resources for Notification Channel (Informative)
35
Appendix F.
Authorization aspects (Normative)
36

Figures

11Figure 1 Resource structure defined by this specification

16Figure 2 Create Notification Channel

17Figure 3 Notifications delivered to application

18Figure 4 Request timeout

19Figure 5 Multiple notifications delivered to application in response

20Figure 6 Maximum number of notifications in the reponse to the long polling

Tables

-
1. Scope

This specification defines a RESTful API for Notification Channel using HTTP protocol bindings.
2. References

2.1 Normative References

	[REST_NetAPI_Common]
	“Common definitions for RESTful Network APIs”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_Common-V1_0, URL:http://www.openmobilealliance.org/

	[REST_SUP_NotificationChannel]
	“XML schema for the RESTful Network API for Notification Channel”, Open Mobile Alliance™, OMA-SUP-XSD_rest_netapi_notificationchannel-V1_0, URL:http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2616]
	“Hypertext Transfer Protocol -- HTTP/1.1”, R. Fielding et. al, January 1999, URL:http://www.ietf.org/rfc/rfc2616.txt

	[RFC3986]
	“Uniform Resource Identifier (URI): Generic Syntax”, R. Fielding et. al, January 2005, URL:http://www.ietf.org/rfc/rfc3986.txt

	[RFC4627]
	“The application/json Media Type for JavaScript Object Notation (JSON)”, D. Crockford, July 2006, URL: http://www.ietf.org/rfc/rfc4627.txt

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL:http://www.openmobilealliance.org/

	[W3C-URLENC]
	W3C HTML 2.0 Specification, form-urlencoded Media Type, URL: http://www.w3.org/MarkUp/html-spec/html-spec_8.html#SEC8.2.1 [Ed.Note: Reference to be removed if form-urlencoded is not used]

	[XMLSchema1]
	W3C Recommendation, XML Schema Part 1: Structures Second Edition, URL: http://www.w3.org/TR/xmlschema-1/

	[XMLSchema2]
	W3C Recommendation, XML Schema Part 2: Datatypes Second Edition, URL: http://www.w3.org/TR/xmlschema-2/

2.2 Informative References
	[OMADICT]
	“Dictionary for OMA Specifications”, Version 2.8, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2_8, URL:http://www.openmobilealliance.org/

	[REST_WP]
	“Guidelines for RESTful Network APIs”, Open Mobile Alliance™, OMA-WP-Guidelines_for_RESTful_Network_APIs, URL:http://www.openmobilealliance.org/

	[LP_Best_Practices]
	“Known Issues and Best Practices for the Use of Long Polling and Streaming in Bidirectional HTTP”, January 2011, URL: http://tools.ietf.org/html/draft-loreto-http-bidirectional-07
 Ed. Note: This reference might change; the document is in draft status and expires on July 8, 2011.

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

For the purpose of this TS, all definitions from the OMA Dictionary apply [OMADICT].

3.3
Abbreviations
	API
	Application Programming Interface

	HTTP
	HyperText Transfer Protocol

	JSON
	JavaScript Object Notation

	OMA
	Open Mobile Alliance

	REST
	REpresentational State Transfer

	SCR
	Static Conformance Requirements

	TS
	Technical Specification

	URI
	Uniform Resource Identifier

	URL
	Uniform Resource Locator

	XML
	eXtensible Markup Language

	XSD
	XML Schema Definition

4. Introduction

The Technical Specification for the RESTful Network API for Notification Channel contains HTTP protocol bindings for Notification Channel, using the REST architectural style. The specification provides resource definitions, the HTTP verbs applicable for each of these resources, and the element data structures, as well as support material including flow diagrams and examples using the various supported message body formats (i.e. XML, JSON, and form-urlencoding).
4.1 Version 1.0

Version 1.0 of this specification supports the following operations:
· Application manages notification channel

· Application retrieves asynchronous notifications

5. Notification Channel API definition
This section is organized to support a comprehensive understanding of the Notification Channel API design. It specifies the definition of all resources, definition of all data structures, and definitions of all operations permitted on the specified resources.
This specification introduces a method for a client (e.g. a browser application) to receive asynchronous notifications from a notification server about events the client has subscribed with one or more enabler servers. This method used is based on HTTP requests and often referred as “long-polling” [LP_Best_Practices]. The notifications are conveyed through a common notification channel and before a “long-polling” request can be invoked the notification channel must be established first.
The channel is created by initiating a request to the notification server, which will provide two URL:s in the response. The first URL is used as call-back URL when subscribing for notifications towards the enabler server(s). A single notification channel may handle notifications from several enabler servers. Note that subscriptions are specific for respective enabler server and are not in the scope of this specification. Each enabler server will send subsequent notifications using this call-back URL pointing to the notification server. The second URL is used to retrieve the notifications from the notification server using the “long-polling” mechanism.

When the notification server receives a notification from an enabler server, it conveys the notification to the client with the response to the pending “long-polling” request.
A notification channel has certain time-to-live and will automatically be refreshed when accessed by a client, either when accessing the notification channel or by a “long-polling” request. The lifetime of a notification channel in case of inactivity is decided by server policy.

The design of this specification is done in such a way that it allows for the possibility to add support for additional notification methods (e.g. web sockets, OMA PUSH etc) in later releases of the specification.

It should be noted that in order not to disclose underlying network topology, the server usually sends to the client a mapped version of the real call-back address. In opposite direction, when the server receives such mapped URL, it will apply de-mapping of the URL before it can be used. How this mapping and de-mapping is performed on the server is out of scope for this specification.
The remainder of this document is structured as follows:

Section 5 starts with a table listing all the resources (and their URL) used by this API, along with the data structure and the supported HTTP verbs (section 5.1). What follows are the data structures (section 5.2). A sample of typical use cases is included in section 5.3, described as high level flow diagrams.

Section 6 contains detailed specification for each of the resources. Each such subsection defines the resource, the request URL variables that are common for all HTTP commands, the possible HTTP response codes, and the supported HTTP verbs. For each supported HTTP verb, a description of the functionality is provided, along with an example of a request and an example of a response. For each unsupported HTTP verb, the returned HTTP error status is specified, as well as what should be returned in the Allow header.

All examples in section 6 use XML as the format for the message body. Form-urlencoded examples are provided in Appendix C, while JSON examples are provided in Appendix D. Appendix B provides the Static Conformance Requirements (SCR).
Appendix E provides the operations mapping to a pre-existing baseline specification, where applicable. Appendix F provides a list of all light-weight resources, where applicable. Appendix G defines authorization aspects to control access to the resources defined in this specification.

Reserved characters in URL variables (parts of a URL denoted below by a name in curly brackets) MUST be percent-encoded according to [RFC3986]. Note that this always applies, no matter whether the URL is used as a Request URL or inside the representation of a resource (such as in “resourceURL” and “link” elements).
For requests and responses that have a body, the following applies: in the requests received, the server SHALL support JSON and XML encoding of the parameters in the body, and MAY support www-form-urlencoded parameters in the body. The Server SHALL return either JSON or XML encoded parameters in the response body, according to the result of the content type negotiation as specified in [REST_NetAPI_Common]. In notifications to the Client, the server SHALL use either XML or JSON encoding, depending on which format the client has specified in the related subscription. The generation and handling of the JSON representations SHALL follow the rules for JSON encoding in HTTP Requests/Responses as specified in [REST_ NetAPI_Common].
Note: Throughout this document client and application can be used interchangeably.
5.1 Resources Summary

This section summarizes all the resources used by the RESTful Notification Channel API.
The "apiVersion" URL variable SHALL have the value "1" to indicate that the API corresponds to this version of the specification. See [REST_NetAPI_Common] which specifies the semantics of this variable.
[image: image2.emf]//{serverRoot}/{apiVersion }

/{userId}

/notificationchannel

/{channelId}

/channels

//{serverRoot}/{apiVersion }

/{userId}

/notificationchannel

/{channelId}

/channels

Figure 1 Resource structure defined by this specification

The following tables give a detailed overview of the resources defined in this specification, the data type of their representation and the allowed HTTP methods.
Purpose: To allow the client to manage its notification channels
	Resource
	URL
Base URL: http://{serverRoot}/{apiVersion}/notificationchannel
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Notification channels
	/{userId}/channels

	NotificationChannelList
(used for GET)

NotificationChannel
(used for POST)
	Retrieves a list of notification channels
	No
	Creates a new notification channel
	No

	Individual notification channel
	/{userId}/channels/{channelId}

	NotificationChannel
(used for GET)
	Retrieves an individual notification channel
	No
	No
	Removes an individual notification channel

Purpose: To allow the notification server to delivery notifications to the client by using long-polling
	Resource
	URL:
< specified by the server >
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Notification list
	< Resource URL is provided by the server when the notification channel is created >
	NotificationList
	No
	No
	Retrieves pending notifications from the server
	No

Ed. Note: FFS whether POST or GET method is to be used for long-polling requests. Currently the POST method (with empty body) is specified but that may create some issues.
5.2 Data Types
5.2.1 XML Namespaces

The XML namespace for the Notification Channel data types is:

urn:oma:xml:rest:netapi:notificationchannel:1
The 'xsd' namespace prefix is used in the present document to refer to the XML Schema data types defined in XML Schema [XMLSchema1, XMLSchema2]. The 'common' namespace prefix is used in the present document to refer to the data types defined in [REST_NetAPI_Common] (delete if not used). The use of namespace prefixes such as 'xsd' is not semantically significant.
The XML schema for the data structures defined in the section below is given in [REST_SUP_NotificationChannel].
5.2.2 Structures

The subsections of this section define the data structures used in the Notification Channel API.
Some of the structures can be instantiated as so-called root elements.

5.2.2.1 Type: NotificationChannelList
This type defines a list of notification channels.
	Element
	Type
	Optional
	Description

	notificationChannel
	NotificationChannel
[0..unbounded]
	Yes
	May contain an array of notification channels

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. SHALL NOT be included in POST requests, MUST be included in responses to any HTTP method that returns an entity body.

A root element named notificationChannelList of type NotificationChannelList is allowed in request bodies.

5.2.2.2 Type: NotificationChannel
This type defines a single notification channel.
	Element
	Type
	Optional
	Description

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client MAY use to tag this particular resource representation during a request to create a resource on the server. In case the field is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it. The client SHALL NOT be allowed to update the clientCorrelator in a PUT request.

	applicationTag
	xsd:string
	Yes
	A tag that the client MAY use to tag this particular resource on the server. In case the field is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	channelType
	ChannelType
	No
	Specifies the type of notification channel to be used (method that will be used to receive new notifications on the channel).

	channelData
	ChannelDataType

	Yes
	Contains specific information for the notification channel type specified in channelType.
In this specification only long-polling type is supported and the channel data is defined in the type LongPollingData (see 5.2.2.4) which is derived from ChannelDataType.

In XML implementation for channelData, LongPollingData type is identified by the xsi:type attribute.

	callBackURL
	xsd:anyURI
	Yes
	Specified by the server. Contains a call back URL used when establishing subscriptions for notifications towards respective enabler server (not part of this API). SHALL NOT be included in POST request to create the notification channel resource. MUST be included in responses to any HTTP method that returns an entity body.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. SHALL NOT be included in POST requests, MUST be included in responses to any HTTP method that returns an entity body.

A root element named notificationChannel of type NotificationChannel is allowed in request bodies.
5.2.2.3 Type: NotificationList
This type defines a list of notifications that are being delivered to the client.
	Element
	Type
	Optional
	Description

	<Element is defined by respective enabler server API>
	<Type is defined by respective enabler API>
[1..unbounded]
Ed. Note: FFS to decide whether to use anyType or something else.
	No
	Contains one or more notifications as defined by respective enabler server API.
Ed. Note: the xsd schema shall allow extensions here.

A root element named notificationList of type NotificationList is allowed in response bodies.

5.2.2.4 Type: ChannelDataType

This is an abstract data type that contains no elements. All data type that are used to define specific information for a particulat notification channel type (see channelData in 5.2.2.2), SHALL be derived from this data type.

5.2.2.5 Type: LongPollingData
This type is derived from ChannelDataType and it defines specific data for the long-polling notification channel. It is used inside the ‘channelData’ element when a channel is created, and it is identified by xsi:type attribute.

	Element
	Type
	Optional
	Description

	channelURL
	xsd:anyURI
	Yes
	Specified by the server. Contains the URL used to retrieve new events. SHALL NOT be included in POST request to create the notification channel resource. MUST be included in responses to any HTTP method that returns an entity body.

	maxNotifications
	xsd:int
	Yes
	Defines the maximum number of notifications that may be delivered in a notification list. The default value (if omitted) is decided according to server policy.

5.2.3 Enumerations

The subsections of this section define the enumerations used in the Notification Channel API.
5.2.3.1 Enumeration: ChannelType
	Enumeration
	Description

	LongPolling
	Indicates that the requested notification channel shall use long-polling mechanism to receive new notifications.

Ed. note: This enumeration must be able to extend in the xsd schema in order to support additional notification channel types in the future.
5.2.4 Values of the Link “rel” attribute
The “rel” attribute of the Link element is a free string set by the server implementation, to indicate a relationship between the current resource and an external resource. The following are possible strings (list is non-exhaustive, and can be extended):
· One

· Two
These values indicate the kind of resource that the link points to.
5.3 Sequence Diagrams
The following sub-sections describe the resources, methods and steps involved in typical scenarios.
Note that signalling sequences between the notification server and enabler servers X and Y, as well as the signalling sequences between the application and the enabler servers X and Y (depicted in grey colour) are not part of this specifications; those sequences in the flows are shown for completeness only.
5.3.1 Create notification channel
This figure below shows a scenario for creation of a notification channel by an application.
The resources:

· To create notification channel:
http://{serverRoot}/{apiVersion}/notificationchannel/{userId}/channels
· To retrieve new notifications:
The resource to be used is provided in the response to the channel creation.
 [image: image3.emf]Application

Server

(Notification)

Server

(Enabler X)

1. POST Notification Channel

Create notification

channel

Response with created channel info incl.

ChannelURL, CallBackURL

2. POST Subscription + CallBackURL

Response

4. POST ChannelURL

Long-polling request

Subscriptions for

notifications created

towards each

enabler.

(NOTE: Not part of

this API)

Server

(Enabler Y)

3. POST Subscription + CallBackURL

Response

Sequences in scope of this specification

NOT in scope of this specification

Legend:

Application

Server

(Notification)

Server

(Enabler X)

1. POST Notification Channel

Create notification

channel

Response with created channel info incl.

ChannelURL, CallBackURL

2. POST Subscription + CallBackURL

Response

4. POST ChannelURL

Long-polling request

Subscriptions for

notifications created

towards each

enabler.

(NOTE: Not part of

this API)

Server

(Enabler Y)

3. POST Subscription + CallBackURL

Response

Sequences in scope of this specification

NOT in scope of this specification

Legend:

Sequences in scope of this specification

NOT in scope of this specification

Legend:

Figure 2 Create Notification Channel
Outline of the flows:

1. Application creates a notification channel by sending a POST request to the notification server (the request may include a limit to the number of notifications that the application can receive in the responses).
A successful response includes a body containing a unique ChannelURL which is to be used when issuing the long-polling request and CallBackURL which is to be used when subscribing for notifications to a particular enabler server.

2. Application creates a subscription for notifications towards enabler X server. The included CallBackURL instructs the enabler server to send notifications to the notification server. (This operation is not part of this API.)

The enabler server returns a response. (This operation is not part of this API.)

3. Application creates a subscription for notifications towards enabler Y server. The included CallBackURL instructs the enabler server to send notifications to the notification server. (This operation is not part of this API.)

The enabler server returns a response. (This operation is not part of this API.)

4. Application initiates a long-polling request using the ChannelURL received in the response to POST in step 1 and waits for a new event.
5.3.2 Notifications delivered to application using long-polling
This figure below shows a scenario where two notifications are delivered to the application, generated by two different servers.
The resource used by the application for the long polling requests is provided by the notification server (e.g. received in the response to creation of the notification channel, see section 5.3.1).
 [image: image4.emf]1. POST ChannelURL

2. POST Notification containing new message

Response

Response incl. new message notification

5. POST ChannelURL

3. POST ChannelURL

4.POST Notification containing

presence update

Response

Response incl. presence update notification

Long-polling request

Long-polling request

Long-polling request

Application

Server

(Notification)

Server

(Enabler X)

Server

(Enabler Y)

Sequences in scope of this specification

NOT in scope of this specification

Legend:

1. POST ChannelURL

2. POST Notification containing new message

Response

Response incl. new message notification

5. POST ChannelURL

3. POST ChannelURL

4.POST Notification containing

presence update

Response

Response incl. presence update notification

Long-polling request

Long-polling request

Long-polling request

Application

Server

(Notification)

Server

(Enabler X)

Server

(Enabler Y)

Sequences in scope of this specification

NOT in scope of this specification

Legend:

Sequences in scope of this specification

NOT in scope of this specification

Legend:

Figure 3 Notifications delivered to application
Outline of the flows:

1. Application initiates a long-polling request using the ChannelURL received when the notification channel was created.

2. A new message is received, which triggers a notification being sent from the enabler server to the notification server using the CallBackURL provided when the notification channel was created. (This operation is not part of this API.)

A response to the long-polling request in step 1 is delivered to the application including the new message.

A response to the notification received in step 2 is sent to enabler Y server after the response is delivered to the application. (This operation is not part of this API.)

3. Application immediately initiates a new long-polling request.

4. A new event occurs; in this case a presence update notification is received in the notification server using the CallBackURL provided when the notification channel was created. (This operation is not part of this API.)

A response to the long-polling request in step 3 is delivered to the application including the presence update.

A response to the notification received in step 4 is sent to enabler X server after the response is delivered to the application. (This operation is not part of this API.)

5. Application immediately initiates a new long-polling request and waits for a new event.

5.3.3 Request timeout response the to long-polling
This figure below shows a scenario where a long-polling request times out and a new long-polling request is sent.
The resource used by the application for the long polling requests is provided by the notification server (e.g. received in the response to creation of the notification channel, see section 5.3.1).
 [image: image5.emf]1. POST ChannelURL

Long-polling request

Response sent due to connection timeout

2. POST ChannelURL

Long-polling request

Application

Server

(Notification)

1. POST ChannelURL

Long-polling request

Response sent due to connection timeout

2. POST ChannelURL

Long-polling request

Application

Server

(Notification)

Figure 4 Request timeout
Outline of the flows:

1. Application initiates a long-polling request using the ChannelURL received when the notification channel was created.

No new event is received within a given time limit causing the request to timeout. An empty response is returned to the application.

2. Application immediately initiates a new long-polling request and waits for a new event.

5.3.4 Multiple notifications delivered to application in response to the long-polling
This figure below shows a scenario where two notifications are delivered to the application in the same response.
The resource used by the application for the long polling requests is provided by the notification server (e.g. received in the response to creation of the notification channel, see section 5.3.1).

 [image: image6.emf]3. POST ChannelURL

1. POST Notification containing new message

Response (1)

Response incl. new message and presence

update notification

4. POST ChannelURL

2. POST Notification containing

presence update

Response (2)

Long-polling request

Long-polling request

Application

Server

(Notification)

Server

(Enabler X)

Server

(Enabler Y)

Sequences in scope of this specification

NOT in scope of this specification

Legend:

3. POST ChannelURL

1. POST Notification containing new message

Response (1)

Response incl. new message and presence

update notification

4. POST ChannelURL

2. POST Notification containing

presence update

Response (2)

Long-polling request

Long-polling request

Application

Server

(Notification)

Server

(Enabler X)

Server

(Enabler Y)

Sequences in scope of this specification

NOT in scope of this specification

Legend:

Sequences in scope of this specification

NOT in scope of this specification

Legend:

Figure 5 Multiple notifications delivered to application in response
Outline of the flows:

1. A new message is received but in this case there is no outstanding long-polling request from the application so the notification will be pending in the notification server. (This operation is not part of this API.)

2. A new event occurs; in this case a presence update notification is received. As there is no outstanding long-polling request from the application the notification will be pending in the notification server. (This operation is not part of this API.)

3. Application initiates a long-polling request using the ChannelURL received when the notification channel was created.

A response to the long-polling request in step 3 is delivered to the application including the new message and the presence update notification (assuming that the application allowed multiple notifications in the response when the notification channel was created).

A response to the notification received in step 1 is sent to enabler Y server after the response is delivered to the application. (This operation is not part of this API.)

A response to the notification received in step 2 is sent to enabler X server after the response is delivered to the application. (This operation is not part of this API.)

4. Application immediately initiates a new long-polling request and waits for a new event.

5.3.5 Max number of notifications reached during the long-polling
This figure below shows a scenario where the limit for the number of notifications in the response to the application (in this example 3 notifications) has been reached, which triggered response back to the application.
The resource used by the application for the long polling requests is provided by the notification server (e.g. received in the response to creation of the notification channel, see section 5.3.1).
 [image: image7.emf]1. POST ChannelURL

2. POST Notification containing new message

Response (2)

Response incl. new message and presence

update notification

5. POST ChannelURL

3. POST Notification containing

presence update

Response (3)

Long-polling request

Long-polling request

4. POST Notification containing

presence update

maxNotificationsreached

Response (4)

Application

Server

(Notification)

Server

(Enabler X)

Server

(Enabler Y)

Sequences in scope of this specification

NOT in scope of this specification

Legend:

1. POST ChannelURL

2. POST Notification containing new message

Response (2)

Response incl. new message and presence

update notification

5. POST ChannelURL

3. POST Notification containing

presence update

Response (3)

Long-polling request

Long-polling request

4. POST Notification containing

presence update

maxNotificationsreached

Response (4)

Application

Server

(Notification)

Server

(Enabler X)

Server

(Enabler Y)

Sequences in scope of this specification

NOT in scope of this specification

Legend:

Sequences in scope of this specification

NOT in scope of this specification

Legend:

Figure 6 Maximum number of notifications in the reponse to the long polling
Outline of the flows:

1. Application initiates a long-polling request using the ChannelURL received when the notification channel was created.

2. A new message has been received and the notification server is notified (This operation is not part of this API). Since the ‘maxNotifications limit’ is not yet reached no response to the long-polling request is sent back to the application
3. A new event occurs; in this case a presence update notification is received at the notification server (This operation is not part of this API). The ‘maxNotifications’ limit is still not reached.
4. A new event occurs; in this case another presence update notification is received at the notification server (This operation is not part of this API)..
The maximum number of notifications allowed in the response has been reached and the response to the long-polling request in step 1 is sent to the application. The response includes the new message and the two presence update notifications.

A response to the notification received in step 2 is sent to enabler Y server after the response is delivered to the application. (This operation is not part of this API.)

A response to the notification received in step 3 is sent to enabler X server after the response is delivered to the application. (This operation is not part of this API.)

A response to the notification received in step 4 is sent to enabler X server after the response is delivered to the application. (This operation is not part of this API.)

5. Application immediately initiates a new long-polling request.

5.3.6 Failed delivered notification due to timeout during the long-polling
This figure shows illustrates a scenario where a received notification from an enabler server failed to be delivered due to timeout. No long-polling request was sent in time before the server rejected the notification. The timeout value is defined according to server policy.
 [image: image8.emf]1. POST Notification containing new message

Error response

Timeout

Application

Server

(Notification)

Server

(Enabler X)

Server

(Enabler Y)

NOT in scope of this specification

Legend:

1. POST Notification containing new message

Error response

Timeout

Application

Server

(Notification)

Server

(Enabler X)

Server

(Enabler Y)

NOT in scope of this specification

Legend:

NOT in scope of this specification

Legend:

Figure 7 Failed notification due to timeout
Outline of the flows:

1. A new event occurs; in this case a new message is received. As there is no outstanding long-polling request from the application the notification will be pending in the notification server. (This operation is not part of this API.)
The notification timed out and a failed response (408 Request Timeout) is sent to the enabler server. (This operation is not part of this API.)

Ed Note: to figure out which diagrams to move to informative appendix, or to remove from the TS.
6. Detailed specification of the resources
6.1 Resource: Notification channels
The resource used is:
http://{serverRoot}/{apiVersion}/notificationchannel/{userId}/channels
This resource is used for create a new notification channel as well as to obtain a list of active notification channels for the specified user.

6.1.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: http://example.com/exampleAPI

	apiVersion
	version of the API client wants to use. The value of this variable is defined in section 5.1

	userId
	user identifier. Example: tel:+1-555-100

See section 5 for a statement on the escaping of reserved characters in URL variables.
6.1.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

6.1.3 GET
This operation is used for retrieval of active notification channels.

6.1.3.1 Example: Retrieve active notification channels
(Informative)
6.1.3.1.1 Request

	GET /exampleAPI/1/notificationchannel/tel%3A%2B1-555-100/channels HTTP/1.1
Host: example.com:80
Accept: application/xml

6.1.3.1.2 Response

	HTTP/1.1 200 OK
Content-Type: application/xml
Content-Length: nnnn
Date: Thu, 04 Jun 2009 02:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<nc:notificationChannelList xmlns:nc="urn:oma:xml:rest:netapi:notificationchannel:1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<notificationChannel>

 <clientCorrelator>123</clientCorrelator>

 <applicationTag>myApp</applicationTag>

 <channelType>LongPolling</channelType>

 <channelData xsi:type="nc:LongPollingData">

 <channelURL>http://example.com/exampleAPI/1/notificationchannel/tel%3A%2B1-555-100/channels/ch123/notifications

 </channelURL>

 <maxNotifications>1</maxNotifications>

 </channelData>

 <callBackURL>http://example.com/callBackUrl/cbu111</callBackURL>

 <resourceURL>http://example.com/exampleAPI/1/notificationchannel/tel%3A%2B1-555-100/channels/ch123</resourceURL>

</notificationChannel>

<notificationChannel>

 <clientCorrelator>456</clientCorrelator>

 <applicationTag>someOtherApp</applicationTag>

 <channelType>LongPolling</channelType>

 <channelData xsi:type="nc:LongPollingData">

 <channelURL>http://example.com/exampleAPI/1/notificationchannel/tel%3A%2B1-555-100/channels/ch456/notifications

 </channelURL>

 <maxNotifications>5</maxNotifications>

 </channelData>

 <callBackURL>http://example.com/callBackUrl/cbu333</callBackURL>

 <resourceURL>http://example.com/exampleAPI/1/notificationchannel/tel%3A%2B1-555-100/channels/ch456</resourceURL>

</notificationChannel>

<resourceURL>http://example.com/exampleAPI/1/notificationchannel/tel%3A%2B1-555-100/channels</resourceURL>

</nc:notificationChannelList>

6.1.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].
6.1.5 POST
This operation is used for creation of a notification channel in order to receive notifications from an enabler server that the client has subscribed for notification from.

6.1.5.1 Example: Create notification channel
(Informative)
6.1.5.1.1 Request

	POST /exampleAPI/1/notificationchannel/tel%3A%2B1-555-100/channels HTTP/1.1
Host: example.com:80
Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<nc:notificationChannel xmlns:nc="urn:oma:xml:rest:netapi:notificationchannel:1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<clientCorrelator>123</clientCorrelator>

<applicationTag>myApp</applicationTag>

<channelType>LongPolling</channelType>

<channelData xsi:type="nc:LongPollingData">

 <maxNotifications>1</maxNotifications>

</channelData>

</nc:notificationChannel>

6.1.5.1.2 Response

	HTTP/1.1 201 Created

Location: http://example.com/exampleAPI/1/notificationchannel/tel%3A%2B1-555-100/channels/ch123
Date: Thu, 04 Jun 2009 02:51:59 GMT
Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<nc:notificationChannel xmlns:nc="urn:oma:xml:rest:netapi:notificationchannel:1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" >

<clientCorrelator>123</clientCorrelator>

<applicationTag>myApp</applicationTag>

<channelType>LongPolling</channelType>

<channelData xsi:type="nc:LongPollingData">

 <channelURL>http://example.com/exampleAPI/1/notificationchannel/tel%3A%2B1-555-100/channels/ch123/notifications</channelURL>

 <maxNotifications>1</maxNotifications>

</channelData>

<callBackURL>http://example.com/callBackUrl/cbu111</callBackURL>

<resourceURL>http://example.com/exampleAPI/1/notificationchannel/tel%3A%2B1-555-100/channels/ch123</resourceURL>

</nc:notificationChannel>

6.1.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].
6.2 Resource: Individual notification channel
The resource used is:

http://{serverRoot}/{apiVersion}/notificationchannel/{userId}/channels/{channelId}
This resource is used for management of an individual notification channel. The lifetime of a notification channel is extended upon access, either when it is retrieved using this resource or as long as there is an outstanding poll request waiting for new notifications. In case of inactivity, the notification channel will automatically be terminated by the server. The inactivity timer value is decided by server policy.

6.2.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL Example: http://example.com/exampleAPI

	apiVersion
	version of the API client wants to use. The value of this variable is defined in section 5.1

	userId
	user identifier. Example: tel:+1-555-100

	channelId
	channel identifier: Example: ch456

See section 5 for a statement on the escaping of reserved characters in URL variables.
6.2.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

6.2.3 GET
This operation is used for retrieval of an individual notification channel.

6.2.3.1 Example: Retrieve individual notification channel
(Informative)
6.2.3.1.1 Request

	GET /exampleAPI/1/notificationchannel/tel%3A%2B1-555-100/channels/ch456 HTTP/1.1
Host: example.com:80
Accept: application/xml

6.2.3.1.2 Response

	HTTP/1.1 200 OK
Content-Type: application/xml
Content-Length: nnnn
Date: Thu, 04 Jun 2009 02:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<nc:notificationChannel xmlns:nc="urn:oma:xml:rest:netapi:notificationchannel:1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<clientCorrelator>456</clientCorrelator>

<applicationTag>someOtherApp</applicationTag>

<channelType>LongPolling</channelType>

<channelData xsi:type="nc:LongPollingData">

 <channelURL>http://example.com/exampleAPI/1/notificationchannel/tel%3A%2B1-555-100/channels/ch456/notifications</channelURL>

 <maxNotifications>5</maxNotifications>

</channelData>

<callBackURL>http://example.com/callBackUrl/cbu333</callBackURL>

<resourceURL>http://example.com/exampleAPI/1/notificationchannel/tel%3A%2B1-555-100/channels/ch456</resourceURL>

</nc:notificationChannel>

6.2.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].
6.2.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].
6.2.6 DELETE

This operation is used for removing an individual notification channel. Any outstanding poll request will immediately be responded with a 404 Not Found.
6.2.6.1 Example: Removing notification channel
(Informative)

6.2.6.1.1 Request

	DELETE /exampleAPI/1/notificationchannel/tel%3A%2B1-555-100/channels/ch456 HTTP/1.1
Host: example.com:80

6.2.6.1.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 04 Jun 2009 02:51:59 GMT

6.3 Resource: Notification list

The resource URL is provided by the server (e.g. when the notification channel is created) and therefore this specification does not make any assumption about the structure of this URL.

This resource is used for retrieval of new notifications, which the application has subscribed for notification from the respective enabler server).
6.3.1 Request URL variables
Provided by the notification server.
6.3.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

6.3.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.3.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.3.5 POST
This operation is used for retrieval of new notifications.
6.3.5.1 Example 1: Single notification delivered including content
(Informative)
In this example a presence update is delivered to the application.
6.3.5.1.1 Request

	POST /exampleAPI/1/notificationchannel/tel%3A%2B1-555-100/channels/ch123/notifications HTTP/1.1
Host: example.com:80
Content-Length: 0

6.3.5.1.2 Response

	HTTP/1.1 200 OK
Date: Thu, 04 Jun 2009 02:51:59 GMT
Content-Type: application/xml

Connection: close

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<nc:notificationList xmlns:nc="urn:oma:xml:rest:netapi:notificationchannel:1">

 <pr:presenceNotification xmlns:pr="urn:oma:xml:rest:presence:1">

 <presentityUserId>tel:+1-555-100</presentityUserId>

 <callbackData>1234</callbackData>

 <resourceStatus>Active</resourceStatus>

 <presence>

 <person>

 <mood>

 <moodValue>Happy</moodValue>

 </mood>

 </person>

 </presence>

 <link rel="PresenceSubscription"

 href="http://example.com/exampleAPI/1/presence/tel%3A%2B1-555-101/subscriptions/presenceSubscriptions/tel%3A%2B1-555-100/sub001"/>

</pr:presenceNotification>

</nc:notificationList>

6.3.5.2 Example 2: Multiple notifications delivered including content
 (Informative)
In this example a presence update and message notification are delivered to the application.
6.3.5.2.1 Request

	POST /exampleAPI/1/notificationchannel/tel%3A%2B1-555-100/channels/ch123/notifications HTTP/1.1
Host: example.com:80
Content-Length: 0

6.3.5.2.2 Response

	HTTP/1.1 200 OK
Date: Thu, 04 Jun 2009 02:51:59 GMT
Content-Type: application/xml

Connection: close

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<nc:notificationList xmlns:nc="urn:oma:xml:rest:netapi:notificationchannel:1">

 <pr:presenceNotification xmlns:pr="urn:oma:xml:rest:presence:1">

 <presentityUserId>tel:+1-555-100</presentityUserId>

 <callbackData>1234</callbackData>

 <resourceStatus>Active</resourceStatus>

 <presence>

 <person>

 <mood>

 <moodValue>Happy</moodValue>

 </mood>

 </person>

 </presence>

 <link rel="PresenceSubscription"

 href="http://example.com/exampleAPI/1/presence/tel%3A%2B1-555-101/subscriptions/presenceSubscriptions/tel%3A%2B1-555-100/sub001"/>

</pr:presenceNotification>

 <mms:inboundMessageNotification xmlns:mms="urn:oma:xml:rest:messaging:1">

 <inboundMessage>

 <destinationAddress>tel:+1-555-0100</destinationAddress>

 <senderAddress>tel:+1-555-0101</senderAddress>

 <resourceURL>http://example.com/exampleAPI/1/messaging/inbound/registrations/reg123/messages/msg123

 </resourceURL>

 <link rel="Subscription" href="http://example.com/exampleAPI/1/messaging/inbound/subscriptions/sub123"/>

 <messageId>msg123</messageId>

 <inboundMMSMessage>

 <subject>Who is RESTing on the beach?</subject>

 </inboundMMSMessage>

 </inboundMessage>

</mms:inboundMessageNotification>

</nc:notificationList>

6.3.5.3 Example 3: Server timeout
(Informative)
In this example a long-polling request times out in the server. Ed note: explain further what it is.
6.3.5.3.1 Request

	POST /exampleAPI/1/notificationchannel/tel%3A%2B1-555-100/channels/ch123/notifications HTTP/1.1
Host: example.com:80
Content-Length: 0

6.3.5.3.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 04 Jun 2009 02:51:59 GMT

6.3.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

A.2 Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Version:

OMA-TS-REST_NetAPI_NotificationChannel-V1_0
	28 Apr 2011
	Many
	This is the first version of the document that is based on agreed contribution OMA-ARC-RC-APIs-2011-0040R03-INP_Proposal_for_Notification_Channel_TS. In addition, the document title is updated to address the issues from ARC-2011-A071.

	
	25 May 2011
	Many
	Implemented CR, OMA-ARC-REST-NetAPI-2011-0008-CR_TS_changes_for_NotificationChannel

	
	02 Jul 2011
	Many
	Implemented CRs:

OMA-ARC-REST-NetAPI-2011-0092-CR _TS_NotificationChannel_alignment_with_new_template
OMA-ARC-REST-NetAPI-2011-0096-CR _TS_NotificationChannel_channelData_type

Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].

B.1 SCR for REST.NotificationChannel Server

	Item
	Function
	Reference
	Requirement

	REST-NOTIFCH-SUPPORT-S-001-M
	Support for the RESTful Notification Channel API
	[section(s)]
	

	REST-NOTIFCH-SUPPORT-S-002-M
	Support for the XML request & response format
	[section(s)]
	

	REST-NOTIFCH-SUPPORT-S-003-M
	Support for the JSON request & response format
	[section(s)]
	

	REST-NOTIFCH-SUPPORT-S-004-O
	Support for the application/form-urlencoded format
	[section(s)]
	

B.1.1 SCR for REST.NotificationChannel.FUNCTION Server
	Item
	Function
	Reference
	Requirement

	
	
	
	

	
	
	
	

Appendix C. Application/x-www-form-urlencoded Request Format for POST Operations
(Normative)
<< Some APIs do support form-url-encoded parameters, some don’t. Pick the right text block. >>

<< The text below is a blueprint of Appendix C for no support of url-encoding. >>

In most RESTful Network API specifications, Appendix C defines a format for API requests where the body of the request is encoded using the application/x-www-form-urlencoded MIME type.

In this particular specification, Appendix C has been intentionally left empty.

Note: The use case for x-www-form-urlencoded parameters is the submission of the parameters directly to the REST resource from an HTML form in a web browser. The web browser submits forms using the POST method. Therefore, this section only applies to the POST method. As there are no POST methods defined in this specification, there are no x-www-form-urlencoded parameters to specify.

<< The text below is a blueprint of Appendix C for support of url-encoding. >>

This section defines a format for the RESTful Notification Channel REST API requests where the body of the request is encoded using the application/x-www-form-urlencoded MIME type.

Note: only the request body is encoded as application/x-www-form-urlencoded, the response is still encoded as XML or JSON depending on the preference of the client and the capabilities of the server. Names and values MUST follow the application/x-www-formurlencoded character escaping rules from [W3C-URLENC].
The encoding is defined below for the following Notification Channel REST operations which are based on POST requests:
<< List the operations for which url-encoded is supported. For those TSs where ALL the POST operations are described in the Appendix C, it is left to the editor to use either the sentence above, followed by a list operations, or alternatively use the sentence: “The encoding is defined for all [Functional Area] REST operations which are based on POST requests.” , in which case the list of operations can be omitted in this section.
Note that the parameters are all of simple types. In case a parameter is of complex type in the original XML data structure, the structure needs to be “flattened” >>
C.1 [Operation]
This operation is used to create an outgoing message request.

The request parameters are as follows:
	Name
	Type/Values
	Optional
	Description

	[Parameter name]
	[Type and cardinality or allowed values for that parameter]
	[Yes/No]
	[Parameter description]

	<< Example - DELETE this and next Row>>

	address
	xsd:anyURI [1…unbounded]
	No
	Destination address(es) for the message

	<< Add/Remove rows to this table as needed - DELETE This Row>>

C.1.1 Example

(Informative)

C.1.1.1 Request

	[HTTP headers]
[url-encoded request]

C.1.1.2 Response

	[HTTP headers]
[xml response]

Appendix D. JSON examples
(Informative)

JSON (JavaScript Object Notation) is a lightweight, text-based, language-independent data interchange format. It provides a simple means to represent basic name-value pairs, arrays and objects. JSON is relatively trivial to parse and evaluate using standard JavaScript libraries, and hence is suited for REST invocations from browsers or other processors with JavaScript engines. Further information on JSON can be found at [RFC 4627].

The following examples show the request and response for various operations using the JSON data format. The examples follow the XML to JSON serialization rules in [REST_NetAPI_Common]. A JSON response can be obtained by using the content type negotiation mechanism specified in [REST_NetAPI_Common].

For full details on the operations themselves please refer to the section number indicated.

D.1 [Example Title] (section [section number cross reference])
<< Example title should be copied from title heading of the section with the corresponding XML example. And that section number should be added in brackets to the end of the example title >>

Request:
	[HTTP headers copied from referenced example, type specific signalling updated for JSON]
[JSON example generated from the equivalent XML example using the JSON2XML utility]

Response:

	[HTTP headers copied from referenced example, type specific signalling updated for JSON]
[JSON example generated from the equivalent XML example using the JSON2XML utility]

Appendix E. Light-weight resources for Notification Channel
(Informative)

As this version of the specification does not define any light-weight resources, this Appendix is empty.
Appendix F. Authorization aspects
(Normative)

<< This appendix lists authorization aspects specific of the particular API, such as OAuth scope values. It is mandatory but may be empty (“None specified in this version of the specification”) >>

(2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20090101-I]
(2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20090101-I]

