Doc# OMA-BCAST-2006-0592R03-CR-DVB-H-compatible-flexibility-in-XBS.doc[image: image9.jpg]
Change Request

Doc# OMA-BCAST-2006-0592R03-CR-DVB-H-compatible-flexibility-in-XBS.doc
Change Request

Change Request

	Title:
	DVB-H compatible flexibility in XBS
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA-BCAST-DLDRM

	Doc to Change:
	OMA-TS-DRM-XBS-V1_0-20060321-D

	Submission Date:
	2 June 2006

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Bert Greevenbosch, Fraunhofer IIS, bert.greevenbosch@iis.fraunhofer.de

Mercè Serra, Fraunhofer IIS, merce.serra@iis.fraunhofer.de

John Bernsen, Philips, john.ac.bernsen@philips.com

	Replaces:
	OMA-BCAST-2006-0592R01

1 Reason for Change

In CR0055R01, the need for a follow up CR for consistency was expressed. This CR solves the inconsistencies. Moreover, this CR restores backward DVB-H compatibility for the BCRO, allowing both Flexible as well as Fixed Subscriber Groups.

In more detail, this CR adjusts the following:

· The device_registration_response message: for Flexible Subscriber Groups (FSGs) it is necessary to inform the Device of the FSG address, the position of the device in the FSG and the FSG size.

· For a device in an FSG, a corresponding number of Subscriber Group Keys (SGKs) must be transferred.

· The necessary device registration information for a device in a FSG is stored in the keyset_block. Because of the structure of the keyset_block, it is necessary to introduce new Subscriber Group Keys for a Flexible Subscriber Group, called FSGKs. These keys have the same functionality as SGKs.

· The BCRO is adjusted to support both Fixed Subscriber Groups and Flexible Subscriber Groups. The different Subscriber Groups are distinguished by the address mode of the BCRO.

· Text where a fixed group size of 256 or 512 devices is assumed is removed or modified.

· The Unique Device Filter is reintroduced, and now is also used to address a unique device in a Flexible Subscriber Group.

· Zero-padding is introduced to ensure that the field behind the compressed addressing bitmask is byte aligned.

This CR solves the following inconsistency comment:

	ID
	Open Date
	Edit
	Section
	Description
	Status

	DX011
	2006.03.31
	N
	7.2.1
	Source: Philips

From: OMA-BCAST-2006-0319

comment:

BCRO is incompatible with DVB-SPP specification

Proposed Resolution:

Proposed solution is introduced in CR 318
	Status: OPEN

and most of the following inconsistency comment:

	ID
	Open Date
	Edit
	Section
	Description
	Status

	DX012
	24 March 2006
	N
	3.3

6.1.3.2

6.3.4.1

6.3.4.1

7.2.1-7.2.4

9.2.1

A.8.1

A.8.2

A.13.3
	Source: Fraunhofer IIS

Form: OMA-BCAST-2006-0332

Comment:
At several places in the specification there are references to fixed subscriber group sizes of 256 or 512 subscribers. Also some of the structures are still based on fixed subscriber group sizes. This causes inconsistency with the format of the BCRO.

Proposed solution:

CR OMA-BCAST-2006-0274 solves the inconsistencies.
	Status : open

As a follow up there is a need to adjust the text of the token_delivery_response message. On bit level nothing has to be changed, but the group is requested to advice in the following matter:

As it is defined now, the token_delivery_response message has all the address modes that a BCRO has. However, only one of these address modes is actually used: the addressing of a unique device. All other modes are defined but not allowed to be used.

What we want to know is if it is not possible to remove all the addressing modes that are not allowed to be used. This would clarify the text considerable. In this case the only adjustment to the token_delivery_response message needed is the replacement of the 32/31 bit field group_address and the 8/9-bit field position_in_group field by a single field 40-bit field udf.

In the case that the address modes that are not allowed must remain in the specification, the two address modes that this CR adds to the BCRO have to be added to the token_delivery_response message as well, although they will also be marked as unused. In this case the fields group_address and position_in_group have to be replaced by the single 40-bit field udf too.
Changes in R01: we realised that because the network operator can select any of the possible addressing modes, the flexible_device_data in the device_registration_response message cannot be marked 'mandatory' in table 1 (in this CR). This revision makes the flexible_device_data in the device_registration_response message 'optional'.
R02 has been reserved on the portal but has never been uploaded, and has been withdrawn.
Changes in R03: although the Efficient Coding Table (ECT) OMADRMPositionInGroup is used in Appendix A.8, it is not defined in section 7.2.2. R03 resolves this issue by including the ECT.
2 Impact on Backward Compatibility

Restores backward compatibility to DVB-H in the XBS specification.

3 Impact on Other Specifications

None

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

The BCAST and DLDRM group is asked to accept this CR.

6 Detailed Change Proposal

3.3 Abbreviations

	OMA
	Open Mobile Alliance

	AES
	Advanced Encryption Standard

	BAK
	BCRO Authentication Key

	BCD
	Binary Coded Decimal

	BCRO
	Broadcast Rights Object

	DEK
	Deduced Encryption Key

	DRD
	Device Registration Data

	DRM
	Digital Rights Management

	ECT
	Efficient Coding Table

	ESP
	Encapsulating Security Payload

	FSGK
	Flexible Subscriber Group Key

	GRO
	Generalised Rights Object

	HMAC
	Hashed Message Authentication Code

	IPsec
	IP Security

	LDK
	Local Domain Key

	LLDF
	Long-form Local Domain Filter (a.k.a. longform_domain_id)

	MAC
	Message Authentication Code

	MJD
	Modified Julian Date

	NDD
	Notification of Detailed Data

	OCSP
	Online Certificate Status Protocol

	PAK
	Programme Authentication Key

	PAS
	Programme Authentication Seed

	PDR
	Push Device Registration

	PEAK
	Programme Encryption / Authentication Key

	PKC
	Public Key Certificate

	PKC-ID
	PKC Identifier: the hash of the Public Key Certificate

	PKI
	Public Key Infrastructure

	PRF
	Pseudo Random Function

	RI
	Rights Issuer

	RIAK
	Right Issuer Authentication Key

	RO
	Rights Object

	ROT
	Root Of Trust

	RSA
	Rivest-Shamir-Adelman public key algorithm

	SAK
	Service Authentication Key

	SAS
	Service Authentication Seed

	SEAK
	Service Encryption / Authentication Key

	SGK
	Subscriber Group Key

	SHA-1
	Secure Hash Algorithm

	SLDF
	Short-form Local Domain Filter (a.k.a. shortform_domain_id)

	TAK
	Traffic Authentication Key

	TAS
	Traffic Authentication Seed

	TDK
	Token Delivery Key

	TEK
	Traffic Encryption Key

	UDF
	Unique Device Filter

	UDK
	Unique Device Key

	UDN
	Unique Device Number

	UDP
	User Datagram Protocol

	UGK
	Unique Group Key

6.1.3.2 Registration data – device_registration_response message

6.1.3.2.1 device_registration_response message description

Using the 1-pass PDR protocol the RI SHALL send a device_registration_response() message with the registration data to the device as specified below:

Table 1: device_registration_response message description

	Device_Registration_Response()

	Parameter name
	(M)andatory / (O)ptional

	remark

	message_tag
	M
	global, not encrypted

	protocol_version
	M
	global, not encrypted

	sign_bcros_flag
	O
	global, not encrypted

	longform_udn()
	M
	global, not encrypted

	status
	M
	device specific, not encrypted

	certificate_version
	M
	global, not encrypted

	ri_certificate_counter
	M
	global, not encrypted

	c_length
	M
	global, not encrypted

	ri_certificate
	M
	global, not encrypted

	ocsp_response_counter
	M
	global, not encrypted

	r_length
	M
	global, not encrypted

	ocsp_response
	M
	global, not encrypted

	local_time_offset_flag
	M
	device specific, not encrypted

	time_stamp_flag
	M
	device specific, not encrypted

	subscriber_group_type
	M
	device specific, not encrypted

	signature_type_flag
	M
	global, not encrypted

	short_udn_flag
	M
	device specific, not encrypted

	surplus_block_flag
	M
	device specific, not encrypted

	keyset_block_length
	M
	device specific, not encrypted

	unique_group_key
	O
	device specific, encrypted

	subscriber_group_key
	O
	device specific, encrypted

	unique_device_key
	O
	device specific, encrypted

	unique_device_filter
	M
	device specific, encrypted

	flexible_device_data
	O
	device specific, encrypted

	ri_authentication_key
	M
	device specific, encrypted

	local_domain_key
	O
	device specific, encrypted

	shortform_domain_id
	M
	device specific, encrypted

	drm_time
	M
	device specific, not encrypted

	local_time_offset
	O
	device specific, not encrypted

	registration_timestamp_start
	O
	device specific, not encrypted

	registration_timestamp_end
	O
	device specific, not encrypted

	shortform_udn
	O
	device specific, not encrypted

	signature_block
	M
	device specific, not encrypted

message_tag - This parameter identifies the type of the message. Refer to section Error! Reference source not found.for the value of the message_tag.

protocol_version - This parameter indicates the protocol_version of this message. The device SHALL ignore messages that have a protocol_version number it doesn’t support. The value of the protocol_version of this message is set to 0x0 (i.e. the original format).

If set to 0x0 the format specified in the this version of the specification is used. If set to anything else than 0x0, then the format is beyond the scope of this version of the specification

sign_bcros_flag: This (OPTIONAL) flag is turned ON if the BCROs will be signed. If this flag is present, the reserved_for_use flag is reduced to 3 bits.

longform_udn() - The long form of the UDN. Refer to section Error! Reference source not found. for details.

status - The status parameter SHALL indicate one of the values explained in the following table. The device SHALL ignore messages with other error values.

Table 2: Status values

	status value
	meaning

	Success
	The registration request was executed successfully and the RI completed all data. The device SHALL process the message.

	UnknownError
	The RI encountered an unknown error after receiving the registration request. The device MAY put forward a subsequent registration request to the RI (context).

	NotSupported
	The RI does not support the registration request.

	AccessDenied
	The RI decided that the device will not be granted access to the service and stops the registration. The RI will stop listening to future registration requests of this device. The device is forced to refrain from future registration and SHALL suppress broadcast and/or mixed-mode registration requests to the particular RI (context).

	NotFound
	The RI decided that the device could not be found (offline UDN and/or UaProf). The device MAY put forward a subsequent registration request to the RI (context).

	MalformedRequest
	The RI decided that the registration request was malformed and will force the device to execute a (re)-registration at once. The device SHALL enter (re)registration mode.

Note: refer to section Error! Reference source not found. for the value of the error codes.

certificate_version - is a numerical representation of the version of the RI certificate. Using the certificate_version parameter the device can decide if it is needed to update the RI certificate (if it was stored before).

Table 3: description of certificate_version parameter

	Parameter Fieldname
	Field Value (h)
	supports

	major_version_number
	0x0,..,0xA
	MSB4(certificate_version)

	minor_version_number
	0x0,..,0xA
	LSB4(certificate_version)

The parameter is divided 2 fields of 4 bits, whereas the first 4 bits (MSB left) express the Major number and the last four bits (LSB right) express the Minor version. The major and minor number encode in bslbf format. 16 Major and 16 Minor versions are supported. For example: Major.Minor version <1.2> is expressed as 0001 0010b.

ri_certificate_counter - This parameter indicates the depth of the RI certificate chain.

	number of certificate in chain
	Value (h)
	remark

	0
	0x0
	will signal absence of ri_certificate e.g. on error status to save bandwidth.

	1
	0x1
	

	2
	0x2
	

	3
	0x3
	

	4
	0x4
	

	5
	0x5
	

	6
	0x6
	

	7
	0x7
	

Note: The certificate chain can have a depth of up to 7 RI certificates.

c_length - This parameter indicates the length in bytes of the ri_certificate.

ri_certificate() - This parameter SHALL be present. When present, the value of a ri_certificate parameter SHALL be a certificate chain including the RI’s certificate. The chain SHALL NOT include the root certificate. The RI certificate SHALL come first in the list. Each following certificate SHALL directly certify the one preceding it.

The Device MAY store RI certificate verification data indicating that an RI certificate chain has been verified. The purpose of this is to avoid repeated verification of the same certificate chain. The RI certificate verification data stored in this way SHALL uniquely identify the RI certificate and SHALL be integrity protected. The Device SHOULD check if the RI certificate chain received in this parameter corresponds to the stored certificate verification data for this RI. If so, the Device NEED NOT verify the RI certificate chain again, otherwise the Device SHALL verify the RI certificate chain.
 If an RI certificate is received that is not in the stored certificate verification data for this RI, and if the Device can determine (in the case of Broadcast Devices that support DRM Time) that the expiry time of the received RI certificate is later than the RI Context for this RI, and the certificate status of the RI certificate as indicated in the OCSP response is good (see [OCSP-MP]), then the Device SHALL verify the complete chain and SHOULD replace the stored RI certificate verification data with the received RI certificate data and set the RI context expiry time to that of the received RI certificate expiry time.
However, if the Device does store RI certificate verification data in this way it SHALL store the expiry period of the RI’s certificate (as indicated by the notAfter field within the certificate) and SHALL compare the Device’s current DRM Time with the stored RI certificate expiry time whenever verifying the signature on signed messages from the RI. If the Device’s current DRM Time is after the stored RI certificate expiry time then the Device SHALL abandon processing the RI message and SHALL initiate the registration protocol.

ocsp_response_counter - This parameter indicates the depth of the OCSP response chain.

	number of responses in chain
	Value (h)
	remark

	0
	0x0
	will signal absence of ocsp_response e.g. on error status to save bandwidth.

	1
	0x1
	

	2
	0x2
	

	3
	0x3
	

	4
	0x4
	

	5
	0x5
	

	6
	0x6
	

	7
	0x7
	

Note: The certificate chain can have a depth of up to 7 OCSP responses.

r_length - This parameter indicates the length in bytes of the ocsp_response.

ocsp_response() - This parameter, when present, SHALL be a complete set of valid OCSP responses for the RI's certificate chain. The Device SHALL NOT fail due to the presence of more than one OCSP response element. A Device SHALL check that an OCSP response is present in the received message. If no OCSP response is present in the device_registration_response() message, then the Device SHALL abort the registration protocol.

local_time_offset_flag - Binary flag to signal presence of the parameter it describes:

	local_time_offset_flag
	Value (h)
	remark

	data absent
	0x0
	

	data present
	0x1
	

time_stamp_flag - Binary flag to signal presence of the parameter it describes:

	time_stamp_flag
	Value (h)
	remark

	data absent
	0x0
	

	data present
	0x1
	

subscriber_group_type – This field indicates whether the Device is assigned to a Fixed Subscriber Group of size 256 or 512 Devices, or to a Flexible Subscriber Group. See Table 5 for more details.
Table 5: the meaning of subscriber_group_type

	subscriber_group_type
	Value (h)
	remark

	data absent
	0x0
	will signal absence of keyset_block e.g. on error status to save bandwidth.

	reserved for future use
	0x1-0x7
	not used in this version of the specification

	set of 8 SGKs
	0x8
	indicates a Fixed Subscriber Group size of 256 Devices

	set of 9 SGKs
	0x9
	indicates a Fixed Subscriber Group size of 512 Devices

	reserved for future use
	0xA-0xE
	not used in this version of the specification

	flexible group size, set of FSGKs
	0xF
	indicates a Flexible Subscriber Group size

signature_type_flag - A flag to signal type of signature algorithm used:

	signature_type_flag
	Value (h)
	remark

	RSA 1024
	0x0
	

	RSA 2048
	0x1
	CMLA requirement (2004-2007)

	RSA 4096
	0x2
	

	reserved for future use
	0x3
	not used in this version of the specification

short_udn_flag - Binary flag to signal presence of the parameter it describes:

	short_udn_flag
	Value (h)
	remark

	data absent
	0x0
	

	data present
	0x1
	

surplus_block_flag - Binary flag to signal the presence of the parameter it describes:

	surplus_block_flag
	Value (h)
	remark

	data absent
	0x0
	

	data present
	0x1
	

keyset_block_length - This parameter indicates the length in bits of the total keyset_block. That is the part in the sessionkey_block() plus the optional second part from the surplus_block().
unique_group_key - An symmetric AES encryption key to address a unique group. This key is also known as UGK. The key length SHALL be 128 bit.

Note: This key is wrapped into the keyset_block. (Refer to 0).

subscriber_group_key - A set of AES symmetric encryption keys used for the deduction of the zero message Subscriber Group key (DEK), which is needed to decrypt the SEK and/or PEK. These keys are also known as Subscriber Group Keys (SGKs). The key length SHALL be 128 bit.

Note: this field is only present in the case of assignment of the Device to a fixed Subscriber Group of size 256 or 512 Devices. It is then wrapped into the keyset_block. (Refer to 6.1.3.2.2).

flexible_subscriber_group_key - A set of AES symmetric encryption keys used for the deduction of the zero message Subscriber Group key (DEK), which is needed to decrypt the SEK and/or PEK. These keys are also known as Flexibe Subscriber Group Keys (FSGKs). The key length SHALL be 128 bit.

Note: this field is only used in the case that a device is assigned to a Flexible Subscriber Group. When the field is present, it is wrapped into the keyset_block.(Refer to 6.1.3.2.2).

unique_device_key - An AES symmetric key to address a unique device. This key is also known as UDK. The key length SHALL be 128 bit.

Note: This key is wrapped into the keyset_block. (Refer to 0).

unique_device_filter - This 40-bit address is used as a unique identifier of the device for a specific RI (each RI has its own address space). The Unique Device Filter is also known as UDF. This address is wrapped into the keyset_block. (Refer to 6.1.3.2.2).

In case of Fixed Suscriber Group addressing, the following applies. In the case of a group size of 256 devices, the first 32 bits contain the fixed_group_address field, whilst the last 8 bits contain the fixed_position_in_group field. In the case of 512 devices, the first 31 bits contain the fixed_group_address field whilst the last 9 bits contain the fixed_position_in_group field.

In the case of Flexible Subscriber Group addressing, this field contains a 40-bit unique address.
Note: An RI can decide to use both Flexible Subscriber Groups and Fixed Subscriber Groups. In this case the RI has to take care that the Group Address of a Fixed Subscriber Group does not equal the first 31 or 32 bits of a UDF of a device in a Flexible Subscriber Group. To ensure this it is recommended that if the RI supports both Subcriber Group types, the MSB of the UDF indicates whether the Device is assigned to a Flexible Subscriber Group or to a Fixed Subscriber Group.

flexible_group_address - the address of the Subscriber Group in the case that the Device was assigned to a Flexible Subscriber Group.

Note: this field is only present in the case that the device is assigned to a Flexible Subscriber Group. It is then wrapped in the flexible_device_data structure in the keyset_block. (Refer to 6.1.3.2.2 and A.8).

flexible_position_in_group - the position of the Device in its Flexible Subscriber Group.

Note: this field is only present in the case that the device is assigned to a Flexible Subscriber Group. It is then wrapped in the flexible_device_data structure in the keyset_block. (Refer to 6.1.3.2.2 and A.8).
flexible_group_size_indicator - this 5-bit field indicates the size of the Flexible Subscriber Group. When flexible_group_size_indicator contains a value k, the Subscriber Group has a size of 2k devices.

Note: this field is only present in the case that the device is assigned to a Flexible Subscriber Group. It is then wrapped in the flexible_device_data structure in the keyset_block (Refer to 6.1.3.2.2 and A.8).

ri_authentication_key - An AES symmetric key to verify MACs on BCRO and KSM messages. This key is also known as RIAK. The key length SHALL be 128 bit.

Note: This key is wrapped into the keyset_block. (Refer to 0).

local_domain_key - An AES symmetric key to address a local domain. This key is also known as LDK. The key length SHALL be 128 bit.

Note: This key is wrapped into the keyset_block. (Refer to 0).
longform_domain_id() – This parameter is also known as the Longform Local Domain Filter (LLDF). Please refer to section Error! Reference source not found. for the definition. The longform_domain_id() is used for mixed-mode operation. Note: This address is wrapped into the keyset_block. (Refer to 0).
shortform_domain_id – This parameter is also known as the Shortform Local Domain Filter (SLDF). Please refer to 0. An addressing scheme used to filter for messages like BCROs. The shortform_domain_id is used for broadcast mode of operation.

Note: This address is wrapped into the keyset_block. (Refer to 0).
drm_time - This parameter defines the time in Universal Time Coordinated (UTC). This 40-bit field contains the current time and date in UTC and MJD. Refer to A.4 for calculation of the UTC and Modified Julian Date (MJD). This field is coded as 16 bits giving the 16 LSBs of MJD followed by 24 bits coded as 6 digits in 4-bit BCD.

EXAMPLE: 93/10/13 12:45:00 is coded as “0xC079124500”.

local_time_offset - This parameter indicates the local time offset from the (UTC) drm_time as explained in Annex A.4.

registration_timestamp_start - Indicates from what time onwards the registration data is valid. This is an extra mechanism above the expiration date of the RI certificate. (Note: please note that this parameter can also be used against replay attacks.)

registration_timestamp_end - Indicates from what time onwards the registration data is expires. This is an extra mechanism above the expiration date of the RI certificate. (Note: please note that this parameter can also be used against replay attacks.)

shortform_udn - This parameter allows the RI to give an own defined short number identifying the device. This number can be used as a shorter alternative to the UDN during offline notifications. The shortform_udn is coded in BCD format.

signature_block - The signature SHALL enable a single source authenticity check on the message. The algorithm used for the signature is RSA-1024 or RSA-2048 or RSA-4096. The signature will apply to the implementation guidelines of PCKS#1, as outlined in Error! Reference source not found..

Note Message result:

The stored RI Context SHALL at a minimum contain:

· RI ID, Unique device filter (UDF).

· In the case the Device is assigned to a Flexible Subscriber Group: the size of the Subscriber Group, flexible_group_address and flexible_position_in_group.

· following keys:

· UGK.
· UDK.
· SGK1..n or FSGK1..m depending on the type of Subscriber Group.
· RIAK.

· SK.
· If domain addressing via an OMA DRM 2.0 domain is required the keyset SHALL (additionally to the standard addressing above) include following keys:

· LDK.

· Shortform Local Domain Filter (SLDF). A.k.a. “shortform_domain_id”. Refer to 0.

· For mixed-mode devices domain context SHALL additionally contain:

· Longform Local Domain Filter (LLDF). A.k.a. “longform_domain_id()”. Refer to Error! Reference source not found..

· A Device MAY have several Domain Contexts with an RI.

· The RI Context SHALL also contain an RI Context Expiry Time, which is defined to be the timestamp of the registration data if that was send and otherwise the expiration of the RI certificate.

· The RI Context MAY also contain RI certificate validation data.

· If the RI Context has expired, the Device SHALL NOT execute any other protocol than the 1-pass binary device data registration protocol with the associated RI (context), and upon detection of RI Context expiry the Device SHOULD initiate the offline notification of detailed device data protocol using the RI_ID stored in the RI Context. Depending on the implementation a dialogue will be shown to the user and the offline NDD protocol will be executed.

· Accessing an ESG for purchase is still allowed, as this will require a registration first.

· The device SHALL be rendered inoperable for any purchase protocol or playback of future content. The device MAY use stored BCROs to play old content for which the device obtained GROs, but SHALL NOT use these BCROs for new content received after the re-registration request until the device is re-registered with the RI.

Requirements:

· The Device SHALL have at most one RI Context with each RI. An existing RI Context SHALL be replaced with a newly established RI Context after successful re-registration with the same RI.

· The device SHALL support at least 6 RI context for broadcast mode of operation.

· For standard addressing the keyset SHALL include a valid set of :

· UDK and/or UGK

·
· RIAK key. A single RIAK key is bound to a single Subscriber Group or to a single Device if no SGKs, nor FSGKs, nor UGK are issued to the Device.
· Unique Device Filter (UDF)

· SGK1..n (if the Device is assigned to a Fixed Subscriber Group of size 256 or 512 Devices)

· FSGK1..m and flexible_device_data (if the Device is assigned to a Flexible Subscriber Group).
·
· If domain addressing via an OMA DRM 2.0 domain is required the keyset SHALL (additionally to the standard addressing above) include a valid set of :

· LDK key.

· Shortform Local Domain Filter (SLDF). A.k.a. “shortform_domain_id”. Refer to 0.

And in case of mixed-mode operation devices the keyset SHALL contain:

· A Longform Local Domain Filter (LLDF, a.k.a. “longform_domain_id()”) that matches the SLDF. Refer to Error! Reference source not found..

6.1.3.2.2 Protection of the (device registration) keyset

The device_registration_response() message is split in two parts: device specific (time bound) data and global (not time bound) data.

[image: image1.wmf]Device global data

(in the clear)

Device specific data

Key material

(encrypted)

Other device data

(in the clear)

Longform_udn

signature

Message_tag

Signature over

complete

message

Figure 1: device_registration_response() message

The device global data SHALL be in the clear. The device specific data contains the keyset for the device. This key material SHALL be encrypted, whereas the rest of the device specific data SHALL be in the clear. The key material SHALL be protected by encryption. The RI SHALL use the device’s public key to encrypt all key material in the device specific data part of the message.

The RI SHALL use his private key to sign the complete message data. Upon reception the device SHALL verify the RI signature, by using the issuer’s public key from the RI certificate. The device SHALL make sure that this message is correct by using a valid and correct RI certificate.

The complete message SHALL be authenticated by a signature from the RI.

Creation of the encrypted message SHALL adhere to the following rules:

1. Generate a (128 or 192 or 256) bit AES key to be used as session key (SK) for the device_registration_response() message.

2. For Fixed Subscriber Group addressing, concatenate the following fields to form the keyset: UGK, SGK1..n, UDK, UDF, LDK, SLDF, LLDF (if applicable), RIAK, TDK under rules of [FIPS_197] and the Tag Length Format described in section A.8.
For Flexible Subscriber Group addressing, concatenate the following fields to form the keyset: UGK, UDK, UDF, LDK, SLDF, LLDF (if applicable), RIAK, TDK, flexible_device_data, FSGK1..m under rules of [FIPS_197] and the Tag Length Format described in section A.8.
3. Encrypt the keyset using [AES_WRAP] using the generated SK as (AES-WRAP style) KEK. This will produce the keyset_block.

4. Calculate the part of the keyblock that would fit into the RSA block (depending on the size of RSA used, be that 1024, 2048 or 4096), including the SK and under implementation rules of the PCKS#1. If the keyset_block fits into one RSA block continue at step 6. Else continue at step 5.

5. If the SK plus keyset_block including PCKS#1 header, aligning, etc did not fit into one RSA block, then keep the remainder part as surplus_block().

6. Encrypt SK plus the (part of the)keyset_block that fits into the RSA block with the public key of the target device using RSA (1024 or 2048 or 4096) under implementation guidelines of [PKCS#1]. This will produce the sessionkey_block().

7. Concatenate the (non encrypted) parameters that were not used in the key_block and create the message “header” from this. Refer to 0 for details. (for reason of completeness: of course the sessionkey_block(), the (optional) surplus_block() and the signature_block are not part of the message header)

8. Concatenate the message “header” and the sessionkey_block() . If the SK plus keyset_block including PCKS#1 header, aligning, etc did not fit into one RSA block, then also concatenate surplus_block() part. Hash the result under implementation guidelines of [PKCS#1]. Please refer to section Error! Reference source not found.. This will produce the signature_input_data.

9. Sign the signature_input_data with RSA (1024 or 2048 or 4096) using the private key of the RI. The signature will apply to the implementation guidelines of PCKS#1, as outlined in Error! Reference source not found.. This will produce the signature_block.

10. The device_registration_response() message comprises of the message “header” plus sessionkey_block(), optionally the surplus_block() and the signature_block.

[image: image2.wmf]surplus_block

(AES encrypted)

Sessionkey_block

(RSA encrypted)

Signature_block

(RSA signature)

SK (plus part of

keyset_block that fits into

RSA block (size)

RSA signature

Message “header”

(in the clear)

All but input for keyblocks

below

(optional) Remainder of

keyset_block that did not fit

into RSA block

Keyset_block

(AES encrypted)

Figure 2: structure of device_registration_response() message.

Concluding: The number of RSA blocks used should be kept to a minimum. The AES surplus_block() is present if and when the keyset does not completely fit into the sessionkey_block() given the RSA block size used. If present the AES surplus_block() contains those keys that did not fit into one RSA block (i.e. the sessionkey_block()). The complete keyset needed for operation after registration is included in the encrypted keyset_block, which is concatenated from the first part in the sessionkey_block() and optionally the surplus_block(). Refer to appendix for calculations on the surplus_block_size.

Decryption of the encrypted message SHALL adhere to the following rules:

1. Locate the message via message_tag

2. Verify if the message is intended for this device by comparing the long_form_udn with the UDN stored in the device.

3. Verify the signature_block of the message by using the public key from the RI.

4. Locate the sessionkey_block() and decrypt the block with the private key of the local device. Locate the session key (SK) from the header and (eventual) padding (according to PCKS#1). Then locate the keyset_block part from the header and (eventual) padding (according to PCKS#1).

5. (Optionally) If there is a surplus_block() concatenate this part to the keyset_block. This will complete the keyset_block.

6. Use the SK to decrypt the keyset_block.

7. Allocate the individual keyset_items from the keyset_block according to [AES_WRAP] and the Tag Length Format described in section 0.

Note: The SK SHALL be stored into protected storage. The AES encrypted keyset_block MAY be stored as is into unprotected storage and decrypted by the device upon use. If the keyset_block is not stored but the decrypted keys from that block are stored instead, the device SHALL store all key data safely. The keys SHALL NOT leak outside the device.

6.1.3.2.3 device_registration_response message syntax

Table 7: device_registration_response message syntax

	fields
	length
	type

	device_registration_response(){
	
	

	/* signature protected part starts here */
	
	

	/* message header starts here */
	
	

	message_tag
	8
	bslbf

	protocol_version
	4
	bslbf

	sign_bcros_flag
	1
	bslbf

	reserved_for_future_use
	3
	bslbf

	longform_udn()
	80
	bslbf

	status
	8
	bslbf

	flags {
	
	

	ri_certificate_counter
	3
	bslbf

	ocsp_response_counter
	3
	bslbf

	local_time_offset_flag
	1
	bslbf

	time_stamp_flag
	1
	bslbf

	subscriber_group_type
	4
	bslbf

	short_udn_flag
	1
	bslbf

	signature_type_flag
	2
	bslbf

	surplus_block_flag
	1
	bslbf

	keyset_block_length
	16
	uimsbf

	}
	
	

	certificate_version
	8
	bslbf

	for(cnt1=0; cnt1 < ri_certificate_counter ;cnt1++){
	
	

	c_length
	16
	uimsbf

	ri_certificate()
	8*c_length
	bslbf

	}
	
	

	for(cnt2=0; cnt2 < ocsp_response_counter ;cnt2++){
	
	

	r_length
	16
	uimsbf

	ocsp_response()
	8*r_length
	bslbf

	}
	
	

	drm_time
	40
	mjdutc

	if (local_time_offset_flag == 0x1) {
	
	

	local_time_offset
	16
	bslbf

	}
	
	

	if (time_stamp_flag == 0x1) {
	
	

	registration_timestamp_start
	40
	mjdutc

	registration_timestamp_end
	40
	mjdutc

	}
	
	

	if (short_udn_flag == 0x1) {
	
	

	short_udn
	32
	bslbf

	}
	
	

	/* message header ends here */
	
	

	if (signature_type_flag == 0x0){
	
	

	sessionkey_block()
	1024
	bslbf

	} else if (signature_type_flag == 0x1)
	
	

	sessionkey_block()
	2048
	bslbf

	} else if (signature_type_flag == 0x2)
	
	

	sessionkey_block()
	4096
	bslbf

	}
	
	

	if (surplus_block_flag == 0x1){
	
	

	surplus_block()
	(*1)
	bslbf

	padding_bits
	(*2)
	bslbf

	}
	
	

	/* signature protected part ends here */
	
	

	if (signature_type_flag == 0x0){
	
	

	signature_block
	1024
	bslbf

	} else if (signature_type_flag == 0x1)
	
	

	signature_block
	2048
	bslbf

	} else if (signature_type_flag == 0x2)
	
	

	signature_block
	4096
	bslbf

	}
	
	

	}
	
	

key:

(*1) for details please refer to section

(*2) (surplus_block() length) mod 8
7.2 Format of the Broadcast Rights Object

7.2.1 Format of the OMADRMBroadcastRightsObject class

The OMADRMAsset, OMADRMPermission and OMADRMConstraint object correspond in their meaning to their counterparts in OMA-DRM-REL-V2_0. The OMADRMAction object corresponds to the allowed elements in the permissions element from the same specification. The MAC protected BCRO (OMADRMBroadcastRightsObject class) is mandatory for devices supporting BCROs. The Signature protected BCRO (OMADRMBroadcastRightsObjectSigned class) is optional for devices supporting BCROs.

align(8) class OMADRMBroadcastRightsObjectBase

{

int i;

bit(8)
message_tag;

bit(4)
version;

bit(12) bcro_length;

bit(1) group_size_flag;

bit(1)
timestamp_flag;

bit(1)
stateful_flag;

bit(1)
refresh_time_flag;

bit(3)
address_mode;

bit(1)
rights_issuer_flag;

if (address_mode == 0x0)

{

bit(32) fixed_group_address;

} else

if (address_mode == 0x1)

{

bit(32) fixed_group_address;

if(group_size_flag == 0)

{

bit(256)
fixed_bit_access_mask;

}

else

{

bit(512)
fixed_bit_access_mask;

}

} else if (address_mode & 0x6 == 0x2)

{

bit(40) udf;

} else if (address_mode == 0x4)

{

bit(38) domain_id;

bit(10) domain_generation;

} else if (address_mode == 0x5)

{

OMADRMGroupAddress
flexible_group_address;

bit(2)

reserved_for_future_use;

OMADRMBitAccessMask
flexible_bit_access_mask;

} else if (address_mode == 0x6)

{

OMADRMGroupAddress
flexible_group_address;

}

if (rights_issuer_flag == 1)

{

bit(160)
rights_issuer_id;

}

if (timestamp_flag == 1)

{

bit(40)
bcro_timestamp;

}

if (refresh_time_flag == 1)

{

bit(40)
refresh_time;

}

bit(1)
permissions_flag;

bit(7)
rekeying_period_number;

bit(32)
purchase_item_id;

bit(8)
number_of_assets;

for (i=0; i<number_of_assets; i++)

{

OMADRMAsset
asset[i];

}

if (permissions_flag == 1)

{

bit(8)
number_of_permissions;

for (i=0; i<number_of_permissions; i++)

{

OMADRMPermission permission[i];

}

}

}

align(8) class OMADRMBroadcastRightsObject

{

OMADRMBroadcastRightsObjectBase roBase;

bit(96)
MAC;

// MAC is computed over roBase

}

align(8) class OMADRMBroadcastRightsObjectSigned

{

OMADRMBroadcastRightsObjectBase roBase;

bit(2) signature_type_flag;

bit(6) reserved_for_future_use;

// signature is computed over all preceding fields.

if(signature_type_flag == 0x0{

bit(1024)
signature;

} else if (signature_type_flag == 0x01 {

bit(2048)
signature;

} else if (signature_type_flag == 0x02 {

bit(4096)
signature;

}

}

message_tag: Tag identifying this message as a BCRO. The value for this field is defined in Error! Reference source not found..
version: 3-bit flag which indicates the version of the BCRO message format. If set to 0 the original format is used. Devices SHALL ignore BCROs with versions it does not support.
bcro_length: this field indicates the length of the remainder of the BCRO in bytes starting immediately after this field (excluding locally added information).

See section 7.2.2.1 (refs) for details on its coding.

group_size_flag: In the case of Fixed Subscriber Group sizes, this 1-bit field indicates the group size used. If set to 0 a Subscriber Group size of 256 Devices is used. If set to 1 a Subscriber Group size of 512 Devices is used.

NOTE: this flag has no meaning in the case of Flexible Subscriber Groups.
timestamp_flag: 1-bit field indicating that the BCRO is timestamped.
stateful_flag: 1-bit flag indicating that when set to 1 the BCRO contains stateful information.

refresh_time_flag: 1-bit flag indicating that a refresh_time for the BCRO is contained in this BCRO

address_mode: 3-bit field indicating the addressing mode used by this BCRO.

	Field: address_mode
	Description

	0x0
	addressing of a whole Fixed Subscriber Group

	0x1
	addressing of a subgroup of devices in a Fixed Subscriber Group using a bitmask size of 256 or 512 bit depending on group_size_flag. This address mode is not used for Flexible Subscriber Groups..

	0x2-0x3
	addressing of a unique device

	0x4
	addressing of an OMA domain

	0x5
	addressing of a subgroup of devices in a Flexible Subscriber Group. The size of the Subscriber Group is determined at registration. This addressing mode is not used for Fixed Subscriber Groups.

	0x6
	addressing of a whole Flexible Subscriber Group

	0x7
	reserved for future use

rights_issuer_flag: 1-bit flag indicating that the rights issuer id is listed in this BCRO. Normally this information is given via a dedicated BCRO stream. This flag will only be set if BCROs from different rights issuers are carried in the same stream.

fixed_group_address: indicates the Fixed Subscriber Group address. Each provider has its own address space.
rights_issuer_id: The ID of the rights issuer. This is the 160-bit SHA1 hash of the DER encoded public key of the RI. See X509PKISHash in OMA.
fixed_bit_access_mask: if the BCRO addresses a subset of a Fixed Subscriber Group with size 256 or 512 (address_mode 0x1) then the fixed_bit_access_mask can be used to define to which receivers in the group this BCRO is addressed to. Receivers not listed in the fixed_bit_access_mask cannot decrypt the key material in this BCRO as zero message Broadcast encryption is used for the encryption of the key material. The size of the fixed_bit_access_mask is given by the group_size_flag.
udf: this 40-bit field contains a Unique Device Filter and is used to address a unique device.
In case of Fixed Suscriber Group addressing, the following applies. In the case of a group size of 256 devices, the first 32 bits of the udf contain the fixed_group_address field, whilst the last 8 bits contain the fixed_position_in_group field. In the case of 512 devices, the first 31 bits contain the fixed_group_address field whilst the last 9 bits contain the fixed_position_in_group field.

In the case of Flexible Subscriber Group addressing, the udf contains a 40 bit unique address.
flexible_group_address: indicates the Flexible Subscriber Group address. Each provider has its own address space. See section 7.2.2.2 (ref) for its coding.
reserved_for_future_use: this 2-bit field is reserved for future used, and SHALL be set to zero in this version of the specification.
flexible_bit_access_mask: if the BCRO addresses a subset of a Flexible Subscriber Group, then the flexible_bit_access_mask is used to define to which receivers in the group this BCRO is addressed. Receivers not listed in the flexible_bit_access_mask cannot decrypt the key material in this BCRO as zero message Broadcast encryption is used for the encryption of the key material. See section 7.2.1 (ref) for the coding of flexible_bit_access_mask.
domain_id: this 38-bit field indicates the domain ID.

domain_generation: This 10 bit field specifies the generation of the domain.
bcro_timestamp: Field containing a timestamp at the point of issuing of the BCRO. This 40-bit field contains the time and date of the moment of issuing of the BCRO in Universal Time, Co-ordinated (UTC) and Modified Julian Date (MJD). This field is coded as 16 bits giving the 16 LSBs of MJD followed by 24 bits coded as 6 digits in 4-bit Binary Coded Decimal (BCD).

EXAMPLE 1: 93/10/13 12:45:00 is coded as "0xC079124500".

refresh_time: The refresh_time specifies the time when the terminal should acquire a new BCRO. It does not specifies when the keys in the BCRO expire. This field is a hint to a receiver to acquire a new BCRO for the content listed in the BCRO before the keys in the BCRO expires. The encoding is similar to that of the bcro_timestamp field.

permissions_flag: 1-bit flag indicating that the BCRO contains at least 1 permission.

rekeying_period_number: 7-bit counter used to differentiate between different GROs with the same purchase_item_id.
purchase_item_id: 32-bit field specifying the purchase ID this GRO is associated with

number_of_assets: This field specifies the number of assets (see below) in this BCRO. Each asset listed in this BCRO has an internal id which is equal to the index of the asset in this BCRO. In other words the first asset listed in this BCRO has the internal asset id (index) of 0, the second of 1 etc. This internal id or index is used by permissions objects (see below) to identify the assets it addresses.

number_of_permissions:This field specifies the number of permissions (see below) in this BCRO.

MAC: This is the authentication code calculated over all bytes before this field in the BCRO using HMAC-SHA-1-96 (see [RFC 2104]). The MAC is only present in the OMADRMBroadcastRightsObject class.

The MAC is used to authenticate and check the integrity of the BCRO. The key used to create the MAC is the BCRO authentication key BAK as described in Error! Reference source not found..

signature_type_flag: The signature_type_flag is as defined in Section 6.1.3.2.1, reproduced below:

	signature_type_flag
	Value (h)
	remark

	RSA 1024
	0x0
	

	RSA 2048
	0x1
	CMLA requirement (2004-2007)

	RSA 4096
	0x2
	

	reserved for future use
	0x3
	not used in this version of the specification

signature: The signature is calculated over all bytes before this field with the exception of the first two bytes in the BCRO using RSA-1024, RSA-2048 or RSA-4096. This is only present in the optional OMADRMBroadcastRightsObjectSigned class.

7.2.2 Format of flexible_bit_access_mask

An addressing bitmask is a string of bits, where each bit corresponds to one particular device. When a device is addressed, its bit in the addressing bit mask is set to 1, otherwise to 0.

The field flexible_bit_access_mask contains the coded addressing bitmask. The addressing bitmask is split up into subblocks, each of which is coded separately. Depending on the characteristics of the subblock the coding method is chosen. The format of flexible_bit_access_mask is as follows:

class OMADRMBitAccessMask

{

do {

bit(2) subblock_coding_type;

if(subblock_coding_type == 0x1)

{

OMADRMBitmappedBitmask bitmapped_bitmask;

} else if(subblock_coding_type == 0x2)

OMADRMBlockCompressedBitmask block_compressed_bit_access_mask;

{

} else if(subblock_coding_type == 0x3)

OMADRMOutlierCompressedBitmask outlier_compressed_bit_access_mask;

}

} while(subblock_coding_type != 0x0)

bit(xx)
zero_padding_bits;
}

subblock_coding_type: 2-bit value indicating how the subblock is coded.

	Field: subblock_coding_type
	Description

	0x0
	indicates the end of the bitmask

	0x1
	the subblock is not compressed, but coded by the method as described in Section 7.2.1.1.

	0x2
	the subblock is coded using the Block Compression Method as described in Section 7.2.1.2.

	0x3
	the subblock is coded using the Outlier Compression Method as described in Section 7.2.1.3.

zero_padding_bits: these (less than 8) bits are appended at the end of the flexible_bit_access_mask field to ensure that the subsequent field is byte aligned.

7.2.1.1
Bitmapped Bitmask

The bitmapped_bitmask field contains a non-compressed subblock. It consists of an indicator for the length of the subblock followed by the subblock. The bitmapped_bitmask field has the following format:

class OMADRMBitmappedBitmask

{

OMADRMBlockLength
block_length;

bit(block_length+1)
bit_map;

}

block_length: indicates the length of the subblock. For a subblock of length k, block_length contains the value k-1. See Section 7.2.2.4 for more details on the coding of the field block_length.

bit_map: field of block_length+1 bits, that codes the subblock.

For EXAMPLE, a subblock 0010100101011010 has a length of 16 bits, therefore block_length contains a value 15 and is coded as 10 1011 (see Section 7.2.2.4). It is followed by the 16 bits 0010100101011010.

7.2.1.2
Block Compression Method

The Block Compression Method is used when the subblock consists of alternating blocks of ones and zeros. The lengths of these blocks are specified. The block_compressed_bit_access_mask has the following format:

class OMADRMBlockCompressedBitmap

{

bit(1) firstbit;

OMADRMNole nole;

OMADRMBlockLength(nole+1) block_length;

}

firstbit: indicates the value of the first bit.

nole (number of list entries): indicates the number of blocks that follow. If k blocks follow, nole contains a value k-1. This value is coded as indicated in Section 7.2.2.3.

block_length: an array that indicates the lengths of the blocks. For a block of length k, the corresponding field block_length contains a value k-1.

EXAMPLE of coding a subblock using the Block Compression Method:

Let us consider the following 512 bit subblock:

20 x '0', 15 x '1', 2 x '0', 80 x '1', 92 x '0',100 x '1', 203 x '0'.

It starts with a '0', therefore firstbit contains a 0.

There are 7 blocks; therefore nole contains the value 6 and is coded as 00 0110 (see Section 7.2.2.3).

Block 1 has a length of 20, therefore its block_length contains the value 19 and is coded as 10 1111, where 1111 is the binary representation of 15=19-4 (see Section 7.2.2.4).

Block 2 has a length of 15; its block_length is coded as 10 1010.

Block 3 has a length of 2; its block_length is coded as 0 01.

Block 4 has a length of 80; its block_length is coded as 110 0111011.

Block 5 has a length of 92; its block_length is coded as 110 1000111.

Block 6 has a length of 100; its block_length is coded as 110 1001111.

Block 7 has a length of 203, its block_length is coded as 1110 00000110110

In this example 67 bits are needed in order to specify the subblock.

7.2.1.3
Outlier Compression Method

The Outlier Compression Method exploits the fact that a subblock can have a sparse amount of '1's or '0's. The outlier_compressed_bit_access_mask has the following format:

class OMADRMOutlierCompressedBitmap

{

bit(1) range_flag

OMADRMNole nole

OMADRMBlockLength(nole+2) block_length

}

range_flag: indicates the coding type. When it is equal to 0, we have single '1's separated by blocks of '0's. When it equals 1, we have single '0's separated by blocks of '1's. A bit set to the value that is in a minority is called 'outlier'.

nole (number of list entries): indicates the number of blocks. The amount of blocks is one more than the amount of outliers (since the coding starts with a block before the first outlier and ends with a block behind the last outlier). If there are k blocks, nole contains a value of k-2. See Section 7.2.2.3 for the coding of nole.

block_length: an array that indicates the lengths of the blocks. The first block_length defines the length of the block in front of the first outlier, whilst the last block_length defines the length of the block behind the last outlier. Notice that a length 0 is coded as 0. See Section 7.2.2.4 for more details on the coding of block_length.

EXAMPLE of coding a subblock using the Outlier Compression Method:

Let us consider the following 512-bit bit_access_mask:

1x'0', 90 x '1', 1 x '0', 80 x '1', 2 x '0', 338 x '1'.

range_flag is equal to 1, since we have only 4 '0's in the bit_access_mask.

There are 4 '0's covered by 5 blocks, therefore nole contains 00 0011. Notice that 0011 is the binary representation of 3 = 5-2 (see Section 7.2.2.3).

Since the 4 '0's are covered by 5 blocks of '1's (although two of these blocks have length 0), five block_length fields follow:

The first '0' occurs at the first position, so it is considered to be preceded by a block of length 0. Therefore the first block_length contains 0 and is coded as 0 00.

The second '0' occurs after 90 '1's, therefore the second block_length contains the value 90 and is coded as 110 1000110.

The third block_length contains the value 80 and is coded as 110 0111100.

The third block is followed by two adjacent zeros.

The fourth block_length contains the value 0 and is coded as 0 00.

The fifth block_length contains the value 338, and is coded as 1110 00010111110.

In this example 48 bits are needed in order to specify the bit_access_mask.

7.2.2
Efficient Coding Tables

Efficient Coding Tables (ECTs) are used to code values in such a way that low values require a small number of bits, whilst extra bits are included for the higher values. In general they have the following form:

class

{

OMADRMEfficientCodingIndicator indicator;

OMADRMEfficientCodingTranslatedValue translated_value;

}

indicator: bit string of variable length indicating the amount of bits that are used to code the translated_value field.

translated_value: contains the binary representation of the relative position of the value in the value range as can be found in the corresponding Efficient Coding Table. This means that a value X is coded as X-L, where L is the lower bound of the value range that contains X.

7.2.2.1
OMABCROLength

	indicator
	amount of bits for value
	value range

	0
	9
	0 – 511

	10
	11
	512 – 2 559

	110
	14
	2 560 – 18 943

	1110
	20
	18 944 – 1 067 519

	1111
	32
	1 067 520 – 4 296 034 815

For EXAMPLE, the value 1200 is coded as 10 01010110000, where 01010110000 is the binary representation of 688=1200-512.

7.2.2.2
OMADRMGroupAddress

	indicator
	amount of bits for value
	value range

	0
	6
	0 – 63

	10
	11
	64 – 2 111

	110
	16
	2 112 – 67 647

	1110
	20
	67 648 – 1 116 223

	1111
	32
	1 116 224 - 4 296 083 519

For EXAMPLE, the value 1200 is coded as 10 10001110000, where 10001110000 is the binary representation of 1136=1200-64.

7.2.3.2 OMADRMPositionInGroup
	indicator
	amount of bits for value
	value range

	0
	9
	0 – 511

	10
	13
	512 – 8703

	110
	18
	8704 – 270 847

	1110
	22
	270 848 – 4 465 151

	1111
	27
	4 465 152 – 138 682 879

For EXAMPLE, the value 2000 is coded as 10 0010111010000, where 0010111010000 is the binary representation of 1488=2000-512.

7.2.2.4
OMADRMNole

	indicator
	amount of bits for value
	value range

	00
	4
	0 – 15

	01
	8
	16 – 271

	10
	16
	272 – 65 807

	11
	20
	65 808 – 1 114 383

For EXAMPLE, the value 18 is coded as 01 00000010, where 00000010 is the binary representation of 2=18-16.

7.2.2.5
OMADRMBlockLength

	indicator
	amount of bits for value
	value range

	0
	2
	0 – 3

	10
	4
	4 – 19

	110
	7
	20 – 147

	1110
	11
	148 – 2 195

	11110
	16
	2 196 – 67 731

	11111
	22
	67 732 – 4 262 035

For EXAMPLE, the value 16 is coded as 10 1100, where 1100 is the binary representation of 12=16-4.

7.2.3 Format of the OMADRMAsset class

class OMADRMAsset

{

int i;

bit(96)
BCI;

bit(1)
key_flag;

bit(1)
key_type;

bit(2)
reserved_for_future_use;

bit(1)
inherit_flag;

bit(2)
asset_type;

bit(1) permissions_category_flag;

if (inherit_flag)

{

bit(32)
purchase_item_id;

bit(1)
reserved_for_future_use;

bit(7)
rekeying_period_number;

}

if (permissions_category_flag == 1)

{

bit(8)
permissions_category;

}

if (key_flag == 1)

{

if (asset_type == 0x0)

{

if (key_type == 0x0)

{

bit(256)
encrypted_service_encryption_authentication_key;

}

else if (key_type == 0x1)

{

bit(256)
encrypted_program_encryption_authentication_key;

}

}

else

if (asset_type == 0x1)

{

bit(128)
encrypted_content_encryption_key;

}

}

}

BCI: This 96-bit field is the Binary Content ID. [The encoding of this field might be the SHA1-96 hash of the Content ID in ‘cid’ URI form.]

reserved_for_future_use: all fields reserved_for_future_use SHALL be set to 0 for this version of the specification.

key_flag:1-bit flag indicating that the asset does contain key material.

key_type: 1-bit flag indicating the type of the key material. If set to 0 the key material contains a service encryption key (SEK), when set to 1 it contains a program encryption key (PEK).

inherit_flag: 1-bit flag indicating whether inheritance is used. If set to 1 the asset inherits the rights setting from a parent GRO.

asset_type: 2-bit flag indicating the asset type as defined in the table below. If the asset_type is set to 0 the asset MAY contain either a PEK or a SEK. If the asset_type is set to 0x1 then the asset MAY contain a content encryption key.

	Field: asset_type
	Description

	0x0
	Broadcast stream protected IPSec or SRTP as defined in this specification

	0x1
	downloaded file content as defined by OMA

	0x2-0x3
	reserved

permissions_category_flag: 1-bit flag indicating that a permissions_category field is present in this asset object.
purchase_item_id: 32-bit field specifying the purchase ID this GRO is associated with.

rekeying_period_number: 7-bit field specifying the rekeying_period_number of the parent GRO. The purchase_item_id and rekeying_period_number are used together with the socID and deviceID or domainID to uniquely identify the parent GRO.

permissions_category: For programme assets, the value of this field (if present) is always zero. For service assets, the following rule applies. If the value of this field is nonzero, it indicates that the permissions (see below) linked to this asset are only to be applied for streaming content whose TKM contains the same value in its permissions_category field. If the value of this field is zero, it indicates that the permissions (see below) linked to this asset are only to be applied for streaming content whose TKM contains the value zero in its permissions_category field, or has value zero for its permissions_flag bit (indicating that there is no permissions_category field in the TKM). Note that there MAY be multiple assets with the same Service_BCI, in which case typically only one of them contains authentication and/or encryption keys in it asset object(s). TKM permissions_category field value thus selects the one with the permissions to be applied among the service assets with the same Service_BCI. The one with the authentication and/or encryption keys is found among the BCROs via inheritance, or by lookup for a BCRO with key material in its assets.

encrypted_service_encryption_authentication_key: If key_type is set to 0 then this field contains the encrypted SEAK, the service encryption key (SEK) concatenated with the Service Authentication Seed (SAS). The field itself is protected using AES-128-CBC, with fixed IV 0 and with 0 padding in the last block if needed. The key used to decrypt this field depends on the addressing mode of the BCRO.

Table 32: keys used in different addressing modes

	Field: address_mode
	Keys used

	0x0 (Fixed Subscriber Group addressing / whole group)
	UGK (Unique Group Key)

	0x1 (Fixed Subscriber Group addressing / subset)
	DEK (Deduced Encryption Key, based on fixed_bit_access_mask and SGKs)

	0x2 or 0x3 (unique device)
	UDK (Unique device key)

	0x4 (OMA Domain)
	LDK (Local Domain Key)

	0x5 (Flexible Subscriber Group addressing / subset)
	DEK (Deduced Encryption Key, based on flexible_bit_access_mask and FSGKs)

	0x6 (Flexible Subscriber Group addressing / whole group)
	UGK (Unique Group Key)

encrypted_program_encryption_authentication_key: If key_type is set to 1 then this field contains the encrypted PEAK, the program encryption key (PEK) concatenated with the program authentication seed (PAK). The field itself is protected using AES-128-CBC, with fixed IV 0 and with 0 padding in the last block if needed. The key used to decrypt this field is depending on the addressing mode of the BCRO. Table 32 indicates which key is used in which addressing mode.
	Field: address_mode
	Keys used

	0x0 (subscription group addressing / whole group)
	UGK (Unique Group Key)

	0x1 (subscription group addressing / derived keys)
	Deduced decryption key (based on bit_access_mask and subscription group keys)

	0x2 or 0x3 (unique device)
	UDK (Unique device key)

	0x4 (OMA Domain)
	LDK (Local Domain key)

encrypted_content_encryption_key: This field contains the encrypted content encryption key (CEK). The field is protected using AES-128-CBC, with fixed IV 0 and with 0 padding in the last block if needed. The key used to decrypt this field is depending on the addressing mode of the BCRO. Table 32 indicates which key is used in which addressing mode.
	Field: address_mode
	Keys used

	0x0 (subscription group addressing / whole group)
	UGK (Unique Group Key)

	0x1 (subscription group addressing / derived keys)
	Deduced decryption key (based on bit_access_mask and subscription group keys)

	0x2 or 0x3 (unique device)
	UDK (Unique device key)

	0x4 (OMA Domain)
	LDK (Local Domain key)

9. Subscriber Groups

9.1 Introduction

A subscriber group is a set of devices that share a group address along with cryptographic key material and algorithms that allow any subset of this group to be associated with a cryptographic key. A subscriber group can be cryptographically secure, which means that it has the additional property that any device from the group cannot deduce the distinct cryptographic keys for subsets that exclude the device.

The capability to address multiple devices using a single message provides for improved efficiency of the communication protocols. In particular it is very beneficial in the distribution of BCROs.

9.2 Addressing

9.2.1 Addressing Modes

Subscriber group addressing allows for three addressing modes, as is explained in figure 1 below.

[image: image3.wmf]

Subscriber group 3

Subscriber

group 1

Subscriber

group 2

Total

population

Subscriber

group 3

Subscriber

Group

subset

Unique

device

Whole

subscriber

group

Subscriber

group subset

1

3

2

Figure 1: Subscriber group concept

A whole subscriber group contains all devices in a group. A subscriber group subset can be smaller than or as large as the whole group. One or more subscriber groups form the population of devices.

The following sections describe the relation between the registration data and the BCRO. The registration data is sent to the device after successful registration of the device. At a later stage the device may receive a BCRO as a means to obtain the content (encryption) key, which in turn is used to decrypt the encrypted AV content. When using subscriber group addressing, the content key is encrypted with a Deduced Encryption Key (DEK) by the RI.

There are three types of addressing possible.

[image: image4.wmf]Group address

Content key

type

1

[image: image5.wmf]Group address

Bit access mask

Content key

type

2

[image: image6.wmf]Group address

Position

Content key

type

3

Figure 1: Addressing modes

The first addressing mode addresses the whole Subscriber Group, each of which has a unique group address. The second addressing mode allows the rights issuer to specify exactly which devices in a subscriber group may access the BCRO. This is done by adding an addressing bitmask in the BCRO. Each device in the subscriber group has a unique position in that group (determined at registration time). The bit in the addressing bitmask at this position determines whether the BCRO may be processed by a device.

The third addressing mode addresses a single unique device. This is achieved by appending the device’s position in the subscriber group to the subscriber group address.

9.3 Confidentiality of Message Content

9.3.1 Introduction
If the subscriber group addressing is cryptographically secure, then it can be used very effectively to distribute a BCRO to such a subset, where the content encryption keys in the BCRO are protected with the distinct key associated with that particular subset. All devices in the subset can determine this key, and hence can decrypt the content encryption keys in the BCRO. All other devices in the group cannot, and therefore cannot access the protected content.

Refer to Error! Reference source not found.for a more detailed introduction to confidentiality in the subscriber group addressing concept.

9.3.2 Subscriber Group Key Material

Each subscriber group has a single unique group key that is used to protect the confidentiality of sensitive broadcast information when the subscriber group is addressed as a whole. This unique group key (UGK) is transferred to each device in the subscriber group upon registration with the rights issuer. The UGK is shared between all devices in the same subscriber group.

Each device in a subscriber group also receives a unique device key that is used to protect the confidentiality of sensitive broadcast information when device addressing is used (subscriber group address and subscriber position), This unique device key (UDK) is transferred to the device upon registration with the rights issuer.

Each device in a subscriber group also has a set of node keys NKi in case two or more, but not all devices in a subscriber group are addressed by a BCRO, and that can be used to compute all device keys DKj, except its own device key.
9.3.3 Fixed Subscriber Groups and Flexible Subscriber Groups

In this specification, the Subscriber Groups come in two flavours. There are the Fixed Subscriber Groups, which have a fixed size of 256 or 512 devices, and the Flexible Subscriber Groups.

The two flavours appear in the device_registration_response message and the BCRO. During registration the Device is informed whether it is assigned to a Flexible Subscriber Group or a Fixed Subscriber Group. The subsequent messages to a specific Subscriber Group will always be of the same flavour as in the registration.
Broadcast Services and Devices MAY support Flexible Subscriber Groups, and/or Fixed Subscriber Groups or no Subscriber Groups at all. The use of Subscriber Groups is bearer specific and is specified in the various adaptation specifications.
9.3.3.1 Fixed Subscriber Groups

Subscriber Groups of this type have a size of 256 or 512 devices. Devices in a Subscriber Group of 256 have a 32 bit group address (indicating the Subscriber Group) and the position of the device in the Subscriber Group is specified by 8 bits. For devices in a Subscriber Group of 512 devices the group address has 31 bits and the position in group is expressed by 9 bits. In a group of 256 devices, each device gets 8 SGKs, whereas in a group of 512 devices, each device gets 9 SGKs.

The following fields are typical Fixed Subscriber Group fields:

· fixed_group_address

· fixed_position_in_group

· group_size_flag

· SGK (Subscriber Group Key)

These fields are only used when the Device is assigned to a Fixed Subscriber Group.

9.3.3.2 Flexible Subscriber Groups

The size of a Flexible Subscriber Group can be selected from a set of 31 possible sizes ranging from 21 to 231 (always powers of 2). The device is informed about the size of the Flexible Subscriber Group at registration.

The following fields are typical Flexible Subscriber Group fields:

· flexible_device_data

· flexible_group_address

· flexible_position_in_group

· flexible_group_size_indicator

· FSGK (Flexible Subscriber Group Key)

These fields are only used when the Device is assigned to a Flexible Subscriber Group.

Note that the FSGK has the same meaning as the SGK. However, there are 8 or 9 SGKs whilst there can be up to 31 FSGKs, supporting group sizes up to 231 ≈ 2 000 000 000 devices.

Devices and RIs that support Flexible Subscriber Groups MUST support group sizes of up to 214 = 16 384 devices. They MAY support bigger group sizes.
A.8 Tag Length Format for keyset_block

A.8.1 Syntax definition

A Tag Length Format (TLF) is defined to identify the keyset_items in the keyset_block. A keyset_item is identified by following syntax:

<tag> [optional <clarifier>] <length> <keyset_item>

Following values are defined and SHALL be used:

tag values:

This is a 4 bit field (bslbf) indicating the tag that uniquely identifies the keyset item.

Table 48: defined tag values

	Keyset_item
	Tag (b)
	remark

	UGK
	0000
	

	SGK
	0001
	

	UDK
	0010
	

	UDF
	0011
	

	LDK
	0100
	

	SLDF
	0101
	shortform_domain_id

	LLDF
	0110
	

	RIAK
	0111
	

	TDK
	1000
	

	flexible_device_data
	1001
	

	FSGK block
	1010
	

	reserved for future use
	1011-1111
	not used in this version of the spec

Note:

· The keyset items SHALL be included in the order of the table above.

· The keyset SHALL include only one instance of the following keys: UGK, UDK, UDF, RIAK and TDK.

· If included the SGKs (8 or 9) SHALL follow in fashion SGK1..n.

· The keyset MAY include zero or more domain sets (LDK, SLDF, LLDF). If included the SLDF SHALL follow the LDK it belongs to, followed by the optional LLDF that belongs to the aforementioned SLDF.
clarifier (optional):

This is a 10 bit field (bslbf) can be used to indicate the following possible values:

· in case the preceding <tag> value indicates a SGK, this field represents the position of a SGK in the Fiat Naor tree.

· in case the preceding <tag> value indicates a LLDF this field represents the length on the LLDF in bytes.

· in case the preceding <tag> value indicates flexible_device_data this field represents the length of the flexible_device_data in bytes.
· in case the preceding <tag> value indicates an FSGK block, this field represents the length of the FSGK block in bytes. The <length> field indicates the type of the FSGKs as shown in Table . The FSGKs are stored in the FSGK block in descending order from root to leaf (the root itself not included). The maximum size of the keyset_item of 1023 bytes is sufficient to hold a maximum of 31 keys of length 256 bits each. This definition is valid for zero-message broadcast encryption method.
describing the use of the clarifier field for position of SGK:

If keyset_item == 0001 (i.e. SGK) then the optional field “clarifier” SHALL indicate the position of the SGK as a node in the [FIAT NAOR] tree. When m = groupsize, then n = log2 (m), where n is number of BGKs in tree. Possible positions for the BGKs in the tree are 2(n+1) -1 . Therefore parameter “position” is expressed with 10 bits to express 1023 nodes in a tree. First MSB left will be used as binary indicator to indicate if the SGK position is a node (0, zero) or a leaf (1, one). Bit positions 2..10 (from left to right LSB) are used in binary format as an indication of the node and leaf position. Nodes and leafs SHALL be numbered according to following Figure 2:

[image: image7.wmf]i

2i+2

2i+1

Parent

node

Right

child

node

Left

child

node

Figure 2: node numbering

Key:

The root key R is numbered zero. Node keys NK are sequentially numbered per “level” in a breadth-first manner from left to right, starting from the root node with number 0

describing the use of the clarifier for length of LLDF:

If LLDF is included the optional field “clarifier” describes the variable length of the LLDF in bits, as described in Error! Reference source not found..

length values:

This is a 3 bit field (bslbf) indicating the length of a keyset item. This field SHALL be present for all keyset items except for the LLDF keyset item and the flexible_device_data item.

Table 49: defined length values

	(key)length prescriber
	Length (b)
	remark

	128 bit AES
	000
	

	192 bit AES
	001
	

	256 bit AES
	010
	

	5 byte Eurocrypt
	011
	

	6 byte
	100
	SLDF

	reserved for future use
	101-111
	not used in this version of the specification

Note: In case of the LLDF there is no extra length field, since the length value is indicated by the clarifier.
format of flexible_device_data
struct {

 OMADRMGroupAddress
group_address;

 OMADRMPositionInGroup
position_in_group;

 bit(5)

flexible_group_size_indicator;

} flexible_device_data
flexible_group_size_indicator - when the device is assigned to a Flexible Subscriber Group, this 5-bit field indicates the size of that Subscriber Group. When flexible_group_size_indicator contains a value k, the Subscriber Group has a size of 2k Devices.
Change 1: Another change

A.13.3 Logarithmic Scheme

In [Broadcast Encryption, Advances in Cryptology - CRYPTO ’93 Proceedings, Lecture Notes in Computer Science, Vol. 773, 1994, pp. 480–491, A. Fiat, M. Noar] the authors provide a scheme of hierarchical key derivations. Under this scheme, each device is provided key material that allows on-demand computing of the keys associated with all other devices in the group, except itself. The following picture shows schematically how this operates:

[image: image8.wmf]

d1

d2

d3

d4

d5

d6

d7

d8

Key derivation function ‘Left’

Key derivation function ‘Right’

Figure 3: Fiat-Naor key derivation scheme

The figure shows the application of two similar, but different, key derivation algorithms. From a single key, two child keys can be derived using these two distinct functions. A tree hierarchy of keys can thus be formed. The complete tree is determined completely by the two key derivation functions and the single root key.

This scheme allows an efficient version of the linear scheme. Instead of distributing all keys (except its own) to a device, now only a few keys from the tree need to be distributed to each device. It can be shown that instead of n-1 keys, now it is sufficient to distribute log2n keys to each device.

	Group size

(n devices)
	Total number of keys in the group

	Number of keys per device

	
	Linear scheme

n x (n-1)
	Logarithmic scheme

n x log2n
	Linear scheme

(n-1)
	Logarithmic scheme

log2n

	1
	0
	0
	0
	0

	2
	2
	2
	1
	1

	4
	12
	8
	3
	2

	8
	56
	24
	7
	3

	16
	240
	64
	15
	4

	32
	992
	160
	31
	5

	64
	4032
	384
	63
	6

	128
	16256
	896
	127
	7

	256
	65280
	2048
	255
	8

	512
	261632
	4608
	511
	9

	1024
	1047552
	10240
	1023
	10

	…
	
	
	
	

	1048576
	1.10 x 1012
	20971520
	1048575
	20

A practical limit to the subscriber group size is given by the need to communicate which subset of the group is selected to access particular content. This is typically done with a bitvector, indicating which devices are included in the subset. For each communication to a specific subset, such a bitvector of n bits length must be added in order for the devices to determine the used encryption key.

It must be noted that if the subset of devices allowed to access content is the whole group, then the derivation of the content encryption key fails, because there is no device key at all to include in the key derivation algorithm. To address this issue, one can provide all devices with one additional key special key, to be used when the whole group is addressed.

� key: (O)ptional means that the user of the message MAY include the parameter in the message, but the device MUST support the interpretation of the parameter. (M)andatory means that the user of the message SHALL include the parameter in the message.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 33)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 33)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

_1171444797.vsd
surplus_block
(AES encrypted)�

Sessionkey_block
(RSA encrypted)�

Signature_block
(RSA signature)�

(optional) Remainder of keyset_block that did not fit into RSA block�

SK (plus part of keyset_block that fits into RSA block (size)�

RSA signature�

Message �header�
(in the clear)�

All but input for keyblocks below�

Keyset_block
(AES encrypted)�

_1172402599.doc

Subscriber group 1

Subscriber group 2

Subscriber group 3

Total population

Subscriber group 3

Subscriber

Group subset

Unique device

Whole subscriber group

Subscriber group subset

1

3

2

_1170770744.vsd

Entire population�

�

�

Unique group I�

Unique group II�

Unique group III
with f.e. 256 devices�

Broadcast group. F.e. �sport��

2�

3�

Priviliged set (preferred use)
Adress unique group? use unique group key.
Address < unique group? use broadcast group key.
Address only 1 device? use unique device key.�

1�

_1174919035.vsd
text�

�

�

�

Parent node�

Right
child
node�

i�

2i+2�

2i+1�

Left child
node�

_1170849319.vsd
Group address�

Content key�

type�

1�

_1170849351.vsd
Group address�

Position�

Content key�

type�

3�

_1171259802.doc

d1

d2

d4

d3

d8

d7

d6

d5

Key derivation function ‘Right’

Key derivation function ‘Left’

_1170849333.vsd
Group address�

Bit access mask�

Content key�

type�

2�

_1170257600.vsd
Device global data
(in the clear)�

Device specific data
�

�

Key material (encrypted)�

Other device data (in the clear)�

Longform_udn�

signature�

Message_tag�

Signature over complete message�

