

Draft ETSI TS 1XX XXX V0.0.20 (2008-05)

Technical Specification

Digital Video Broadcasting (DVB);
IP Datacast over DVB-H: Notification Framework

TM 3955 Rev. 2 / TM-CBMS 1943 Rev. 20

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 2

Reference

<Workitem>

Keywords

<keywords>

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute yyyy.

All rights reserved.

DECT
TM

, PLUGTESTS
TM

and UMTS
TM

are Trade Marks of ETSI registered for the benefit of its Members.
TIPHON

TM
 and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.

3GPP
TM

is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 3

Contents

Intellectual Property Rights ..5

Introduction ..5

1 Scope ..6

2 References ..6
2.1 Normative references... 6
2.2 Informative references ... 7

3 Definitions and abbreviations...7
3.1 Definitions ... 7
3.2 Abbreviations... 8

4 Overview ..9
4.1 Categories of Notification.. 9
4.1.1 Default Notification ... 9
4.1.1.1 Network Default Notification (NDN)... 9
4.1.1.2 Platform Default Notification (PDN) ... 9
4.1.1.3 ESG Default Notification (EDN).. 9
4.1.2 User-selected Notification.. 10
4.1.2.1 Service Related Notification (SRN) ... 10
4.1.2.2 Notification Service (NS) ... 10
4.2 Notification Framework... 10
4.3 Mapping of Notification messages on transport layer ... 12
4.3.1 Structure of Notification messages... 12
4.3.2 Mapping of Notification messages on broadcast transport layer.. 12
4.3.3 Mapping of Notification messages on interactive transport layer .. 14
4.4 Dynamics of the Notification framework .. 14

5 Architecture..14

6 Notification message structure and transport ...15
6.1 Notification message elements .. 15
6.1.1 Generic Notification Message Part... 15
6.1.2 Notification Message payload .. 18
6.1.3 Encapsulation and Aggregation of Notification Messages... 18
6.2 Mapping on transport protocols ... 19
6.2.1 Mapping on FLUTE ... 20
6.2.1.1 Notification Message description ... 21
6.2.1.2 Selection and Filtering of Notification Messages... 23
6.2.1.3 Timing Information .. 23
6.2.2 Mapping on RTP .. 23
6.2.2.1 RTP Header .. 24
6.2.2.2 RTP Payload Format Header .. 25
6.2.2.3 Extension headers ... 26
6.2.2.4 Fragmentation Packets.. 27
6.2.2.5 SDP Parameters .. 27
6.2.3 Mapping on Interaction Network protocols ... 28
6.2.3.1 Discovery of Notification access over the Interaction Network ... 29
6.2.3.2 Registration... 30
6.2.3.2.1 Registration and Deregistration Request... 30
6.3.3.2.2 Registration and Deregistration Response .. 31
6.2.3.3 Delivery of the Notification Message List.. 32
6.2.3.3.1 Format of Notification Message List .. 32
6.2.3.3.2 Query format... 33
6.2.3.3.3 Push delivery... 34
6.2.3.3.4 Poll delivery.. 34
6.2.3.4 Retrieval of Notification Messages .. 34
6.3 Notification object lifecycle... 35

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 4

6.3.1 States .. 35
6.3.1.1 Absent... 36
6.3.1.2 Loaded .. 36
6.3.1.3 Waiting ... 37
6.3.1.4 Active ... 37
6.3.2 Timers .. 37
6.3.2.1 Active time ... 37
6.3.2.2 Life time ... 37
6.3.3 Actions ... 37
6.3.3.1 Fetch ... 37
6.3.3.2 Launch .. 38
6.3.3.3 Cancel ... 38
6.3.3.4 Remove... 38
6.4 Message filtering ... 38
6.4.1 Filter Definitions .. 38
6.4.2 Filter Elements ... 40
6.4.3 Filtering of aggregates.. 40

7 Bootstrap and initialization of Notification services..40
7.1 Discovery of default Notification services... 40
7.1.1 Bootstrap descriptor ... 41
7.1.1.1 Syntax of DefaultNotificationAccessDescriptor... 41
7.1.1.2 Transport of DefaultNotificationAccessDescriptor .. 43
7.1.2 Bootstrap procedure ... 43
7.2 Discovery of user selected Notification services ... 44
7.3 Notification Initialization Container .. 44
7.3.1 NIC Format .. 44
7.3.2 Transport of the NIC .. 45
7.3.3 Signaling Compression Algorithms ... 45
7.3.4 Default Timer Information ... 46
7.3.5 Notification type information... 46
7.3.6 Example of the NIC ... 46
7.4 Processing of Notification Messages ... 46

Annex A (informative): Static Notification Types ...48

Annex B (informative): RTP Payload format MIME Type..49

Annex C (informative): Example Of The Object Lifecycle ..50

Annex D (normative): Extensions to the ESG specification ...51
D.1.1 Overview.. 51
D.1.2 Extensions .. 51
D.1.2.1 ESG Datamodel .. 51
D.1.2.1.1 NotificationComponentType .. 52
D.1.2.1.2 NotificationPrivateData .. 54
D.1.2.1.3 DefaultNotificationSessionType... 55
D.1.2.1.4 Extension of RelatedMaterial.. 55
D.1.2.2 Extension to Acquisition Fragment .. 55
D.1.2.2.1 DeliveryChannelType ... 55
D.1.2.2.1 Extension to Session Description.. 56
D.1.2.3 Classification Scheme... 57
D.1.2.3.1 ServiceType CS .. 57

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 5

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information

pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found

in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in

respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web

server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee

can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web

server) which are, or may be, or may become, essential to the present document.

Introduction

IP Datacast over DVB-H is an end-to-end broadcast system for delivery of any types of digital content and services

using IP-based mechanisms optimized for devices with limitations on computational resources and battery. An inherent

part of the IPDC system is that it comprises of a unidirectional DVB broadcast path that may be combined with a bi-

directional mobile/cellular interactivity path. IPDC is thus a platform that can be used for enabling the convergence of

services from broadcast/media and telecommunications domains (e.g. mobile / cellular).

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 6

1 Scope

The present document defines mechanisms for the delivery of messages which are used by the IPDC over DVB-H

network to provide information about forthcoming events; such messages are referred to as Notification messages.

The present document specifies the message format, tansport and access mechanisms of Notification messages.

2 References

References are either specific (identified by date of publication and/or edition number or version number) or

non-specific.

• For a specific reference, subsequent revisions do not apply.

• Non-specific reference may be made only to a complete document or a part thereof and only in the following

cases:

- if it is accepted that it will be possible to use all future changes of the referenced document for the

purposes of the referring document;

- for informative references.

Referenced documents which are not found to be publicly available in the expected location might be found at

http://docbox.etsi.org/Reference.

For online referenced documents, information sufficient to identify and locate the source shall be provided. Preferably,

the primary source of the referenced document should be cited, in order to ensure traceability. Furthermore, the

reference should, as far as possible, remain valid for the expected life of the document. The reference shall include the

method of access to the referenced document and the full network address, with the same punctuation and use of upper

case and lower case letters.

NOTE: While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee

their long term validity.

2.1 Normative references

The following referenced documents are indispensable for the application of the present document. For dated

references, only the edition cited applies. For non-specific references, the latest edition of the referenced document

(including any amendments) applies.

[1] ETSI TS 102 472: "Digital Video Broadcasting (DVB); IP Datacast over DVB-H: Content

Delivery Protocols ".

[2] ETSI TS 102 471: "Digital Video Broadcasting (DVB); IP Datacast over DVB-H: Electronic

Service Guide".

[3] IETF RFC 2387: "The MIME Multipart/Related Content-type".

[4] IETF RFC 3550: "RTP: A Transport Protocol for Real-Time Applications".

[5] IETF RFC 1952: "GZIP file format specification version 4.3".

[6] IETF RFC 4574: "The Session Description Protocol (SDP) Label Attribute".

[7] IETF RFC 2616 (June 1999): "Hypertext Transfer Protocol -- HTTP/1.1".

[8] OMA Push V2.2, "Push Access Protocol",

http://www.openmobilealliance.org/Technical/release_program/push_v2_2.aspx, Open Mobile

Alliance, October 2007

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 7

[9] OMA OMNA Registered PUSH Application ID list

 http://www.openmobilealliance.org/Technical/omna/omna-push-app-id.aspx

[10] HTML 4.01 Specification, http://www.w3.org/TR/html401, W3C Recommendation, 24 December

1999

2.2 Informative references

[11] ETSI EN 302 304: "Digital Video Broadcasting (DVB); Transmission System for Handheld

Terminals (DVB-H)".

[12] ETSI TS 102 468: "Digital Video Broadcasting (DVB); IP Datacast over DVB-H: Set of

Specifications for Phase 1".

[13] ETSI TR 102 469: "Digital Video Broadcasting (DVB); IP Datacast over DVB-H: Architecture".

[14] IETF RFC 3926 "FLUTE - File Delivery over Unidirectional Transport"

[15] IETF RFC 3551 "RTP Profile for Audio and Video Conferences with Minimal Control"

[16] ISO/IEC 15938-5 "Information technology -- Multimedia content description interface -- Part 5:

Multimedia description schemes"

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the following terms and definitions apply:

Notification Message: Information about a forthcoming event that some entity wishes to promptly communicate to

terminals or users.

NOTE: A Notification message is composed of a generic message part, and a payload, itself composed of an

application specific message part and possibly media objects.

Notification: Act of transmitting a Notification Message

Service Component: An element of a service characterized by the nature of data it carries.

NOTE: A service is composed of one or more Service Components (e.g. a Video component, one or more Audio

components, etc)

Notification Service Component: A service component carrying Notification Messages.

Channel: An end-to-end path over which the data composing the Service Component is delivered.

Notification Channel: An end-to-end path over which the data (e.g. the Notification Messages) composing one or more

Notification Service Components is delivered.

Notification Service: A service composed exclusively of one or more Notification Service Components.

NOTE: A Notification Service may be a component of another service.

Default Notification Channel: A Channel from which a terminal can retrieve Notification Messages without prior user

selection.

NOTE: A Default Notification Channel may require registration to a server when accessed over an interactive

network.

Registration: The procedure by which a terminal becomes listed to use a service.

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 8

Subscription: An agreement between a user and a service provider on the access to a service.

NOTE 1: The Service Definition assumes that such an agreement can be made, but does not prescribe the method

by which it is made.

NOTE 2: A user making a subcription may have its terminal automatically registered or may proceed to a

registration step. The successful completion of the registration step may not require any subscription.

Network Default Notification Channel: A Default Notification Channel delivering Notification Messages to terminals

attached to the network.

Platform Default Notification Channel: A Default Notification Channel delivering Notification Messages to terminals

attached to an IP platform.

ESG Default Notification Channel: A Default Notification Channel delivering to terminals Notification Messages

related to Services signalled in the ESG.

Service Related Notification Channel: A Channel delivering Notification Messages related to a Service signalled in

the ESG.

In-band Service Related Notification Channel: A Channel delivering Service Related Notification Messages that may

need to consumed by the terminal concurrently with the other Service Components composing the Service.

Out-of-band Service Related Notification Channel: A Channel delivering Service Related Notification Messages that

can be consumed by the terminal independently from the other Service Components composing the Service.

User-selected Notification Service: A Notification Service that the User discovers from the ESG and that the User may

need to subscribe to in order to retrieve the Notification Messages.

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

CBMS Convergence of Broadcast and Mobile Services

DVB Digital Video Broadcasting

DVB-H DVB-Handheld

EDN ESG Default Notification

FDT File Delivery Table

ESG Electronic Service Guide

FLUTE File Delivery over Unidirectional Transport

ID identifier

IP Internet Protocol

IPDC IP Datacast

iSRN In-band Service Related Notification

MIME Multipurpose Internet Mail Extensions

MTU Maximum Transmission Unit

NDN Network Default Notification

NPF Notification Payload Format

NIC Notification Init Container

NS Notification Service

OMA Open Mobile Alliance

OMNA OMA Naming Authority

oSRN Out-of-band Service Related Notification

OTA Over the air

PDN Platform Default Notification

RFC Request for Comments

RTCP RTP Control Protocol

RTP Real-time Transport Protocol

SI Service Information

SRN Service Related Notification

UDP User Datagram Protocol

WSP Wireless Session Protocol

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 9

4 Overview

Notification is a function by which the network provides messages about forthcoming and not predictable events of

interest to the terminal or the user. The Notification may lead to subsequent interaction from the user/the terminal.

The information carried in the Notification messages can be related to the (DVB) network supporting the IPDC system,

the IP platform, or the services described in a given ESG.

The Notification messages are delivered by broadcast networks to terminals. In addition, for terminals with Interaction

capability, these messages can be delivered to or retrieved by the terminals using an Interaction network. Also, an

Interaction network could deliver Notification messages to complement messages that are delivered via Broadcast

network.

4.1 Categories of Notification

Based on use case analysis, several Notification delivery mechanisms have been identified, leading to different methods

to access them.

4.1.1 Default Notification

A Default Notification can be automatically accessed by terminals using the Default Notification Channel.in a

Broadcast network and should be able to receive these messages without any particular subscription. Registration may

be required when the default Notification messages are available over the Interaction network.

Three Default Notification categories have been identified, depending on the scope of the messages attached to the

category:

• Network Default Notification

• Platform Default Notification

• ESG Default Notification

4.1.1.1 Network Default Notification (NDN)

The NDN category includes messages that are relevant at the DVB network level. No user selection is required. All

terminals attached to the network can access the messages. Notification messages related to the network are carried over

the PDN channels.

Messages in NDN category are agnostic to the services described in the ESG. Examples of such messages could relate

to emergency such as Amber alerts, interruption of broadcast, change in network connection parameters, etc.

4.1.1.2 Platform Default Notification (PDN)

The PDN category includes messages that are relevant in a particular IP Platform. All terminals attached to that IP

Platform can receive the messages without user selection. Messages in PDN category are agnostic to the services

described in the ESG. Examples of such messages could relate to change of platform configuration.

4.1.1.3 ESG Default Notification (EDN)

The EDN category includes messages that are related to the services described by a given ESG. All terminals using that

ESG of a specific ESG provider can receive the EDN messages automatically without user selection.

Such Notification messages can be delivered in (one of) the ESG carousels or in a dedicated channel. EDN messages

can relate to the ESG provider only (e.g. Notification of a new service available) and/or to services described in the

ESG (e.g. special event occurring in a service).

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 10

4.1.2 User-selected Notification

User-selected Notifications are messages related to services discovered in the ESG. They are user selected in the sense

that the user has to discover and select a service and related Notification components via the ESG.

4.1.2.1 Service Related Notification (SRN)

Service Related Notifications are messages related to a specific service described in an ESG (e.g. mobile TV channel).

Such Notification messages, when delivered as part of the service session (and preferably in the same DVB-H burst) are

referred to as in-band Service Related Notification messages (iSRN).

When in-band SRN messages need to be tightly synchronized to the service which it refers to, the RTP protocol is used

to provide synchronization information as it allows for accurate synchronization of the different media components of

the service session. Service Related Notification messages can also be carried in the EDN session, for terminals to be

able to receive messages without the need to tune into a particular service.

SRN may require subscription, in addition to subscription to the related service.

4.1.2.2 Notification Service (NS)

A Notification Service is a service consisting in the delivery of Notification messages for consumption by the user.

Examples of such service is a News service. Such service is described in the ESG and discoverable by the user while

searching the ESG. A NS service may require subscription and purchase.

4.2 Notification Framework

The Notification framework is the system configuration enabling the delivery of Notification messages according to the

categories described in the previous clause. Figure 1 depicts an instantiation of such framework.

User selected Default

Services
(examples)

News Rich A/V Emergency
Platform

Mngt

Components N A V N NN

Channels NS A V iSRN oSRN NDNPDNEDN

ESG
Mngt

Components
A Audio
N Notification
V Video

Channels
A Audio
EDN ESG Default Notification
iSRN in-band Service Related Notification
NDN Network Default Notification
oSRN out-of-band Service Related Notification
PDN Platform Default Notification
NS Notification Service
V Video

N

Protocols RTP

FLUTE

RTP RTP

FLUTE FLUTE FLUTE

Notification Framework

HTTP HTTP HTTP HTTP

Broadcast

Interactive WAP

Push

WAP

Push

WAP

Push

WAP

PushOn same network

On same network

Figure 1: Example of Notification framework configuration

Services may have Notification components to deliver Notification messages. Depending on the scope of the

Notification message, a Notification channel is selected to deliver the messages. The Notification channels map on

protocols suited for the transport requirements of the Notification messages.

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 11

When messages are delivered over the Interaction Channel, the messages are either pushed to individual terminals or

retrieved (Polling) by the terminal irrespective of the type of Notification message.

When messages are expected to have tight timing relationshihp with A/V components (hence using the RTP protocol),

they are expected to be delivered over the same bearer, ie over the Broadcast network if the A/V components are over

Broadcast, over the Interaction network if the A/V components are over Interaction.

The discovery method of a Notification channel is dependent on its scope.

Default Notification channels are discovered from the bootstrap channel used to discover the ESGs. Notification

channels delivering messages related to services described in the ESG are discovered via the ESG, as any channel

related to a service described in the ESG.

The only exception to this principle is for out-of-band Service-related Notification messages. Such messages may be

delivered in the EDN channel when they may be consumed independently of the service they are related to.

Figure 2 depicts the discovery paths of the various Notification channels.

DVB Network 1

Platform 1

PSI/SI

Bootstrap

ESG1

EDN

Service 1

Service 3
(NS)

ESG2

EDN

Service 1
(NS)

Service 2

PDN
(+NDN)

Platform 2

Bootstrap

ESG1

EDN

Service 1

Service 3
(NS)

ESG2

EDN

Service 1
(NS)

Service 2

PDN
(+NDN)

Service 2
(SRN)

Service 2
(SRN)

Figure 2: General Notification organization

When a terminal connects to a DVB network transporting an IP platform, it first acquires the DVB signalling (PSI/SI).

PSI/SI enables the terminal to locate the bootstrap channel for a given IP platform.

Once the descriptors in the bootstrap channel are acquired, the terminal can locate the available PDN channel as well as

the EDN channel associated to each ESG present in the IP platform. The bootstrap descriptors may provide entry point

for the PDN and EDN channels over an Interaction network. Note that the PDN may also carry NDN messages.

From the ESG, the terminal can discover IPDC services that can be “regular” IPDC services (e.g. an A/V service),

Notification Services (NS) and Service Related Notification (SRN) components described as IPDC services. Such SRN

components can be related to a regular IPDC service; the relationship between the SRN component and the base regular

service is discovered in the SRN service fragments or in the Notification message itself. Thus, IPDC phase 1 terminals

should not be impacted as they would ignore such SRN services.

The discovery of access information for the delivery of the Notification messages via Interaction network depends on

the nature of the Notification. For Default Notification messages, the access information is extracted from the access

descriptor in the bootstrap channel for the given IP platform over the Broadcast network. For User Selected

Notification, the access information is provided in the ESG along with “regular” IPDC services.

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 12

4.3 Mapping of Notification messages on transport layer

4.3.1 Structure of Notification messages

A Notification Message is an extensible structure composed of several parts needed to support Notification applications.

The parts composing the Notification message are:

• Generic Notification Message part (clause 6.1.1)

• Notification payload

The Notification Message payload is further broken down into

• Application-specific Notification message part

• Media objects

The Notification message provides support for

• Message identification: ID and version number of the message

• ESG/Service/Content reference: ESG, service or content it relates to

• Timing information: Timing information for message lifecycle management

• Filter information: Message attributes for filtering at reception

• Fragmentation and re-assembly

4.3.2 Mapping of Notification messages on broadcast transport layer

Depending on the target Notification application and attributes (size, time and synchronization constraints, etc), the

Notification messages can be split and mapped on several transport protocols as described in the sequel.

If Notification messages can be delivered without time constraints or with a time constraint compatible with an

advanced delivery, they should be mapped on FLUTE protocol as depicted in figure 3.

Generic Notification
Message Part

Payload(s)Notification Message
Structure

FLUTE Transport Object(s)
FDT

Instance
Mapping on

FLUTE

Figure 3: Mapping of Notification message on FLUTE (single message)

For efficiency reasons, more than one Notification message can be aggregated within a single transport object as

depicted in figure 4. The Notification messages carried in the aggregate transport object may be individually described

in the FDT instance, but it is also possible to restrict the description to the common parts of all messages.

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 13

Figure 4: Mapping of Notification message on FLUTE (multiple messages)

If Notification messages need to be delivered with time constraints relative to an audio and/or video stream, they are

mapped on the RTP protocol as depicted in figure 5. The lower part of the figure illustrates the case where only parts of

the Notification message are sent in synchronisation with an audiovisual stream, and others are delivered at different

time. In this case it is possible to deliver only the former over RTP while carrying the bulk of the message (including

the Notification payload) over FLUTE.

Figure 5: Mapping of Notification message on RTP and RTP+FLUTE

Note that multiple messages can be carried in an aggregated container in case FLUTE transport is also involved.

For efficiency reasons, more than one Notification message can be aggregated within a single payload in RTP as

depicted in figure 6. In this case, only the parts of the generic Notification message that are common to all messages are

carried in the RTP Payload Format header, all other parts are carried in the respective sections or in the index of the

aggregate payload.

Notification Message
Structure

Generic

Notification
Message Part

Payload(s)

Generic

Notification
Message Part

Payload(s)

RTP
Header

RTP

PF
Header

PayloadMapping on

RTP Media object(s)
Appl.Specific

Mess. part
Media object(s)

Appl.Specific

Mess. part
Index

Figure 6: Mapping of Notification message on RTP (multiple messages)

Notification Message
Structure

Generic
Notification

Message Part

Payload (s)
Generic

Notification
Message Part

Payload (s)
Generic

Notification
Message Part

Payload (s)

FLUTE Aggregate Transport Object
FDT

Instance
Mapping on

FLUTE Payload (s) Payload (s) Payload (s)Index

Payload

Generic Notification
Message Part

Payload (s)Notification Message
Structure

RTP
Header

RTP
PF

Header

Payload

RTP
Header

RTP
PF

Header

FLUTE Transport Object(s)

Mapping on
RTP

Mapping on
RTP

&
FLUTE FDT

Instance

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 14

4.3.3 Mapping of Notification messages on interactive transport layer

For services using Notification components not having real time requirements, or when the Broadcast network is not

available, the Interaction network can be used to deliver Notification messages.

 In this case,the Notification messages are carried in the same structure as for the broadcast transport.

Notification Message

Structure

Generic

Notification

Message Part

Payload(s)

Generic

Notification

Message Part

Payload(s)

Generic

Notification

Message Part

Payload(s)

Notification Aggregate ContainerHTTP or
WSP

Header

Mapping on

HTTP or WSP Payload(s) Payload(s) Payload(s)Index

Figure 7: Mapping on HTTP or WSP

Retrieval of Notification messages is driven by terminals through a queyring mechanism directed to the Notification

server.

4.4 Dynamics of the Notification framework

In the Notification framework, a service component carrying Notification messages has a Component ID attached to it.

The Component ID is used in the signalling of service components that may need to be consumed concurrently. In case

a Notification component is shared among several services, Notification Types are used by the Notification client to

retrieve the relevant Notification messages. A Notification Type is an identifier of the type of Notification message,

similar to a port number in IP protocols. The Notification Type may be used to identify the handling application of the

Notification messages. Some type values are registered, in order to map with “well-known” applications, such as for

emergency; all others may be dynamically allocated. The Notification Type is a field defined in the Notification

message header.

Messages are identified with a message ID. Such message ID maps to the handling context based on the Notification

life cycle defined in section 6.3. The Notification life cycle model is aimed at defining a processing model of the

Notification messages.

When a terminal discovers the availability of the Notification service, it first acquires the initialization parameters from

the ESG, more particularly the location of the Notification components and the location of an Initialization Container.

Such Notification Initialization Container (NIC) may be carried in an ESG session or in-band with the Notification

messages. The NIC may provide information such as the filtering criteria that may apply to the Notification messages.

5 Architecture

The IP Datacast Architecture document [13] defines the reference architecture for Notification services delivered by IP

Datacast [12] over DVB-H [11]. The reference architecture specification is provided to illustrate the way the different

components (e.g. audio, video and Notification) in IP Datacast over DVB-H work together.

The following diagram identifies sub-entities of the main entities involved for the default Notification operation. It also

highlights the reference points that are involved.

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 15

Content

creation

IPDC-2

IPDC-1

IPDC-4

IPDC-5

X-1

X-2

IPDC-6

IPDC-7

X-5

CONTENT

CREATION

SERVICE

APPLICATION
SERVICE

MANAGEMENT NETWORKS TERMINAL

IPDC-3

Notification

Handler

IP-to-Sect.

Broadcast

adaptor

NDN
Source

PDN
Aggregator

PDN
Source

EDN
Source

EDN
Aggregator

PDN
Distribution

EDN
Distribution

Notif.
Source

Bootstrap
ESG

Aggregatpr

Interactive
Distribution

Phys.

ESG

Aggreg.

WAP
Push

Interactive

adaptor

Figure 8: Sub-Entities and reference points activated for Default Notification delivery

The following diagram identifies sub-entities of the main entities involved for the User selected Notification operation.

It also highlights the reference points that are involved.

Content

creation

IPDC-2

IPDC-1

IPDC-4

IPDC-5

X-1

X-2

IPDC-6

IPDC-7

X-5

CONTENT

CREATION

SERVICE

APPLICATION
SERVICE

MANAGEMENT NETWORKS TERMINAL

IPDC-3

Notification

Handler

IP-to-Sect.

DVB-H

adaptor

Notif.
Source

Bootstrap
ESG

Aggregatpr

Interactive
Distribution

Phys.

ESG

Aggreg.

Notif.
Distribution

Notif.
Aggregator

Specific
Logical
ESG

Aggregator

WAP
Push

Interactive

adaptor

Figure 9: Sub-Entities and reference points activated for User selected Notification delivery

6 Notification message structure and transport

6.1 Notification message elements

In this clause the different Notification message parts as well as their fields are described.

6.1.1 Generic Notification Message Part

The generic Notification message part includes information that is to be processed by the Notification framework. This

information may also be passed further to the Notification application.

The generic Notification message part consists of the following elements.

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 16

Table 1: Generic Notification message part elements

Field Cardinality Semantics

MessageID 1 ID of the current Notification message. May be
avoided if signalled by the transport protocol.

Version 1 Version number of the current Notification message.
May be avoided if signalled by the transport protocol.

Action 0..1 Describes the action to be performed on the
Notification message.

NotificationType 1 Type of the Notification message. This information
may be used to identify the target application for the
Notification message. A list of static Notification
message types is maintained by DVB. A range is
reserved for dynamic assignment of Notification
types. The scope of NotificationType for the
dynamically assigned ones is the IP platform.

NotificationPayloadRef 0..1 Reference to the application specific message part of
the Notification message. Contains Payload URI and
optionally its container URI

MediaObjectRef 0..N Reference to the media parts of the Notification
message. Contains Media URI and optionally its
container URI

ScheduleRef 0..N Reference to the scheduled event to which the
Notification message relates

ServiceRef 0..N Reference to the service to which the Notification
message relates

ESGRef 0..N Reference to the ESG to which the Notification
message relates

IPPlatformRef 0..1 Reference to the IP Platform to which the Notification
message relates

TimingInformation 0..N Indicates additional timing information to describe the
handling of the Notification message

FilterElementList 0..1 Indicates the filtering items that the current message
satisfies

“NotificationType” may be used to identify the target application for the Notification message. Values from 0 to 255 are

reserved and their used described in Annex A.

“Action” defines the action that is to be performed on the current Notification message. The possible actions are defined

in the following table

Table 2: Notification message actions

Value Description
0 Launch

1 Cancel

2 Remove
3 Fetch ASAP

Other values Reserved for future use

NOTE: When omitted, default value is “0” (“Launch”).

“TimingInformation” defines three sub-fields:

• launch_time (the time for the intended presentation time of the Notification message)

• active_time (the intended relative time from object activation until automatic cancellation)

• life_time (the intended life time until automatic removal of the object relative to object loading)

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 17

Table 3: Valid combinations of actions and timing information

Timing information present Action

Launch_time Active_time Life_time

Description

Launch X (X) (X)

Launch at time launch_time
NOTE 1: launch_time is to be interpreted
differently according to the transport protocol
used
NOTE 2: if launch_time occurred in the past,
then launch action is to be interpreted as
launch ASAP if active_time is not elapsed

Cancel (X)
Cancel immediately and update life_time if
present

Cancel X (X) Update active_time and life_time if present

Remove Remove immediately

Remove (X) X Update life_time and active_time if present

Fetch ASAP (X) (X) (X)
Fetch immediately and update timing
information if present

The generic message part may include a reference to the application-specific message part in the

NotificationPayloadRef. The other media objects that are also part of the current Notification message may also be

referred to in the generic message part by the MediaObjectRef. As the referred message parts may be carried as part of a

Notification container, an optional reference to the container URI may be provided to facilitate access.

The generic Notification message part in XML format shall be compliant to the following schema:

<?xml version="1.0" encoding="utf-8" ?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:notif="urn:dvb:ipdc:notification:2008"

 elementFormDefault="qualified"

 targetNamespace="urn:dvb:ipdc:notification:2008">

 <xs:element name="NotificationDescription">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="NotificationPayloadRef" type="notif:MessagePartRefType"

 minOccurs="0" maxOccurs="1"/>

 <xs:element name="MediaObjectRef" type="notif:MessagePartRefType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="TimingInformation" type="notif:TimingInformationType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="FilterElementList" type="xs:base64Binary"

 minOccurs="0" maxOccurs="1"/>

 <xs:element name="ScheduleRef"

 type="xs:anyURI"

 minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="ServiceRef"

 type="xs:anyURI"

 minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="ESGRef"

 type="xs:anyURI"

 minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="IPPlatformRef"

 type="xs:anyURI"

 minOccurs="0" maxOccurs="1"/>

 <xs:any minOccurs="0" maxOccurs="unbounded" namespace="##other"

 processContents="lax"/>

 </xs:sequence>

 <xs:attribute name="MessageID"

 type="xs:unsignedShort"

 use="optional"/>

 <xs:attribute name="Version"

 type="xs:unsignedByte"

 use="optional"/>

 <xs:attribute name="Action"

 type="xs:unsignedByte"

 use="optional"/>

 <xs:attribute name="NotificationType"

 type="xs:unsignedShort"

 use="optional"/>

 <xs:anyAttribute processContents="skip"/>

 </xs:complexType>

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 18

 </xs:element>

 <xs:complexType name="MessagePartRefType">

 <xs:simpleContent>

 <xs:extension base="xs:anyURI">

 <xs:attribute name="ContainerRef" type="xs:anyURI" use="optional"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 <xs:complexType name="TimingInformationType">

 <xs:attribute name="active_time" type="xs:unsignedInt" use="optional"/>

 <xs:attribute name="launch_time" type="xs:unsignedInt" use="optional"/>

 <xs:attribute name="remove_time" type="xs:unsignedInt" use="optional"/>

 </xs:complexType>

</xs:schema>

6.1.2 Notification Message payload

The Notification Message payload is composed of an Application-specific Notification message part and possibly

Media objects. The Notification Message payload is intended to be consumed by the target application, resolved from

the NotificationType value.

6.1.3 Encapsulation and Aggregation of Notification Messages

Notification messages may be composed of multiple parts. The transport of the Notification message parts may be done

separately or as a single object. For the encapsulation of Notification message parts into a single transport object the

Multipart/Related MIME format RFC 2387 [3] shall be used. Multiple Notification messages may also be aggregated

into a single container using the same format.

The following parameters are indicated in the Content-Type field of the Multipart/Related MIME message:

• boundary: indicates a string value that is used as boundary between the different parts of the Multipart/Related

MIME message.

• start: may optionally be used to indicate the ID of the root part of the Multipart/Related MIME message. It is

expected that the root part is the first part of the message.

• type: shall be used to indicate the MIME type of the root part of the Multipart/Related MIME message. For a

single Notification message in the Multipart/Related MIME container, the MIME type shall either be

“application/vnd.dvb.notif-generic+xml” to indicate that the root part is the generic message part, or the MIME

type of the application-specific Notification message part. If the Multipart/Related MIME container aggregated

several Notification messages, the root part of the Notification message shall be an index list as defined below

and the type shall be “application/vnd.dvb.notif-aggregate-root+xml”.

In case of a single Notification message in the Multipart/Related MIME container, the root element shall be the generic

message part, or, if the generic message part is carried separately, the application-specific message part.

In case of aggregation of multiple message parts from different Notification messages into a single Multipart/Related

MIME container, the root part shall be an XML index list with the following format:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:notif="urn:dvb:ipdc:notification:2008"

 elementFormDefault="qualified"

 targetNamespace="urn:dvb:ipdc:notification:2008">

 <xs:element name="MultipartIndex">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="MessagePart" type="notif:MessagePartType" minOccurs="0"

 maxOccurs="unbounded" />

 <xs:element name="InitContainer" type="notif:PartType" minOccurs="0"

 maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:anyAttribute namespace="##any" processContents="lax"/>

 </xs:complexType>

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 19

 </xs:element>

 <xs:complexType name="MessagePartType">

 <xs:complexContent>

 <xs:extension base="notif:PartType">

 <xs:sequence>

 <xs:element name="FilterElementList" type="xs:base64Binary"

 minOccurs="0" maxOccurs="1"/>

 </xs:sequence>

 <xs:attribute name="MessageID" type="xs:unsignedShort" use="optional"/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <xs:complexType name="PartType">

 <xs:attribute name="Version" type="xs:unsignedByte" use="optional"/>

 <xs:attribute name="NotificationType" type="xs:unsignedShort" use="optional"/>

 <xs:attribute name="Content-ID" type="xs:anyURI" use="required"/>

 <xs:attribute name="Content-Position" type="xs:nonNegativeInteger" use="optional"/>

 <xs:attribute name="Content-Type" type="xs:string" use="optional"/>

 <xs:attribute name="Content-Transfer-Encoding" type="xs:string" use="optional"/>

 <xs:attribute name="Content-Description" type="xs:string" use="optional"/>

 </xs:complexType>

</xs:schema>

The following table gives a description of the different fields of the index list.

Table 4 Fields of the index list for of Notification messages aggregate

Field Semantics

MessageID ID of the Notification message to which this Notification message part
belongs to.

Version Version number of the Notification message to which this Notification
message part belongs to.

NotificationType Type of the Notification message.
Content-ID ID of the Notification message part.

Content-Position Index of the Multipart/Related message part that contains the
corresponding Notification message part. The index of the index list
shall be 0.

Content-Type Indicates the MIME type of the corresponding Notification message part

Content-Transfer-Encoding Indicates the type of content transfer encoding applied to the
corresponding Notification message part.

Content-Description Textual description of the message part.
FilterElementList Filtering elements may be added to the index list to facilitate and

accelerate filtering.

InitContainer Indicates the initialization data for a specific Notification type. The
structure is further specified in clause 7.3.

NOTE 1: When Notifications of the same type are aggregated, the NotificationType can be signalled in the FDT.

NOTE 2: When Notifications of different types are aggregated and carried over a default Notification channel, the

NotificationType field is mandatory. This enables to identify each corresponding NIC.

6.2 Mapping on transport protocols

A Notification message may be transported in different formats, depending on its size, its components, and on the

transport channel in use. The following table represents the different formats of the Notification payload as well as the

corresponding mappings to the transport protocol.

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 20

Table 5: Notification Payload Format Semantics and values of NPF field

Format of the Notification payload FDT content type RTP NPF value

Reserved N/A 0
Action - No payload N/A 1

Generic message part only application/vnd.dvb.notif-
generic+xml

2

Generic message part + Application-specific
message part with reference(s) to external Media
objects

application/vnd.dvb.notif-
container+xml

3

Generic message part + Application-specific
message part without reference(s) to external Media
objects

application/vnd.dvb.notif-
container+xml

4

Aggregate of multiple Notification messages sharing
some Notification information fields (e.g. same
timestamp in RTP transport)

application/vnd.dvb.notif-
container+xml

5

Initialization container for the Notification application application/vnd.dvb.notif-
init+xml

6

Reserved for future use N/A 7-31

In case of RTP, “Generic message part + Application-specific message part with reference(s) to external Media objects”

relates to Media objects carried over FLUTE, while for “Generic message part + Application-specific message part

without reference to external Media objects”, the complete message is carried over RTP.

In case of FLUTE, the reference(s) to Media objects is in the scope of the same FLUTE session where the Generic and

Application-specific message parts are found.

6.2.1 Mapping on FLUTE

Notification messages or parts thereof may be transported over FLUTE as transport objects. A FLUTE transport object

may also carry several Notification messages aggregated together as defined in clause 6.1.

When the Notification message is transported over FLUTE, the generic message elements may be transported in the

FLUTE object and/or in the FDT according to table 6.

Table 6: Location of generic Notification message elements for Notification Messages transported on
FLUTE as individual Transport Object

Field Carried in
FDT

Carried in
Object

MessageID M O
Version M O

Action O O

NotificationType M O
NotificationPayloadRef O

MediaObjectRef O
ScheduleRef O

ServiceRef O

ESGRef O

IPPlatformRef O

TimingInformation O O
FilterElementList O O

When an optional field is not present in FDT, it still may be present in the transport object. In case an optional field is

present on both FDT and transport object, they shall be identical. If a terminal finds different values for a same field, it

shall discard the complete message.

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 21

Table 7: Location of generic Notification message elements for Notification messages aggregated
into single FLUTE Transport Object

Field Carried in
FDT

Carried in
Object

Notes

MessageID O M

Version O M

Action O O
NotificationType M / O O For transport objects carrying Notification

messages of same NotificationType, the
NotificationType field is mandatory in the FDT.

NotificationPayloadRef O

MediaObjectRef O

ScheduleRef O

ServiceRef O

ESGRef O
IPPlatformRef O

TimingInformation O O

FilterElementList M / O O For transport objects carrying Notification
messages of same NotificationType, the
FilterListElement field is mandatory in the
FDT.

6.2.1.1 Notification Message description

Upon reception of the FDT, the receiver is able to identify transport objects that carry Notification messages or parts

thereof based on the indicated Content-Type as decribed in Table 5. If compression, e.g. gzip, is applied to the transport

object then it is indicated by the “Content-Encoding” field in the FDT, as specified in [1].

In order to enable fast identification and selection of the desired Notification messages, extensions to the FDT are

defined to carry information about the Notification messages. The extension shall conform to the following XML

schema:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace="urn:dvb:ipdc:notif:FDText:2008"

 elementFormDefault="qualified"

 xmlns="urn:dvb:ipdc:notif:FDText:2008"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:notif="urn:dvb:ipdc:notification:2008">

 <xs:import namespace="urn:dvb:ipdc:notification:2008"/>

 <xs:element name="NotificationMessageDescription"

 type="NotificationMessageDescriptionType"/>

 <xs:element name="NotificationAggregateDescription">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="FilterElementList" type="xs:base64Binary"

 minOccurs="0" maxOccurs="1"/>

 <xs:element name="NotificationMessageDescription"

 type="NotificationMessageDescriptionType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="NICDescription"

 type="NICDescriptionType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xs:any namespace="##other" processContents="skip" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="NotificationType" type="xs:unsignedByte" use="optional"/>

 <xs:anyAttribute processContents="skip"/>

 </xs:complexType>

 </xs:element>

 <xs:complexType name="NotificationMessageDescriptionType">

 <xs:sequence>

 <xs:element name="TimingInformation" type="notif:TimingInformationType" minOccurs="0"

 maxOccurs="unbounded"/>

 <xs:element name="FilterElementList" type="xs:base64Binary"

 minOccurs="0" maxOccurs="1"/>

 <xs:any namespace="##other" processContents="skip" minOccurs="0" maxOccurs="unbounded"/>

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 22

 </xs:sequence>

 <xs:attribute name="MessageID" type="xs:unsignedShort" use="required"/>

 <xs:attribute name="Version" type="xs:unsignedByte" use="required"/>

 <xs:attribute name="Action" type="xs:unsignedByte" use="optional"/>

 <xs:attribute name="NotificationType" type="xs:unsignedByte" use="required"/>

 <xs:anyAttribute processContents="skip"/>

 </xs:complexType>

 <xs:complexType name="NICDescriptionType">

 <xs:sequence>

 <xs:any namespace="##any" processContents="skip" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="NotificationType" type="xs:unsignedShort" use="required"/>

 <xs:anyAttribute processContents="skip"/>

 </xs:complexType>

</xs:schema>

NOTE: if the aggregate contains messages of the same Notification type, then the NotificationType in the

NotificationAggregateDescription should be present, otherwise no NotificationType field in the

NotificationAggregateDescription is allowed.

The presence of an information field in the FDT depends on whether the message is carried as an aggregate or not.

In the case of a single Notification message in the transport object, the NotificationMessageDescription element may be

used to provide information about that Notification message. A NotificationMessageDescription element may also be

used to describe a Notification container that encapsulates message parts of a single Notification message. It is

recommended to provide all of the available information in this element, in order to accelerate filtering of the

Notification messages upon reception of the FDT.

In case a Notification container aggregates message parts from multiple Notification messages, a

NotificationAggregateDescription element may be present in the FDT to indicate further information about the

aggregate. The NotificationAggregateDescription element provides filtering information applicable to the whole

container. This implies that all used filter definitions are the same for the NotificationTypes of all contained messages.

The filtering information may be provided as described in clause 6.4.2. More specific information for each single

message of the aggregate (e.g. messageID, additional filter elements,…) may be delivered in form of

NotificationMessageDescription elements nested in the NotificationAggregateDescription element. The presence of the

NICDescription element signals the existence of a Notification Initizalization Container in the aggregate itself for the

NotificationType signalled in the element.

The following is an example of an FDT that describes a transport object carrying an aggregate of multiple Notification

messages and providing the FDT extensions.

<?xml version="1.0" encoding="utf-8" ?>

<FDT-Instance xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:notif="urn:dvb:ipdc:notif:FDText:2008"

 Expires="3377633598"

 FEC-OTI-Maximum-Source-Block-Length="128000"

 FEC-OTI-Encoding-Symbol-Length="512"

 xmlns="urn:dvb:ipdc:cdp:flute:fdt:2005">

 <File Content-Location="NotificationContainer"

 TOI="1"

 Content-Length="1608"

 Content-Type="application/vnd.dvb.notif-container+xml">

 <notif:NotificationAggregateDescription>

 <notif:FilterElementList>A0BE21F4ABC231654=</notif:FilterElementList>

 <notif:NotificationMessageDescription MessageID="24"

 Version="1"

 NotificationType="56"/>

 <notif:NotificationMessageDescription MessageID="25"

 Version="3"

 NotificationType="56"/>

 <notif:NotificationMessageDescription MessageID="23"

 Version="1"

 NotificationType="56"/>

 <notif:NICDescription NotificationType="56"/>

 </notif:NotificationAggregateDescription>

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 23

 </File>

</FDT-Instance>

6.2.1.2 Selection and Filtering of Notification Messages

In order to increase efficiency of Notification delivery, the FDT may include information related to a Notification

message (or several Notification messages) carried in a transport object. The information in the FDT that can be used to

filter and select desired Notification messages are presented:

• Service Reference (ServiceRef): terminals interested in Notification messages of a given (Notification) service

use the ServiceRef element to identify and receive those messages.

• Notification Type (NotificationType): terminals interested in specific Notification messages (e.g. only

emergency messages) use the Notification type field to identify and receive those messages.

• Notification Message ID (MessageID) and Notification Message Version (Version): allow to the terminal to

identify and discard duplicate messages.

NOTE: The Notification Message ID is unique in the scope of the NotificationType.

• Subscription Information (SubscriptionInformation): if present subscription information is used to identify

whether the terminal has subscribed to the service providing this Notification message.

• Filter Elements (FilterElementList): filtering criteria are used to decide whether a transport object is

considered or not. The terminal should receive the transport object if at least one of the filter items provided by

the Notification application is signalled.

In case of an aggregate message, the FDT shall either include a description of all the messages in the aggregate or none.

In the former case, terminals can decide whether the transport object is to be received or not based on the information

about the contained Notification messages. In the latter case, the FDT may still provide filtering information that applies

to all the messages in the aggregate. The terminal should be able to discard the aggregate transport object based on this

information. Otherwise, the terminal should retrieve the transport object and check the aggregate index structure for

further filtering information and more detailed and complete description of each Notification message in the aggregate.

6.2.1.3 Timing Information

The Timing information extension shall conform to the definition given in 6.1.1.

Table 8: Semantics of timing information when mapping over FLUTE

Field Semantics

launch_time

A value that specifies the NTP value of the intended presentation time of the Notification message.
This time may be in the past when a message (or trigger) is repeated to cope with packet loss or
channel switching
NOTE: launch_time is to be interpreted differently when used with RTP

active_time A value indicating the intended relative time from object activation until automatic cancellation, in
milliseconds.

 life_time A value indicating the intended life time until automatic removal of the object relative to object
loading, in milliseconds.

6.2.2 Mapping on RTP

Notification messages that are tightly synchronized with media streams of a service shall be transported using RTP.

When the Notification message is transported over RTP, the generic message elements may be transported in the

payolad format header, extension header or payload according to table 9.

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 24

Table 9: Location of generic Notification message elements if transported over RTP

Field Carried in
payload
format
header

Carried in
extension

header

Carried in
payload

MessageID M

Version M

Action M

NotificationType M
NotificationPayloadRef O

MediaObjectRef O
ScheduleRef O

ServiceRef O

ESGRef O

IPPlatformRef O

TimingInformation O O
FilterElementList O O

SubscriptionInformation O O

In case an optional field is present on both the extension header and the payload, they shall be identical. If a terminal

finds different values for a same field, it shall discard the complete message.

6.2.2.1 RTP Header

Figure 10 describes the RTP packet header as defined by RFC 3550 [4]. The fields of the RTP packet header are used as

described in RFC 3550.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|V=2|P|X| CC |M| PT | sequence number |

+-+

| timestamp |

+-+

| synchronization source (SSRC) identifier |

+=+

| contributing source (CSRC) identifiers |

| |

+-+

Figure 10: RTP Header

The Notification framework makes use of the RTP synchronization mechanism to achieve tight synchronization

between the Notification message stream and other media streams of the same session.

The RTP timestamp along with the RTCP Sender Reports shall be used to determine the accurate time at which the

indicated action is to be performed on the Notification message. If further timing information are present, then that

information overwrites the information indicated in the RTP header. However, the additional timing information shall

use the re-constructed sender timeline using RTP/RTCP.

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 25

6.2.2.2 RTP Payload Format Header

The RTP payload format header has the following format:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| NT | ID |

+-+

| VN | ACT |C| R | NPF | T | HL |

+-+

Figure 11: RTP payload format header

The syntax and semantics of the payload format header fields are defined as follows:

• NT (Notification Type): 16 bits

- This field is used to indicate the Notification type.

• ID (Message ID): 16 bits

- Identifier of the Notification message.

• VN (Version Number): 8 bits

- Notification message version. Can be used to check redundancy of Notification messages but also for

fragmentation and reassembly.

• ACT (Action): 4 bits

- Defines the action that is to be performed on the current Notification message. ACT field takes the values

between 0 and 15 as defined in table 2 in clause 6.1.1.

• NPF (Notification Payload Format): 5 bits

- Defines the format of the Notification payload of the RTP packet. An RTP packet may carry a complete

Notification message (compound message), parts of a Notification message, the generic part of the

Notification message, or no payload. If the payload consists of multiple Notification message parts then those

are encapsulated to build a single container.

The NPF field should be set according to table 5 .

• R (Reserved): 2 bits

• C (Compression): 1 bit

- Indicates whether compression has been applied to the RTP payload (before fragmentation). In case

compression is applied, the default compression algorithm is supposed to be “gzip”. The field is defined according

to the following table.

Table 10 Compression of RTP Payload

Compression (C) Indicates whether compression is applied to the RTP
payload

0 No compression is applied

1 Compression is applied. The compression algorithm
used should be signalled out-of-band. The algorithm
defaults to “Gzip” as defined by RFC 1952 [5].

• T (Packet Type): 4 bits

- The packet type as defined in the table below; packets with reserved values of the type field shall be

discarded.

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 26

Table 11: RTP packet type

Type Description

0 Single packet
1 Fragmentation start Packet

2 Fragmentation continuing Packet
3 Fragmentation end Packet

4-15 Reserved for future use

• HL (Header Length): 8 bits

- defines the length of this payload format header (including extension headers) in 32 bits units.

Special restrictions apply when the payload does not carry a single notification message but an aggregate or an

initialisation container:

When NPF=5, ID shall be set to 0, VN shall be set to 0, ACT shall be set to 0; if the aggregate messages have different

notification types, then NT shall be set to 0, if they have the same notification type, NT should reflect this Notification

Type.

When NPF=5, terminal shall process NT. In case NT is different from 0, it means that all messages in the aggregate

belong to the same Notification Type.

When NPF=6, ID shall be set to 0, ACT shall be set to 0.

6.2.2.3 Extension headers

The RTP payload format header is extensible and allows for additional information to be included in form of extension

headers. The generic format of an extension header is as follows:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| EHT | EHL | extension header field |

+-+

Figure 12: Generic extension header format

• EHT (extension header type): 8 bits

- Type of the extension header. A list of registered extension headers is defined and maintained by DVB.

• EHL (extension header length): 8 bits

- Length of the extension header field in bytes.

• Extension header: EHL bytes

- Content of the extension header.

The following extensions headers are defined:

Table 12: Extension headers and their types

Extension header EHT value
Filter Element List 1

NotificationPayloadID 2
launch_time 3

active_time 4
life_time 5

• Filter Element List is defined in clause 6.4.2.

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 27

• NotificationPayloadID: a 16 bit uimsbf used to identify the file carrying the payload part of the Notification

message.

If “NotificationPayloadRef” is not explicitly given, the payload is carried in the related FLUTE session and the

Content-Location field is set to a URI formatted as follows:

“dvb–ipdc_Notification_payload_<NotificationPayloadID>”,

NotificationPayloadID being interpreted as a single positive decimal number coded into an ASCII string

without leading zero.

If “NotificationPayloadRef” is given, the “NotificationPayloadID” shall be ignored by the terminal.

• launch_time: a 32-bit uimsbf value that specifies the value of the timestamp of the Notification RTP stream at

the intended presentation time of the Notification message. This time may be in the past when a message (or

trigger) is repeated to cope with packet loss or channel switching.

NOTE: launch_time is to be interpreted differently when used with FLUTE.

• active_time:a 32-bit uimsbf indicating the intended relative time from object activation until automatic

cancellation in milliseconds.

• life_time: a 32-bit uimsbf indicating the intended life time until automatic removal of the object relative to

object loading, in milliseconds.

6.2.2.4 Fragmentation Packets

Objects that exceed the networks maximum transmission unit (MTU) need to be fragmented before transmission. By

fragmenting at the RTP level one need not rely on lower layer fragmentation, e.g. IP.

The payload format defines fragmentation of objects into two or more RTP packets.

NOTE: Fragmentation on the RTP level should however be seen as a solution only when fragmentation at the

application level is not possible or available. Application level fragmentation allows creation of packets

that are smaller than MTUs and can be processed individually, which results in better error resilience

when packets are lost.

The common header values are as follows:

• T (Type): 1, 2, or 3

• ID (Message ID) and VN (Version Number): must be identical in all the packets of a fragmented Notification

message.

The first fragment shall be marked as type 1 and the last fragment shall be marked as type 3. Other fragments shall be

marked as type 2. Type 0 indicates that no fragmentation has been performed.

Using the Notification message ID, the RTP sequence numbers, and the Type values (T), the receiver can reconstruct

the original payload out of its fragments. Each fragment carries the same RTP payload format header with the

difference being in the RTP sequence number and the packet type.

Extension headers are not expected to be present in each fragment of an RTP packet, but rather only in the first

fragment of the packet.

6.2.2.5 SDP Parameters

The Notification component transported over RTP shall be described in the session description (SDP) of the session by

a dedicated media line.

The Session Description specifies the destination port, media type, clock rate, and other initialization information.

The fields in the Session Description Protocol (SDP) are defined as follows:

• The media name in the "m=" line shall be "application".

• The encoding name in the "a=rtpmap" line shall be "NOTIF".

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 28

The SDP label attribute "a=label" RFC 4574 [6] shall be present and shall include an id value that uniquely identifies

the Notification component among the media components of the same service.

Additional parameters as defined in Annex B may be provided as part of the codec specific information in the "a=fmtp"

line. These parameters are expressed in the form of a semicolon separated list of parameter=value pairs.

In the following, an example of the description of a Notification component in the SDP is given:

m=application 12345 RTP/AVP 100

a=rtpmap:100 NOTIF/1000

a=label:5

a=fmtp:100 Version =1;

6.2.3 Mapping on Interaction Network protocols

Delivery of Notification messages over the Interaction Network is performed according to the following steps:

1 Discovery: the terminal discovers the access to the desired Notification type . The terminal gets all

the necessary information to register and get access to Notification messages of the desired type.

2 Registration: the terminal registers with the Notification service provider for the desired

Notification service. The delivery modes are push and poll. In the push mode, the terminal may

select between receiving message lists or the actual Notification messages or both, as long as those

modes are supported by the server.

3 Delivery of the Notification Message List: In this step, the Notification message list is delivered to

the terminal. In the Poll mode, the terminal connects to the interactive server and requests an actual

Notification message list. In the push mode, the Notification message list is pushed to the terminal

by the interactive server.

4 Retrieval of Notification Messages: the terminal requests one or more Notification messages from

the interactive server. Alternatively, the terminal may retrieve the message from the related

broadcast channel. The server can push the Notification messages to the terminal without a specific

request.

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 29

Figure 13: Overview of Notification over Interaction Network

6.2.3.1 Discovery of Notification access over the Interaction Network

Discovery of Notification access over the Interaction Network follows different mechanisms depending on whether the

Notification channels are default ones or user-selected ones.

• In case of Default Notification channels, the Notification access over the Interaction Network is signalled in

the DefaultNotificationAccessDescriptor, as specified in clause 7.1.1: for PDN and each EDN, the Notification

bootstrap descriptor signals a URL and whether it is to register to an OMA PUSH delivery of Notifications, or

to retrieve Notifications.

• In case of User-selected Notifications, the Notification access over the Interaction Network is signalled in the

ESG and more specifically in the Acquisition Fragment where access to a Notification channel is signalled in

the session description of the Notification component (see [2]).

An Acquisition Fragment may carry a description of a Notification component delivered over the Broadcast Network,

Interaction Network, or both. In first two cases, it is intended that a terminal may select the one that best fits actual

terminal context while third one implies that both Broadcast and Interaction Networks are simultaneously available to

access the Notification channels. The type of Notification delivery is signaled in the ESG as well in order to help the

terminal select the appropriate Acquisition Fragment. Acquisition Fragments for multiple delivery types may be

simultaneously present.

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 30

6.2.3.2 Registration

When required, the terminal shall perform a registration procedure to enable delivery over the Interaction Network. To

cancel the registration the terminal shall perform a De-registration procedure. The registration expires automatically at

the indicated expiry time.

The registration procedure is performed using HTTP 1.1 POST [7] request/response messages.

6.2.3.2.1 Registration and Deregistration Request

The request is directed to the access point indicated by the RegistrationURL discovered from the discovery process.

The MIME type of the request shall be “application/vnd.dvb.notif-ia-registration-request+xml”. The body of the request

contains the following information:

• the registration operation required (e.g. Register or Deregister)

• the delivery mode, i.e. push (message list or messages or both) or poll

• the address of the device

• an identification of the device

• the notification type

• an optional reference to the ESG service.

The XML schema of the request body is described in the following table:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:notif="urn:dvb:ipdc:notification:2008"

 elementFormDefault="qualified"

 targetNamespace="urn:dvb:ipdc:notification:2008">

 <xs:element name="RegistrationRequest" type="notif:RegistrationRequestType"/>

 <xs:element name="DeregistrationRequest" type="notif:DeregistrationRequestType"/>

 <xs:complexType name="RegistrationRequestType">

 <xs:sequence>

 <xs:element name="DeviceAddress" minOccurs="1">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute name="Type" type="notif:DeviceAddressType" use="required"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="DeviceID" minOccurs="0">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute name="Type" type="notif:DeviceIDType" use="required"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 <xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="DeliveryMode" type="notif:DeliveryModeType" use="required"/>

 <xs:attribute name="NotificationType" type="xs:unsignedShort" use="optional"/>

 <xs:attribute name="ESGService" type="xs:anyURI" use="optional"/>

 <xs:anyAttribute namespace="##any" processContents="lax"/>

 </xs:complexType>

 <xs:complexType name="DeregistrationRequestType">

 <xs:sequence>

 <xs:any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 31

 </xs:sequence>

 <xs:attribute name="RegistrationID" type="xs:unsignedInt" use="required"/>

 </xs:complexType>

 <xs:simpleType name="DeviceAddressType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="MSISDN"/>

 <xs:enumeration value="IMSI"/>

 <xs:enumeration value="URI"/>

 <xs:enumeration value="IMPI"/>

 <xs:enumeration value="MIN"/>

 <xs:enumeration value="username"/> <!-- as defined in RFC2865 -->

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="DeviceIDType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="DVB Device ID"/>

 <xs:enumeration value="IMEI"/> <!-- as defined in 3GPP TS 23.003 -->

 <xs:enumeration value="MEID"/> <!-- as defined in 3GPP2 C.S0072 -->

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="DeliveryModeType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="Push Message List"/>

 <xs:enumeration value="Mixed"/>

 <xs:enumeration value="Push Messages"/>

 <xs:enumeration value="Poll"/>

 </xs:restriction>

 </xs:simpleType>

</xs:schema>

6.3.3.2.2 Registration and Deregistration Response

The response to a successful registration or deregistration request shall be an HTTP 200 OK message. In case of a

registration request, the response shall include a registration identifier and the expiry time of the registration. The

content type of the body shall be “application/vnd.dvb.notif-ia-registration-response+xml”.

The XML schema of the registration response is given in the following table:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:notif="urn:dvb:ipdc:notification:2008"

 elementFormDefault="qualified"

 targetNamespace="urn:dvb:ipdc:notification:2008">

 <xs:element name="RegistrationResponse" type="notif:RegistrationResponseType"/>

 <xs:element name="DeregistrationResponse" type="notif:DeregistrationResponseType"/>

 <xs:complexType name="RegistrationResponseType">

 <xs:sequence>

 <xs:any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="RegistrationID" type="xs:unsignedInt" use="required"/>

 <xs:attribute name="ExpiryTime" type="xs:unsignedInt" use="optional"/>

 <xs:attribute name="AccessURL" type="xs:anyURI" use="required"/>

 <xs:anyAttribute namespace="##any" processContents="lax"/>

 </xs:complexType>

 <xs:complexType name="DeregistrationResponseType">

 <xs:sequence>

 <xs:any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="RegistrationID" type="xs:unsignedInt" use="required"/>

 </xs:complexType>

</xs:schema>

The RegistrationID is used for subsequent operations on the registration, e.g. the de-registration request.

In case of unsuccessful registration, the HTTP response shall indicate an error code as described by the following table:

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 32

Table 13: HTTP Status code after Registration request

HTTP Status Code Description

200 OK The request has succeeded. The information returned with the

response is dependent on the method used in the request.

400 Bad Request The registration or de-registration request is not recognized or

contains incorrect information.

401 Unauthorized The request is rejected due to un-authorized access

406 Not Acceptable The request contains parameters or terminal selections that

cannot be supported by the server.

6.2.3.3 Delivery of the Notification Message List

In case of Interaction Network delivery, the terminal receives a message that contains either a list of one or more

Notification messages that are available for retrieval or a pointer to such a list. The latter configuration can be used in

situations where the message is constrained to a maximum size by the transport layer (e.g. message list delivery over

OMA push).

6.2.3.3.1 Format of Notification Message List

The information provided in the message list is given by the following table:

Table 14: Message list fields

Field Level Semantics

FilterInformation Message list and Message Base64 encoded filter list as described by section

6.4

StartTime Message list NTP timestamp. Indicates that the delivery list

contains Notifications messages that have been

available after the indicated StartTime

EndTime Message list NTP timestamp. Indicates that the delivery list

contains Notifications messages that have been

available up to the indicated EndTime

MessageID Message Identifier of the current Notification message

MessageVersion Message Version number of the current Notification

message

NotificationType Message Indicates the Notification type for the current

message.

ServiceID Message List Identifier of the Notification service fragment to

which this message list applies

RegistrationID Message List Identifier of the registration

Message size Message Indicates the size of the Notification message

BroadcastContentLocation Message Indicates the URI that is used as Content-

Location for the delivery of the notification

message over FLUTE in the corresponding

broadcast channel.

NOTE: BroadcastContentLocation is provided optionally in the message list when the Notification message is

available over broadcast bearer as well and the server wishes to indicate it is the preferred retrieval

mechanim for that message.

The message list shall use “application/vnd.dvb.notif-ia-msglist+xml” as the MIME type and shall conform to the

following XML structure:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:notif="urn:dvb:ipdc:notification:2008"

 xmlns:fdt="urn:dvb:ipdc:notif:FDText:2008"

 elementFormDefault="qualified"

 targetNamespace="urn:dvb:ipdc:notification:2008">

 <xs:import namespace="urn:dvb:ipdc:notif:FDText:2008"/>

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 33

 <xs:element name="NotificationMessageList">

 <xs:complexType>

 <xs:choice>

 <xs:element name="NotificationMessageListPointer" type="xs:anyURI"/>

 <xs:element name="ActualMessageList">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="NotificationMessage"

 type="notif:NotificationMessageType" minOccurs="1"

 maxOccurs="unbounded"/>

 <xs:any namespace="##any" processContents="lax" minOccurs="0"

 maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:choice>

 <xs:attribute name="StartTime" type="xs:unsignedInt" use="optional"/>

 <xs:attribute name="EndTime" type="xs:unsignedInt" use="required"/>

 <xs:attribute name="FilterInformation" type="xs:base64Binary" use="optional"/>

 <xs:attribute name="RegistrationID" type="xs:unsignedInt" use="optional"/>

 <xs:attribute name="ServiceID" type="xs:unsignedInt" use="optional"/>

 <xs:anyAttribute namespace="##any" processContents="lax"/>

 </xs:complexType>

 </xs:element>

 <xs:complexType name="NotificationMessageType">

 <xs:sequence>

 <xs:element name="NotificationMessageDescription"

 type="fdt:NotificationMessageDescriptionType" minOccurs="1"/>

 <xs:element name="BroadcastContentLocation"

 type="xs:anyURI" minOccurs="0"/>

 </xs:sequence>

 <xs:attribute name="size" type="xs:unsignedInt" use="optional"/>

 </xs:complexType>

</xs:schema>

The terminal first checks whether the message list contains new Notification messages by comparing its modification

timestamp to the timestamp of the last received message list. If it is more recent, the message list is checked to find out

any Notification messages of interest. If a Notification message is found to be of interest, the terminal checks how to

retrieve the message and performs the retrieval.

6.2.3.3.2 Query format

The parameters associated with the HTTP POST request shall be communicated as key-value pairs following the

conventions defined in section 17.13 of HTML 4.01 [10] for submitting HTML form data by the ‘POST’ method using

the "application/x-www-form-urlencoded" encoding type. More specifically, once encoded as "application/x-www-

form-urlencoded", the parameters to be passed from terminal to system shall be communicated in the ‘message-body’ of

HTTP/1.1 ‘Request’ message as defined in section 5 of RFC2616 [7].

Within a single request, the terminal may include multiple key-value pairs. As defined by HTML4.01 [10] these key-

value pairs SHALL be delimited by an ‘&’.

The terminal may assign several values for a certain key. In this case the different values are separated by comma (‘,’).

Table 15: Notification Query list and parameters

Key Applicability Value

Type All 1: Notification message

2: Notification Delivery List

3: Notification Initialization Container

ServiceID All Identifier of the Notification service fragment to which this

query applies

MessageID 1 Identifier of the requested Notification message

MessageVersion 1 Version number of the requested Notification message

NotificationType All Indicates the Notification type for the requested message or

message list.

FilterInformation 1 and 2 Base64 encoded filter list as described by section 6.4

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 34

RegistrationID All Identifier of the registration

StartTime 2 NTP timestamp. Requests that the delivery list contains

Notifications messages that have been available after the

indicated StartTime

EndTime 2 NTP timestamp. Requests that the delivery list contains

Notifications messages that have been available up to the

indicated EndTime

6.2.3.3.3 Push delivery

When registering to a Notification service, the terminal indicates the type of delivery it wants to have. If the delivery

type is supported by the service provider, the registration is performed successfully.

For the push delivery, the terminal registers as a receiver and provides its device address. The service provider adds the

terminal to its distribution list. The push delivery is performed on need basis, e.g. when a certain amount of new

Notification messages becomes available, or it may be done periodically.

The push delivery shall use OMA PUSH OTA [8]. The OMA PUSH application ID assigned for the Notification

framework agent by OMNA [9] is 0x9050.

If interactive delivery in push mode is supported, OTA-WSP [8] connectionless push over SMS (consisting in WSP

Push units over SMS) shall be supported.

NOTE: [8] recommends that the overall size of the payload is restricted to no more than four SMS messages,

leading to an available payload (after optional content encoding, e.g. gzip) of around 450 bytes for the

Notificaton framework.

A PUSH message shall either contain a message list or a Notification message. The message list describes a set of

Notification messages that are available for retrieval. The message list is defined in 6.2.3.2. Upon reception of the

message list, the terminal selects the messages of interest and retrieves them as described in 6.2.3.4.

The Notification message shall be encapsulated as described in section 6.1.2.

6.2.3.3.4 Poll delivery

In the case the Notification service is available over Poll delivery channel, HTTP POST shall be used for requesting the

message list as described in section 6.2.3.3.

The time interval between two consecutive polls shall not be less than the indicated poll period.

The Notification service provider may overwrite the polling period to improve its performance and to optimally use the

network bandwidth.

6.2.3.4 Retrieval of Notification Messages

After processing the message list, the Notification messages of interest can be retrieved by using the AccessURL

available in the acquisition fragment or signaled in a successful registration.

In the case the Broadcast content location is signaled in the message list, the terminal may tune into the related

Broadcast Network and retrieve the message based on its identifiers (i.e. Notification type, message id, and version

number or the URL to the transport object that carries the message).

If the delivery network is the Interaction Network, the message of interest is retrieved by sending an HTTP POST

request as specified in section 6.2.3.3.2 to the indicated retrieval URL. The following cases can be distinguished:

Case 1: NotificationMessageList delivered over OMAPush:

Acquisition fragment provides RegistrationURL for OMA Push registration exclusively, not for Notifications

retrieval.

The Registration response message provides the accessURL for Notification message retrieval.

Case 2: NotificationMessageList is retrieved via the AccessURL using polling mechanism:

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 35

Acquisition fragment provides AccessURL for polling messages and message lists and an optional RegistrationURL

for registration (if required).

If registration is required, the Registration response message provides the accessURL for message retrieval.

If registration is not required, assumption is that messages are retrieved via the accessURL provided in the

acquisition fragment for polling.

In case a single message is requested, the successful response shall be formatted according to the Notification container

as described in section 6.1.2.

In case multiple Notification messages are requested, the successful response shall be formatted according to the

aggregate message container as described in section 6.1.2.

6.3 Notification object lifecycle

Notifications can be used for various purposes, from simple display of messages (e.g. emergency messages) over

software updates to the transport, launch and control of entire interactive applications (e.g. voting buttons). The

detailed behaviour of a given Notification application inside the terminal is out of scope of this specification, it is

determined by the Notification object(s), carried in or referenced by the Notification message payload and delivered by

the Notification framework to the application.

In order to guarantee predictable reaction of the system in a dynamic environment (unreliable transmission channel,

interference with user action, e.g. channel change) it is useful to describe the intended behaviour in function of the state

of the Notification object (e.g. absent, activated ...) and the transitions between these states in function of the time and

the received messages.

A major design goal is the achievement of a stable behaviour even when messages are lost (e.g. since the user hops back

and forth between services), while still allowing resource optimisation (e.g. when remaining lifetime of an object is not

enough to allow satisfactory activation). Annex C gives an example of the most essential steps in the object lifecycle.

It shall be noted that the state diagram given below serves as a reference model and shall not impose any specific

implementation, neither of the application, nor of the Notification framework. Many applications will have a higher

number of internal states, and not all states may be observable (e.g. if an object has effectively been cleared from

internal memory or not). Any implementation that exhibits the described behaviour is compliant to this specification.

6.3.1 States

From the point of view of this specification the Notification object may be in three stable or one transient state. These

states together with their transitions as sketched in figure 14. Especially transitions from the active and loaded states to

(eventually) the idle state are triggered not only through explicit actions, but also happen automatically so that the

system retrieves its initial state even under bad reception conditions, or when the user decides to switch to different

channels. Transitions in the diagram are understood to be instantaneous and to happen at the end of the implied action

(e.g. an object is considered to be loaded while removal is in progress).

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 36

Absent

Active

Loaded

(stored)

cancel

fetch

fetch

launch asap

cancel,

active time

elapsed

fetch

launch

launch

cancel,

remove

active time counter

decrements during

active state

life time counter

decrements during

active, waiting and

loaded states

set life time +

active time

set life time +

active time

waiting

launch

remove,

life time

elapsed

cancel

launch asap

set life time +

active time
Actual time ≥

launch time

remove,

life time

elapsed

remove,

life time

elapsed

la
u
n
c
h
 a
s
a
p

launch

Figure 14: Notification object life cycle

6.3.1.1 Absent

This is the initial state of the object, and also the final state once the object has been (completely) removed from the

system. This is the only state in which an object will stay forever. No timers are associated to this state. Transition from

this state to any other state implies loading the object.

6.3.1.2 Loaded

This is the state, in which an object has been loaded (pre-fetched) into the system, but it has been neither activated nor

has activation been programmed for some future time. (Due to our convention, the object will stay also in this state if an

immediate activation action has been received but the activation has not yet been completely performed, e.g. waiting for

the application to start).

The life time counter continuously decrements during this state; the object is removed when the life time elapses.

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 37

6.3.1.3 Waiting

When the object has been loaded, and an action has been received for activation at some future time, the object is in the

waiting state (and stays in this state until the activation is completed, i.e. the application is launched). In this waiting

state the launch time is continuously compared to some external time reference (e.g. the RTP presentation time stamps

of an associated video stream). Typically the object transitions to the active state when the intended launch time has

arrived or exceeded; this may be the case immediately, e.g. if the launch action was delayed during transmission. Also

transition to other states may be triggered by appropriate actions.

The life time counter continuously decrements during this state; the object is removed when the life time elapses.

6.3.1.4 Active

When the object has been loaded and become active, the object is in the active state.

During this state, both the active time counter and the life time counter decrement continuously. Elapsing of the active

time triggers an automatic transition back to the loaded state (but the object stays present). Elapsing of the life time

completely removes the object from the system (triggers a transition to the absent state).

6.3.2 Timers

To manage the automatic transition between the life cycle states, it is made reference to timers as explained below.

These timers are of conceptual nature and do not preclude any differing implementation.

6.3.2.1 Active time

The remaining active time is the intended time until automatic cancellation. It is initialised as a relative time from

intended object activation to cancellation.

6.3.2.2 Life time

The remaining life time is the intended time until automatic removal of the object. It is initialised as a relative time at

the time of object loading, with a resolution of milliseconds.

6.3.3 Actions

Transitions between the object life cycle states are initiated by actions as specified in subsequent clauses. These actions

may be initiated by reception of Notification messages (both explicit and implicit), or automatically triggered after a

certain time. In the following the different actions are discussed together with the proposed parameters passed to the

object by these actions.

6.3.3.1 Fetch

The fetch action may be used by the Notification service provider to indicate that the receiver shall download the

Notification object. The terminal should then tune-in to the corresponding, already discovered, delivery channel (e.g. a

FLUTE session), retrieve the object and store it for future use.

As the object is fetched, its intended lifetime (until removal) is determined (possibly a default value). Accuracy is not

critical, the provider should provide for enough margins.

The intended active time may also be determined as soon as the object is fetched. (Passing this parameter with the

launch action would in principle be possible, but this would waste bandwidth since the launch action needs to be

repeated regularly during the active time).

Note that this concerns explicit fetches, as well as implicit fetch (triggered when a launch action for a not yet loaded

object is received).

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 38

6.3.3.2 Launch

The launch action is used to indicate to receivers that the corresponding Notification object needs to be activated and

processed by the target Notification application. The launch time is either indicated separately as a parameter or as part

of the transport protocol (e.g. the RTP timestamp of the carrying RTP packet).

If the maximum active time was not defined during object fetch, it needs to be communicated with the launch action.

Since launch messages (triggers) should be repeated in order to cope with non perfect reception or late channel switch,

it is preferable to have active time known from the fetch to save bandwidth.

The launch action may take effect immediately (when the launch time indicated in the action occurred in the past), or

when the launch time indicated in the action has arrived; this needs comparison of the launch time to some time

reference (depending on the transport mechanism, e.g. when the presentation time of the RTP time stamps exceeds the

indicated launch time).

6.3.3.3 Cancel

The cancel action may be used to annulate an active Notification object. The Notification object may be re-activated

again by re-submitting a new Notification message version with a launch action. Upon receiving a cancel action, the

target Notification application stops any processing and actions triggered by the Notification object launch message.

While the cancel action may be triggered through a specific Notification message (or trigger), in numerous cases the

deactivation is triggered by the expiration of a timer. For this reason the cancel action in general does not carry further

parameters (this means that the life time will not be modified by a cancel).

6.3.3.4 Remove

The remove action may be used to instruct receivers to discard the corresponding Notification object completely

(freeing up any used resources, e.g. by discarding Notification message parts).

While the remove action may be triggered through a specific Notification message (or trigger), in most cases the object

will be removed after a given time. This ends the object life, so no parameters are transmitted.

6.4 Message filtering

This clause specifies the generic filtering of Notification messages at the terminal side. The generic filtering mechanism

consists of two different parts.

The first part is used for out-of-band announcement of filter definitions. This is achieved through the Notification Init

Container, which is transported out of band (see clause 7.3). This container consists of a Notification Filter Table which

describes the filter elements that can be carried in a particular Notification session.

The second part consists of the embedding of filter elements in the Notification messages in order to associate metadata

with individual Notification messages. The filter elements are used by the terminal to determine whether a particular

Notification message is of relevance to an application or user. This is achieved by matching the filter elements to the

filter criteria.

6.4.1 Filter Definitions

The NotificationFilterTable element contains the exhaustive list of filter definitions associated with a Notification

service. The table consists of a sequence of optional FilterEnum elements and at least one FilterDefinition element.

The FilterDefinition element defines the syntax and semantics of a filter element type that can be carried in Notification

messages of a particular session. The FilterEnum element specifies a list of all possible items within an enumerated

filter type (e.g. news categories, country names and sport events).

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:notif="urn:dvb:ipdc:notification:2008"

 xmlns:mpeg7="urn:mpeg:mpeg7:schema:2001"

 elementFormDefault="qualified"

 targetNamespace="urn:dvb:ipdc:notification:2008">

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 39

 <xs:import namespace="urn:mpeg:mpeg7:schema:2001"/>

 <xs:element name="NotificationFilterTable" type="notif:NotificationFilterTableType"/>

 <xs:complexType name="NotificationFilterTableType">

 <xs:complexContent>

 <xs:extension base="notif:InitFragmentType">

 <xs:sequence>

 <xs:element name="FilterEnum" type="notif:FilterEnumType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="FilterDefinition" type="notif:FilterDefinitionType"

 maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <xs:complexType name="FilterEnumType">

 <xs:sequence>

 <xs:element name="FilterEnumItem" maxOccurs="unbounded">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute name="itemID" type="xs:unsignedShort" use="required"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="enumID" type="xs:anyURI" use="required"/>

 </xs:complexType>

 <xs:complexType name="FilterDefinitionType">

 <xs:sequence>

 <xs:element name="FilterName" type="mpeg7:TextualType" maxOccurs="unbounded"/>

 <xs:element name="FilterDescription"

 type="mpeg7:TextualType" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="EnumIDRef" type="xs:anyURI" use="optional"/>

 <xs:attribute name="filterID" type="xs:unsignedByte" use="required"/>

 </xs:complexType>

</xs:schema>

Table 16 NotificationFilterTable Fields

Field Semantics

itemID Specifies a unique identifier of a single
enumerated item within the FilterEnum. This
identifier is unique within the FilterEnum.

enumID Specifies a unique identifier of the FilterEnum.
This identifier is unique within the NotificationType.

EnumIDRef Specifies the enumID of the FilterEnum element
which specifies the list of enumeration items of the
filter definition type.

FilterName The name of the filter definition in text form. The
name may be specified in different languages.

FilterDescription Specifies the textual description of the filter
definition in a specified language.

filterID Specifies a unique identifier of the instantiated
filter definition.
NOTE: used to match the filterID of the filter
definition from the filter table to a Notification filter
element.

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 40

6.4.2 Filter Elements

This clause specifies a binary representation for the filter elements carried in individual Notification messages. This

binary representation can be embedded in the FilterElementList element of the generic header part of the Notification

message using base64 encoding (see clause 6.1.1).

In case of FLUTE, the binary filter elements can also be embedded in the FDT extension as specified in clause 6.2.1 of

the present document.

In case of RTP, the binary filter elements can also be embedded as an optional extension header of the binary RTP

Payload format header as specified in clause 6.2.2.3 of the present document.

The filter element list contains an arbitrary number of filter elements. The number of filter elements in the list is

deduced from the length of the list.

Semantics for the filter element:

filter_ID (8 bits): the filter_ID identifier refers to the filter definition ID (filterID) of the filter element value.

value (16 bits): the actual value of the filter element. This can either be an itemID or an unsigned integer value.

6.4.3 Filtering of aggregates

When aggregating multiple messages of the same Notification type into the same container for carriage in a single

transport object over FLUTE, the Notification service shall whenever possible include filtering information at the

aggregate level.

The aggregate level filtering information is provided by the FilterElementList element in the

NotificationAggregateDescription element.

The aggregate level filtering information shall be constructed from the filtering information of all the Notification

messages in the aggregate as follows:

1. Extract the set of filtering elements that are common to all messages. A filtering element is said to be common if

each Notification message of the aggregate has indicated at least one filter value for that filtering element.

2. For each of the common filtering elements, include all the corresponding filter values that apply to at least one

message of the aggregate.

At the receiver side, the aggregate level filtering is performed as follows:

1. for each filtering element at the aggregate level, check that at least a corresponding filter value matches the

user/terminal preferences. Discard the message if that is not the case.

2. if the user/terminal preferences uses other filtering elements that do not appear at the aggregate level then

filtering continues at the message level.

The above behaviour applies assuming an “AND” relationship between the different filtering elements. In case of an

“OR” relationship, the aggregate can only be discarded if all of the filter elements that appear in the user/terminal

preferences are common filtering elements and are not satisfied. Otherwise, filtering at the message level will be

needed.

7 Bootstrap and initialization of Notification services

7.1 Discovery of default Notification services

In this clause the bootstrap process for default Notification service is specified. As introduced in clause 5, one PDN

service and several EDN services can be transported in parallel in an IP Platform. To indicate to the receiving terminal

the availability of PDN and EDN services, additions to the bootstrap procedure are defined as follows:

• The ‘DefaultNotificationAccessDescriptor’ and its transport are specified in clause 7.1.1. The

‘DefaultNotificationAccessDescriptor’ provides the Acquisition of available Default Notification Services.

• The Notification bootstrap procedure is specified in clause 7.1.2.

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 41

7.1.1 Bootstrap descriptor

7.1.1.1 Syntax of DefaultNotificationAccessDescriptor

The ‘DefaultNotificationAccessDescriptor’ is a binary representation of acquisition of default Notification service. The

‘DefaultNotificationAccessDescriptor’ specifies the Acquisition information related to current IP platform or a

particular ESGProviderID signalled in the ‘ESGProviderDiscovery’ descriptor.

Table 17: DefaultNotificationAccessDescriptors Syntax

Syntax No. of bits Mnemonic
DefaultNotificationAccessDescriptor {

 n_o_PDNEntries 8 uimsbf

 n_o_EDNEntries 8 uimsbf

 For(i=0;i<n_o_PDNEntries;i++){

 PDNEntry()

 }
 For(i=0;i< n_o_ EDNEntries;i++){

 EDNEntry[i]()

 }

}

Syntax No. of bits Mnemonic

PDNEntry{

 PDNEntryVersion 8 uimsbf

 ChannelType 8 uimsbf

 EntryLength 8+ vluimsbf8

 If (ChannelType == 1) {

 IPVersion6 1 bslbf

 Reserved 7 bslbf

 If(IPVersion6){

 SourceIPAddress 128 bslbf

 DestinationIPAddress 128 bslbf

 }else{

 SourceIPAddress 32 bslbf

 DestinationIPAddress 32 bslbf

 }

 Port 16 uimsbf

 TSI 16 uimsbf

 } else if (ChannelType == 2 || ChannelType == 3) {

 AccessURLLength 16 uimsbf

 for (j=0;j<AccessURLLengt;j++) {

 AccessURL_char 8 uimsbf

 }

 }

 if (ChannelType == 3) {

 PollInterval 32 uimsbf

 }

}

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 42

Syntax No. of bits Mnemonic

EDNEntry{

 EDNEntryVersion 8 uimsbf

 DeliveryMethod 8 uimsbf

 EntryLength 8+ vluimsbf8

 ProviderID 16 uimsbf

 If (DeliveryMethod == 1) {

 IPVersion6 1 bslbf

 Reserved 7 bslbf

 If(IPVersion6){

 SourceIPAddress 128 bslbf

 DestinationIPAddress 128 bslbf

 }else{

 SourceIPAddress 32 bslbf

 DestinationIPAddress 32 bslbf

 }
 Port 16 uimsbf

 TSI 16 uimsbf

 } else if (DeliveryMethod == 2 || ChannelType == 3) {

 AccessURLLength 16 uimsbf

 for (j=0;j<AccessURLLengt;j++) {

 AccessURL_char 8 uimsbf

 }
 }

 if (DeliveryMethod == 3) {

 PollInterval 32 uimsbf

 }

}

Table 18: DefaultNotificationAccessDescriptors Semantics

Field Semantics

n_o_PDNEntries Indicates the number of PDN entries in the current descriptor. At most one

indicator per channel type is allowed.

n_o_EDNEntries Specifies the number of EDN Entries in which access information of EDN

service is signalled.

PDNEntryVersion Specifies the version of PDN Entry Specification. The value shall be set to

“1”.

NOTE 1: This version is incremented if the specification of PDN Entry is

changed in a not forward compatible way;

NOTE 2: A receiver should only decode PDN Entries which it complies to.

EDNEntryVersion Specifies the version of EDN Entry Specification. The value shall be set to

“1”.

NOTE 3: This version is incremented if the specification of EDN Entry is

changed in a not forward compatible way;

NOTE 4: A receiver should only decode EDN Entries which it complies to.

DeliveryMethod Indicates the method of the delivery. The following values are currently

defined:

1: broadcast delivery

2: Push delivery as defined in section 6.2.3.3.3

3: Poll delivery as defined in section 6.2.3.3.4

EntryLength Specifies the length of the PDN/EDN Entry in Bytes excluding the

PDNEntryVersion / EDNEntryVersion and EntryLength fields.

NOTE 5: This allows forward compatible implementations even if fields are

added in the future to DefaultNotificationAccessDescriptor.

IPVersion6 If set to "1" specifies that the SourceIPAddress and the DestinationIPAddress

are signalled according to IP version 6. If set to "0" specifies that the

SourceIPAddress and the DestinationIPAddress are signalled according to IP

version 4.

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 43

ProviderID This ID is used to uniquely identify the ESG provider in the

ESGProviderDiscoveryDescriptor. The ESG provider must register the

ProviderID at the authority that manages the bootstrapping channel to

guarantee uniqueness.

SourceIPAddress Specifies the source IP address of the FLUTE session transporting the

PDN/EDN messages. The IP Version is signalled by the IPVersion6 field.

DestinationIPAddress Specifies the destination IP address of the FLUTE session transporting the

PDN / EDN messages. The IP Version is signalled by the IPVersion6 field.

Port Specifies the port number of the IP Stream of the FLUTE session in which

the PDN /EDN messages is transported.

TSI Specifies the Transport Session Identifier (TSI) of the FLUTE session in

which the PDN /EDN messages is transported.

AccessURLLength Indicates the length of the acces URL.

AccessURL_char Gives the URL to access the delivery service over interactive channel. The

URL is formatted as a UTF-8 string.

PollInterval Indicates the minimal interval in seconds between two consecutive poll

requests.

According to the file delivery specification in TS 102 472 [1], the following information is required to launch a FLUTE

agent in the terminal. The listed fields are specified in the DefaultNotificationAccessDescriptor except the ones printed

italic. For those printed italic default values are assumed as listed:

1) The Source IP address;

2) The number of channels in the session is fixed to 1;

3) The Destination IP address of the only channel of the session;

4) The Port number of the only channel of the session;

5) The Transport Session Identifier;

6) The start and end time for the session is fixed to 0-0;

7) The protocol is fixed to FLUTE/UDP;

8) The media type is assumed to be “application” and the format list contains only one item “0”.

7.1.1.2 Transport of DefaultNotificationAccessDescriptor

The ‘DefaultNotificationAccessDescriptor’ is transported in ESG Bootstrap FLUTE session in a well-known IP address

and port, as defined in TS 102 471 [2].

Additionally the following restrictions apply:

The ‘DefaultNotificationAccessDescriptor’ is transported in a dedicated transport object in the bootstrap FLUTE

session. It should be signalled in the FDT by setting the attribute:

Content-Type="application/vnd.dvb.ipdcdftnotifaccess".

7.1.2 Bootstrap procedure

The foreseeable way to retrieve information to access the PDN service and a specific EDN service within an IP platform

would be as follows:

1) Tune-in to the ESG Bootstrap session.

2) Retrieve ‘ESGProviderDiscovery’ descriptor, ‘ESGAccessDescriptor’ descriptor and

‘DefaultNotificationAccessDescriptor’.

3) Look up ‘DefaultNotificationAccessDescriptor’, get access information for PDN service.

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 44

4) Upon selecting a specific ESG described in ‘ESGProviderDiscovery’ descriptor, get Provider ID of the selected

ESG.

5) Look up ‘DefaultNotificationAccessDescriptor’, filter EDN entries by Provider ID, and get access information

for EDN service of the selected ESG.

7.2 Discovery of user selected Notification services

User selected Notification services can be categorized as plain Notification services and service related Notification

components. Both are signalled in ESG datamodel based on TS 102 471 [2].

• A standalone Notification service is signalled as a regular service in the ESG .

• A service related Notification component is signaled as a component within a regular service in the ESG.

• A service-related Notification component is signalled as a regular service in the ESG linked to another regular

service via RelatedMaterial. Figure 15 depicts the relationship between ESG fragments.

NOTE 1: The second configuration is NOT compatible with legacy terminals.

NOTE 2: Only the third configuration allows for separate purchase of the notification component from the base

service it relates to.

Service

ScheduleEvent

Content

Service (notification)

ScheduleEvent

Content

RelatedMaterial

RelatedMaterial

Figure 15: Relationship between fragments of Notification and regular services

7.3 Notification Initialization Container

7.3.1 NIC Format

The Notification Initialization Container (NIC) contains the necessary information to initialize the consuming

Notification application. The NIC information applies to a specific Notification application, which is identified by the

Notification type. The NIC container is in XML format and conforms to the following schema:

<?xml version="1.0" encoding="utf-8" ?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:notif="urn:dvb:ipdc:notification:2008"

 elementFormDefault="qualified"

 targetNamespace="urn:dvb:ipdc:notification:2008">

 <xs:element name="NotificationInitContainer">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="InitFragment" type="notif:InitFragmentType"

 minOccurs="1" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="NotificationType" type="xs:unsignedShort" use="required"/>

 <xs:anyAttribute processContents="skip"/>

 </xs:complexType>

 </xs:element>

 <xs:complexType name="InitFragmentType" abstract="true">

 <xs:sequence>

 <xs:any namespace="##other" processContents="skip"

 minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="InitFragmentID" type="xs:anyURI" use="required"/>

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 45

 <xs:anyAttribute processContents="skip"/>

 </xs:complexType>

</xs:schema>

The NIC is extensible and allows for new initialization data to be defined. The NIC consists of one or more

initialization fragments, which provide initialization information for a specific functionality of the Notification service.

Each initialization fragment is identified by a URI, which indicates the type of information that it contains. All

initialization fragments have to be defined in a schema definition as extensions to the “NotificationInitFragmentType”

element.

The current specification defines the following Notification initialization fragments are defined:

• Filtering Initialization Information as defined in section 6.4.1. The corresponding InitFragmentID is defined to be

“urn:dvb:ipdc:2008:Notification:NIC:filtering”.

• Default Timer Initialization Information as defined in section 7.3.4. The corresponding InitFragmentID is defined to

be “urn:dvb:ipdc:2008:Notification:NIC:timers”.

• Compression Algorithm Initialization Information as defined in section 7.3.3 The corresponding InitFragmentID is

defined to be “urn:dvb:ipdc:2008:Notification:NIC:compression”.

• Notification type information as defined in section 7.3.5. The corresponding InitFragmentID is defined to be

“urn:dvb:ipdc:notification:2008:NIC:nt_information”.

A terminal shall ignore an initialization data fragment that it does not recognize the InitFragmentID value.

7.3.2 Transport of the NIC

The Notification init container may be delivered in-band, along with the corresponding Notification messages, or out-

of-band e.g. in the ESG. The NIC and all its external components may be encapsulated into a Notification container or

delivered as separate objects.

At the receiver, the NIC of a specific Notification service is identified as follows:

• At ESG level: using the URI of NIC, if given by the ESG in the Acquisition Fragment.

• At RTP level: using the NPF field of the RTP payload format header.

• At FLUTE level:

• In case of delivery as individual transport object: using the Content-Type of the transport object in the FLUTE

FDT,

• In case of aggregation with Notification messages or other objects: using the NICDescription element in the

extended FDT, and the InitContainer element in the index list.

7.3.3 Signaling Compression Algorithms

The default compression algorithm used for compressing Notification messages is Gzip [5].

In case a different compression algorithm is needed by a Notification service, information about that algorithm is

provided by the NotificationInitContainer. This is done using a new Init Fragment definition which conforms to the

following schema definition:

<xs:complexType name="CompressionInit">

 <xs:complexContent>

 <xs:extension base="notif:InitFragmentType">

 <xs:attribute name="Name" type="xs:string" use="required"/>

 <xs:attribute name="Pointer" type="xs:anyURI" use="required"/>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 46

7.3.4 Default Timer Information

The default active time and life time values may be indicated in the Notification Initialization Container. If not present,

the default active time is assumed to be 3600000 milliseconds and the default life time is assumed to be 86400000

milliseconds.

The initialization fragment of the NIC for the default timer information shall conform to the following schema

definition:

<xs:complexType name="TimerInit">

 <xs:complexContent>

 <xs:extension base="notif:InitFragmentType">

 <xs:attribute name="active_time" type="xs:unsignedInt" use="optional"/>

 <xs:attribute name="life_time" type="xs:unsignedInt" use="optional"/>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

7.3.5 Notification type information

In order to enable the handling of unknown Notification types, terminals may find in the Notification Init Container a

pointer (URL) to a source that provides further information about the Notification type,

The initialization fragment of the NIC for the Notification type information shall conform to the following schema

definition:

<xs:complexType name="NotificationTypeInformation">

 <xs:complexContent>

 <xs:extension base="notif:InitFragmentType">

 <xs:attribute name="Pointer" type="xs:anyURI" use="required"/>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

7.3.6 Example of the NIC

In this section an example of a NIC object is given.

<?xml version="1.0" encoding="utf-8"?>

<NotificationInitContainer xmlns="urn:dvb:ipdc:notification:2008"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 NotificationType="156">

 <InitFragment xsi:type="CompressionInit"

 InitFragmentID="urn:dvb:ipdc:notification:2008:compression" Name="ZLIB"

 Pointer="http://www.ietf.org/rfc/rfc1950.txt"/>

 <InitFragment xsi:type="TimerInit" InitFragmentID="urn:dvb:ipdc:notification:2008:timers"

 active_time="30000" life_time="3600000"/>

</NotificationInitContainer>

7.4 Processing of Notification Messages

The processing of a Notification message depends on the type of its application-specific message part. The Notification

type of the Notification service is mapped uniquely to the MIME type of the application-specific message part. This

mapping is static for well-defined Notification applications and dynamic for other Notification applications. A range for

static Notification type values as well as the corresponding MIME type of the application-specific Notification message

parts is defined in section X. At the receiver, a consuming application may consume one or several Notification

services, by registering for the corresponding MIME types.

The following processing steps are performed at the receiver:

• the MIME type of the application-specific message part is identified

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 47

• the consuming application is initialized with the Notification init container (if present) and the processing of

the Notification message starts.

The first step is executed differently depending on the payload format of the Notification message and on the carrying

Notification channel.

If the Notification message has a static Notification type then the MIME type is identified based on the registry table in

Annex A.

If the Notification type is dynamic and the carrying channel is a default Notification channel then the MIME type of the

application-specific message part is extracted from one of the following fields:

• Content-Type field in the FDT, if the application-specific part is delivered as a standalone transport object.

• Content-Type field that is either available in the Index list of the carrying aggregate Notification container or

in the corresponding MIME part of the multipart MIME/related Notification message payload.

If the Notification type is dynamic and the carrying channel is not a default Notification channel, i.e. the corresponding

Notification service is declared in the ESG, the MIME type is identified from the ExtAcquisitionRef element of the

Schedule Event Fragment. Alternatively, the MIME type can be discovered upon discovering the message, i.e. from the

FDT or from the Notification container as described above.

An additional pointer (URL) in the Notification Init Container to a source that provides further information about the

related Notification type may be provided for terminals, in order to enable the handling of unknown Notification types.

Terminals may discard Notification messages of unknown Notification types.

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 48

Annex A (informative):
Static Notification Types

Well-defined Notification applications shall be registered with DVB to guarantee compatibility and wide deployment.

The Notification type value range 0-255 is reserved for static Notification types.

The following table is an example of how registry of static Notification types and their corresponding MIME type of the

application-specific message part, could look like:

Notification Type MIME type of the application-

specific message part

Application description

0 reserved

1 Tbd Emergency messages rendering application

2

For a Notification type to be registered, it is expected that the MIME type of the application specific message part, the

message format and the expected handling application behaviour be document at registration, in order to help

implementers developing the application.

Up to date list of registered static Notification types is available under www.dvb.org/XXXX

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 49

Annex B (informative):
RTP Payload format MIME Type

MIME media type name: application

MIME subtype name: NOTIF

Required parameters: rate, label, Version

• rate: specifies the RTP timestamp clock rate in Hz.

• Version: A value between 0 and 255 that indicates the version of the Notification framework specification that

the data conforms to.

Optional parameters:

• none

Encoding considerations:

• This media type is currently only defined for transport via RTP.

Security considerations:

• RTP packets using the payload format defined in the present document are subject to the security considerations

discussed in the RTP specification [4] and any applicable RTP profile, e.g., AVP [15].

Interoperability considerations:

• None.

Published specification:

• ETSI TS 1XX XXXX.

Applications that use this media type:

• Notification applications based on the Notification framework as specified in ETSI TS 1XX XXXX.

Additional information: none

Person and email address to contact for further information:

• Imed Bouazizi

• imed.bouazizi@nokia.com.

Intended usage: COMMON.

Restrictions on usage: None.

Author:

• DVB CBMS

Change controller:

DVB CBMS

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 50

Annex C (informative):
Example Of The Object Lifecycle

A major design goal is the achievement of a stable behaviour of the Notification system even when messages are lost.

The following example shall highlight the most essential steps in the object lifecycle; it does not intend to give all

possible cases. It uses the Notification in one of the most challenging applications, the activation and execution of

interactive objects synchronised to a (video) service.

As in every (especially wireless) transmission system, Notification messages may be lost in the transmission channel

before they reach the terminal. A second reason for message loss can be found if the user repeatedly switches between

several services: the system shall not only be stable, but allow to the terminal to deliver a satisfactory user experience

even in this case (at discretion of the terminal manufacturer).

loaded
active

Figure C.1: Two example life cycles

Figure C.1 sketches (implicit or explicit) actions, and the resulting lifecycle of the object in two cases: the upper (dark

blue) one for a terminal which is in perfect reception conditions, the lower (brown) one for a terminal that receives

Notifications only during a limited time (grey).

The server first initiates a fetch action (blue), and later a launch message (green). In order to guarantee reliable delivery

of Notification messages, and also to allow channel change by the user during the time that the (service related)

Notification object is active, launch messages shall be transmitted repeatedly during all the time that the object is active.

Repetition of messages with different actions may not be needed and can be avoided for higher efficiency: the loss of a

‘fetch’ action will only delay the activation of the object (since its fetching will be triggered by the succeeding launch),

Loss of ‘cancel’ and ‘remove’ actions shall be compensated through timers as sketched above.

In the first (blue) case the object is loaded as soon as possible (Blue fetch action, e.g. implicit if object is carrouseled).

On reception of the first ‘launch’ Notification it is activated. The moment of activation may either be the reception of

the Notification, or the Notification may indicate the moment of activation, related to an accompanying audiovisual

flow. It is deactivated and unloaded through explicit actions.

In the second (brown) case, the terminal may switch to the channel only when the object could already be activated. It

receives an activation message and loads (e.g. from a carrousel, or through the interactive link) and activates the object

immediately. The terminal may do some resource optimisation, e.g. it may skip activation when remaining lifetime of

an object is not enough to allow satisfactory activation. Once the object is loaded and launched, the terminal has

sufficient information to get rid of the object even when communication is disrupted: deactivation of the object is

triggered by a timer after it has been active for a predetermined time. Finally the object is unloaded.

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 51

Annex D (normative):
Extensions to the ESG specification

This Annex will not be published as part of the ETSI specification,

but may be published as part of the Bluebook until the ESG specification is available.

In this clause, the signalling of user selected Notification service is specified.

D.1.1 Overview

User selected Notification services can be categorized as standalone Notification services and service related

Notification components. Both are signalled in ESG datamodel based on TS 102 471 [2] with extensions specified in

this clause.

• A standalone Notification service is signalled as a regular service in the ESG .

• A service related Notification component is signaled as a component within a regular service in the ESG.

• A service-related Notification component is signalled as a regular service in the ESG linked to another regular

service via RelatedMaterial. Figure 15 depicts the relationship between ESG fragments.

NOTE 1: The second configuration is NOT compatible with legacy terminals.

NOTE 2: only the third configuration allows for separate purchase of the notification component from the base

service it relates to.

Service

ScheduleEvent

Content

Service (notification)

ScheduleEvent

Content

RelatedMaterial

RelatedMaterial

Figure 2: Relationship between fragments of Notification and regular services

D.1.2 Extensions

In order to signal Notification in TS 102 471 [2], it is necessary to extend the following items:

• ESG datamodel:

• Classification schemes:

o Extension of Service Type;

Details of the above extensions are specified in this clause.

D.1.2.1 ESG Datamodel

The following extensions to the ESG data model are defined:

• Creation of NotificationComponentType that extends ComponentCharasteristicType;

• Creation of DefaultNotificationSessionType that extends SessionDescriptionBaseType;

• Extension of RelatedMaterial

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 52

D.1.2.1.1 NotificationComponentType

In order to facilitate Notification component reference (and more general use cases, e.g., enable delivering multiple

camera angles over the same session), ComponentCharacteristicsType is extended with an attribute ComponentID; The

resulting ComponentCharacteristicExtType is used as the base type for NotificationComponentType.

<schema targetNamespace="urn:dvb:ipdc:esg:2008" xmlns:esg2="urn:dvb:ipdc:esg:2008"

 xmlns:esg="urn:dvb:ipdc:esg:2005"

 xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:mpeg7="urn:mpeg:mpeg7:schema:2001" elementFormDefault="qualified"

 attributeFormDefault="unqualified">

 <import namespace="urn:dvb:ipdc:esg:2005"/>

 <import namespace="urn:mpeg:mpeg7:schema:2001"/>

 <complexType name="ComponentCharacteristicExtType" abstract="true">

 <complexContent>

 <extension base="esg:ComponentCharacteristicType">

 <attribute name="ComponentID" type="esg2:ComponentIDType" use="required"/>

 </extension>

 </complexContent>

 </complexType>

 <simpleType name="ComponentIDType">

 <restriction base="string">

 <pattern value="[!#\$%&‘*\+-\.0-9A-Z\^_`a-z\{\|\}~]+"/>

 </restriction>

 </simpleType>

 <complexType name="NotificationComponentType">

 <complexContent>

 <extension base="esg2:ComponentCharacteristicExtType">

 <sequence>

 <element name="NotificationApplicationInit"

 type="esg2:NotificationApplicationInitType"

 minOccurs="0" maxOccurs="unbounded" />

 <element name="NotificationComponentIDRef"

 type="esg2:ComponentIDType" minOccurs="0" />

 </sequence>

 <attribute name="ReplaceSDP" type="boolean" use="required" />

 </extension>

 </complexContent>

 </complexType>

 <complexType name="NotificationApplicationInitType">

 <sequence>

 <element name="NotificationType" type="unsignedShort"/>

 <element name="NotificationMIMEType" type="mpeg7:mimeType"/>

 <element name="ComponentIDRef" type="esg2:ComponentIDType" minOccurs="0"/>

 <element name="ContentLocation" type="anyURI" minOccurs="0"/>

 </sequence>

 </complexType>

</schema>

The semantics of the fields are explained as follows:

Table 19: ComponentID Semantics

Field Semantics

ComponentID Unique identifier a media component (e.g., audio component or Notification
component). This identifier shall be unique in the context created by the
services designed to be consumed simultaneously.

NOTE: this component ID SHALL map to the attribute of the ‘a=label:’ line in the SDP file.

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 53

Table 20: NotificationComponentType Semantics

Field Semantics

ReplaceSDP • When its value= true, the SDP related to the Notification component
(named as Notification SDP) replaces the SDP of the referred regular
service or ScheduleEvent (named as referred SDP).

• When its value= false, the Notification SDP complements the referred
SDP.

NotificationApplicatio
nIInit

Specifies initialization information for the notification application. This includes
the notification type, the MIME type of the application specific message part,
and optionally the location of the corresponding notification init container.
NOTE: A NotificationApplicationInit element shall be provided for each
notification type carried over this component.

NotificationCompone
ntIDRef

Specifies ComponentID of the Notification component that is complementary to
the current Notification component (i.e., a component that carries payload
objects over a FLUTE session).

NOTE 1: When a Notification component is delivered over RTP, ReplaceSDP is set to true. In this case, the

Notification SDP describes all media streams (e.g., A/V streams) in the referred SDP and all related

Notification components delivered over RTP, including but not limited to the current one. In this case, the

terminal shall use the Notification SDP to replace the referred SDP when consuming the Notification

component together with its referring regular service.

When a Notification component is delivered over FLUTE, ReplaceSDP is set to false. In this case, in

order to consume the Notification component together with its referring regular service, the terminal shall

use the referred SDP to retrieve the latter while using Notification SDP or default Notification channel for

the former.

When there are two Notification components (one over RTP <ReplaceSDP=true> and the other over

FLUTE <ReplaceSDP=false>) for the same service or ScheduleEvent, the terminal shall carry out both

manipulations as described above in order to consume them together with the referring regular service.

NOTE 2: The signalling of a Notification component in SDP over RTP is done by an attribute “a=label” for each

media stream corresponding to a Notification component (clause 6.2.2.5). The terminal can thus look up

the label in the SDP in order to retrieve the current Notification component and possibly other referring

Notification components.

The above extensions allow a Notification component, e.g. over RTP, to refer to another Notification component, e.g.

over FLUTE, which, for example, carries payload of the Notification messages of the former. Additionally, a

Notification component over FLUTE, whether used for delivering Notification messages or not, can be referred by

multiple RTP Notification components.

Table 21: NotifInitApplicationIInitType Semantics

Field Semantics

NotificationType The Notification type to which the NIC is applicable to.
NotificationMimeType The MIME Type of the corresponding Notification Type

ComponentIDRef If it is present, it signifies the componentID of the FLUTE Notification
component that carries NIC. The following ContentLocation element
announces the Content-location of the NIC.
If it is absent, it signifies that the NIC is carried as a file over current ESG
stream. In this case, the following element ContentLocation refers to the URI
of the NIC file within the ESG flute session.

ContentLocation This field signals the URI of the content location that is used to signify the NIC
file within the FLUTE session.

NOTE 1: The NotificationType field of the Notification messages (clause 6.1.1) of the Notification component

SHALL map to the NotificationType element as described above.

NOTE 2: a NIC can be transported as

1) A file transported by the ESG FLUTE session

2) A file transported by the FLUTE Notification component

3) A Notification message transported by the RTP Notification component

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 54

For case 3, the Notification Init Container is signalled with a dedicated Notification Payload Format Type

(table 5).

D.1.2.1.2 NotificationPrivateData

The following extension of the Content Fragment describes the PrivateData specific to Notification applications. Private

data elements in the ESG are supposed to be exposed to external applications. The client terminal should determine the

target application using the namespace of the private data (given in the xsi:type attribute attached to the private data

XML element). The default behaviour in case the namespace is not known by the ESG client application is to ignore the

content of the private data element(s).

The NotificationPrivateData contains information on the ComponentID and NotificationType which can be used by the

Notification application to bind Content Description to a specific Notification Component that carries a specific

NotificationType. When a user selects notifications described in the Content Fragment (e.g. News Notifications), the

application can map the associated ComponentID to the corresponding value in the Acquisition Fragment. The

association between Content and Acquisition is made by the sequence of AcquisitionRef and ContentFragmentRef in

the ScheduleEvent Fragment.

The following defines the syntax of NotificationPrivateDataType:

 <complexType name="NotificationPrivateDataType" mixed="false">

 <complexContent mixed="false">

 <extension base="esg:PrivateDataType">

 <sequence>

 <element name="NotificationBinding">

 <complexType>

 <sequence>

 <element name="NotificationType" type="unsignedShort"/>

 <element name="ComponentID" type="esg2:ComponentIDType"/>

 </sequence>

 </complexType>

 </element>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

The semantics of the newly added fields are as follows:

Table 22: NotificationPrivateDataType Semantics

Field Semantics

NotificationBinding Contains information for the Notification application to bind the content
description to a NotificationType of a NotificationComponent

NotificationType The Notification type of the notification messages associated with the Content
Fragment

ComponentID Unique identifier a Notification component. This identifier shall map to a
corrensponding ComponentID of the extended ComponentCharacteristic of
Acquisition Fragment

NOTE 1: The Notification type of the NotificationPrivateDataType shall map to the NotificationType entry of the

NotificationApplicationInit element.

NOTE 2: The NotificationApplicationInit element may not always be present in the Acquisition Fragment. This is

for instance the case when the Notification type is a registered value.

The above extensions allow a Notification application to refer to one or multiple Notification components, each of

which is delivered over either RTP or FLUTE.

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 55

D.1.2.1.3 DefaultNotificationSessionType

 <complexType name=”DefaultNotificationSessionType” >

 <complexcontent>

 <extension base=”esg:SessionDescriptionBaseType”>

 <attribute name=”isEDN” type=”boolean” use=”required”/>

 </extension>

 </complextcontent>

 </complexType>

The semantics of the field are as follows:

Table 23: DefaultNotificationSessionType Semantics

Field Semantics

isEDN When its values =true, it refers to the ESG Default Notification (EDN) session.
When its value=false; it refers to the Platform Default Notification (PDN) session
or Network Default Notification (NDN) session.

NOTE: When it refers to NDN session, it is delivered over the same FLUTE session as PDN.

When session description type is based on DefaultNotificationSessionType, it signals to the terminal that Notification

messages are delivered in a default Notification channel. This corresponds to the out-of-band delivery of user-selected

Notifications. In this use case, the attribute isEDN indicates whether the Notification messages are available on the

EDN channel.

D.1.2.1.4 Extension of RelatedMaterial

The extension is on the semantics of the existing MediaLocator field.

Table 24: MediaLocator Semantics

Field Semantics

MediaLocator Specifies the location of the media asset. Defined as an MPEG-7 datatype,
MediaLocatorType (see clause 6.5.2 of ISO/IEC 15938-5 [16] for a detailed
description). When the serviceType is Service related Notification service, it
specifies the ID of the referred Service or ScheduleEvent fragment of a regular
service.

NOTE: The value of the field HowRelated can use the terms currently available in the classification scheme

urn:tva:metadata:cs:HowRelatedCS:2007, e.g., term 24 IsPartOf.

D.1.2.2 Extension to Acquisition Fragment

The access to the interactive channel delivery of notification messages is described by the corresponding acquisition

fragment with a new extension of the DeliveryChannelType and the SessionDescriptionType.

D.1.2.2.1 DeliveryChannelType

 <complexType name="AcquisitionExtensionType" mixed="false">

 <complexContent mixed="false">

 <extension base="esg:AcquisitionType">

 <attribute name="DeliveryChannel" type="esg2:DeliveryChannelType"/>

 </extension>

 </complexContent>

 </complexType>

 <simpleType name="DeliveryChannelType">

 <restriction base="string">

 <enumeration value="Broadcast"/>

 <enumeration value="Interactive"/>

 <enumeration value="Both"/>

 </restriction>

 </simpleType>

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 56

Table 25: DeliveryChannel Semantics

Field Semantics

DeliveryChannel This field indicates the delivery method described in the Acquisition Fragment.
Broadcast Delivery is over broadcast channel

Interactive Delivery is over interactive channel

Both Delivery is both over broadcast and interactive channel

D.1.2.2.1 Extension to Session Description

The SessionDescriptionBaseType has been extended to describe UnicastAccess over the interactive channel.

Notification messages can be pushed to the terminal after registration to the Push Service or polled over HTTP.

 <complexType name="UnicastAccessType" mixed="false">

 <complexContent mixed="false">

 <extension base="esg:SessionDescriptionBaseType">

 <sequence>

 <element name="Profile" type="tva:ControlledTermType" minOccurs="0"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="PollDownloadType" mixed="false">

 <complexContent mixed="false">

 <extension base="esg2:UnicastAccessType">

 <choice>

 <element name="RegistrationAccess" type="esg2:HTTPAccessType"/>

 <element name="PollAccess">

 <complexType mixed="false">

 <complexContent mixed="false">

 <extension base="esg2:PollAccessBaseType"/>

 </complexContent>

 </complexType>

 </element>

 </choice>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="PollAccessBaseType" mixed="false">

 <complexContent mixed="false">

 <extension base="esg2:HTTPAccessType">

 <attribute name="pollInterval" type="unsignedInt" use="required"/>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="PushDownloadType" mixed="false">

 <complexContent mixed="false">

 <extension base="esg2:UnicastAccessType">

 <sequence>

 <element name="RegistrationAccess" type="esg2:HTTPAccessType"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="HTTPAccessType" mixed="false">

 <complexContent mixed="false">

 <extension base="esg2:ProtocolSpecificAccessType">

 <sequence>

 <element name="HTTPAccessServerURL" type="anyURI"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 57

The semantics of the above fields are described by the following tables:

Table 26: UnicastAccessType Semantics

Field Semantics

Profile This controlled term defines the profile of unicast access as defined in CDP

Table 27: PollDownloadType Semantics

Field Semantics
RegistrationAccess This field describes the HTTP Access to register for poll delivery. Information

about the AccessURL from the content can be polled is delivered as part of
the registration response

PollAccess This field describes direct access to poll content over interactive channel

Table 28: PollAccessBaseType Semantics

Field Semantics
PollInterval The poll interval in seconds

Table 29: PushDownloadType Semantics

Field Semantics

RegistrationAccess This field describes the HTTP Access to register for push delivery.
Note: The content will be send to ther terminal via the push mode signalled by
UnicastAccess Profile

Table 30: HTTPAccessType Semantics

Field Semantics

HTTPAccessServerURL The URL of the HTTP Server

D.1.2.3 Classification Scheme

D.1.2.3.1 ServiceType CS

To signal Notification service in ESG, ServiceType CS is extended by adding the following terms:

 <Term termID="1.3.3">

 <Name xml:lang="en">Notification Service</Name>

 <Definition xml:lang="en">Notification Service</Definition>

 <Term termID=”1.3.3.1”>

 <Name xml:lang=”en”>Standalone Notification Service</Name>

 <Definition xml:lang=”en”>Standalone Notification Service</Definition>

 </Term>

 <Term termID=”1.3.3.2”>

 <Name xml:lang=”en”>Service Related Notification Service</Name>

 <Definition xml:lang=”en”>Service related Notification service</Definition>

 </Term>

 </Term>

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 58

Document history

V0.0.0 May 2007 Initial table of contents after Jeju meeting

V0.0.1 June 2007 Updated after June 14 conference call

V0.0.2 June 2007 Updated after Paris meeting, merged in TM-CBMS 1955r1, added filtering clause

from TM-CBMS 1520r11

V0.0.3 September 2007 Updated after August 30 conference call, merged in TM-CBMS 1954r4

V0.0.4 October 2007 Updated after Guildford meeting, committed agreed changes, updated reference in

scope clause, merged in TM-CBMS 1885r4 (without ALC), replaced “User

Oriented” by “User selected”

V0.0.5 November 2007 Updated after Shenzen meeting, commited agreed changes, removed calculation

clause in Annex A and yellow marked complet annex. Merged in TM-CBMS

2023r1, TM-CBMS 2024 and TM-CBMS 2025

V0.0.6 November 2007 Updated after November 8 conference call. Commited agreed changes, merged in

TM-CBMS 2040

V0.0.7 November 2007 Updated after November 19 conference call. Commited agreed changes. Merged in

TM-CBMS 2042, Made some improvements with respect to consistency of XML

schema. Added additional definitions

V0.0.8 December 2007 Updated after Berlin meeting, commited agreed changes. Merged in TM-CBMS

2044r1, TM-CBMS 2051, TM-CBMS 2053 TM-CBMS 2045r1 and TM-CBMS

2039r3. Added ContainerReference extension header. Added text to Architecture

chapter. Made some consistency improvements. Added additional definitions

V0.0.9 January 2008 Committed changes from 0.0.8 (kept comments). Updated after conference call 20

Dec. (but not 13 or 18) and 8 Jan., also modified figure 4

V0.0.10 January 2008 Committed all changes. Update chapters 1-4, 6, C during consistency review in

Levi meeting (several merges). Added three informative references, reviewed table

and figure numbering. Removed usage columns from table 1, added two tables in

FLUTE and RTP to indicate where theses fields are carried (header, FDT,

payload). Bookmarked references and reordered chapter 6. Removed

NotificationPayloadID from general part.

V0.0.11 February 2008 Integrated (6.2.2) 2074 as modified during conf.call 1 February. Integrated (4.3.2)

2067, with special highlighting.

V0.0.12 February 2008 committed all changes. Suppressed obsolete comments.Integrated (7.4) 2071 and

(7.2) 2073 with changes agreed during Paris meeting. Integrated (6.3.2.3) 2087,

(6.3.1) 2091, integrated 2092rev1 (6.3.1, 6.5) with changes. Integrated edited 2093

(Definitins) in yellow.

V0.0.13 March 2008 as of telco 2008-03-05: integrated (6.3.1) changes in table 4 and 5, correct

explanation in 6.3.2, integrated 2101r1 (not reviewed, so yellow), integrated 1

change from 2075r1 into 6.2.2

V0.0.14 March 2008 Changes based on March 9 meeting: processing of comments and changes of

previous version, changes of figures 3&4 of §4, addition of figures in §5, changes

in §6.2, §6.3, §7.4. Removal of security related elements.

V0.0.15 March 2008 Moved §7.2 into Annex D. Created §6.3.3 based on decision of CBMS56.

V0.0.16 April 2008 Some editorials and changes to chapter 4 and figure 12 based on comments

discussed during 9 April teleconference (doc 2132 and Samsung comments).

Reviewed figure numbering. Added some automatic references.

Integrated contributions from 2135 and preliminary text from 2132 (yellow

marked).

ETSI

Draft ETSI TS 1XX XXX V0.0.20 (2008-05) 59

V0.0.17 April 2008 changes accepted during April meeting. New changes:"registration" replaced by

"user selection", editorials, subscription information removed, optional SDP

parametrs removed. Fields of RTP Notification Format Header rearranged. Updates

on message list. Changes to timing information (also in 7.3.4 and 7.3.6). Changes to

7.2 Discovery and 7.3. Added chapter 7.3.5 on Notification type information . All

fields automated. Changed "remove_time" to "life_time" (since relative to loading).

Added clauses 7.1.1.1 and (Annex D) 7.2 and 7.x from2088r3 (yellow). Integrated

all xml revisions from 1943r15…SchemaCR (without change marks!) and further

xml editing (with change marks). Unified spelling from "LifeTime" to "life_time"

etc. Added clause 6.3.3.1 and update OTA reference.

V0.0.18 May 2008 accepted changes. Changes according to conf.call 16 May: handling of aggregates

and NIC over RTP, replace RetrieveURL, creation of NotificationApplicationIInit.

Some unification of xml schema layout (not change-marked).

V0.0.19 May 2008 accepted changes, and refined text as of conf.call 21 May. Some xml corrections.

Updated figure 13. Removed duplicate tables in 7.1.1.1. Unification of Notes

layout. Removed all yellow marks with exception of Annex D. Renumbering to

compensate for missing clause 6.1. Adding missing abbreviations and minor

editorials.

V0.0.20 May 2008 Accepted changes. Integrated revised Annex D as of conference call 26 May and

the entire following email exchange. Added missing table title, renumbered tables

and content page.

