OMA-ER-TAS-V1_0-20110725-D
Page 4 V(44)

	[image: image12.png]
	

	Telco’s Application Store

	Draft Version 1.0 – 25 Jul 2011

	Open Mobile Alliance

	OMA-ER-TAS-V1_0-20110725-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2010 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

61.
Scope

2.
References
7
2.1
Normative References
7
2.2
Informative References
7
3.
Terminology and Conventions
8
3.1
Conventions
8
3.2
Definitions
8
3.3
Abbreviations
8
4.
Introduction
9
4.1
Version 1.0
9
5.
Requirements (Normative)
11
5.1
Application Management
11
5.1.1
Application Information
11
5.1.2
Application Uploading and Auditing
11
5.1.3
Application Test
12
5.1.4
Application Distribution
12
5.1.5
Application Installation
13
5.1.6
Application Recommendation
13
5.1.7
Application Feedback
13
5.1.8
Display application
13
5.1.9
Application Category Management
13
5.1.10
Blacklists for Applications and developers
13
5.1.11
Application Search
14
5.1.12
Application revocation
14
5.1.13
Sorting Mechanism
14
5.1.14
Update Notification
14
5.1.15
Application State Management
14
5.1.16
In-Application Purchase Management
15
5.2
Developer Management
15
5.2.1
Categories of developers
15
5.2.2
Developer’s information
15
5.2.3
Developer State Management
16
5.2.4
Developer Contract
16
5.2.5
Settlement
16
5.3
User Management
16
5.3.1
User Information
16
5.3.2
User Purchasing Management
17
5.3.3
Application Favorites
17
5.3.4
User Recommendation
17
5.3.5
Personalized Display
17
5.3.6
Application Shopping Cart
17
5.4
Application Creation Support
17
5.4.1
Application Creation Guidance
17
5.4.2
Capability Resource Support
17
5.4.3
Application Development Support
18
5.4.4
Application Test Support
18
5.5
Capability Resources (APIs) Management
18
5.6
Charging
18
5.7
Privacy
19
5.8
Security
19
5.8.1
Authentication
19
5.8.2
Authorization
19
5.9
Statistics
19
6.
Architectural Model
20
6.1
Dependencies
20
6.2
Architectural Diagram
21
6.3
Functional Components and Interfaces/reference points definition
21
6.3.1
Functional Components
21
6.3.2
Interfaces
22
6.4
Security Considerations
23
7.
Application State
25
7.1
Application State Flow Control for Developer Support
25
8.
Interface Descriptions
27
8.1
TAS-1
27
8.2
TAS-2
27
8.2.1
Application Download
27
8.2.1.1
AppDownloadRequest
27
8.2.1.2
AppDownloadResponse
27
8.3
TAS-3
28
8.4
TAS-4
28
8.5
TAS-5
28
8.6
TAS-6
28
9.
Sections As Needed
29
9.1
Example Level 2
29
9.1.1
Example Level 3
29
10.
Release Information
30
10.1
Supporting File Document Listing
30
10.2
OMNA Considerations
30
10.3
Additional Items
31
Appendix A.
Change History (Informative)
32
A.1
Approved Version History
32
A.2
Draft/Candidate Version 1.0 History
32
Appendix B.
Use Cases (Informative)
34
B.1
Built-in IAP Purchase
34
B.1.1
Short Description
34
B.1.2
Market benefits
34
B.2
Downloadable IAP Purchase
35
B.2.1
Short Description
35
B.2.2
Market benefits
35
B.3
<Use Case Title>
35
B.3.1
Short Description
36
B.3.2
Market benefits
36
B.4
<Use Case Title>
36
Appendix C.
Static Conformance Requirements (Normative)
37
C.1
ERDEF for <<ENABLER>> - Client Requirements
37
C.2
ERDEF for <<ENABLER>> - Server Requirements
37
C.3
SCR for XYZ Client
37
C.4
SCR for XYZ Server
37
Appendix D.
Informative Flows
38
D.1
Application Management
38
D.1.1
Application Upload Flow
38
D.1.2
Application Download Flow
39
D.1.3
Application Feedback Flow
40
D.1.4
Malicious Application Report Flow
40
D.1.5
Application Gift Flow
41
D.2
User Management
42
D.2.1
User Activation and modification Flow
42
Appendix E.
<Additional Information>
44
E.1
App Headers
44
E.1.1
More Headers
44

1. Scope

This Enabler Release (ER) document is a combined document of requirements, architecture and technical specification for Telco's Application Store Enabler. The TAS Enabler is expected to provide functions of APIs Management, Developer Management, Application Management and Application Creation Support.
2. References

2.1 Normative References

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC4234]
	“Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell. October 2005, URL:http://www.ietf.org/rfc/rfc4234.txt

	[OSE]
	“OMA Service Environment”, Open Mobile Alliance™,
URL:http://www.openmobilealliance.org/

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL:http://www.openmobilealliance.org/

	
	

2.2 Informative References

	 [OMADICT]
	“Dictionary for OMA Specifications”, Version 2.7, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2_7, URL:http://www.openmobilealliance.org/

	
	

	
	

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

	Developers Community
	Developers Community is a platform, which provides resources and tools to developers for developing Applications. It mainly consists of functionalities to manage Applications, developers and developing resources and tools. After registered to Developers Community, developers could submit Applications to it.

	Application
	(see [OMADICT]) An application may consist of only a software on the device, or it may be associated to a server side software (managed by a service provider) to provide a service to the end user.

	Application Category
	Application Category is a mechanism to divide Applications into different groups.

	In Application Purchase
	In Application Purchase is a function which allows a developer to embed items within an application.

3.3
Abbreviations

	OMA
	Open Mobile Alliance

	IAP
	In Application Purchase

	
	

	
	

4. Introduction

Application stores offer downloadable applications to an audience of mainly consumers, via a store front, which is either embedded in the mobile handset or found on the Web (for both mobile as well as fixed devices).

Existing commercial appstores have attracted over 100,000 different applications and billions of downloads.

Handset and operating system (OS) manufacturers looking to create similar excitement with their phones and/or OSs have also introduced application stores (Source: Gartner July 2009).

In this scenario, the Telcos do not have an important role in the content or application sales transactions, mainly providing the role of network access or broadband provider. Although Telcos benefit from an increase in mobile data usage, they lack the control over purchasing through application stores.

By opening their own network resource and investing in an open platform for developers, Telcos will be able to offer the applications to enrich the user experience and create stickiness and drive long term customer loyalty.

Some Telcos have come to recognize they may be better served by opening their network intelligence and back-office software platforms to the application development community. Thus, they no longer must depend on one or two killer applications to drive revenue, but instead deliver a compelling application platform, enabling thousands of high quality applications to be produced, while at the same time, dramatically improving customer satisfaction. But there is no standard for this solution.

The TAS Enabler aims to establish a unified framework of Application Store which integrates all the stages of application development support, application distribution, application sales and so on. And by TAS, Telcos can be in the leadership of the application store ecosystem.

TAS can create an application platform that would be attractive to the developer and content partner community:
· Capability discovery and binding
· Purchase Convenience
· Distribution and Reach
· Multi-device platform Support
· Operational Support (e.g. application upgrade)
This document includes requirement, architecture, and technical specifications.
4.1 Version 1.0

The TAS Enabler addresses the following four work areas:
· Developer Management. This area mainly addressed functions to enable application developers to register to TAS, and functions for TAS to manage those developers.
· APIs management

· APIs life cycle management, APIs publishing (no new APIs will be defined)
· Application management

· Application state management (Re-using OSPE. OSPE is re-used as a start point, and TAS could add specific life cycle status)
· Application display and sales function

· Application distribution/installation management

· Application Creation Support, including development and test support for applications
The Security and Charging aspects will also be considered during the specification development.
5. Requirements
(Normative)

The following sections describe the requirements for: Application Management, Developer Management, Application Creation Support, In-Application Purchase, Charging, Privacy, and Security.
5.1 Application Management

5.1.1 Application Information

The TAS Enabler SHALL be able to manage different types of Applications, including but not limited to:

· Games

· Contents (e.g. themes for mobile phones)
· Tools (e.g. web browser)
· Entertainment

· Books
The TAS Enabler SHALL be able to store the Application Information, including but not limited to:

· Application ID

· Name

· Developer

· Type

· Description
· Status
· Version

· Submit time

· Effective Date (the date on which an Application begins to be available to Users)

· Expire Date
· Price
5.1.2 Application Uploading and Auditing
The TAS Enabler SHALL allow developers to upload Applications and related information, such as Application name, type, keywords, proposed price, publish date, expiration date and charging option, etc.
The TAS Enabler SHALL be able to generate an application ID for the uploaded / audited application.
The TAS Enabler SHALL be able to audit uploaded Applications and audit related information (e.g. name of the developer) according to the TAS service provider’s policies. The auditing process on uploaded Applications includes security checking, such as virus scanning and content screening. The auditing process on related information is to check whether the information submitted by the developer is authentic and complete.
The TAS enabler SHOULD notify the developers of the outcome of the audit.

The TAS Enabler SHALL enable the TAS service provider to configure the policies which are used to audit Applications and related information.
The TAS Enabler SHALL support developers to submit multiple variants of the same application. (e.g.: an application might have a version for vendor A’s smartphone and another version for vendor A’s feature phone)
The TAS Enabler SHALL support developers to update their own uploaded applications (e.g.:submit a new version,including the software and related informations) in order to improve the functions or add some new features. The new version may replace an old version, or they may both exist.

The TAS Enabler SHALL support developers to manage (e.g. view application’s status, modify related information, and delete their applications, etc) their own uploaded applications. A developer can search and view metadata associated to other developers’ applications.

5.1.3 Application Test

After uploaded and successfully audited, the application may be tested to check whether it has a bright market future for formal business. The Application Test is only open for beta-testers in the Developer Community. Beta-testers download and use the application for a period of time. Then beta-testers fill out the questionnaire to provide feedback on their experience using the application. The TAS service providers may evaluate the result of questionnaire and if the result shows that beta-testers like to use this application, the TAS service provider may decide for the application to access formal business processes.
The TAS Enabler MAY enable developers to request internal testing of their submitted applications in Developers Community.

The TAS Enabler MAY enable developers to design questionnaire for the internal testing.

The TAS Enabler MAY support the TAS service provider to recruit beta-testers to experience the internal testing application.

The TAS Enabler MAY enable beta-testers to download the internal testing application and related questionnaire.
The TAS Enabler MAY enable beta-testers to submit feedback using the questionnaires.

The TAS Enabler MAY enable developers to view the questionnaires result of their own applications which are under internal testing.

The TAS Enabler MAY support the TAS service provider to decide whether to publish the internal tested applications according to the questionnaires result.

The TAS Enabler MAY notify the developers of the outcome of the tests.

5.1.4 Application Distribution

The TAS Enabler SHALL allow Applications to be downloaded.

The TAS Enabler SHALL enable the user to know the status (e.g. successful download, abandoned download) of Application downloading.

The TAS Enabler SHALL support dynamically generating information related to the Applications (e.g. download location, usage rights).

The TAS Enabler SHALL support logging of Application downloads.

The TAS Enabler SHALL support reliable underlying transport delivery mechanisms and SHOULD support resuming failed Application downloads.
The TAS Enabler SHALL control whether and how Applications can be distributed after they are downloaded to Users’ terminals.
5.1.5 Application Installation

The TAS Enabler SHALL be notified about the status (e.g. installed, uninstalled) of Application installation.
5.1.6 Application Recommendation

The TAS Enabler SHALL be able to provide a list of recommended Applications (e.g. application popularity, overall usage history, developer’s popularity).
The TAS Enabler SHALL be able to provide a list of Applications associated to a specific Application (e.g. based on categories, key words).
5.1.7 Application Feedback

The TAS Enabler SHALL allow Users to provide feedback (e.g. rate and comments) on Applications they have used. For example, the rating on an application could be a score from 1 to 5.
5.1.8 Display application

The TAS Enabler SHALL be able to access device capabilities information.

When available, the device capabilities (e.g. screen size, screen resolution, operating system) information SHALL be used by TAS Enabler when providing the Application lists.

5.1.9 Application Category Management
The TAS Enabler SHALL support TAS service providers to define a list of possible Application Categories. The Application Category includes (not exhaustive): category name, category id, description element(s), etc.
The TAS Enabler SHALL allow a developer to assign an Application Category (among the Application Categories made available by the TAS service provider) to his applications.

The TAS Enabler SHALL allow the Service Provider to identify if an Application Category (as assigned by the developer) is not appropriate for a specific application.

5.1.10 Blacklists for Applications and developers

The TAS Enabler SHALL enable users to report malicious applications to the TAS service providers.
The TAS Enabler SHALL be able to allow TAS service providers to verify and then add / delete malicious applications or their developers to / from Blacklists according to TAS service provider’s policy (e.g. user’s evaluations or complaints).

Once the malicious applications or their developers are added to the Blacklist, those applications cannot be displayed to or accessed by users.
Once developers are in the Blacklist, TAS Enabler MAY be able to apply some punishment mechanisms (such as penalty, registration denial permanently or within certain period, etc.)
Editor’s Note: blacklist for Developer should be divided into Developer Management section.
5.1.11 Application Search
The TAS Enabler SHALL be able to allow users, TAS service providers and developers to search Applications by related attributes: e.g. application name, application category, keywords, published date, expiration date, etc.
5.1.12 Application revocation
The TAS Enabler SHALL be able to revoke from the TAS Server the applications that are already uploaded based on TAS service provider’s policy.
5.1.13 Sorting Mechanism
The TAS Enabler SHALL be able to provide the sorting mechanism for applications so that a user can decide whether or not to use it and which criteria to apply on, such as, the latest version, the highest download rates within a specific time period, the price, etc.
5.1.14 Update Notification
The TAS Enabler SHALL support TAS service providers to provide update notification to a user when there is an update of the available applications. The TAS Enabler SHALL allow users to subscribe/unsubscribe to such update notifications.

The update notification might be an SMS, an email, a pop-up message, a voice mail, etc.
5.1.15 Application State Management

The TAS Enabler SHALL be able to manage different states of Applications, including but not limited to:

· Submitted
· Audited
· Tested

· Online

· Offline

· End(Application is deleted from TAS)

The TAS Enabler SHALL support application state flow control.
The TAS Enabler SHALL guarantee that only those Applications of online state may be downloaded.

The TAS Enabler SHALL support a mechanism for the Developer to be notified about the status of its Application.

The notification of the application status can be triggered either by state transition or by developer’s proactive request .

5.1.16 In-Application Purchase Management
The TAS Enabler SHALL provide the In Application Purchase functionality.

The IAP functionality allows developers to embed a store in their applications. The IAP functionality enables developers to manage the payment information (e.g. price, payment period, etc) of their IAP items.

An IAP item is an item that a developer wants to sell in an application’s store. It’s associated with the application. There are several supported kinds of IAP items that may be sold using In App Purchase functionality, for example:
1. Content: including digital books, magazines, photos, artwork, game levels, game characters, and other digital content that can be delivered within applications.

2. Features: products unlock or advanced features which have already been delivered as added part of the applications (e.g. a game with multiple smaller games that could be purchased by the user).

The developer could use In App Purchase to implement the following scenarios(not limited to these):

1.A basic version of application with additional premium features.

2.A book reader application that allows the user to purchase and download new books.

3.A game that offers new environments (levels) to explore.

4.An online game that allows the player to purchase virtual property.
5.2 Developer Management

5.2.1 Categories of developers

The TAS Enabler SHALL allow the TAS service provider to apply different policies on developers based on their category.

Developers of the TAS Enablers can be assigned to different categories, for example they can be divided into two categories: individual developers and enterprise developers.

Individual developers are registered to the TAS Enabler, permitted to access resources in the Developers Community for use of application developing. An individual developer could be affiliated to one enterprise developer.

Enterprise developers are registered to the TAS Enabler, permitted to access resources in the Developers Community for use of application developing. Enterprise developers provide Applications to the TAS Enabler.

5.2.2 Developer’s information

For individual developers, their information includes (not exhaustive): category, name, password, personal ID number, phone number, email address, bank account information, level and affiliated Enterprise.

For enterprise developers, their information includes (not exhaustive): category, name, password, address, license number, amount of registered capital, bank of registered capital, bank account, web site address, contact name, contact email address, contact phone number and level.

Both individual and enterprise developers have the capability to manage their information.

5.2.3 Developer State Management
The TAS Enabler SHALL enable both individuals and enterprises to register to the TAS Enabler.

After registration, they are called developers.

The TAS Enabler SHALL enable developers to de-register from the TAS Enabler.
The TAS Enabler SHOULD be able to manage different states of developers.
5.2.4 Developer Contract

While registered developers have access to resources in the Developers Community, they should contract with TAS service provider before they could submit Applications to it. Developers submit a contract request to the TAS service provider in order to initiate collaboration with the TAS service provider. If the contract request is approved by the TAS service provider, the contract between the developer and the TAS service provider is valid. A valid contract consists of information of the developer, the model of cooperation and expiration date, etc. The contracted developer may request to revoke a contract before its expiration date by submitting a contract revocation to the TAS service provider.

5.2.5 Settlement

The TAS Enabler SHALL support settlement with developers based on pre-defined settlement policies.

Settlement policies include:

· when to start a settlement process (e.g. specific time interval, threshold of amount);
· ratio of revenue sharing (e.g. on a 30%/70% basis);
· etc.

The TAS Enabler SHALL be able to generate settlement report to developers according to related contract and transaction records.

The TAS Enabler SHOULD enable developers to check the sales of their applications. The list of sales MAY be sorted (e.g. based on a specific period of time and application type).

5.3 User Management

5.3.1 User Information

The TAS Enabler SHALL be able to manage different information of users, including but not limited to:

· Essential information (e.g. identifier, name)
· Paid account (e.g. MSISDN , bank card)

· Payment type (e.g. post-paid , prepaid)
· TAS Status (e.g. active, inactive)
5.3.2 User Purchasing Management

The TAS Enabler SHALL allow users to purchase applications and In Application Purchase Items.
The TAS Enabler MAY allow users , service providers and developers to inquire user’s purchase history according to transaction information (e.g. transaction id, identifier, name, Application id, time, transaction status), according to Service Provider and user’s policy.
5.3.3 Application Favorites
Application favourites can help a user keep his favorite applications, do some classification management and so on.
The TAS Enabler MAY allow a user to manage his favorite applications.

5.3.4 User Recommendation

The TAS Enabler SHALL allow users to recommend applications to other users.
The TAS Enabler SHALL support users to receive other users' recommendation and evaluation of applications when users browse the applications
5.3.5 Personalized Display

The TAS Enabler SHALL be able to display to a User a list of Applications based on specific criteria (e.g. purchase history, application favourites, type, key words).
5.3.6 Application Shopping Cart

Application shopping cart can help a user purchase multiple applications those he favourites together with one payment.
The TAS Enabler SHALL allow a user to add the applications those he wants to purchase to the application shopping cart.

The TAS Enabler SHALL allow a user to delete the applications from the application shopping cart.

The TAS Enabler SHALL allow a user to add his favorite applications from the application favorites to the shopping cart.

The TAS Enabler SHALL allow a user to select the final applications from the shopping cart with one payment.
5.4 Application Creation Support

5.4.1 Application Creation Guidance

The TAS Enabler SHALL give a guidance to the developers about the steps to create an application in TAS (e.g. apply for an applicationID before development).

The TAS Enabler SHALL allow the developers to know what kind of applications(i.e. offline or online applications,applications fit for which smartphone operating system) can be accepted by TAS , and according to the specific kind of application what services and resources can they obtain from TAS.

5.4.2 Capability Resource Support
The TAS Enabler SHALL allow the developers to discover what capability resources are available for them and information to use those resources (e.g. WSDL documents for WebService APIs).

The TAS Enabler SHALL allow the developers to get authorization from capability resource providers or service providers (depending on the business model)to use their resources.
5.4.3 Application Development Support
The TAS Enabler MAY provide API SDKs(fit for specific development language) of registered capability resource and corresponding documentation

 The TAS Enabler MAY provide online development environment .Registered developers can login to the online development environment and easily develop an application online.

5.4.4 Application Test Support

The TAS Enabler MAY provide simulation test tools that can be used to illustrate the validity of API invoking and to demonstrate terminal display.

The TAS Enabler MAY provide online test environment that enable developers to test their applications with a pre-approved test account.
5.5 Capability Resources (APIs) Management

The capability resources include operator’s network resources (e.g. sending an SMS/MMS message) and internet resources (e.g. facebook’s user information exposed by its open REST interfaces). Those resources are usually presented as APIs. They could be registered to the TAS Enabler, and be discovered by external entities. Developers can use capability resources by invoking the APIs.
The TAS Enabler SHALL allow capability resources providers to register their capability resources with their information to the TAS Enabler.

The TAS Enabler SHALL allow capability resources providers to update the information of their registered capability resources.

The TAS Enabler SHALL allow capability resources provider to de-register their registered capability resources.

The TAS Enabler SHALL be able to store the information of registered capability resources.

The TAS Enabler SHALL be able to manage the life cycle status of registered capability resources.

The TAS Enabler SHALL allow external entities (e.g. developers) to query the information of registered capability resources.

The TAS Enabler SHALL allow the TAS Service Provider to manage (i.e. to register, audit, publish and delete) capability resources.

The TAS Enabler SHALL allow the capability resource providers or service providers (depending on the business model) to set the authorization mechanisms for their resources.
5.6 Charging

The TAS Enabler SHALL support for Online Charging and Offline Charging.

The TAS Enabler SHALL support the creation of Charging Events needed for different charging scenarios, e.g. charging only in case of successful downloading of an application, no charging for experimenting with new application, charging based on service subscriptions.
The TAS Enabler SHALL support the creation of Charging Events to charge users for in-application purchase.
The TAS Enabler SHALL support the creation of Charging Events to charge developers for capability resource purchase.
The TAS Enabler SHALL be able to collect application charging records.
TAS Enabler SHALL be able to support charging according to the user’s identifier. User can choose the way of payment in accordance with its identifier.
The TAS Enabler SHALL allow a user A to buy an application for another user B, subject to policy control by the TAS service provider (e.g. user B may not want this, user A may have an upper limit, the TAS service provider may not allow this); the TAS Enabler SHALL support notification to User B that User A has bought an application for him/her.
Note: an application might offer monthly access to financial information or to an online game portal. In this case, the developer will be responsible for both tracking subscription expirations and renewal billing for contents/application usage; the TAS Enabler does not monitor subscription duration and does not offer an automatic billing mechanism.
5.7 Privacy

The TAS Enabler SHOULD notify users while downloading applications that may invoke some operations relative to user’s privacy (e.g. notifying users that the applications may invoke user’s address book, access the network or make a call, etc. Notification information may be displayed while browsing or downloading the applications).
The TAS Enabler SHOULD be able to block the download of applications based on user’s privacy preferences.

The TAS Enabler SHOULD allow to set and change user’s privacy preferences..

5.8 Security
5.8.1 Authentication
The TAS Enabler SHALL be able to identify and authenticate the developers for the management (e.g. updating/uploading of applications) of the applications.

The TAS Enabler SHOULD be able to identify and authenticate each user before the users may download an application.

The identifier used for the authentication SHALL be unique for a specific TAS service provider such as an EMAIL address, or MSISDN.

5.8.2 Authorization
The TAS Enabler SHALL provide protection for applications downloaded from the TAS store to prevent unauthorized distribution.
The TAS Enabler SHALLbe able to authorize the developers to manage (e.g. update/upload) the applications.
5.9 Statistics
The TAS Enabler MAY be able to support statistics function, such as the sum of developers in TAS, the sum of applications in TAS, the gross revenue of one specific application, etc.

6. Architectural Model

<< This section defines the release’s architectural model.
Remove this section if no architectural work is part of the release. Subsections may also be removed if appropriate; this may be done after consultation with the architecture group.
The model identifies: a) all internal functional components of this release, and b) all of the communication relationships between the components of this release and with other enablers and applications (including those specifications not defined by OMA).

This section SHOULD contain a diagram of the architecture. Diagrams in this section should contain logical entities only and not conflate logical entities with physical entities. However, mobile terminals and networks may be shown because of their potential relevance in the design of the architecture. Figure 1, Figure 2 (or a combination of them, if considered appropriate), are illustrative examples of an architectural diagram and should be modified to reflect this architecture.

Working Groups SHOULD re-use functions specified by other enablers. Working Groups should consult other Architecture Documents and Specifications to identify any of this architecture’s functionality (e.g. its systems, subsystems, interfaces and/or reference points, etc) that is already specified.

This section MAY include an explanation and/or diagram to show how this architecture relates to the various views as defined in “Inventory of Architectures and Services”. This diagram and explanation, however, are optional.
DELETE THIS COMMENT >>

6.1 Dependencies

<< This section MUST enumerate all of the dependencies this architecture has. Dependencies in this context include other enablers, specifications, etc. this release calls (i.e. re-uses). Each dependency MUST include a reference to the document(s) that specifies the depdency. All of these references MUST also be included in Section 2.1.

The enumeration would be along the lines of a list with entries such as

 - IMAP binary extension [RFC3516]
where the reference (e.g. RFC3516 in this example) would link to the fully qualifed reference in section 2.1 table.

If this architecture has no dependencies, then this section only needs to contain a statement as such.

DELETE THIS COMMENT >>

.

6.2 Architectural Diagram

[image: image2]
Figure 1: Architectural Diagram

6.3 Functional Components and Interfaces/reference points definition

6.3.1 Functional Components

6.3.1.1 Internal Functional Components

6.3.1.1.1 Storefront
The Storefront component is responsible for providing Applications to users. Users download the Applications by using the TAS Client, which is embedded in their handsets or installed in PC, or by accessing a web portal. The Storefront component is responsible for User Management(such as user’s personalisation data ,user’s purchase records,user’s application favorites and shopping carts,etc).Users can manage their personal information by the TAS Client or web portal.

Both the TAS Client and the web portal interact with the Store Front component via the TAS-2 interface.

The Storefront component is responsible for Application Management(such as Application Category Management, Application Sorting, Application Recommendation,etc）. The Applications should pass the audit process in the Developer Support component before they are submitted to the Storefront component via the TAS-1 interface.

TAS Storefront may provide user with applications that are compatible with the user’s device capability.
6.3.1.1.2 Developer Support

The Developer Support component is responsible for developer management (such as developer state management, contract process, settlement process, etc) and management of Applications which are uploaded by developers via the TAS-5 interface. It audits the uploaded Applications and their related information and then makes them available to the Storefront component via the TAS-1 interface. The Applications may include features which need to invoke register resources. In this case, the information of the resources (e.g. how to invoke the resources) can be obtained via the TAS-4 interface.

6.3.1.1.3 Capability Resources Management

The Capability Resources Management component is responsible for managing information of capability resources. The capability resources include operator’s network resources and internet resources. The resources could be registered to the Capability Resources Management component with its information. The Capability Resources Management component also provides information of registered resources to other entities via the TAS-4 interface.

6.3.1.1.4 TAS Client

The TAS Client component is responsible for browsing and downloading Applications from the Storefront component, and interacting with the Storefront component to maintain the installation status of downloaded Applications.

TAS Client delivers the device capability information to the Storefront (e.g. when it requests to browse applications), by using the existed transport protocols, e.g.: HTTP User Agent Profile.
6.3.1.2 External Functional Components

6.3.1.2.1 Developer’s Portal

The Developer’s Portal component acts as a portal for Developers. Developers upload Application to the TAS Enabler using this component. This component interacts with the Developer Support component by using the TAS-5 interface, to manage Applications and IAP items, as well as to check the audit status of them.

6.3.1.2.2 Capability Resources Provider

The Capability Resources Provider component provides capability resources to the TAS Enabler. It registers capability resources and updates the information of those capability resources by the TAS-4 interface.

6.3.2 Interfaces

6.3.2.1 TAS-1

This interface is exposed by the Storefront component and can be used to accept audited Applications.

TAS-1 can be used to change the app’s information in the Store Front according to the operation in Develop Support. For example, if the developer deletes one of his app which is online, the delete operation should be informed to the Store Front through TAS-1.
6.3.2.2 TAS-2

This interface is exposed by the Storefront component and can be used to accept download request of Applications.

TAS-2 can be used to report the download/install/uninstall operation of an application.
TAS-2 can be used to request purchase and return purchase result to user.

TAS-2 can be used to activate Users.

TAS-2 can be used to manage the User information.

TAS-2 can be used to log-in/log-out in Storefront.

 TAS-2 can be used to request information of Applications.

TAS-2 can be used to purchase or gift,and to request application purchase records.

6.3.2.3 TAS-3
This interface is exposed by the Capability Resources Management component and can be used to obtain information of registered capability resources.

TAS-3 can be used to inform the Developer Support about the operations of capability resource,
6.3.2.4 TAS-4
This interface is exposed by the Capability Resources Management component and can be used to register capability resources and update their information.

6.3.2.5 TAS-5
This interface is exposed by the Developer Support component and can be used to manage an application and IAP (In Application Purchase) item.

TAS-5 can be used to check the audit status of application or IAP item.
6.3.2.6 TAS-6

This interface is exposed by the Developer Support Component and can be used by Storefront to send the malicious report and to provide the application sale information.
6.4 Security Considerations

The TAS Enabler provides authentication, confidentiality and integrity protection for the operations between TAS Client, Storefront, Developer Support, Developer’s Portal, Capability Resources Management and Capability Resource Provider.
 This is a list of the security solutions between TAS components.

· Use of Session-level Certificates (TLS, SSL)
If the network between the TAS components is not trusted (e.g., the Internet, a very large intranet, etc.), TLS/SSL can be used.
· HTTP Authentication
Even though the most common form of HTTP authentication is the basic authentication (i.e., a user-id/password pair), other forms of HTTP authentication (e.g., digest) is preferable. The major difference between this approach and the use of TLS/SSL is that the latter is stronger in scalability and confidence, while the former is weaker in these aspects.

· OAuth 2.0
OAuth 2.0 can be used for authorization between TAS components.

· A Combination of Technologies
Technologies could be combined. For example, the TAS Client can establish an anonymous TLS/SSL session, whereupon HTTP authentication could be used to authenticate the TAS Client.
7. Application State

Editor Note: this section needs to be revised to address the online / offline list issue.

7.1 Application State Flow Control for Developer Support
A state flow control diagram is depicted in Figure 1 for the Developer Support. There are at least 5 states in TAS application state transition, which are represented in solid ellipse in figure 2 including Offline, Online, Submitted, Audited, Tested and End.

A solid arrow indicates the procedures in TAS for developers application management. A triggering event to trigger the state transition is also noted on the arrow with the direction included.

[image: image3.emf]Offline

Online

End

Audited

Tested

OfflineSubmitted

Application

Auditing

Application

Deletion/ Revocation

*Tested state: Application test

procedure is not a mandatory step.

*Online state: Application is able to

be downloaded and purchased

De-Registration

Application Audit is failed; keep

at previous state: Submitted

Application Test is failed; keep

at previous state: Audited

Registration or Application upload is

failed; keep at previous state:Offline

Application

Deletion/ RevocationApplication

Deletion/

Revocation

Application

Deletion/ Revocation

Application

To Storefront

Application

To Storefront

Application

testing

Log -in

/Registration

&Application

uploading

Figure 2. Application State Flow Control

Based on the Figure 1 above, the triggering events of each state transition are described respectively below:

· Offline(Submitted: When the developers have already successfully logged in and registered to TAS servers / TAS service providers, the developers are permitted to upload the applications developed and to access to resources. When developers start to upload an application, the procedure is mandated in Application upload flow as illustrated in Figure3.After the developers upload the application, application state successfully transits from Offline to Submitted.

If registration or Application upload is failed, the application state keeps at previous state, Offline

· Submitted (Audited: After developers successfully upload the applications, they have to pass TAS service provider’s audit procedure which is mandated in Application upload flow as illustrated in D1.1 Application Upload Flow. When to trigger the audit process and which information to audit depends on the Service Provider’s policy.
If Application Audit is failed, the application state keeps at previous state, Submitted.

· Audited(Tested: The developers could request internal testing of their submitted applications in Developers Community, but this is not a mandatory step. If Application Test is failed, the application state keeps at previous state, Audited.

· Audited(Online: When the uploaded application by developers is successfully audited, the application can be published on the Storefront for TAS client’s downloading and purchase. The TAS Enabler guarantees that only those Applications of online state could be downloaded.

· Tested(Online: When the uploaded application by developers is successfully audited and tested, the application can be published on the Storefront for TAS client’s downloading and purchase. The TAS Enabler guarantees that only those Applications of online state could be downloaded.
· Online(End: When the uploaded application is deleted or has been through the application revocation, application state transits from Online to End.

· Online(Offline: When the developers de-register to the TAS servers / TAS service providers, application state transits from Online to Offline.
· Submitted(Offline: At Submitted state, the developers try to delete the application or make application revocation before this application is Online, application state transits from Submitted to End.
· Audited (Offline: At Audited state, the developers try to delete the application or make application revocation before this application is Online, application state transits from Audited to End.
· Tested (Offline: At Tested state, the developers try to delete the application or make application revocation before this application is Online, application state transits from Tested to End.

8. Interface Descriptions
8.1 TAS-1
8.2 TAS-2
8.2.1 Application Download
This operation enables the TAS Client to download application(s) from the Storefront. It consists of two messages: An AppDownloadRequest message from the TAS Client to the Storefront, and an AppDownloadResponse message from the Storefront to the TAS Client.

[image: image4]
Figure 1: Application Download messages exchange
8.2.1.1 AppDownloadRequest

	Name
	Cardinality
	Data Type
	Description

	Client-ID
	1
	String
	The ID of the TAS Client

	AppIDList
	1
	Structure
	List of application ID(s) to be downloaded

Table 1: AppDownloadRequest message
	Name
	Cardinality
	Data Type
	Description

	AppIDCount
	0…1
	Integer
	Number of application IDs in this list

	Application-ID
	0…N
	String
	The ID of the application

Table 2: AppIDList structure
8.2.1.2 AppDownloadResponse

	Name
	Cardinality
	Data Type
	Description

	AppList
	0…1
	Structure
	List of application(s)

	Status-Code
	1
	String
	Status code

Table 3: AppDownloadResponse message
	Name
	Cardinality
	Data Type
	Description

	AppCount
	1
	Integer
	Number of applications in this list

	Application
	0…N
	Structure
	The application

Table 4: AppList structure
	Name
	Cardinality
	Data Type
	Description

	Application-ID
	1
	String
	The ID of the application

	Name
	1
	String
	The name of the application

	Content-Address
	1, Conditional
	URI
	The URI of the application content.

Condition: This parameter is mutually exclusive with the content parameter.

	Content
	1, Conditional
	Binary
	The content of the application.

Condition: This parameter is mutually exclusive with the content-address parameter.

Table 5: Application structure

8.3 TAS-3
8.4 TAS-4
8.5 TAS-5
8.6 TAS-6
9. Sections As Needed

<<Sections for the normative technical specification text. Fill in as needed. The following validates the styles used for the headers. DELETE THIS COMMENT >>

9.1 Example Level 2

<text>

9.1.1 Example Level 3

<text>

9.1.1.1 Example Level 4

<text>

[image: image5]
Figure 2: Example Figure

	
	Column 1
	Column 2

	Row 1
	Grid 1,1 data
	Grid 1,2 data

	Row 2
	Grid 2,1 data
	Grid 2,2 data

Table 1: Example Table

10. Release Information

10.1 Supporting File Document Listing

<< List the documents besides this document that comprise this release. This is where supporting files for elements such as Schemas, Managed Objects or Data Descriptions would be itemized. Each such document is to be listed by fully qualified name as known in the permanent document area. Each document should also include the reference from section 2 to provide linkage with other uses in this document.

For supporting files that need to be made available separate from the permanent document area (e.g. DTD in a publicly reachable directory), provide information on the expected path as well as the external file name. These should be based on existing recommendations and not picked arbitrarily (see information on supporting files available in the REL support menu).
The following table includes example fields with dummy values to make it clear the type of information to be entered. The actual table should be filled in for the specific release.

DELETE THIS COMMENT >>

	Doc Ref
	Permanent Document Reference
	Description

	Supporting Files

	[FOO_DTD]
	OMA-SUP-DTD_FOO_Msgs-V1_2-20050222-D
	DTD for the messages and included elements of the FOO protocols.

Working file in DTD directory:
file:
foo_msgs-v1_2.dtd
path:
http://www.openmobilealliance.org/tech/dtd/

	[FOO_AC]
	OMA-SUP-AC_ap0123_FOO-v1_2-20050531-D
	Description of the Application Characteristic for FOO. This aligns with the Provisioning Spec.

Working file in Application Characteristics directory:
file:
ap0123_foo-v1_2.txt
path:
http://www.openmobilealliance.org/tech/omna/dm-ac

Table 2: Listing of Supporting Documents in FOO Release
10.2 OMNA Considerations
<< This section is to be used to describe any OMNA items included in the release. This would include, among others:

· Usage of OMA-based Uniform Resource Names (URNs) (including those used as namespace identifiers in Schemas)

· AppiDs for Application Characteristics (AC)

· Managed Object (MO) identifier information for the MO registry

· ISO Object IDs

· PUSH Application Ids

· WAP Wireless Session Protocol (WSP) Content Types

· Presence <service-description> assignments

· Uniform Resource Identifier (URI)-List Registered Usage Names (for XDM)

The format of this section will be left up to the release owners to account for the particular needs they may run into. It should be clear from the written material, though, as to the set of OMNA items needed.

If a new OMNA registry is needed to support the release – clearly this should have been worked with the REL Committee before submitting a Release Document. Failure to do so may result in delays as the required tables are worked up and made publicly available. Another risk is that the table desired is not supported by OMNA (is not a registry type table) and the group will need to re-think how they intend to resolve their needs.

Through the normal development process the OMNA entries or support registries should be accommodated. This should not be trigger to remove the linkage from this section. Thus, if an entry is added to OMNA after the initial Candidate version described the need – the material should stay in this section. It may be useful in subsequent releases to add some text to indicate that the needed items have been accommodated (e.g. add a comment regarding its availability or support as appropriate).

If the release has absolutely no OMNA items to be accommodated – then it should indicate that explicitly with a short description (e.g. this release does not have any OMNA items for handling). This determination probably can not be made until the end of the development phases and editors are encouraged to keep this advisory in place until the Consistency Review.

DELETE THIS COMMENT >>

10.3 Additional Items

<<If the release has any other elements needed to make it complete they should be noted in this section. For example, if there are any external registrations (e.g IANA assigned values) or shared/dependent components they should be documented.

The format of the description in this section is left to the editor based on the information needed. If there are no such elements, the editor may remove this sub-section.

DELETE THIS COMMENT >>

Appendix A. Change History
(Informative)

<< The following is a model of a revision table. DELETE THIS COMMENT >>

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

	OMA-xxyyz-V1_0-20021001-A
	01 Oct 2002
	Initial document to address the basic starting point

 Ref TP Doc# OMA-TP-2002-1234-xxyyzForApproval

	OMA-xxyyz-V1_1-20030405-A
	05 Apr 2003
	description of changed

 Ref TP Doc# OMA-TP-2003-0321-xxyyzV1_1forApproval

A.2 Draft/Candidate Version 1.0 History

<< This section is available in pre-approved versions – it should be removed in the actual approved versions. DELETE THIS COMMENT >>

	Document Identifier
	Date
	Sections
	Description

	Draft Versions

OMA-ER-TAS-V1_0
	13 Aug 2010
	All
	Baseline established

	
	31 Aug 2010
	Section 1, 5.
	Incorporate 2010-0003R01, 0004R01, 0006R01, 0007R01, 0008R01, 0009R01, 0010R01, 0011R01.

	
	08 Oct 2010
	Section 3, 5.
	Incorporate 2010-0012R03, 0013R02, 0014R01, 0015.

	
	25 Oct 2010
	Section 5.1, 5.2.
	Incorporate 2010-0016R01, 0017R01, 0018R01, 0019R01, 0020R01, 0021R01. Contents updated.

	
	08 Nov 2010
	Section 5.1, 5.2, 5.4
	Incorporate 2010-0023R01, 0024R01, 0025R01, 0026R02, 0027R02. All editor’s notes highlighted. Contents updated.

	
	16 Nov 2010
	Section 5.1, 5.2, 5.3, 5.4, 5.5.
	Incorporate 2010-0028R01, 0029R01, 0031R02, 0034R01, 0035R01, 0036R01, 0040R01, 0041R01, 0046R01 Contents updated.

	
	17 Nov 2010
	Section 5.1.1, 5.1.3, 5.1.8, 5.1.9, 5.2.6, 5.7.2, 5.5, 5.1.5
	Incorporate 2010-0042R01, 0043R01, 0044, 0045R01, 0047R01, 0048R01, 0050, 0051 and online minor changes during the first part of the Closue review conducted in Seoul.

	
	26 Nov 2010
	Section 4, 4.1, 5.2.5, 5.3, 5.4, 5.5.
	Incorporate 2010-0054R01 and online minor changes during the final part of the Closure review conducted in the REQTAS CC on 25 Nov 2010. Contents updated.

	
	21 Jan 2011
	Section 5.1.3, 5.1.16, 5.2.5, 5.3.
	Incorporate 2011-0002, 0004R01, 0005R02. Contents updated.

	
	27 Jan 2011
	Section 1, 4, 5.1.1, 5.1.2, 5.1.4, 5.1.15, 5.4, 5.6, 5.7.
	Incorporate 2011-0001R02, 0003R01, 0007, 0008R01, 0010, 0011R01, 0012R02. Contents updated.

	
	18 Feb 2011
	Section 3.2, 3.3, 5.1.2, 5.1.4, 5.1.6, 5.1.8, 5.1.10, 5.1.16, 5.2.3, 5.3, 5.3.4, 5.3.5, 5.9, 6.2, 6.3, 6.3.1.1.1, 6.3.1.1.4, Appendix D, D.1.1, D.1.2, D.1.3,
	Incoporate 2010-0001R04, 2011-0013R01, 0014R02, 0015R02, 0017R01, 0018R01, 0019R01, 0020R01, 0021, 0022R01, 0023R01, 0024R02. 0025R01, 0027R01, 0029R02, 0030R02. Contents updated.

	
	21 Feb 2011
	Section 6.3
	Correct numbering mistakes in the section 6.3.

	
	3 Mar 2011
	Section 5.1.16, 5.3.2, 5.3.6, 6.3.2.1, 6.3.2.2, 6.3.2.3, 6.3.2.5.
	Incorporate 2011-0009, 0031, 0032R01, 0033, 0034R01, 0036R01. Contents updated.

	
	9 Mar 2011
	Appendix D.1.2, D.2.
	Incorporate 2011-0037R02, 0038R01. Editorial changes on numbering in Appendix D. Contents updated.

	
	14 Apr 2011
	Section 5.1.2, 5.8.1, 5.8.2, 6.3.1.2.1, 6.3.1.2.2, 6.3.2.2, 6.3.2.6, D.1.4, D.1.5, Figure 1,
	Incorporate 2011-0040, 0043R01, 0044R02, 0045R01, 0047R01, 0049R01, 0050R01, 0051R01. Contents updated.

	
	6 Jul 2011
	Section 4.1, 5.1.15, 5.7, 6.3.1.1.1, 6.3.1.1.2, 6.4, 7, 7.1, B.1, B.2, D.1.2, Figure 1,
	Incorporate 2011-0042R01, 0052R02, 0053R02, 0054R01, 0055R01, 0056R01, 0057R02, 0058R01, 0059R01, 0060, 0061, 0062R01.

	
	25 Jul 2011
	Section 8
	Incorporate 2011-0063R01. Contents updated.

Appendix B. Use Cases
(Informative)

<< This clause provides high-level use cases focused on the users and deployment scenarios point of view, targeting release’s requirements. The section can be removed if the document does not contain any requirements.

Use cases are additional to the main text and facilitate clarification of the requirements: actually, a use case has to be considered needed (and then added to the document) when it helps the understanding of a set of requirements. For this reason, it is recommended that the total number of use cases be minimised. Pre conditions and Actors involved MAY be described at the beginning of each use case if this is found to be useful.

DELETE THIS COMMENT >>

<text here>

B.1 Built-in IAP Purchase
B.1.1 ASK * MERGEFORMAT Short Description

This use case gives an example of the build-in product In Application Purchase.

Build-in product refers to the In application Purchase Item which is already downloaded or installed with the application. When users use a built-in IAP item, they don’t need to download other contents or services.

Game A is already downloaded and installed by the user. Game A is free, but its developer embedded several locked levels. Users should purchase before they could enter the locked levels.

The flow a user (Alice) purchases the built-in IAP item is shown below:

1. Alice downloads the Game A from the TAS Enabler.

2. Alice installs the Game A on her device.

3. Alice plays Game A, there are 10 free levels and 3 locked levels in the game. When Alice finished the first 10 levels, she wants to play the last 3 key locked levels. When she tries to enter the locked level, a dialog is shown to the user, “The level is needed to pay $0.99 to be unlocked. If you want to buy it, press OK.”
4. Alice presses the OK button. The detailed purchase information is requested to user from the TAS Enabler.

5. The TAS Enabler responds to the application. The price and the service detail information are shown to Alice. A page is shown to let Alice log in TAS Enabler to confirm a TAS payment to make the purchase.

6. Alice confirms to pay.

7. The TAS Enabler returns the payment success response to the application. Then the application unlocks the level to Alice. Now Alice can play the level she just purchased.

B.1.2 Market benefits

If the TAS Enabler provides the IAP function, the developer could embed a store in his application. Built-in IAP product means when users buy the IAP product in the application, they don’t need to download extra contents.

B.2 Downloadable IAP Purchase
B.2.1 ASK * MERGEFORMAT Short Description

This use case gives an example of the downloadable In Application Purchase.

Downloadable product means the In Application Purchase Item is not downloaded or installed with the application. When the user purchases it and wants to use it, there are some specific content that needs to be downloaded from a content download server.

In this example, the application is a magazine reader, and the magazine is weekly updated. When there is a new magazine published, the developer will update the IAP product information in the TAS Enabler and upload the magazine content to his own magazine download server.

The flow a user (Bob) purchases the newly update magazine is shown below:
1. Bob buys the magazine reader for free from the TAS Enabler.

2. Bob installs the magazine reader on his device.

3. Bob opens the magazine reader and checks the new magazines. The reader sends the request to the magazine download server to check the available magazines.

4. Bob wants to buy the newly updated magazine A. He presses the ‘Buy’ button. The detailed purchase information is requested from the TAS Enabler.
5. The TAS Enabler responds with the price and the service detail information to Bob. Bob logs in the TAS Enabler to make the purchase.

6. Bob confirms to pay.

7. The TAS Enabler returns the payment success receipt and the content download related information to the application. Then the application transfers the receipt and the download request to the magazine download server.

8. Upon getting the download request and the payment receipt from the application, the magazine download server verifies the payment receipt, then responses the download address to the reader application.

9. The reader application gets the download address and then downloads the content from the magazine download server. After download completely, Bob can read the new magazine in the reader.

B.2.2 Market benefits

If the TAS Enabler provides the IAP function, the developer could embed a store in his application. Downloadable product means the In Application Purchase Item is not downloaded or installed with the application. When the user purchases it and wants to use it, there are some specific content that needs to be downloaded from a content download server.
B.3 <Use Case Title>

<< The level of detail of descriptions shall be above technical implementations of protocols. The sub-sections below should consist of one or two sentences.

DELETE THIS COMMENT >>
<text here>

B.3.1 ASK * MERGEFORMAT Short Description

<< Describe the interaction that occurs in this use case.
(mandatory)

DELETE THIS COMMENT >>

<text here>

B.3.2 Market benefits

<< Describe the consequence and benefits for the actors as a result of this use case.

(mandatory)

DELETE THIS COMMENT >>

<text here>

B.4 <Use Case Title>

<< For the second and subsequent Use Cases, the template for section B.1 should be followed. DELETE THIS COMMENT >>

Appendix C. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].

This section can be removed in case this document describes a reference release.

The following is a model of a set of SCR tables. DELETE THIS COMMENT

C.1 ERDEF for <<ENABLER>> - Client Requirements

This section is normative.
	Item
	Feature / Application
	Requirement

	OMA-ERDEF-<<ENABLER>>-C-001-<<M/O>>
	<<ENABLER>> Client
	

	
	
	

Table 3: ERDEF for <<ENABLER>> Client-side Requirements

C.2 ERDEF for <<ENABLER>> - Server Requirements

This section is normative.

	Item
	Feature / Application
	Requirement

	OMA-ERDEF-<<ENABLER>>-S-001-<<M/O>>
	<<ENABLER>> Server
	

	
	
	

Table 4: ERDEF for <<ENABLER>> Server-side Requirements

C.3 SCR for XYZ Client

	Item
	Function
	Reference
	Requirement

	XYZ-C-001-M
	Something mandatory
	Section x.y
	(XYZ-C-004-O OR XYZ-C-003-M) AND
 XYZ-C-002-O

	XYZ-C-002-O
	Something optional
	Section x.y
	

	XYZ-C-003-M
	Dependencies on ZYX
	Section x.y
	ZYX:MCF

	XYZ-C-004-O
	Dependencies on ZYX
	Section x.y
	ZYX:OCF

C.4 SCR for XYZ Server

	Item
	Function
	Reference
	Requirement

	XYZ-S-001-M
	Something mandatory
	Section x.y
	XYZ-S-004-O OR XYZ-S-002-O OR XYZ-S-003-M

	XYZ-S-002-O
	Something optional
	Section x.y
	

	XYZ-S-003-M
	Dependencies on ZYX
	Section x.y
	ZYX:MSF

	XYZ-S-004-O
	Dependencies on ZYX
	Section x.y
	ZYX:OSF

Appendix D. Informative Flows

D.1 Application Management
D.1.1 Application Upload Flow

[image: image6]
This call flow is triggered by Developer.
1. Developer sends application upload request to Developer Support component, to upload application. The request may contain some contextual information such as:
· Developer ID
· Application ID, type, name, description, version
· Upload time
· Effective date
· Expiry date
· Price
2. Developer Support component sends application upload response to the developer.
3. Developer Support component audits uploaded application and audits related information (e.g. name of the developer) according to the TAS service provider’s policies. When to trigger the audit process depends on the Service Provider’s policy.
4. Optionally, Developer Support component notifies the developer of the outcome of the audit.
5. Developer sends request to update their own uploaded applications (e.g. : submit a new version, including the software and related information) in order to improve the functions or add some new features.
6. Developer Support component returns the application update response to the developer.
Note that Developer Support component also needs to audit the updated applications.

D.1.2 Application Download Flow
[image: image7.jpg]This call flow is triggered by TAS Client’s internal execution logic.
1. TAS Client sends access request to Storefront, to obtain the application list. The request may contain some contextual information such as:
· TAS Client ID
· Application category information
· Device information, which can be used to select appropriate applications for the device
2. Storefront returns application list to the TAS Client, which is appropriate for the device information.

3. Upon user’s selection from the application list, TAS Client sends request to Storefront to download the selected application. The request should contain application’s identification information.
4. TAS client sends Authentication Request to Storefront to identify and authenticate the TAS Client.
 Storefront responds with Authentication Response to TAS Client.
5. TAS client sends Authorization Request to Storefront to prevent unauthorized access .
6. Storefront responds with Authorization Response toTAS Client.
7. TAS Client downloads application directly from Storefront, or using other mechanisms, for example, DLOTA.
8. TAS Client sends notification to the Storefront about the application download result.
9. TAS Client installs application on the device.
10. TAS Client sends notification to the Storefront about the application installation result.
Note that the authentication/authorization request and response can apply to other flows as well.

D.1.3 Application Feedback Flow
[image: image1.jpg]
[image: image8]
This call flow is triggered by TAS Client’s internal execution logic.
1. TAS Client sends application feedback request to Storefront, to give feedback (e.g. rate and comments) on applications they have used. The request may contain some contextual information such as:
· User ID
· Application ID
· Rate
· Comment
2. Storefront records the application feedback from TAS Client.
3. Storefront returns the application feedback response to the TAS Client.
D.1.4 Malicious Application Report Flow

[image: image9.jpg]
This call flow is triggered by TAS Client’s internal execution logic.
1. TAS Client sends Malicious Application Report to Storefront, to provide information on Malicious applications they have used.

The Report may contain some contextual information such as:
· User ID

· Application ID

· Comment

(eg: reason to Report this Malicious Application, or suggestion to handle this Malicious Application.)

2. Storefront records the Malicious Application Report from TAS Client and verifies whether the application is malicious according to TAS service provider’s policy.

3. Storefront responds TAS Client with Malicious Application Confirm to ascertain this report is correctly received.

Storefront sends Malicious Application notification to Developer Support to inform the malicious appplication.

The Notification may contain some contextual information such as:
· Application ID

· Comment

(eg: reason why this Malicious Application is identified, suggestion to handle this Malicious Application.)

5. Developer Support responds Storefront with Malicious Application Notification Response to ascertain this notification is correctly received.

D.1.5 Application Gift Flow

[image: image10]
This call flow is triggered by TAS Client’s internal execution logic .

1. TAS Client A sends Application-gift request to Storefront. The request may contain some contextual information such as:
· Application ID

· User A ID

· User B ID

2. Storefront checks User’s validity(include User A and User B, validation rules are defined by the TAS Service Provider)

3. Storefront sends Application-gift response to TAS client. A

4. Storefront pushes Application-gift information to TAS client B (May via SMS/Email or other ways，This is out of scope of TAS Enabler)

5. TAS Client B sends Application-gift download request to Storefront

6. TAS Client B downloads application directly from Storefront, or using other mechanisms, for example, DLOTA.

7. TAS Client B sends notification to the Storefront about the application download result.

8. TAS Client B installs application on the device. This step is out of scope of TAS Enabler.

D.2 User Management
D.2.1 User Activation and modification Flow

[image: image11]
This call flow is triggered by TAS Client’s internal execution logic.
1. TAS Client sends User-activation request to Storefront. The request may contain some contextual information such as:
· Essential information (e.g. user identifier, name)
2. Storefront sends User-activation response to TAS client.
3. Storefront checks User’s validity, validation rules are defined by the TAS Service Provider.
4. Storefront sends check result to User.
5. Storefront establishes the security relationship with the user.
6. TAS Client sends User information modification request to Storefront. The User information modification request may contain the following information(not limited to these):
· Paid account relation binding modification (e.g. bind Paid account\unbind Paid account\change Paid account)

· Payment type modification (e.g. post-paid, prepaid)
7. Storefront sends user information modification response to TAS client.
8. Storefront checks User information modification request. Checking criterias are decided by the Service Provider’s policy.
9. Storefront sends check outcome to TAS client.
Appendix E. <Additional Information>

If needed, add annex to provide additional information to support the document. In general, this information should be informative, as normative material should be contained in the primary body of the document.

Note that the styles for the headers in the appendix (App1, App2, App3) are different than the main body. The use below is intended to validate the styles to be used. Remove if not needed.

DELETE THIS COMMENT

E.1 App Headers

<More text>

E.1.1 More Headers

<More text>

E.1.1.1 Even More Headers

<More text>

Developer Support

Storefront

TAS Client

Capability Resources Management

Capability Resources Provider

TAS-1

TAS-2

TAS-3

TAS-4

Developer’s

Portal

TAS-5

Developer Support

Developer

Audit outcome notification

Application upload request

Application update request

Application update response

Application audit

Application upload response

AppDownloadResponse

AppDownloadRequest

Storefront

Record feedback

Storefront

TAS Client

Application feedback response

Application feedback request

Send user check result

Modification check

User activation check

Storefront

TAS Client

User-activation request

User information modification request

User information modification response

User-activation response

Establish the security relationship

pu

Send check outcome

TAS Client

TAS-6

Application installation

Application-gift information push

Users validity check(User A and User B)

Storefront

TAS Client A

Application-gift request

Application-gift download request

Application download notification

Application-gift response

Application download

TAS Client B

(2010 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-CombinedRelease-20100101-I]
(2010 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-CombinedRelease-20100101-I]

