Doc# OMA-DRM-2008-0106R01-CR_SCE_A2A_Copy_Move_Permission.doc[image: image3.jpg]
Change Request

Doc# OMA-DRM-2008-0106R01-CR_SCE_A2A_Copy_Move_Permission.doc
Change Request

Change Request

	Title:
	SCE A2A Copy Move Permission
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA-DRM

	Doc to Change:
	OMA-TS-SCE_A2A-V1_0_0-20080319-D

	Submission Date:
	17 March 2008

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Bert Greevenbosch, Fraunhofer IIS, bert.greevenbosch@iis.fraunhofer.de
Mercè Serra, Fraunhofer IIS, merce.serra@iis.fraunhofer.de

	Replaces:
	OMA-DRM-2008-0106

1 Reason for Change

To ensure that User Domain bound Moves can only occur within the user domain, this CR proposes to encrypt the REK of such ROs with the DDK before transmitting it over the SAC using the Put RO protocol. This ensures that devices that are not a member of the User Domain have no cryptographic access to the REK.
Additionally, this CR modifies the Put RO protocol to allow for a User Domain bound Copy operation.
R01 bases the CR on OMA-TS-SCE_A2A-V1_0_0-20080319-D
2 Impact on Backward Compatibility

None
3 Impact on Other Specifications

None
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

For the DRM group to agree the CR.
6 Detailed Change Proposal

Change 1: Add reference to AES-WRAP
2.1 Normative References

	[AES-WRAP]
	Advanced Encryption Standard (AES) Key Wrap Algorithm. RFC 3394, J. Schaad and R. Housley, September 2002. http://www.ietf.org/rfc/rfc3394.txt

	[DRMAD-SCE]
	“Secure Content Exchange Architecture, Draft Version”,
OMA-AD-SCE-Vx_y-D, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[DRMDCF20]
	“DRM Content Format, Approved Version 2.0”,
OMA-TS-DRM-DCF-V2_0-20060303-A, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[DRMDCF-SCE]
	“DRM Content Format – SCE Extensions, Draft Version”,
OMA-TS-DRM-DCF-SCE-Vx_y-D, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[DRMDOM-SCE]
	“DRM User Domains, Draft Version”,
OMA-TS-DRM-DOM-SCE-Vx_y-D, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[DRMDRM20]
	“DRM Specification, Approved Version 2.0”,
OMA-TS-DRM-DRM-V2_0-20060303-A, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[DRMDRM-SCE]
	“DRM Specification – SCE Extensions, Draft Version”,
OMA-TS-DRM-DRM-SCE-Vx_y-D, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[DRMLRM-SCE]
	 “DRM Local Rights Management, Draft Version”,
OMA-TS-DRM-LRM- SCE-Vx_y-D, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[DRMRD-SCE]
	“Secure Content Exchange Requirements, Draft Version 1.0”,
OMA-RD-SCE-V1_0-20060908-D, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[DRMREL20]
	“DRM Rights Expression Language, Approved Version 2.0”,
OMA-TS-DRM-REL-V2_0-20060303-A, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[DRMREL-SCE]
	“DRM Rights Expression Language – SCE Extensions, Draft Version”,
OMA-TS-DRM-REL-SCE-Vx_y-D, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[ISO8601]
	“Data elements and interchange formats -- Information interchange -- Representation of dates and times”, ISO 8601:2004, URL:http://www.iso.org

	[OMADRM20]
	The OMA DRM 2.0 enabler as described in “Enabler Release Definition for DRM V2.0,
Approved Version 2.0”, OMA-TS-DRM-DRM-V2_0-20060303-A, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[OMASRMTS]
	The OMA Secure Removable Media Specification, OMA-TS-SRM-V1_0, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL:http://www.openmobilealliance.org/

	
	

Change 2: Add DBREK to section "Abbreviations"
3.3 Abbreviations

	A2A
	Agent to Agent

	AES
	Advanced Encryption Standard

	CEK
	Content Encryption Key

	CRL
	Certificate Revocation List

	DBREK
	Domain Bound Rights Encryption Key

	DCF
	DRM Content Format

	DER
	Distinguished Encoding Rules

	DRM
	Digital Rights Management

	HMAC
	Keyed-Hash Message Authentication Code

	HTTP
	Hyper Text Transfer Protocol

	IV
	Initialisation Vector

	KDF
	Key Derivation Function

	LAID
	List of Asset Identifier

	MAC
	Message Authentication Code

	MAKE
	Mutual Authentication and Key Exchange

	MK
	MAC Key

	MP3
	MPEG-1 Audio Layer 3 (public format for digital music)

	N/A
	Not applicable

	OCSP
	Online Certificate Status Protocol

	OMA
	Open Mobile Alliance

	OMNA
	Open Mobile Naming Authority

	PDA
	Personal Digital Assistant

	PKCS
	Public Key Cryptography Standards

	REK
	Rights Encryption Key

	REL
	Rights Expression Language

	RFC
	Request For Comments

	RFU
	Reserved for Future Use

	RI
	Rights Issuer

	RO
	Rights Object

	ROAP
	Rights Object Acquisition Protocol

	ROID
	Rights Object Identifier

	RSA
	Rivest-Shamir-Adelman public key algorithm

	RSA-OAEP
	RSA encryption scheme - Optimal Asymmetric Encryption Padding

	RSA-PSS
	RSA Probabilistic Signature Scheme

	SAC
	Secure Authenticated Channel

	SCE
	Secure Content Exchange

	SCR
	Static Conformance Requirement

	SHA1
	Secure Hash Algorithm

	SK
	Session Key

	SRM
	Secure Removable Media

	URI
	Uniform Resource Indicator

	URL
	Uniform Resource Locator

	USB
	Universal Serial Bus

	WBXML
	Wireless Binary XML

	WiFi
	Wireless Fidelity, also Wi-fi, Wifi, or wifi

Change 3: Add new section "Notations", with AES-WRAP and AES-UNWRAP functions

3.4 Notations
	K = AES-UNWRAP(KEK, C)
	The inverse of the AES-WRAP key wrapping function. The encrypted key material C is unwrapped to key material K, using the encryption key KEK. The scheme is defined in [AES-WRAP].

	C = AES-WRAP(KEK, K)
	A symmetric-key wrapping of key material K, to the encrypted key material C, using the encryption key KEK. The scheme is defined in [AES-WRAP].

6.2.4 Status

The Status field of a response indicates the result of the DRM Agent processing a request. It is defined as follows:

Status(){
 status
8
uimsbf
}
The following table lists all the values that are valid for this version of this document.

Table 2: Status Values and Names

	Value
	Name
	Description

	0
	Success
	The request was successfully processed.

	1
	TrustAnchorNotSupported
	The trust anchor is not supported.

	2
	CertificateChainVerificationFailed
	The verification of a certificate chain failed.

	3
	FieldDecryptionFailed
	The decryption of a field failed.

	4
	RandomNumberMismatched
	A random number did not match an expected value.

	5
	VersionMismatched
	A version did not match an expected value.

	6
	SACNotEstablished
	A SAC have not been established under the requested trust model.

	7
	OldCrl
	A newly received CRL is older than the current CRL.

	8
	CrlVerificationFailed
	The verification of a CRL failed.

	11
	CrlNotFound
	CRL Not Found

	12
	IntegrityVerificationFailed
	The integrity verification of the request failed.

	13
	NotEnoughSpace
	Not Enough Space

	17
	RequestNotSupported
	The DRM/Render Agent does not support the request.

	18
	RiCertificateChainNotFound
	RI Certificate Chain Not Found

	21
	InvalidField
	The request contains an invalid field.

	22
	UnexpectedRequest
	The request was not expected.

	23
	NotADomainMember
	The Device is not a member of the User Domain for which the operation was meant.

	25 – 255
	Reserved For Future Use
	Reserved For Future Use

Change 4: Clarify that for domain bound ROs, the DBREK needs to be unwrapped to the REK using the DDK as decryption key.
9.7 Put RO Transaction

The Put RO transaction is used by the DRM Requestor to Move or Copy (put) a Rights Object to a DRM Agent. This transaction MUST take place using a SAC. This transaction MUST NOT be performed if the DRM Requestor’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set or the DRM Agent’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set (see section A.1). The following figure illustrates the Put RO transaction.

[image: image1.png]
Figure 9: Put RO Transaction
In order for this transaction to take place, the following MUST be performed:

1. The DRM Requestor performs the following:

a. In the case of a Move, it checks if the Rights Object has a <move> permission. In the case of a Copy, it checks if the Rights Object has a <copy> permission. The “allowPartial” attribute MUST be “true” if a Partial Move is to be performed. If the Rights Object cannot be Moved or Copied, the Put RO transaction is terminated. Otherwise, the following is performed:

i. If there is a <system> constraint, then it checks the <context> child element(s) of the <system> constraint. If no <context> child element identifies the SCE protocol, then the Put RO transaction is terminated.
ii. If there is a <count> constraint, then it checks the current count value in the state information of the Rights Object. In the case of a Move, if the current move count is 0, it terminates the Put RO transaction. In the case of a Copy, if the current copy count is 0, it terminates the Put RO transaction.
iii. The current move count or copy count value in the state information of the Rights Object is decremented.

b. It checks whether the Rights Object was created by an LRM. If it was created by an LRM and the LRM’s certificate only has the localRightsManagerDomain extended key purpose (see [SCE-LRM], Appendix C.1), it terminates the Put RO transaction. Note: if the <move> or <copy> permission had a <count> constraint, then the corresponding move or copy count in the state information of the Rights Object is incremented.
c. It marks the Rights Object being Moved or Copied as unusable. If the Rights Object is stateful and just a portion of the Rights Object is being Moved (Partial Rights, see section 5.3), then that portion being Moved is marked as usuable.

d. It generates a random PutRoHandle and caches the PutRoHandle, the REK of the Rights Object being Moved or Copied and the DRM Agent ID.
2. The DRM Requestor generates a PutRoRequest with the information for the Rights Object (or portion) being Moved or Copied to the DRM Agent and PutRoHandle (from step 1.d).

3. The DRM Requestor sends the PutRoRequest to the DRM Agent, applying the replay protection mechanism described in section 7.3.

4. The DRM Agent processes the request as follows:

a. It processes the request for replay as described in section 7.3.

b. It validates the fields of the PutRoRequest. If any field is invalid, it sets PutRoResponse.Status to InvalidField and proceeds to step 5.

c. It verifies the signature on the Rights Object, including the SourceCertificateChain field. If any of the verifications fails, it sets PutRoResponse.Status to InvalidRightsObject and proceeds to step 5.

d. In the caseof a Move, it checks that the Rights Object has the <move> permission. If it does not, it sets PutRoResponse.Status to InvalidRightsObject and proceeds to step 5.
e. In the case of a Copy, it checks that the Rights Object has the <copy> permission. If it does not, it sets the PutRoResponse.Status to InvalidRightsObject and proceeds to step step 5.
f. If the Rights Object is stateful, it validates that the StateInformation is consistent with the original state in the Rights Object (see section 5.5). If any state is invalid, it sets PutRoResponse.Status to InvalidRightsObject and proceeds to step 5.

g. It checks whether the Rights Object was created by an LRM. If it was created by an LRM and the LRM’s certificate only has the localRightsManagerDomain extended key purpose (see [SCE-LRM], Appendix C.1), it sets PutRoResponse.Status to InvalidRightsObject and proceeds to step 5.
h. It checks if the Rights Object contains a top-level "domain" constraint. If it does, it verifies that it is a member of the assocated User Domain. If not, it MUST set the PutROResponse.Status to NotADomainMember and proceed to step 5.
i. It checks if it has enough room to install the Rights Object. If it does not, it sets PutRoResponse.Status to NotEnoughSpace and proceeds to step 5.

j. It installs the Rights Object per [OMADRMV2] except that the replay cache is not considered and marks the Rights Object as unusable. Note that it does not have the REK for the Rights Object yet.
k. If the RO was Copied and the associated <copy> permission contains a <count> constraint, the DRM Agent sets the number of copies left to zero, i.e. it SHALL NOT copy the RO any further.
l. It decrypts PutRoRequest.EncryptedPutRoHandle, saves PutRoHandle and associates PutRoHandle with the installed Rights Object.

m. It sets PutRoResponse.Status to Success.
5. The DRM Agent sends the PutRoResponse to the DRM Requestor, applying the replay protection mechanism described in section 7.3.

6. The DRM Requestor processes the response as follows:

a. It processes the response for replay as described in section 7.3.

b. If PutRoResponse.Status is not Success, it determines if it can restart the Put RO transaction at step 2. If it does not restart the transaction, the DRM Requestor performs the following:

i. It marks the Rights Object (or portion) as usable.

ii. If the Put RO transaction was used for a Move, and if the <move> permission had a <count> constraint, it increments the current move counter of the state information.
iii. If the Put RO transaction was used for a Copy, and if the <copy> permission had a <count> constraint, it increments the current copy counter of the state information.
iv. It terminates the Put RO transaction.

c. In the case of a Move, it deletes the Rights Object (or portion) that was Moved (but still keeps the corresponding REK associated with the PutRoHandle.
d. In the case of a Copy, it marks the Rights Object that was Copied as usable.
7. The DRM Requestor generates a PutRekRequest with the PutRoHandle (from step 1.d) and the associated REK.

8. The DRM Requestor sends the PutRekRequest to the DRM Agent, applying the replay protection mechanism described in section 7.3.

9. The DRM Agent processes the request as follows:

a. It processes the request for replay as described in section 7.3.

b. It validates the fields of the PutRekRequest. If any field is invalid, it sets PutRoResponse.Status to InvalidField and proceeds to step 10.
c. It decrypts PutRekRequest.Body.EncryptedPutRoHandleAndRek. If the associated Rights Object contains a top-level "domain" constraint, the DRM Agent needs to unwrap the REK from the DBREK (see section 9.7.1) by applying the AES-UNWRAP algorithm:
d.
REK = AES-UNWRAP(DDK, DBREK)
e. It checks if it has a Rights Object that corresponds to the PutRoHandle. If it does not have a corresponding Rights Object, it set PutRekResponse.Status to UnknownHandle and continues with step 10.

f. It marks the Rights Object that corresponds to the PutRoHandle as usable and saves the REK.

g. It sets PutRekResponse.Status to Success.

10. The DRM Agent sends the PutRekResponse to the DRM Requestor, applying the replay protection mechanism described in section 7.3.

11. The DRM Requestor processes the response as follows:

a. It processes the response for replay as described in section 7.3.

b. If PutRekResponse.Status is not Success, it determines if it can restart the Put RO transaction at step 2 or step 7. If it does not restart the transaction, the DRM Requestor performs the following:

i. It marks the Rights Object (or portion) as usable.

ii. If the RO was Moved, and the <move> permission had a <count> constraint, it increments the current move counter of the state information.
iii. It terminates the Put RO transaction.

c. It removes the cached PutRoHandle, REK and DRM Agent information.

e. At this point the Put RO transaction has successfully completed.

12.
13.
14.
15.
16.
n.
o.
p.
q.
r.
s.
t.
u.
17.
18.
f.
g.
h.
i.
j.
Change 5: Adjust messages and clarify that for domain bound ROs, the REK needs to be wrapped to the DBREK, using the DDK as encryption key.
9.7.1 PutRoRequest

A PutRoRequest is sent as a protected request and its body is defined as follows:

Body(){
 sourceTimeStampPresent
1
bslbf
 stateInfoPresent
1
bslbf
 moveOrCopy
1
bslbf
 rfu
5
bslbf
 EncryptedPutRoHandle()
 RoAlias()
 SourceAlias()
 SourceAlias()
 SourceId()
 if(sourceTimeStampPresent){
 SourceTimeStamp()
 }
 RightsObjectContainer()
 if(stateInfoPresent){
 StateInformation()
 }

 CertificateChain()
}

RoAlias(){
 String80()
}

DomainAlias(){
 String80()
}

RiAlias(){
 String80()
}

RiId(){
 EntityId()
}

RiTimeStamp(){
 year
14
uimsbf

 month
4
uimsbf

 day
5
uimsbf

 hour
5
uimsbf

 minute
6
uimsbf

 second
6
uimsbf

}

EncryptedPutRoHandle(){
 EncryptedData() //Contains an encrypted PutRoHandle
}

PutRoHandle() {

 for(i = 0; i < 10; i++){

 byte
8
uimsbf

 }

}
The fields are defined as follows:

· sourceTimeStampPresent – this is a boolean field, that if true, indicates that the sourceTimeStamp field is present.

· stateInfoPresent – this is a boolean field, that if true, indicates that the StateInformation field is present.
· moveOrCopy - if this bit MUST contain the value 0 if the Put RO operation is a Move operation. If the Put RO operation is a Copy operation, this bit MUST contain the value 1.
· rfu – this is a 5 bit field that is reserved for future use. When sending the request, MUST be set to 0. When processing this field, its value MUST be ignored.
· EncryptedPutRoHandle – this field contains a PutRoHandle, encrypted by the current session key and the negociated algorithm. The field is of type EncryptedData which is defined in section 8.11.
· RoAlias – this field contains an optional alias for the Rights Object. It is of type String80 which is defined in section 8.15.

· DomainAlias – this field contains an optional alias for the domain if the Rights Object is a domain Rights Object. It is of type String80 which is defined in section 8.15.

· SourceAlias – this field contains an optional alias for the Rights Issuer or LRM that created the original Rights Object. It is of type String80 which is defined in section 8.15.

· SourceId – this field contains the identity of the Rights Issuer or LRM that created the original Rights Object. It is of type EntityId which is defined in section 8.5.

· RightsObjectContainer – this field contains a Rights Object as defined in section 8.18.

· StateInformation – this field, if present, contains the state information for the Rights being Moved. This field is defined in section 8.19.

· year – this field contains the year – 2000 of the timestamp. Range is 0 – 16383, corresponding to the years 2000 – 18,383.

· month – this field contains the month of the timestamp, with 0 representing January. Range is 0 – 11.

· day – this field contains the day – 1 of the month of the timestamp. Range is 0 – 30.

· hour – this field contains the hour of the timestamp. Range is 0 – 23.

· minute – this field contains the minute of the timestamp. Range is 0 – 59.

· second – this field contains the seconds of the timestamp. Range is 0 – 59.

· CertificateChain – this field contains the certificate chain for the Rights Issuer or LRM that created the original Rights Object. This field is defined in section 8.8.
· PutRoHandle – this field contains a 10 byte random handle that is used to correlate the REK in this transaction.

9.7.2 PutRoResponse

A PutRoResponse is sent as a protected response. The following table lists the valid Status values for this response.

Table 14: PutRoResponse Status Values
	Status Values

	Success

	InvalidField

	InvalidRightsObject

	NotEnoughSpace

A PutRoResponse does not have a body.

9.7.3 PutRekRequest

A PutRekRequest is sent as a protected request and its body is defined as follows:

Body(){
 EncryptedPutRoHandleAndRek()
}

EncryptedPutRoHandleAndRek (){
 EncryptedData() //Contains an encrypted PutRoHandleAndRek
}

PutRoHandleAndRek(){
 PutRoHandle()
 Rek()
}

Rek(){
 for(i = 0; i < 16; i++){

 byte
8
uimsbf

 }

}

The fields are defined as follows:

· EncryptedPutRoHandleAndRek – this field contains the PutRoHandle,and encrypted REK. This is a copy of the PutRoRequest.Body.EncryptedPutRoHandle. The field is of type EncryptedData which is defined in section 8.11. The REK is encrypted as follows:
· If the RO does not contain a top-level <domain> constraint, the REK is encrypted by the current session key and the negotiated algorithm.
· If the RO contains a top-level <domain> constraint, the REK is encrypted using AES-WRAP using the DDK associated with the Domain ID in the <domain> constraint as encryption key. This result in the Domain Bound REK (DBREK):
DBREK = AES-WRAP(DDK, REK)
The DBREK is encrypted by the current session key and negotiated algorithm, and then stored in the EncryptedPutRoHandleAndRek field.
· PutRoHandle – this field contains a Put RO handle and is defined in section 9.7.1.

· Rek – this field contains an REK.
9.7.4 PutRekResponse

A PutRekResponse is sent as a protected response. The following table lists the valid Status values for this response.

Table 15: PutRoResponse Status Values
	Status Values

	Success

	InvalidField

	UnknownHandle

A PutRekResponse does not have a body.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 10)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 10 (of 10)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

