Doc# OMA-DRM-2008-0470-CR_A2A_no_lending_for_stateful_RO[image: image4.jpg]"sOMaQa

Open Mobile Alliance

Change Request

Doc# OMA-DRM-2008-0470-CR_A2A_no_lending_for_stateful_RO
Change Request

Change Request

	Title:
	A2A no lending for stateful ROs
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA-DRM

	Doc to Change:
	OMA-TS-SCE_A2A-V1_0-20081022-D

	Submission Date:
	23 October 2008

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Mercè Serra, Fraunhofer IIS, merce.serra@iis.fraunhofer.de

	Replaces:
	n/a

1 Reason for Change

This CR disallows the lending of stateful ROs. It also moves a subsection of the Rendering section that should go to the Lending section.
2 Impact on Backward Compatibility

None
3 Impact on Other Specifications

None
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

The OMA DRM WG is recommended to agree the CR.
6 Detailed Change Proposal

7.1 Lend RO Operation

The Lend RO operation is used by the DRM Requester to do Lending of a RO. This operation MUST take place using a SAC. This operation MUST NOT be performed if the DRM Requester’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set or the DRM Agent’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set (see section A.1). The following figure illustrates the Lend RO operation.

[image: image1.png]DRM DRM
Requester Agent

LendRoRequest

I
|
]
;
|
! LendRoResponse
I

<

I A

Figure 10: Lend RO Operation
In order for this operation to take place, the following MUST be performed:

1. The DRM Requester does the following:

a. It checks if the RO has the <lend> permission and any constraints. If the RO contains stateful constraints for consumption by the DRM Requester or if the RO cannot be Lent, the Lend RO operation is terminated.

b. It marks the RO as unusable.
c. It creates a Lending context for this RO that includes the ROID, the lendingHandle, the DRM Agent’s ID and a lending interval timer.

d. It generates a random lendingHandle and copies it to the Lending context and the LendRoRequest.
2. It starts the lending interval timer in the Lending context using the value of the <lending-interval> constraint. Note that once this lending interval timer expires, the DRM Requester marks the RO as usable again.

3. The DRM Requester generates a LendRoRequest.

4. The DRM Requester sends the LendRoRequest to the DRM Agent, applying the replay protection mechanism described in section 7.3.

5. The DRM Agent processes the request as follows:

a. It processes the request for replay as described in section 7.3.

b. It validates the fields of the LendRoRequest. If any field is invalid, it sets LendRoResponse.Status to InvalidField and proceeds to step 6.

c. It verifies the integrity of the request. If the integrity check fails, it sets LendRoResponse.Status to IntegrityVerificationFailed and proceeds to step 6.

d. It verifies the signature on the RO, including the SourceCertificateChain field. If any of the verifications fails, it sets LendRoResponse.Status to InvalidRightsObject and proceeds to step 6.

e. It checks that the RO has the <lend> permission. If it does not, it sets LendRoResponse.Status to InvalidRightsObject and proceeds to step 6.
f. It checks that the RO does not contain stateful constraints for consumption by the DRM Requester. If it does, it sets LendRoResponse.Status to InvalidRightsObject and proceeds to step 6.
g. It checks that the <lend> permission has an <lending-interval> constraint. If it does not, it sets LendRoResponse.Status to InvalidRightsObject and proceeds to step 6.

h. It checks if it has enough room to install the RO. If it does not, it sets LendRoResponse.Status to NotEnoughSpace and proceeds to step 6.

i. It installs the RO per [OMADRMV2] except that the replay cache is not considered. It marks the RO as “lent”.

j. It creates a Lent context for this RO that includes the ROID, the lendingHandle, the DRM Requester’s ID and a lending timer.

k. It starts the lending timer in the Lent context with the value of the <lending-interval> constraint of the <lend> permission.

l. It sets LendRoResponse.Status to Success.
6. The DRM Agent sends the LendRoResponse to the DRM Requester, applying the replay protection mechanism described in section 7.3.

7. The DRM Requester processes the response as follows:

a. It processes the response for replay as described in section 7.3.

b. If LendRoResponse.Status is not Success, it determines if it can restart the Lend RO operation at step 2. If it does not restart the operation, the DRM Requester performs the following:

i. It marks the RO as usable.

ii. It removes the Lending context, stopping the lending interval timer.

iii. It terminates the Lend RO operation.

c. At this point the Lend RO operation has successfully completed.

After the successful execution of the Lend RO operation, the DRM Agent MAY grant the following permissions (if present and subject to any constraints): <play>, <display> and <execute>. Other permissions that are present MUST NOT be granted.
7.1.1 LendRoRequest

A LendRoRequest is sent as a protected request and its body is defined as follows:

Body(){
 lendingHandle
32
uimsbf
 RightsObjectContainer()
 CertificateChain()
 EncryptedCek()
}

The fields are defined as follows:

· lendingHandle – this field contains a 32 bit unsigned integer assigned by the DRM Requester to identify the RO being Lent. The DRM Requester can use this value in the Lend Release operation (see section 9.10) to release the RO.

· RightsObjectContainer – this field contains a RO as defined in section 8.18.

· CertificateChain – this field contains the certificate chain for the Rights Issuer or LRM that created the original RO. This field is defined in section 8.8
· EncryptedCek – this field contains the Content Encryption Key (CEK), encrypted with the SK, as defined in section 8.12.
7.1.2 LendRoResponse

A LendRoResponse is sent as a protected response. The following table lists the valid Status values for this response.

Table 17: LendRoResponse Status Values
	Status Values

	Success

	InvalidField

	IntegrityVerificationFailed

	InvalidRightsObject

	NotEnoughSpace

The body of a LendRoResponse is empty and is defined as follows:

Body(){

}

7.2 Lend Release Operation

The Lend Release operation is used by the DRM Requester to release a RO it had previously received via a Lend operation (see section 9.9). This operation MUST take place using a SAC. This operation MUST NOT be performed if the DRM Requester’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set or the DRM Agent’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set (see section A.1). Note that for this operation to succeed, the DRM Requester (for this operation) MUST be the DRM Agent that received the Lent RO and the DRM Agent (for this operation) MUST be the DRM Requester that Lent the RO. The following figure illustrates the Lend Release operation.

[image: image2.png]DRM DRM
Requester Agent

N LendReleaseRequest

LendReleaseResponse

A

I A

Figure 11: Lend Release Operation
In order for this operation to take place, the following MUST be performed:

1. The DRM Requester generates a LendReleaseRequest using the data from the Lent context for the RO.

2. The DRM Requester sends the LendReleaseRequest to the DRM Agent, applying the replay protection mechanism described in section 7.3.

3. The DRM Agent processes the request as follows:

a. It processes the request for replay as described in section 7.3.

b. It validates the fields of the LendReleaseRequest. If any field is invalid, it sets LendReleaseResponse.Status to InvalidField and proceeds to step 4.

c. It verifies the integrity of the request. If the integrity check fails, it sets LendReleaseResponse.Status to IntegrityVerificationFailed and proceeds to step 4.

d. It checks if it has a Lending context for the lendingHandle and DRM Requester ID. If it does not have a Lending context, it sets LendReleaseResponse.Status to UnknownHandle and proceeds to step 4.

e. It marks the RO corresponding to the lendingHandle as usable and removes the Lending context.

f. It sets LendReleaseResponse.Status to Success.
4. The DRM Agent sends the LendReleaseResponse to the DRM Requester, applying the replay protection mechanism described in section 7.3.

5. The DRM Requester processes the response as follows:

a. It processes the response for replay as described in section 7.3.

b. If LendReleaseResponse.Status is not Success, it determines if it can restart the Lend Release RO operation at step 1. If it does not restart the operation, it terminates the Lend Release operation.

c. It deletes the Lent RO it just released and removes the Lent context.

d. At this point the Lend Release operation has successfully completed.

7.2.1 LendReleaseRequest

A LendReleaseRequest is sent as a protected request and its body is defined as follows:

Body(){
 lendingHandle
32
uimsbf
}

The fields are defined as follows:

· lendingHandle – this field contains a 32 bit unsigned integer that was previously assigned by the DRM Requester (that Lent the RO) to identify the RO being released.

7.2.2 LendReleaseResponse

A LendReleaseResponse is sent as a protected response. The following table lists the valid Status values for this response.

Table 18: LendReleaseResponse Status Values
	Status Values

	Success

	InvalidField

	IntegrityVerificationFailed

	UnknownHandle

The body of a LendReleaseResponse is empty and is defined as follows:

Body(){

}
7.2.3 Lending Expiration

If the DRM Requester does not release the Lent RO and the lending timer of the corresponding Lent context expires, it MUST perform the following:

1. Delete the Lent RO.

2. Remove the Lent context.
7.3 Render Operation

The Render operation is used by the DRM Requester to securely deliver the CEK for the DRM Content to the Render Agent so that the DRM Content can be rendered remotely. The DRM Content is identified by its Asset ID (see section 8.17). This operation MUST take place using a SAC. All ROs are implicitly allowed to be rendered remotely. Although not within the scope of this specification, it is assumed that the Render Agent will lose knowledge of the CEK after the rendering of the DRM Content is complete. In addition, the DRM Requester MUST ensure that the rendering application on the Render Client is trustworthy and securely communicates the rendering status to the DRM Requester.
This operation MUST NOT be performed if the DRM Requester’s certificate does not have an extKeyUsage extension with oma-kp-sceRenderSource key purpose set or the Render Agent’s certificate does not have an extKeyUsage extension with oma-kp-sceRenderAgent key purpose set (see section A.1). The following figure illustrates the Render operation.

[image: image3.png]DRM Render
Requester Agent

RenderRequest

RenderResponse

A

I A

Figure 12: Render Operation
In order for this operation to take place, the following MUST be performed:

1. The DRM Requester generates a RenderRequest.

2. The DRM Requester sends the RenderRequest to the Render Agent, applying the replay protection mechanism described in section 7.3.

3. The Render Agent processes the request as follows:

a. It processes the request for replay as described in section 7.3.

b. It validates the fields of the RenderRequest. If any field is invalid, it sets RenderResponse.Status to InvalidField and proceeds to step 4.

c. It verifies the integrity of the request. If the integrity check fails, it sets RenderResponse.Status to IntegrityVerificationFailed and proceeds to step 4.

d. It decrypts the CEK.

e. It creates a Render context with the renderHandle, AssetId, CEK and the DRM Requester ID.
f. It sets RenderResponse.Status to Success.
4. The Render Agent sends the RenderResponse to the DRM Requester, applying the replay protection mechanism described in section 7.3.

5. The DRM Requester processes the response as follows:

a. It processes the response for replay as described in section 7.3.

b. If RenderResponse.Status is not Success, it determines if it can restart the Render operation at step 1. If it does not restart the operation, it terminates the Render operation.

c. It creates a Render context, associating the renderHandle, AssetId and Render Agent ID.

d. At this point the Render operation has successfully completed.

7.3.1 RenderRequest

A RenderRequest is sent as a protected request and its body is defined as follows:

Body(){
 renderHandle
32
uimsbf
 AssetId()
 EncryptedCek()
}

The fields are defined as follows:

· renderHandle – this field contains a 32 bit unsigned integer assigned by the DRM Requester to identify the rendering of the DRM Content. The DRM Requester can use this value in the Render Status operation (see section Error! Reference source not found.) to get the status of the rendering.

· AssetId – this field contains the identification of the DRM Content that the Render Agent should render. It is defined in section 8.17.

· EncryptedCek – this field contains the Content Encryption Key (CEK) , encrypted with the SK, for decrypting the DRM Content. It is defined in section 8.12.
7.3.2 RenderResponse

A RenderResponse is sent as a protected response. The following table lists the valid Status values for this response.

Table 19: RenderResponse Status Values
	Status Values

	Success

	InvalidField

	IntegrityVerificationFailed

The body of a RenderResponse is empty and is defined as follows:

Body(){

}

7.3.3

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 7)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 7 (of 7)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

