[image: image1.jpg]"sOMaQa

Open Mobile Alliance

OMA-DS-2005-0059R02-always-on-usecases
Submitted to DS
22 Aug 2005
OMA-DS-2005-0059-always-on-usecases
Submitted to DS
07 Apr 200

Input Contribution

	Title:
	Always on Use Cases; Input contribution for OMA DS1.3
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	<Data Synchronization>

	Source:
	Nina Karhuluoma, Nokia

Email: nina.Karhuluoma@nokia.com
Tel. +358 40 801 9050

Karen Momenee, IBM

Email: momenee@us.ibm.com
Mark Paterson, Oracle

Email: mark.paterson@oracle.com
Christopher Alpaugh, Oracle

Email: Christopher.alpaugh@oracle.com
Andy Pearson, OZ

Email: andy.pearson@oz.com
Svetlana Guljajeva, FusionOne

Email: SGuljajeva@Fusionone.com
Ian McDowall, Symbian

Email: Ian.McDowall@Symbian.com

	Attachments:
	<list of attachments> or n/a
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	
	<att x>
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	
	<att y>
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	
	<att z>
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	<previous revision DocIdent> or n/a

1 Reason for Contribution

Enhancing always-on functionality is one the key tasks in OMA DS1.3 specification work. This input contribution provides use cases for the always on functionality.
2 Summary of Contribution

This document presents five different case types regarding the always-on: normal cases that are related to the basic always-on functionality, administrator cases that cover changes in parameters, connectivity cases describe for example roaming and bearer switching features, error cases give an overview about the required functionality if connection is lost, user cancels the synchronization etc., and security use cases cover the potential security threats to always-on functionality.

3 Detailed Proposal

37.
OMA DS Always-On Use Cases

48.
Normal Cases

48.1
Full Synchronization

48.2
Incremental Synchronization

58.3
Single update from Client

58.3.1
Multiple updates from Client

68.4
Single update from Server

68.4.1
Multiple updates from Server

78.5
Turns on Always On functionality

78.6
Turns off Always On functionality

88.7
User changes the filter settings while a logical sync session is active

88.8
Conflict resolution and duplicate detection

88.9
User performs a manual sync while Always On is activated

98.10
Application functionality behaves differently if a particular application/service is running

109.
Administrator Cases

109.1
Administrator makes changes to the synchronization settings while a logical sync session is active.

109.1.1
Connectvity parameters change

109.1.2
Settings change that force a synchronization

119.1.3
Settings change that don’t force a synchronization

119.2
Administrator changes the filter settings while a logical sync session is active.

1310.
Connectivity Cases

1310.1
Roaming

1310.2
Bearer Switching (should not break a logical session)

1310.3
Local Connectivity

1411.
Error Cases

1411.1
Connectivity Loss

1411.2
Anchor Mismatch

1511.3
User cancels synchronization

1511.4
PIM/Email problems

1611.5
Authentication issues

1611.5.1
Invalid credentials

1611.5.2
Credentials changed

1711.6
Server reboot

1711.7
Client reboot

1812.
Security Cases

1812.1
Denial Of Service Attacks

1812.2
Spoofing Attacks

1812.3
Replay Attacks

1812.4
“Fat” Packets

1913.
Derived Requirements

7. OMA DS Always-On Use Cases

This document describes the use cases regarding the Always-On functionality required in OMA DS.

1. Always-On is a new feature being proposed for the OMA DS specification. It will allow the data stored on DS clients and servers to always be synchronized. Whenever changes are detected on one side, without user intervention, the system will initiate a synchronization session. This feature allows the user’s data to always be synchronized, without the user noticing how, and when all of the operations happened.

greatly enhancing the user experience.

8. Normal Cases

8.1 Unobtusive Always On Synchronization

The end user does not want to manually and explicitly (via device UI) initiate every synchronization with the server from his device. He just wants the device to automatically contain up-to-date information (eg. PIM, Email) whenever he views the data on his device, and he wants any updates that he makes on his device to be automatically propagated to the server.
8.2 End User

1.
2.
3.
4.
5.
8.3

1.
2.
3.
4.
5.
8.4

1.
2.
3.
4.
8.5

1.
2.
3.
4.
5.
8.5.1

1.
2.
3.
4.
5.
8.6

a)
b)
c)

1.
2.
3.
4.
5.
8.6.1

1.
2.
3.
4.
5.
8.7

a)
b)
c)
d)

1.
2.
3.
4.
5.
8.7.1

1.
2.
3.
4.
5.
8.8 Turns Always On functionality ON/OFF
The End User wants to be able to Turn the Always On functionality ON and OFF

1.
2.
3.
4.
5.
6.
8.9

1.
2.
3.
4.
8.10 End User changes the filter settings while the Always On Functionality is active.

1.
2.
3.
4.

End User has a
8.11

8.12 End User performs a manual sync while Always On is activated
Although the End User is normally

satisfied with the automatic updates his device receives and propagates when using his default filters, he is at the airport, about to board a plane and wants to receive all of the text, including attachments, of the emails he has received from a customer in the last 2 weeks so he can review them during the plane ride to visit the customer. He is able to change his filters (see 8.3 above) but also wants to be able to force a manual sync to retrieve the full set of emails from the customer.
8.13

9. Administrator Cases

9.1 Administrator makes changes to the synchronization settings while the Always On function is active.

In this use case, the administrator has made changes to settings that will affect future user’s synchronization sessions. The system’s response should depend on the settings changes, and could range from nothing, to restarting the logical synchronization setting. In fact, if we don’t want to force a synchronization, it might be useful to have a way to simply open a session. In some cases, a synchronization may be forced by these changes, and in others, no sync is required by the changes. Also, the changed settings may have to be propagated to the client.
9.1.1 Connectivity parameters change

In this example, the administrator has changed the users connectivity settings. The client will have to reconnect to the server once the new settings take effect.

Steps:

1. The administrator changes the synchronization settings.

2. The settings changes are propagated to the client. This can happen either automatically (i.e., with OMA DM) or manually. For the purposes of this use case, however, it does not matter how the change occurs.

3. The logical session and transport are broken.

4. The client re-establishes the transport connection between the client and the server.

5. Sync initialization takes place. The client initiates an incremental synchronization session with the server. The logical synchronization session is now established between the client and the server, and both the client and the server are responsible of maintaining the session until the session is finalized.

6. In synchronization phase the client first sends its updates to the server, after which the server sends its updates to the device. Client sends necessary status and map commands to the server.

7. Transport is disconnected.

8. Both the server and the client are in sync, and the logical session is maintained.

9.1.2 Settings change that force a synchronization

Steps:

1. The administrator changes the synchronization settings.

2. The settings changes are propagated to the client. This can happen either automatically (i.e., with OMA DM) or manually. For the purposes of this use case, however, it does not matter how the change occurs.

3. Both the client and server evaluate the state of the data stores. One side or the other detects that a synchronization needs to take place.

4. Sync initialization takes place. The client initiates an incremental synchronization session with the server. The logical synchronization session is now established between the client and the server, and both the client and the server are responsible of maintaining the session until the session is finalized.

5. In synchronization phase the client first sends its updates to the server, after which the server sends its updates to the device. Client sends necessary status and map commands to the server.

6. Transport is disconnected.

7. Both the server and the client are in sync, and the logical session is maintained.

9.1.3 Settings change that don’t force a synchronization

Steps:

1. The administrator changes the synchronization settings.

2. The settings changes are propagated to the client. This can happen either automatically (i.e., with OMA DM) or manually. For the purposes of this use case, however, it does not matter how the change occurs.

3. Both the client and server evaluate the state of the data stores. Neither one requires a synchronization, so nothing extra happens. Both the server and the client are in sync, and the logical session is maintained.

9.2 Administrator changes the filter settings while Always On Sync is active.

This use case is similar to the use case where the user changes filter settings, except the changes are most likely to occur on the server. This might cause a synchronization event because the filter change could add or delete items from the filter list.

Preconditions: Client and server are configured for synchronization with each other and have an active Always-On session.

Steps:

1. The user changes the filter settings on the server.

2. The server determines if the new filter settings will generate any updates that need to be sent to the client. If so, then the server initiates an abbreviated synchronization session. It sends the updates to the client, and the client responds with the appropriate return codes.

3. Transport is disconnected.

4. Both the server and the client are in sync, and the logical session is maintained.

Note that if the server does not generate any updates, it will not initiate a synchronization session.

10. Connectivity Cases

10.1 Roaming

This case covers options to handle roaming. It probably won’t affect anything in the specification itself, but it might force some requirements at the implementation level. For example, we might want to deactivate Always On when the user is roaming to reduce charges.

10.2 Bearer Switching (should not break a logical session)

This is the use case that covers bearer switching. In theory, everything should operate seamlessly, and the user should never notice. We might want to represent this as a requirement, since the real use case will really affect the implementation, not the specification.

10.3 Local Connectivity

This use case covers the situation where the user wants to use local connectivity (i.e., Bluetooth, cradle, etc.) to connect to the server. Again, this should work in a seamless fashion, and will be covered in more detail in the bindings specifications.

11. Error Cases

11.1 Connectivity Loss

In this use case, the user has Always On Synchronization activated but experiences a connectivity loss. When the connectivity is restored, the client and server should both determine if they need to do a sync and initiate one if necessary. Note that we might need to start a new logical session as well as a new physical session. We might want to expand this use case to cover all of the possible combinations.

Preconditions: Client and server are configured for synchronization with each other and have an active Always-On session.

Steps:

1. Connectivity is lost between the client and the server.

2. The client attempts to reconnect to the server but eventually fails. The details of this step are mostly implementation defined, but the important part is that the client eventually recognizes that the connection has been permanently lost.

3. The logical session is destroyed.

4. At some point in the future, the client and server re-establish connectivity.

5. Sync initialization takes place. The client initiates an incremental synchronization session with the server. The logical synchronization session is now established between the client and the server, and both the client and the server are responsible of maintaining the session until the session is finalized.

6. In synchronization phase the client first sends its updates to the server, after which the server sends its updates to the device. Client sends necessary status and map commands to the server.

7. Transport is disconnected.

8. Both the server and the client are in sync, and the logical session is maintained.

11.2 Anchor Mismatch Comment: Think we should remove this as it is too technical for Use Case.
In this use case, there is an anchor mismatch that occurs during an attempted synchronization. The default response when this happens is to force a full synchronization, but we should explore some different options to prevent the full synchronization.

Preconditions: Client and server are configured for synchronization with each other and have an active Always-On session.

Steps:

1. The device detects that there are modifications in the user’s datastore and it must initiate a synchronization session.

2. Sync initialization takes place. The client initiates an incremental synchronization session with the server, but there is an anchor mismatch.

3. The server responds with a request for a full synchronization.

4. In synchronization phase all data from the client is first sent to the server, after which the server compares the items received from the device to the items the server has, and sends the necessary items to the device. Client sends necessary status and map commands to the server.

5. Transport is disconnected.

6. Both the server and the client are in sync, and the logical session is maintained.

Ideally, there would be some way to prevent a full synchronization, but for now we must follow the specification.

11.3 User cancels synchronization: Comment: We think this only applies to a Manually initiated Use Case…if the Always On concept succeeds, the end user is not aware of the synchronization and would not know to cancel it.
This use case covers the situation where a user cancels a synchronization while the Always On feature is activated. The interesting question is whether the cancellation breaks logical synchronization session. If not, then the client UI would probably want to provide a separate way to do just that.

Preconditions: Client and server are configured for synchronization with each other and have an active Always-On session.

Steps:

1. The client and server are conducting a synchronization session.

2. The user cancels the session.

3. Transport is disconnected, but the logical session is maintained.

11.4

a)
b)

1.
2.
3.
4.
5.

11.5 Authentication issues

This use case broadly covers different authentication problems that might occur. The current standard covers the case if the user’s credentials are invalid. However, we also want to consider the situation where the user’s password changes during a logical session.

11.5.1 Invalid credentials

Preconditions: Client and server are configured for synchronization with each other.

Steps:

1. Transport connection established between the client and the server.

2. Sync initialization takes place. The server fails to authenticate the credentials sent by the client.

3. The server returns the appropriate error code and terminates the logical session.

4. Transport is disconnected.

11.5.2 Credentials changed

Preconditions: Client and server are configured for synchronization with each other. The server has some way of knowing when a user’s credentials have aged.

Steps:

1. Transport connection established between the client and the server.

2. Sync initialization takes place. The server attempts to authenticate the user, but the authentication server indicates that the user’s credentials are no longer valid.

3. The server returns the appropriate error code to the client. It does not terminate the logical session.

4. Transport is disconnected.

5. The user can then update his credentials and initiate another session.

11.6

11.7

12. Security Cases Note: Nina will take care of these in her Security Use Cases document.
12.1 Denial Of Service Attacks

This use case explores the possibility of a Denial Of Service attack.

12.2 Spoofing Attacks

This use case explores the possibility of a Spoof attack.

12.3 Replay Attacks

This use case explores the possibility of a Replay attack.

12.4 “Fat” Packets

If the trigger messages contain user data, we need a mechanism to guarantee packet security and integrity.

13. Derived Requirements

1.
2. Spoofing and replay attacks require two-way authentication to prevent them. The logical session could also be closed once the authentication expires.

3. It should be possible for a user to have multiple simultaneous logical sessions open. .) It should be possible to synchronize multiple data stores on a client. These data stores shall be kept synchronized with different logical sessions. It should also be possible to have the same account synchronized with multiple devices simultaneously. (Essentially, this means that each device must have a separate session ID)
4. If a connection is lost, the synchronization state should be re-established in a minimal amount of time and data transfer, without user interaction.

5. A user should be able to check if the device is up to date without synchronizing the device data to the server.

6. There should be a set of well-defined filter names. The thought is that the client/user can choose these filters from a list. It will also provide a reference list of filters.

7. The client and the server should be able to re-define the filtering rules within the logical session with minimal amount of data transfer. -
8. The solution must allow the user to specify multiple server accounts for both PIM and Email.

9. The solution must allow the user to perform all valid actions for that data type (sending mail, receiving headers, editing PIM items, etc.).

10. Client must be able to detect that the IP address of the device has changed. (Might be covered in the bindings documents.) (Concern about the SAN server knowing the IP address of the device in order to send unsolicited Notifications.)
11. The type of trigger mechanism used to initiate the synchronization session should not affect the flow of the operation. Also, the trigger type should be transparent to the user.
12.
14. Logical session

This use case document presents a concept of Always on Synchronization which may be implemented as a logical session. The logical session is a relationship between the client and server which contrinues while data is exchanged through multiple physical connections or sessions
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

These use cases shall be considered to be fulfilled in OMA DS1.3 specifications.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 22)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20040305]

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Page 3 (of 22)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20040305]

