OMA-TS-REST_NetAPI_NavSe-V1_0-20170214102-D
Page 5 V(49)

	[image: image9.png]
	

	RESTful Network API for Navigation Service Framework

	Draft Version 1.0 – 14 Feb 2017

	Open Mobile Alliance

	OMA-TS-REST_NetAPI_NavSe-V1_0-20170214-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2017 Open Mobile Alliance All Rights Reserved.
Used with the permission of the Open Mobile Alliance under the terms set forth above.

Contents

51.
Scope

2.
References
6
2.1
Normative References
6
2.2
Informative References
6
3.
Terminology and Conventions
7
3.1
Conventions
7
3.2
Definitions
7
3.3
Abbreviations
7
4.
Introduction
9
4.1
Version 1.0
9
5.
Navigation Service Framework API definition
10
5.1
Resources Summary
10
5.2
Data Types
17
5.2.1
XML Namespaces
17
5.2.2
Structures
17
5.2.2.1
Type: TripList
17
5.2.2.2
Type: Trip
17
5.2.2.3
Type: Route
19
5.2.2.4
Type: AreaList
21
5.2.2.5
Type: Area
22
5.2.2.6
Type: Segment
23
5.2.2.7
Type: PerformanceParameter
24
5.2.2.8
Type: SubscriptionList
25
5.2.2.9
Type: Subscription
25
5.2.2.10
Type: Notification
26
5.2.2.11
Type: EventList
27
5.2.2.12
Type: CategorizedEventList
27
5.2.2.13
Type: Event
27
5.2.3
Enumerations
27
5.2.3.1
Enumeration: TrafficInfoType
28
5.2.4
Values of the Link “rel” attribute
28
5.3
Sequence Diagrams
28
5.3.1
Request of Route Information and Related Traffic Information by the Application in a Lightweight ND
28
5.3.2
Request of Traffic Information Related to Routes Estimated by the Application and re-routing conditions in Smart ND
31
5.3.3
Request of Traffic Information for a Defined Area by Application in Smart ND
34
6.
Detailed specification of the resources
36
6.1
Resource: [Description of the resource]
36
6.1.1
Request URL variables
37
6.1.1.1
Light-weight Resource relative paths
37
6.1.2
Response Codes and Error Handling
37
6.1.3
GET
38
6.1.3.1
Example 1: [Example title] (Informative)
38
6.1.3.1.1
Request
39
6.1.3.1.2
Response
39
6.1.3.2
Example 2: [Example title] (Informative)
39
6.1.3.2.1
Request
39
6.1.3.2.2
Response
40
6.1.4
PUT
40
6.1.4.1
Example 1: [Example title] (Informative)
40
6.1.4.1.1
Request
40
6.1.4.1.2
Response
40
6.1.4.2
Example 2: [Example title] (Informative)
40
6.1.4.2.1
Request
40
6.1.4.2.2
Response
40
6.1.5
POST
41
6.1.5.1
Example 1: [Example title] (Informative)
41
6.1.5.1.1
Request
41
6.1.5.1.2
Response
41
6.1.5.2
Example 2: [Example title] (Informative)
41
6.1.5.2.1
Request
41
6.1.5.2.2
Response
41
6.1.6
DELETE
41
6.1.6.1
Example 1: [Example title] (Informative)
42
6.1.6.1.1
Request
42
6.1.6.1.2
Response
42
6.1.6.2
Example 2: [Example title] (Informative)
42
6.1.6.2.1
Request
42
6.1.6.2.2
Response
42
7.
Fault definitions
43
7.1
Service Exceptions
43
7.1.1
SVC[code number]: [Text for exception header]
43
7.2
Policy Exceptions
43
7.2.1
POL[code number]: [Text for exception header]
44
7.2.1
POL1003: Refund exceeds original charge amount
44
Appendix A.
Change History (Informative)
45
A.1
Approved Version History
45
A.2
Draft Version 1.0 History
45
Appendix B.
Static Conformance Requirements (Normative)
46
B.1
SCR for REST.FUNCAREA Server
46
B.1.1
SCR for REST.FUNCAREA.FUNCTION Server
46
Appendix C.
JSON examples (Informative)
47
C.1
[Example Title] (section [section number cross reference])
47
Appendix D.
Partial Route Encoding Schema
48

Figures

11Figure 1 Resource structure defined by this specification

28Figure 2: Sequence for Lightweight ND

31Figure 3: Sequence for Smart ND

33Figure 4: Smart ND requesting traffic and Point Of Interest information

Tables

40Table 1 [Baseline specification] operations mapping

1. Scope

This specification defines a RESTful API for Navigation Service Framework using HTTP protocol bindings, based on application requirements and architecture defined in [NavSe_ER].
In the document, in order to encode transportation related information, XML data structure defined in ISO TS 24530-2,3 [TTI LOC], [TTI RTM] are used, in accordance with OMA policy of reuse of existing standards.

The reproduction of examples extracted from ISO TS 24530-1,2,3 and 4 specifications, issued in 2006, has been granted by UNI 'Ente Nazionale Italiano di Unificazione' – Via Battistotti Sassi 11/B Milan (Italy) tel +3902700241 fax +390270105992 email diffusione@uni.com on behalf of ISO – International Organization for Standardization.

ISO TS 24530-2, 3 [TTI LOC] and [TTI RTM] provide TPEG XML data structures in DTD format, referenced in NavSe XML schema [REST_SUP_NavSe].

2. References

2.1 Normative References

	[BASELINE_REF]
	Baseline specification, if applicable, otherwise delete this reference. If the baseline is Parlay X part nn, the reference text is as follows: 3GPP Technical Specification, “Open Service Access (OSA); Parlay X Web Services; Part [nn]: [Functional Area] (Release 8)”, URL:http://www.3gpp.org/

	[Autho4API_10]
	“Authorization Framework for Network APIs”, Open Mobile Alliance™, OMA-ER-Autho4API-V1_0, URL: http://www.openmobilealliance.org/

	[REST_NetAPI_ACR]
	“RESTful Network API for Anonymous Customer Reference Management ”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_ACR-V1_0, URL: http://www.openmobilealliance.org/

	[REST_NetAPI_Common]
	“Common definitions for RESTful Network APIs”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_Common-V1_0, URL: http://www.openmobilealliance.org/

	[REST_NetAPI_NotificationChannel]
	Include if the use of Notification Channel is supported, otherwise delete this reference. “RESTful Network API for Notification Channel”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_NotificationChannel-V1_0, URL: http://www.openmobilealliance.org/

	[REST_SUP_FUNCAREA]
	“XML schema for the RESTful Network API for [Functional Area]”, Open Mobile Alliance™, OMA-SUP-XSD_rest_netapi_funcarea-V1_0, URL: http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL: http://tools.ietf.org/html/rfc2119.txt

	[RFC7231]
	“Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content, R. Fielding, Ed., J.Raschke, Ed., June 2014, URL: http://tools.ietf.org/html/rfc7231.txt

	[RFC3966]
	“The tel URI for Telephone Numbers”, H.Schulzrinne, December 2004, URL: http://tools.ietf.org/html/rfc3966.txt

	[RFC3986]
	“Uniform Resource Identifier (URI): Generic Syntax”, R. Fielding et. al, January 2005, URL: http://tools.ietf.org/html/rfc3986.txt

	[RFC7159]
	“The JavaScript Object Notation (JSON) Data Interchange Format”, T. Bray, Ed., March 2014, URL: http://tools.ietf.org/html/rfc7159.txt

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL: http://www.openmobilealliance.org/

	[XMLSchema1]
	W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures, W3C Recommendation 5 April 2012, URL: http://www.w3.org/TR/xmlschema11-1/

	[XMLSchema2]
	W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes, W3C Recommendation 5 April 2012, URL: http://www.w3.org/TR/xmlschema11-2/

	<< Add/Remove reference rows to this table as needed - DELETE This Row >>

2.2 Informative References
	[OMADICT]
	“Dictionary for OMA Specifications”, Version 2.9, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2_9, URL:http://www.openmobilealliance.org/

	[REST_WP]
	“Guidelines for RESTful Network APIs”, Open Mobile Alliance™, OMA-WP-Guidelines_for_RESTful_Network_APIs, URL:http://www.openmobilealliance.org/

	<< Add/Remove reference rows to this table as needed - DELETE This Row >>

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

For the purpose of this TS, all definitions from the OMA Dictionary apply [OMADICT].

	Lightweight ND
	A navigation device that accesses a server for route estimation functionalities and for retrieving roads shape representation, if not available in a local maps database.

	Location URI
	A URI that enables the current location of a device to be obtained from a particular location server using a particular dereferencing protocol.

	Navigation Device (ND)
	An entity that, using GNSS service, assists the driver showing correct route to reach the final destination. This entity may process real-time and predicted traffic information and dynamically estimates the optimal route, according to user preferences.

	NavSe Application/ Client
	An entity that is in charge of interacting with a NavSe Server to get route information and/or real-time and forecast traffic information. Throughout this document NavSe client and NavSe application can be used interchangeably.

	NavSe Server
	An entity that is in charge of providing the NavSe Application with route information or real-time and forecast traffic information.

	Navigation Device (ND)
	An entity that, using GNSS service, assists the driver showing correct route to reach the final destination. This entity may process real-time and predicted traffic information and dynamically estimates the optimal route, according to user preferences.

	Network Performance Parameter/Performance parameters
	Information regarding the performances (i.e. speed, delay and travel time) of road segments related to an area or a route. Throughout this document, network performance parameters and performance parameters can be used interchangeably.

	Polyline
	A continuous line used in graphic computing composed of one or more line segments, defined by specifying the endpoints of each segment

	Route Information
	Information which coordinates of segment end points and complimentary data from the defined origin and the destination

	Smart ND
	A navigation device that is able to calculate the route(s), using a roads network database available on the device itself.

	Traffic Event
	Information regarding events related to an area or a route that are either imposed or planned by the road network operator (i.e. road works leading to lane closures) or events that occur outside the control of the network operator (i.e. accidents)

	Traffic Information
	Information which consists of traffic events and network performance parameters related to an area or a route.

3.3
Abbreviations
	ACR
	Anonymous Customer Reference

	API
	Application Programming Interface

	HTTP
	HyperText Transfer Protocol

	IMSI
	International Mobile Subscriber Identity

	IPv4
	Internet Protocol version 4

	IPv6
	Internet Protocol version 6

	JSON
	JavaScript Object Notation

	MDN
	Mobile Directory Number

	MIN
	Mobile Identification Number

	MSISDN
	Mobile Subscriber Integrated Services Digital Network Number

	NAI
	Network Access Identifier

	NavSe
	Navigation Service framework

	OMA
	Open Mobile Alliance

	REST
	REpresentational State Transfer

	RTM
	Road Traffic Message

	SCR
	Static Conformance Requirements

	TPEG
	Transport Protocol Expert Group

	TS
	Technical Specification

	URI
	Uniform Resource Identifier

	URL
	Uniform Resource Locator

	XML
	eXtensible Markup Language

	XSD
	XML Schema Definition

4. Introduction

<< Alternative 1: This is a suggestion for the introduction if there is a baseline specification. Use either alternative 1 or alternative 2. >>

The Technical Specification of the RESTful Network API for [Functional Area] contains HTTP protocol bindings for the [Baseline specification] [BASELINE_REF] specification, using the REST architectural style. The specification provides resource definitions, the HTTP verbs applicable for each of these resources, and the element data structures, as well as support material including flow diagrams and examples using the various supported message body formats (i.e. XML, JSON).
<< Alternative 2: This is a suggestion for the introduction if there is no baseline specification. Use either alternative 1 or alternative 2. >>

The Technical Specification of the RESTful Network API for [Functional Area] contains HTTP protocol bindings for [Functionality], using the REST architectural style. The specification provides resource definitions, the HTTP verbs applicable for each of these resources, and the element data structures, as well as support material including flow diagrams and examples using the various supported message body formats (i.e. XML, JSON)..
4.1 Version 1.0

Version 1.0 of this specification supports the following operations:
· One

· Two

<< Include a list of supported operations >>

In addition this specification provides::

· Support for scope values used with authorization framework defined in [Autho4API_10]
· Support for Anonymous Customer Reference (ACR) as an end user identifier
· Support for “acr:auth” as a reserved keyword in an ACR
5. Navigation Service Framework API definition
This section is organized to support a comprehensive understanding of the Navigation Service Framework API design. It specifies the definition of all resources, definition of all data structures, and definitions of all operations permitted on the specified resources.
The NavSe API allows the user to access route information for navigation services and optionally traffic information for dynamic routing of vehicles.
Common data types, naming conventions, fault definitions and namespaces are defined in [REST_NetAPI_Common].

The remainder of this document is structured as follows:

Section 5 starts with a diagram representing the resources hierarchy followed by a table listing all the resources (and their URL) used by this API, along with the data structure and the supported HTTP verbs (section 5.1). What follows are the data structures (section 5.2). A sample of typical use cases is included in section 5.3, described as high level flow diagrams.

Section 6 contains detailed specification for each of the resources. Each such subsection defines the resource, the request URL variables that are common for all HTTP methods, and the supported HTTP verbs. For each supported HTTP verb, a description of the functionality is provided, along with an example of a request and an example of a response. For each unsupported HTTP verb, the returned HTTP error status is specified, as well as what should be returned in the Allow header.
All examples in section 6 use XML as the format for the message body. JSON examples are provided in Appendix C.
Section 7 contains fault definition details such as Service Exceptions and Policy Exceptions.
Appendix B provides the Static Conformance Requirements (SCR).
Note: Throughout this document client and application can be used interchangeably.
5.1 Resources Summary

This section summarizes all the resources used by the RESTful Network API for NavSe.

The "apiVersion" URL variable SHALL have the value “v1” to indicate that the API corresponds to this version of the specification. See [REST_NetAPI_Common] which specifies the semantics of this variable.

[image: image3]
Figure 1 Resource structure defined by this specification

The following tables give a detailed overview of the resources defined in this specification, the data type of their representation and the allowed HTTP methods.
Purpose: Trip management
	Resource
	URL
Base URL: http://{serverRoot}/navse/{apiVersion}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Trips created by the application
	/trips
	TripList (used for GET)

Trip (used for POST)

common:ResourceReference (optional alternative for POST response)
	Read list of all trips created by the application.
	No
	Create new trip
	No

	Individual trip description
	/trips/{tripId}
	Trip
	Read trip settings, preferences and link to the related routes
	Modify parameters that describe the trip
	No
	Delete trip

Purpose: Management of routes defined for a trip
	Resource
	URL
Base URL: http://{serverRoot}/navse/{apiVersion}/{appId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Routes related to a trip
	/trips/{tripId}/routes
	Route

common:ResourceReference (optional alternative for POST response)
	No

Note: Routes Ids are available in Trip resource
	No
	Add a new route to the trip
	No

	Individual route description in full format
	/trips/{tripId}/routes/{routeId}
	Route
	Read data about specified route
	Modify a route previously uploaded
	No
	Delete route

	Individual route description in summarized format
	/trips/{tripId}/ routes/{routeId}/sumRoutes
	Route
	Read data about specified route
	No
	No
	No

Purpose: Area management
	Resource
	URL
Base URL: http://{serverRoot}/navse/{apiVersion}/{appId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Areas created by the application for traffic information
	/areas
	AreaList (used for GET)

Area (used for POST)

common:ResourceReference (optional alternative for POST response)
	Read all areas created by the application
	No
	Create a new area
	No

	Individual area for traffic information
	/areas/{areaId}
	Area
	Read area information
	No
	No
	Delete an area

Purpose: Subscriptions management for Trip, Route, Event and Area updates
	Resource
	URL
Base URL: http://{serverRoot}/navse/{apiVersion}/{appId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Subscriptions created by the application
	/subscriptions
	SubscriptionList (used for GET)

Subscription (used for POST)

common:ResourceReference (optional alternative for POST response)
	Read list of all subscriptions created by the application
	No
	Create new subscription
	No

	Individual subscription settings
	/subscriptions/{subscriptionId}
	Subscription
	Read subscribed resources
	Update subscription settings
	No
	Delete subscription

Purpose: Subscriptions management for Trip, Route, Event and Area updates
	Resource
	URL
Base URL: http://{serverRoot}/navse/{apiVersion}/{appId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Subscriptions created by the application
	/subscriptions
	SubscriptionList (used for GET)

Subscription (used for POST)

common:ResourceReference (optional alternative for POST response)
	Read list of all subscriptions created by the application
	No
	Create new subscription
	No

	Individual subscription settings
	/subscriptions/{subscriptionId}
	Subscription
	Read subscribed resources
	Update subscription settings
	No
	Delete subscription

Purpose: Callback notifications for Trip, Route, Event and Area updates

	Resource
	URL
<specified by the client>
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Client notification about areas and trips updates
	<specified by the client when a subscription is created>
	Notification
	No
	No
	Notifies client about updates in subscribed resources (areas and trips with related routes and events).
	No

Purpose: Events management
	Resource
	URL
Base URL: http://{serverRoot}/navse/{apiVersion}/{appId}
	Data Structures
	HTTP methods

	
	
	
	GET
	PUT
	POST
	DELETE

	Events related to the application
	/events
	EventList
	Read all available events
	No
	No
	No

	Individual event information
	/events/{eventId}
	Event
	Read a single event
	No
	No
	No

Purpose: Emergency trip management
	Resource
	URL
Base URL: http://{serverRoot}/navse/{apiVersion}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Emergency Trip created by the application
	/emergency/(emergencyid)/trips
	TripList (used for GET)

Trip (used for POST)

common:ResourceReference (optional alternative for POST response)
	Read list of all trips created by the application.
	No
	Create new trip
	No

	Individual trip description
	/emergency/(emergencyid)/trips/{tripId}
	Trip
	Read trip settings, preferences and link to the related routes
	Modify parameters that describe the trip
	No
	Delete trip

Purpose: Management of routes defined for an emergency trip
	Resource
	URL
Base URL: http://{serverRoot}/navse/{apiVersion}/{appId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Routes related to a trip
	/emergency/(emergencyid)/trips/{tripId}/routes
	Route

common:ResourceReference (optional alternative for POST response)
	Read data about specified route
	No
	No
	No

5.2 Data Types
5.2.1 XML Namespaces

The XML namespace for the NavSe data types is:

urn:oma:xml:rest:navse:1
The 'xsd' namespace prefix is used in the present document to refer to the XML Schema data types defined in XML Schema [XMLSchema1, XMLSchema2]. The 'common' namespace prefix is used in the present document to refer to the data types defined in [REST_NetAPI_Common]. The use of namespace prefixes such as 'xsd' is not semantically significant.
The XML schema for the data structures defined in the section below is given in [REST_SUP_NAVSE].
5.2.2 Structures

The subsections of this section define the data structures used in the NavSe API.
Some of the structures can be instantiated as so-called root elements.

5.2.2.1 Type: TripList

List of trips created by the application
	Element
	Type
	Optional
	Description

	link
	common:Link [0..unbounded]
	Yes
	It includes one or more link to a Trip.

Attribute “rel” must be set to “Trip”.

	resourceURL
	xsd:anyURI
	Yes
	Self-referring URL. The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST be also included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named tripList of type TripList is allowed in request and/or response bodies.

5.2.2.2 Type: Trip

Description of single trip defined by the application for which route information and/or traffic information is provided.
	Element
	Type
	Optional
	Description

	originWGS84
	Location_Point
	Choice
	This field represents the origin of the trip for which route information and related traffic information are requested from the server.

Location_Point structure is defined in tpeg-locML [TTI LOC]. One element among originWGS84 or originAddress MUST be specified when Trip resource is created. This element is mandatory when the Trip resource is read by the client.

This field can be used to indicate the assumed current position of the client, enabling route information updating procedure on the server.

	originAddress
	Civic_Address
	Choice
	This field represents the origin of the Trip and it is present when the origin is expressed according to IETF Civic Address [RFC5139].

One element among originWGS84 or originAddress MUST be specified when Trip resource is created.

	destinationWGS84
	Location_Point
	Choice
	This field represents the destination of the trip for which route information and related traffic information are requested from the server.

Location Point structure is defined in tpeg-locML [TTI LOC]. In case that Trip resource is created for an emergency, this field may not be specified, otherwise one element among destinationWGS84 or destinationAddress MUST be specified when Trip resource is created. This structure is mandatory when the Trip resource is read by the client.

	destinationAddress
	Civic_Address
	Choice
	This field represents the destination of the trip and it is present when the destination is expressed according to IETF Civic Address [RFC5139].

In case that Trip resource is created for an emergency, this field may not be specified, otherwise one element among destinationWGS84 or destinationAddress MUST be specified when Trip resource is created.

This structure may be provided by the server in case the user define a destination using destinationWGS84 structures.

	waypoints
	Location_Point [0…unbounded]
	Yes
	The waypoints may be used to provide additional information about the trip.

Location_Point structure is defined in tpeg-locML [TTI LOC].

	startingTime
	xsd:dateTime
	Yes
	Starting time of the planned trip. If not present, current time is used.

	endingTime
	xsd:dateTime
	Yes
	Ending time of the planned trip, provided by the Server based on the route estimation

	tollRoad
	xsd:boolean
	Yes
	This field carries the information whether toll roads MAY be included in route estimation

If true or not present, toll road are allowed.

	vehicleType
	xsd:string
	Yes
	This field describes the type of vehicle for which route information is requested. This field SHALL be encoded according to the list of values defined in table RTM01 provided in [TTI RTM]

	calculateRoute
	TripQueryType

[1..2]
	Yes
	If this parameter is present and set to Route, the server MUST propose, for the defined Trip, a set of routes with related traffic events and performance parameters, and/or alternative routes in case of congestion.
If this parameter is set to NoAction or absent, the route will be estimated by the ND.

	requestedEventsCategories
	xsd:string [0..unbounded]
	Yes
	Categories of traffic information, related to the defined Trip, requested by the application. This field shall be encoded according to the list of values defined in the rtm00 table available in [TTI RTM].

If this field is not present, the server MUST provide traffic information for all defined categories (including network performance parameters).

	link
	common:Link [0..unbounded]
	Yes
	Link to reference route resource. Attribute “rel” must be set to “Route”.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST be also included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named trip of type Trip is allowed in request and/or response bodies.
5.2.2.3 Type: Route

The route information structure describes a path that matches with trip parameters.

	Element
	Type
	Optional
	Description

	travellingTime
	xsd:float
	Yes
	Total travelling time (in minutes) for the route.

	distance
	xsd:float
	Yes
	Total distance (in Km) of the route.

	origin
	Location_Point
	No
	This field represent the origin of the route expressed in WGS84 coordinates. Location_Point structure is defined in tpeg-locML [TTI LOC].

	partialRouteInformation
	xsd:boolean
	Yes
	If set to true, the Route is described with partial information: only changed segments sequence is provided with respect to a reference route. The reference route is defined in link field of this structure.

The partial route encoding schema is described in Appendix D. The partial encoding schema MAY be used for full routes resources.

If this field is absent or set to false, the route information is complete.

	firstSegment
	xsd:integer
[0…unbounded]
	Yes
	This field represents one or more index of the first segment in the reference route segments sequence to be replaced by partial route segments sequence. In a partial route, a sequence of deviations MAY be provided with respect to the reference route: for each deviation it is provided the index of the first segment in the reference route that has to be replaced by partial route segments sequence.
This field is present only in case of partial route encoding schema (partialRouteInformation set to True) (see Appendix D).

	lastSegment
	xsd:integer
[0…unbounded]
	Yes
	This field represents one or more index of the last segment in the reference route segments sequence to be replaced by the segments sequence of partial route. Only used for the partial route case (see Appendix D).
In a partial route, a sequence of deviations MAY be provided with respect to the reference route: for each deviation it is provided the index of the last segment in the reference route that has to be replaced by partial route segments sequence.

This field is present only in case of partial route encoding schema (partialRouteInformation set to True and for more detail see Appendix D).

	numSegments
	xsd:integer
[0…unbounded]
	Yes
	This field represents the number of segments that constitutes each single deviation of the partial route. Only used for the partial route information case (see Appendix D).

In a partial route, a sequence of deviations MAY be provided with respect to the reference route: for each single deviation the number of describing segments is provided. The sum of the number of segment of each deviation should be equal to the number of segments provided in the partial route.

This field is present only in case of partial route encoding schema (partialRouteInformation set to True and for more detail see Appendix D).

	segment
	Segment [1…unbounded]
	No
	Sequence of road segments that forms the route.

In case of in partial route description, only the segment sequences describing the deviations are provided (see Appendix D).

In case of partial route with multiple deviations, each single deviation is identified by the length of each sequence reported in numSegment fields of this structure.

	trafficEvents
	CategorizedEventListReference [0..unbounded]
	Yes
	List of traffic events related to the route, as defined in tpeg-rtmML [TTI RTM]. The events are grouped by the categories, defined in RTM00 table provided in [TTI RTM].

	link
	common:Link
[0…unbounded]
	Yes
	Link to reference route resource. There are two different kinds of reference route resources.

1) Reference to the route for which it is proposed as alternative. Attribute “rel” must be set to “Route”.

2) Reference to the route for which the partial route information is referred. Attribute “rel” must be set to “ReferenceRoute”.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST be also included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named route of type Route is allowed in request and/or response bodies.
5.2.2.4 Type: AreaList

Contains an array of links to all areas defined by the application.

	Element
	Type
	Optional
	Description

	area
	Area [0…unbounded]
	Yes
	It may contain an array of Area structure used to access traffic events and network performance parameters.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST be also included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named areaList of type AreaList is allowed in request and/or response bodies.
5.2.2.5 Type: Area

Description of a single area.

	Element
	Type
	Optional
	Description

	areaDesc
	Location Container
[1… 2]
	No
	It describes the area for which traffic information, traffic events and network performance parameters, are requested.

It is encoded according to Location Container structure as defined in tpeg-locML [TTI LOC].

If the tripAreaDesc field is set to TRUE, this field MUST contain origin and destination points each of them encoded as Location Coordinates structures in two different Location Container structures [TTI LOC]

Note: the Area_tree_entity defined in the human readable area description of LocML [TTI LOC chap. 5.3.1.1] is not used in NavSe application and parameters of Area_tree_entity structure have no meaning.

	tripAreaDesc
	xsd:boolean
	Yes
	If present and set to true, the server should provide traffic information related to trip information (origin and destination) available in areaDesc field.

If set to true, areaDesc field should describe a Trip in terms of 2 points encoded as two Location Container structures each of them containing a Location Coordinates [TTI LOC], the first is the origin and the second is the destination.

This element is only used by the application of smart ND scenario, see paragraph 5.3.2.

	startingIntervalTime
	xsd:time
	Yes
	This field carries the information of starting time interval of the request for traffic information (network performance and events) in the specified area.

	endingIntervalTime
	xsd:time
	Yes
	This field carries the information of ending time interval of the request for traffic information (network performance and events) request in the specified area.

	requestedEventsCategories
	xsd:string [0..unbounded]
	Yes
	Categories of traffic information requested by the application in the defined Area. This field shall be encoded according to the list of values defined in the rtm00 table available in [TTI RTM].

If this field is not present, the server MUST provide traffic events of all categories (including network performance parameters)

	timeResolution
	xsd:float
	Yes
	The resolution in time domain of requested/provided network performance parameters in minutes.

This element is present only in case network performance parameters are requested and provided from/by the server.

	roadLinkType
	xsd:string

[0..unbounded]
	Yes
	List of types of road where traffic information is requested. The categories for roads are defined in table loc09 in tpeg-locML [TTI LOC].

	events
	CategorizedEventListReference [0..unbounded]
	Yes
	List of events related to the defined area. The information provided relates to the road network and associated infrastructure.

	segmentPerformance
	Segment
[0..unbounded]
	Yes
	This field provides real-time and forecast network performance parameters for the list of road segments pertaining to the selected area.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST be also included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named area of type Area is allowed in request and/or response bodies.
5.2.2.6 Type: Segment

Description of single segment that comprises the route.
	Element
	Type
	Optional
	Description

	originPoint
	Location_Point
	Yes
	This field represents the origin of the segment encoded according to Location_Point structure as defined in tpeg-locML [TTI LOC].

In case segment structure is used for describing a route and this field is not present, the starting point of the segment should be assumed equal to the ending point of the previous segment, or the trip origin in case of the first segment of the route. In case of partial route, the origin of the first segment of each deviation is the ending point of the last valid segment in reference route.

	endpoint
	Location_Point
	No
	This field represents the end of the segment encoded according to Location_Point structure as defined in tpeg-locML [TTI LOC].

	midwayPoint
	Location_Point [0…unbounded]
	Yes
	This field is used to identify unambiguously the target road segment.

It is encoded according Location_Point structure as defined in tpeg-locML [TTI LOC].

	polyLine
	xsd:string
	Yes
	Polyline is used to describe the shape of a segment. This field is a string that contains a sequence of geographic points expressed in WGS84 coordinates. Each single point is encoded as a sequence of

· WGS84 Latitude,

· Blank (character),
· WGS84 Longitude,

· Colon (character),

· Blank (character).

The shape of segments is provided by the server if explicitly requested by the application.

The level of polyline resolution is defined by the NavSe Server. When used in full route resource, the polyline resolution has to target a correct representation of segments on turn-by-turn navigation maps. In summarized route resource the resolution has to target the high level representation of the route on top of roads maps.
Polyline example:

45.12345 7.009876, 45.12355 7.09866, …

	linkName
	xsd:string
	Yes
	Name of the road or street, which the segment belongs to.

	distance
	xsd:float
	Yes
	Length of the segment in km.

	regularTravellingTime
	xsd:float
	Yes
	Estimated regular time to drive through the segment in low traffic conditions, expressed in minutes.

	performanceParameters
	PerformanceParameters
[0..unbounded]
	Yes
	This field contains performance parameters related to each segment.

When segment structure is used to report network performance parameters for an area, a sequence of performanceParameters structure is included in the segment structure, providing information for the requested time interval and time resolution.

	positionUpdate
	xsd:boolean
	Yes
	If present and set to True, the application is requested to upload its current position when the Navigation Device enters this segment.

5.2.2.7 Type: PerformanceParameter

This structure contains information about network performance parameter for a single road segment.
	Element
	Type
	Optional
	Description

	trafficInfoType
	TrafficInfoType
	Yes
	This element is used to define whether the data is estimated in real-time or it is forecast.

Possible values are: (see 5.2.2.2)
· real-time

· forecast

	time
	xsd:dateTime
	Yes
	This field indicates the starting time of validity interval for reported performance parameters.

	delay
	xsd:float
	Yes
	Estimated delay (real-time or forecast) along the segment expressed in minutes with respect to regular travelling time.
Note: regular travelling time for the segment is available in regularTravellingTime parameter of segment structure.

	speed
	xsd:float
	Yes
	Estimated speed (real-time measurements or forecast) along the segment expressed in m/s.

	performance
	xsd:string
	Yes
	Description of traffic conditions (real-time or forecasted) along the segment. This field should be encoded according to RTM34 table definition [TTI RTM].

	congestionType
	xsd:integer
	Yes
	Description of the type of the congestion according to values defined in Table 11.1 [ISO BIN] (part 8)

	congestionTendency
	xsd:integer
	Yes
	Description of the congestion tendency according to values defined in Table 11.1 [ISO BIN] (part 8)

5.2.2.8 Type: SubscriptionList

List of subscriptions.

	Element
	Type
	Optional
	Description

	subscription
	Subscription [0…unbounded]
	Yes
	It may contain an array of Subscription.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST be also included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named subscriptionList of type SubscriptionList is allowed in request and/or response bodies.
5.2.2.9 Type: Subscription

Individual subscription to notifications.

	Element
	Type
	Optional
	Description

	callbackReference
	common:CallbackReference
	No
	Client's Notification endpoint and parameters.

	link
	common:Link [1…unbounded]
	No
	References to resources subscribed by the application. Attribute “rel” indicates the type of resource subscribed. It may assume the following values:

· “Trip”: in order to get notified about:

· new traffic events and performance parameter related to the set of routes defined for the trip

· new alternative route proposals

· “Area”: in order to be notified of new traffic events and performance parameters updates

Attribute “href” specifies the URL of subscribed resource. Subscribed resource’s type must be the same of that specified in “rel” attribute.

Note: notified information for an existing route are:
a) new traffic events provided with links included in the route resource itself;
b) performance parameters available in updated performanceParameter filed of segment structures.

	trackingProc
	xsd:boolean
	Yes
	If present and set to True, the application communicate to the server user’s availability to provide position information through an external location application.

	deviceLocationURI
	xsd:anyURI
	Yes
	This parameter is used by the server for accessing Navigation Device position information.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST be also included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named subscription of type Subscription is allowed in request and/or response bodies.
5.2.2.10 Type: Notification

Notification about updates in subscribed routes, areas and trips.
	Element
	Type
	Optional
	Description

	link
	common:Link [1…unbounded]
	No
	Link to updated resources. Attribute “rel” attribute indicates type of resource updated and may assume “Trip”, “Route”, “Event” and “Area” values.

A root element named notification of type Notification is allowed in request and/or response bodies.
5.2.2.11 Type: EventList

Contains a list of all events available.

	Element
	Type
	Optional
	Description

	event
	Event [0…unbounded]
	Yes
	Contains a list of events. Event information is defined in tpeg-rtmML [TTI RTM].

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST be also included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named eventList of type EventList is allowed in request and/or response bodies.
5.2.2.12 Type: CategorizedEventList

Contains an array of links for a specific category.
	Element
	Type
	Optional
	Description

	category
	xsd:string
	No
	This field shall be encoded according to the list of values defined in the rtm00 table available in tpeg-rtmML definition [TTI RTM].

	link
	common:Link [1..unbounded]
	No
	Contains a list of references to events belonging to the defined category. Attribute “rel” must be set to “Event”.

5.2.2.13 Type: Event

Description of single traffic event and all the possible traffic events are described in tpeg-rtmML [TTI RTM].
	Element
	Type
	Optional
	Description

	rtMessage
	Road_Traffic_Message
	No
	This field includes one or more traffic events. Event information is defined in tpeg-rtmML [TTI RTM].

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST be also included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named event of type Event is allowed in request and/or response bodies.
5.2.3 Enumerations

The subsections of this section define the enumerations used in the NavSe API.
5.2.3.1 Enumeration: TrafficInfoType

Traffic Information Type enumeration. It is use to describes how performance parameters are estimated.

	Enumeration
	Description

	Real-time
	Network performance parameters are estimated by real time traffic monitoring.

	Forecast
	Network performance parameters are estimated based on historical traffic data and/or planned actions on road infrastructure.

5.2.4 Values of the Link “rel” attribute
The “rel” attribute of the Link element is a free string set by the server implementation, to indicate a relationship between the current resource and an external resource. The following are possible strings (list is non-exhaustive, and can be extended):
· Trip
· Route
· ReferenceRoute
· Event

· Area

These values indicate the kind of resource that the link points to.
5.3 Sequence Diagrams
The following subsections describe the resources, methods and steps involved in typical scenarios.
5.3.1 Request of Route Information and Related Traffic Information by the Application in a Lightweight ND
 This section describes a typical scenario of NavSe application where lightweight ND requests route and traffic information from the NavSe server. The main functionalities defined for this scenario are: (1) the delivery of route information in summarized format and/or full format, (2) the subscription to notification services, (3) current position reporting by the application, and (4) the re-routing in case of: (a) congestion along the proposed route, and (b) deviation and diversion from the route in use.

In this scenario the user of NavSe application defines the journey in terms of origin, destination and other preferences; these parameters are immediately sent by the ND to the NavSe server. The NavSe server will reply with a set of routes matching with journey parameters taking into account real-time and forecast traffic information. For bandwidth optimization, the routes are available in the NavSe server in two different formats, summarized and full. The application accesses the proposed routes in summarized format: with this information the user can select a route out of the proposed set to be used for navigation. The application requests the full format for the selected route and it may delete the routes not used. Due to limited length, complexity of the journey and network capabilities, the proposed routes may be encoded right from the beginning in full format; in this case the NavSe server does not need to encode the routes in summarized format. The application may request from the server the information about the segments shape of routes (WGS84 coordinates polyline), if this data is not available on the ND in a roads database.
The NavSe application subscribes to notification services for receiving traffic information updates (performance parameters and traffic events for selected categories) for the route in use, alternative route proposals in case of congestion along that route. The application will update its current position on the NavSe server after the vehicle drives a certain distance. With this information, the server will delete segments already travelled from the route in use and remove the routes not compatible anymore with current position (if not previously deleted by the application).

Afterwards, the user deviates and diverts from the route in use. Under these conditions, the application uploads its updated current position, and the NavSe server recognizes that the current position is not compatible with the route in use and proceeds to new route estimation, based on updated position information; the new route identifier is sent to the application in the current position update procedure (the notification procedure for the new route is therefore not needed). To minimize the interaction with the user for safety reason, the notification service will be automatically extended to the new proposed route(s).

Later, due to a traffic jam on the selected route, the NavSe server notifies the application of updated traffic information for the route in use and a proposal of an alternative route and the application accesses the notified resources. The NavSe server will automatically provide notification service for the new proposed route if not deleted.
The sequence describes the following operation on the resources:

· To define and modify the parameters of a trip, create and modify resource under
http://{serverRoot}/navse/1/{appId}/trips
· To access the identifiers of the proposed routes related to the defined trip, read resource under
http://{serverRoot}/navse/1/{appId}/trips/{tripId}

· To access information related to summarized route, read resource under
http://{serverRoot}/navse/1/{appId}/trips/{tripId}/routes/{routeId}/sumRoute

· To access information related to one or more full routes, read resource under
http://{serverRoot}/navse/1/{appId}/trips/{tripId}/routes/{routeId}

· To access traffic events related to the route, read resource under
http://{serverRoot}/navse/1/{appId}/events/{eventId}

· To remove unnecessary routes, delete resource under
http://{serverRoot}/navse/1/{appId}/trips/{tripId}/routes/{routeId}

· To subscribe to notification service for a trip and related routes, create resource under
http://{serverRoot}/navse/1/{appId}/subscriptions
(The server will send notifications to the URL specified in the subscription resource; the notification will contain the URLs of the updated resources)

· To send notification to the application with the identifiers for the updated resources, create resource under the resource defined by the application
(This resource is provided by the client)

[image: image4]
Figure 2: Sequence for Lightweight ND
Outline of the flows:

1. The application creates a trip using the journey parameters defined by the user using POST: the server proposes a set of routes for the journey with related traffic information and replies with a representation of created “trip” resource, which contains route identifiers of the proposed routes.

2. The application accesses the set of routes in summarized format using GET. This step is repeated for all the routes proposed by the server. If, however, the length and complexity of the trip is limited and the network quality is adequate, full format route information can be used at this stage. The application may request shape information (WGS84 coordinates polyline) for the proposed routes, if this information is not available in the ND.

3. The user of the application selects one route among the proposed set, the application accesses full format information for the route the user has selected, using GET. The application may request shape information (WGS84 coordinates polyline) for the proposed route, if this information is not available in the ND. If, in the step 2, the full format route has been retrieved, this step is not required. The server replies with the selected route information with related traffic information.
4. The application accesses traffic events related to the route in use, using links to traffic events resources provided in route representation, using GET. The access to the traffic events may be limited to the categories selected by the user.
5. The application removes unnecessary routes previously proposed by the server and not selected by the user, using DELETE.

6. The application creates a subscription to notification services for the trip using POST. The client is notified by the server of the following events:

a. Performance parameters update and new traffic events (for selected categories) for all the routes related to the trip.
b. Alternative proposed routes in case of congestion on the route in use.

7. The vehicle deviates and diverts from the route in use; the application modifies origin parameter in Trip resource with PUT operation. The server recognizes that the current position does not belong to the route in use and it calculates a new route with the new origin. The server replies to the PUT operation with the identifier of the new route included in the Trip representation, and it removes the old one. In case the modified origin parameter used in the PUT operation belongs to the route, the NavSe server uses this information to delete segments already travelled from the route representation.

Note: This step (PUT operation on Trip resource) occurs when the vehicle deviates and diverts and when the vehicle drives a certain distance from the previous reporting position, and/or when the vehicle enters a segment where the NavSe server has requested to upload the current position.
8. The application accesses the new proposed route with performance parameters and traffic events using GET operation. Since the application has subscribed to notification service for the Trip resource, the subscription will cover the new proposed route.
9. Traffic events and/or severe congestion along the proposed routes are detected by the server, the server notifies using POST the URL of updated information.
10. The application accesses the updated information for the route in use, new related traffic events and/or the proposed alternative route using GET, as the subscription to notification service include all the routes related to the trip, notification will be extended to the proposed alternative route.
5.3.2
Request of Traffic Information Related to Routes Estimated by the Application and re-routing conditions in Smart ND

This section describes a typical scenario of NavSe application where a smart ND, with route estimation functionalities, requests traffic information related to one or more estimated routes from the NavSe server. The main functionalities defined for this scenario are: (1) preliminary access to traffic information related to selected areas, (2) access to performance parameters for a set of routes estimated by smart ND for the defined trip and (3) the subscription to notification services for real time traffic information updates, (4) current position reporting by the application, and (5) access traffic information for routes described with partial information, in case of re-routing by the smart ND.
In this scenario, the user of the NavSe application defines the journey parameters (e.g. origin, destination, and road preferences), these parameters are uploaded on the NavSe server by the application; the smart ND estimates one or more geographical areas related to the defined journey and it accesses traffic information (events and performances parameters) reported by the NavSe server for the selected areas; Using this traffic information, the ND can propose to the user a set of routes for the defined journey, trying to avoid congested road segments; the user selects a reference route. The application uploads the selected route on the NavSe server accessing related traffic information (real-time and forecast performance parameters). Furthermore, for real time optimal route estimation, the application subscribes to notification services for the trip, in order to receive updated traffic information related to the route in use (performance parameters and traffic events for selected categories).
At a given moment, an accident and/or severe congestion may occur along the current route: a notification message is triggered by the NavSe server toward the application. The application accesses updated traffic information available for the route: as a consequence of degraded performances, the ND estimates an alternative route and requests related traffic information from the NavSe server. If the new route is less congested than the previous one, the old one is then removed by the ND, since the ND is no longer interested in the notification service for this resource. In case the performances of the proposed alternative route are poor, before removing the previous one, the ND may look for a less congested one. The ND can repeatedly estimate a set of alternative routes uploading them on the server. The application may choose to upload partial route information for bandwidth optimization (see Appendix D).

The application periodically reports its current position to the NavSe server, based on travelled distance: with updated position information the server can remove the segments already travelled by the vehicle from the route representation.
In a later stage the vehicle diverts from the planned route, the ND estimates a new route that is uploaded on the server to access related traffic information: The new route replaces the previous one and the notification service will cover the new resource.

The sequence describes the following operation on the resources:

· To define and modify the parameters of a trip, create and modify resource under
http://{serverRoot}/navse/1/{appId}/trips
· To define areas related to the trip, create resource under
http://{serverRoot}/navse/1/{appId}/areas
· To access traffic events related to the area, read resource under
http://{serverRoot}/navse/1/{appId}/events/{eventId}

· To access traffic information related to a route, create or modify a full format route under
http://{serverRoot}/navse/1/{appId}/trips/{tripId}/routes
· To subscribe to notification service for an area and/or trip with the related route, create resource under
http://{serverRoot}/navse/1/{appId}/subscriptions
(the server will send notifications to the URL specified in the subscription resource; the notification will contain the URLs of the updated resources)
· To remove an old route, delete a route under
http://{serverRoot}/navse/1/{appId}/trips/{tripId}/routes
· To send notification to the application with the identifiers for the updated resources, create resource under the resource defined by the application
(This resource is provided by the client)

[image: image5]
Figure 3: Sequence for Smart ND
Outline of the flows:

1. The application creates a Trip with the journey parameters defined by the user using POST and it receives from the server a representation of created “trip” resource, with trip identifier and defined parameters. The application specifies that routes estimation functionalities are not requested.
2. The application creates an Area description using POST to request traffic information related to the trip (in this case the Area structure will be identified with origin and destination coordinates). The server may reply with traffic information including selected categories of traffic events for the area related to the described trip, and performance parameters for the area around the origin only in case there is severe congestion.

3. The application reads the reported link(s) to traffic information using GET. This information, together with performance parameters retrieved in step 2, is used by the ND to calculate a set of routes avoiding critical road segments (affected by accidents, construction, or congestions).
4. The application uploads an estimated route (selected by the user among a set proposed by ND) on the server using POST. The server replies with a representation of the ‘route’ resource, which contains performance parameters and link(s) to traffic events.

5. The application subscribes to the notification service for the selected area (step 2) and for the uploaded route (step 4). The application will be notified of performance parameters and/or traffic events related to selected area and to the routes uploaded for the trip.
6. The application periodically updates its current position using PUT to modify the origin parameter of Trip resource. This operation is triggered when the vehicle drives a certain distance from the previous reporting position; the NavSe server utilizes this information to delete the segments already travelled from the route information.
7. When traffic events and/or severe congestion along the proposed routes are detected by the server, the server notifies the application. The server provides updated traffic information on the current route using POST on the link specified by the application.
8. The application accesses the updated traffic information (selected traffic events and performance parameters) related to the route using GET.
9. The ND decides to re-calculate a new route under the conditions:

a) The application receives the updated traffic information in the step 8.

b) The ND detects that the vehicle is deviating and diverting from the defined route.
The application uploads the new calculated route to the server with modify or create operation using PUT on a an existing route or POST on route factory resource, depending on whether or not the application wishes to keep valid the previous route. The server replies with a representation of the “route” resource which contains performance parameters.
This step may be repeated several times until the performance of the re-calculated route is better than the previous routes. However, in order to avoid going into a loop, the application can define a new area description to acquire traffic information in the area where the repeated query occurs with operations similar to those described in the step 2 and 3.
Note: for bandwidth optimization, the application can choose to use partial route schema (see Appendix D), uploading only the changed segments with respect to already defined reference route.

10. The application deletes the previous routes from the set of proposed routes when the previous routes are no longer in use. The application deletes the new calculated route from the set of proposed routes when the performance of the new route is worse than the route in use. The application unsubscribes the previous routes from notification service using DELETE. (If the new route has replaced the old one, with a modify operation, at the step 9, the DELETE operation is not needed).
Note: If the delete operation is executed on a route that is referenced in resources described with partial route information, the server has to keep the resources description consistent (i.e. complete route description should be provided for route previously encoded as partial).
5.3.3
Request of Traffic Information for a Defined Area by Application in Smart ND

The figure below shows a scenario for the application in smart ND that calculates the routes and interacts with the NavSe server to retrieve traffic information. In this scenario the application requests traffic information (performance parameters and events for selected categories) related to an area from the NavSe server in order to estimate a route for given origin and destination. No further interactions with the NavSe server will be required, as the user does not want to subscribe to real time traffic updates.

The resources:

· To define a new area for which traffic events are requested, create resource under
http://{serverRoot}/navse/1/{appId}/areas
· To read parameters and events related to a previously defined area, read resource under
http://{serverRoot}/navse/1/{appId}/areas/{areaId}

· To access a specific traffic event related to the area, read resource under
http://{serverRoot}/navse/1/{appId}/events/{eventId}

[image: image6]
Figure 4: Smart ND requesting traffic and Point Of Interest information
Outline of the flows:
1. The user of NavSe application selects an area where performance parameters and selected categories of traffic events are requested from the server. The application sends the d escription of the area to the server using POST, the server replies with a resource containing performance parameters and links to events (parted in categories) available for the selected area.

a) Server may reply with the location of the created resource. In this case an additional get operation on the location is needed to retrieve content of resource.
2. The application reads all events of categories that it considers interesting using GET. The access to traffic events may be limited to categories selected by the user. Considering all information available at this point, application (or user) may decide to request traffic information for other areas repeating steps 1 and 2.
6. Detailed specification of the resources
The following applies to all resources defined in this specification regardless of the representation format (i.e. XML, JSON):
· Reserved characters in URL variables (parts of a URL denoted below by a name in curly brackets) MUST be percent-encoded according to [RFC3986]. Note that this always applies, no matter whether the URL is used as a Request URL or inside the representation of a resource (such as in “resourceURL” and “link” elements).
· If a user identifier (e.g. address, participantAddress, etc.) of type anyURI is in the form of an MSISDN, it MUST be defined as a global number according to [RFC3966] (e.g. tel:+19585550100). The use of characters other than digits and the leading “+” sign SHOULD be avoided in order to ensure uniqueness of the resource URL. This applies regardless of whether the user identifier appears in a URL variable or in a parameter in the body of an HTTP message.
· If an equipment identifier of type anyURI is in the form of a SIP URI, it MUST be defined according to [RFC3261].
· If a user identifier (e.g. address, userId, etc) of type anyURI is in the form of an Anonymous Customer Reference (ACR), it MUST be defined according to [REST_NetAPI_ACR], i.e. it MUST include the protocol prefix 'acr:' followed by the ACR.
· The ACR ‘auth’ is a supported reserved keyword, and MUST NOT be assigned as an ACR to any particular end user. See F.1.2 for details regarding the use of this reserved keyword.

· For requests and responses that have a body, the following applies: in the requests received, the server SHALL support JSON and XML encoding of the parameters in the body. The Server SHALL return either JSON or XML encoded parameters in the response body, according to the result of the content type negotiation as specified in [REST_NetAPI_Common]. In notifications to the Client, the server SHALL use either XML or JSON encoding, depending on which format the client has specified in the related subscription. The generation and handling of the JSON representations SHALL follow the rules for JSON encoding in HTTP Requests/Responses as specified in [REST_NetAPI_Common].
6.1 Resource: [Description of the resource]
<< Description of the resource in the title heading should match the description of the resource from the first column of the purpose table in section 5.1 >>

The resource used is:
[resource URL]

[without Light-weight Resources usually http://{serverRoot}/funcarea/{apiVersion}/...]
[with Light-weight Resources usually http://{serverRoot}/funcarea/{apiVersion}/.../[ResourceRelPath]]
This resource is used for [descriptive explanation of the resource].
If the resource is on the server side and supports creating a subscription for notifications, and if the use of Notification Channel is supported, include/adapt this paragraph, otherwise delete it. This resource can be used in conjunction with a Client-side Notification URL, or in conjunction with a Server-side Notification URL. In this latter case, the application MUST first create a Notification Channel (see [REST_NetAPI_NotificationChannel]) before creating a subscription.
Alternatively, if the resource is a notification resource to which the server provides notifications based on a previously created subscription, and if the use of Notification Channel is supported, include/adapt this paragraph and the following Note, otherwise delete them. This resource is a callback URL provided by the client for notification about FOO. The RESTful [Functional Area] API does not make any assumption about the structure of this URL. If this URL is a Client-side Notification URL, the server will POST notifications directly to it. If this URL is a Server-side Notification URL, the server uses it to determine the address of the Notification Server to which the notifications will subsequently be POSTed. The way the server determines the address of the Notification Server is out of scope of this specification.

Note: In the case when the client has set up a Notification Channel in order to use Long Polling to obtain the notifications, in order to retrieve the notifications, the client needs to use the Long Polling mechanism described in [REST_NetAPI_NotificationChannel], instead of the mechanism described below in section 6.x.y. 6.x.y to be replaced by the reference to the section that describes the actual POST method on THIS resource (e.g. in this case 6.1.5)
6.1.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	[ResourceRelPath]
	Relative resource path for a Light-weight Resource, consisting of a relative path down to an element in the data structure. For more information about the applicable values (strings) for this variable see [section number entitled “Light-weight relative resource paths” applicable for the current resource]. [This row is only present in case the resource has Light-weight child resources]

	<< Add/Remove rows to this table as needed - DELETE This Row>>

See section 6 for a statement on the escaping of reserved characters in URL variables.
<< Light-weight Resource relative paths. This subsection is only applicable if the resource allows accessing individual sub-trees in the data structure using the Light-weight Resource mechanism (i.e. [ResourceRelPath is part of the resourceURL]>>
6.1.1.1 Light-weight Resource relative paths

The following table describes the types of Light-weight Resources that can be accessed by using this resource, applicable methods, and links to data structures that contain values (strings) for those relative resource paths.

	Light-weight Resource type
	Method supported
	Description

	[Description of the type]

	[list of HTTP methods, POST not allowed]
	[Description and reference to the allowed values]

	<< Example - DELETE This and the following Row >>

	Person attributes
	GET, PUT, DELETE
	Enables access to a single presence attribute related to a person.

See data structure 5.2.2.4 for possible values for the Light-weight relative resource path.

6.1.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].
For Policy Exception and Service Exception fault codes applicable to [Functional Area], see section 7.
6.1.3 GET
<< This is a blueprint for GET in case it is not a valid operation>>

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: [PUT/POST/DELETE]’ field in the response as per sections 6.5.5 and 7.4.1 of [RFC7231].

<< This is a blueprint for GET in case it is a valid operation>>

This operation is used for [description of operation].

<< The following table is optional and is used only if query parameters are supported in request URL for GET, otherwise it needs to be deleted >>

Supported parameters in the query string of the Request URL are:

	Name
	Type/Values
	Optional
	Description

	[Parameter name]
	[Type/Values]
	[Yes/No]
	[Parameter description]

	<< Add/Remove rows to this table as needed - DELETE This Row>>

When using query parameters the following conventions apply: >>

· Query parameters are appended to the resource URL starting with a question mark “?” character and then followed by query parameter name – value pairs.

· Multiple query parameter name-value pairs are separated by an ampersand "&" character. Example: ?par1=par1Val&par2=par2Val&..

· Multiple values for the same query parameters are specified as a list of name-value pairs using the same name, separated by an ampersand “&” character. Example: ?par1=par1Val1&par1=par1Val2&...

6.1.3.1 Example 1: [Example title]
(Informative)
<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove the sequence number from the title heading >>

<< Prior to Candidate approval, a TS with XML examples MUST be submitted to the OMA XML validation service for validation of the examples: http://www.openmobilealliance.org/xml/. It is RECOMMENDED to do the same prior to or as part of CONR.
The examples must use real-world values. See document OMA-ARC-REST-2010-0675R01

The following conventions apply:

· {serverRoot} http://example.com/exampleAPI also to be updated in the tables where {serverRoot} is defined in section 6.x.

· {version} In our case this is v1 matching the TS version.

· {userId} E-mail names: mailto:alice@example.com mailto:bob@example.com or phone numbers: tel:+1-555-555-0100 to tel:+1-555-555-0199. In fact, only 555-0100 through 555-0199 are now specifically reserved for fictional use, with the other numbers having been released for actual assignment.

· {deviceAddress}, {senderAddress} Typically a phone number

· {equipmentId} Typically a manufacturer type name or serial number

· {memberListId} Typically a group name, “friend”, “list123”

· {contactId} Typically a person’s name, “bob”

· {memberId} Typically a phone number or e-mail address or SIP URI

· {subscriptionId} Typically a number or a sequence of digits and letters, “sub123”

· {messageId} Typically a number or a sequence of digits and letters, “msg123”

· {interactionId} Typically a number or a sequence of digits and letters, “int123”

· {registrationId} Typically a number or a sequence of digits and letters, “reg123”

· {requestId} Typically a number or a sequence of digits and letters, “req123”

· {ruleId} Typically a number or a sequence of digits and letters, “rule123”>>

6.1.3.1.1 Request

	[HTTP headers]
[XML request (if applicable), starting with <?xml]

6.1.3.1.2 Response

	[HTTP headers]
[XML response (if applicable), starting with <?xml]

6.1.3.2 Example 2: [Example title]
(Informative)
<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove this section >>

6.1.3.2.1 Request

	[HTTP headers]
[XML request (if applicable), starting with <?xml]

6.1.3.2.2 Response

	[HTTP headers]
[XML response (if applicable), starting with <?xml]

6.1.4 PUT

<< This is a blueprint for PUT in case it is not a valid operation>>

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: [GET/POST/DELETE]’ field in the response as per sections 6.5.5 and 7.4.1 of [RFC7231].
<< This is a blueprint for PUT in case it is a valid operation>>

This operation is used for [description of operation].

6.1.4.1 Example 1: [Example title]
(Informative)
<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove the sequence number from the title heading >>

6.1.4.1.1 Request

	[HTTP headers]
[XML request (if applicable), starting with <?xml]

6.1.4.1.2 Response

	[HTTP headers]
[XML response (if applicable), starting with <?xml]

6.1.4.2 Example 2: [Example title]
(Informative)
<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove this section >>

6.1.4.2.1 Request

	[HTTP headers]
[XML request (if applicable), starting with <?xml]

6.1.4.2.2 Response

	[HTTP headers]
[XML response (if applicable), starting with <?xml]

6.1.5 POST
<< This is a blueprint for POST in case it is not a valid operation>>

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: [GET/PUT/DELETE]’ field in the response as per sections 6.5.5 and 7.4.1 of [RFC7231].
<< This is a blueprint for POST in case it is a valid operation>>

This operation is used for [description of operation].
If the resource is on the server side and it supports creating a subscription for notifications, and if the use of Notification Channel is supported, include/adapt this paragraph, otherwise delete it. The notifyURL in the callbackReference either contains the Client-side Notification URL (as defined by the client) or the Server-side Notification URL (as obtained during the creation of the Notification Channel [REST_NetAPI_NotificationChannel]).
6.1.5.1 Example 1: [Example title]
(Informative)
<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove the sequence number from the title heading >>

6.1.5.1.1 Request

	[HTTP headers]
[XML request (if applicable, starting with <?xml]

6.1.5.1.2 Response

	[HTTP headers]
[XML response (if applicable, starting with <?xml]

6.1.5.2 Example 2: [Example title]
(Informative)
<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove this section >>

6.1.5.2.1 Request

	[HTTP headers]
[XML request (if applicable, starting with <?xml]

6.1.5.2.2 Response

	[HTTP headers]
[XML response (if applicable, starting with <?xml]

6.1.6 DELETE

<< This is a blueprint for DELETE in case it is not a valid operation>>

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: [GET/PUT/POST]’ field in the response as per sections 6.5.5 and 7.4.1 of [RFC7231].
<< This is a blueprint for DELETE in case it is a valid operation>>

This operation is used for [description of operation].

6.1.6.1 Example 1: [Example title]
(Informative)
<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove the sequence number from the title heading >>

6.1.6.1.1 Request

	[HTTP headers]
[XML request (if applicable, starting with <?xml]

6.1.6.1.2 Response

	[HTTP headers]
[XML response (if applicable, starting with <?xml]

6.1.6.2 Example 2: [Example title]
(Informative)
<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove this section >>

6.1.6.2.1 Request

	[HTTP headers]
[XML request (if applicable, starting with <?xml]

6.1.6.2.2 Response

	[HTTP headers]
[XML response (if applicable, starting with <?xml]

7. Fault definitions

7.1 Service Exceptions

<< This section provides details about Service Exception type of faults specific for that particular API. Some APIs do have specific Service Exception fault definitions, some don’t have. Pick the right text block. Delete this comment. >>
<< If API has no specific Service Exception codes defined either in that particular API version, or in the baseline version, use the following text. Delete this comment. >>
For common Service Exceptions refer to [REST_NetAPI_Common]. There are no additional Service Exception codes defined for the RESTful [Functional Area] API.
<< If API has specific Service Exception codes defined either in that particular version, or in the baseline version, use the following text and include the codes in the table(s).
Service Exception codes consists of a prefix “SVC” followed by 4 digit code number.
The original Service Exception codes from the baseline product (if any) are included unchanged.
For a new Service Exception code, 4 digit code number MUST be obtained from OMNA Exception codes registry. Delete this comment >>
For common Service Exceptions refer to [REST_NetAPI_Common]. The following additional Service Exception codes are defined for the RESTful [Functional Area] API.
7.1.1 SVC[code number]: [Text for exception header]
	Name
	Description

	MessageID
	SVC[code number]

	Text
	[Text describing the fault with optional replacement variables marked with %n, where n is an index into the list of <Variables> elements, starting at 1]

	Variables
	[%n variables to substitute into the string, or “None”]

	HTTP status code(s)
	[HTTP status code(s) where that particular Service Exception code can be used with]

7.2 Policy Exceptions

<< This section provides details about Policy Exception type of faults specific for that particular API. Some APIs do have specific Policy Exception fault definitions, some don’t have. Pick the right text block. Delete this comment. >>
<< If API has no specific Policy Exception codes defined either in that particular API version, or in the baseline version, use the following text. Delete this comment. >>
For common Policy Exceptions refer to [REST_NetAPI_Common]. There are no additional Policy Exception codes defined for the RESTful [Functional Area] API.
<< If API has specific Policy Exception codes defined either in that particular version, or in the baseline version, use the following text and include the codes in the table(s).
Policy Exception code consists of a prefix “POL” followed by 4 digit code number.
The original Policy Exception codes from the baseline product (if any) are included unchanged.
For a new Policy Exception code, 4 digit code number MUST be obtained from OMNA Exception codes registry. Delete this comment. >>
For common Policy Exceptions refer to [REST_NetAPI_Common]. The following additional Policy Exception codes are defined for the RESTful [Functional Area] API.
7.2.1 POL[code number]: [Text for exception header]
	Name
	Description

	MessageID
	POL[code number]

	Text
	[Text describing the fault with optional replacement variables marked with %n, where n is an index into the list of <variables> elements, starting at 1]

	Variables
	[%n variables to substitute into the string, or “None”]

	HTTP status code(s)
	[HTTP status code(s) where that particular Policy Exception code can be used with]

 << Example - DELETE this row and the following table. >>
7.2.2 POL1003: Refund exceeds original charge amount
	Name
	Description

	MessageID
	POL1003

	Text
	The refund amount exceeds the original amount charged %1

	Variables
	%1 – the original amount charged

	HTTP status code(s)
	403 Forbidden

Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

A.2 Draft Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Version:

REST_NetAPI_NavSe-V1_0
	01 Nov 2016
	All
	First Draft

	
	02 Jan 2017
	1, 3, 5, Appendix D
	Incorporated CRs:

OMA-LOC-2016-0049-CR_NavSe_1_0_TS_Scope
OMA-LOC-2016-0050-CR_NavSe_1_0_TS_Definitions_and_Abbreviations
OMA-LOC-2016-0051-CR_NavSe_1_0_TS_Resource_Summary
OMA-LOC-2016-0052-CR_NavSe_1_0_TS_Data_Types
OMA-LOC-2016-0053-CR_NavSe_1_0_TS_Sequence_Diagrams
OMA-LOC-2016-0054-CR_NavSe_1_0_TS_Partial_Route_Encoding_Schema

	
	14 Feb 2017
	5
	OMA-LOC-2017-0008-CR_NavSe_1_0_TS_Emergency_Functionalities

Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].

B.1 SCR for REST.FUNCAREA Server

	Item
	Function
	Reference
	Requirement

	REST-FUNCAREA-SUPPORT-S-001-M
	Support for the RESTful [FuncArea] API
	[section(s)]
	

	REST- FUNCAREA-SUPPORT-S-002-M
	Support for the XML request & response format
	[section(s)]
	

	REST- FUNCAREA-SUPPORT-S-003-M
	Support for the JSON request & response format
	[section(s)]
	

B.1.1 SCR for REST.FUNCAREA.FUNCTION Server
	Item
	Function
	Reference
	Requirement

	[Item number]
	[Description of the function]
	[Section reference]
	[Applicable items (requirements)]

	[Item number]
	[Description of the function]
	[Section reference]
	[Applicable items (requirements)]

<< If an Item is MANDATORY (-M) it has no requirement.

If an Item is OPTIONAL (-O), but other OPTIONAL items are conditional on that first item i.e. MUST be implemented if the first item is implemented, then the conditional items are listed in the Requirements column of the first item, linked by “AND”

Example: optional resource with conditional GET and DELETE operations. Delete this comment and the following table.>>
	REST-CN-SUBSCR-INDCALLDIR-S-001-O
	Support for access to an individual subscription to call direction notifications
	5.8
	REST-CN-SUBSCR-INDCALLDIR-S-002-O
AND
REST-CN-SUBSCR-INDCALLDIR-S-003-O

	REST-CN-SUBSCR-INDCALLDIR-S-002-O
	Retrieving an individual subscription to call direction notifications – GET
	5.8.3
	

	REST-CN-SUBSCR-INDCALLDIR-S-003-O
	Deleting an individual subscription to call direction notifications – DELETE
	5.8.6
	

Appendix C. JSON examples
(Informative)

JSON (JavaScript Object Notation) is a Light-weight, text-based, language-independent data interchange format. It provides a simple means to represent basic name-value pairs, arrays and objects. JSON is relatively trivial to parse and evaluate using standard JavaScript libraries, and hence is suited for REST invocations from browsers or other processors with JavaScript engines. Further information on JSON can be found at [RFC7159].

The following examples show the request and response for various operations using the JSON data format. The examples follow the XML to JSON serialization rules in [REST_NetAPI_Common]. A JSON response can be obtained by using the content type negotiation mechanism specified in [REST_NetAPI_Common].

For full details on the operations themselves please refer to the section number indicated.

C.1 [Example Title] (section [section number cross reference])
<< Example title should be copied from title heading of the section with the corresponding XML example. And that section number should be added in brackets to the end of the example title >>

Request:
	[HTTP headers copied from referenced example, type specific signalling updated for JSON]
[JSON example generated from the equivalent XML example using the JSON2XML utility]

Response:

	[HTTP headers copied from referenced example, type specific signalling updated for JSON]
[JSON example generated from the equivalent XML example using the JSON2XML utility]

Appendix D. Partial Route Encoding Schema
The section provides an overview of the partial route encoding schema. Partial route encoding schema is used to access in an efficient way to traffic information related to a set of route that share common segments. Note that the use of partial route information is limited to Smart ND scenario where the application uploads on the server estimated routes, see section 5.3.2.
[image: image7.png]
Figure 5: Sequence for Smart ND
As showed in Figure 5, the application can choose to provide as route information only the sequence of segments that is changed compared to a reference route, previously uploaded on the server. In the example of Figure 5, the sequence of segments between 4-5, 11-13 and 24-28 is modified compared to the reference route. Multiple deviations (in the figure, there are 3 deviations) may be included in partial route description. Information to merge the partial route with the reference route is provided in the partial route resource: in details the following parameters defined in the route structure are used:
· the firstSegment carries the information of the index of the first changed segment in the reference route information for each single deviation of the partial route (The 4th, 11st and 24th segments in the reference route in the Figure 5);
· the lastSegment carries the information of the index of the last changed segment in the reference route information for each single deviation of the partial route (The 6th, 15th and 27th segments in the reference route of Figure 5);
· the numSegment carries the information about the number of segments that constitutes each single deviation (2,4 and 5 in the example of Figure 5, respectively);
If a reference route is removed from the server using the DELETE method, a partial route resource that refers to the reference route should be encoded with complete sequence of segments. In order to keep the consistency, this procedure is automatically operated by the server.

In case the performance parameters provided by the server for uploaded partial route are not better than those of a route already submitted, the application may choose to remove the last uploaded partial route information using the DELETE operation: the application will iteratively re-estimate and upload alternative routes to find the best one with respect to reported traffic conditions. However, in order to minimize the throughput over the wireless connection and avoid inefficient loops, the application can request traffic information in the area where the re-estimation is occurred, as described in step 9 of chap. 5.3.2.
4. GET: request traffic events related to the route

1. POST: create trip description

Response: created trip id and route ids (summarized)

3. GET: request the selected full format route

Create a trip

Response: traffic event information

Response: route information and performance parameters

Read traffic events

Submit a notification

9. POST: notify by CallBackNotifURL

Response

10. GET: updated information in the notification

Response with the updated information

2. GET: request a set of summarized routes

Response: route information of a selected summarized route

Estimate a new route�and/or remove� travelled route

7. PUT: modify the Trip parameters

Response

8. GET: request route id resource

Response with the selected route

Read the new route

Response

6. POST: subscription to notification for the Trip

Create a subscription

Application

Server

Server

Read the summarized routes and select one

Read a route in full format

Response

5. DELETE: remove unnecessary routes

Remove unnecessary routes

Read the updated information

4. POST: create a route calculated by application

1. POST: create trip description

Response: created trip id

3. GET: request the traffic events

Create a trip

Response: performance parameters

Response: traffic events

Calculate route(s) �with traffic information

9. PUT/POST: modify/create calculated route

Response: performance parameters

2. POST: create area description

Response: traffic information related to the area

7. POST: notification under CallBackNotifURL

Response

8. GET: request the traffic info based on the notification

Response:

Response

6. PUT: update the trip parameter

Create a subscription for the trip

Application

Server

Server

Read �traffic information

Response

5. POST: subscription to notification for the trip

Create a route �resource

Create traffic information related to the area

10. DELETE: remove the previous route resource

Response

Update the trip parameter (origin)

Update the route resource

Remove the previous route

Read the updated �traffic information

Server

1. POST: Area Description

Response with Area det. and Events List

2. GET: EventIds resources with traffic info.

Create an Area

Response with the selected events

Read a list of events

Application

(2017 Open Mobile Alliance All Rights Reserved.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.
[OMA-TEMPLATE-TS_RESTful_Network_API-20160602-I]
(2017 Open Mobile Alliance All Rights Reserved.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.
[OMA-TEMPLATE-TS_RESTful_Network_API-20160602-I]

[image: image1.jpg][image: image8.png]