
Performance Considerations
For an Embedded Implementation of OMA DRM 2

Daniel Thull, Roberto Sannino

daniel.thull@st.com, roberto.sannino@st.com

STMicroelectronics, Advanced System Technology
Via Olivetti 2, 20041 Agrate Brianza, Italy

Abstract
As digital content services gain importance in the mobile world,
Digital Rights Management (DRM) applications will become a
key component of mobile terminals. This paper examines the
effect dedicated hardware macros for specific cryptographic
functions have on the performance of a mobile terminal that
supports version 2 of the open standard for Digital Rights
Management defined by the Open Mobile Alliance (OMA).
Following a general description of the standard, the paper
contains a detailed analysis of the cryptographic operations
that have to be carried out before protected content can be
accessed. The combination of this analysis with data on
execution times for specific algorithms realized in hardware
and software has made it possible to build a model which has
allowed us to assert that hardware acceleration for specific
cryptographic algorithms can significantly reduce the impact
DRM has on a mobile terminal’s processing performance and
battery life.

Keywords: DRM, Security, Mobile Terminal, Cryptography

1. Introduction
The Open Mobile Alliance, a standardization organization

for service enablers in the mobile domain with over 350
member companies [1], has recently completed work on
version 2 of its open standard for DRM on mobile terminals.
With respect to the first version, OMA DRM 2 provides
additional features and a significantly higher level of security
so as to protect high-value digital content like polyphonic ring-
tones, mp3 audio files or video clips on mobile terminals.

Security in OMA DRM 2 is based on a Public Key
Infrastructure (PKI) for key distribution and symmetric
encryption algorithms for content protection. This paper starts
out by describing the actors that are defined by OMA DRM 2
and how they interact in order to grant the final user access to
protected content. In chapter 2.4, we take a closer look at the
cryptographic operations that are involved in this process.
Chapter 0 combines these steps with execution times for
different cryptographic algorithms realized in software as well
as in hardware and evaluates the impact of hardware
acceleration on a mobile terminal’s overall performance with
respect to execution time and power consumption.

2. The Standard
The OMA DRM 2 standard consists of three documents.

The DRM specification document [2] defines the
communication protocol ROAP as well as general system
aspects. The content format for protected media files (Digital
Content Format DCF) and the Rights Expression Language
(REL), which describes permissions and constraints to govern
usage of protected content, are defined in two separate
documents.

2.1 Actors
The DRM specification document defines four actors that

interact with each other in order to provide access to protected
digital content to the end-user (see Figure 1). In a procedure not
covered by the standard, the Content Issuer (CI), as the owner
of digital content, negotiates licenses that grant access to its
content with one or more Rights Issuers (RI). Before selling a
license to the end-user, the RI sets up a trusted relationship
with the DRM Agent, a trusted logical entity residing in the
user’s terminal. Trust in OMA DRM 2 is based on PKI-
certificates issued by a Certification Authority (CA). A valid
certificate guarantees that its subject (either the RI or the DRM
Agent) adheres to the CA’s compliance and robustness rules
and can thus be considered trustworthy and secure. Although
crucial to the system, the certification process including the
definition of compliance and robustness rules is outside the
scope of OMA DRM and is left to the business community.
The first CA for OMA DRM is called Content Management
License Administrator and has been founded in February 2004
[4].

Certification
Authority

Certification
Authority

Rights
Issuer

Rights
Issuer

DRM
Agent
DRM
Agent

Content
Issuer

Content
Issuer

Certificate

Rights
Object

Rights
Object DCF

ROAP Any
protocol

Certificate

Figure 1 - OMA DRM 2 Actors.

2.2 Objects
Content and license are delivered to the DRM Agent in

two separate logical entities: Content Object (aka DCF
although the acronym describes the file format rather than the
file itself) and Rights Object (RO). The DCF contains one or
more containers that comprise encrypted digital content
alongside descriptive meta-data such as author, title and a URL
the user may visit in order to obtain a license that allows her to
unlock the content.

The Rights Object is realized as an XML file that
describes permissions and constraints granted to the DRM
Agent when accessing a specific DCF. It also contains the
Content Encryption Key (KCEK) needed to decrypt the DCF as
well as the Rights Encryption Key (KREK) with which the
former is encrypted. This two-layer symmetric encryption
provides a cryptographic way to decouple content and rights
and allows building different licenses for the same content
without re-encrypting it. KREK itself is encrypted using the
DRM Agent’s public key, establishing thus a cryptographic
chain that can only be dissolved by the holder of the DRM
Agent’s private key (Figure 2).

DCF RO Terminal

KCEK

KREK

KMAC
Kpriv

128bit
symmetric keys RSA key

Figure 2 - The cryptographic chain that protects content (no-

domain case).

2.3 Domains
One important feature of OMA DRM 2 is the possibility to

share a license for protected content among a group of devices.
In order to do so, the user has to set up a domain and register
each participating device with the Rights Issuer, possibly
indirectly by using another device as a proxy. During the
registration process, the RI relies on a PKI mechanism to
provide each trusted device with a secret (symmetric) domain
key. This key can subsequently be used by each member device
to decrypt KREK of any Domain Rights Object that has been
acquired by any member of the group.

By offering the possibility to consume OMA DRM
protected content also on devices that cannot directly connect
to the RI (the so-called “Unconnected Devices” like mobile
mp3 players), the OMA DRM 2 standard broadens its scope
well beyond mobile phones. Any device that adheres to a
Certification Authority’s compliance and robustness rules and
owns a valid certificate can thus be used to access protected
content.

2.4 Phases
The consumption process of DRM protected media can be

divided in four phases: Registration, Acquisition, Installation,
and Consumption.

2.4.1 Registration – Establishing Trust
In order to prevent leakage of clear content from

compromised devices, the Rights Issuer delivers Rights Objects
only to trusted DRM Agents, ie those whose certificate has not
expired or been revoked. In OMA DRM 2 a trusted relationship
gets established when a DRM Agent registers with an RI by
following the 4-pass Rights Object Acquisition Protocol
(ROAP).

During the first phase of the registration process, both
partners advertise their capabilities to each other. This may
result in an agreement to use any cryptographic algorithm other
than the ones mandated by the standard (see chapter 2.4.5). In
the second registration-step, the DRM Agent sends its PKI
certificate in a digitally signed message (RegistrationRequest)
to the RI. After having verified the message signature and the
Agent-certificate’s validity – possibly using an Online
Certificate Status Protocol (OCSP) request – the RI responds
by sending the RegistrationResponse message to the DRM
Agent. This message contains the RI’s certificate as well as a
valid OCSP response for it, indicating whether the certificate
has been revoked [3].

Upon reception, the Agent verifies the message signature
and the validity of the RI’s certificate as well as the OCSP
response. If no check has failed, the DRM Agent saves
information on the relationship with this specific RI in the RI
Context. This data object represents the trusted relationship
from the DRM Agent’s point of view and its existence,
integrity and validity must be verified prior to any future
interaction with the RI, such as RO Acquisition.

2.4.2 Acquisition – The Rights Object
In order to acquire a license for a DCF, the DRM Agent

checks the existence and validity of an RI Context and sends a
digitally signed RORequest message specifying the desired
license (Rights Object ID) to the Rights Issuer. If a trusted
relationship exists between the parties and payment has been
taken care of (the payment process is not within scope of OMA
DRM), the RI responds with a digitally signed ROResponse
message which contains the protected Rights Object.
The Rights Object is integrity-protected by a Message
Authentication Code (MAC) and contains a list of Content
Object IDs and their respective usage permissions. The MAC-
key KMAC is protected together with KREK, using a PKI
mechanism. The RO is thus not only integrity but also
authenticity protected.

2.4.3 Installation – Unwrapping the Keys
After the DRM Agent has extracted the Rights Object

from the ROResponse message, it must control its integrity and
authenticity before installing the RO on the device. In order to
do so, the Agent decrypts C1 (the first 1024 bits of C which is
contained in the RO – see Figure 3) using its private key and
obtains Z. Applying the key derivation function KDF to Z
yields KEK (key encryption key) which is then used to decrypt
C2, the last 256 bits of C. As a result of this last decryption, the
DRM Agent obtains a concatenation of KMAC and KREK in
clear.

After it has successfully checked RO integrity and
authenticity using KMAC, the DRM Agent must verify the
Rights Object’s signature in case it is present, using the RI’s
public key. This signature is made over certain parts of the
Rights Object and is mandatory only for Domain ROs. It is
however possible to also sign Device ROs.

The OMA DRM 2 standard does not define technical
details on how the DRM Agent shall store Rights Objects and
DCFs. This is left to the Certification Authorities to define in
their robustness rules. At the time of writing this article, the
Content Management License Administrator (CMLA) is the
only Certification Authority (CA) for OMA DRM 2 [4].
Although different CAs are likely to issue different robustness
rules, an obvious requirement that should be common to all is
that content and rights are stored in a secure manner. In order
for this to happen, four things have to be ensured:
• Content confidentiality – Since secure memory is an

extremely scarce and costly resource in a mobile terminal,
DCFs do not get stored in clear. Thus, content
confidentiality is guaranteed.

• RO integrity is ensured by the MAC that is included in
the Rights Object. This implicitly also ensures the
connection between RO and DCF since a hash value of the
DCF is included in the Rights Object.

• RO authenticity – The authenticity of the received Rights
Object has been verified when KREK was decrypted
successfully. Since it is assumed that only trusted DRM
Agents can successfully complete this operation, there is
no need to further protect and check authenticity.

• KCEK, KREK and KMAC confidentiality – Also after
installation, KCEK gets protected by KREK. This makes
sense because there might be more than one Rights Object
for a DCF, so the DRM Agent would have to keep
information on the associated keys anyway.
In the original Rights Object, KREK and KMAC get
protected by a public key encryption. Since PKI
algorithms are very performance intensive, it is desirable
to replace them with simpler ones where possible. In this
case we chose to substitute the PKI-encryption with a
symmetric encryption using a device-generated key KDEV
when installing the RO. This is possible because the RO
will only be consumed by the installing DRM Agent. This
means that the PKI algorithm’s main purpose (ie to allow
two strangers to share a secret over an insecure channel) is
no longer needed and it can be substituted by a less
calculation-intensive symmetric cipher. Encrypting KREK
and KMAC with KDEV yields C2dev that can be stored safely
in any type of memory (see Figure 3).

2.4.4 Consumption – Steps to Follow for Every
Access

Every time the user wants to access protected content, the
DRM Agent has to perform the following cryptographic
processing steps:

1. Decrypt C2dev using KDEV
2. Verify RO integrity by checking its MAC
3. Verify DCF integrity by calculating its Hash value

and comparing it to the one from within the RO.
This is important to bear in mind since these processing

steps also apply to small files like ring-tones, because they
cannot be stored in clear since secure memory is extremely
costly in mobile terminals.

2.4.5 Standard Cryptographic Algorithms
So far we have described the cryptographic operations

required by OMA DRM 2 in generic terms. This has been done
deliberately since the standard provides the possibility to use
other algorithms than the ones that are pre-defined. For the
following considerations however, we relied on the standard
algorithms, in particular:

• SHA-1 as Hash function.
• HMAC SHA-1 as MAC algorithm.
• 128-bit AES WRAP for en-/decrypting keys.
• 128-bit AES CBC for content en-/decryption.
• RSA-PSSA as signature scheme (using the RSASP1

and RSAVP1 primitives as defined in [5]).
• KDF2 as key derivation function as described in [2].
• 1024-bit RSA as PKI function (using the RSAEP and

RSADP primitives as defined in [5]).
A detailed study of the OMA DRM 2 specifications

allowed us to build a Java software model of the standard
including Rights Issuer, Content Issuer and DRM Agent. The
deeper understanding of the cryptographic system implications
we obtained from this work, resulted in information about eg
the ROAP message file sizes and yielded a list of cryptographic
operations carried out in each of the four phases that have been
identified above.

For the sake of simplicity we have made close
approximations when compiling this list wherever too many
details would not have augmented clarity. One example for this
is the EMSA-PSS message-encoding mechanism described in
[5], which we have approximated with just one hash function
over the message code.

C1 C2

RSADP

KDF2 AESUNWRAP

KMAC, KREK

C

KEK

Z

1024bit 2*128bit

AESWRAP

C2dev

Kpr

Kdev

Figure 3 - Extraction, decryption and encryption of KREK and KMAC during the installation process.

Algorithm Software [cycles] Hardware [cycles]
AES Encryption 360 + 830/128 bit 10/128 bit

AES Decryption 950 + 830/128 bit 10 + 10/128 bit
SHA-1 400/128 bit 20/128 bit
HMAC SHA-1 1200 + 400/128 bit 240 + 20/128 bit
RSA 1024 Public Key Op 2,160,000/1024 bit 10,000/1024 bit
RSA 1024 Private Key Op 3,774,0000/1024 bit 260,000/1024 bit

Table 1 - Execution times for different cryptographic algorithms in hardware and software.

3. Costs – Time and Energy
The impact of DRM on overall terminal performance

depends to a great extent on the system architecture that
provides the supporting functionality. From an end user’s
perspective, the most important performance-dimensions of a
mobile terminal are price, processing time and energy
consumption (ie, battery lifetime). A system architect must find
he optimal tradeoff between these factors when deciding on
whether to support functionality in hardware or in software [9].
This paragraph deliberately neglects DRM impact on monetary
terminal costs and concentrates on processing-performance and
energy consumption as a result of different architecture-
choices.

The underlying assumption for the following
considerations is that a mobile terminal contains a System-on-
Chip (SoC) that provides all application-related functionality.
This element is also known as Application Processor. The SoC
consists of various dedicated hardware modules, a general
purpose processor core and secure on-chip memory. All these
elements are connected by a system bus.

For our performance considerations we relied on the
system know-how we had acquired while implementing OMA
DRM 2 in Java on a PC as well as publicly available
performance figures for the necessary cryptographic algorithms
in software and hardware (see Table 1). Following this system-
level approach, we are currently conducting more detailed
experiments that allow for a more accurate consideration of
energy consumption. For this paper we assumed energy
consumption to be directly related to processing performance.
Hence, the estimation figures we obtained regarding processing
time can be taken as a first very rough estimate of the effect,
the DRM application has on a terminal’s energy consumption,
although the inherent inefficiencies of protocol-overhead and
other non-cryptographic functionality have not been
considered.

It is important to note that we deliberately neglected
system-related time consumption such as cache-misses or bus-
conflicts in our considerations as these depend on factors such
as concurrent applications running that are not strictly related
to OMA DRM and there is no generic model that would allow
simulating their impact. Furthermore, we concentrated on
cryptography-related aspects of OMA DRM and did not take
the overhead caused by protocol processing technology like
XML parsing into consideration when evaluating the impact of
DRM since these components cannot easily be accelerated by
dedicated hardware cells.

When facing the challenge to implement a DRM Agent on
a mobile terminal, a system designer has to identify crucial
processing intensive parts of the application and decide

whether to provide these using dedicated hardware cells within
a SoC or rather software running on a general purpose
processor.

In OMA DRM, the most processing intensive operations
that can be realized in hardware are cryptography-related.
Security- and price-related considerations apart, dedicated
cryptographic hardware modules offer two benefits as
compared to software running on a general purpose processor:
they are much faster and leave the processor free to do other
jobs in parallel.

In order to determine the benefit of different cryptographic
hardware accelerators to the OMA DRM application, we
calculated the overall processing time needed to perform
certain standard operations such as acquiring a Rights Object as
well as the relative time spent for each algorithm.

 shows the processing time in clock-cycles per data block
for each cryptographic algorithm in software (tested on the
ARM9 processor) and hardware (with a clock-frequency of less
than 200 MHz). Execution times for AES and SHA-1 in
hardware were obtained from [6] whereas the software figures
were obtained from internal experiments using standard
implementations. Numbers regarding RSA were taken from [7]
in the hardware and from [8] in the software case. The constant
offset-values for AES and HMAC are due to key-scheduling
(AES) and hashing on fixed-length data (HMAC).

We evaluated three architecture variants: a purely
software-based approach, a mixed case in which AES and
SHA-1 (and thus also HMAC SHA-1) are provided by
hardware modules and RSA by software as well as a pure
hardware case with dedicated modules for each algorithm.
Clock-frequency was assumed to be 200 MHz in each case.

4. Results – Evaluation of Two Use Cases
Since it is the final user who in the end evaluates terminal

performance, measuring DRM’s impact cannot be done by
examining isolated cryptographic operations but rather by
starting from typical use cases. We have identified two of them,
decomposed them into single cryptographic steps and based our
calculations on the resulting model. The two use cases are:
• Music Player: the user has access to an encrypted content

file (DCF) of 3.5 Mbytes. In order to obtain a license, she
registers with an RI, acquires the license and installs it.
She then listens to the track five times.

• Ringtone: the user has downloaded an encrypted high-
quality polyphonic ringtone file (size 30 Kbytes). She
registers with the RI, obtains a license and installs it.
Every time her phone rings, the DRM Agent must now
access the encrypted file that is governed by the usage

rights in the Rights Object. We assume that she receives
25 calls.
The two use cases differ mainly in the size of the

encrypted file and in the number of playbacks. For the sake of
simplicity, domain functionality has not been included in the
examples.

Figure 5 illustrates the percentage of total processing time
the processor spends for each cryptographic algorithm (realized
as a software program) in both use cases. Because of the larger
file size, AES and SHA-1 become much more important in the
Music Player use case whereas in the Ringtone use case the
PKI algorithms that prevail during the registration-/installation-
phases play a greater role. The effect of dedicated hardware
macros for AES and SHA-1 has thus a much greater effect in
the Music Player use case as can be seen in Figure 6 and Figure
7.

In the music player use case, total processing time can be
cut to almost a tenth of the value obtained from a pure software
implementation by realizing AES and SHA-1 as dedicated
hardware macros. In the Ringtone use case, the significant step
occurs when providing PKI hardware support.

Hardware acceleration for PKI algorithms has only limited
benefits in both use cases from a performance point of view.
Since PKI algorithms get only used in the initiating application
phases and their execution time does not depend on the DCF
size, the absolute figures are identical for both use cases. Given
that they total to roughly 600ms (the second column in Figure
7), it is arguable whether or not the costs of a dedicated
hardware cell (in terms of transistor gates) are justified by these
use cases of the OMA DRM application.

5. Conclusions and Future Work
As digital content services gain importance in the mobile

world, DRM applications will become a key component of
mobile terminals. Given the broad support among terminal
manufacturers and it being an open standard, OMA DRM 2 is
bound to assume a strong position in the standard battle. A
detailed study of the cryptographic operations required by
OMA DRM 2 has shown that the impact DRM has on
processing performance and battery life can be significantly
reduced by incorporating hardware acceleration for specific
algorithms. For a complete evaluation of the hardware/software
partitioning however, also security related aspects have to be
considered.

We are currently conducting more detailed simulations
regarding energy consumption of dedicated hardware macros
for the cryptographic algorithms presented in this article. First
results seem to indicate that the gap between software and
hardware realizations in this case is even wider than for
processing time.

6. Acknowledgments
We would like to thank Guido Bertoni and Roberto

Zafalon for their support in writing this article.

7. References
[1] OMA: Open Mobile Alliance Ltd, accessed on 27 August

2004, <http://www.openmobilealliance.com >
[2] Open Mobile Alliance, “DRM Specification V2.0”, Open

Mobile Alliance Ltd, 2004, La Jolla (CA), USA.

[3] M. Meyers et al., “X.509 Internet Public Key
Infrastructure Online Certificate Status Protocol -
OCSP”, RFC 2560, The Internet Society, 1999.

[4] CMLA: Content Management License Administrator,
accessed on 28 August 2004, <http://www.cm-la.com>

[5] RSA Laboratories, “PKCS #1 v2.1: RSA Cryptography
Standard”, RSA Security, 2002, Bedford (MA), USA.

[6] G. Bertoni, J. Guajardo, and C. Paar, 2004, “Architecture
for Advanced Cryptographic System” in Information
Security, Policies and Actions in Modern Integrated
Systems, eds M. Fugini and C. Belletini, Idea Group
Publishing, 2004, Hershey (PA), USA.

[7] C. McIvor, M. McLoone, J. McCanny, A. Daly, W.
Marnane, “Fast Montgomery Modular Multiplication and
RSA Cryptographic Processor Architectures”, Proc. of
Asilomar Conference on Signals, Systems, and Computers
2003.

[8] V. Gupta, S. Gupta, S. Chang, “Performance Analysis of
Elliptic Curve Cryptography for SSL”, Proc. of the ACM
Workshop on Wireless Security, ACM Press, 2002,
Atlanta (GA), USA.

[9] S. Ravi, A. Raghunathan, N. Potlapally, “Securing
Wireless Data: System Architecture Challenges”,
International Symposium on System Synthesis (ISSS),
October 2002.

0%

20%

40%

60%

80%

100%

Ringtone Music Player

PKI Public Key Operation

PKI Pr ivate Key Operation

AES Decryption

SHA-1

Figure 5 – Relative importance of cryptographic algorithms in both

use cases.

190

800

7730

1

10

100

1000

10000

SW SW/HW HW

ms

Figure 6 – Execution times for three implementation variants in the

Music Player use case.

620900

12

1

10

100

1000

SW SW/HW HW

ms

Figure 7 – Execution times for three architecture variants in the

Ringtone use case.

