
 2018 Open Mobile Alliance All Rights Reserved.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-Template-WhitePaper-20180411-I]

Internet of Things Protocol Comparison
Candidate – 07 Oct 2018

Open Mobile Alliance
OMA-WP-Protocol_Comparison-V1_0-20181007-C

OMA-WP-Protocol_Comparison-V1_0-20181007-C Page 2 (22)

 2018 Open Mobile Alliance All Rights Reserved.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-Template-WhitePaper-20180411-I]

Use of this document is subject to all of the terms and conditions of the Use Agreement located at

http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an

approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not

modify, edit or take out of context the information in this document in any manner. Information contained in this document

may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior

written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided

that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials

and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products

or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely

manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification.

However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available

to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at

http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of

this document and the information contained herein, and makes no representations or warranties regarding third party IPR,

including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you

must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in

the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN

MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF

THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE

ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT

SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT,

PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN

CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2018 Open Mobile Alliance All Rights Reserved.

Used with the permission of the Open Mobile Alliance under the terms set forth above.

http://www.openmobilealliance.org/UseAgreement.html
http://www.openmobilealliance.org/ipr.html

OMA-WP-Protocol_Comparison-V1_0-20181007-C Page 3 (22)

 2018 Open Mobile Alliance All Rights Reserved.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-Template-WhitePaper-20180411-I]

Internet of Things Protocol Comparison

Editors:

Tim Spets, Senior Standards Architect, Greenwave Systems

Hannes Tschofenig, Senior Principal Engineer, Arm Limited

Contributors:

Christian Legare, SiLabs

Michel Kohanim, Universal Devices

 James Milne, Universal Devices

Bill Silverajan, Tampere University of Technology

Romedius Weiss, Innsbruck University/Arm Limited

Thomas Hardjono, Massachusetts Institute of Technology

Hasan Derhamy, Lulea University of Technology

David Decker, Landis+Gyr

Mark Baugher, Consultant

Ari Keränen, Ericsson

Matthew Gillmore, Itron

October 2018

OMA-WP-Protocol_Comparison-V1_0-20181007-C Page 4 (22)

 2018 Open Mobile Alliance All Rights Reserved.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-Template-WhitePaper-20180411-I]

Contents
1. REFERENCES .. 5

2. INTRODUCTION ... 6

3. SUMMARY .. 7

3.1 HANDSHAKE REQUIREMENTS/INTERACTION PATTERNS .. 7
3.2 SESSION BASED, PUBLISH-SUBSCRIBE VS. REQUEST-RESPONSE ... 7
3.3 SECURITY .. 7
3.4 HEADER PAYLOAD .. 8
3.5 MATURITY ... 8
3.6 QUIC PROTOCOL ... 13
3.7 CONCLUSION ... 13

4. HIGH-LEVEL DESCRIPTION OF PROTOCOLS CONSIDERED ... 15

4.1 HTTP .. 15
4.2 WEBSOCKET ... 15
4.3 COAP ... 16
4.4 XMPP .. 17
4.5 MQTT ... 19

4.5.1 MQTT-SN .. 19

5. SECURITY ... 21

APPENDIX A. CHANGE HISTORY (INFORMATIVE) .. 22

Figures
Figure 1 : HTTP GET message sent from the client to the server ... 15

Figure 2 : WebSocket - All traffic between the client and server .. 16

Figure 3 : Exchange with a Confirmable (CON) message (GET) being sent and an Acknowledgement message (ACK)

in reply .. 17

Figure 4 : XMPP bi-directional communication between clients via a central server ... 18

Figure 5 : MQTT bi-directional communication between clients via the central server ... 19

Figure 6 : Translation between MQTT and MQTT-SN ... 20

Figure 7 : Transport Layer Security (TLS) over TCP or Datagram Transport Layer Security (DTLS) over UDP 21

Tables
Table 1 - Protocol Category .. 6

Table 2 - Protocol Comparison Table .. 12

file:///C:/Users/shushuitie/Downloads/OMA-Templates-CurrentSet-20180717-I/OMA-Template-WhitePaper-20180101-I.docx%23_Toc526780182

OMA-WP-Protocol_Comparison-V1_0-20181007-C Page 5 (22)

 2018 Open Mobile Alliance All Rights Reserved.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-Template-WhitePaper-20180411-I]

1. References

[RFC5246] T. Dierks, E. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.2", RFC 5246, August

2008, URL: https://www.rfc-editor.org/info/rfc5246.

[RFC6120] Saint-Andre, P., "Extensible Messaging and Presence Protocol (XMPP): Core", RFC 6120, March 2011,

URL: http://www.rfc-editor.org/info/rfc6120.

[RFC6347] E. Rescorla, N,. Modadugu "Datagram Transport Layer Security Version 1.2", RFC 6347, January 2012,

URL: https://www.rfc-editor.org/info/rfc6347.

[RFC6455] Fette, I. and A. Melnikov, "The WebSocket Protocol", RFC 6455, December 2011. URL: http://www.rfc-

editor.org/info/rfc6455.

[RFC7230] Fielding, R., and J. Reschke, "Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, June 2014, URL: http://www.rfc-editor.org/info/rfc7230.

[RFC7231] Fielding, R., and J. Reschke, "Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content", RFC

7231, June 2014, URL:http://www.rfc-editor.org/info/rfc7231.

[RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained Application Protocol (CoAP)", RFC 7252,

June 2014, URL: http://www.rfc-editor.org/info/rfc7252.

[RFC7390] A. Rahman, E. Dijk, "Group Communication for the Constrained Application Protocol (CoAP)", RFC

7390, October 2014. URL: https://tools.ietf.org/html/rfc7390.

[RFC7540] Belshe, M., Belshe, M., and M. Thomson, "Hypertext Transfer Protocol Version 2 (HTTP/2)", RFC 7540,

May 2015. URL: http://www.rfc-editor.org/info/rfc7540.

[RFC7541] R. Peon, et al., "HPACK: Header Compression for HTTP/2", RFC 7541, May 2015, URL:

https://tools.ietf.org/html/rfc7541.

[RFC7641] Kartke, K., "Observing Resources in the Constrained Application Protocol (CoAP)", RFC 7641,

September 2015, URL: http://www.rfc-editor.org/info/rfc7641.

[RFC768] J. Postel ISI "User Datagram Protocol", 1980, URL: https://www.rfc-editor.org/info/rfc768.

[RFC7925] H. Tschofenig, et al., "Transport Layer Security (TLS) / Datagram Transport Layer Security (DTLS)

Profiles for the Internet of Things", RFC 7925, July 2016, URL: https://tools.ietf.org/html/rfc7925.

[RFC793] Information Sciences Institute University of Southern California "Transmission Control Protocol", RFC

793, September 1981, URL: https://www.rfc-editor.org/info/rfc793.

[RFC7959] Bormann, C. and Z. Shelby, "Block-Wise Transfers in the Constrained Application Protocol (CoAP)",

RFC 7959, August 2016, URL: http://www.rfc-editor.org/info/rfc7959.

[RFC8095] G. Fairhurst, et al., "Services Provided by IETF Transport Protocols and Congestion Control

Mechanisms", RFC 8095, March 2017, URL: https://tools.ietf.org/html/rfc8095.

[RFC8132] P. van der Stok, et al., "PATCH and FETCH Methods for the Constrained Application Protocol (CoAP)",

RFC 8132, April 2017, URL: https://tools.ietf.org/html/rfc8132.

[RFC8323] C. Bormann, et al., "CoAP (Constrained Application Protocol) over TCP, TLS, and WebSockets",

RFC8323), February 2018, URL: https://tools.ietf.org/html/rfc8323.

[I-D.ietf-core-coap-

pubsub]

M. Koster, et al., "Publish-Subscribe Broker for the Constrained Application Protocol (CoAP)", draft-ietf-

core-coap-pubsub-05 (work in progress), July 2018, URL: https://tools.ietf.org/html/draft-ietf-core-coap-

pubsub-05.

[MQTT] Banks, A., and R. Gupta, "OASIS Standard MQTT Version 3.1.1 Plus Errata 01", 2015, URL:

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html.

[MQTT-SN] Andy Stanford-Clark and Hong Linh Truong, “MQTT For Sensor Networks (MQTT-SN) “URL:

http://mqtt.org/new/wp-content/uploads/2009/06/MQTT-SN_spec_v1.2.pdf.

[QUIC] J. Iyengar et al., "QUIC: A UDP-Based Multiplexed and Secure Transport" (work in progress), August

2018. URL: https://tools.ietf.org/html/draft-ietf-quic-transport-14.

https://www.rfc-editor.org/info/rfc5246
http://www.rfc-editor.org/info/rfc6120
https://www.rfc-editor.org/info/rfc6347
http://www.rfc-editor.org/info/rfc6455
http://www.rfc-editor.org/info/rfc6455
http://www.rfc-editor.org/info/rfc7230
http://www.rfc-editor.org/info/rfc7231
http://www.rfc-editor.org/info/rfc7252
https://tools.ietf.org/html/rfc7390
http://www.rfc-editor.org/info/rfc7540
https://tools.ietf.org/html/rfc7541
http://www.rfc-editor.org/info/rfc7641
https://www.rfc-editor.org/info/rfc768
https://tools.ietf.org/html/rfc7925
https://www.rfc-editor.org/info/rfc793
http://www.rfc-editor.org/info/rfc7959
https://tools.ietf.org/html/rfc8095
https://tools.ietf.org/html/rfc8132
https://tools.ietf.org/html/rfc8323
https://tools.ietf.org/html/draft-ietf-core-coap-pubsub-05
https://tools.ietf.org/html/draft-ietf-core-coap-pubsub-05
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://mqtt.org/new/wp-content/uploads/2009/06/MQTT-SN_spec_v1.2.pdf

OMA-WP-Protocol_Comparison-V1_0-20181007-C Page 6 (22)

 2018 Open Mobile Alliance All Rights Reserved.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-Template-WhitePaper-20180411-I]

2. Introduction
Many standards-developing organizations have contributed various technological building blocks to make IoT deployments

more robust and secure. A popular debate among technologists working on IoT deployments is about the best choice of

protocols for getting data from and to IoT devices. In this article, members of the IPSO Working Group considered at six

standardized protocols (HTTP, HTTP/2, WebSockets, XMPP, MQTT, CoAP), and refer to them as “transfer protocols.” This

is not a comprehensive list of protocols in use in IoT, but it represents an example of each of the different constructs, reliable,

unreliable, REST, publish/subscribe, chat, point to point, client/server, extended services etc.

This whitepaper compares the differences between these six transfer protocols as used with IoT devices. The purpose is to

provide technical and product personnel a way to assess the impact of each protocol and what they provide with regard to

their IoT products. IoT products will likely require a suite of standard protocols to support the many different configurations

and requirements of the systems/services that they are deployed in. Eight functional areas that represent the needs of IoT

deployments are provided for a more concise comparison between the transfer protocols:

 Handshake requirements: What are the communication basics and the overall architecture? Does the

transfer protocol require a reliable transport?

 For session-based transfer protocols: How is communication interaction achieved? Is it a request/response,

publish/subscribe, or peer-to-peer pattern?

 Native security support

 Header/payload structure: What is the per-message overhead? What options are there?

 TCP/UDP support

 Maturity

 Target application space

 Additional features

This whitepaper also provides a high-level overview of each transfer protocol and offers background for the more detailed

comparison.

Complete systems typically employ technologies in a hierarchical manner, often organized in the form of a protocol stack, as

shown in the table below. This whitepaper focuses only on transfer protocols.

Protocol Category Examples

Frameworks

Use transfer protocols to connect endpoints, define common

messaging and data model to support IoT communications.

Lightweight M2M, TR-069, OCF

Transfer Protocols

IP-based protocols used to transfer application data.

HTTP, HTTP/2, WebSockets, XMPP, MQTT, CoAP

Transport Protocols

Provide end-to-end service to an application by the transport (see

also RFC 8095).

Reliable transport (such as TCP), unreliable transport

(such as UDP), and pseudo-transports offering security

features (such as TLS and DTLS).

Physical and Data Link Layer 2 Protocols

Provide the physical and data link layer functionality, as defined

by the ISO OSI model.

Ethernet, Wi-Fi

Table 1 - Protocol Category

OMA-WP-Protocol_Comparison-V1_0-20181007-C Page 7 (22)

 2018 Open Mobile Alliance All Rights Reserved.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-Template-WhitePaper-20180411-I]

3. Summary

3.1 Handshake requirements/interaction patterns

Point to point protocols, including HTTP, HTTP/2, WebSockets and CoAP, require a direct IP connectivity between

endpoints. Initiation of the connection requires the endpoint to provide a server (listening on a specific TCP or UDP port).

HTTP was built for Internet communication and is the basis for REST-based communication. There are many

implementations and well-known resources for HTTP.

When deploying devices in environments where there is no Internet connection (typical with a home network running on a

Local Area Network behind a firewall) HTTP, WebSockets, and CoAP can be used to connect the device to the user or to

other devices, such as gateways, that provide access beyond the LAN.

When deploying devices that have constrained resources (CPU, RAM, network bandwidth), CoAP provides a smaller

footprint than HTTP/1.1. There are two main reasons for the smaller footprint: first, a CoAP implementation is more

lightweight thanks to its use of UDP, since many of the complex features of TCP (such as the sophisticated congestion

control mechanism) are not needed. Second, HTTP provides additional features that are often not required on low-end IoT

devices. Furthermore, CoAP was designed to enable simple implementations and low resource consumption both in the

network and endpoints.

A major drawback to HTTP/1.1 for IoT is the header format, which is verbose and not optimized for constrained

environments.

HTTP/2 improves on HTTP by adding bi-directional communication and push messages. HTTP/2 uses TCP and TLS;

additionally a new header compression technique (called HPACK, see RFC 7541) has been introduced. WebSockets improve

on HTTP/1.1 by providing a mechanism to keep the connections open and exchanging arbitrary data between endpoints.

CoAP provides similar REST services as HTTP, but with a reduced footprint.

For group communication, XMPP and MQTT provide a single connection to a server/broker where all endpoints can

communicate with each other using an application-layer addressing style. XMPP uses a JIDs (Jabber IDs) and MQTT uses

topics to convey messages between endpoints.

MQTT provides a lighter client implementation than XMPP, but does not provide presence notifications. XMPP is XML-

based communication, and therefore more verbose than MQTT.

Publish/subscribe support is available for CoAP with [I-D.ietf-core-coap-pubsub], and CoAP may become an alternative to

XMPP, and a more standardized alternative to MQTT. CoAP is more lightweight than XMPP since it inherits the efficient

on-the-wire encoding of CoAP. CoAP also standardizes the resource model based on the RESTful design pattern, unlike

MQTT, which leaves the structure of topics unspecified.

3.2 Session based, publish-subscribe vs. request-response
HTTP/1.1 provides unidirectional client-to-server communication, and relies on TCP. CoAP provides a similar service to

HTTP/1.1, but CoAP can communicate over unreliable transport with UDP.However, CoAP can also utilize additional

transports (e.g. TCP, SMS, LoRaWAN, etc.). HTTP/2 adds a server push to HTTP/1.1 providing server-to-client messaging.

WebSockets provide a full-duplex communication protocol over TCP. XMPP provides peer-to-peer communication, where

each endpoint may transmit messages at any time. XMPP clients utilize XMPP servers to relay request and response

messages. XMPP provides a single connection to an XMPP server to communicate with any number of XMPP clients.

3.3 Security
Each analyzed transfer protocol relies on either DTLS or TLS as the underlying communication security protocol.

For point to point transfer protocols (HTTP/1.1, HTTP/2, WebSockets, and CoAP), DTLS/TLS provides end to end security.

OMA-WP-Protocol_Comparison-V1_0-20181007-C Page 8 (22)

 2018 Open Mobile Alliance All Rights Reserved.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-Template-WhitePaper-20180411-I]

For transfer protocols that use intermediate servers (such as XMPP and MQTT), TLS offers communication security only on

each leg. This means that you may need a higher-layer security mechanism in addition to TLS when end-to-end security is

needed. Furthermore, an access control mechanism may be needed for these transfer protocols to determine which client can

see which communication interaction.

3.4 Header Payload

HTTP/1.1 is used for web services, and has more overhead than CoAP. WebSockets, after initial setup, has a reduced header

overhead at the loss of a standardized protocol format.

XMPP has the largest header overhead to the use of XML. The MQTT header has low overhead due to its binary encoding

(similar to CoAP).

3.5 Maturity
HTTP is the most mature candidate in the list of transfer protocols analyzed. HTTP/2, WebSockets and CoAP are more

recent developments. XMPP has existed for over 10 years. MQTT 3.1.1 was released in 2014.

OMA-WP-Protocol_Comparison-V1_0-20181007-C Page 9 (22)

 2018 Open Mobile Alliance All Rights Reserved.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-Template-WhitePaper-20180411-I]

Features HTTP/1.1 HTTP/2 WebSockets XMPP MQTT CoAP

 Handshake requirements/interaction patterns (reliability)

General HTTP uses TCP as the

underlying transport protocol.
The interaction pattern is

request/response with pipelining

and keep-alive.

Data transmission is reliable

thanks to the properties of TCP.

HTTP is a point to point

protocol (no multicast support).

HTTP uses methods (such as

GET, POST, PUT, DELETE) to
indicate the desired action on

the identified resource. Status

codes (200 OK, etc.) indicate
the success or failure condition

of the request.

Similar to HTTP with three

major additions: HTTP/2 allows
multiple concurrent exchanges

on the same connection (via so-

called streams). It also
introduces unsolicited push of

representations from servers to

clients. Finally, HTTP/2
introduces compression of

headers.

Uses HTTP for WebSockets

negotiation and then TCP for
regular data communication.

WebSockets support new
header fields: Upgrade,

Connection:upgrade,

Sec-WebSocket-Key,
Sec-WebSocket-Protocol,

and Sec-WebSocket-Version.

Confirmation at handshake

layer is through HTTP headers:

Sec-WebSocket-Accept and
Sec-WebSocket-Protocol

The main goal of WebSockets
is to keep the TCP connection

open for extended durations,

providing bi-directional
communication.

XMPP uses a distributed client-

server architecture, wherein a
client must connect to a server

to gain access to other

endpoints in the network.
Clients are then allowed to

exchange XML messages

(called stanzas) with other
clients, which can be associated

with other servers.

XMPP provides a near-real-

time exchange of structured, yet

extensible, data between any
two or more network entities.

XMPP allows for asynchronous
communication and does not

support the REST methodology.

Instead, the communication
uses a stream of XML stanzas.

MQTT provides a messaging

transport that is agnostic to the
content of the payload.

MQTT provides bi-directional
communication between clients

via the central server.

It uses a publish/subscribe

message pattern that provides

one-to-many message
distribution and decoupling of

applications.

CoAP supports reliable and

unreliable delivery of data.
Reliable delivery implies

that the sender marks a

request as “Confirmable”
and expects an answer from

the receiver. If that answer

does not arrive the client
retransmits the request.

CoAP provides two layers of
communication: a reliability

layer and a REST layer,

which mimics HTTP with
methods such as POST,

PUT, GET, DELETE.

PATCH and FETCH was
added to CoAP in RFC

8132.

Transport TCP TCP TCP TCP TCP

UDP with MQTT-SN

UDP with RFC 7252 (TCP

support available with

[RFC8323], which is used to

ease Firewall traversal)

Security TLS TLS TLS TLS TLS DTLS with RFC 7252

TLS with [RFC8323]

Guaranteed

delivery?

Yes Yes Yes Yes (for hop-by-hop) and No

(for end-to-end)

Yes (depending on the QoS

settings)

Optional (depending on the

selected delivery option).

With [RFC8323] guaranteed
delivery is ensured.

REST supported Yes Yes No No No Yes

Pub/Sub

supported

No No No Yes Yes RFC 7461 is an extension for

CoAP that enables CoAP
clients to retrieve a

representation of a resource

and keep this representation
updated by the server over a

period of time.

Draft-ietf-core-pubsub
defines CoAP pub/sub

broker.
Group
Communication

No No No Yes (using pub/sub at the
application layer)

Yes (using pub/sub at the
application layer)

Yes (using IP multicast).

OMA-WP-Protocol_Comparison-V1_0-20181007-C Page 10 (22)

 2018 Open Mobile Alliance All Rights Reserved.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-Template-WhitePaper-20180411-I]

HTTP/1.1 HTTP/2 WebSockets XMPP MQTT CoAP

Session based, publish-subscribe vs request-response
Request/Response

Session semantics needs to be

added by the application itself

(e.g., by encoding in the URL,
stored in cookies) since HTTP

does not provide this functionality.

HTTP does not support pub/sub,

but support for it may be added at

the application layer.

Semantics are the same as HTTP

with exception of HTTP/2 Server
Push, in which a web server sends

resources to a web browser before

the browser requests them.

This can be useful when the server

knows the client will need to have
certain specific resources available

to fully process the original

request.

WebSockets provides a persistent

TCP connection. The session is
tied to Sec-WebSocket-Key and

stays alive as long as the

connection remains alive.

The connection itself is exposed

via the "onmessage" and "send"
functions defined by the

WebSocket interface.

Both endpoints may send and

receive messages (bidirectionally)

after the WebSocket has been
established.

The JID Domain uses a FQDN for

the client to connect to the server
using a TCP/TLS long-lived

socket connection.

XMPP provides a bi-directional

stream-based communication

The client authenticates using

SASL, and the server binds a

resource to a stream.

MQTT provides three qualities of

service for message delivery:

1) At most once. Messages are

delivered with best effort, but
message loss can occur.

2) At least once. Messages are

assured to arrive, but duplicates
may occur.

3) Exactly once. Messages are

assured to arrive exactly once.
This level could be used, for

example, with billing systems

where duplicate or lost messages
could lead to incorrect charges

being applied.

MQTT is connection-oriented.

MQTT requires the client to have
a priori knowledge of the topics.

CoAP messages are exchanged

asynchronously between CoAP
endpoints. They are used to

transport CoAP requests and

responses

For asynchronous notifications,

CoAP has the ability to “observe”
resources (see RFC 7641). This

allows an observer to register

interest in specific resource. Upon
changes to the subscribed

resource, the observer will be

notified.

Native Security Support (Click here for OMA IPSO Security White Papers)

HTTP relies on TLS to provide
communication security. The use

of application layer security on top

of HTTP (for example, using
OAuth) is common, but it is

outside the scope of HTTP itself.

TLS is the de facto security
mechanism for everything on the

Internet.

Similar to HTTP. The WebSockets application layer
uses Sec-WebSocket-Key, Origin,

and Version for initial connection.

Apart from that, security is
identical to HTTP (TLS/TCP

secure transport).

XMPP clients use TLS for
communication security and SASL

for users to login into the server.

For end-to-end security (from one
client to another via the XMPP

server), additional security

mechanisms have been used, such
as “off-the-record messaging”.

Messages between two clients may
traverse multiple servers.

XMPP servers may provide

services such as rosters to provide

access control to clients.

MQTT supports user names and
passwords in connection requests

to servers.

MQTT relies on TLS

communication security between

the client and the server.

Messages between two clients may

traverse multiple servers.

There is no access control

mechanism like rosters available

for XMPP.

CoAP uses (D)TLS to offer
communication security.

https://www.omaspecworks.org/wp-content/uploads/2018/03/IPSO-IoT-Credential-Management_Final.pdf

OMA-WP-Protocol_Comparison-V1_0-20181007-C Page 11 (22)

 2018 Open Mobile Alliance All Rights Reserved.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-Template-WhitePaper-20180411-I]

HTTP/1.1 HTTP/2 WebSockets XMPP MQTT CoAP

Session based, publish-subscribe vs request-response
Extremely mature and widely

used. Many commercial and open
source implementations are

available. Many tools available.

Note: Availability for web-based
applications does not always

translate to embedded

environment.

Many implementations exist for

desktop operating systems. The
support on IoT OSs is rather

limited.

Relatively new, but widely

supported by most browsers,
servers, and application

frameworks, such as Node.JS.

Originally RFC 3920 in 2004.

Based on Jabber implementations.
High stability.

MQTT v3.1.1 OASIS was

standardized in 2014 and
originally developed by IBM in

1999.

CoAP was published as an RFC in

June 2014. CoAP has been
selected as an IoT protocol of

choice by other standardization

organizations (such as the OMA,
OCF, oneM2M). Many

implementations are available, and

an overview of some of the
implementations can be found at

http://coap.technology/

Many of the implementations are
targeting the use in embedded

environments.

HTTP HTTP/2 WebSockets XMPP MQTT CoAP

Header/Payload structure
Header overhead is relatively high

since the header uses human-
readable plaintext rather than

binary encoding. Furthermore,

URI parameters need to be
encoded in Base64.

With pipelining and keep-alive,
the TCP socket can remain open,

reducing the number of TCP

messages for setting up and
tearing down the TCP connection.

HTTP/2 introduced binary

encoding and compression of
message headers (RFC 7541). This

greatly reduces the message size.

With the help of streams, the need

for opening multiple concurrent

TCP connections is reduced. This
may be less applicable to most IoT

scenarios, since most IoT devices

require only a simple
communication interaction.

WebSockets uses a special

framing structure.

There is an initial overhead to

establish a WebSockets
communication, but once

established it allows bi-directional

data transfer over a single TCP
connection.

CoAP over WebSockets (see
[RFC8323]) allows a standardized

protocol (namely CoAP) to be

used over WebSockets, which
helps to increase interoperability.

Three types of messages “stanzas”

are supported,
1) Message stanza, which includes

a ‘to’ attribute for the recipient.

2) Presence stanza, which includes
information about network

availability.

3) IQ stanza, which is a
request/response mechanism that

enables an entity to make a request

of, and receive a response from,
another entity.

Due to the use of XML, the
communication overhead is large.

MQTT has a small protocol

overhead (the fixed-length header
is just 2 bytes).

CoAP has a variable length header

structure, which is at minimum 4
bytes long. CoAP uses a binary

encoding for the header and the

options carried in the header. The
encoding of the data in the body of

the message depends on the

application data being exchanged.

For CoAP over TCP

(see [RFC8323]), the efficient
encoding of the header has been

maintained although slightly

changed to elide two header fields
and to add length field of a

variable-size.

TCP/UDP Support

TCP only TCP only TCP only TCP only TCP only CoAP was developed for use over
UDP. CoAP over TCP is defined

in [RFC8323].

Original target application space

Any type of interaction model that

does not require datagram

transport.

HTTP/2 is meant to replace the

use of HTTP on the web and

particularly for the mobile
environment.

Publishing real-time events for

web applications (chat, device

status updates, etc.)

Instant Messaging /Chat

applications

Constrained environments such as

for communication in Machine to

Machine (M2M) and Internet of
Things (IoT) contexts where a

small code footprint is required

and/or network bandwidth is at a
premium.

CoAP is a specialized web transfer

protocol for use with constrained

nodes and constrained
(e.g., low-power, lossy) networks.

Additional features

OMA-WP-Protocol_Comparison-V1_0-20181007-C Page 12 (22)

 2018 Open Mobile Alliance All Rights Reserved.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-Template-WhitePaper-20180411-I]

HTTP/1.1 HTTP/2 WebSockets XMPP MQTT CoAP

Session based, publish-subscribe vs request-response

 Presence: provide information

about the network availability of a
contact (know who is online).

Subscription (pub/sub): presence
information provided only to

contacts that are authorized.

Detailed requirements in RFC
2779.

In addition to MQTT, which relies

on TCP, MQTT-SN was designed
to be used by sensor networks and

uses UDP as a transport protocol.

Organization owner

IETF IETF IETF IETF OASIS IETF

Table 2 - Protocol Comparison Table

OMA-WP-Protocol_Comparison-V1_0-20181007-C Page 13 (22)

 2018 Open Mobile Alliance All Rights Reserved.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-Template-WhitePaper-20180411-I]

1. For IoT devices that are connected using low-power radio technologies, protocols with compact encoding

such as CoAP are the better choice. CoAP is primarily designed for small data transmissions over UDP. It

can also be used for multicast communication, which is useful for both device discovery and group

communication.

2. For IoT devices that require group communication, XMPP, MQTT or CoAP with extensions are all

suitable. Only CoAP can utilize IP multicast. (RFC 7390).

3. Reliable delivery is not critical for some IoT scenarios. For example, an IoT device frequently sending

sensor data can transmit via an unreliable CoAP message, reducing transmission overhead. In the unlikely

case of a message loss, the server will not miss one sensor reading.

4. All these protocols make use of TLS/DTLS-based communication security.

5. HTTP is widely implemented on the Web and smart phones. It can be used with IoT devices that have

robust network connections, since HTTP has higher overhead than other protocols due to the ASCII

encoding of the header.

6. While HTTP/2 provides header compression and other performance-enhancing features, it is still used

less frequently in the embedded environment due to the lack of open source code available for use in IoT

operating systems.

7. Over time, CoAP and MQTT have become more similar. Both protocols are still in active development in

the IETF CoRE working group (for CoAP) and in OASIS (for MQTT).

8. More research is needed to compare the footprint (code size), RAM utilization and performance of the

presented transfer protocols for IoT scenarios with actual traffic patterns.

3.6 QUIC Protocol
Although the QUIC protocol [QUIC] was not included in this comparison, there are valuable attributes worth examining in

the future including:

1) Moving the congestion avoidance algorithms to the application layer (UDP transport)

2) Reducing “round-trips” on mesh networks

a. Optimization of encryption setup

3) Ability to handle packet loss

4) Can fall back to TCP if UDP traffic is perceived to be blocked

3.7 Conclusion
Any of these transfer protocols can be a good fit for an IoT device with sufficient resources (Flash memory, RAM, power,

good Internet connectivity). When resources are scarce, then some of these protocols become less suitable. A few high-level

observations can be made:

1. For IoT devices that are connected using low-power radio technologies, protocols with compact encoding

such as CoAP are the better choice. CoAP is primarily designed for small data transmissions over UDP. It

can also be used for multicast communication, which is useful for both device discovery and group

communication.

2. For IoT devices that require group communication, XMPP, MQTT or CoAP with extensions are all

suitable. Only CoAP can utilize IP multicast. (RFC 7390).

3. Reliable delivery is not critical for some IoT scenarios. For example, an IoT device frequently sending

sensor data can transmit via an unreliable CoAP message, reducing transmission overhead. In the unlikely

case of a message loss, the server will not miss one sensor reading.

4. All these protocols make use of TLS/DTLS-based communication security.

OMA-WP-Protocol_Comparison-V1_0-20181007-C Page 14 (22)

 2018 Open Mobile Alliance All Rights Reserved.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-Template-WhitePaper-20180411-I]

5. HTTP is widely implemented on the Web and smart phones. It can be used with IoT devices that have

robust network connections, since HTTP has higher overhead than other protocols due to the ASCII

encoding of the header.

6. While HTTP/2 provides header compression and other performance-enhancing features, it is still used

less frequently in the embedded environment due to the lack of open source code available for use in IoT

operating systems.

7. Over time, CoAP and MQTT have become more similar. Both protocols are still in active development in

the IETF CoRE working group (for CoAP) and in OASIS (for MQTT).

8. More research is needed to compare the footprint (code size), RAM utilization and performance of the

presented transfer protocols for IoT scenarios with actual traffic patterns.

OMA-WP-Protocol_Comparison-V1_0-20181007-C Page 15 (22)

 2018 Open Mobile Alliance All Rights Reserved.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-Template-WhitePaper-20180411-I]

4. High-Level Description of Protocols Considered

4.1 HTTP

The Hypertext Transfer Protocol (HTTP) is an application protocol is the foundation of data communication for the World

Wide Web and is also used in Internet of Things environments. HTTP is transferred over TCP port 80 (for plaintext) and over

port 443 (for TLS protected communication). It offers stateless operation and in the original design the TCP connection was

closed after every request/response. With HTTP/1.1, a keep-alive technique was added to create the illusion of a persistent

connection and to re-use the same connection for multiple request/response interactions. HTTP uses so-called methods to

indicate the desired action on the identified resource. These methods are GET, POST, PUT, etc., as described in RFC 7231

and RFC 5789 (for PATCH).

The diagram below shows an example with an HTTP GET message sent from the client to the server, followed by a response

(200 OK) from the server with the requested data.

Figure 1 : HTTP GET message sent from the client to the server

4.2 WebSocket

The WebSocket protocol allows web applications to exchange data in both directions over a single TCP connection. It

provides an alternative to repeatedly polling a server via HTTP to accomplish real-time interaction. The diagram below

summarizes the WebSockets integration into HTTP. After the HTTP communication is established, the client sends an

Upgrade request to the server to initiate the WebSocket interaction. When the server responds with a "101 Switching

Protocols" response, the two parties are now able to use the WebSockets functionality. The server keeps the socket

connection open until the client closes it. Once initiated, all traffic between the client and server is bi-directional, allowing for

either end to send WebSocket frames.

Client Server

Method (Get)

URL

HTTP

Method (200 ok)

Data

Application (HTTP)

Protocol Stack

Communication Security (TLS)

Transport (TCP)

Network (IPv4 / IPv6)

Data Link

Physical

OMA-WP-Protocol_Comparison-V1_0-20181007-C Page 16 (22)

 2018 Open Mobile Alliance All Rights Reserved.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-Template-WhitePaper-20180411-I]

Figure 2 : WebSocket - All traffic between the client and server

4.3 CoAP
The Constrained Application Protocol (CoAP) can communicate over UDP/TCP on port 5683 and over DTLS/TLS on port

5684. CoAP supports offers messages exchanges with optional reliability. Both unicast and multicast communication support

is offered. The design of CoAP re-uses HTTP-like methods (POST, PUT, GET, etc.) and for cases where large amounts of

data (such as firmware images) must be transferred, the block-wise transfer extension is available. Block-wise transfer chunks

the larger data item into smaller blocks that are then transmitted individually. Block-wise transfer is described in RFC 7959.

The diagram below shows an example exchange with a Confirmable (CON) message (GET) being sent and an

Acknowledgement message (ACK) in reply. Later, a response message with data utilizes a Non-confirmable message (NON).

Client Server

Method (HTTP Upgrade Request)

Web Socket

Method (101)

WebSocket Frames

HTTP

Protocol Stack

Communication Security (TLS)

Transport (TCP)

Network (IPv4 / IPv6)

Data Link

Physical

WebSockets

OMA-WP-Protocol_Comparison-V1_0-20181007-C Page 17 (22)

 2018 Open Mobile Alliance All Rights Reserved.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-Template-WhitePaper-20180411-I]

Figure 3 : Exchange with a Confirmable (CON) message (GET) being sent and an Acknowledgement message (ACK)

in reply

4.4 XMPP
XMPP (Extensible Messaging and Presence Protocol) provides bi-directional communication between clients via a central

server. XMPP is the standardized protocol behind Jabber, a protocol developed for instant messaging (IM). Each client

connects to the server with a TCP/TLS socket. Once connected, any client can communicate with any other client, and the

server is responsible for message routing. To identify clients, XMPP uses a Jabber Identifier in the form of

node@domain/resource. The identifier consists of three components: The “Node” uniquely identifies a single entity, and the

domain refers to the “home” domain the client connects to. The resource is optional and uniquely identifies a connection.

There may be multiple XMPP servers connected to provide communications across domains. XMPP servers typically provide

a so-called Roster Service that allows clients to indicate to each other that they are connected.

Client Server

Frame (CON)

Message ID

Method (Get)

CoAP

Frame (Ack)

Message ID

Empty

Frame (NON)

Message ID

Response (Data)

Frame (NON)

Message ID

Method (Get)

Frame (NON)

Message ID

Response (Data)

Application (CoAP)

Protocol Stack

Communication Security (DTLS)

Transport (UDP)

Network (IPv4 / IPv6)

Data Link

Physical

OMA-WP-Protocol_Comparison-V1_0-20181007-C Page 18 (22)

 2018 Open Mobile Alliance All Rights Reserved.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-Template-WhitePaper-20180411-I]

Client 1 Server

Connect to Server via TCP / TLS

XMPP

Message to Client 2
From Client 1

Client 2

Connect to Server via TCP / TLS

Message to Client 2
From Client 1

Message to Client 1
From Client 2 Message to Client 1

From Client 2

Application (XMPP)

Protocol Stack

Communication Security (TLS)

Transport (TCP)

Network (IPv 4 / IPv 6)

Data Link

Physical

Figure 4 : XMPP bi-directional communication between clients via a central server

OMA-WP-Protocol_Comparison-V1_0-20181007-C Page 19 (22)

 2018 Open Mobile Alliance All Rights Reserved.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-Template-WhitePaper-20180411-I]

4.5 MQTT
MQTT (Message Queue Telemetry Transport) requires that clients connect to a central server (also known as a broker). From

there, endpoints may publish (write) or subscribe (read on notification) to “topics”.

A PUBLISH message is sent from a client to a server for distribution to subscribers. Each PUBLISH message is associated

with a topic name. This is a hierarchical name space that defines a taxonomy of information sources to which subscribers can

register. A message that is published to a specific topic name is delivered to all connected subscribers for that topic.

“Wildcards” can be used in the hierarchical topic space.

The SUBSCRIBE message allows a client to register an interest in one or more topic names with the server. Messages

published to these topics are delivered from the server to the client as PUBLISH messages. The SUBSCRIBE message also

specifies the QoS level at which the subscriber wants to receive published messages. The topic names are treated by MQTT

as opaque strings without any meaning. No topic names have been standardized.

MQTT provides bi-directional communication between clients via the central server. Each client connects to the server with a

TCP/TLS socket. Once connected, any client can publish and subscribe to topics. In the diagram below, clients use topics for

bi-directional communication.

Figure 5 : MQTT bi-directional communication between clients via the central server

4.5.1 MQTT-SN

MQTT-SN is designed to be as close as possible to MQTT, but is adapted to the peculiarities of a wireless communication

environment such as low bandwidth, high link failures, short message length, etc. It is also optimized for the implementation

on low-cost, battery-operated devices with limited processing and storage resources. MQTT-SN uses UDP for transport

whereas MQTT uses TCP. There are three kinds of MQTT-SN components, MQTT-SN clients, MQTT-SN gateways (GW),

and MQTT-SN forwarders. MQTT-SN clients connect themselves to a MQTT server via a MQTT-SN GW using the MQTT-

SN protocol. A MQTT-SN GW may or may not be integrated with a MQTT server. In case of a stand-alone GW the MQTT

protocol is used between the MQTT server and the MQTT-SN GW. Its main function is the translation between MQTT and

MQTT-SN.

Client 1 Server

Connect to Server via TCP/TLS

MQTT

Publish to topic “client2”

Client 2

Connect to Server via TCP/TLS

Notification from topic

“client2”

Publish to topic “client1”Notification from topic

“client1”

Subscribe to topic “client2”
Subscribe to topic “client1”

Application (MQTT)

Protocol Stack

Communication Security (TLS)

Transport (TCP)

Network (IPv4 / IPv6)

Data Link

Physical

OMA-WP-Protocol_Comparison-V1_0-20181007-C Page 20 (22)

 2018 Open Mobile Alliance All Rights Reserved.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-Template-WhitePaper-20180411-I]

MQTT-SN

client

MQTT-SN

client

MQTT-SN

Forwarder

MQTT-SN

Gateway

MQTT-SN

client

MQTT-SN

client

MQTT-SN

MQTT-S

MQTT-SN

MQTT-SN

MQTT
broker

MQTT

MQTT-SN

Gateway

Figure 6 : Translation between MQTT and MQTT-SN

OMA-WP-Protocol_Comparison-V1_0-20181007-C Page 21 (22)

 2018 Open Mobile Alliance All Rights Reserved.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-Template-WhitePaper-20180411-I]

5. Security
Each of the transfer protocols discussed above uses either Transport Layer Security (TLS) over TCP or Datagram Transport

Layer Security (DTLS) over UDP. TLS and DTLS are widely used thanks to the fact that they are open-source protocols that

contain crypto-security details with an industry-tested API.

DTLS uses the same handshake messages and flows as TLS, with three principal differences:

 A stateless cookie exchange has been added to prevent denial-of-service attacks. This ensures that the

client is reachable at the given IP address. To this end, the HelloVerifyRequest message has been added to

DTLS 1.0.

 Enhancements have been made to the DTLS handshake header to handle message loss, reordering, and

fragmentation. Retransmission timers were added to the specification to detect the loss of handshake

messages.

 Extensions were made to the record layer to allow for independent decryption of individual records. This

required a sequence number to be added, along with an epoch field to deal with rekeying.

With these exceptions, the DTLS message formats, flows, and logic are the same as those of TLS 1.2. The subsequent figure illustrates the

initial (cold-start) TLS and DTLS exchanges. These handshakes are computationally demanding, but occur only when the session is

initiated. Once the handshake has been completed, application data can be protected for integrity and confidentiality using highly-efficient

symmetric key cryptography. Note that the details of the handshake vary, and some of the shown messages are even optional. The details of

the exchanges depend on the selected cipher suite and the negotiated extensions. More details about TLS and DTLS profiles for IoT can be

found in RFC 7925.

Figure 7 : Transport Layer Security (TLS) over TCP or Datagram Transport Layer Security (DTLS) over UDP

Client Server

Certificate

ClientKeyExchange

CertificateVerify

[ChangeCipherSpec]

Finished

ClientHello

ServerHello

Certificate

ServerKeyExchange

CertificateRequest

ServerHelloDone

[ChangeCipherSpec]

Finished

Application Data

DTLS

HelloVerifyRequest

(cookie)

ClientHello

Client Server

Certificate

ClientKeyExchange

CertificateVerify

[ChangeCipherSpec]

Finished

ClientHello

ServerHello

Certificate

ServerKeyExchange

CertificateRequest

ServerHelloDone

[ChangeCipherSpec]

Finished

Application Data

TLS

OMA-WP-Protocol_Comparison-V1_0-20181007-C Page 22 (22)

 2018 Open Mobile Alliance All Rights Reserved.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-Template-WhitePaper-20180411-I]

Appendix A. Change History (Informative)
Document Identifier Date Sections Description

OMA-WP-Protocol_Comparison-V1_0-

20180905-D
05 Sep 2018 all Baseline as agreed in OMA-IPSO-2018-0047-

IPSO_Protocol_Comparison

OMA-WP-Protocol_Comparison-V1_0-

20181001-D
01 Oct 2018 OMA-IPSO-2018-0062-

INP_WP_Protocol_Comparison_Ericsson_Editorial_Updates

OMA-WP-Protocol_Comparison-V1_0-

20181007-C
07 Oct 2018 n/a Status changed to Candidate by IPSO

 Doc Ref # OMA-IPSO-2018-0066-

INP_Protocol_Comparison_V1_0_WP_for_Approval_notification

