

Wireless Application Protocol
WAP-161-WMLScriptCrypto-20010620-a

Copyright 2001 Wireless Application Protocol Forum Ltd. All Rights Reserved. Terms and conditions of use are available
from the Wireless Application Protocol Forum Ltd. Web site (http://www.wapforum.org/what/copyright.htm).

WMLScript Crypto Library

 Version 20-Jun-2001

A list of errata and updates to this document is available from the WAP Forum TM Web site, http://www.wapforum.org/, in the
form of SIN documents, which are subject to revision or removal without notice.

 (c) 2001 Wireless Application Protocol Forum, Ltd

All rights reserved.

Page 2(27)

You may use this document or any part of the document for internal or educational purposes only, provided you do not
modify, edit or take out of context the information in this document in any manner. You may not use this document in any
other manner without the prior written permission of the WAP Forum™. The WAP Forum™ authorizes you to copy this
document, provided that you retain all copyright and other proprietary notices contained in the original materials on any
copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an
endorsement of the products or services offered by you.

 The WAP Forum™ assumes no responsibility for errors or omissions in this document. In no event shall the WAP
Forum™ be liable for any special, indirect or consequential damages or any damages whatsoever arising out of or in
connection with the use of this information.

WAP Forum TM members have agreed to use reasonable endeavors to disclose in a timely manner to the WAP Forum the
existence of all intellectual property rights (IPR’s) essential to the present document. The members do not have an
obligation to conduct IPR searches. This information is publicly available to members and non-members of the WAP
Forum and may be found on the “WAP IPR Declarations” list at http://www.wapforum.org/what/ipr.htm. Essential IPR is
available for license on the basis set out in the schedule to the WAP Forum Application Form.

No representations or warranties (whether express or implied) are made by the WAP Forum TM or any WAP Forum member
or its affiliates regarding any of the IPR’s represented on this list, including but not limited to the accuracy, completeness,
validity or relevance of the information or whether or not such rights are essential or non-essential.

This document is available online in PDF format at http://www.wapforum.org/.

Known problems associated with this document are published at http://www.wapforum.org/.

Comments regarding this document can be submitted to the WAP Forum TM in the manner published at
http://www.wapforum.org/.

 (c) 2001 Wireless Application Protocol Forum, Ltd

All rights reserved.

Page 3(27)

Contents

1 . SCOPE ..4

2 . DOCUMENT STATUS ...5

2.1 COPYRIGHT NOTICE ...5
2.2 ERRATA...5
2.3 COMMENTS..5

3 . REFERENCES..6

3.1 NORMATIVE REFERENCES...6
3.2 INFORMATIVE REFERENCES..7

4 . DEFINITIONS AND ABBREVIATIONS..8

4.1 DEFINITIONS ..8
4.2 ABBREVIATIONS..8

5 . CRYPTOGRAPHIC LIBRARY DESCRIPTION ..9

5.1 SIGNTEXT ..9
5.1.1 Introduction..9
5.1.2 signText function definition..10
5.1.3 Handling of Certificates ..12
5.1.4 Implementation using the WIM..12

6. FORMAT OF SIGNEDCONTENT ..14

6.1. USAGE WITH SIGNTEXT...16
6.2. HASH CALCULATION AND RELATIONSHIP TO PKCS#7 SIGNEDDATA..17

APPENDIX A LIBRARY SUMMARY..21

APPENDIX B SIGNATURE CALCULATION...23

B.1 ECDSA SIGNATURE CALCULATION ...23
B.2 RSA PKCS#1 SIGNATURE CALCULATION ...24

APPENDIX C UTC TIME..25

APPENDIX D STATIC CONFORMANCE REQUIREMENT ..26

D.1 CLIENT OPTIONS ..26
D.2 SCRIPT ENCODER OPTIONS..26
D.3 APPLICATION OPTIONS...26

Changes made to the 05-Nov-1999 version:
1. Description of ECDSA calculation (Appendix B)
2. Addition of an SCR (3.1, Appendix D)
3. Corrected authenticated attributes templates; added template for random nonce usage (6.2)
4. Character set clarification (5.1.2)
5. Clarification regarding hash input (6)

 (c) 2001 Wireless Application Protocol Forum, Ltd

All rights reserved.

Page 4(27)

1. Scope
Wireless Application Protocol (WAP) is a result of continuous work to define an industry-wide
specification for developing applications that operate over wireless communication networks. The
scope for the WAP Forum is to define a set of standards to be used by service applications. The
wireless market is growing very quickly and reaching new customers and services. To enable
operators and manufacturers to meet the challenges in advanced services, differentiation and
fast/flexible service creation, WAP defines a set of protocols in transport, session and application
layers. For additional information on the WAP architecture, refer to Wireless Application Protocol
Architecture Specification [WAPARCH].

This document specifies the library interface for WMLScript [WMLScript] to provide cryptographic
functionality of a WAP client. In addition this document specifies a signed content format to be used to
convey signed data to/from WAP devices. This functionality complements transport layer security
provided by [WAPWTLS].

The notation and other conventions related to describing a WMLScript library are according to
[WMLScript] and [WMLSSL].

 (c) 2001 Wireless Application Protocol Forum, Ltd

All rights reserved.

Page 5(27)

2. Document Status
This document is available online in the following formats:

• PDF format at http://www.wapforum.org/.

2.1 Copyright Notice

© Copyright Wireless Application Protocol Forum Ltd, 2001 all rights reserved.

2.2 Errata

Known problems associated with this document are published at http://www.wapforum.org/.

2.3 Comments

Comments regarding this document can be submitted to the WAP Forum in the manner published at
http://www.wapforum.org/.

 (c) 2001 Wireless Application Protocol Forum, Ltd

All rights reserved.

Page 6(27)

3. References

3.1 Normative references

[ASN1] ISO/IEC 8824-1:1995 Information technology – Abstract Syntax Notation One
(ASN.1) – Specification of basic notation.

[DER] ISO/IEC 8825-2:1995 Information technology – ASN.1 encoding rules: Specification
of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and
Distinguished Encoding Rules (DER).

[ECMA262] Standard ECMA-262: "ECMAScript Language Specification", ECMA, June 1997
[IEEE754] ANSI/IEEE Std 754-1985: "IEEE Standard for Binary Floating-Point Arithmetic".

Institute of Electrical and Electronics Engineers, New York (1985).
[PKCS1] PKCS #1: RSA Encryption Standard”, version 1.5, RSA Laboratories, November

1993.
[PKCS7] PKCS #7: Cryptographic Message Syntax Standard, version 1.5, RSA Laboratories,

November 1993.
[PKCS9] PKCS #9: Selected Attribute Types, version 1.1, RSA Laboratories, November

1993.
[PKCS15] PKCS #15: Cryptographic Token Information Standard”, version 1.0, RSA

Laboratories, April 1999. URL: ftp://ftp.rsa.com/pub/pkcs/pkcs-15/pkcs15v1.doc
[RFC1521] “MIME (Multipurpose Internet Mail Extensions), Part One: Mechanisms for Specifying

and Describing the Format of Internet Message Bodies”, N. Borenstein, et al,
September 1993. URL:
ftp://ftp.isi.edu/in-notes/rfc1521.txt

[RFC1738] "Uniform Resource Locators (URL)", T. Berners-Lee, et al., December 1994. URL:
ftp://ftp.isi.edu/in-notes/rfc1738.txt

[RFC1808] "Relative Uniform Resource Locators", R. Fielding, June 1995. URL:
ftp://ftp.isi.edu/in-notes/rfc1808.txt

[RFC2119] "Key words for use in RFCs to Indicate Requirement Levels", S. Bradner, March
1997. URL: ftp://ftp.isi.edu/in-notes/rfc2119.txt

[RFC2459] "Internet X.509 Public Key Infrastructure, Certificate and CRL Profile", R. Housley, at
al., January 1999. URL: ftp://ftp.isi.edu/in-notes/rfc2459.txt

[RFC2560] “X.509 Internet Public Key Infrastructure: Online Certificate Status Protocol –
OCSP”, M. Myers, R. Akney, A. Malpani, S. Galperin, and C. Adams; IETF RFC
2560, June 1999.

[UNICODE] "The Unicode Standard: Version 2.0", The Unicode Consortium, Addison-Wesley
Developers Press, 1996. URL: http://www.unicode.org/

[UTF8] "UTF-8, a transformation format of Unicode and ISO 10646", F. Yergeau, January 1998.
URL:ftp://ftp.isi.edu/in-notes/rfc2279.txt

[WAPARCH] "Wireless Application Protocol Architecture Specification", WAP Forum,
30-April-1998. URL: http://www.wapforum.org/

[WAPWIM] “WAP Identity Module”, WAP-260-WIM, WAP Forum Ltd.
URL:http//www.wapforum.org/

[WAPWTLS] "Wireless Transport Layer Security", WAP-261-WTLS, WAP Forum Ltd. URL:
http://www.wapforum.org/

[WML] "Wireless Markup Language Specification", WAP Forum, 30-April-1998. URL:
http://www.wapforum.org/

 (c) 2001 Wireless Application Protocol Forum, Ltd

All rights reserved.

Page 7(27)

[WMLScript] "WMLScript Language Specification", WAP Forum, 30-April-1998. URL:
http://www.wapforum.org/

[WMLSSL] "WMLScript Standard Libraries Specification", WAP Forum, 30-April-1998. URL:
http://www.wapforum.org/

[WAPCREQ] "Specification of WAP Conformance Requirements", WAP-221-CREQ, WAP
Forum Ltd, URL:http//www.wapforum.org/"

[X9.62] “The Elliptic Curve Digital Signature Algorithm (ECDSA)”, ANSI X9.62 Working Draft,
September 1998.

3.2 Informative References

[JavaScript] "JavaScript: The Definitive Guide", David Flanagan. O'Reilly & Associates, Inc. 1997
[RFC2068] "Hypertext Transfer Protocol - HTTP/1.1", R. Fielding, et al., January 1997. URL:

ftp://ftp.isi.edu/in-notes/rfc2068.txt
[WAE] "Wireless Application Environment Specification", WAP Forum, 30-April-1998. URL:

http://www.wapforum.org/
[WSP] "Wireless Session Protocol", WAP Forum, 1998. URL: http://www.wapforum.org/
[XML] "Extensible Markup Language (XML), W3C Proposed Recommendation 10-

February-1998, REC-xml-19980210", T. Bray, et al, February 10, 1998. URL:
http://www.w3.org/TR/REC-xml

 (c) 2001 Wireless Application Protocol Forum, Ltd

All rights reserved.

Page 8(27)

4. Definitions and Abbreviations

4.1 Definitions

The following are terms and conventions used throughout this specification.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY" and "OPTIONAL" in this document are to be interpreted as
described in [RFC2119].

Please refer to [WMLScript] and [WMLSS] for WMLScript related terminology.

4.2 Abbreviations

For the purposes of this specification, the following abbreviations apply:

API Application Programming Interface
CA Certification Authority
ECMA European Computer Manufacturer Association
HTTP HyperText Transfer Protocol [RFC2068]
LSB Least Significant Bits
MSB Most Significant Bits
PKCS Public-Key Cryptography Standards
RFC Request For Comments
RSA Rivest Shamir Adleman public key algorithm
SHA Secure Hash Algorithm
UI User Interface
URL Uniform Resource Locator
W3C World Wide Web Consortium
WWW World Wide Web
WSP Wireless Session Protocol
WTLS Wireless Transport Layer Security
WTP Wireless Transport Protocol
WAP Wireless Application Protocol
WAE Wireless Application Environment
WTA Wireless Telephony Applications
WTAI Wireless Telephony Applications Interface
WBMP Wireless BitMaP
WIM WAP Identity Module

 (c) 2001 Wireless Application Protocol Forum, Ltd

All rights reserved.

Page 9(27)

5. Cryptographic Library Description

Name: Crypto

Library ID: 6

Description: This library contains cryptographic functions.

The current library specification supports digital signature functionality . Other functionality (like
encryption/decryption or symmetric key based MAC) may be added in future versions.

5.1 signText

5.1.1 Introduction

Many kinds of applications, e.g., electronic commerce, require the ability to provide persistent proof
that someone has authorised a transaction. Although WTLS [WAPWTLS] provides transient client
authentication for the duration of a WTLS connection, it does not provide persistent authentication for
transactions that may occur during that connection. One way to provide such authentication is to
associate a digital signature with data generated as the result of a transaction, such as a purchase
order or other financial document.

To support this requirement, the browser provides a WMLScript function, Crypto.signText, that asks
the user to sign a string of text. A call to the signText method displays the exact text to be signed and
asks the user to confirm that. After the data has been signed and both the signature and the data
have been sent across the network, the server can extract the digital signature and validate it, and
possibly store it for accountability purposes.

The browser SHOULD use special signature keys that are distinct from authentication keys used for
WTLS. A WIM [WAPWIM] may be used for private key storage and signature computation.

 (c) 2001 Wireless Application Protocol Forum, Ltd

All rights reserved.

Page 10(27)

5.1.2 signText function definition

Function: signedString = Crypto.signText(stringToSign, options, keyIdType, keyId)

Function ID: 16

Description: The function requests that a user digitally signs a text string. The calling
script provides the text to sign (stringToSign) which MUST be displayed to
the user. The user may choose either to cancel or approve the signing
operation. If several certificates are available that match the criteria indicated
in parameters, the choices should be indicated to the user, using e.g., labels
of the certificates. If the user approves the operation, the browser MUST ask
for user verification information for the private key (e.g., the WIM PIN for a
non-repudiation key). If the user enters the correct information, signText
signs the specified string and returns signedString to the script as String,
formatted as base-64 [RFC1521] encoding of SignedContent.

 (c) 2001 Wireless Application Protocol Forum, Ltd

All rights reserved.

Page 11(27)

Parameters: stringToSign = String

A string which MUST be displayed to the user. In case the string is a
concatenation of strings in different character sets, the implementation has
to convert the string to a certain single encoding, before processing in this
function. The recommended encoding method is UTF-8 [UTF8].

options = Integer

Contains several option values, ORed together:

0x0001 – INCLUDE_CONTENT. If this option is set, the browser MUST
include the stringToSign in the result.

0x0002 – INCLUDE_KEY_HASH. If this option is set, the browser MUST
include the hash of the public key corresponding to the signature key in the
result.

0x0004 – INCLUDE_CERTIFICATE. If this option is set, the browser MUST
include the certificate or a URL of the certificate in the result (whether the
browser includes the certificate content or a URL depends on which one is
available). If the browser does not have access to a certificate, it MUST
return “error:noCert”.

keyIdType = Integer

Indicates the type of a key identifier:

0 – NONE. No key identifier is supplied. The browser may use any key and
certificate available.

1 – USER_KEY_HASH. A SHA-1 hash of the user public key is supplied in
the next parameter. The browser MUST use the signature key that
corresponds to the given public key hash or, if this key is not available,
return “error:noCert”.

2 – TRUSTED_KEY_HASH. A SHA-1 hash of a trusted CA public key (or
multiple of them) is supplied in the next parameter. The browser MUST use
a signature key that is certified by the indicated CA (or some of them). If no
such key is available, the browser MUST return “error:noCert”.

keyId = String

Identifies the key in a way based on the previous parameter.

For a SHA-1 public key hash, contains the 20-byte hash. Multiple values
may be concatenated. Number of elements in the list is implied by the
length of the parameter.

 (c) 2001 Wireless Application Protocol Forum, Ltd

All rights reserved.

Page 12(27)

Return
value:

String or Invalid.

The content of the return string is the following

• in case of a succesful operation, the base-64 [RFC1521] encoding of
SignedContent

• if there is no proper certificate or signature key available, the string
“error:noCert”

• if the user cancelled the operation, the string “error:userCancel”

Exceptions: Errors in parameters, encoding or internal errors result in an invalid return
value.

Example: var foo = Crypto.signText("Bill of Sale\n------------------\n3
Bolognese $18.00\n1 Pepperoni $7.00\n4 Lemonade $6.00\n----
--------------\nTotal Price $31.00",
0, 1,
"\x37\x00\xB6\x96\x37\x75\xE3\x93\x48\x74\xD3\x98\x47\x53\x94\
x34\x58\x97\xB5\xD6");
// The application indicates the signature key

5.1.3 Handling of Certificates

For verification of the digital signature, the server must have access to a user’s certificate that is
signed by a Certification Authority (CA) recognised by the server. There are several possibilities for
how the server can get access to the user’s certificate:
1. The certificate is appended to the signature.
2. The public key hash is appended to the signature. The server is able to fetch the corresponding

certificate from a certificate service.
3. A URL of the certificate is appended to the signature. The server is able to fetch the certificate

using internet methods.
4. The server knows the user certificate based on a previous data exchange with the user, e.g., a

previous digital signature.

5.1.4 Implementation using the WIM

This chapter describes how to implement the signText function using the WIM [WAPWIM].

A non-repudiation key is used for signing. This implies usage of a an authentication object used for
this key only, and that the verification requirement cannot be disabled. E.g., in case of a PIN, the PIN
MUST be entered separately for each signature operation.

The PKCS#15 key ID (commonObjectAttributes.id) has the value of the public key hash. So, it can be
used to find the proper key or certificate, if the key is identified by USER_KEY_HASH. The certificate
issuer public key hash (PKCS15CommonCertificateAttributes.requestId) can be used to find a proper
certificate, if it is identified by TRUSTED_KEY_HASH.

Labels, contained in entries that describe private keys and certificates
(commonObjectAttributes.label) SHOULD be used to display options to use for signing.

 (c) 2001 Wireless Application Protocol Forum, Ltd

All rights reserved.

Page 13(27)

For a smart card implementation, the procedure is described in [WAPWIM], chapter 11.4.6.

 (c) 2001 Wireless Application Protocol Forum, Ltd

All rights reserved.

Page 14(27)

6. Format of SignedContent
This section defines a format for transmission of signed content to/from WAP devices. It is described
below using WTLS presentation [WAPWTLS]. Hash values of authenticated attributes are computed
using a PKCS#7 template to provide end-to-end authentication between WAP clients and devices
supporting the PKCS#7 standard for signed data representation.

enum {null(0), rsa_sha_pkcs1(1), ecdsa_sha_p1363(2), (255)}
DataSignatureAlgorithm;

Item Description

null No signature present.

rsa_sha_pkcs
1

The signature is calculated according to [PKCS1] (see Appendix B), using octet
string output.

ecdsa_sha The signature is calculated according to [X9.62], using octet string output.

struct {
 DataSignatureAlgorithm algorithm;
 switch (algorithm) {
 case null: struct {};
 default: opaque signature<0..2^16-1>;
 };
} Signature;

enum { implicit(0), sha_key_hash(1), wtls_certificate(2),
x509_certificate(3), x968_certificate(4), certificate_url(5), (255)}
SignerInfoType;

Item Description

implicit The signer is implied by the content.

sha_key_hash The SHA-1 hash of the public key, encoded as specified in [WAPWTLS].

wtls_certificate A WTLS certificate.

x509_certificat
e

An X.509v3 certificate.

x968_certificat
e

An X9.68 certificate.

certificate_url A URL where the certificate is located.

struct {
 SignerInfoType signer_info_type;
 switch (signer_info_type) {

 (c) 2001 Wireless Application Protocol Forum, Ltd

All rights reserved.

Page 15(27)

 case implicit: struct{};
 case sha_key_hash:
 opaque hash[20];
 case wtls_certificate:
 WTLSCertificate;
 case x509_certificate:
 opaque x509_certificate<0..2^16-1>;

case x968_certificate:
 opaque x968_certificate<0..2^16-1;

case certificate_url:
 opaque url<0..255>;
 };
} SignerInfo;

enum {text(1), data(2), (255)} ContentType;

Item Description

text Encoded text (according to character set).

data Encoded data (encoding indicated by content_encoding parameter, see below).

enum (false(0), true(1)} Boolean;

struct {
 ContentType content_type;
 uint16 content_encoding;
 Boolean content_present;
 switch (content_present) {
 case false: struct{};
 case true: opaque content<0..2^16-1>;
 };
} ContentInfo;

Item Description

content_type The type of the content that was signed.

content_encod
ing

For text type of content, indicates the character set used to encode the text
before signing (IANA assigned character set number, see [WAPWSP]). The
recommended character set is UTF-8 [UTF8]. Note that the hash is calculated
over the encoded text (no length indication, terminating character or character
set indicator is included).

For data type of content, indicates a specific content type (assigned values are
not defined yet).

content_prese
nt

Indicates if the content is present in the structure.

content Content.

 (c) 2001 Wireless Application Protocol Forum, Ltd

All rights reserved.

Page 16(27)

enum { gmt_utc_time(1), signer_nonce(2), (255) } AttributeType;

Item Description

gmt_utc_time The current time and date in UTC format (see Appendix C). Only the 12 actual
date/time octet values are included; the trailing ‘Z’, indicating GMT or Zulu, is
omitted since it is implicit.

signer_nonce A nonce generated by the signer. This attribute MAY be used by devices that do
not have an internal clock.

struct {
 AttributeType attribute_type;
 switch (attribute_type) {
 case gmt_utc_time: uint8[12];
 case signer_nonce: opaque signer_nonce[8];
 }
} AuthenticatedAttribute;

struct {
 uint8 version;
 Signature signature;
 SignerInfo signer_infos<0..2^16-1>;
 ContentInfo content_info;
 AuthenticatedAttribute authenticated_attributes<0..255>;
} SignedContent;

Item Description

version Version of the SignedContent structure. For this specification the version is 1.

signature Signature

signer_infos Information on the signer. This may contain zero items (in case the signer is
implicit). Also, there may be multiple items of SignerInfo present (public key
hash and a certificate).

content_info Information about the content being signed. The actual content is optionally
included in the structure.

authenticated_
attributes

Attributes that are included in the signature.

6.1. Usage with signText

The result returned by signText is formatted as SignedContent. The original stringToSign is
optionally included in the structure. It is the responsibility of the application that the verifying party
(server) will have access both to the original text and the signature. The text may be generated in the

 (c) 2001 Wireless Application Protocol Forum, Ltd

All rights reserved.

Page 17(27)

server and cached there. Or, if the text is generated in the client (e.g., based on user input), it should
be included in the structure.

The verification service must take the character set into account. If the original service generated the
stringToSign, it is necessary to convert that to a proper character set encoding.

6.2. Hash Calculation and Relationship to PKCS#7 SignedData

The signed content type is defined so as to allow end-to-end authentication of signed content based
on PKCS#7 [PKCS7] signed data structures. A proxy server or gateway may accept a PKCS#7
signed data object and convert to the WAP signed content type without violating the end-to-end
integrity of the signature. This is done by compressing the PKCS#7 header (by representing it in
WTLS encoding format) without information loss. Since the mobile device can reconstruct the original
header with any authenticated attributes it can verify the original signature.

When a mobile device is sending signed content it constructs the PKCS#7 header using a static
template and filing in the relevant attribute values. The hash is computed as specified in [PKCS7].
The mobile device then formats and sends the SignedContent type. This allows a proxy or gateway to
convert this back to PKCS#7 format for transmission to a server. In this way we achieve both
bandwidth efficiency and limited parsing requirements on the mobile device while enabling end-to-end
signed content verification with servers not supporting the WAP signed content type.

The hash calculation on the mobile device is performed as defined in [PKCS7], using the signer's
authenticated attributes. This requires that the input for the hash calculation is represented in ASN.1
DER encoding. As shown below, complex DER encoding is not required, since the length of the
values are known beforehand. An implementation needs only the (static) PKCS#7 DER structure,
filing in the variable fields. It need not understand the specifics of the ASN.1 encoding.

According to [PKCS7], the mandatory authenticated attributes are the contentType and
messageDigest attributes (hash of the original data). Additionally, either signing time or a random
nonce MUST be used as an authenticated attribute. Signing time is recommended. A random number
MAY be used by implementations that do not support real time clock.

The message-digesting process computes a message digest on the content together with the
signer's authenticated attributes. The initial input to the message-digesting process is the value of the
content being signed.

The authenticated attributes are the following [PKCS9].

Attribute OID OID in Binary

contentType pkcs9-3 2a 86 48 86 f7 0d 01 09 03

messageDige
st

pkcs9-4 2a 86 48 86 f7 0d 01 09 04

signingTime pkcs9-5 2a 86 48 86 f7 0d 01 09 05

signerNonce pkcs9-25-3 2a 86 48 86 f7 0d 01 09 19 03

To calculate the hash, the signer uses the following buffer as a template:

 (c) 2001 Wireless Application Protocol Forum, Ltd

All rights reserved.

Page 18(27)

31 5d
 30 18
 06 09 2a 86 48 86 f7 0d 01 09 03 – contentType
 31 0b
 06 09 2a 86 48 86 f7 0d 01 07 01 -- data
 30 1c
 06 09 2a 86 48 86 f7 0d 01 09 05 – signingTime
 31 0f
 17 0d XX XX XX XX XX XX XX XX XX XX XX XX XX -- UTCTime
 30 23
 06 09 2a 86 48 86 f7 0d 01 09 04 – messageDigest
 31 16
 04 14 XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX
XX
 -- SHA-1 digest

In order to construct the input for hash calculation, the following steps are performed
• use initially a 95-byte buffer as above (bytes 1...95)
• replace bytes 46...58 with the value of UTC time expressed as YYMMDDHHMMSSZ (ASCII-

encoded)
• replace bytes 76...95 with the 20-byte value of the SHA-1 hash of the content value

The next step is to calculate the hash from the above 95-byte buffer. Finally, the signature is
calculated.

Note that the PKCS#7 contentType “data” is used for both text and data content types specified in the
beginning of this chapter.

Note also that since the input to the message digesting process is the content value (and not for
example "ContentInfo" as defined in Section 6), the information about the character set associated
with the content is not protected. Implementations should therefore take steps to ensure that it is not
possible for an attacker to harmfully manipulate this character set information.

For verification, the above structure needs to be constructed based on values transmitted in
SignedContent: content_type,
gmt_utc_time.

Note that the authenticated attributes are included in the in ascending order compared as octet
strings.

A proxy server MAY construct a PKCS#7 [PKCS7] SignedData object based on a received
SignedContent object. The motivation of doing this would be that some internet or other service
applications may require a PKCS#7 formatted object to verify the signature. The conversion to
PKCS#7 is based on the original text, the signature and a certificate.

A proxy server MAY also convert a PKCS#7 SignedData object to a SignedContent object for
transmission to a mobile device.

When the mobile device receives (e.g. over WSP) a SignedContent object (containing text or any type
of data), it should verify the signature and be able to present information on the signer and the result

 (c) 2001 Wireless Application Protocol Forum, Ltd

All rights reserved.

Page 19(27)

of verification: if it was succesful, or if it failed with different reasons, like invalid signature or inability to
verify the signer's certificate. When the SignedContent object contains signed text, the original text
and result of verification must be presented in a manner which is distinctive from texts generated by
applications using e.g. WML or WMLScript.

When using an 8-byte signerNonce instead of signingTime (as described above), the following buffer
is used as a template:

31 59
 30 18
 06 09 2A 86 48 86 F7 0D 01 09 03 -- contentType
 31 0B

 06 09 2A 86 48 86 F7 0D 01 07 01 -- data
 30 18

06 0A 2A 86 48 86 F7 0D 01 09 19 03 -- signerNonce
31 0A
 04 08 XX XX XX XX XX XX XX XX -- randomNonce

 30 23
06 09 2A 86 48 86 F7 0D 01 09 04 -- messageDigest
31 16
 04 14 XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX

XX
 -- SHA-1 digest

In order to construct the input for hash calculation, the following steps are performed
• use initially a 91-byte buffer as above (bytes 1...91)
• replace bytes 47...54 with the value of the 8 byte nonce.
• replace bytes 72...91 with the 20-byte value of the SHA-1 hash

The next step is to calculate the hash from the above 91-byte buffer. Finally, the signature is
calculated.

 (c) 2001 Wireless Application Protocol Forum, Ltd

All rights reserved.

Page 20(27)

 (c) 2001 Wireless Application Protocol Forum, Ltd

All rights reserved.

Page 21(27)

Appendix A Library Summary
The libraries and their library identifiers:

Library name Library ID Page

Crypto 6 8

The libraries and their functions:

Crypto library Function ID

SignText 16

 (c) 2001 Wireless Application Protocol Forum, Ltd

All rights reserved.

Page 22(27)

 (c) 2001 Wireless Application Protocol Forum, Ltd

All rights reserved.

Page 23(27)

Appendix B Signature Calculation

B.1 ECDSA Signature Calculation

ECDSA signature calculation for signText is based on ANSI X9.62 [X9.62].

Three aspects of the ECDSA signature process are described:
• the input to the signature process;
• the signature process itself; and
• the output from the signature process.

The input to the ECDSA signature process is one of the completed templates specified in Section
6.2.

Note that ANSI X9.62 regards hashing as an integral part of the signing process – thus the completed
template will be hashed using SHA-1 as required during the signing process.

The ECDSA signature process is then performed on the completed template as specified in Section
5.3 of ANSI X9.62.

The output of the ECDSA signature process is a pair of integers r and s. Here the ECDSA signature
is converted to a byte string for inclusion in the “Signature” field of “SignedContent” as specified in
Section 6 as follows: Convert the integer r to an octet string R and the integer s to an octet string S
using the conversion routine specified in Section 4.3.1 of ANSI X9.62 [X9.62]. Both R and S should be
the same length as the length needed to represent the order of the base point G. The signature is
represented as the concatenation of R and S: R | S.

Note that the signature will subsequently be re-encoded using the ASN.1 syntax for an ECDSA
signature specified in Section of ANSI X9.62 if the “SignedContent” format specified in Section 6 is
converted to PKCS7 CMS format.

Recommended curves for use with ECDSA are described in Appendix A of WTLS [WAPWTLS].

 (c) 2001 Wireless Application Protocol Forum, Ltd

All rights reserved.

Page 24(27)

B.2 RSA PKCS#1 Signature Calculation

The calculation is based on [PKCS1], chapter 10.1. It consists of three steps: message digesting
(hashing), data encoding and RSA encryption. (The fourth step, octet-string-to-bit-string conversion is
not necessary here.)

The message (the text being signed) is digested using SHA-1 [SHA1]. The 20-byte output and a SHA-
1 algorithm identifier shall be combined into an ASN.1 [ASN1] value of type DigestInfo, described
below, which shall be DER-encoded [DER] to give an octet string, the data.

DigestInfo ::= SEQUENCE {
 digestAlgorithm DigestAlgorithmIdentifier,
 digest Digest }

DigestAlgorithmIdentifier ::= AlgorithmIdentifier

Digest ::= OCTET STRING

digestAlgorithm identifies the message-digest algorithm. For this application, it should associate
the SHA-1 algorithm. The object identifier is the following

sha-1 OBJECT IDENTIFIER ::=
 { iso(1) identified-organization(3) oiw(14) secsig(3) 2 26 }

The BER encoding of the above is: 2b 0e 03 02 1a

digest is the result of the message digesting process, ie, the message digest.

The BER encoding of DigestInfo is

30 21 -- SEQUENCE (DigestInfo)
 30 09 -- SEQUENCE (AlgorithmIdentifier)

 06 05 2b 0e 03 02 1a -- digestAlgorithm = sha-1
 05 00 -- parameters = NULL
 04 14 -- OCTET STRING (digest)
 xx xx xx xx -- digest value

xx xx xx xx
xx xx xx xx
xx xx xx xx
xx xx xx xx

where the last 20 bytes is the message digest. So, in order to implement the BER-encoded
DigestInfo, it is sufficient to concatenate the constant 15 bytes and the 20 bytes of the hash.

The resulting data (BER-encoded DigestInfo), is encrypted with the signer’s private key as
described in [PKCS1] section 7, using the block type 1. The resulting octet string, is the signature.

 (c) 2001 Wireless Application Protocol Forum, Ltd

All rights reserved.

Page 25(27)

Appendix C UTC Time
The universal time type, UTCTime, is a standard ASN.1 type intended for international applications
where local time alone is not adequate. UTCTime specifies the year through the two low order digits
and time is specified to the precision of one minute or one second. UTCTime includes either Z (for
Zulu, or Greenwich Mean Time) or a time differential.

For the purposes of this profile, UTCTime values MUST be expressed Greenwich Mean Time (Zulu)
and MUST include seconds (i.e., times are YYMMDDHHMMSSZ), even where the number of seconds
is zero. Conforming systems MUST interpret the year field (YY) as follows:

Where YY is greater than or equal to 50, the year shall be interpreted as 19YY; and where YY is less
than 50, the year shall be interpreted as 20YY.

The above usage is as is specified in [RFC2459].

For transmission in the signed content AuthenticatedAttribute type (gmt_utc_time) the
trailing ‘Z’ is omitted as it is implicit.

 (c) 2001 Wireless Application Protocol Forum, Ltd

All rights reserved.

Page 26(27)

Appendix D Static Conformance Requirement
This static conformance requirement [WAPCREQ] lists a minimum set of functions that can be
implemented to help ensure that WMLScript Crypto Library implementations will be able to inter-
operate. The “Status" column indicates if the function is mandatory (M) or optional (O).

D.1 Client Options

Item Function Subfunction Referen
ce

Statu
s

Requirement

WMLSCrypt-C-
001

Function
supported with at
least one
signature
algorithm

5.1 M WMLSCrypt-C-002
OR WMLSCrypt-C-
003

WMLSCrypt-C-
002

RSA 6 O

WMLSCrypt-C-
003

SignText

ECDSA 6 O

WMLSCrypt-C-
004

Use of WIM 5.1.4 O WIM:MCF AND
WIM-C-002 AND
WIM-C-042

D.2 Script Encoder Options

Item Function Subfunction Referen
ce

Statu
s

Requirement

WMLSCrypt-S-
001

SignText 5.1 M

D.3 Application options

Item Function Subfunction Referen
ce

Statu
s

Requirement

WMLSCrypt-A-
001

Signature
verification
supported with at
least one
signature
algorithm

5.1 M WMLSCrypt-A-002
OR WMLSCrypt-A-
003

WMLSCrypt-A-
002

RSA 6 O

WMLSCrypt-A-
003

SignText
output
(SignedConte
nt) verification

ECDSA 6 O

 (c) 2001 Wireless Application Protocol Forum, Ltd

All rights reserved.

Page 27(27)

