Contents

1. SCOPE ...4

2. REFERENCES ..5
 2.1 NORMATIVE REFERENCES ...5
 2.2 INFORMATIVE REFERENCES ...5

3. TERMINOLOGY AND CONVENTIONS ..6
 3.1 CONVENTIONS ..6
 3.2 DEFINITIONS ...6
 3.3 ABBREVIATIONS ...6

4. INTRODUCTION ...7

5. SERVER ALERTED MANAGEMENT SESSION ...8
 5.1 NONCE RESYNCHRONISATION ...8

6. STRUCTURE OF GENERAL NOTIFICATION INITIATED SESSION ALERT10
 6.1 SYNTAX FOR THE INITIATION NOTIFICATION ...10
 6.2 DESCRIPTION OF THE FIELDS ..11
 6.2.1 Trigger Message ..11
 6.2.2 Digest ...11
 6.2.3 Trigger ...11
 6.2.4 Header of the Trigger Message ...11
 6.2.5 Body of the Trigger Message ..11
 6.2.6 Version Information ...11
 6.2.7 User Interaction Mode ...11
 6.2.8 Initiator of the Management Action ..12
 6.2.9 Future Use of the Device Management ...12
 6.2.10 Session Identifier ..12
 6.2.11 Length of the Identifier ...12
 6.2.12 Server Identifier ..12
 6.2.13 Vendor Specific Information ..12

7. OMA DEVICE MANAGEMENT TRANSPORT DEPENDANT PROFILES13
 7.1 PACKAGE #0 DELIVERED USING WAP PUSH ...13
 7.1.1 Using non WAP Push capable devices ..13
 7.2 PACKAGE #0 OVER OBEX ...13

APPENDIX A. CHANGE HISTORY (INFORMATIVE) ...14
 A.1 APPROVED VERSION HISTORY ..14

APPENDIX B. STATIC CONFORMANCE REQUIREMENTS (NORMATIVE)15
 B.1 SCR FOR OMA DM v1.2 CLIENT ...15
 B.2 SCR FOR OMA DM v1.2 SERVER ...15

APPENDIX C. EXAMPLE OF TRIGGER MESSAGE FROM SERVER (INFORMATIVE)16

Figures

Figure 1. MSC of the Server Alerted Management session ..8
Figure 2. Format of the General Notification Trigger Message (Package#0)10
1. Scope

This document specifies the OMA Device Management Notification Initiation package from the server. A management server can use this notification capability to cause the DM client to initiate a connection back to the management server.
2. References

2.1 Normative References

[IANA] Internet Assigned Numbers Authority. URL:http://www.iana.org

[PROVARCH] “Provisioning Architecture Overview 1.1”. Open Mobile Alliance™. OMA-WAP-ProvArch-v1_1. URL:http://www.openmobilealliance.org

2.2 Informative References

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

Any reference to components of the DTD’s or XML snippets are specified in this “typeface.”

3.2 Definitions

Message Sequence Chart Notation used in the message sequence charts (MSC):

- **Box**: Indicates the start of a procedure or an internal process in a device.
- **Hexagon**: Indicates a condition that is needed to start the transaction below this hexagon.
- **Arrow**: Represents a message, or transaction.

3.3 Abbreviations

- **MSC**: Message Sequence Chart
- **OMA**: Open Mobile Alliance
4. Introduction

Many devices cannot continuously listen for connections from a management server. Other devices simply do not wish to “open a port” (i.e. accept connections) for security reasons. However, most devices can receive unsolicited messages, sometimes called “notifications”. Some handsets, for example, can receive SMS messages. Other devices may have the ability to receive other, similar datagram messages.

A management server can use this notification capability to cause the client to initiate a connection back to the management server. This connection might be over HTTP, WAP or another transport protocol.

The contents of such a “Notification Initiation Alert” might be empty, but the message itself may be signed such that the client can authenticate it. The result of receiving such an alert would be for the client to initiate a connection to the management server that sent the alert. In this scenario, the client might verify that this management server is among those authorized to request such activity. Alternatively, the contents of the alert might indicate that another management server should be contacted.

An identical effect of receiving a Notification Initiation Alert can also be caused in other ways. For example, the user interface (UI) of the device may allow the user to tell the client to initiate a management session. Or, the management client might initiate a session as the result of a timer expiring. Of course, a fault of some type in the device could also cause the management client to initiate a session.
5. Server Alerted Management Session

This notification message is intended to provide a possibility for the server to alert the client to perform a management session. When the server alerts the client, it can tell for example the protocol version and whether the server proposes the session to be a foreground or background event. It can also tell if the session is happening because server has some management actions to perform or if the user caused the start of the session. The server MUST also send a digest that is included to prevent any Denial of Service (DoS) attacks.

Figure 1 describes the MSC how the server alerts management session.

The package flow presented above is one OMA Device Management session. This means that all messages have the same OMA DM Session ID.

5.1 Nonce Resynchronisation

After the client has received a notification message and the digest is not correct then the client SHOULD re-verify the digest using the special nonce value, 0x00000000." Servers can not expect all clients to support this feature and MAY therefore take a different action, such as re-bootstrap the device, for example.

The flow of this particular scenario is as follows:

1. [Pkg #0] Client receives Notification message and fails to authenticate the message using stored server nonce value.

2. Client tries to re-authenticate notification message using a default server nonce value (0x00000000). If this authentication succeeds, then continue to step 3; otherwise notification message is ignored and no session is initiated.

3. [Pkg #1] Client initiates session, with the credentials based on nonce value 0x00000000 in case of application layer security.

4. [Pkg #2] Server tries to authenticate the message. In case of application layer security then with the default nonce value (0x00000000). If this authentication succeeds, server sends a success Status code with a Chal to update the client nonce on the device used to authenticate messages from the client.

5. [Pkg #3] Client tries to authenticate the message. In case of application layer security then with the default nonce value (0x00000000). If this authentication succeeds, then Client sends success Status code with a Chal to
update the server nonce on the server used by the client to authenticate messages from the server (including notification messages).

6. [Pkg #4] Server sends back success Status. If desired, server replaces the server AuthSecret in the DMAcc to further protect against repeated attacks on the nonce re-negotiation protocol.
6. Structure of General Notification Initiated Session Alert

General Package#0 is the default format used for the Notification Initiated Session Trigger Message. This default format can be used if this document does not describe a special format for initialization purposes.

The following figure describes the format of the General Package #0.

![Diagram of General Notification Trigger Message](image)

The MIME type for the General Notification Initiated Session Alert message is `application/vnd.syncml.notification` and the Content-Type code for that is `0x44`. Byte order for General Notification Initiated Session Alert message is Big Endian (Network order).

6.1 Syntax for the Initiation Notification

The following ABNF [RFC2234] defines the syntax for the message. The order and the size of the fields MUST be same as specified in the following syntax of the Trigger Message.

```xml
<trigger-message> ::= <digest><trigger>
<digest> ::= 128*BIT ; 'MD5 Digest value'
<trigger> ::= <trigger-hdr><trigger-body>
<trigger-hdr> ::= <version><ui-mode><initiator><future-use>
/sessionid><length-identifier><server-identifier>
<version> ::= 10*BIT ; 'Device Management Version'
<ui-mode> ::= <not-specified> / <background> / <informative> / <user-interaction>
<not-specified> ::= "00" ; '2*bit value "0"'
<background> ::= "01" ; '2*bit value "1"'
<informative> ::= "10" ; '2*bit value "2"'
<user-interaction> ::= "11" ; '2*bit value "3"'
<initiator> ::= <client> / <server> ; 'Server/User initiated'
<client> ::= "0" ; '1*bit value "0"'
<server> ::= "1" ; '1*bit value "1"'
<future-use> ::= 27*BIT ; 'Reserved for future DM use'
<sessionid> ::= 16*BIT ; 'Session identifier'
<length-identifier> ::= 8*BIT ; 'Server Identifier length'
<server-identifier> ::= <length-identifier>*CHAR ; 'Server Identifier'
<trigger-body> ::= [<vendor-specific>]
/vendor-specific> ::= n*BIT ; 'Optional vendor specific info'
```
6.2 Description of the fields

6.2.1 Trigger Message

The `<trigger-message>` field specifies the message causing the client to connect to the server.

6.2.2 Digest

The `<digest>` field specifies the MD5 Digest authentication. The Digest is computed as Digest = H(B64(H(server-identifier:password)):nonce:B64(H(trigger))). Length of MD5 Digest is 128 bits.

6.2.3 Trigger

The `<trigger>` field is container for the trigger-hdr and trigger-body fields.

6.2.4 Header of the Trigger Message

The `<trigger-hdr>` field specifies the header of the Trigger Message.

6.2.5 Body of the Trigger Message

The `<trigger-body>` field specifies the body of the Trigger Message.

6.2.6 Version Information

The `<version>` field specifies the version of the OMA Device Management Notification message sent by the OMA DM server. This value is specified by using the 10 bits in the Trigger Message. The supported version is counted as <notification message version> = DEC (version)/10, i.e. first the bit value is transferred to the numeric and then divided by ten. Therefore the biggest possible version is ‘102.3’ and the version ‘1.0’ is specified as ‘0000001010’.

Notification messages conforming to this version of the specification MUST have `<version>` field 10-bit binary value ‘0000001011’.

6.2.7 User Interaction Mode

The `<ui-mode>` field specifies the server recommendations whether the server wants the management session to be executed in background or show a notification to the user. A client SHOULD follow this recommendation.

The values the User Interaction mode can have:

- Not specified – The `<not-specified>` field in `<user-interaction>` field specifies that the server doesn’t have a recommendation to this element. This value is specified by using the 2 bits and the bit value for not specified action is “00”.
- Background management action – The `<background>` field specifies that the server recommends the management action SHOULD be done as a background event. This value is specified by using the 2 bits and the bit value for background action is “01”.
- Informative management action – The `<informative>` field specifies that the server recommends the client to display an informative notification or maybe emitting a beep sound announcing the beginning of the provisioning session to the device user. This value is specified by using the 2 bits and the bit value for informative notification is “10”.
- User Interaction before the management action – The `<user-interaction>` field specifies that the server recommends the client to prompt the device user for acceptance of the offered management session before the management session takes place. This value is specified by using the 2 bits and the bit value for user displayable notification is “11”.

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
6.2.8 Initiator of the Management Action

The <initiator> field specifies how the server has interpreted the initiation of the management action, either because the end user requested it or because the server has management actions to perform. A client SHOULD follow this recommendation.

The values the Initiator of the Management action can have:

- **Client (End User) Initiated management action** – The <client> field specifies that the end user caused the device management session to start. This value is specified by using 1 bit and the bit value for end user initiated management session is “0”.

- **Server Initiated management action** – The <server> field specifies that the server (operator, enterprise) caused the device management session to start. This value is specified by using 1 bit and the bit value for Server initiated management session is “1”.

The <client> and <server> values do not convey any information related to “sync type” (for more information about Sync Types see the SyncML Synchronization protocol document [SYNCPRO] for details of Sync Types).

6.2.9 Future Use of the Device Management

The <future-use> field is reserved for the future fields for OMA Device Management. The reserved space is 27 bits long and the bit value for bits not yet in use MUST be “0”.

6.2.10 Session Identifier

The <sessionid> field specifies the identifier of the OMA DM session associated with the DM Message. This value is specified by using the 16 bits in the Trigger Message. The Session ID MUST be different between different management session Trigger Messages and the Client MUST use this Session ID when it connects to the OMA DM Server. If the server triggers the same management session several times, it is RECOMMENDED that the same Session ID be used. If client receives the same Session ID several times it is enough for a client to initiate only one management session.

When preparing the OMA DM Message for connection to the DM server, the binary session ID value from the trigger message, in the unsigned hexadecimal range of 1 through FFFF, SHALL be mapped to a string of hexadecimal digits (chosen from the numeric digits “0”-“9” and the upper-case letters “A”-“F”) of between one and four characters in length, inclusive, and placed in the SessionID element of the OMA DM message. Leading zeros MUST NOT be included.

6.2.11 Length of the Identifier

The <length-identifier> field specifies the length of the Server Identifier of the management server. The value of the Length Identifier is counted as Length of the server-identifier = DEC (length-identifier).

6.2.12 Server Identifier

The <server-identifier> field specifies the Server Identifier of the management server. Length of <server-identifier> is specified in the <length-identifier> field.

6.2.13 Vendor Specific Information

The optional <vendor specific> field is used to specify vendor specific information. This field follows the <server-identifier> field and the remainder of the Trigger Message size can be packed with vendor specific information.
7. OMA Device Management Transport Dependant Profiles

The following sections illustrate the transport dependant profiles for sending a trigger from OMA Device Management Server to a OMA Device Management Client.

7.1 Package #0 delivered using WAP Push

The WAP Push framework provides a means for a Push Initiator (PI) to send information to a mobile terminal via a Push Proxy Gateway (PPG) in an asynchronous manner (see [PROVARCH] for an overview). It is assumed that the OMA DM server will act as a PI, but it is also possible for the server to communicate directly with the mobile terminal if it is able to operate as a PPG.

When the WAP Push framework is used to deliver Package #0, the non-secure connectionless WSP [WSP] session service is utilized as defined in [PUSHOTA]. The following rules MUST be adhered to as well as the order of the WSP headers:

- The Content-Type header [PUSHMSG] MUST include the MIME media type for Packet #0 as defined in [IANA]. The Content-Type code 0x44 MUST be used instead of the textual representation of the MIME code.
- The X-WAP-Application-ID header [PUSHMSG] MUST include the application-id associated with the SyncML Device Management User Agent. The application-id code 0x07 MUST be used instead of the textual representation of the Application-id.
- Other headers may be included if it is known that the OMA DM Client can interpret them in a useful manner. However, it must be ensured that the total length of the WDP and WSP headers never exceeds 48 bytes to ensure that there is sufficient space for the payload.
- The push message is sent to the default non-secure connectionless push port (2948)

The message payload has been designed to fit into a single short message when SMS is used to deliver WAP Push. If the WAP Push message does not fit into a single SMS message the concatenated messages MUST be used.

7.1.1 Using non WAP Push capable devices

If the receiver is not a WAP device, it is very unlikely that any other application would be active on the same port, which has been publicly registered with IANA. The decoding of the message headers is very straightforward even if the device lacks a full WAP stack and therefore the device MUST examine if the message has been sent to the WAP push port (2948) and if the Application-ID and the MIME type are one assigned to the OMA DM Notification Initiation Package. If this information is correct then the message MUST be routed to the OMA Device Management application.

7.2 Package #0 over OBEX

Local Notification Initiated Session over OBEX is done inside the PUT command of the OBEX protocol. This happens in the same way as sending the DM messages over OBEX to a SyncML client (See the SyncML OBEX Binding specification [SYNCOBEX]).
Appendix A. Change History

A.1 Approved Version History

<table>
<thead>
<tr>
<th>Reference</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMA-SyncML-DMNotification-V1_1_2-20031209-A</td>
<td>09 Dec 2003</td>
<td>SyncML DM Notification V1.1.2 Approved Release.</td>
</tr>
<tr>
<td>OMA-TS-DM_Notification-V1_2-20070209-A</td>
<td>09 Feb 2007</td>
<td>TP Doc ref# OMA-TP-2007-0075R03-INP_ERP_DM_V1.2_for_Final_Approval</td>
</tr>
<tr>
<td>OMA-TS-DM_Notification-V1_2_1-20080521-D</td>
<td>21 May 2008</td>
<td>Updated with agreed CR: OMA-DM-2008-0037R02</td>
</tr>
</tbody>
</table>
| OMA-TS-DM_Notification-V1_2_1-20080617-A | 17 Jun 2008| Approved by TP
 | | TP ref# OMA-TP-2008-0257R01-INP_DM_V1_2_1_ERP_for_notification |
Appendix B. Static Conformance Requirements (Normative)

The notation used in this appendix is specified in [IOPPROC].

B.1 SCR for OMA DM v1.2 Client

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Reference</th>
<th>Status</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCR-DM-NOTI-C-001</td>
<td>Support of Server-Alerted Management Session</td>
<td>Section 5</td>
<td>O</td>
<td>SCR-DM-NOTI-C-002</td>
</tr>
<tr>
<td>SCR-DM-NOTI-C-002</td>
<td>Receiving Notification message</td>
<td>Section 6</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>SCR-DM-NOTI-C-003</td>
<td>Nonce Synchronisation</td>
<td>Section 5</td>
<td>O</td>
<td></td>
</tr>
</tbody>
</table>

B.2 SCR for OMA DM v1.2 Server

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Reference</th>
<th>Status</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCR-DM-NOTI-S-001</td>
<td>Support of Server-Alerted Management Session</td>
<td>Section 5</td>
<td>O</td>
<td>SCR-DM-NOTI-S-002</td>
</tr>
<tr>
<td>SCR-DM-NOTI-S-002</td>
<td>Sending of Notification message</td>
<td>Section 6</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>SCR-DM-NOTI-S-003</td>
<td>Notification message <version> field value is the binary value '0000001011'</td>
<td>Section 6.2.6</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>SCR-DM-NOTI-S-004</td>
<td>Nonce Synchronisation</td>
<td>Section 5</td>
<td>O</td>
<td></td>
</tr>
</tbody>
</table>
Appendix C. Example of Trigger Message from Server (Informative)

Example WAP Push over SMS containing the trigger information:

<table>
<thead>
<tr>
<th>Binary value</th>
<th>Meaning</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>06</td>
<td>User-Data-Header (UDHL) Length = 6 bytes</td>
<td>WDP layer (start WDP headers).</td>
</tr>
<tr>
<td>05</td>
<td>UDH IE identifier: Port numbers</td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>UDH port number IE length</td>
<td></td>
</tr>
<tr>
<td>0B</td>
<td>Destination port (high)</td>
<td>Port number 2948</td>
</tr>
<tr>
<td>84</td>
<td>Destination port (low)</td>
<td></td>
</tr>
<tr>
<td>C0</td>
<td>Originating port (high)</td>
<td>Port number chosen by sender</td>
</tr>
<tr>
<td>02</td>
<td>Originating port (low)</td>
<td>WDP layer (end WDP headers)</td>
</tr>
<tr>
<td>01</td>
<td>Transaction ID / Push ID</td>
<td>WSP layer (start WSP headers)</td>
</tr>
<tr>
<td>06</td>
<td>PDU type (push)</td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>Headers length (content type+headers)</td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>Content type code</td>
<td>MIME-Type</td>
</tr>
<tr>
<td>AF</td>
<td>X-WAP-Application-ID</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>Id for urn: x-wap-application:syncml.dm</td>
<td>WSP layer (end WSP headers)</td>
</tr>
<tr>
<td></td>
<td>{digest value is 16-bytes}</td>
<td>128-bit digest value</td>
</tr>
<tr>
<td>02, D0, 00, 00, 00</td>
<td>Binary ‘0000001011’</td>
<td>Version ‘1.1’</td>
</tr>
<tr>
<td></td>
<td>Binary ‘01’</td>
<td>UI-Mode ‘1’</td>
</tr>
<tr>
<td></td>
<td>Binary ‘0’</td>
<td>Initiator ‘0’</td>
</tr>
<tr>
<td></td>
<td>Binary ‘00000000000000000000000000000000’</td>
<td>Future DM use</td>
</tr>
<tr>
<td>12, 34</td>
<td>Binary ‘0001001001101100’</td>
<td>SessionID 0x1234</td>
</tr>
<tr>
<td>12</td>
<td>Binary ‘00010010’</td>
<td>Server Identifier length ‘18’</td>
</tr>
<tr>
<td>63, 6F, 6D, 2E, 6D, 67, 6D, 74, 73, 72, 76, 2E, 6D, 61, 6E, 61, 67, 65</td>
<td>String ‘com.mgmtsrv.manage’</td>
<td>Server Identifier</td>
</tr>
</tbody>
</table>