
 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Device WebAPI-PCH
Candidate Version 1.0 – 19 Apr 2016

Open Mobile Alliance
OMA-ER-Device_WebAPIs-V1_0-20160419-C

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 2 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Use of this document is subject to all of the terms and conditions of the Use Agreement located at
http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an
approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not
modify, edit or take out of context the information in this document in any manner. Information contained in this document
may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior
written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided
that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials
and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products
or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely
manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification.
However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available
to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at
http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of
this document and the information contained herein, and makes no representations or warranties regarding third party IPR,
including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you
must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in
the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN
MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF
THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE
ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT
SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT,
PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN
CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

http://www.openmobilealliance.org/UseAgreement.html
http://www.openmobilealliance.org/ipr.html

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 3 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Contents
1. SCOPE .. 5
2. REFERENCES .. 6

2.1 NORMATIVE REFERENCES .. 6
2.2 INFORMATIVE REFERENCES ... 6

3. TERMINOLOGY AND CONVENTIONS .. 7
3.1 CONVENTIONS ... 7
3.2 DEFINITIONS .. 7
3.3 ABBREVIATIONS .. 7

4. INTRODUCTION ... 9
4.1 IEEE 11073 FAMILY OF STANDARDS OVERVIEW .. 11
4.2 VERSION 1.0 .. 11

5. DEVICE WEBAPIS ENABLER RELEASE DESCRIPTION (INFORMATIVE) .. 12
6. REQUIREMENTS (NORMATIVE) .. 13

6.1 HIGH-LEVEL FUNCTIONAL REQUIREMENTS: GOTAPI ADHERENCE ... 13
6.2 HIGH-LEVEL FUNCTIONAL REQUIREMENTS: DWAPI-PCH .. 13
6.3 THERMOMETER SPECIFIC FUNCTIONAL REQUIREMENTS .. 16
6.4 PULSE OXIMETER SPECIFIC FUNCTIONAL REQUIREMENTS ... 18
6.5 WEIGHT SCALE / BODY COMPOSITION ANALYZER FUNCTIONAL REQUIREMENTS ... 21
6.6 BLOOD PRESSURE SPECIFIC FUNCTIONAL REQUIREMENTS ... 40
6.7 GLUCOMETER SPECIFIC FUNCTIONAL REQUIREMENTS ... 44
6.8 HEART RATE / ELECTROCARDIOGRAM SPECIFIC FUNCTIONAL REQUIREMENTS ... 56

7. ARCHITECTURAL MODEL .. 63
7.1 ARCHITECTURAL DIAGRAM ... 63

7.1.1 GotAPI Framework Summary ... 63
7.1.2 GotAPI Framework and IEEE 11073 Healthcare Devices .. 63

7.2 FUNCTIONAL COMPONENTS AND INTERFACES/REFERENCE POINTS DEFINITION ... 64
7.2.1 Service Discovery API ... 64
7.2.2 One-shot measuring API .. 65
7.2.3 Asynchronous messaging API ... 66

7.3 BEHAVIORS OF PLUG-INS FOR REPORTING MEASUREMENTS TO APPLICATIONS .. 68
7.3.1 Measurement modes and one shot/asynchronous messaging ... 68
7.3.2 Policy for one-shot messages ... 69
7.3.3 Policy for asynchronous messages ... 70
7.3.4 Intermediate measurements.. 71

7.4 SECURITY CONSIDERATIONS .. 71
APPENDIX A. CHANGE HISTORY (INFORMATIVE) .. 73

A.1 APPROVED VERSION HISTORY ... 73
A.2 DRAFT/CANDIDATE VERSION 1.0 HISTORY ... 73

APPENDIX B. CALL FLOWS (INFORMATIVE) .. 74
APPENDIX C. STATIC CONFORMANCE REQUIREMENTS (NORMATIVE) ... 75

C.1 ERDEF FOR DEVICE WEBAPI 1.0 - CLIENT REQUIREMENTS .. 75
C.2 ERDEF FOR GOTAPI 1.0 - SERVER REQUIREMENTS .. 75

APPENDIX D. DEVICE WEBAPI ENABLER DEPLOYMENT CONSIDERATIONS .. 76
APPENDIX E. LIST OF IEEE 11073 SPECIFICATIONS .. 77

Figures
Figure 1 Overview of GotAPI’s framework .. 10

Figure 2 IEEE 11073 Overview .. 11

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 4 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Figure 3: Architectural Diagram .. 63

Figure 4: DWAPI-PCH Basic data flows ... 64

Figure 5: Message flow of the Service Discovery: Message flow of the Service Discovery .. 65
Figure 6: Message flow of the One-shot measuring API .. 66

Figure 7: Message Flow of the Asynchronous messaging API ... 67

Figure 8: Example of single measurement. .. 70

Figure 9: Example of continuous measurement. ... 70

Figure 10: Example of asynchronous messages (continuous measurement). ... 71

 Tables
Table 1: High-Level Functional Requirements ... 16

Table 2: Thermometer Specific Functional Requirements .. 18

Table 3: Pulse Oximeter Specific Functional Requirements .. 20

Table 4 Measurement modes for various devices.. 69
Table 5: ERDEF ... 75

Table 6: ERDEF for GotAPI 1.0 Server-side Requirements ... 75

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 5 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

1. Scope
This Enabler Release (ER) document is a combined document that includes requirements, architecture and technical
specification of the Device WebAPIs Enabler.

The scope of OMA Device WebAPI enabler will include:

• Requirements, architecture and specifications for web-based APIs to expose services available from external devices
and internal enablers through Extension Plug-Ins to applications.

• The web-based APIs that will work in the framework that GotAPI (Generic Open Terminal API Framework) defines,
where the web-based APIs are implemented in the Extension Plug-Ins and exposing the services from the external
devices or internal enablers that are connected with the Extension Plug-Ins.

• The framework provided by the combination of GotAPI and Device WebAPI to enable applications to work through
standardized APIs with external devices or internal enablers, as GotAPI itself does not standardize the APIs to be
implemented in the Extension Plug-Ins.

• Web-based APIs that will initially address such areas as healthcare devices, DWAPI-PCH (Personal Connected
Healthcare) and other areas where standardization will help solving application interoperability problems.

OMA will continue expanding the coverage of the standaridized Device WebAPIs in areas where standardization helps the
markets to expand and innovate.

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 6 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

2. References
2.1 Normative References

[EventSource] “Server-Sent Events”, Worldwide Web Consortium (W3C), URL:http://dev.w3.org/html5/eventsource/
(latest working draft)

[GotAPI 1.1] Generic Open Terminal API Framework (GotAPI), Candidate Version 1.1 – 15 Dec 2015
URL:http://www.openmobilealliance.org/

[HTTP/1.1] “Hypertext Transfer Protocol -- HTTP/1.1”, Internet Engineering Task Force (IETF),
URL:http://tools.ietf.org/search/rfc2616

[HTTP/2.0] “Hypertext Transfer Protocol version 2.0”, Internet Engineering Task Force (IETF),
URL:http://tools.ietf.org/search/draft-ietf-httpbis-http2-09 (latest working draft)

[JSON-RPC] “JSON-RPC 2.0 Specification”, JSON-RPC Working Group, URL:http://www.jsonrpc.org/specification

[RFC2119] “Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997,
URL:http://www.ietf.org/rfc/rfc2119.txt

[SCRRULES] “SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures,
URL:http://www.openmobilealliance.org/

[WebSocket] “The WebSocket API, Worldwide Web Consortium (W3C), URL:http://dev.w3.org/html5/websockets/
(latest working draft)

2.2 Informative References
[CSEA] “Client Side Enabler API (CSEA)”, Version 1.0, Open Mobile Alliance™, OMA-RRP-CSEA-V1_0,

URL:http://www.openmobilealliance.org/

[OMADICT] “Dictionary for OMA Specifications”, Version 2.9, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2.9, URL:http://www.openmobilealliance.org/

[OMNA] "OMA Naming Authority". Open Mobile Alliance.
URL:http://www.openmobilealliance.org/tech/omna.aspx

[WRAPI] “Web Runtime API (WRAPI”, Version 1.0, Open Mobile Alliance™, OMA-ERP-WRAPI-V1_0,
URL:http://www.openmobilealliance.org/

http://dev.w3.org/html5/eventsource/
http://www.openmobilealliance.org/
http://tools.ietf.org/search/rfc2616
http://tools.ietf.org/search/draft-ietf-httpbis-http2-09
http://www.jsonrpc.org/specification
http://www.ietf.org/rfc/rfc2119.txt
http://www.openmobilealliance.org/
http://dev.w3.org/html5/websockets/
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/tech/omna.aspx
http://www.openmobilealliance.org/

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 7 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

3. Terminology and Conventions
3.1 Conventions
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be
informative.

3.2 Definitions
Agent A node that collects and transmits personal health data to an associated manager.

API Patterns Design guidelines and requirements for definition of APIs

Browser Context Web applications executing under a Web browser as Web runtime environment.

Datagram An API providing access to UDP protocol based networking.

Device A physical device implementing either an agent or manager role.

ECMAScript Use definition from [OMADICT].

Hybrid Native/Web App An application designed to execute under the native OS / middleware environment of a device, and that
use native APIs for the execution of web content in addition to native code.

JavaScript Use definition from [OMADICT].

Manager A node receiving data from one or more agent systems. Examples of managers include a cellular phone,
health appliance, set top box, or computer system.

Native App An application designed to execute under the native OS / middleware environment of a device.

Personal Health Device A device used in personal health applications.

Socket An API providing access to TCP protocol based networking.

Uniform Resource
Identifier Use definition from [OMADICT].

User Agent Use definition from [OMADICT].

Web The World Wide Web, a content and application framework based upon hypertext and related
technologies, e.g. XML, JavaScript/ECMAScript, CSS, etc.

Web Application An application designed using Web technologies (e.g. HTML, CSS, and Javascript).

Web IDL An IDL language for Web application APIs

Web Runtime
Application A client-side Web application that is executed in Web runtime environments.

Web Runtime
Environment Client software that supports the execution of Web applications (e.g. browsers or widget engines).

WebSocket An API providing networking services per the WebSocket standard [WebSocket].

Widget Context Web applications installed and executing under a W3C Widget [W3C-Widgets] engine as Web runtime
environment.

Widget Engine Software which supports the execution of Web applications running outside a browser context, e.g. with
the same functional capabilities as browsers but without the user interface functions provided by a
browser, including window frames, menus, toolbars and scroll bars.

3.3 Abbreviations
API Application Programming Interface

EventSource The EventSource API

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 8 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

HTTP HyperText Transfer Protocol

IDL Interface Definition Language

JSON JavaScript Object Notation

MIME Multipurpose Internet Mail Extensions

OMA Open Mobile Alliance

REST REpresentational State Transfer

RPC Remote Procedure Call

SCR Static Conformance Requirements

TS Technical Specification

UA User Agent

UE User Equipment

URI Uniform Resource Identifier

URL Uniform Resource Locator

W3C World Wide Web Consortium

WRAPI The OMA Web Runtime API enabler

XML eXtensible Markup Language

XSD XML Schema Definition

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 9 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

4. Introduction
External devices that are connected with smartphones are increasingly gaining mainstream acceptance and we are starting to
see rapid adoption of such devices.

While there are various types of new devices and sensors to be connected with smartphones coming out, there are
fundamental issue to be solved for certain markets:

• Since there are no open standardized APIs and frameworks that application developers can use for the same type of
devices, developers are required to customize their applications for each and every different device.

• In order to access features from applications, some environments mandate that the users’ data must be routed through
certain entities, e.g., servers outside user’s control. As such, it is difficult to ensure data confidentiality and privacy to
such a level where certain vertical markets require.

As the first step to solve this problem, OMA has standardized GotAPI (Generic Open Terminal API Framework) [***].
GotAPI provides the framework to enable applications (native, hybrid and web applications) to work with external devices
and internal enablers through GotAPI Servers and Extension Plug-Ins based on web technologies. There are multiple
Extension Plug-Ins to be expected and each Extension Plug-In is connected to external devices and internal enablers. Each
Extension Plug-Ins implements web-based APIs to expose services (or data) from those connected. The applications securely
access the web-based APIs under the framework that GotAPI provides. The figure-1 shows the overview of GotAPI’s
framework.

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 10 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Figure 1 Overview of GotAPI’s framework

GotAPI itself does not standardize the web-based APIs that are implemented in the Extension Plug-Ins, and it is left open for
implementers of each Extension Plug-In. This openness enables many external device vendors to freely provide unique and
differentiated new services through the GotAPI framework.

On the other hand, for certain markets, standardizing the web-based APIs is desired. Standardized web-based API will enable
open markets for new applications by 3rd party developers that will rapidly innovat and grow the market, while ensuring the
interoperability and security.

This specification specifies OMA Device WebAPIs Enabler. In contrast to OMA GotAPI being a versatile web application
framework, OMA Device WebAPIs Enabler specifies web-based APIs for certain types of external devices or internal
services to work consistently in the GotAPI framework. It enables applications to access specific types of external devices or
internal services. OMA Device WebAPIs Enabler will offer a series of specifications to address different types of devices or
internal services where standardization is needed.

DWAPI-PCH:

OMA has identified personal connected healthcare market is looking for standardized APIs, and OMA Device WebAPIs
Enabler addresses this issue in order to ensure service interoperability between the same type of devices, as an alternative to
siloed and non-interoperable devices.

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 11 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

For personal connected healthcare devices, the IEEE 11073 family of standard defines a large number of healthcare devices.
OMA Device WebAPIs Enabler will develop web-based APIs to expose services from devices that are based on IEEE 11073
standards, where the APIs will be implemented in Extension Plug-Ins under the GotAPI framework. These API specifications
are called as DWAPI-PCH, which stands for Device WebAPI for Personal Connected Healthcare. It is one of OMA Device
WebAPIs Enabler specifications and specifies web-based APIs for different types of IEEE 11073 devices in a series of
specifications.

4.1 IEEE 11073 Family of Standards Overview
The ISO/IEEE 11073 family of standards is based on an object-oriented systems management paradigm. Data (measurement,
state, and so on) are modeled in the form of information objects that are accessed and manipulated using an object access
service protocol.
The ISO/IEEE 11073-20601 Data Exchange Protocol (known as 20601) provides a framework for information and
modelling, information access and measurement data transfer suitable to a wide variety of personal health devices. Examples
of such health devices are as follows: weighing scales, thermometers, pulse oximeters, blood pressure monitors, and glucose
meters. In addition to health and fitness sensors, the protocol is designed to support a range of home health sensors. This
enables interoperability between a data management device to process, display or transfer the specific measurements.
20601 core protocol specification, which describe the tools to represent and convey data, and 104xx Device Data
Specialization specifications, which provide details on how the 20601 tools are applied for each health device’s
implementation.

Figure 2 IEEE 11073 Overview

4.2 Version 1.0
Device WebAPIs version 1.0 includes the functionality:

• Requirements and API specifications for DWAPI-PCH, with selected device classes from IEEE 11073 based on
market requirements, based on the GotAPI 1.1 framework

• Supporting assets

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 12 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

5. Device WebAPIs Enabler release description (Informative)
This release focuses on the functions of exposing the data from external devices to applications. The Device WebAPIs
enabler will utilize the GotAPIs enabler and specify the APIs under the GotAPIs framework.

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 13 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

6. Requirements (Normative)
Edtor’s Note: Most of the security requirements should have already been defined in GotAPI 1.1.

If there is anything that is missing or unaddressed, we need to articulate them in thie security section.

6.1 High-Level Functional Requirements: GotAPI Adherence
In contrast to OMA GotAPI being a versatile web application framework, OMA Device WebAPIs Enabler specifies web-
based APIs for certain types of external devices or internal enablers, to work consistently in the GotAPI framework.
Therefore, the OMA Device WebAPIs Enabler must adhere to all the GotAPI 1.1 specifications, including, but not limited to,
those of Extension Plug-Ins, data formats, sequence flows, security measures and considerations. Where necessary to ensure
interoperability, OMA Device WebAPIs Enabler may standardize specific values or data for certain types of devices
consistently within the GotAPI framework.

Label Description Release

HD-GOT-01
Device WebAPIs Enabler SHALL adhere to all the GotAPI 1.1 specifications [GotAPI 1.1],
including, but not limited to, those of Extension Plug-Ins, data formats, sequence flows,
security measures and considerations.

1.0

HD- GOT -02
Device WebAPIs Enabler MAY define specific values or data for certain types of devices
that will work consistently within the GotAPI 1.1 framework with other types of devices and
applications.

1.0

HD- GOT -03 The Plug-In SHALL be compliant to the GotAPI Extension Plug-Ins as specified in the
GotAPI 1.1 specification. 1.0

HD- GOT -04 The framework hosting Plug-Ins SHALL support the security requirements defined in
GotAPI 1.1. 1.0

6.2 High-Level Functional Requirements: DWAPI-PCH
The Plug-Ins and the APIs designed for consumer/ personal use perspective. The following requirements specify the
guidelines for all Health Device Plug-Ins. Values, when reported, are reported as Strings or MDER FLOATs.

MDER FLOATs are used to report integers or real numbers. The reason for using MDER FLOATs is to capture precision as
reported by the device. An MDER FLOAT is a 32 bit integer interpreted as follows:

• The most significant 8-bits are the exponent (base 10).
• The remaining 24-bits are the mantissa.
• Standard positive/negative representations apply for exponent and mantissa.
• A negative exponent gives the number of decimal places to the right of the decimal point.
• There are codes to represent special values.
• Examples:

FLOAT exponent mantissa value
0xFE01E240 -2 123456 1234.56
0x0201E240 2 123456 12345600
0x0001E240 0 123456 123456
0xFB000005 -5 5 0.00005
0xFD000005 -3 5 0.005
0xFE00C350 -2 50000 500.00
0xFF001388 -1 5000 500.0
0xFB000000 -5 0 0.00000
0xFD000000 -3 0 0.000
0xFFFE1DC0 -1 -123456 -12345.6
0xFEFFFFFE -2 -2 -0.02

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 14 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

0x02FFFFFE 2 -2 -200
0x00FFFF38 0 -200 -200
0x007FFFFF NaN (Not a Number)
0x007FFFFE +Inf (Positive infinity)
0x00800002 -Inf (Negative infinity)
0x00800000 NRes (Not at this resolution)
0x00800001 Reserved for future use

Label Description Release

HD-HLF-03 The Plug-In SHALL have a real time clock that is synchronized to UTC and SHALL be
aware of its local time zone. 1.0

HD-HLF-04 The Plug-In SHALL have a real time clock with a resolution that matches the resolution of
any device that it interacts with. 1.0

HD-HLF-05
The Plug-In SHALL be able to obtain the current time from the device if the device reports a
current time. (Devices that report a time stamp with their measurements are required to be
able to report the device’s sense of current time to interoperate with the Plug-In.)

1.0

HD-HLF-06

The Plug-In SHALL be able to map any measurement time stamp reported by the device to
an HL7 DTM time stamp with offset from UTC to local time. (An HL7 DTM time stamp is
YYYYMMDDHHMMSS.sss+/-HHMM). “DTM” data type that includes the time zone
offset, expressed either as ±ZZZZ (HHMM) if the civil time zone offset is known or -0000 if
UTC time (e.g. derived from NTP) is known but the actual civil time zone offset is not.
YYYYMMDDHHMMSS[.S[S[S[S]]]]±ZZZZ if civil time zone offset ±ZZZZ is known
YYYYMMDDHHMMSS[.S[S[S[S]]]]-0000 if UTC time is known but civil time zone is
not.
If the device does not report a time stamp with its measurement, the Plug-In SHALL use the
time of reception of the measurement as the measurement time stamp. The Plug-In SHALL
provide a Boolean indication of ‘true’ if the measurement was provided by the Plug-In
because the device did not provide a measurement time stamp.

1.0

HD-HLF-07

The Plug-In SHALL correct any measurement time stamp by the difference between the
current time reported by Device and the current time reported by the Plug-In unless the
Plug-In knows that the device has a superior synchronization to UTC than the Plug-In does.
In other words, if the device does not have superior time synchronization and the current
time reported by the device is 20 seconds behind that reported by the Plug-In, the Plug-In
adds 20 seconds to any of the measurement time stamps reported by the device. If the device
has superior time synchronization, the Plug-In reports the device measurement time stamp
unmodified. (Note that PCHA complaint devices have a means of reporting its time
synchronization means and state to the Plug-In.)
Note: the Plug_in has the responsibility to correct the time. Some devices do not know the
time or the time need to be set (i.e. do not have superior synchronization) manually (which
may be different from the actual time), so that why the Plug-in need to correct the time

1.0

HD-HLF-08

The Plug-In SHALL have the capability to connect to and interact with PCHA-compliant
devices on at least one PCHA-complaint transport. Non-PCHA compliant devices MAY
also be supported as long as the following constraints are met:

1. If the proprietary device reports a time stamp with the measurement, the device
SHALL have a means of obtaining its current time such that the Plug-In can satisfy
guidelines *-HLF-05 to *-HLF-07.

2. If the device stores data a time stamp SHALL be provided with the measurement.
Note this requirement also requires the device provide a means to obtain its current
time.

3. The device provides sufficient information such that the Plug-In is able to satisfy
the remaining requirements.

1.0

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 15 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Label Description Release

HD-HLF-09

The Plug-In SHALL be able to provide the product name of the connected device. If the
Plug-In cannot get the product name, it SHALL create a name for the device using an
arbitrary algorithm. The algorithm is up to the Plug-In implementation, and this specification
does not define any algorithms. Note that the ‘algorithm’ could be a non-empty user-entry.

1.0

HD-HLF-10

The Plug-In SHALL be able to provide the manufacturer name of the connected device if
the Plug-In can get the name. It SHALL be reported as a string (may be empty).
Note: MDS attributes

1.0

HD-HLF-11

The Plug-In SHALL be able to provide the model number of the connected device if the
Plug-In can get the model number. It SHALL be reported as a string (may be empty).
Note: MDS attributes

1.0

HD-HLF-12 The Plug-In SHALL be able to provide the firmware revision of the connected device if the
Plug-In can get the firmware revision. It SHALL be reported as a string (may be empty). 1.0

HD-HLF-13 The Plug-In SHALL be able to provide the serial number of the connected device if the
Plug-In can get the serial number. It SHALL be reported as a string (may be empty). 1.0

HD-HLF-14 The Plug-In SHOULD be able to provide the software revision of the connected device if
the Plug-In can get the the software revision. If reported it SHALL be reported as a string. 1.0

HD-HLF-15 The Plug-In SHOULD be able to provide the hardware revision of the connected device if
the Plug-In can get the hardware revision. If reported it SHALL be reported as a string. 1.0

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 16 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Label Description Release

HD-HLF-16

The Plug-In SHOULD be able to provide the part number of the connected device if the
Plug-In can get the part number. If reported it SHALL be reported as a string.
Note: MDS attributes

1.0

HD-HLF-17 The Plug-In SHOULD be able to provide the protocol revision of the connected device if the
Plug-In can get the protocol revision. If reported it SHALL be reported as a string. 1.0

HD-HLF-18

The Plug-In SHALL be able to provide the 64-bit IEEE system id of the connected device as
a 16-character HEX string (without a ‘0x’ prefix). If the device does not report an IEEE
system id, the Plug-In SHALL send a string of 16 ‘0’ characters.
Note: VMS object class attributes

1.0

HD-HLF-19

The Plug-In SHALL be able to provide the battery level if the device provides a battery
level. This value must be a float number in a range from 0.0 to 1.0.
The value 0.0 represents that the targeted thermometer is completely out of charge. The
value 1.0 represents that the targeted thermometer is fully charged.
Even if the targeted thermometer reports this value in percent in a range from 1 to 100, the
Plug-In SHALL convert it to a float number in a range from 0.0 to 1.0.
If the Plug-In can't obtain battery level from the targeted thermometer, this value SHALL be
-1.0.

1.0

Table 1: High-Level Functional Requirements

6.3 Thermometer Specific Functional Requirements
The following requirements outline the thermometer specific set of options that Thermometer Plug-Ins implement. The
Thermometer Plug-In technical specifications will address the necessary functions for support of these options. This device
typically would be what one calls a 1 – N shot device where N is less than 25. However, if the device stores data persistently,
the number of measurements could be very large.

Thermometer devices supported by this plug in specification are expected to be able to report the body temperature. The
description of the measurement reported by the plug in follows the IEEE 11073 10408 Thermometer specialization

Editor's note:

This section should specify all the detailed and necessary requirements that are specific to the profile, so that the
architecture and technical specifications can be developed.

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 17 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

specification but that does not mean the device itself must follow that specification. However the device must provide to the
plug in the necessary information such that the plug can fulfil its reporting requirements as specified in this document.

Label Description Release

T-HSF-00

The Plug-In SHALL provide values as both strings (human consumption) and MDC
codes for detailed understanding and machine processing).
Note: For each nomenclature term, ISO/IEEE 11073-10101 [B12] defines a
systematic name that explains the term, a unique code value, and a reference identifier
(ID). The reference ID has the form MDC_XXX_YYY (with MDC referring to
“medical device communication”). Throughout this standard, nomenclature terms and
nomenclature codes are referenced by the reference ID.

1.0

T-HSF-01

The Temperature Plug-In SHALL use the Body temperature numeric object attributes
to report the values for subsequent requirements i.e. T-HSF-01.1...etc as stated in
these guidelines for the equivalent of the Body Temperature object as defined in
IEEE 11073 10408 Table 5
Note: Body temperature numeric object attributes

Attribute
name

Extended configuration Standard configuration
Value Qua

l
Value Qua

l
Type

{MDC_PART_SCAD
A,
MDC_TEMP_zzz}.

M {MDC_PART_SCADA
,
MDC_TEMP_BODY}.

M

Metric-Id See IEEE Std 11073-
20601.

C Attribute not initially
present. If present
follow IEEE Std 11073-
20601.

NR

Nu-Observed-
Value

See IEEE Std 11073-
20601.

C Attribute not initially
present. If present
follow IEEE Std 11073-
20601.

C

Unit-Code MDC_DIM_DEGC or
MDC_DIM_FAHR.

M MDC_DIM_DEGC. M

1.0

T-HSF-01.1

The Temperature Plug-In SHALL report the value of the TYPE* attribute as a human
readable string and as its 32-bit MDC code (combine the 16-bit partition and 16 bit
code; partition: code) *If the Metric Id is used the Temperature Plug-In SHALL
replace the code value with this value and if the Metric-Id-partition is present the
partition value SHALL be replaced with this value.
Note: TYPE and Metric Id identify the type of device but Metric Id gives more
information.
Example: String: “Oral body temperature”
Code: “188424

1.0

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 18 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Label Description Release

T-HSF-01.2

The Thermometer Plug-In SHALL report the value reported from the appropriate *-
Nu-Observed-Val attribute in two formats, i.e., float and string:

1- Float that represents the temperature measured by the targeted thermometer
and represented in a float format. This is for general use of application
programming.

2- String that represents the temperature measured by the targeted thermometer
and reported to the Plug-In in an MDER FLOAT format. Since there is no
way to transfer an MDER FLOAT from Plug-Ins to applications, an MDER
FLOAT is represented as a hexadecimal string, such as "FFFFC8E". In this
way, the MDER FLOAT can preserve the exact precision as derived from
the MDER encoded FLOAT. (Note that IEEE devices will report this value
typically as an MDER SFLOAT which the Temperature Plug-In maps to an
MDER FLOAT.) MDER FLOAT may be sent to the cloud for other
applications while preserving the original precision provided by the MDER
FLOAT.

Example: String: “37.2”
MDER FLOAT:“FFFFC8E”

1.0

T-HSF-01.3

The Temperature Plug-In SHALL report the value of the Unit Code attribute as a
human readable string and as its 32-bit MDC code (combine the 16-bit bit partition
code which is always 4 with the 16-bit code partition:code or 4:code).
Example: String: “deg C”
Code: “268192”

1.0

T-HSF-01.4
The Temperature Plug-In SHALL report the measurement time stamp as an HL7
DTM time stamp as specified by HD-HLF-06 and HD-HLF-07.
Example: “20150504135813.22-0400”

1.0

Table 2: Thermometer Specific Functional Requirements

Editor Note: Thermometer
Type as String: “Oral body temperature”
Type as Code: “188424”

Type as String: “37.2”
MDER FLOAT:“FFFFC8E”

Units as string: “deg C”
Units as code: “268192”

Timestamp: “20150504135813.22-0400”

6.4 Pulse Oximeter Specific Functional Requirements
The following requirements outline the pulse oximeter specific set of options that Pulse Oximeter Plug-Ins may implement.
The Pulse Oximeter Plug-In technical specifications will address the necessary functions for support of these options. Pulse
Oximeters may stream data or send spot data episodically similar to a Blood Pressure cuff or do both.

Pulse oximeter devices supported by this plug in specification are expected to be able to report the oxygen saturation and
pulse rate. The description of the measurement reported by the plug in follows the IEEE 11073 10404 Pulse Oximeter
specialization specification but that does not mean the device itself must follow that specification. However the device must
provide to the plug in the necessary information such that the plug can fulfil its reporting requirements as specified in this
document.

Editor's note:

This section should speficy all the detailed and necessary requirements that are specific to the profile, so that the
architecture and technical specifications can be developed.

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 19 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Pulse oximeters report measurements in several different manners. Data is often streamed at regular intervals (say once per
second) or reported over various ‘sample’ times. The latter are referred to as spot modalities, and they can be fast, slow, or
just ‘spot’. The spot measurements represent a more ‘robust’ estimate of the actual value. IEEE supports several types of spot
modality measurements. Spot measurements, being episodic, typically have time stamps whereas streaming measurements
tend not to have time stamps.

The Pulse Oximeter Plug-In will report at least one type of oxygen saturation and pulse rate. It may be further described as
modality spot, modality fast spot, or modality slow spot.

Label Description Release

PO-HSF-00
The Plug-In SHALL provide values as both strings (human consumption) and MDC codes
for detailed understanding and machine processing).

1.0

PO-HSF-01

The Pulse Oximeter Plug-In SHALL report the values as stated in these guidelines for the
equivalent of the Oxygen Saturation object as defined in IEEE 11073 10404 Table 5.
Note: SpO2 numeric object attributes

Attribute
name

Extended configuration Standard configuration
Value Qua

l
Value Qua

l

Type

{MDC_PART_SCADA,
MDC_PULS_OXIM_SA
T_O2}

M {MDC_PART_SCA
DA,
MDC_PULS_OXIM_
SAT_O2}

M

Supplemental
-
Types

The Supplemental-Types
attribute is used to
distinguish the modality
of a particular SpO2
measurement. In
order to express the fast-
response SpO2
measurement, slow-
response SpO2
measurement, If there is
no desire to distinguish a
modality, the
Supplemental-Types
attribute shall not be
used.

C See IEEE Std 11073-
20601-2008 and
following text.

NR

Nu-Observed-
Value

See IEEE Std 11073-
20601-
2008.

C Attribute not initially
present. If
present, follow IEEE
Std 11073-20601-
2008.

C

Unit-Code MDC_DIM_PERCENT M MDC_DIM_PERCE
NT

M

1.0

PO-HSF-01.1

The Pulse Oximeter Plug-In SHALL report the value of the TYPE attribute as a human
readable string and as its 32-bit MDC code (combine the 16-bit partition and 16 bit code;
partition: code). [The TYPE attribute value for the Oxygen Saturation is fixed for all Pulse
Oximeter devices]
Example: String: “Oxygen Saturation”
Code: “150456”
[MDC_PULS_OXIM_SAT_O2]

1.0

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 20 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Label Description Release

PO-HSF-
01.1.1

The Pulse Oximeter Plug-In SHALL report the value of the Supplemental types attribute as
a human readable string and as its 32-bit MDC code (combine the 16-bit bit partition code
with the 16-bit code partition:code) if a supplemental types exists.
Example: String: “Spot (average) measurement”
Code: “150588” [MDC_MODALITY_SPOT]

1.0

PO-HSF-01.2

The Pulse Oximeter Plug-In SHALL report the value reported from the appropriate *-Nu-
Observed-Val attribute in two formats, i.e., float and string:

1- Float that represents the Pulse Oximeter report data measured by the targeted Pulse
Oximeter and represented in a float format. This is for general use of application
programming.

2- String that represents the Pulse Oximeter report data measured by the targeted
Pulse Oximeter and reported to the Plug-In in an MDER FLOAT format. Since
there is no way to transfer an MDER FLOAT from Plug-Ins to applications, an
MDER FLOAT is represented as a hexadecimal string, such as "FFFFC8E". In this
way, the MDER FLOAT can preserve the exact precision as derived from the
MDER encoded FLOAT. (Note that IEEE devices will report this value typically as
an MDER SFLOAT which the Temperature Plug-In maps to an MDER FLOAT.)
MDER FLOAT may be sent to the cloud for other applications while preserving
the original precision provided by the MDER FLOAT.

Example: String: “98”
MDER FLOAT: “00000062’

1.0

PO-HSF-01.3

The Pulse Oximeter Plug-In SHALL report the value of the Unit Code attribute as a human
readable string and as its 32-bit MDC code (combine the 16-bit bit partition code which is
always 4 with the 16-bit code partition:code or 4:code). [The Unit Code attribute value for
the Oxygen Saturation is fixed for all Pulse Oximeter devices]
Example: String: “%”
Code: “262688”
[MDC_DIM_PERCENT]

1.0

PO-HSF-01.4
The Pulse Oximeter Plug-In SHALL report the measurement time stamp as an HL7 DTM
time stamp as specified by HD-HLF-06 and HD-HLF-07.
Example: 20150506162223.50-0400

Table 3: Pulse Oximeter Specific Functional Requirements

Editor Note: Oxygen Saturation
Type as String: “Oxygen Saturation”
Type as Code: “150456”

Type as String: “Spot (average) measurement”
Code: “150588

Type as String: “98”
MDER FLOAT: “00000062’

Units as string: “%”
Units as code: “262688”

Timestamp: “20150504135813.22-0400”

Editor Note: Pulse Rate
Type as String: “Pulse Rate”
Type as Code: “149530”

Type as String: “Spot (average) measurement”
Code: “150588

Type as String: “42”
MDER FLOAT: “0000002A”

Units as string: “beats per min”
Units as code: “264864”

Timestamp: “20150504135813.22-0400”

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 21 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

6.5 Weight Scale / Body Composition Analyzer Functional
Requirements

The following requirements outline the weight scale and body composition analyzer specific set of options that Weight Scale
/ Body Composition Analyzer Plug-Ins implement. The Weight Scale / Body Composition Analyzer Plug-In technical
specifications will address the necessary functions for support of these options. This device typically would be what one
calls a 1 – N shot device where N is less than 25. However, if the device stores data persistently, the number of measurements
could be very large.

Weight Scale and Body Composition Analyzer (BCA) plug ins are specified together as a BCA has all the required and
optional measurements of a Weight Scale device in addition to additional required and optional measurements.

Weight Scale devices supported by the Weight Scale plug in specification are expected to be able to report the body mass and
optionally the body length (height) and body mass index (BMI). The description of the measurements reported by the Weight
Scale plug in follows the IEEE 11073 10415 Weight Scale specialization specification but that does not mean the device
itself must follow that specification. However the device must provide to the plug in the necessary information such that the
plug can fulfil its reporting requirements as specified in this document.

Body Composition Analyzers (BCA) report body fat, body mass, body length, and may support several other related
measurements such as muscle mass, body water, fat free mass, soft lean mass, and BMI as specified in IEEE 11073 10420.
The Bluetooth Low Energy BCA service specification has additional measurements not defined in IEEE though MDC codes
have been defined for these Bluetooth Low Energy measurements and it is expected that they will be added to the IEEE
specification in future revisions of the IEEE specification.

Given the fact that a BCA is essentially a weight scale with additional measurements, the BCA Plug-In will support all the
Weight Scale Plug-In guidelines in addition to those guidelines specific to the BCA. The only inconsistency is that IEEE
BCAs require a body length, and in IEEE weight scales it is optional. Thus if the BCA Plug-In does not receive a body length
measurement, then it will not report such a measurement.

The example column shows what the Plug-In will send to the upper levels. There will be a string and a Code or MDER
FLOAT if the latter apply. The string representation of the MDC reference code in square brackets is NOT passed up but
shown for reference.

Label Description Release

WS-HSF-00 The Plug-In SHALL provide values as both strings (human consumption) and MDC codes
for detailed understanding and machine processing). 1.0

Editor's note:

This section should speficy all the detailed and necessary requirements that are specific to the profile, so that the
architecture and technical specifications can be developed.

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 22 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Label Description Release

WS-HSF-01

The Weight Scale Plug-In SHALL report the values as stated in these guidelines for the
equivalent of the Body Mass object as defined in IEEE 11073 10415 Table 5.
Note: weight scale

Attribute
name

Extended configuration Standard configuration
Value Qua

l
Value Qua

l
Type MDC_PART_SCADA |

MDC_MASS_BODY_A
CTUAL.

M MDC_PART_SCAD
A |
MDC_MASS_BODY
_ACTUAL.

M

Nu-Observed-
Value

See IEEE Std 11073-
20601.

C Attribute not initially
present. If present
follow IEEE Std
11073-20601.

C

Unit-Code MDC_DIM_KILO_G or
MDC_DIM_LB.

M MDC_DIM_KILO_G M

 M M

1.0

WS-HSF-01.1

The Weight Scale Plug-In SHALL report the value of the TYPE attribute as a human
readable string and as its 32-bit MDC code (combine the 16-bit partition and 16 bit code;
partition:code). [The TYPE attribute value for the Body Mass is fixed for all Weight Scale
devices]
Example: String: “Body Mass”
Code: “188740”
[MDC_MASS_BODY_ACTUAL]

1.0

WS-HSF-01.2

The Weight Scale Plug-In SHALL report the value reported from the appropriate *-Nu-
Observed-Val attribute in two formats, i.e., float and string:

Float that represents the Weight Scale report data measured by the targeted Weight Scale
and represented in a float format. This is for general use of application programming.

String that represents the Weight Scale report data measured by the targeted Weight Scale
and reported to the Plug-In in an MDER FLOAT format. Since there is no way to transfer
an MDER FLOAT from Plug-Ins to applications, an MDER FLOAT is represented as a
hexadecimal string, such as "FFFFC8E". In this way, the MDER FLOAT can preserve the
exact precision as derived from the MDER encoded FLOAT. (Note that IEEE devices will
report this value typically as an MDER SFLOAT which the Temperature Plug-In maps to
an MDER FLOAT.) MDER FLOAT may be sent to the cloud for other applications while
preserving the original precision provided by the MDER FLOAT.

Example: String: “160.4”

MDER FLOAT: “FF00644”

1.0

WS-HSF-01.3

The Weight Scale Plug-In SHALL report the value of the Unit Code attribute as a human
readable string and as its 32-bit MDC code (combine the 16-bit bit partition code which is
always 4 with the 16-bit code partition:code or 4:code).

Example: String: “lbs”

Code: “263904”

[MDC_DIM_LB]

1.0

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 23 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Label Description Release

WS-HSF-01.4
The Weight Scale Plug-In SHALL report the measurement time stamp as an HL7 DTM
time stamp as specified by HD-HLF-06 and HD-HLF-07.

Example: “20150506135813.22-0400”
1.0

WS-HSF-02

The Weight Scale Plug-In SHALL report the values as stated in these guidelines for the
equivalent of the Body Length object as defined in IEEE 11073 10415 Table 6 if the device
reports a body length.

Note: Body height numeric object attributes

Attribute
name

Extended configuration

Value Qua
l

Type

 MDC_PART_SCADA |

MDC_LEN_BODY_AC
TUAL.

M

Nu-Observed-

Value

See IEEE Std 11073-
20601.

C

Unit-Code MDC_DIM_CENTI_M,
or

MDC_DIM_INCH.

M

1.0

WS-HSF-02.1

If the device reports a body length, the Weight Scale Plug-In SHALL report the value of the
TYPE attribute as a human readable string and as its 32-bit MDC code (combine the 16-bit
partition and 16 bit code; partition:code). [The TYPE attribute value for the Body Length is
fixed for all Weight Scale devices]

Example: String: “Body Length”

Code: “188744”

[MDC_LEN_BODY_ACTUAL]

1.0

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 24 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Label Description Release

WS-HSF-02.2

If the device reports a body length, the Weight Scale Plug-In SHALL report the value
reported from the appropriate *-Nu-Observed-Val attribute in two formats, i.e., float and
string:

Float that represents the body length report data measured by the targeted Weight Scale and
represented in a float format. This is for general use of application programming.

String that represents the body length report data measured by the targeted Weight Scale
and reported to the Plug-In in an MDER FLOAT format. Since there is no way to transfer
an MDER FLOAT from Plug-Ins to applications, an MDER FLOAT is represented as a
hexadecimal string, such as "FFFFC8E". In this way, the MDER FLOAT can preserve the
exact precision as derived from the MDER encoded FLOAT. (Note that IEEE devices will
report this value typically as an MDER SFLOAT which the Temperature Plug-In maps to
an MDER FLOAT.) MDER FLOAT may be sent to the cloud for other applications while
preserving the original precision provided by the MDER FLOAT.

Example: String:

“68.5”

MDER FLOAT:

“FF002AD”

1.0

WS-HSF-02.3

If the device reports a body length, the Weight Scale Plug-In SHALL report the value of the
Unit Code attribute as a human readable string and as its 32-bit MDC code (combine the 16-
bit bit partition code which is always 4 with the 16-bit code partition:code or 4:code).

Example: String: “inches”

Code: “263520”

[MDC_DIM_INCH]

1.0

WS-HSF-02.4

If the device reports a body length, the Weight Scale Plug-In SHALL report the
measurement time stamp as an HL7 DTM time stamp as specified by HD-HLF-06 and HD-
HLF-07.

Example: “20150506135813.22-0400”

1.0

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 25 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Label Description Release

WS-HSF-03

The Weight Scale Plug-In SHALL report the values as stated in these guidelines for the
equivalent of the Body Mass Index (BMI) object as defined in IEEE 11073 10415 Table 7 if
the device reports a BMI.

Note: Body mass index numeric object attributes

Attribute
name

Extended configuration

Value Qua
l

Type

MDC_PART_SCADA |

MDC_RATIO_MASS_B
ODY_LEN_SQ.

M

Nu-Observed-

Value

See IEEE Std 11073-
20601.

C

Unit-Code MDC_DIM_KG_PER_
M_SQ.

M

1.0

WS-HSF-03.1

If the device reports a BMI, the Weight Scale Plug-In SHALL report the value of the TYPE
attribute as a human readable string and as its 32-bit MDC code (combine the 16-bit
partition and 16 bit code; partition:code). [The TYPE attribute value for the Body Mass
Index is fixed for all Weight Scale devices]

Example: String: “BMI”

Code: “188752”

[MDC_RATIO_MASS_BODY_LEN_SQ]

1.0

WS-HSF-03.2

If the device reports a BMI, the Weight Scale Plug-In SHALL report the value reported
from the appropriate *-Nu-Observed-Val attribute in two formats, i.e., float and string:

Float that represents the BMI report data measured by the targeted Weight Scale and
represented in a float format. This is for general use of application programming.

String that represents the BMI report data measured by the targeted Weight Scale and
reported to the Plug-In in an MDER FLOAT format. Since there is no way to transfer an
MDER FLOAT from Plug-Ins to applications, an MDER FLOAT is represented as a
hexadecimal string, such as "FFFFC8E". In this way, the MDER FLOAT can preserve the
exact precision as derived from the MDER encoded FLOAT. (Note that IEEE devices will
report this value typically as an MDER SFLOAT which the Temperature Plug-In maps to
an MDER FLOAT.) MDER FLOAT may be sent to the cloud for other applications while
preserving the original precision provided by the MDER FLOAT.

Example: String: “24.10”

MDER FLOAT: “FE00096A”

1.0

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 26 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Label Description Release

WS-HSF-03.3

If the device reports a BMI, the Weight Scale Plug-In SHALL report the value of the Unit
Code attribute as a human readable string and as its 32-bit MDC code (combine the 16-bit
bit partition code which is always 4 with the 16-bit code partition:code or 4:code).

Example:

String: “kg/m2”

Code: “264096”

[MDC_DIM_KG_PER_M_SQ]

1.0

WS-HSF-03.4
If the device reports a BMI, the Weight Scale Plug-In SHALL report the measurement time
stamp as an HL7 DTM time stamp as specified by HD-HLF-06 and HD-HLF-07.

Example: “20150506135813.22-0400”
1.0

BCA-HSF-01

The BCA Plug in SHALL support the Weight Scale Plug-In guidelines as stated in this
specification with the note that IEEE BCA devices are expected to support the body length
though the Bluetooth Low Energy BCA service has the body length as optional.
Consequently the BCA Plug-in SHALL report the body length measurement if the device
sends it.

1.0

BCA-HSF-02

The BCA Plug-In SHALL report the values as stated in these guidelines for the equivalent
of the Body Fat object as defined in IEEE 11073 10420 Table 5.

Note: BCA index numeric object attributes

Attribute
name

Extended configuration

Value Qua
l

Type MDC_BODY_FAT M

Nu-Observed-

Value

See IEEE Std 11073-
20601.

C

Unit-Code MDC_DIM_PERCENT M

1.0

BCA-HSF-02.1

The BCA Plug-In SHALL report the value of the TYPE attribute as a human readable string
and as its 32-bit MDC code (combine the 16-bit partition and 16 bit code; partition:code).
[The TYPE attribute value for the Body Fat is fixed for all BCA devices]

Example: String: “Body Fat”

Code: “188748”

[MDC_BODY_FAT]

1.0

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 27 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Label Description Release

BCA-HSF-02.2

The BCA Plug-In SHALL report the value reported from the appropriate *-Nu-Observed-
Val attribute in two formats, i.e., float and string:

Float that represents the BCA report data measured by the targeted BCA and represented in
a float format. This is for general use of application programming.

String that represents the BCA report data measured by the targeted BCA and reported to
the Plug-In in an MDER FLOAT format. Since there is no way to transfer an MDER
FLOAT from Plug-Ins to applications, an MDER FLOAT is represented as a hexadecimal
string, such as "FFFFC8E". In this way, the MDER FLOAT can preserve the exact
precision as derived from the MDER encoded FLOAT. (Note that IEEE devices will report
this value typically as an MDER SFLOAT which the Temperature Plug-In maps to an
MDER FLOAT.) MDER FLOAT may be sent to the cloud for other applications while
preserving the original precision provided by the MDER FLOAT.

Example: String: “13.5”

MDER FLOAT: “FF000087”

1.0

BCA-HSF-02.3

The BCA Plug-In SHALL report the value of the Unit Code attribute as a human readable
string and as its 32-bit MDC code (combine the 16-bit bit partition code which is always 4
with the 16-bit code partition:code or 4:code).

Example: String: “%”

Code: “262688”

[MDC_DIM_PERCENT]

1.0

BCA-HSF-02.4
The BCA Plug-In SHALL report the measurement time stamp as an HL7 DTM time stamp
as specified by HD-HLF-06 and HD-HLF-07.

Example: “20150506135813.22-0400”
1.0

BCA-HSF-03

The BCA Plug-In SHALL report the values as stated in these guidelines for the equivalent
of the Fat Free Mass object as defined in IEEE 11073 10420 Table 8 if the device reports
the measurement.

Note: Fat Free index numeric object attributes

Attribute
name

Extended configuration

Value Qua
l

Type

MDC_MASS_BODY_F
AT_FREE

M

Nu-Observed-

Value

See IEEE Std 11073-
20601.

C

Unit-Code MDC_DIM_LB M

1.0

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 28 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Label Description Release

BCA-HSF-03.1

If the device reports a fat free mass measurement, the BCA Plug-In SHALL report the value
of the TYPE attribute as a human readable string and as its 32-bit MDC code (combine the
16-bit partition and 16 bit code; partition:code). [The TYPE attribute value for the Fat Free
Mass is fixed for all BCA devices]

Example: String: “Fat Free Mass”

Code: “188756”

[MDC_MASS_BODY_FAT_FREE]

1.0

BCA-HSF-03.2

If the device reports a fat free mass measurement, the BCA Plug-In SHALL report the value
reported from the appropriate *-Nu-Observed-Val attribute in two formats, i.e., float and
string:

Float that represents the fat free mass measurement report data measured by the targeted
BCA and represented in a float format. This is for general use of application programming.

String that represents the fat free mass measurement report data measured by the targeted
BCA and reported to the Plug-In in an MDER FLOAT format. Since there is no way to
transfer an MDER FLOAT from Plug-Ins to applications, an MDER FLOAT is represented
as a hexadecimal string, such as "FFFFC8E". In this way, the MDER FLOAT can preserve
the exact precision as derived from the MDER encoded FLOAT. (Note that IEEE devices
will report this value typically as an MDER SFLOAT which the Temperature Plug-In maps
to an MDER FLOAT.) MDER FLOAT may be sent to the cloud for other applications
while preserving the original precision provided by the MDER FLOAT.

Example: String: “138.8”

MDER FLOAT: “FF00056C”

1.0

BCA-HSF-03.3

If the device reports a fat free mass measurement, the BCA Plug-In SHALL report the value
of the Unit Code attribute as a human readable string and as its 32-bit MDC code (combine
the 16-bit bit partition code which is always 4 with the 16-bit code partition:code or 4:code).

Example: String: “lbs”

Code: “263904”

[[MDC_DIM_LB]

1.0

BCA-HSF-03.4

If the device reports a fat free mass measurement, the BCA Plug-In SHALL report the
measurement time stamp as an HL7 DTM time stamp as specified by HD-HLF-06 and HD-
HLF-07.

Example: “20150506135813.22-0400”

1.0

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 29 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Label Description Release

BCA-HSF-04

The BCA Plug-In SHALL report the values as stated in these guidelines for the equivalent
of the Soft Lean Mass object as defined in IEEE 11073 10420 Table 9 if the device reports
the measurement.

Note: Soft Lean Mass index numeric object attributes

Attribute
name

Extended configuration

Value Qua
l

Type

[MDC_MASS_BODY_S
OFT_LEAN]

M

Nu-Observed-

Value

See IEEE Std 11073-
20601.

C

Unit-Code [MDC_DIM_KILO_G] M

1.0

BCA-HSF-04.1

If the device reports a soft lean mass measurement, the BCA Plug-In SHALL report the
value of the TYPE attribute as a human readable string and as its 32-bit MDC code
(combine the 16-bit partition and 16 bit code; partition:code). [The TYPE attribute value for
the Soft Lean Mass is fixed for all BCA devices]

Example: String: “Soft Lean Mass”

Code: “188760”

[MDC_MASS_BODY_SOFT_LEAN]

1.0

BCA-HSF-04.2

If the device reports a soft lean mass measurement, the BCA Plug-In SHALL report the
value reported from the appropriate *-Nu-Observed-Val attribute in two formats, i.e., float
and string:

Float that represents a soft lean mass measurement report data measured by the targeted
BCA and represented in a float format. This is for general use of application programming.

String that represents a soft lean mass measurement report data measured by the targeted
BCA and reported to the Plug-In in an MDER FLOAT format. Since there is no way to
transfer an MDER FLOAT from Plug-Ins to applications, an MDER FLOAT is represented
as a hexadecimal string, such as "FFFFC8E". In this way, the MDER FLOAT can preserve
the exact precision as derived from the MDER encoded FLOAT. (Note that IEEE devices
will report this value typically as an MDER SFLOAT which the Temperature Plug-In maps
to an MDER FLOAT.) MDER FLOAT may be sent to the cloud for other applications
while preserving the original precision provided by the MDER FLOAT

Example: String: “58.8”

MDER FLOAT: “FF00024C”

1.0

BCA-HSF-04.3

If the device reports a soft lean mass measurement, the BCA Plug-In SHALL report the
value of the Unit Code attribute as a human readable string and as its 32-bit MDC code
(combine the 16-bit bit partition code which is always 4 with the 16-bit code partition:code
or 4:code).

Example: String: “kg”

Code: “263875”

[MDC_DIM_KILO_G]

1.0

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 30 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Label Description Release

BCA-HSF-04.4

If the device reports a soft lean mass measurement, the BCA Plug-In SHALL report the
measurement time stamp as an HL7 DTM time stamp as specified by HD-HLF-06 and HD-
HLF-07.

Example: “20150506135813.22-0400”

1.0

BCA-HSF-05

The BCA Plug-In SHALL report the values as stated in these guidelines for the equivalent
of the Body Water object as defined in IEEE 11073 10420 Table 10 if the device reports the
measurement.

Note: Body Water object index numeric object attributes

Attribute
name

Extended configuration

Value Qua
l

Type [MDC_BODY_WATER] M

Nu-Observed-

Value

See IEEE Std 11073-
20601.

C

Unit-Code [MDC_DIM_PERCENT] M

1.0

BCA-HSF-05.1

If the device reports a body water measurement, the BCA Plug-In SHALL report the value
of the TYPE attribute as a human readable string and as its 32-bit MDC code (combine the
16-bit partition and 16 bit code; partition:code). [The TYPE attribute value for the Body
Water is fixed for all BCA devices]

Example: String: “Body water”

Code: “188760”

[MDC_BODY_WATER]

1.0

BCA-HSF-05.2

If the device reports a body water measurement, the BCA Plug-In SHALL report the value
reported from the appropriate *-Nu-Observed-Val attribute in two formats, i.e., float and
string:

Float that represents a body water measurement report data measured by the targeted BCA
and represented in a float format. This is for general use of application programming.

String that represents a body water measurement report data measured by the targeted BCA
and reported to the Plug-In in an MDER FLOAT format. Since there is no way to transfer
an MDER FLOAT from Plug-Ins to applications, an MDER FLOAT is represented as a
hexadecimal string, such as "FFFFC8E". In this way, the MDER FLOAT can preserve the
exact precision as derived from the MDER encoded FLOAT. (Note that IEEE devices will
report this value typically as an MDER SFLOAT which the Temperature Plug-In maps to
an MDER FLOAT.) MDER FLOAT may be sent to the cloud for other applications while
preserving the original precision provided by the MDER FLOAT

Example: String: “64”

MDER FLOAT: “00000040”

1.0

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 31 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Label Description Release

BCA-HSF-05.3

If the device reports a body water measurement, the BCA Plug-In SHALL report the value
of the Unit Code attribute as a human readable string and as its 32-bit MDC code (combine
the 16-bit bit partition code which is always 4 with the 16-bit code partition:code or 4:code).

Example: String: “%”

Code: “262688”

[MDC_DIM_PERCENT]

1.0

BCA-HSF-05.4

If the device reports a body water measurement, the BCA Plug-In SHALL report the
measurement time stamp as an HL7 DTM time stamp as specified by HD-HLF-06 and HD-
HLF-07.

Example: “20150506135813.22-0400”

1.0

BCA-HSF-06

The BCA Plug-In SHALL report the values as stated in these guidelines for the equivalent
of the Muscle Mass as defined in Bluetooth Low Energy BCA Service and the Personal
Health Devices Transcoding White Paper Table 61 if the device reports the measurement.
The IEEE BCA specialization does not currently support this measurement though an MDC
code (188776; 2:E168) is provided for it.

Note: Muscle Mass object index numeric object attributes

Attribute
name

Extended configuration

Value Qua
l

Type

[MDC_BODY_MASS] M

Nu-Observed-

Value

See IEEE Std 11073-
20601.

C

Unit-Code MDC_DIM_KILO_G M

1.0

BCA-HSF-06.1

If the device reports a muscle mass measurement, the BCA Plug-In SHALL report the value
of the TYPE attribute as a human readable string and as its 32-bit MDC code (combine the
16-bit partition and 16 bit code; partition:code). [The TYPE attribute value for the Muscle
Mass is fixed for all BCA devices]

Example: String: “Muscle Mass”

Code: “188776”

1.0

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 32 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Label Description Release

BCA-HSF-06.2

If the device reports a muscle mass measurement, the BCA Plug-In SHALL report the value
reported from the appropriate *-Nu-Observed-Val attribute in two formats, i.e., float and
string:

Float that represents a muscle mass measurement report data measured by the targeted BCA
and represented in a float format. This is for general use of application programming.

String that represents a muscle mass measurement report data measured by the targeted
BCA and reported to the Plug-In in an MDER FLOAT format. Since there is no way to
transfer an MDER FLOAT from Plug-Ins to applications, an MDER FLOAT is represented
as a hexadecimal string, such as "FFFFC8E". In this way, the MDER FLOAT can preserve
the exact precision as derived from the MDER encoded FLOAT. (Note that IEEE devices
will report this value typically as an MDER SFLOAT which the Temperature Plug-In maps
to an MDER FLOAT.) MDER FLOAT may be sent to the cloud for other applications
while preserving the original precision provided by the MDER FLOAT

Example:

String: “43”

MDER FLOAT: “0000002B

1.0

BCA-HSF-06.3

If the device reports a muscle mass measurement, the BCA Plug-In SHALL report the value
of the Unit Code attribute as a human readable string and as its 32-bit MDC code (combine
the 16-bit bit partition code which is always 4 with the 16-bit code partition:code or 4:code).

Example:

String: “kg”

Code: “263875”

[MDC_DIM_KILO_G]

1.0

BCA-HSF-06.4

If the device reports a muscle mass measurement, the BCA Plug-In SHALL report the
measurement time stamp as an HL7 DTM time stamp as specified by HD-HLF-06 and HD-
HLF-07.

Example: “20150506135813.22-0400”

1.0

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 33 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Label Description Release

BCA-HSF-07

The BCA Plug-In SHALL report the values as stated in these guidelines for the equivalent
of the Muscle percentage as defined in Bluetooth Low Energy BCA Service and the
Personal Health Devices Transcoding White Paper Table 60 if the device reports the
measurement. The IEEE BCA specialization does not currently support this measurement
though an MDC code (188772; 2:E164) is provided for it.

Note: Muscle Percentage object index numeric object attributes

Attribute
name

Extended configuration

Value Qua
l

Type [MDC_BODY_
MUSCLE_PERCENTA
GE]

M

Nu-Observed-

Value

See IEEE Std 11073-
20601.

C

Unit-Code [MDC_DIM_PERCENT] M

1.0

BCA-HSF-07.1

If the device reports a muscle percentage measurement, the BCA Plug-In SHALL report the
value of the TYPE attribute as a human readable string and as its 32-bit MDC code
(combine the 16-bit partition and 16 bit code; partition:code). [The TYPE attribute value for
the Muscle percentage is fixed for all BCA devices]

Example: String: “Muscle Percentage”

Code: “188772”

1.0

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 34 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Label Description Release

BCA-HSF-07.2

If the device reports a muscle percentage measurement, the BCA Plug-In SHALL report the
value reported from the appropriate *-Nu-Observed-Val attribute in two formats, i.e., float
and string:

Float that represents a muscle percentage measurement report data measured by the targeted
BCA and represented in a float format. This is for general use of application programming.

String that represents a muscle percentage measurement report data measured by the
targeted BCA and reported to the Plug-In in an MDER FLOAT format. Since there is no
way to transfer an MDER FLOAT from Plug-Ins to applications, an MDER FLOAT is
represented as a hexadecimal string, such as "FFFFC8E". In this way, the MDER FLOAT
can preserve the exact precision as derived from the MDER encoded FLOAT. (Note that
IEEE devices will report this value typically as an MDER SFLOAT which the Temperature
Plug-In maps to an MDER FLOAT.) MDER FLOAT may be sent to the cloud for other
applications while preserving the original precision provided by the MDER FLOAT

Example: String: “59”

MDER FLOAT: “0000003B”

1.0

BCA-HSF-07.3

If the device reports a muscle percentage measurement, the BCA Plug-In SHALL report the
value of the Unit Code attribute as a human readable string and as its 32-bit MDC code
(combine the 16-bit bit partition code which is always 4 with the 16-bit code partition:code
or 4:code). [The Unit code attribute value for the Muscle percentage is fixed for all BCA
devices]

Example: String: “%”

Code: “262688”

[MDC_DIM_PERCENT]

1.0

BCA-HSF-07.4

If the device reports a muscle percentage measurement, the BCA Plug-In SHALL report the
measurement time stamp as an HL7 DTM time stamp as specified by HD-HLF-06 and HD-
HLF-07.

Example: “20150506135813.22-0400”

1.0

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 35 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Label Description Release

BCA-HSF-08

The BCA Plug-In SHALL report the values as stated in these guidelines for the equivalent
of the Basal Metabolism as defined in Bluetooth Low Energy BCA Service and the Personal
Health Devices Transcoding White Paper Table 59 if the device reports the measurement.
The IEEE BCA specialization does not currently support this measurement though an MDC
code (188768; 2:E160) is provided for it.

Note: Basal Metabolism bject index numeric object attributes

Attribute
name

Extended configuration

Value Qua
l

Type [MDC_BODY_
Basel_Metabolism]

M

Nu-Observed-

Value

See IEEE Std 11073-
20601.

C

Unit-Code [MDC_DIM_PERCENT] M

1.0

BCA-HSF-08.1

If the device reports a basal metabolism measurement, the BCA Plug-In SHALL report the
value of the TYPE attribute as a human readable string and as its 32-bit MDC code
(combine the 16-bit partition and 16 bit code; partition:code). [The TYPE attribute value for
the basal metabolism is fixed for all BCA devices]

Example: String: “Basal Metabolism”

Code: “188768”

1.0

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 36 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Label Description Release

BCA-HSF-08.2

If the device reports a basal metabolism measurement, the BCA Plug-In SHALL report the
value reported from the appropriate *-Nu-Observed-Val attribute in two formats, i.e., float
and string:

Float that represents a basal metabolism measurement report data measured by the targeted
BCA and represented in a float format. This is for general use of application programming.

String that represents a basal metabolism measurement report data measured by the targeted
BCA and reported to the Plug-In in an MDER FLOAT format. Since there is no way to
transfer an MDER FLOAT from Plug-Ins to applications, an MDER FLOAT is represented
as a hexadecimal string, such as "FFFFC8E". In this way, the MDER FLOAT can preserve
the exact precision as derived from the MDER encoded FLOAT. (Note that IEEE devices
will report this value typically as an MDER SFLOAT which the Temperature Plug-In maps
to an MDER FLOAT.) MDER FLOAT may be sent to the cloud for other applications
while preserving the original precision provided by the MDER FLOAT

Example: String: “1214000”

MDER FLOAT: “030004BE”

1.0

BCA-HSF-08.3

If the device reports a basal metabolism measurement, the BCA Plug-In SHALL report the
value of the Unit Code attribute as a human readable string and as its 32-bit MDC code
(combine the 16-bit bit partition code which is always 4 with the 16-bit code partition:code
or 4:code). [The Unit code attribute value for the basal metabolism is fixed for all BCA
devices]

Example: String: “joules”

Code: “266112”

[MDC_DIM_JOULES]

1.0

BCA-HSF-08.4

If the device reports a basal metabolism measurement, the BCA Plug-In SHALL report the
measurement time stamp as an HL7 DTM time stamp as specified by HD-HLF-06 and HD-
HLF-07.

Example: “20150506135813.22-0400”

1.0

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 37 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Label Description Release

BCA-HSF-09

The BCA Plug-In SHALL report the values as stated in these guidelines for the equivalent
of the Impedance as defined in Bluetooth Low Energy BCA Service and the Personal
Health Devices Transcoding White Paper Table 58 if the device reports the measurement.
The IEEE BCA specialization does not currently support this measurement though an MDC
code (188780; 2:E16C) is provided for it.

Note: Impedance object index numeric object attributes

Attribute
name

Extended configuration

Value Qua
l

Type [MDC_BODY_
IMPEDANCE]

M

Nu-Observed-

Value

See IEEE Std 11073-
20601.

C

Unit-Code MDC_DIM_OHMS M

1.0

BCA-HSF-08.1

If the device reports a basal metabolism measurement, the BCA Plug-In SHALL report the
value of the TYPE attribute as a human readable string and as its 32-bit MDC code
(combine the 16-bit partition and 16 bit code; partition:code). [The TYPE attribute value for
the impedance is fixed for all BCA devices]

Example: String: “Impedance”

Code: “188780”

1.0

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 38 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Label Description Release

BCA-HSF-09.2

If the device reports an impedance measurement , the BCA Plug-In SHALL report the value
reported from the appropriate *-Nu-Observed-Val attribute in two formats, i.e., float and
string:

Float that represents an impedance measurement report data measured by the targeted BCA
and represented in a float format. This is for general use of application programming.

String that represents an impedance measurement report data measured by the targeted BCA
and reported to the Plug-In in an MDER FLOAT format. Since there is no way to transfer
an MDER FLOAT from Plug-Ins to applications, an MDER FLOAT is represented as a
hexadecimal string, such as "FFFFC8E". In this way, the MDER FLOAT can preserve the
exact precision as derived from the MDER encoded FLOAT. (Note that IEEE devices will
report this value typically as an MDER SFLOAT which the Temperature Plug-In maps to
an MDER FLOAT.) MDER FLOAT may be sent to the cloud for other applications while
preserving the original precision provided by the MDER FLOAT

Example: String: “4567.8”

MDER FLOAT: “FF00B26E”

1.0

BCA-HSF-09.3

If the device reports an impedance measurement, the BCA Plug-In SHALL report the value
of the Unit Code attribute as a human readable string and as its 32-bit MDC code (combine
the 16-bit bit partition code which is always 4 with the 16-bit code partition:code or 4:code).
[The Unit code attribute value for the impedance is fixed for all BCA devices]

Example: String: “joules”

Code: “266432”

[MDC_DIM_OHMS]

1.0

BCA-HSF-09.4

If the device reports an impedance measurement, the BCA Plug-In SHALL report the
measurement time stamp as an HL7 DTM time stamp as specified by HD-HLF-06 and HD-
HLF-07.

Example: “20150506135813.22-0400”

1.0

Editor Note: Body Mass
Type as String: “Body Mass”
Type as Code: “188740”

Type as String: “160.4”
MDER FLOAT: “FF00644”

Units as string: “lbs”
Units as code “Code: “263904”

Timestamp: “20150504135813.22-0400”

Editor Note: Body Length
Type as String: “Body Length”
Type as Code: “188744”

Type as String: “68.5”
MDER FLOAT: “FF002AD”

Units as string: “inches”
Units as code: “263520”

Timestamp: “20150504135813.22-0400”

Editor Note: Body Mass Index (BMI)
Type as String: “BMI”

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 39 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Type as Code: “188752”
Type as String: “24.10”
MDER FLOAT: “FE00096A”

Units as string: “kg/m2”
Units as code: “264096”

Timestamp: “20150504135813.22-0400”

Editor Note: Body Fat
Type as String: “Body Fat”
Type as Code: “188748”

Type as String: “13.5”
MDER FLOAT: “FF000087”

Units as string: “%”
Units as code: “262688”

Timestamp: “20150504135813.22-0400”

Editor Note: Fat Free Mass
Type as String: “Fat Free Mass”
Type as Code: “188756”

Type as String: “138.8”
MDER FLOAT: “FF00056C”

Units as string: “lbs”
Units as code: “263904”

Timestamp: “20150504135813.22-0400”

Editor Note: Soft Lean Mass
Type as String: “Soft Lean Mass”
Type as Code: “188760”

Type as String: “58.8”
MDER FLOAT: “FF00024C”

Units as string: “kg”
Units as code: “263875”

Timestamp: “20150504135813.22-0400”

Editor Note: Body Water
Type as String: “Body water”
Type as Code: “188760”

Type as String: “64”
MDER FLOAT: “00000040”

Units as string: “%”
Units as code: “262688”

Timestamp: “20150504135813.22-0400”

Editor Note: Muscle Mass
Type as String: “Muscle Mass”
Type as Code: “188776”

Type as String: “43”
MDER FLOAT: “0000002B”

Units as string: “kg”
Units as code: “263875”

Timestamp: “20150504135813.22-0400”

Editor Note: Muscle percentage
Type as String: “Muscle Percentage”
Type as Code: “188772”

Type as String: “59”
MDER FLOAT: “0000003B”

Units as string: “%”
Units as code: “262688”

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 40 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Timestamp: “20150504135813.22-0400”

Editor Note: Basal Metabolism
Type as String: “Basal Metabolism”
Type as Code: “188768”

Type as String: “1214000”
MDER FLOAT: “030004BE”

Units as string: “joules”
Units as code: “266112”

Timestamp: “20150504135813.22-0400”

Editor Note: Impedance
Type as String: “Impedance”
Type as Code: “188780”

Type as String: “4567.8”
MDER FLOAT: “FF00B26E”

Units as string: “joules”
Units as code: “266432”

Timestamp: “20150504135813.22-0400”

6.6 Blood Pressure Specific Functional Requirements
The following requirements outline the blood pressure specific set of options that Blood Pressure Plug-Ins implement. The
Blood Pressure Plug-In technical specifications will address the necessary functions for support of these options. This device
typically would be what one calls a 1 – N shot device where N is less than 25. However, if the device stores data persistently,
the number of measurements could be very large.

Blood Pressure devices supported by this plug in specification are expected to be able to report the systolic, diastolic, and
optionally MAP components of the blood pressure and optionally the pulse rate. The description of the measurements
reported by the plug in follows the IEEE 11073 10407 Blood Pressure specialization specification but that does not mean the
device itself must follow that specification. However the device must provide to the plug in the necessary information such
that the plug can fulfil its reporting requirements as specified in this document.

The IEEE specification reports the blood pressure in what is referred to as a compound attribute; that is the attribute consists
of multiple values. Whenever an IEEE device uses a compound attribute it must also have a metric id list attribute which tells,
with a one-to-one correspondence, what each compound entry is. For example, the metric-id-list might contain the MDC
codes for ‘systolic’, ‘diastolic’, and ‘MAP’. The compound basic nu observed value attribute might then contain ‘120’, ‘80’,
‘100’.

Label Description Release

BP-HSF-00 The Plug-In SHALL provide values as both strings (human consumption) and MDC codes
for detailed understanding and machine processing). 1.0

Editor's note:

This section should specify all the detailed and necessary requirements that are specific to the profile, so that the
architecture and technical specifications can be developed.

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 41 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Label Description Release

BP-HSF-01

The Blood Pressure Plug-In SHALL report the values as stated in these guidelines for the
equivalent of the Blood Pressure object as defined in IEEE 11073 10407 Table 5.
Note: Table 5 —Systolic/diastolic/MAP compound numeric object attributes

Attribute
name

Extended configuration Standard configuration
Value Qua

l
Value Qua

l
Type

MDC_PART_SCADA
|
MDC_PRESS_BLD_N
ONINV.

M M

Metric-Id See IEEE Std 11073-
20601.

M Attribute not initially
present. If present
follow IEEE Std 11073-
20601.
Note:
MDC_PRESS_BLD_N
ONINV_SYS,
MDC_PRESS_BLD_N
ONINV_DIA, then
MDC_PRESS_BLD_N
ONINV_MEAN.

M

Compound-
Basic-
Nu-Observed-
Value

See IEEE Std 11073-
20601.

M If fixed format is used
and the standard
configuration is not
adjusted, this attribute
is mandatory;
otherwise, the
conditions
from IEEE Std 11073-
20601 apply.

M

Unit-Code MDC_DIM_MMHG or
MDC_DIM_KILO_PA
SCAL

M MDC_DIM_MMHG. M

1.0

BP-HSF-01.1

The Blood Pressure Plug-In SHALL report the value of the TYPE attribute as a human
readable string and as its 32-bit MDC code (combine the 16-bit and 16 bit code; partition:
code). [The TYPE attribute value for the Blood Pressure is fixed for all BP devices]
Example: String: “Non invasive blood pressure”
Code: “150020”
[MDC_PRESS_BLD_NONINV]

1.0

BP-HSF-01.2
The Blood Pressure Plug-In SHALL report the measurement time stamp as an HL7 DTM
time stamp as specified by HD-HLF-06 and HD-HLF-07.
Example: 20150430045532.32-0400

1.0

BP-HSF-01.3

The Blood Pressure Plug-In SHALL report the value of the Unit Code attribute as a human
readable string and as its 32-bit MDC code (combine the 16-bit bit partition code which is
always 4 with the 16-bit code partition:code or 4:code).
Exasmple: String: “mm/Hg”
Code: “266016”
[MDC_DIM_MMHG]

1.0

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 42 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Label Description Release

BP-HSF-01.4

The Blood Pressure Plug-In SHALL report the value reported from Metric Id attribute in
two formats, i.e., float and string:

1- Float that represents the Blood Pressure report data measured by the targeted Blood
Pressure and represented in a float format. This is for general use of application
programming.

2- String that represents the Blood Pressure report data measured by the targeted
Blood Pressure and reported to the Plug-In in an MDER FLOAT format. Since
there is no way to transfer an MDER FLOAT from Plug-Ins to applications, an
MDER FLOAT is represented as a hexadecimal string, such as "FFFFC8E". In this
way, the MDER FLOAT can preserve the exact precision as derived from the
MDER encoded FLOAT. (Note that IEEE devices will report this value typically
as an MDER SFLOAT which the Temperature Plug-In maps to an MDER
FLOAT.) MDER FLOAT may be sent to the cloud for other applications while
preserving the original precision provided by the MDER FLOAT.

Example: String: “systolic”
Code: “150021”
[MDC_PRESS_BLD_NONINV_SYS]
String: “108”
MDER FLOAT: “0000006C”
String: “diastolic”
Code: “150022”
[MDC_PRESS_BLD_NONINV_DIA]
String: “63”
MDER FLOAT: “0000003F”
String: “diastolic”
Code: “150023”
[MDC_PRESS_BLD_NONINV_MEAN]
String: “63”
MDER FLOAT: “00000055”

1.0

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 43 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Label Description Release

BP-HSF-02

The Blood Pressure Plug-In SHALL report the values as stated in these guidelines for the
equivalent of the Pulse Rate object as defined in IEEE 11073 10407 (Table 6) if the device
reports a pulse rate.
Note: Table 6 —Pulse rate numeric object attributes

Attribute
name

Extended configuration Standard configuration
Value Qua

l
Value Qua

l
Type MDC_PART_SCADA

|
MDC_PULS_RATE_N
ON_I
NV.

M MDC_PART_SCADA
|
MDC_PULS_RATE_N
ON_INV.

M

Metric-Id See IEEE Std 11073-
20601.

M Attribute not initially
present. If present
follow IEEE Std 11073-
20601.

M

Compound-
Basic-
Nu-Observed-
Value

 M M

Unit-Code MDC_DIM_BEAT_PE
R_MI
N.

M MDC_DIM_BEAT_PE
R_MIN.

M

1.0

BP-HSF-02.1

If the pulse rate is reported, the Blood Pressure Plug-In SHALL report the value of the
TYPE attribute as a human readable string and as its 32-bit MDC code (combine the 16-bit
and 16 bit code; partition:code). [The TYPE attribute value for the Pulse Rate is fixed for all
BP devices]
Example: String: “Pulse Rate”
Code: “149546”
[MDC_PULS_RATE_NON_INV]

1.0

BP-HSF-02.2
If the pulse rate is reported, the Blood Pressure Plug-In SHALL report the measurement
time stamp as an HL7 DTM time stamp as specified by HD-HLF-06 and HD-HLF-07.
Example: 20150430045532.32-0400

1.0

BP-HSF-02.3

If the pulse rate is reported, the Blood Pressure Plug-In SHALL report the value of the Unit
Code attribute as a human readable string and as its 32-bit MDC code (combine the 16-bit
bit partition code which is always 4 with the 16-bit code partition:code or 4:code). [The Unit
code attribute value for the Pulse Rate is fixed for all BP devices]
Example: String: “beats per min”
Code: “264864”
[MDC_DIM_BEAT_PER_MIN]

1.0

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 44 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Label Description Release

BP-HSF-02.4

If the pulse rate is reported, the Blood Pressure Plug-In SHALL report the value reported
from the appropriate *-Nu-Observed-Val attribute in two formats, i.e., float and string:

1- Float that represents the pulse rate report data measured by the targeted pulse rate
and represented in a float format. This is for general use of application
programming.

2- String that represents the pulse rate report data measured by the targeted pulse rate
and reported to the Plug-In in an MDER FLOAT format. Since there is no way to
transfer an MDER FLOAT from Plug-Ins to applications, an MDER FLOAT is
represented as a hexadecimal string, such as "FFFFC8E". In this way, the MDER
FLOAT can preserve the exact precision as derived from the MDER encoded
FLOAT. (Note that IEEE devices will report this value typically as an MDER
SFLOAT which the Temperature Plug-In maps to an MDER FLOAT.) MDER
FLOAT may be sent to the cloud for other applications while preserving the
original precision provided by the MDER FLOAT.

Example: String: “43”
MDER FLOAT: “0000002B”

1.0

Editor Note: Blood Pressure report (note: we report the diastolic pressure and the mean of the diastolic)

Type as String: “Non invasive blood
pressure”

Type as Code: “150020”

Type as String: “systolic”
Type as Code: “150021”

Value as string: “108”
Value as FLOAT: “0000006C”

Units as string: “mm/Hg”
Units as code” “266016”
millimetres of mercury"

Type as String: “diastolic”
Type as Code: “150022”

Value as String: “63”
Value as FLOAT: “0000003F”

Units as string: “mm/Hg”
Units as code” “266016”

Type as String: “diastolic”
Type as Code: “150023”

Value as String: “63”
Value as FLOAT: “00000055

Units as string: “mm/Hg”
Units as code” “266016

Type as String:

“Timestamp”
Value as String
“20150504135813.22-0400”

Note: Pulse Rate if present
Editor Note: Blood Pressure report (note: we report the diastolic pressure and the mean of the diastolic)
Type as String: “Pulse Rate”
Type as Code: Code: “149546”

Value as string: “43”
Value as FLOAT: “0000002B”

Units as string: “beats per min”
Units as code: “264864”

Type as String:

“Timestamp”
Value as String
“20150504135813.22-0400

6.7 Glucometer Specific Functional Requirements
The following requirements outline glucometer specific set of options that Glucometer Plug-Ins implement. The Glucometer
Plug-In technical specifications will address the necessary functions for support of these options. This device typically would
be what one calls a storage device, thus the number of measurements could be very large.

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 45 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Glucometers are most frequently used off line. These devices need to be carried around with the individual essentially all the
time. Thus most glucometers store measurement data in non-volatile persistent storage to be uploaded as needed with an
extra action required to delete the data (temporarily stored data is auto deleted upon upload by spec). Consequently at upload,
the number of measurements could be quite large. Uploads of persistent storage typically requires initiation by the collector
of the data and is not done by the device. ‘Live’ and temporarily stored data is typically uploaded unsolicited by the device as
soon as a connection is established.

In addition to the glucose concentration, glucometers may also report what is known as context measurements, for example
when, relative to eating, the measurement was taken, what state of health one was in, the intensity of exercise activity, the
medication one is on (relative to glucose control), etc. Glucometers may also measure Hb1Ac (glycated hemoglobin) which
measures the average levels of blood sugar levels over the last three or so months. Glucometers supported by this plug in
specification are expected to be able to report the Glucose concentration in any of several possible blood samples (plasma,
whole blood, arterial, capillary, etc.) and or a control solution. The plug in is also expected to report Hb1Ac measurements
and certain context measurements if the device supports them. The description of the measurements reported by the plug in
follows the IEEE 11073 10417 Glucose specialization specification but that does not mean the device itself must follow that
specification. However the device must provide to the plug in the necessary information such that the plug can fulfil its
reporting requirements as specified in this document.

Label Description Release

GL-HSF-00 The Plug-In SHALL provide values as both strings (human consumption) and MDC
codes for detailed understanding and machine processing). 1.0

Editor's note:

This section should specify all the detailed and necessary requirements that are specific to the profile, so that the
architecture and technical specifications can be developed.

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 46 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Label Description Release

GL-HSF-01

The Glucose Plug-In SHALL report the values as stated in these guidelines for the
equivalent of the Glucose concentration and Glucose Control Solution objects as defined
in IEEE 11073 10417 Tables 6, 7 and 12. (Note that the measurements reported by the
Glucose concentration and Glucose control solution objects are identical except for the
TYPE value.)

1.0

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 47 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Label Description Release

GL-HSF-01.1

The Glucose Plug-In SHALL report the value of the TYPE attribute as a human readable
string and as its 32-bit MDC code (combine the 16-bit partition and 16 bit code;
partition: code). These type values indicate the concentration measured in the medium;
plasma, whole blood, arterial plasma, control solution, venous plasma, etc.
Example:
String: “Glucose concentration”
Code: “160368”
[MDC_CONC_GLU_UNDETERMINED_PLASMA]

1.0

GL-HSF-01.2

The Glucose Plug-In SHALL report the concentration value reported from the
appropriate *-Nu-Observed-Val in two formats, i.e., float and string:

1- Float that represents the Glucose report data measured by the targeted Glucose
meter and represented in a float format. This is for general use of application
programming.

2- String that represents the Glucose report data measured by the targeted Glucose
Meter and reported to the Plug-In in an MDER FLOAT format. Since there is no
way to transfer an MDER FLOAT from Plug-Ins to applications, an MDER
FLOAT is represented as a hexadecimal string, such as "FFFFC8E". In this way,
the MDER FLOAT can preserve the exact precision as derived from the MDER
encoded FLOAT. (Note that IEEE devices will report this value typically as an
MDER SFLOAT which the Temperature Plug-In maps to an MDER FLOAT.)
MDER FLOAT may be sent to the cloud for other applications while preserving
the original precision provided by the MDER FLOAT.

Example
String: “106”
MDER FLOAT: “0000006A”

1.0

GL-HSF-01.3

The Glucose Plug-In SHALL report the value of the Unit Code attribute as a human
readable string and as its 32-bit MDC code (combine the 16-bit bit partition code which
is always 4 with the 16-bit code partition:code or 4:code).

MDC_DIM_MILLI_G_PER_DL Glucose Unit Value Unit Description “ mg/dL “

MDC_DIM_MILLI_MOLE_PER_L Glucose Unit Value Unit Description “ mmol/L”
Example:
String: “mg/dl”
Code: “264274”
[MDC_DIM_MILLI_G_PER_DL]

1.0

GL-HSF-01.4

The Glucose Plug-In SHALL report the measurement time stamp as an HL7 DTM time
stamp as specified by HD-HLF-06 and HD-HLF-07.
Example:
Timestamp: 20150422080512.00-0400

1.0

GL-HSF-02

The Glucose Plug-In SHALL report the values as stated in these guidelines for the
equivalent of the HbA1c object as defined in IEEE 11073 10417 Tables 6 and 8 if the
device reports such a measurement.

1.0

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 48 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Label Description Release

GL-HSF-02.1

If the device reports an HbA1c measurement, the Glucose Plug-In SHALL report the
value of the TYPE attribute as a human readable string and as its 32-bit MDC code
(combine the 16-bit partition and 16 bit code; partition:code). [The TYPE attribute value
for the HbA1c is fixed for all Glucometer devices]
Example:
String: “HbA1c level”
Code: “160220”
[MDC_CONC_HBA1C]

1.0

GL-HSF-02.2

If the device reports an HbA1c measurement, the Glucose Plug-In SHALL report the
value reported from the appropriate *-Nu-Observed-Val attribute in two formats, i.e.,
float and string:

1- Float that represents an HbA1c measurement report data measured by the
targeted Glucose meter and represented in a float format. This is for general
use of application programming.

2- String that represents an HbA1c measurement data measured by the
targeted Glucose Meter and reported to the Plug-In in an MDER FLOAT
format. Since there is no way to transfer an MDER FLOAT from Plug-Ins
to applications, an MDER FLOAT is represented as a hexadecimal string,
such as "FFFFC8E". In this way, the MDER FLOAT can preserve the exact
precision as derived from the MDER encoded FLOAT. (Note that IEEE
devices will report this value typically as an MDER SFLOAT which the
Temperature Plug-In maps to an MDER FLOAT.) MDER FLOAT may be
sent to the cloud for other applications while preserving the original
precision provided by the MDER FLOAT.

Example:
String: “4.2”
MDER FLOAT: “FF00002A”

1.0

GL-HSF-02.3

If the device reports an HbA1c measurement, the Glucose Plug-In SHALL report the
value of the Unit Code attribute as a human readable string and as its 32-bit MDC code
(combine the 16-bit bit partition code which is always 4 with the 16-bit code
partition:code or 4:code). [The Unit code attribute value for the HbA1c is fixed for all
Glucometer devices]
Example:
String: “%”
Code: “262688”
[MDC_DIM_PERCENT]

1.0

GL-HSF-02.4

If the device reports an HbA1c measurement, the Glucose Plug-In SHALL report the
measurement time stamp as an HL7 DTM time stamp as specified by HD-HLF-06 and
HD-HLF-07.
Timestamp:20150422080512.00-0400

1.0

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 49 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Label Description Release

GL-HSF-03

The Glucose Plug-In SHALL report the values as stated in these guidelines for the
equivalent of the Context exercise object as defined in IEEE 11073 10417 Tables 6 and 9
if the device reports such a measurement.

1.0

GL-HSF-03.1

If the device reports a context exercise measurement (which is a measure of the exercise
intensity), the Glucose Plug-In SHALL report the value of the TYPE attribute as a human
readable string and as its 32-bit MDC code (combine the 16-bit partition and 16 bit code;
partition:code). [The TYPE attribute value for the Context Exercise is fixed for all
Glucometer devices]
Example:
String: “context exercise”
Code: “160220”
{MDC_PART_PHD_DM, MDC_CTXT_GLU_EXERCISE}.

1.0

GL-HSF-03.2

If the device reports a context exercise measurement, the Glucose Plug-In SHALL report
the value reported from the appropriate *-Nu-Observed-Val attribute in two formats, i.e.,
float and string:

1- Float that represents a context exercise measurement report data measured
by the targeted Glucose meter and represented in a float format. This is for
general use of application programming.

2- String that represents a context exercise measurement data measured by the
targeted Glucose Meter and reported to the Plug-In in an MDER FLOAT
format. Since there is no way to transfer an MDER FLOAT from Plug-Ins
to applications, an MDER FLOAT is represented as a hexadecimal string,
such as "FFFFC8E". In this way, the MDER FLOAT can preserve the exact
precision as derived from the MDER encoded FLOAT. (Note that IEEE
devices will report this value typically as an MDER SFLOAT which the
Temperature Plug-In maps to an MDER FLOAT.) MDER FLOAT may be
sent to the cloud for other applications while preserving the original
precision provided by the MDER FLOAT.

Example:
String: “50”
MDER FLOAT: “FF00002A”

1.0

GL-HSF-03.3

If the device reports a context exercise measurement, the Glucose Plug-In SHALL report
the value of the Unit Code attribute as a human readable string and as its 32-bit MDC
code (combine the 16-bit bit partition code which is always 4 with the 16-bit code
partition:code or 4:code). [The Unit code attribute value for the a context exercise is
fixed for all Glucometer devices]
Example:
String: “%”
Code: “262688”
[MDC_DIM_PERCENT]

1.0

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 50 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Label Description Release

GL-HSF-03.4

If the device reports a context exercise measurement, the Glucose Plug-In SHALL report
the measurement time stamp as an HL7 DTM time stamp as specified by HD-HLF-06
and HD-HLF-07.
Timestamp:20150422080512.00-0400

1.0

GL-HSF-04

The Glucose Plug-In SHALL report the values as stated in these guidelines for the
equivalent of the Context medication object as defined in IEEE 11073 10417 Tables 6
and 10 if the device reports such a measurement.

1.0

GL-HSF-04.1

If the device reports a context medication measurement, the Glucose Plug-In SHALL
report the value of the TYPE* attribute as a human readable string and as its 32-bit MDC
code (combine the 16-bit partition and 16 bit code; partition:code). *If the Metric Id is
used the Glucose Plug-In SHALL replace the code value with this value and if the
Metric-Id-partition is present the partition value SHALL be replaced with this value.
Example:
String: “context medication”
Code: “160220”
{MDC_PART_PHD_DM, MDC_CTXT_MEDICATION}.

1.0

GL-HSF-04.2

If the device reports a context medication measurement, the Glucose Plug-In SHALL
report the value reported from the appropriate *-Nu-Observed-Val attribute in two
formats, i.e., float and string:

1- Float that represents context medication measurement report data measured
by the targeted Glucose meter and represented in a float format. This is for
general use of application programming.

2- String that represents a context medication measurement data measured by
the targeted Glucose Meter and reported to the Plug-In in an MDER
FLOAT format. Since there is no way to transfer an MDER FLOAT from
Plug-Ins to applications, an MDER FLOAT is represented as a hexadecimal
string, such as "FFFFC8E". In this way, the MDER FLOAT can preserve
the exact precision as derived from the MDER encoded FLOAT. (Note that
IEEE devices will report this value typically as an MDER SFLOAT which
the Temperature Plug-In maps to an MDER FLOAT.) MDER FLOAT may
be sent to the cloud for other applications while preserving the original
precision provided by the MDER FLOAT.

Example:
String: “10”
MDER FLOAT: “FF00002A

1.0

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 51 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Label Description Release

GL-HSF-04.3

If the device reports a context medication measurement, the Glucose Plug-In SHALL
report the value of the Unit Code attribute as a human readable string and as its 32-bit
MDC code (combine the 16-bit bit partition code which is always 4 with the 16-bit code
partition:code or 4:code).

MDC_DIM_MILLI_G_PER_DL Glucose Unit Value Unit Description “ mg/dL “

MDC_DIM_MILLI_MOLE_PER_L Glucose Unit Value Unit Description “ mmol/L”
MDC_DIM_MILLI_G
OR MDC_DIM_MILLI_L
Example:
String: “mg/dL”
Code: “160220”
Note:
Diabetapedia definition: Milligrams per deciliter, a unit of measure that shows the
concentration of a substance in a specific amount of fluid. In the United States, blood
glucose test results are reported as mg/dL. Medical journals and other countries use
millimoles per liter (mmol/L). To convert to mg/dL from mmol/L, multiply mmol/L by
18. Example: 10 mmol/L, 18 = 180 mg/dL.

1.0

GL-HSF-04.4

If the device reports a context medication measurement, the Glucose Plug-In SHALL
report the measurement time stamp as an HL7 DTM time stamp as specified by HD-
HLF-06 and HD-HLF-07.
Example:
Timestamp:20150422080512.00-0400

1.0

GL-HSF-05

The Glucose Plug-In SHALL report the values as stated in these guidelines for the
equivalent of the Context Carbohydrates object as defined in IEEE 11073 10417 Tables 6
and 11 if the device reports such a measurement.

1.0

GL-HSF-05.1

If the device reports a context carbohydrates measurement, the Glucose Plug-In SHALL
report the value of the TYPE* attribute as a human readable string and as its 32-bit MDC
code (combine the 16-bit partition and 16 bit code; partition:code). *If the Metric Id is
used the Glucose Plug-In SHALL replace the code value with this value and if the
Metric-Id-partition is present the partition value SHALL be replaced with this value.
Example:
String: “Breakfast Carbohydrates”
Code: “8417768”
[MDC_CTXT_GLU_CARB_BREAKFAST]

1.0

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 52 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Label Description Release

GL-HSF-05.2

If the device reports a context carbohydrates measurement, the Glucose Plug-In SHALL
report the value reported from the appropriate *-Nu-Observed-Val attribute in two
formats, i.e., float and string:

1. Float that represents a context carbohydrates measurement reported data
measured by the targeted Glucose meter and represented in a float format. This
is for general use of application programming.

2. String that represents a context carbohydrates measurement data measured by
the targeted Glucose Meter and reported to the Plug-In in an MDER FLOAT
format. Since there is no way to transfer an MDER FLOAT from Plug-Ins to
applications, an MDER FLOAT is represented as a hexadecimal string, such as
"FFFFC8E". In this way, the MDER FLOAT can preserve the exact precision as
derived from the MDER encoded FLOAT. (Note that IEEE devices will report
this value typically as an MDER SFLOAT which the Temperature Plug-In maps
to an MDER FLOAT.) MDER FLOAT may be sent to the cloud for other
applications while preserving the original precision provided by the MDER
FLOAT.

Example:
String: “32”
MDER FLOAT: “00000020”

1.0

GL-HSF-05.3

If the device reports a context carbohydrates measurement, the Glucose Plug-In SHALL
report the value of the Unit Code attribute as a human readable string and as its 32-bit
MDC code (combine the 16-bit bit partition code which is always 4 with the 16-bit code
partition:code or 4:code). [The Unit code attribute value for the a context exercise is
fixed for all Glucometer devices]
Example:
String: “g”
Code: “263908”
[MDC_DIM_G]

1.0

GL-HSF-05.4

If the device reports a context carbohydrates measurement, the Glucose Plug-In SHALL
report the measurement time stamp as an HL7 DTM time stamp as specified by HD-
HLF-06 and HD-HLF-07.
Example:
Timestamp:20150422080512.00-0400

1.0

GL-HSF-06

The Glucose Plug-In SHALL report the values as stated in these guidelines for the
equivalent of the Context Meal object as defined in IEEE 11073 10417 Tables 13 and 16
if the device reports such a measurement.

1.0

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 53 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Label Description Release

GL-HSF-06.1

If the device reports a context meal measurement, the Glucose Plug-In SHALL report the
value of the TYPE attribute as a human readable string and as its 32-bit MDC code
(combine the 16-bit partition and 16 bit code; partition:code). [The TYPE attribute value
for the Context Meal is fixed for all Glucometer devices]
Example:
String: “Context Meal”
Code: “8417864”
[MDC_CTXT_GLU_MEAL]

1.0

GL-HSF-06.2

If the device reports a context meal value, the Glucose Plug-In SHALL report the value
reported from the Enum-Observed-Value-Simple-OID as a human readable string and as
its 32-bit MDC code; combine the 16-bit partition and 16 bit code; partition:code. (Note
there is no unit code associated with this measurement.)
Example:
String: “Casual”
Code: “8417880”
[MDC_CTXT_GLU_MEAL_CASUAL]

1.0

GL-HSF-06.3

If the device reports a context meal value, the Glucose Plug-In SHALL report the
measurement time stamp as an HL7 DTM time stamp as specified by HD-HLF-06 and
HD-HLF-07.
Example:
Timestamp:20150422080512.00-0400

1.0

GL-HSF-07

The Glucose Plug-In SHALL report the values as stated in these guidelines for the
equivalent of the Context Sample Location object as defined in IEEE 11073 10417
Tables 13 and 17 if the device reports such a measurement.

1.0

GL-HSF-07.1

If the device reports a context sample location measurement, the Glucose Plug-In
SHALL report the value of the TYPE attribute as a human readable string and as its 32-
bit MDC code (combine the 16-bit partition and 16 bit code; partition:code). [The TYPE
attribute value for the Context Meal is fixed for all Glucometer devices]
Example:
String: “Context Sample Location”

1.0

GL-HSF-07.2

If the device reports a context sample location measurement, the Glucose Plug-In
SHALL report the value reported from the Enum-Observed-Value-Simple-OID as a
human readable string and as its 32-bit MDC code; combine the 16-bit partition and 16
bit code; partition:code. (Note there is no unit code associated with this measurement.)
Example:
String: “Finger”
Code: “8417880”

1.0

GL-HSF-07.3

If the device reports a context sample location measurement, the Glucose Plug-In
SHALL report the measurement time stamp as an HL7 DTM time stamp as specified by
HD-HLF-06 and HD-HLF-07.
Example:
Timestamp:20150422080512.00-0400

1.0

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 54 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Label Description Release

GL-HSF-08

The Glucose Plug-In SHALL report the values as stated in these guidelines for the
equivalent of the Context Tester object as defined in IEEE 11073 10417 Tables 13 and
18 if the device reports such a measurement.

1.0

GL-HSF-08.1

If the device reports a context tester measurement, the Glucose Plug-In SHALL report
the value of the TYPE attribute as a human readable string and as its 32-bit MDC code
(combine the 16-bit partition and 16 bit code; partition:code). [The TYPE attribute value
for the Context Meal is fixed for all Glucometer devices]
Example:
String “Context Tester”
Code: “???”

1.0

GL-HSF-08.2

If the device reports a context tester measurement, the Glucose Plug-In SHALL report
the value reported from the Enum-Observed-Value-Simple-OID as a human readable
string and as its 32-bit MDC code; combine the 16-bit partition and 16 bit code;
partition:code. (Note there is no unit code associated with this measurement.)
Example:
String: “Self”
Code: “8417880”

1.0

GL-HSF-08.3

If the device reports a context tester measurement, the Glucose Plug-In SHALL report
the measurement time stamp as an HL7 DTM time stamp as specified by HD-HLF-06
and HD-HLF-07.
Example: Timestamp:20150422080512.00-0400

1.0

GL-HSF-09

The Glucose Plug-In SHALL report the values as stated in these guidelines for the
equivalent of the Context Health object as defined in IEEE 11073 10417 Tables 13 and
19 if the device reports such a measurement.

1.0

GL-HSF-09.1

If the device reports a context health measurement, the Glucose Plug-In SHALL report
the value of the TYPE attribute as a human readable string and as its 32-bit MDC code
(combine the 16-bit partition and 16 bit code; partition:code). [The TYPE attribute value
for the Context Meal is fixed for all Glucometer devices]
Example:
String: “Context Health”
Code: “8417880”

1.0

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 55 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Label Description Release

GL-HSF-09.2

If the device reports a context health measurement, the Glucose Plug-In SHALL report
the value reported from the Enum-Observed-Value-Simple-OID as a human readable
string and as its 32-bit MDC code; combine the 16-bit partition and 16 bit code;
partition:code. (Note there is no unit code associated with this measurement.)
Example:
String: “Minor”
Code: “8417880”

1.0

GL-HSF-09.3

If the device reports a context health measurement, the Glucose Plug-In SHALL report
the measurement time stamp as an HL7 DTM time stamp as specified by HD-HLF-06
and HD-HLF-07.
Example:
Timestamp:20150422080512.00-0400

1.0

Editor Note: Glucose concentration
Type as String: “Glucose concentration”
Type as Code: “160368”

Type as String: “106”
MDER FLOAT: “0000006A”

Units as string: “mg/dl”
Units as code: “264274”

Timestamp: “20150504135813.22-0400”

Editor Note: Glucose Control Solution
Type as String: “HbA1c level”
Type as Code: “160220”

Type as String: “4.2”
MDER FLOAT: “FF00002A”

Units as string: “mg/dl”
Units as code “264274”

Timestamp: “20150504135813.22-0400”

Editor Note: Context exercise
Type as String: “context exercise”
Type as Code: “160220”

Type as String: “50”
MDER FLOAT: “FF00002A”

Units as string: “%”
Units as code Code: “262688”

Timestamp: “20150504135813.22-0400”

Editor Note: Context medication
Type as String: “context medication”
Type as Code: “160220”

Type as String: “10”
MDER FLOAT: “FF00002A”

Units as string: “mg/dL”
Units as code: “160220”

Timestamp: “20150504135813.22-0400”

Editor Note: Context Carbohydrates
Type as String: “Breakfast Carbohydrates”
Type as Code: “8417768”

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 56 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Type as String: “32”
MDER FLOAT: “00000020”

Units as string: “g”
Units as code: “263908”

Timestamp: “20150504135813.22-0400”

Editor Note: Context Meal object
Type as String: “Context Meal ”
Type as Code: “8417864”
Type as String: “Casual”
Units as code: “8417880”
Timestamp: “20150504135813.22-0400”

Editor Note: Context Sample Location
Type as String: “Context Sample Location”
Type as Code: “8417768”
Type as String: “Finger”
Units as code: “8417880”
Timestamp: “20150504135813.22-0400”

Editor Note: Context Tester
Type as String: “Context Tester”
Type as Code: “8417768”
Type as String: “Self”
Units as code: “8417880”
Timestamp: “20150504135813.22-0400”

Editor Note: Context Health
Type as String: “Context Health”
Type as Code: “8417880”
Type as String: “Minor”
Units as code: “8417880”
Timestamp: “20150504135813.22-0400”

6.8 Heart Rate / Electrocardiogram Specific Functional
Requirements

The following requirements outline the heart rate specific set of options that Heart Rate Plug-Ins implement. The Heart Rate
Plug-In technical specifications will address the necessary functions for support of these options. This device would typically
stream measurements.

Heart Rate and Electrocardiogram (ECG) devices supported by this plug in specification are expected to be able to report the
heart rate and if an RR interval is supported, those measurements are also to be reported. The description of the measurement

Editor's note:

This section should specify all the detailed and necessary requirements that are specific to the profile, so that the
architecture and technical specifications can be developed.

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 57 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

reported by the plug in follows the IEEE 11073 10406 ECG Heart Rate sub profile specialization specification but that does
not mean the device itself must follow that specification. However the device must provide to the plug in the necessary
information such that the plug can fulfil its reporting requirements as specified in this document.

It should be noted that Bluetooth Low Energy supports the Heart Rate Profile which is modelled after the IEEE 11073 10406
specification. However, Bluetooth Low Energy heart rate monitors are likely to be for more casual use such as for exercising
whereas IEEE devices are likely to be used in more medical care situations since the IEEE devices use electric sensor wires
attached to the body whereas casual heart rate monitors use other techniques. The IEEE ECG specification supports a couple
of sub profiles. The heart rate Plug-In defined here only supports the Heart Rate sub profile of the IEEE ECG specialization.
Other sub profiles of the IEEE ECG specialization are not required to support the Heart Rate measurement.

Additional objects more oriented towards medical information are supported by the IEEE ECG heart rate sub profile. The
Heart Rate Plug-In does not support those measurements. The Bluetooth Low Energy Heart Rate monitor may report a
calories burned measurement. This measurement is NOT supported by the IEEE ECG specialization but is present in the
IEEE 11073 10441 cardiovascular specialization specification. The Heart Rate Plug-In will report this measurement if the
device supports it. In the future an IEEE 11073 10441 Cardiovascular heart rate sub profile may be defined which will be
more in line with the casual use, Bluetooth Low Energy Heart Rate monitors.

Label Description Release

HR-HSF-00

The Plug-In SHALL provide values as both strings (human
consumption) and MDC codes for detailed understanding and
machine processing).

1.0

HR-HSF-01

The Heart Rate Plug-In SHALL report the values as stated in these
guidelines for the equivalent of the Heart Rate object as defined in
IEEE 11073 10406 Table 6.

1.0

HR-HSF-01.1

The Heart Rate Plug-In SHALL report the value of the TYPE
attribute as a human readable string and as its 32-bit MDC code
(combine the 16-bit partition and 16 bit code; partition: code).
Example:
String: “Heart rate”
Code: “147842”
[MDC_ECG_HEART_RATE]

1.0

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 58 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Label Description Release

HR-HSF-01.2

The Heart Rate Plug-In SHALL report the concentration value
reported from the appropriate *-Nu-Observed-Val in two formats,
i.e., float and string:

1- Float that represents the Heart Rate data measured by the
targeted Heart Rate monitor and represented in a float
format. This is for general use of application programming.

2- String that represents the Heart Rate report data measured
by the targeted Heart Rate monitor and reported to the Plug-
In in an MDER FLOAT format. Since there is no way to
transfer an MDER FLOAT from Plug-Ins to applications,
an MDER FLOAT is represented as a hexadecimal string,
such as "FFFFC8E". In this way, the MDER FLOAT can
preserve the exact precision as derived from the MDER
encoded FLOAT. (Note that IEEE devices will report this
value typically as an MDER SFLOAT which the
Temperature Plug-In maps to an MDER FLOAT.) MDER
FLOAT may be sent to the cloud for other applications
while preserving the original precision provided by the
MDER FLOAT.

Example:
String: “75”
MDER FLOAT: “0000002D”

1.0

HR-HSF-01.3

The Heart Rate Plug-In SHALL report the value of the Unit Code
attribute as a human readable string and as its 32-bit MDC code
(combine the 16-bit bit partition code which is always 4 with the 16-
bit code partition:code or 4:code). [The Unit code attribute value for
the Heart Rate object is fixed for all heart rate devices.]
Example:
String: “beats per min”
Code: “264864”
[MDC_DIM_BEAT_PER_MIN]

1.0

HR-HSF-01.4

The Heart Rate Plug-In SHALL report the measurement time stamp
as an HL7 DTM time stamp as specified by HD-HLF-06 and HD-
HLF-07. (Note that Bluetooth Low Energy heart rate monitors do not
report any time stamp.)
Timestamp: 20150506164232.00-0400

1.0

HR-HSF-02

The Heart Rate Plug-In SHALL report the values as stated in these
guidelines for the equivalent of the RR interval object as defined in
IEEE 11073 10406 Table 7 if the device supports the measurement.

1.0

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 59 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Label Description Release

HR-HSF-02.1

If the device supports RR interval measurements, the Heart Rate
Plug-In SHALL report the value of the TYPE attribute as a human
readable string and as its 32-bit MDC code (combine the 16-bit
partition and 16 bit code; partition:code). [The TYPE code attribute
value for the Heart Rate object is fixed for all heart rate devices.]
Example:
String: “RR interval”
Code: “147240”
[MDC_ECG_TIME_PD_RR_GL]

1.0

HR-HSF-02.2

If the device supports RR interval measurements, the Heart Rate
Plug-In SHALL report the value reported from the appropriate *-Nu-
Observed-Val attribute as an MDER FLOAT and as string with
appropriate precision as derived from the MDER encoded FLOAT.
(Note that IEEE devices will report this value typically as an MDER
SFLOAT which the Heart Rate Plug-In maps to an MDER FLOAT.)
If the device supports RR interval measurements, the Heart Rate
Plug-In SHALL report the value reported from the appropriate *-Nu-
Observed-Val attribute in two formats, i.e., float and string:

1- Float that represents the Heart Rate report data measured by
the targeted Heart Rate monitor and represented in a float
format. This is for general use of application programming.

2- String that represents the Heart Rate report data measured
by the targeted Heart Rate monitor and reported to the Plug-
In in an MDER FLOAT format. Since there is no way to
transfer an MDER FLOAT from Plug-Ins to applications,
an MDER FLOAT is represented as a hexadecimal string,
such as "FFFFC8E". In this way, the MDER FLOAT can
preserve the exact precision as derived from the MDER
encoded FLOAT. (Note that IEEE devices will report this
value typically as an MDER SFLOAT which the
Temperature Plug-In maps to an MDER FLOAT.) MDER
FLOAT may be sent to the cloud for other applications
while preserving the original precision provided by the
MDER FLOAT.

Example:
String: “1365”
MDER FLOAT: “00000555”

1.0

HR-HSF-02.3

If the device supports RR interval measurements, the Heart Rate
Plug-In SHALL report the value of the Unit Code attribute as a
human readable string and as its 32-bit MDC code (combine the 16-
bit bit partition code which is always 4 with the 16-bit code
partition:code or 4:code). The Unit code SHALL be in milliseconds
(MDC_DIM_MILLI_SEC) and not in ‘ticks’.
Example:
String: “ms”
Code: “264338”
[MDC_DIM_MILLI_SEC]

1.0

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 60 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Label Description Release

HR-HSF-02.4

If the device supports RR interval measurements, the Heart Rate
Plug-In SHALL report the measurement time stamp as an HL7 DTM
time stamp as specified by HD-HLF-06 and HD-HLF-07. (Note that
Bluetooth Low Energy heart rate monitors do not report any time
stamp. The Plug-In is responsible for computing the time stamp for
each RR interval measurement reported, as Bluetooth Low Energy
devices may send more than one RR interval in a characteristic and
thus subsequent RR interval value timestamps will need to be
computed.)
Example:
Timestamp: 20150506164232.00-0400

1.0

HR-HSF-03

The Heart Rate Plug-In SHALL report the values as stated in these
guidelines for the equivalent of the energy expended object as
defined in IEEE 11073 10441 Table x if the device supports the
measurement. IEEE ECG devices will not support this measurement.

1.0

HR-HSF-03.1

If the device supports energy expended measurements, the Heart
Rate Plug-In SHALL report the value of the TYPE attribute as a
human readable string and as its 32-bit MDC code (combine the 16-
bit partition and 16 bit code; partition:code). [The TYPE code
attribute value for the Energy Expended object is fixed]
Example:
String: “energy expended”
Code: “119”

1.0

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 61 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Label Description Release

HR-HSF-03.2

If the device supports energy expended measurements, the Heart
Rate Plug-In SHALL report the value reported from the appropriate
*-Nu-Observed-Val attribute in two formats, i.e., float and string:

1- Float that represents the Heart Rate report data measured by
the targeted Heart Rate monitor and represented in a float
format. This is for general use of application programming.

2- String that represents the Heart Rate report data measured
by the targeted Heart Rate monitor and reported to the Plug-
In in an MDER FLOAT format. Since there is no way to
transfer an MDER FLOAT from Plug-Ins to applications,
an MDER FLOAT is represented as a hexadecimal string,
such as "FFFFC8E". In this way, the MDER FLOAT can
preserve the exact precision as derived from the MDER
encoded FLOAT. (Note that IEEE devices will report this
value typically as an MDER SFLOAT which the
Temperature Plug-In maps to an MDER FLOAT.) MDER
FLOAT may be sent to the cloud for other applications
while preserving the original precision provided by the
MDER FLOAT.

Example:
String: “5”
MDER FLOAT: “00000005”

1.0

HR-HSF-03.3

If the device supports energy expended measurements, the Heart
Rate Plug-In SHALL report the value of the Unit Code attribute as a
human readable string and as its 32-bit MDC code (combine the 16-
bit bit partition code which is always 4 with the 16-bit code
partition:code or 4:code).
Example:
String: “Calories”
Code: “6784”

1.0

HR-HSF-03.4

If the device supports energy expended measurements, the Heart
Rate Plug-In SHALL report the measurement time stamp as an HL7
DTM time stamp as specified by HD-HLF-06 and HD-HLF-07.
Example:
Timestamp: 20150506164232.00-0400

1.0

Editor Note: Heart rate
Type as String: “Heart rate”
Type as Code: “147842”

Type as String: “75”
MDER FLOAT: “0000002D”

Units as string: “beats per min”
Units as code “264864”

Timestamp: “20150504135813.22-0400”

Editor Note: Energy Expended
Type as String: “energy expended”
Type as Code: “119”

Type as String: “5”
MDER FLOAT: “00000005”

Units as string: “Calories ”
Units as code: “6784”

Timestamp: “20150504135813.22-0400”

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 62 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

6.8.1.1 Data Integrity: DWAPI-PCH
6.8.1.2 Confidentiality

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 63 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

7. Architectural Model
This section describes the architectural model and related aspects of the Device WebAPI Enabler.

7.1 Architectural Diagram
7.1.1 GotAPI Framework Summary
This section summarizes how the GotAPI framework works, in which the DWAPI is functioning. This section adheres to the
specifications that are defined by GotAPI 1.1 [GotAPI 1.1].

As defined by GotAPI 1.1 [GotAPI 1.1], when an application is initiated by a user, the application obtains authorization for
access to GotAPI-based APIs using the GotAPI-2 Interface. Once the application is authorized by the GotAPI Auth Server,
the application can access the GotAPI Server using the GotAPI-1 Interface.

After the authorization, the application asks the GotAPI Server, using the GotAPI-1 Interface, what kind of services are
available. Then the GotAPI Server requests the current status of the available services to all the installed Extension Plug-Ins
using the GotAPI-4 Interface. This procedure is called the "Service Discovery", which is defined in the GotAPI specification.
After the Service Discovery, the application can interact with the specified device (i.e., the service) via the Plug-In. Note that,
in the GotAPI specification, external devices and internal enablers are collectively called as “services”.

When an application sends an API request on the GotAPI-1 Interface, the GotAPI Server passes it to the Plug-In using the
GotAPI-4 Interface.

Figure 3: Architectural Diagram

In addition to HTTP, an application may connect to the GotAPI Server using WebSocket, which is the GotAPI-5 Interface.
The GotAPI-5 Interface enables that whenever the targeted device reports event messages, the application receives the
messages on the GotAPI-5 Interface asynchronously.

The GotAPI Server is agnostic to what Plug-Ins do inside. The GotAPI Server just passes a request from an application to a
Plug-In and passes a response from the Plug-In to the application.

7.1.2 GotAPI Framework and IEEE 11073 Healthcare Devices
This section describes how the GotAPI framework and IEEE 11073 healthcare devices work together using Extension Plug-
Ins. The following diagram shows the basic flow of DWAPI-PCH.

Under the GotAPI framework, the Plug-In implements web-based APIs, DWAPI-PCH, and the Manager whose function is
defined by IEEE 11073. The Plug-In with the Manager communicates with IEEE 11073 healthcare devices that implements

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 64 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Agent and Sensor through some media such as Bluetooth or WIFI. IEEE 11073 defines all the necessary protocols, data
formats, and the roles for Manager and Agent. From the Manager, some data is made available to DWAPI-PCH to be
exposed in the web-based APIs to applications through the GotAPI framework. The Plug-In makes such data available to
applications through DWAPI-PCH consistently under the GotAPI framework.

Figure 4: DWAPI-PCH Basic data flows

7.2 Functional Components and Interfaces/reference points
definition

DWAPI-PCH consists of the following three APIs;

1) The Service Discovery API enables applications to obtain information of Plug-Ins and IEEE 11073 devices available.

2) The One-shot measuring API enables applications to get one set of measuring values in response to a request.

3) The asynchronous messaging API enables applications to listen to asynchronous messages from the targeted device via
the relevant Plug-In.

7.2.1 Service Discovery API
Service Discovery API specification adheres to that of GotAPI 1.1.

As defined by GotAPI 1.1, after the application obtains authorization for access to GotAPI-based APIs using the GotAPI-2
Interface, the application sends the Service Discovery request to the GotAPI Server. Then the GotAPI Server sends the
Service Discovery request to all of the installed Extension Plug-Ins. The message flow of the Service Discovery is shown in
Fig. 5.

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 65 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Figure 5: Message flow of the Service Discovery: Message flow of the Service Discovery

The specific data in the message flows labelled (4) in the figure above are defined by the Plug-In that implements Manager
functionality of IEEE 11073 and is communicating with healthcare devices.

The other message flows SHALL be consistent to what are defined in the GotAPI 1.1 specification.

7.2.2 One-shot measuring API
As defined by GotAPI 1.1, after the application obtains authorization to access GotAPI-based APIs using the GotAPI-2
Interface and completes the Service Discovery, the application can use the service (so called "One-shot measuring API")
provided by the Plug-In through the GotAPI Server.

The One-shot measuring API offers a measurement result reported by the targeted device in response to a request. The
message flow of this API is as shown blow.

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 66 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Figure 6: Message flow of the One-shot measuring API

1. The user triggers a request of the API in the application.

2. Label (1): The application sends a request to the GotAPI Server using HTTP (REST) over the GotAPI-1 Interface. Note
that the HTTP method of the request is "GET".

3. Label (2): The GotAPI Server passes the request to the targeted Plug-In on the GotAPI-4 Interface with the Action name
"GET".

4. The GotAPI Server runs the Plug-In Approval procedure if needed, which is defined in the GotAPI 1.1 specification.

5. When the Plug-In receives the request, it connects to the targeted external device if needed.

6. The Plug-In obtains current measurement values from the targeted device.

7. Label (3): The Plug-In sends a response with one set of the measurement values using the GotAPI-4 Interface.

8. Label (4): When the GotAPI Server receives the response from the Plug-In, the GotAPI Server passes the response to the
application on the GotAPI-1 Interface as an HTTP response.

The overall message flows to obtain data by sending HTTP request and response over the GotAPI-1 Interface SHALL adhere
to the specifications defined in GotAPI 1.1.

The specific data in the message flows labelled (3) and (4) in the figure above are defined by the Plug-In that implements
Manager functionality of IEEE 11073 and is communicating with healthcare devices.

7.2.3 Asynchronous messaging API
As defined by GotAPI 1.1, after the application obtains authorization to access GotAPI-based APIs using the GotAPI-2
Interface and completes the Service Discovery, the application can use the service (so called "Asynchronous messaging
API") provided by the Plug-In through the GotAPI Server.

The Asynchronous messaging API offers a series of measurement values reported by the targeted device to an application in
real time as the measurement values become available. The timing when and the reasons why such measurement values
become available is determined by the Plug-Ins and connected devices, and is out of the scope of this specification.

This API uses WebSocket protocol to handle asynchronous event messages. The message flow of this API is shown blow:

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 67 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Figure 7: Message Flow of the Asynchronous messaging API

1. The user triggers a request of the API in the application.

2. Label (1): The application sends a request to the GotAPI Server using HTTP (REST) over the GotAPI-1 Interface. Note
that the HTTP method of the request is "PUT".

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 68 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

3. Label (2): The GotAPI Server passes the request to the targeted Plug-In on the GotAPI-4 Interface with the Action name
"PUT".

4. The GotAPI Server runs the Plug-In Approval procedure if needed, which is defined in the GotAPI 1.1 specification.

5. When the Plug-In receives the request, it connects to the targeted external device if needed.

6. Label (3): The Plug-In sends a response with the message using the GotAPI-4 Interface.

7. Label (4): When the GotAPI Server receives the response from the Plug-In, the GotAPI Server passes the response to the
application on the HTTP connection as an HTTP response.

8. Label (5): The application establishes a WebSocket connection to the GotAPI Server if the application does not have a
WebSocket connection to the GotAPI Server yet.

9. Label (6): As the WebSocket connection has been established, the application sends the access token to the GotAPI
Server through the WebSocket connection. The access token is a token which the application obtained from the GotAPI
Auth Server when the application was authorized by the GotAPI Auth Server.

10. Label (7): When the GotAPI Server receives the access token from the WebSocket channel, the GotAPI Server returns
the result on whether the request is accepted or not.

11. Label (8): Whenever the targeted external device reports a message, e.g., a data or a measurement value, the Plug-In
sends the message to the GotAPI Server on the GotAPI-4 Interface with the Action name "EVENT".

12. Label (9): Whenever the GotAPI Server receives a message from the Plug-In, the GotAPI Server passes it to the
application on the WebSocket connection.

13. Label (10): When the application finishes or decides to finish using the service, it sends a request to stop the monitoring
to the GotAPI Server. The request is sent over the GotAPI-1 Interface using HTTP. Note that the URI is the same as that
of the first request except that the HTTP method is "DELETE".

14. Label (11): When the GotAPI Server receives the stop request, it sends a request to the Plug-In to stop the monitoring
with the Action name "DELETE". Then the GotAPI server closes the WebSocket connection.

15. Label (12): When the Plug-In receives the stop request from the GotAPI Server, the Plug-In stops reporting messages,
and it returns a response to the GotAPI Server on the GotAPI-4 Interface with the Action name “RESPONSE”.

16. Label (13): When the GotAPI Server receives the response, the GotAPI Server passes the response to the application on
the GotAPI-1 Interface.

The diagram above shows that the application establishes a WebSocket connection as the GotAPI-5 Interface after the
application sends an API request on the GotAPI-1 Interface. It should be noted, as defined in GotAPI 1.1, the application is
permitted to establish a WebSocket connection only after the application has received an access token from the GotAPI Auth
Server.

The overall message flows to establish/close an asynchronous messaging session and to receive measurement values
asynchronously from Plug-Ins SHALL adhere to the specifications defined in GotAPI 1.1.

The specific data in the message flows labelled (1) to (13) in the figure above are defined by the Plug-In that implements
Manager Functionality of IEEE 11073 and is communicating with healthcare devices.

7.3 Behaviors of Plug-Ins for reporting measurements to
applications

7.3.1 Measurement modes and one shot/asynchronous messaging
There are two measurement modes for personal connected healthcare (PCH) devices, (i) the single measurement mode and
(ii) the continuous measurement mode. Depending on the nature of measurements that the device generates, some support
only one mode while others support both modes.

The single measurement mode provides only one measurement per one measurement process, whereas the continuous
measurement mode provides multiple measurements continuously. An example of the single measurement is weight scales,
which provide one measurement of weight shortly after a user steps onto the scale. An example of continuous measurement

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 69 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

mode is heart rate monitors, which provide a measurement of user’s heart rate periodically, say every one second, and
continuously.

Table 4 shows measurement mode support for various devices.

Table 4 Measurement modes for various devices

Generally, the implementation of PCH devices measure and provide the data in the following steps:

1. The user completes pairing of a PCH device and a smartphone. Pairing must be completed before any measurements or
data transfer to take place.

2. The user starts up the application on the smartphone, and takes a measurement using the PCH device.

3A. Single measurement mode:

When the PCH device acquires a measurement result successfully;

(i) the connection between the PCH device and the smartphone (i.e., the Plug-In) is established,

(ii) the measurement result is sent to the smartphone, and

(iii) the connection is closed by the PCH device.

3B. Continuous measurement mode:

When the PCH device acquires a measurement result successfully;

(i) the connection between the PCH device and the smartphone (i.e., the Plug-In) is established,

(ii) the measurement result is sent to the smartphone,

(iii) the series of results that are continuously measured afterward are sent to the smartphone one after another whenever
they are acquired by the PCH device, e.g., every one second, and

(iv) the connection is closed by the PCH device, e.g., the user stopped measurement with the PCH device or an error
occurred with the measurement.

The Plug-In is not able to detect the status of measurement being conducted by the PCH device. The Plug-In just receives
measurement results only when the measurement succeeds.

7.3.2 Policy for one-shot messages
One-shot messages can be sent to a Plug-In by an application arbitrarily at any time without knowing the status of the Plug-In
or the measurement that is underway. Therefore, in order to clarify what applications can obtain by use of one-shot messages,
the policy for responding to a one-shot API request is specified as follows:

1. If the Plug-In has the latest measurement result, the Plug-In SHALL return the result immediately.

2. Otherwise, the Plug-In SHALL return an error.

Single Continuous
Thermometer Yes No
Glucometer Yes No
Weight Scale Yes No
BCA Yes No
Blood Pressure Yes No
Heart Rate No Yes
Pulse Oximeter Yes Yes

Measurement mode

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 70 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

This means that if the application receives an error, it may have to send additional one-shot API requests to the Plug-In in
order to obtain measurement data for single measurement devices. For continuous measurement devices, the application need
to send one-shot API requests one after another in order to get new measurement data that are sent from the PCH device.

The following figures show examples of responses to one-shot API requests from Plug-Ins depending on various
measurement status.

Figure 8: Example of single measurement.

Figure 9: Example of continuous measurement.

7.3.3 Policy for asynchronous messages
When the Plug-In receives a request of asynchronous messaging API over the GotAPI-1 Interface:

• If the Plug-In has the latest result, it SHALL return the result to the application immediately over the GotAPI-5 Interface.

• Otherwise, the Plug-In SHALL NOT send anything.

After the Plug-In receives a request of asynchronous messaging API over the GotAPI-1 Interface:

• Whenever the Plug-In gets the latest result from the connected PCH device, it SHALL return the result to the application
immediately over the GotAPI-5 Interface.

• At other times, the Plug-In SHALL NOT send anything.

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 71 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Figure 10: Example of asynchronous messages (continuous measurement).

7.3.4 Intermediate measurements
Some personal healthcare devices may provide intermediate measurements in addition to actual measurements
(“measurements”). For example, intermediate temperature for thermometers, and intermediate cuff pressure for blood
pressure monitors. Intermediate measurements are provided for display purposes while the measurement process is in
progress. Intermediate measurements are supported as optional features in the IEEE and Bluetooth LE (BLE) specifications.

However, currently there are no personal connected healthcare products available in the market, at which this API is targeting,
supporting intermediate measurements. Therefore the current version of this specification does not standardize intermediate
measurement features.

• The Plug-Ins SHALL not send an intermediate measurement as a measurement to applications.

If a Plug-In wants to send intermediate measurements to applications, it needs to define a proprietary data set of its own for
intermediate measurements so as not to be confused with a measurement by applications. For example, use a unique error
code that is not used elsewhere to indicate that the value is an intermediate measurement. The details of the error codes are
defined in the Technical Specification sections of each PCH devices.

7.4 Security Considerations
This specification SHALL adhere to all the security requirements that are defined in GotAPI 1.1.

The GotAPI 1.1 specification considers every security risks and implements necessary counter measures for them. For
example:

• The GotAPI 1.1 has an application-authorization mechanism. Applications can't access the APIs without user
permissions. Besides, when applications access devices via Plug-Ins, the relevant Plug-In obtains a permission from the
user.

• The GotAPI 1.1 has an HMAC server authentication mechanism. Applications are able to detect if the GotAPI Server is
spoofed.

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 72 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

See the section "7.3 Security Considerations" in the GotAPI 1.1 specification for the details of the security considerations of
the GotAPI 1.1.

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 73 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Appendix A. Change History (Informative)
A.1 Approved Version History

Reference Date Description
n/a n/a No prior version

A.2 Draft/Candidate Version 1.0 History
Document Identifier Date Sections Description

Draft Versions
OMA-ER-Device_WebAPIs-V1_0

25 Jan 2015 All Initial baseline document.
22 May 2015 6 Added sections 6.1, 6.2 and 6.3

13 Jun 2015 6 Added sections 6.4. 6.5.6.6, 6.7 and updated sectons 6.2 and 6.3
21 Aug 2015 All Added section 7, 6.1, update section 4.
28 Dec 2015 Add CR-24, 25, 26, 27, 46, 47, 48R03
23 Jan 2016 6.4, 6.5,

6.6. 6.7. 6.8
CR 08, CR 10, CR 11, CR 12 and CR 13 for 2016

Candidate Version
OMA-ER-Device_WebAPIs-V1_0

19 Apr 2016 All Status changed to Candidate by TP
 TP Ref # OMA-TP-2016-0057-
INP_DWAPI_V1_0_ERP_for_Candidate_approval

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 74 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Appendix B. Call Flows (Informative)
This is a placeholder to be populated, as required.

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 75 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Appendix C. Static Conformance Requirements (Normative)
The notation used in this appendix is specified in [SCRRULES].

C.1 ERDEF for Device WebAPI 1.0 - Client Requirements
This section is normative.

Item Feature / Application Requirement
OMA-ERDEF-Device_WebAPIs_1.0-C-001-
<<M/O>>

Table 5: ERDEF

C.2 ERDEF for GotAPI 1.0 - Server Requirements
This section is normative.

Item Feature / Application Requirement
OMA-ERDEF-GotAPI_1.0-S-001-<<M/O>> GotAPI 1.0 Server

Table 6: ERDEF for GotAPI 1.0 Server-side Requirements

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 76 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Appendix D. Device WebAPI Enabler Deployment Considerations
This is a placeholder, to be populated as required.

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 77 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Appendix E. List of IEEE 11073 specifications
Editor’s Note: The status may need to be updates.

Status Specification Title

Completed Standards IEEE Std 11073-10404 Dev specialization Pulse oximeter

Completed Standards IEEE Std 11073-10406 Dev specialization Basic ECG

Completed Standards IEEE Std 11073-10407 Dev specialization Blood pressure monitor

Completed Standards IEEE Std 11073-10408 Dev specialization Thermometer

Completed Standards IEEE Std 11073-10415 Dev specialization Weighing scale

Completed Standards IEEE Std 11073-10417 Dev specialization Glucose meter + Revision

Completed Standards IEEE Std 11073-10418 Dev specialization INR (blood coagulation)

Completed Standards IEEE Std 11073-10420 Dev specialization Body composition analyzer

Completed Standards IEEE Std 11073-10421 Dev specialization Peak flow

Completed Standards IEEE Std 11073-10441 Dev specialization Cardiovascular + Revision

Completed Standards IEEE Std 11073-10442 Dev specialization Strength

Completed Standards IEEE Std 11073-10471 Dev specialization Activity hub

Completed Standards IEEE Std 11073-10472 Dev specialization Medication monitor

Completed Standards IEEE Std 11073-20601 Optimized exchange protocol + Amendment

Completed Standards IEEE Std 11073-00103 Guide for Health informatics - Personal health
device communication - Overview

Work being drafted IEEE Std 11073-20601 Optimized exchange protocol (Revision)

Work being drafted IEEE P11073-10404 Dev specialization Pulse oximeter (Revision)

Work being drafted IEEE P11073-10413 Dev specialization Respiration rate

Work being drafted IEEE P11073-10419 Dev specialization Insulin pump

Work being drafted IEEE P11073-10422 Dev specialization Urine analyzer

Work being drafted IEEE P11073-10423 Dev specialization Sleep Quality Monitor

OMA-ER-Device_WebAPIs-V1_0-20160419-C Page 78 (78)

 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-CombinedRelease-20160101-I]

Work being drafted IEEE P11073-10424 Dev specialization Sleep Aponea Breathing Therapy Equipment

Work being drafted IEEE P11073-10425 Dev specialization Continuous Glucose Meter

Work being drafted IEEE P11073-10417a Dev specialization Glucose meter (Amendment)

Work being drafted IEEE P11073-10406a Dev specialization Basic ECG (Amendment)

Work being drafted IEEE P11073-10471a Dev specialization AI Living Hub (Amendment)

Work being drafted IEEE P11073-10407 Dev specialization Blood Pressure Monitor (Corrigendum)

Work being drafted IEEE P11073-10408 Dev specialization Thermometer (Corrigendum)

Work being drafted IEEE P11073-10415 Dev specialization Weighing Scale (Corrigendum)

Work being drafted IEEE P11073-10420 Dev specialization Body composition analyzer (Corrigendum)

Work being drafted IEEE P11073-10418 Dev specialization INR monitor (Corrigendum)

	1. Scope
	2. References
	2.1 Normative References
	2.2 Informative References

	3. Terminology and Conventions
	3.1 Conventions
	3.2 Definitions
	3.3 Abbreviations

	4. Introduction
	4.1 IEEE 11073 Family of Standards Overview
	4.2 Version 1.0

	5. Device WebAPIs Enabler release description (Informative)
	6. Requirements (Normative)
	6.1 High-Level Functional Requirements: GotAPI Adherence
	6.2 High-Level Functional Requirements: DWAPI-PCH
	6.3 Thermometer Specific Functional Requirements
	6.4 Pulse Oximeter Specific Functional Requirements
	6.5 Weight Scale / Body Composition Analyzer Functional Requirements
	6.6 Blood Pressure Specific Functional Requirements
	6.7 Glucometer Specific Functional Requirements
	6.8 Heart Rate / Electrocardiogram Specific Functional Requirements
	6.8.1.1 Data Integrity: DWAPI-PCH
	6.8.1.2 Confidentiality

	7. Architectural Model
	7.1 Architectural Diagram
	7.1.1 GotAPI Framework Summary
	7.1.2 GotAPI Framework and IEEE 11073 Healthcare Devices

	7.2 Functional Components and Interfaces/reference points definition
	7.2.1 Service Discovery API
	7.2.2 One-shot measuring API
	7.2.3 Asynchronous messaging API

	7.3 Behaviors of Plug-Ins for reporting measurements to applications
	7.3.1 Measurement modes and one shot/asynchronous messaging
	7.3.2 Policy for one-shot messages
	7.3.3 Policy for asynchronous messages
	7.3.4 Intermediate measurements

	7.4 Security Considerations

	Appendix A. Change History (Informative)
	A.1 Approved Version History
	A.2 Draft/Candidate Version 1.0 History

	Appendix B. Call Flows (Informative)
	Appendix C. Static Conformance Requirements (Normative)
	C.1 ERDEF for Device WebAPI 1.0 - Client Requirements
	C.2 ERDEF for GotAPI 1.0 - Server Requirements

	Appendix D. Device WebAPI Enabler Deployment Considerations
	Appendix E. List of IEEE 11073 specifications

