" OMQA

Open Mobile Alliance

External Functionality Interface Framework
Approved Version 1.1 — 15 Mar 2011

Open Mobile Alliance
OMA-WAP-EFI-V1 1-20110315-A

Continues the Technical Activities “@\P
Originated in the WAP Forum " Forum

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc Page 2 (57)

Use of this document is subject to all of the teamd conditions of the Use Agreement located at
http://www.openmobilealliance.org/UseAgreement.html

Unless this document is clearly designated as proapd specification, this document is a work iagass, is not an
approved Open Mobile Alliance™ specification, asdubject to revision or removal without notice.

You may use this document or any part of the docurfe internal or educational purposes only, pded you do not
modify, edit or take out of context the informatiornthis document in any manner. Information cored in this document
may be used, at your sole risk, for any purpod&su may not use this document in any other maniigrowt the prior
written permission of the Open Mobile Alliance. eT@pen Mobile Alliance authorizes you to copy thigument, provided
that you retain all copyright and other proprietaofices contained in the original materials on emgies of the materials
and that you comply strictly with these terms. sTéwpyright permission does not constitute an esaoent of the products
or services. The Open Mobile Alliance assumesespansibility for errors or omissions in this do@ann

Each Open Mobile Alliance member has agreed toemssonable endeavors to inform the Open MobileaAtle in a timely
manner of Essential IPR as it becomes aware thdEskential IPR is related to the prepared or phibd specification.
However, the members do not have an obligatiortalact IPR searches. The declared Essential IPRbikcly available
to members and non-members of the Open Mobile #dkaand may be found on the “OMA IPR Declaratidis"at
http://www.openmobilealliance.org/ipr.htmifhe Open Mobile Alliance has not conducted alependent IPR review of
this document and the information contained heiil, makes no representations or warranties regatiird party IPR,
including without limitation patents, copyrightstoade secret rights. This document may contaiaritions for which you
must obtain licenses from third parties before mgkusing or selling the inventions. Defined teabsve are set forth in
the schedule to the Open Mobile Alliance Applicatfeorm.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESK® OMPLIED) ARE MADE BY THE OPEN
MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF
THE IPR'S REPRESENTED ON THE “OMA IPR DECLARATION&IST, INCLUDING, BUT NOT LIMITED TO THE
ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THINFORMATION OR WHETHER OR NOT
SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HERBY DISCLAIMS ANY DIRECT, INDIRECT,
PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EKMPLARY DAMAGES ARISING OUT OF OR IN
CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORATION CONTAINED IN THE DOCUMENTS.

© 2011 Open Mobile Alliance Ltd. All Rights Resed:
Used with the permission of the Open Mobile Alliaridd. under the terms set forth above.

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc Page 3 (57)

Contents
S O @] = T 5
2. REFERENGCES ...t oottt e ettt e e e s et et e e s heee et eabee e e bae s e sbeesesasaeesasbeesanbaeesansbeesnssesansbeesesbeeeesseeesantaeesnrees 6
2.1 NORMATIVE REFERENCES......ciititttettiieiiiiteeessesiasssssessssssassssessessasasssssssessasssssssssessssssssessssssssssssssssssssessessessssseseessensne 6
2.2 INFORMATIVE REFERENCES.....uutiiiiiiiiiittiieeisiiistsseessesiasssseesssssisssssssssssssstssesssssissstessessssasssssssssssssssssesesssassssesesssssssssnens 6
3. TERMINOLOGY AND CONVENTIONS. .. .ottt ettt sttt s sat s e s b e s bt e s st be s sabb e s s s sbaeessbeessanbaessnrenas 7
31 (070] N1Y7 = N T 0] N TSSO PRUPR 7
3.2 [T N I 0] N TN 7
33 AABBREVIATIONS ..teiiitteeieitteteiittees ittt ssaseseassseestastessaataessasesesissssssastesssasssssaassssssssssssassesssssessssnssessanssessnssesssssnessssssessnnses 8
4, INTRODUCTION ...ttiiiiciie ettt eite et et ee e stae e s ettt e e staeasasbeeaeabseeesasbeeeanbseesasseesessseessassessabesssasbessantaessasseessssreessassessnnten 9
4.1 EFT WITHIN THE MOBILE TERMINAL 1.ccttttt ittt eeteeeeitseeeiesteessassessesesssssssessassesssassssssssssssssssssssssesssatssesassssssssssssssssessnnses 9
4.2 EFl REFERENCE ARCHITECTURE .1vttiiiiiiiittteeieitiiisteeesssesassssesssssasasssessssssasssssesssssissssssssssssssssssssssssssssssessesssssssseessensnns 9
4.2.1 (70T 0] 0T gT=] o] 15T RO TPPPPPIN 10
4.2.2 SEIVEIS AN SEIVICES ..cuuiiiiviiiiit it it mceemt et ettt et e e sttt e st e ettt es s b e s st ba s s st sesba e ss b eesbaeesbb e esbansennanss 12
4.2.3 L) (T =101 <IN 12
4.2.4 ST Y (01T 12
4.25 YN ad I OC0] g 1T To [T = L o] TR 13
4.3 [N Y 1 = T =S 13
4.3.1 Components Of the EXAMPIEcoiiii i e e e e e e e e s s e et ae e eeeaeeeeseennnnsnrnnes 14.
o B VAV - | 1 o o 18 o | o OSSR PUTRPRPPRP 14
5. NAMING CONVENTION ..ottt ettt ettt e et e e s e b e e s s b e e s sbeesssabeessasbesssasbessabaesssabeassabbeessabeessasbesssabeeessbbees 16
51 INOTATION ittt iteee et ee et e ettt e et eeeeebeeesabeeeeasseesaseesasbeeeaasseeeeanbeee s sbeseaassseesaseeeeasbeeeaabbeseeanbeeesanbessanbeeeessnneesnbeeesn 16
5.1.1 LS o1 111 1 16
5.1.2 ST T Y= SR 16
5.1.3 ST Y, [17
514 [T =1 0 =] (=Y £ PN 17
52 [N Y 1 = =S TSP 18
53 NAMESPACES IN THE AP oottt ettt ettt ettt ee s et e e ebae e e s eate e e sabe e e sabseeesabeeeeasbeeesbbeeesanbeeesasbessasbeseesbaeeesnbeeesn 18
54 V ENDOR-SPECIFIC NAMESPACE ...utttiiiiiiiitteeeeeseiiiteeteestasistasetesssasistesesesssassteseessesassssssessssssssssssesssssssrssesssssssssreseessens 18
55 RESERVED NAMES ...cciiiiiiittttiteetiiiitteessesiassssseessessassssesssssasassssesssssessssssssssssssssssessssssnssssssssssasssssssssssssssssssessssssssreseessans 19
6. VERSIONS (INFORMATIVE) cuiitciitieteesise e stesteete st e saestestessestessessestessessessessessessesssssessesssssessnsssssnssessessnnsessessensenses 20
6.1 VERSION HISTORY oiiiiiiitttiiieeiiiiiteteieseissteeee st essssseseessasssbasstasssasssbasesesesasssbeseessesasssssssesssasabasssessssasbesesesessssbaseessanas 21
S O = d I o N o SRR 22
7.1 INAM ESPACE USAGE ...ciiiiiitttiiieeeieiitttteeeessessbsseessessasssseeesssesassssessessasssssssssessassbasesssessassssesssssassbasaessssssssbesesssessssraseessanns 22
7.2 SERVER ATTRIBUTES ...ttiiiiittteiittteeiitteeeeitaesseisesssissssssassessassssssassssssssssessasssssassssssasssssasssssssssessastesssasssssssssssssssssessssesen 22
7.3 CLASS PROPERTIES.....cttetitittteeitteteiitteeeastsessaisesssassessiassessassssssasssssssssessasssssansssssassssssssssssssssssansesssnssessessssesssnsesssssesen 23
7.4 SERVICE DISCOVERY ..uttiiiiitiieiitteieiitteeeeittesseisessssssessiassessasssssasesssssssessasssssansssssasssssessssssssssessastesesassessessesessssseessssesen 23
75 SERVICE CONTROL 1iiiiitteiieteteeitteeeiitteeeaitsessaisssssasseessassessassssssssssssssssssssssssssassssssassssssssssssssssessastesssassessssssssssssssessseeen 23
751 Y= VA [T= I oT0] 11 0] I oT0 Lo [T TN 28
75.2 [(0T =1 [0) =100 ST o0 1o [T 28
7.6 RV LY S ot L = N = RSO PPRRRRN
7.6.1 (O00] 0] 7= 11 11T (3T
7.6.2 SEIVET ATITIDULES ... et s+ e e e ettt e e e ettt e e e e e e et e eeseeeeasaan s e s e e saan e eeeeeaba s eeeeeesaaneesereenrens
7.6.3 (O P TSI o (0] 1= £ 11 PP
7.6.4 Service Discovery ,
7.6.5 ST V(oS @0] 1o |
7.7 ECM A SCRIPT AP .ttt cee ettt e ettt e ettt e e st e s e abe e e e ebae e e e ebbeee s abeseeabseeesaseeeeasbeeesbbeseeanbeeesasbeesasbeseessneeesnbeeesn
7.7.1 NAME/VAIUE COIECTIONSccvveiiiii ettt et e e et et e e e e e eaaa e e s s e eaaa e e e eeeatan s eeeeeesannneeessrenen 39
S T Y 2N = 4 L0 1 = AN = PRSP 46
8.1 BEHAVIOUR OF THE MOBILE CLIENT ciiiuttttiiittteeiteeeiisesseiseeeessseessassesssassessssssssssssssssassesssassssssnsssssnssesssssessssssssssssesen 46
8.2 S] AV =1 TS R 47
8.2.1 [l = (0] (] 47

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc Page 4 (57)

8.2.2] O =TT A o =T | S SRORPTPPPR 47
8.2.3 =t o | N 47
8.3 DISCONTINUOUS MODEuvviiiiureeeiureeeisteeesiiseesessesssasessassssssssssesssssesssassessssssssssssssssstesssassssssassesssnssessessessssssssessssesen 48
8.3.1 (OfoTa) ([aTUF= 11 L0] aTo (oot U] /0 =T | Y o
8.3.2 RS (U IRz L= o] [48
8.4 CONTEXT MANAGEMENT L.itttttieetiiiitrteteesiissseeesssesassssessessesassssesssssassssssssssssassssssssssasssssessessesasssessesinssssseessessssssseenes 48
8.5 Y LU ST 0] 5] =T 49
8.6 UAPROF .ottt ettt ete e ettt e ettt e et e e e eabeeesaabe e e easaeesaseesesbeee s abseeeeaabeee s sbeseeaseeeesabeeeeaabeeesabbeeeeanbeeesasbeesasbeeeeabneeesnbeeesn 50
8.7 (OF: X ol =T =R USRS 50
8.8 L Y 1 = OO 50
APPENDIX A. STATIC CONFORMANCE REQUIREMENTS......cii it e e 52
A.Ll SCRIPT ENCODER OPTIONStiititeiristtesesesseesesesseesessesseasessessessessesseesessesseasessessessessessessessessessessessesnessensessessensesnens 52
A2 CLIENT OPTIONS. e ittittetteteatesteeeeste e st e e st e s e aaeeas e e st sb e e aE e e aeesheeaReeheesEeeR e e eh e e eReeaeeeheen bt em b e Reembeehe e bt enn e e Re e be e e e nbeenennn s
A2.1 ST 0] (=] (N
N Yod 1T o = R
N T AN = £ PPN
N S V1V VS o o Y OSSR
A.2.5 @Y NS o] 1 o] 2 = PSSP
A.2.6 Attributes, Properties
A.2.7 o To= 1 IS VL= U
APPENDIX B. CHANGE HISTORY (INFORMATIVE) .ottt ettt sae st sne e e 57
B.1 APPROVED VERSION HISTORY .ititiiiiiiiiiiiiieiiiitieiee st eiitseeseessasastseetesssassstssssessssssssssssssesassssssesssassssssssssssnssssesessssnassnes 57

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc Page 5 (57)

1. Scope

The Wireless Application Protocol (WAP) is a resaflcontinuous work to define an industry-wide sfieation for
developing applications that operate over wiretesamunication networks. The scope for the Open Mohlliance is to
define a set of specifications to be used by sesvand applications. The wireless market is growary quickly, and
reaching new customers and services. To enablatmpernd manufacturers to meet the challengesdvianged services,
differentiation and fast/flexible service creatitve Open Mobile Alliance defines a set of protodotsthe transport,
security, transaction, session and applicationrtayeor additional information on the WAP architeet please refer to
“Wireless Application Protocol Architecture Specdtion” [WAPARCH)].

Current trends in telecommunications enable newskif functionality in a wireless terminal; eithbrough the integration
of new features into the mobile terminal or by aiflog new types of devices to be connected to theileberminal.
Supporting this development in OMA standards witsgthen OMA’s position as a platform for advaneékless data
services by providing access to new capabilities.

External Functionality (EF) is a general term fomponents or entities with embedded applicatioasd¢kecute outside of
the Wireless Application Environment (WAE) or otheser agent, and conform to the EF requirements.External
Functionality can be built-in or connected to a ifeterminal. This connection can be permanenepidorary.

An application environment of WAP is the place witthe terminal where applications are executetieein the form of
markup pages or in the form of scripts or both. west convenient way to facilitate the connectietwen the application
and new functionality of the terminal is to specigw standard services that can be accessed tppéoadion that is being
executed in WAP application environment. The Exaéfunctionality Interface supports the notion lalsses, conceptual
groups of functions that pertain to the same appbo areas.

The External Functionality Interface (EFI) spedfions in WAP provide methods enabling applicatitmaccess External
Functionality in a uniform way through the EFI Amgltion Interface (EFI Al). The EFI specificatioosnsists of the
Framework, the Process specification and a setafsCSpecifications, each one specific to the gaglication area.

EFI Framework defines the general behaviour ofiEfplementation in the WAP terminal while detailedjunirements for
the class are provided in individual Class Speaiftsn documents. The Process specification fatgtéhe development of
Class Specifications by defining steps that shbelthken in order to achieve the quality Class Epation.

The EFI Application Interface (EFI Al) is a highvk interface that shall suit a number of differapplications. Various
external functions are grouped in classes that effenmon functionality across different makes aasions of terminals
and external functionality entities. The EFI Framelvprovides an extensible set of interfaces thatsupport services,
including the ability to query for the particularsice as well as the ability to capture the fumadility that is specific to the
given device or software installed. However, thieneo functionality to dynamically add new servisesthere is no general
service discovery mechanism.

This document defines the EFI Framework. The docurstarts with the requirements and principles thetEFI
Framework is built upon. Next, the conceptual gettture of EFI is presented and the terminologgti®duced. The
definition of the Framework follows, addressinguiss such as naming convention and version coiitne following
chapters show how the Framework can be accessedmé@kup language (WML and XHTML Mobile Profila)dascripting
language (WMLScript or ECMAScript). The Framewoekuires the mobile client to support both the siergpand markup
languages specified by the Wireless Applicationiemment [WAE].

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc Page 6 (57)

2. References

2.1 Normative References

[IOPProc] “OMA Interoperability Policy and Process”. Open MebhAlliancell. OMA-IOP-Process-v1_0.
URL:http//www.openmobilealliance.org/

[RFC822] "Standard for the Format of ARPA Interfiekt Messages". Crocker, D. August 1982.
http://www.ietf.org/rfc/rfc822.txt

[RFC2119] “Key words for use in RFCs to IndicategRieement Levels”. S. Bradner. March 1997.
URL:http://www.ietf.org/rfc/rfc2119.txt

[RFC2234] “Augmented BNF for Syntax SpecificatioABNF”. D. Crocker, Ed., P. Overell.
November 1997URL:http://www.ietf.org/rfc/rfc2234.txt

[RFC2396] "Uniform Resource Identifiers (URI): GeieeSyntax". T. Berners-Lee, R. Fielding, U.C. heij
L. Masinter. August 199Bttp://www.ietf.org/rfc/rfc2396.txt

[ESMP] “ECMAScript Mobile Profile”, Open Mobile Alknce™. OMA-WAP-ESMP-V1 0.
http://www.openmobilealliance.org/

[UAPTrof] "User Agent Profile Specification", WAP Foriim WAP-248-UAProf.
http://www.openmobilealliance.org/

[XHTMLMP] “XHTML Mobile Profile 1.1", Open Mobile Alliancel. OMA-WAP-XHTMLMP-
V1 _1http://www.openmobilealliance.org/

[WAE] "Wireless Application Environment Version 2.1", @plobile Alliancél. OMA-WAP-
WAESpec-V2_ http://www.openmobilealliance.org/

[WML1] "Wireless Markup Language, Version 1.3", WAP FofupWAP-191-WML.
http://www.openmobilealliance.org/

[WMLZ2] "Wireless Markup Language, Version 2.0", WAP FofupWAP-238-WML.
http://www.openmobilealliance.org/

[WMLScript] “WMLScript Language Specification”, WAP Forlitn WAP-193-WMLScript,

http://www.openmobilealliance.org/

2.2 Informative References

[WAPARCH)] “WAP Architecture”. WAP Forurl . WAP-210-WAPArchhttp://www.openmobilealliance.org/

[CACHE] "WAP Caching Model Specification”, WAP Foriim WAP-175-CacheOp.
http://www.openmobilealliance.org/

[RFC2616] "RFC2616: Hypertext Transfer ProtocdiF-TP/1.1". R. Fielding, et al. June 1999.
http://www.ietf.org/rfc/rfc2616.txt

[WMLLIb] “WMLScript Standard Libraries Specification”, WARFRIM , WAP-194-WMLScriptLibs.
http://www.openmobilealliance.org/

[WSP] "Wireless Session Protocol", WAP ForlmWAP-230-WSP.
http://www.openmobilealliance.org/

[WTA] "Wireless Telephony Application Specification”, WA®runil , WAP-266-WTA.

http://www.openmobilealliance.org/

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc

Page 7 (57)

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHAL", “SHALL NOT”, “SHOULD”, “SHOULD NOT",
“RECOMMENDED”, “MAY”, and “OPTIONAL" in this documet are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” anttdbiuction”, are normative, unless they are exijiéghdicated to be

informative.

3.2 Definitions

Application

Broker

Class

Class Agent

Class Realisation

Class Specification

Entity

Gateway
Implementation
M obile Terminal

Origin Server

Registry

Server

Service
Unit

XHTML MobileProfile

The executable or interpretable code that is rupmiithin the application environment (such as WA®);
application may use various APIs to access EFlicesy

The conceptual entity that exists between the EfSUBF Class Agents and the EFI Al. The EF Broker
maintains the list of available functionality aralites requests to the correct EF Unit or EF Clagnfor
handles them itself.

The collection of all EF Units and EF Class Agehtt share the same functionality according tcstimae
Class Specification.

The conceptual active element that provides addectibnality on the basis of EF Units of the sanke E
Class Realisation.

The collection of EF Units and optionally the EFa€d Agent that belong to the same EF Class and are
available to a particular Terminal.

The definition of services that are provided byrgu¥eF Unit that belongs to the given class andisess
provided by the EF Class Agent.

The conceptual component that expresses the EWlanea software or hardware component of the
mobile terminal that exposes some of its functimmtifie purpose of EFI.

WAP gateway as specified in [WAPArch].
The software and hardware that is used in thequéati terminal to implement the functionality.
The physical unit where the WAE executes.

The server on which a given resource residestorbig created. Often referred to as a web servan or
HTTP server.

The conceptual place where information about albkEl&EF Units and EF Class Agents is stored and then
made accessible by the EF Broker.

Any of the components of the EFI conceptual archite that can be addressed to provide the sefimice
an application; a collective name for the EF Brolg Units and EF Class Agents.

The specified functionality provided by one of #evers: EF Broker, EF Class Agent or EF Unit.

The conceptual component that resides in or outkiglenobile terminal and provides access to the EF
Services on the EF Entities.

A language which extends the syntax of XHTML Basscspecified in [XHTMLMP].

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc Page 8 (57)

3.3 Abbreviations

Al Application Interface

API Application Programming Interface

EF External Functionality

EFI External Functionality Interface

EFE External Functionality Entity

ESMP ECMAScript Mobile Profile [ESMP]

OMA Open Mobile Alliance

SIM Subscriber Identity Module

UAProf User Agent Profiling

XHTML eXtensible HyperText Markup Language

WAE Wireless Application Environment

WAP Wireless Application Protocol

WINA WAP Interim Naming Authority

WML Wireless Markup Language; refers collectively to WMersion 1.3 [WML1] and WML Version
2.0 [WMLZ2]

WTA Wireless Telephony Application [WTA]

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc Page 9 (57)

4. Introduction

The conceptual architecture of EFI consists of sJ®ocks that are collectively called 'EFI'. Tltsapter defines how the
'EFI' relates to other components that may residkeé mobile terminal from the perspective of aggtiion execution
environment and how the EFI component can be fudbeceptually structured.

4.1 EFI within the mobile terminal

An application environment within the mobile termionsists of several components of which EFhis.d@he simplified
relationship of those components is depicted below.

WAP MMI (Man-Machine Interface)
terminal

WAE user agent
m—|
WTA EFl
user agent
[—
| |

WAP Stack

Figure 1. EFI Architectural Overview

EFI is positioned as the terminal component thisgracts with WAE user agent [WAE], similar to WTAhe interface
provided by EFI allows both WAE applications and Wapplications to call the external functionalityaugh EFI.

The functionality that is accessible through EFymequire certain resources from the mobile teriiilee memory space,
processor time or dedicated hardware. It is assuhadhe implementation of EFI provides means #tlatv the proper
resource sharing within the mobile terminal.

EFI has the same rights to use man-machine ine(fé11) and communication capabilities as WTA or &AHowever,
the EFI Framework does not provide any formal dpion of how EFI is using those capabilities, leayit to the
implementation of particular components that cautsiEFI.

The primary purpose of EFI is to provide accessxternal functionality. The functionality is consiéd ‘external’ when it is
not the standard functionality of WAE or WTA. Whettsuch functionality resides inside or outsidéhefterminal or
whether the functionality is permanently or onlgnfeorarily available is irrelevant.

4.2 EFI Reference Architecture

The framework defines the conceptual referenceitaathire, as depicted below. The intent of thishdecture is to provide
consistent terminology and understanding. The eefes architecture does not imply or endorse anycpéar
implementation but demonstrates the structure dfaSkperceived by the application developer.

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc Page 10 (57)

EFI
EF Service EF Device
EF Al Access Access
Interface Interface

1IN EF Entity

EF Unit

WAE 7
Broker
EEumt || EFEy
EF Registry EF Unit q EF Entity
EF broker services ::> - \
77 | EFEniy
EF Class Realisation
I 7
i EF class agent services ::
I g %
| EF Unit z_\ EF Entity
EF unit services I\ 7 i
| I | | |/ EE Unit EF Entity
WAP stack

Figure 2. EFI conceptual architecture

4.2.1 Components

The conceptual architecture of EFI identifies saveomponents. The following description startsrfrine rightmost (most
detailed) components shown on the picture.

This architectural view of EFI highlights componeand the static relationship between them. Thamhym architecture of
servers and services is presented in the nextehapt

4211 EF Entity

The EF Entity (EFE) is a component that implemanfisnctionality. The EFE can be internal or extetaahe mobile
terminal or even a set of software modules thatigea functionality that should be made availablapplications in WAE.
The EF Entity can be functionally larger than wisateen through the EFI Interfaces with only péthe overall EFE
functionality exposed within EFI.

The term 'external’ need not be interpreted inysiphl sense. The EF Entity may physically residéhe mobile terminal.
'‘External’ means that the EF Entity is not spedifis part of the wireless application environm&pecifically, only a subset
of the actual device functionality can be publistiedugh EFI. The EF Entities are allowed, and etgubto be proprietary
implementations.

The EF Entity that represents the functionalityt 8fzans several EF classes may be shared by E§ fubnit different Class
Realisations. Within each Class Realisation the EXtoses the part of its functionality that is s$fieto the class. For
example, the Global Positioning System (GPS) clmok be used by the 'positioning’ class as wellydhd 'calendar’ class.

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc Page 11 (57)

Examples of EF Entities include GPS units, thermtense video recorders, cameras, measuring uniggation systems,
SIM Toolkit Applications, Smart Card Readers etc.

42.1.2 EF Unit

An EF Unit is an abstraction of EF Entity functitibhaexpressed in a way that is compatible with EFie EF Unit is the
component that actually provides services to tiptiegtion, so that it acts as a server for applicatThe sets of services
that are reachable through the EF Unit are mappéghttionality available from EF Entities in anpfementation-specific
way.

Note that one EF Unit may build its functionality one or more EF Entity components. Also one ERtmntay deliver its
functionality to more that one EF Unit, whethentlage from the same class or from different classes

The Class Specification defines services that th&JRit must provide to the application. All EF Unthat belong to the
same Class must provide the mandatory class sernAcgimple example of a Class could be digital eenwhere the
minimal set of EF Services could consist of takeRés.

Each EF Unit belongs to exactly one EF Class Ratadis. Each EF Unit has a unique identifier wittiie Terminal. The
unit identifier is defined as a valid name not dcgtied by any other unit or EF Class Realisatidre EF Broker can
dynamically create the identifier.

42.1.3 EF Class Realisation

The EF Class Realisation houses within the terntifraUnits that fulfils the same Class Specificatiegardless of the
actual version and of the implementation. The Efs€IRealisation may also contain the EF Class Ay¢ititin the terminal
there is no more than one Class Realisation of €é&$s. The name of the Class Realisation is alideygical with the
name of the Class it realises.

An EF Unit always belongs to an EF Class Realisafifthe particular EF Unit does not fall into asgpecific Class as
defined by the Open Mobile Alliance, it is definasla part of a vendor-specific EFI Class Realigatio

The EF Class Realisation identifies one of its Eft$Jas the default EF Unit that is used when aliegttion does not
specify any unit. For a WAP application to use slssrvices at least one EF Unit of the Class Ra#lis must exist in the
mobile terminal.

EF Units may be added, without any standardisatidvether they provide standardised services owvaddor-specific
capabilities. Addition of new classes will alwaggjuire some standardisation effort. Specificallg hame of the Class and
its required services are defined by the specitioat

4214 EF Class Agent

The EF Class Agent is the active component of th€ss Realisation that aggregates functions iicpéar units within
the class or manages units in a class specific eraithe EF Class Agent is an EF Server as it pesvith services to the
application. The EF Class Agent provides servibas @llow applications to access functionality tisapecific to the Class,
yet beyond the scope of the single EF Unit, e.dtirariteria unit selection.

The EF Class Agent is optional in the sense treatlass Specification determines whether the QGlgssit is required for
the given class and what services it should perform

4215 EF Broker and EF Registry

The role of the EF Broker is to collect informatiabout available EF Class Realisations, EF Classsg EF Units and EF
Services in the EF Registry and subsequently tterservice requests to the appropriate servers thhat EF Broker is also
able to handle some of the services by itselfngatis an EF Server.

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc Page 12 (57)

4.2.2 Servers and services

The main purpose of EFl is to provide servicesppliaations. For that purpose, EFI can be perceasd collection of
servers that provide services. This view of the &f€hitecture overlaps with the static architedtuigw presented in the
previous chapter in that some components of thie stechitecture function as servers. All EF Sesvate marked with
diagonal lines on Fig.2.

422.1 EF Server

The EF Server is any component of the EFI concéprahitecture able to provide services to an &afibn. The term
'server' is used as a collective name for EF BrdkErUnits and EF Class Agents.

42272 EF Service

The EF Service is the EFl-related functionalityttissavailable to the application through the EFiAterface. EF Services
are provided by three different components of EFI.

The EF Unit provides applications a set of EF Smwithat are built from functionality delivered Bl Entities. The EF
Class Specification defines the mandatory and optiservices for the class. The EF Unit may prowidee services than
defined for its Class, but must provide all sersitigat are defined as mandatory for the Class.

The EF Class Agent provides services that allowiegijions to access functionality that is spedifithe Class, yet beyond
the scope of the single EF Unit, e.g. multi-craeunit selection. Each EF Class Agent can defgievtn services as long as
they fulfil obligations expressed in the EFI Franoekv

The EF Broker provides EF Services that allow thgliaation to discover server and services avadlaithin the given
implementation of EFI.

EFI Framework does not provide any security meastina may be available for services. EFI Framevdods not define
any security framework that can be used by servi8esvices with exceptional security requiremengy implement the
appropriate security mechanisms outside of theHe&inework.

42.3 Interfaces

The conceptual model of the EFI architecture defsmveral interfaces. Only the EFI-Al is requiredé implemented.
None of the remaining interfaces are required forienplementation. Only the EFI-Al interface failldo the scope of OMA.
Other interfaces are used throughout this docuteetitistrate concepts and to establish the comteominology.

4.2.3.1 EF Al

The EF Al is the Application Interface to the ERBees offered by all EF Servers. In addition, Efe Al may provide
access to other functionality necessary to sugperBervices. This is the only interface specifigdddIA.

4.2.3.2 Other interfaces
The EF Service Access interface defines EFI Brakieraction with the EF Units, and is outside thepe of OMA.

The EF Device Access interface exists between EheJiit and the EF Entity. This interface is outside scope of OMA.

42.4 Services

The EFI Framework makes distinctions between gratigervices that are provided through EF Al. Theppse of those
groups of services is defined below and then surnserin the following table.

» Broker services are provided by the EF Broker flerHegistry access. Such services are used to diseaisting
components of EFI, including class agents, unitssarvices. EFl Framework defines all managemenricss.

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc Page 13 (57)

» Class Agent services may provide unit managemehimthe class realisation and/or value-added sesvon top of
services already defined by units. A class spetifia may contain both mandatory and optional ses/provided by
the Class Agent. Mandatory Class Agent serviced treignplemented by the Class Agent. Optional Chegent
services may be implemented by the Class Agentheu€Class Agent must not use the name of the rgdtiervice for
any other purpose.

» Unit services are the set of services implemeraddlfil the class specification. A class specifioa may contain both
mandatory and optional services. Mandatory unitises must be implemented by every unit of a giekass. Optional
unit services may be implemented by the unit, betunit must not use the name of the optional serfar any other
purpose. The definition of unit services is proddey the class specification.

» Proprietary services allow access to specific fionetity within any server beyond standardised ises: EFI
Framework defines the method to identify and acsash services but makes no other provision farises define
outside of OMA. The definition of such servicesighe discretion of the implementor of the pataciF server.

The following table summarises the grouping of E&w.

Name Provided by Defined by
Management EF Broker Framework
Class-specific EF Class Agent Class specification
Unit EF Unit Class specification
Proprietary any EF Server outside OMA

Table 1. Groups of services

425 APl Considerations

Services that are available from EFI must be adaesthrough different API's to accommodate differapplication
requirements. Specifically, EFI services are adbksthrough the Script APl and Markup API. Calisthe service through
any API are conceptually routed to EFI Broker inmpémtation that may in turn route them to an EF UE#t Class Agent or
handle them internally.

If an application has access to more than one Al has access to both the Markup and Script ARI3n freely mix
interaction through all the available interfacesibahould be aware of the possible interactiosefices.

4.3 Example

The following example is intended to illustrate tieéationship between EF Classes, Units, Entitié8E, the Broker and
other components of the EFI Framework. It is NOfEiled to be a complete example of an implememtatior to suggest
that the illustration would be the appropriate w@ymplement the example. Use of the classes bdtweg NOT imply a
commitment from OMA to specify the classes.

In overview, the example attaches a digital canteemobile terminal. The camera can capture isaged has the
capability to display digital images on its displdaye mobile device also has a display, less caghahbh that of the camera.
The WAP application on the mobile device is capalbletrieving images from the camera and transfgrthem to other
storage, probably network based. A display clasthe mobile device has knowledge of the cameranzotalle device
displays, and contains an agent capable of setetttsnappropriate display for a particular imagéeftier this occurs with
or without the intervention of the device userd$ germane to the example. Depending on the impiéatien, either or both
methods could be used.

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc Page 14 (57)

4.3.1 Components of the Example
The components of the example illustrated below are

» Adigital camera, with a communications port armbbour display of sufficient quality and size tacatately render a
photographic image. The camera is capable of pinguprocessing and rendering digital images.

* A mobile communication device, with a communicasiguort matching the camera’s port, and a displaytite
purposes of the example, we’ll assume that thdaliggn the mobile device is less capable than #imeeta display (e.g.
a monochrome, Liquid Crystal Display 6-line dispiaiyh limited graphics).

Mobile Device
EF Al
WAE EFI Vendor Class EF Entity - Camera with Display

Application "vnd.mfg.Camera"

Vendor
WAE Camera Unit >
Application "Model X'
EF
Broker
WAE Pix
Display
g, EFI Class
Application ‘Display’
I, — — Lk
s Class Agent ommunication Lin
EF Unit
"Camera —
Display”
EF Entity -
crunt [I0] e
"Phone play
Display”
EF Unit
"PDA Display”

Figure 3. Example of EFI conceptual architecture

4.3.2 Walkthrough

The example decomposes into two applications ttess EFI services through the EFI Al and brokeplisation (1) is a
manufacturer’'s camera application, running in thieeWss Application Environment (WAE). Applicati¢B) is an image
display application for rendering images retriefrean the web or other sources. The camera is as$toriee in
communication with the mobile device, the meanwoissignificant to the example, but could be setii8B (Universal
Serial Bus), IrDA (Infra-red Device Association pyool) or other type of connection.

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc Page 15 (57)

Moving from left to right in the example, the amaliions communicate with the EF Broker, which exsabe services
available, and routs the calls to the appropriateess. The EF Classes instantiated on the mobilicd are 1) The Display
Class which houses units controlling different typé display capabilities, and 2) the Camera Classyiding access to a
manufacturer's camera, connected to the mobilecdeilihe Display Class includes 3 units: a manufackiCamera
Display unit, a mobile device display unit and afP®ersonal Digital Assistant) Display unit. The RDisplay unit is not
in use. In addition, the Display Class implemen®ass Agent. The Class Agent in this case hawlatge of the relative
capabilities of the two attached displays and can information to the appropriate display. Therdgaay choose to route
an image from the PIX app to the camera where ppeopriate image handling is available, insteathefdevice display
where the image cannot be correctly processed.

The Camera Class instantiates one unit, communigatith the camera device. There are only two EHiEa represented,
the mobile device Display and the Camera. Two ERsLatcess the Camera, the Camera Unit and the i@dbigplay Unit.

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc Page 16 (57)

5. Naming convention

EFI makes intensive use of the concept of 'namesphe structured space of components that cétebéfied by their
names. The EFl namespace extends the notion afrésgwice architecture as it is used to idengfiwices that are provided
by various EFI servers.

5.1 Notation

The namespace used by EFI consists of four segnnidich two can be built into the hierarchicalisture. The notation
used to express the namespace is compliant witB2R86]. As specified in [RFC2396], the grammaihizst iof [RFC822],
except that "|" is used to designate alternatividee necessary escape convention is also drawn[RRéiG2396].

[1 Square brackets denote an optional section.

[Vertical bar denotes alternatives

@) Brackets are used to group elements

* Star denotes that the next element can repea aomultiple times
Ampersands are used to denote terminal literal

The namespace that is fully defined by the EFI Fenaork contains of up to four segments, as showovberhere is a
compulsory separator between the Scheme and therSer well as between the Server and Service etweebn Service and
Parameters (if parameters are present at all)

[Scheme] ":/I" Server "' [Service] ["?" Paramete rs]

The hierarchical structure of the name of both 8eand Service segments does not imply the hidichtructure of
classes, units or services. The hierarchy of nasnesed only to encourage logical grouping of naofeservers and
services.

51.1 Scheme

The scheme is the fixed component of each namé#iangs to the EFl namespace. The scheme eledwtiifies the name
as belonging to the EFI namespace. On some ARIddks not lead to ambiguity, the scheme compoocamtbe left empty.
If used, the scheme is always denoted as 'efi'.

The scheme component MUST be case-insensitivesfi,&fi or EFI can be used.

Scheme = "efi"

51.2 Server

The server part identifies the component of EFlcemual architecture that provides the servicelolahg are the possible
name structures that can be used to identify theese

Server = Broker |
Def-Unit-Spec-Class |
Classagent-Spec-Class |
Def-Unit-Vnd-Class |
Classagent-Vnd-Class |
Identified-Unit
Broker ="
Def-Unit-Spec-Class = Class-Name
Classagent-Spec-Class = Class-Name ".agent"
Def-Unit-Vnd-Class = "vnd." Class-Name
Classagent-Vnd-Class = "vnd." Class-Name ".agent"
Identified-Unit ="." Unit-Name
Class-Name = Segment * ("." Segment)
Unit-Name = Segment
Segment = alphanum * alphanum MUST NOT be one of th e reserved names

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc Page 17 (57)

alphanum as in [RFC2396]

The server name MUST be case-insensitive, regardiethe type of the server name in use (class naniename or agent
name).

The empty name of the server identifies EF BroWénen the empty name is used, both slash sepafagfse and after the
server) are in place, resulting in three subsegsiashes.

When the default unit of the class realisationddrassed (Def-Unit-Spec-Class), the server reqoimgsthe name of the
class. The name of the class may have one or regreents linked by the dot '.' where each segmeédeitified as a string
of letters and digits. The suggested hierarchicatture of the server name does not imply anyangtical structure of
classes; the dot is used only to encourage bettamtgre of class names.

All class names are to be registered with WINAdprequivalent). Segments ‘vnd’ and 'agent' MUST K©Tsed.

When the Class Agent is addressed as a serves@@st-Spec-Class), the segment ".agent' is appémdlee name of the
class.

All names that start from vnd. are assigned fossga that are defined by vendors (Def-Unit-Vnd-€ksd Classagent-Vnd-
Class). A vendor is required to append its unicarae to the 'vnd.' segment of the name. The clasg ispecific to the
vendor is be registered by WINA in the same maasédhe class name defined by the Open Mobile Alkan

When the unit is addressed as a server (Identiieit), its unique identifier must be provided. Tidentifier can be
retrieved by EF Broker services. The identifiendd the name of the unit and can be assigned dyadignby the Broker.

Unit identifiers MUST start with the dot .' chatacbefore the only segment. Note that any segiiethie unit identifier
MUST NOT be identical with reserved names.

Note that there is no method to address the cidisation itself, as the class realisation prowide services. In some cases
(e.g. attributes, versions) the Broker can be ddlbe information about the class realisation.

51.3 Service

The service component identifies the service tharovided by the server. Services bear namestbhatnique within the
server.

Service = Service-Name

Service-Name = Segment *((/" Segment) | ("." Segm ent))
Segment = alphanum * alphanum

alphanum as in [RFC2396]

The service name, as seen by the application, MhkSGase-sensitive.

The name of the service may have one or more segrieked by the slash /' or dot .". The visiblerarchical structure of
the name does not imply any hierarchical struatdiigervices, the slash and the dot characterssae anly to encourage
better structuring of service names.

The service component is optional and can be fefitg. Such notation identifies the 'no-name’ sexvic

514 Parameters

Parameters can be passed to the service by thespaogeor by alternative methods defined by APIga#fsed by the
namespace, parameters MUST take the form of namleds as defined for the query component of an[RRC2396].

Parameters = param "=" value *("&" param "=" value)
param = alphanum * alphanum

value = * Char

Char = unreserved | escaped

alphanum as in [RFC2396]
unreserved as in [RFC2396]

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc Page 18 (57)

escaped as in [RFC2396]
NOTE: In consequence that the ampersand is beiagesved character for the query component, it iIneiescaped as
such.

Names of parameters (Param) MUST be case-sendf@ahees of parameters (Value) MUST be case-sessitiv

5.2 Examples

Following are a few examples of valid names as thigght appear in the context of EFI.

Name Identifies
efi:/lffoo Service 'foo' of EF Broker, no parameters
EFl://wallet/select?name=purse Service 'select' of the default unit of class

realisation ‘wallet' with one parameter 'name
equal to 'purse’

Efi://.U1234/books/register Service 'books/register' of the unit 'u1234'

Table 2. Examples of the namespace usage

5.3 Namespaces in the API

The namespace is an abstract concept that mayebedifferently by different APIs. Specifically, tidarkup and Script
APIs may make use of the namespace in differensway

The mapping between the concept of the namespakctharaccess provided by the particular API is joled together with
other aspects of APl implementation.

5.4 Vendor-specific namespace

EFI Framework provides part of the namespace fgses that are specific to vendors. Vendor spetficespace allows
vendors to experiment and introduce functionalitiis not standardised within OMA but that carabeessed through EFI
mechanisms.

EFI reserves the name 'vnd.' as the first segnfehealass name to identify the branch of the repaee that belongs to
vendors. The vendor has to use its registered nzaness the subsequent segments. The remainingf plaetvendor-
specific class name is left to the vendor withekeeption that the vendor is not allowed to usersesl names for any
segment of its class name.

Examples:
The vendor registers the name acme.boo with WIN#e fbllowing names are valid
reference to service request.it in the default ahihe class vnd.acme.boo.dowhateveryouwant
efi://lvnd.acme.boo.dowhateveryouwant/request.it
reference to service seek/result in the class agfeht class vnd.acme.boo

efi:/lvnd.acme.boo.agent/seek/result

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc Page 19 (57)

5.5 Reserved names

EFI reserves the following names in all variantsigper and lower cases. Regardless of their inteode, reserved names
MUST NOT be used as any segment of the class ndaraes that conflict with the reserved ones shoatde registered
and used.

vnd Reserved as a prefix for all the vendor-specifisses.
The valid name of the vendor-specific class isndef by one of the following terms:
Def-Unit-Vnd-Class

Classagent-Vnd-Class

agent Reserved as a suffix for class agents.
The valid name of the class agent is defined leyafrthe following terms:
Classagent-Spec-Class

Classagent-Vnd-Class

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc Page 20 (57)

6. Versions (Informative)

EFI components may be distributed (e.g. by meary @iccessories or by the ad-hoc network). EFe@ghed to provide
functionality to applications using components ifffiedent versions.

EFI recognises two sources of versions: the Frameand Class Specifications.

The Framework defines the version of the EF Brokbe Class Specification defines the version reubity the compatible
Class Agent. The Class Specification defines vass@ Units, i.e. each Unit reports the versiomhef Class Specification it
is compatible with. Services are not distinguishgdersion and do not have separate version numbers

In case of vendor-specific classes the vendormgaeiment an arbitrary version numbering scheme dgespecific
versioning is correctly recognised by EFI onlytie £xtent that is compatible with rules definedesy Framework.

EFI defines the following rules for version control
* The specification of the Framework defines the ieersf the EF Broker.

» The version of the Framework is defined by its magrsion number and the minor version number.néwa
specification of the Framework is not backward catiipe with the current one, the major number defiby the new
specification is increased. If the new specificati®backward compatible, the major number shosltefi unchanged
and the minor number should be increased.

» The first specification of the Framework definearmework version 1.0. A new Framework has a higkesion than
the old Framework. See section 6.1 below for #msion history.

» Guidelines regarding backward compatibility areied as follows:

¢ The conceptual architecture of EFI Framework comstéiie elements and relationships defined in tbeipus
version.

¢« The namespace of the new version does not comflibtthe old namespace.
< All mandatory features from the old SCR are preserv
e Optional features from the old SCR may be remolaftias optional or become mandatory.

» The Class Specification defines the version theg¢perted by the compatible Class Agent and allthigs that are
compatible with the Class Specification.

* The version of the Class Specification is defingdt® major version number and the minor versiomhar. Change in
the major version number is used to identify sigaifit changes to the Class Specification. A chamg¢jee minor
version number identifies less important changabheédClass Specification.

» The first specification of the given Class definession 1.0.
* A new Class Specification has a higher version thamrevious (old) Class Specification.

» Ifthe new Class Specification is not backward catifype with the current specification, the majorsien number of the
new specification is increased. If the new speaifan is backward compatible, the major number khba left
unchanged and the minor number should be increased.

» Guidelines regarding backward compatibility areied as follows:
« All mandatory services of Class Agent or Unit aresgrved.
« Optional services of Class Agent or Unit may beoeed, left as optional or become mandatory.

< All mandatory parameters of the service are preskrv

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc Page 21 (57)

Optional parameters of the service may be removéeftoas optional; if removed, the new versiorttod
service should not report an error when formeraoati parameters are used.

The default behaviour and default values are pveser

» If a service is being removed from the Class Spmtibn, it is recommended to identify it as 'deyated’ and then
remove it in the next version of the Class Speaifun.

» Itis possible that the Class Realisation conttbiis and the Class Agent of different versiongh# implementation
allows for such case, it is responsible for theexrhandling of all the Units and the Class Ag&mecifically

All services from all Units, as specified by respex Class Specifications are available to theiapfibn
regardless of the version of the Unit.

Versions of all the Units and the version of thagsl Agent are correctly reported.

If the Unit has a version lower (older) than the<3dl Agent in the same Class Realisation, new sardefined
by the Class Specification for the Class Agent (garimg to services of the Class Agent from the €las
Specification of the Unit) may not be availabletwiegard to this Unit.

If the Unit has a version higher (newer) than thes€ Agent in the same Class Realisation, seroites than
defined by the Class Specification of the Classrageay not be available with regard to this Unit.

» An application has an access to the following infation:

The version of the EF Broker which is the versiéthe compatible Framework

The version of each EF Unit and EF Class Agent whie versions of the respective compatible Class
Specifications

The lowest and highest versions of EF Units (noluiding EF Class Agent) within the EF Class Reélisa

In addition to the above, each server may alsoigeoa manufacturer version that is different framy &ersion defined
above. If the server provides a manufacturer vardid-| makes it available to applications. EFI doesassume any
particular numbering scheme or compatibility regoients for manufacturer versions.

6.1

Version History

The version history for this Framework specificatis as follows. The version history for each Gladll be tracked in the
Class specification itself.

Version Date Description
1.0 17-December-2001 The initial version of thenfkeavork
1.1 01-October-2002 Added ECMAScript API to thereavork

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc Page 22 (57)

7. Script API

To use the Script API, the mobile client MUST supither ECMAScript Mobile Profile or WMLScriptna MAY support
both, as specified by [WAE]. The EFI Al is implented as a single script library in WMLScript, oraas ECMAScript
Object. All services are accessed either througletfon calls or by passing the name of a serveeorice along with a
command to one of the functions.

A mobile client that implements EFI MUST suppom tBFI Script API in the scripting language the niwblient supports.
If the mobile client supports both ECMAScript andW\Script, the mobile client MUST support the EFI B&Script API
and the EFI WMLScript API. The mobile client SHODIluse User Agent Profile [UAProf] to advertise tiia mobile
client implements EFI.

If any broker function interacts with the user, tleer MUST be informed that the interaction is vtite EFl implementation.

The following sections provide an overview of thiadtionality that is realized by the WMLScript aBEMAScript APIs.
Sections 7.6 and 7.7 provide the respective ARISMBILScript and ECMAScript.

7.1 Namespace usage
The Script APl makes use of the namespace in fl@aviog manner:

* The scheme segment is 'EFI'. If the name is usatktuify the object within the namespace (i.e.gbever or the
service), the 'efi:;' component MUST be omitted fribra name.

» Broker services that are defined by the Framewntkae accessible through the Script API are esprkas function
calls. The application has no other means to astedsservices. This does not preclude the impléatien of the
Broker from providing other services (not specifigdthe Framework), which can be accessed throeglydated
functions.

Services that are defined for the class agentrahfounit are accessible through generic senaflng functions like invoke
or control.

7.2 Server Attributes

Each EFI server has a set of attributes that caxtracted by the application. EFI mandates whttfibates are to be
present for all servers of a given type. Any sepaat provide more attributes than mandated. EFI SHDpass those
attributes to the application. Names of attribWB$ST be case-sensitive.

The Framework defines the following attributes.ribtites marked with 'M' are mandatory. Attributearked with 'O" are
optional.

Server Attribute Description Status
Broker VersionMajor Major version number of the Beo, i.e. major M
version number of the compatible Framework
VersionMinor Minor version number of the Brokeg.iminor M
version number of the compatible Framework
Manufacturer Manufacturer of the Broker, may inldithe 0]
make and the model
ManVersionMajor Manufacturer major version of Breker 0]
ManVersionMinor Manufacturer minor version of tAeoker o
Unit or Class Agent| VersionMajor Major version nueniof the Unit or the Class | M
Agent.
VersionMinor Minor version number of the Unit dietClass M
Agent.

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc Page 23 (57)

Name Descriptive name of the Unit M

Manufacturer Descriptive name of the manufactafehe Unit, | M
may include the make and the model

ManVersionMajor Manufacturer major version of theit or Class | O
Agent

ManVersionMinor Manufacturer minor version of tHait or Class | O
Agent

7.3 Class Properties

The Broker can provide properties of class reatisat Such properties can be retrieved by the egipdin whenever
necessary. EFI mandates which properties are podsent for the class. The Broker can provide mooperties than
mandated. Names of properties MUST be case-sensitiv

Following properties MUST be available:

Property Description
MinVersionMajor Major part of the lowest versiontbe Unit that is available through the Class
Realisation. Note that only Units that are visitdeservice discovery
functions are used to calculate this property.

MinVersionMinor Minor part of the lowest version thfe Unit that is available through the Class.
Note that only Units that are visible for servidgsatvery functions are used to
calculate this property.
MaxVersionMajor Major part of the highest versidrtloe Unit that is available through the Clgss
Realisation. Note that only Units that are visitdeservice discovery
functions are used to calculate this property.

MaxVersionMinor Minor part of the highest versioftiee Unit that is available through the
Class Realisation. Note that only Units that asgolé for service discovery
functions are used to calculate this property.

7.4 Service Discovery

EFI makes it possible to query about the existaficervers and services, a capability called 'serdiscovery'. An
application is able to identify all the servershiitthe given Class Realisation (including Clase®tyif required). The
application can also query for the given servéhéf server identifier is known to the application.

The broker MUST allow servers to elect whether theyvisible through service discovery functionsiot. The
implementation also allows servers to decide whrethene or all services are visible through serdiseovery functions. If
the server or the service is not visible, it is regorted by corresponding service discovery fuomsti

The visibility of the server or the service is rat only to service discovery functions and dossimpact the ability of the
service to be started by service control functions.

The class realisation is not reported as existinthb service discovery functions if it has no serthat reports its presence
through service discovery functions. Note thatdbever is either the unit or the class agent. Axtaalisation where all
units are hidden but the class agent is visiblebsaoreated.

7.5 Service Control

The EFI provides access to the set of servicesatieaavailable from units. When the service is ategt, it is instantiated in
the same sense that an executed program is tlamaesbf a program'’s code.

The instance of the service is started by an agidic in order to execute external functionalityn &pplication provides
parameters to the instance and receives resuitstfre instance.

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc Page 24 (57)

All instances are perceived by an application ga@wonous, i.e. they are invoked by the applicatind then they continue
in parallel. An application may start several insts of the same or of different services. EFlhegitnandates nor precludes
the possibility of several instances of the sammeice being executed at the same time. EFI provideans for the instance
to notify the application when it cannot execute tluany conflicts.

The instance (as opposed to the call to the ing)amey be interruptible by events that are cominghfuser agents (e.qg.
WTA events) or from other applications, includingnAWAP applications.

When the service instance is invoked, EFIl analygesther the instance can be started at the give® fn some cases the
lack of resources, implementation of the servictherunavailability of some components may preitfrom starting the
instance. In this case an application receivegtam eode. The application is responsible for theect handling of error
codes defined in the Framework.

Every instance, if started, MUST return its inseidentifier that MUST be an unique non-negativeger. The instance
identifier can be used by an application to comroata with the instance of the service. The instamhestifier has meaning
only within the scope of the user agent that haskad the service.

EFIl assumes a simple state model of the instasadepicted below. The instance is always in ortb®three states and
may move to another state as the result of its @stion or as a response to external event, inaudioall from the
application.

time-out or
terminate or
data collected

time-out or
terminate

instance completed

Figure 4. State model of the instance

The following table provides the detailed descaptof both states and transitions. Note that amlgditions between states
are included on both the diagram and the table.if$tance may respond to certain functions or perfactions while it
remains at the same state.

State | Name Meaning Transition | As result of
to
N non-existing Denotes the state in which the R creation of the instance

instance is inactive and does nt
hold any resources
R running The instance is running and | N time-out or forced
performing its function; no termination

result data is produced

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc Page 25 (57)

C the instance completed and
data is ready
C completed The instance has completed and time-out, forced termination
resulting data is ready to be or collection of data
collected

Table 3. States and transitions of the servicents

There are two fundamental methods to control tleeetkon of the instance: polling or waiting. Botletimods are illustrated
below.

instance = 4¢—— invoke(.., parameters) instance is running
status = running <«— status(instance)
status = running <«— Status(instance)

) 4
() instance completes

status = completed ¢—— status(instance)

result data <«——— control(instance,retrieve)

v
O instance non-existent

Figure 5. Polling

In polling, the application uses the instance idiemtto query the current status of the instaiWen execution is
completed, the application uses separate functmnstrieve result data, which causes the insttmterminate

instance 4¢——— invoke(.., parameters) instance is running

v

——control(instance,wait)

result data ¢——

A

v
8 instance completes
instance non-existent

Figure 6. Waiting

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc Page 26 (57)

When waiting is used, an application uses the ircgtadentifier to wait for the completion of an extion. When the
instance of the service completes, the applicaigasumed with result data and the instance besome-existent.

In order to simplify application development, EFbpides the 'call' invocation method that combime®ke and wait
together, so that the application simply receiessult data. This method is demonstrated on theviatig Figure.

call(.., parameters) }) instance is running

) 4
8 instance completes

instance is non-existent

result data <

<« <«

Figure 7. Calling (invoke and wait)

The following table defines all the possible int#i@ans between the application and the instances. fBbhle does not define
the complete behaviour of the instance. Note thafristance may move to another state as a rdsaulitail from the
application, as a result of its own activity otiate-out. The meaning of each column of the tablasi follows.

* Function - name of the function on the script ARIr the interaction that is caused by the controtfion (terminate,
wait and retrieve), the descriptive name of thédatparameter is provided in this column.

* Input - expected input for the function; 'paramgtare parameters for the service; see the definitf the particular
function for more details

* Service instance state - the state of the instehem the function is called; the state may chasgda result of function
call

» Application waits for state - if the state is pred in this column, the application that is callthg function suspends its
activity until the instance reaches the desiretbsta

» Output - expected output from the function; 'dstalata returned by the service; see the definticthe particular
function for more details

* Next state - if the state is provided in the colusnd is different from the current state of theéanse, the instance
changes its state to the given one as the restliedfinction

« Comment - if the reference is provided in the calusee the relevant comment below the table.

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc

Page 27 (57)

Function Input Service Application Output Next Comment
instance waits state
state for state
invoke parameters N R instance R
N invalid N (1)
status instance N invalid N
R running R
C completed C
terminate instance N invalid N
R empty N
C empty N
wait instance N invalid N
R C data N 2)
N invalid N 2) (3)
C data N
retrieve instance N invalid N
R invalid R
C data N
call parameters N N invalid N (1)
C data N
Table 4. Interaction between the application amrditistance
) If the new instance cannot be created, it inliately reaches the N state.
(2) If more than one application requested waitt@nsame instance, all applications must waitthad continue once
the expected state is reached.
3) If more than one application requested waitt@nsame instance, all applications must recéieedentical copy of

the result data.

NOTE: If the implementation does not allow for niplé applications to execute in parallel (therefondy one application
can request wait or wait on the instance), requér@s(2) and (3) are not applicable.

Time-out is mandatory and is specified at the tohvocation. The application cannot specify adé&finite' time-out. The
time-out time is counted as the elapsed time insgs from the moment the instance leaves the 'rimteat’ state.

Following rules are to be observed by the impleigon.

1. When the service is invoked, the implementatiorsponsible to verify whether it is possible tatstlae new instance
of the service. If it is not possible, the applicatis notified by the proper error code. Error esaf values greater than -
1000 are reserved for the Framework. Error codatsate currently used are defined in section 7 Hh2.class
specification may use integers that are less themoal to -1000 to specify error codes for itvmes.

2. When the instance of the service completes, ifiesrivhether any application waits for the completilf the
application waits, the instance resumes the agpgitand passes all result data to it. If more tha@ application
requested wait on the same instance, all applitaoe resumed and receive identical copies afethdt data. After
resuming waiting tasks and transferring data, tiseance terminates and any internal copies oftrdaté are deleted.
The instance identifier may then be re-used.

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc Page 28 (57)

3. If no application waits for the completion of tmsiance of the service, the instance MUST retairesult data and the

instance identifier is not re-used. The instanamb®es non-existent, internal copies of result datauld be deleted and
instance identifier may be re-used in one of thi@fong cases:

a. An application asks for result data of the givestamce
b. The timeout for the service instance has expired
c. The implementation has run into 'low memory' coinditand recovers some of its memory resources.

4. Instance identifiers should not be re-used immediat

7.5.1

The API method used to control services utilizesftllowing enumeration of control options.

Service control codes

A Class Specification MAY allow for more action @sdfor the given service. Codes assigned by Clpssif®ations
MUST be greater than or equal to 100.

Name Value | Description Input (n) Output put)
terminate| 3 Forces the instance to terminate Not required No results are passed from
immediately, so that the instance (empty container)| the instance.
reaches the N state. The instance Returns empty container if
must be in the R or C state. the instance has terminated
Returns invalid if the
instance does not exist (e.g
already terminated)
wait 4 Waits for the instance to Not required Returns data as returned by
complete. The instance must be |ifempty container)| the instance. If there is more
the R or C state. The application than one application waiting
resumes once the instance for the instance, all
completes. If the instance has applications receive a copy
completed before the wait contral of the return data.
has been issued, the function Returns invalid if the
immediately retrieves data and the instance does not exist.
application continues. The
instance is moved to the N state
retrieve 5 Retrieves data from completed | Not required Returns data as returned by
instance. The instance must be in(empty container)| the instance.
the C state. The instance is moved Returns invalid if the
to the N state. instance does not exist or if
the instance is not in the C
state.
Table 5. Actions of the service control method
7.5.2 Error and status codes
Following is the list of error and status codeg thay be returned by methods that invoke and cbagmvices.
Code | Name Meaning
-100 | Continue The execution of the service is mgpess (the instance is

in the R state); used by invoke() to report sudoéssart
of the instance that reached R state; used bysg}atu
report that the instance is running.

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve

d.

Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc Page 29 (57)

-200 | OK The execution of the service completed sssfully (the
instance is in the C state); used by invoke() pore
successful start of the instance that reachedt€ dtaing
the execution of the invoke() function; used byust@ to
report that the instance has completed

-400 Bad Request Error in input parameters ofdhetion, including the ill-
formed name of the service, the service cannokbeuted

-404 | Not Found Server or service cannot be found

-409 Conflict Service cannot be executed duetemgorary conflict
(e.g. lack of shared resource); the conflict maydmeoved
later.

-500 Internal Server Error Internal error repditbg any component of EFI

-503 | Service Unavailable Instance cannot be drece.g. due to the lack of

resources or due to inability to handle multiplstémces of
the same service or other reasons.

Table 6. Error and status codes

7.6 WMLScript API

The WMLScript API has beetleprecatedas is WMLScript in the Version 2 Wireless Apptioa Environment. Please see
[WAE] for more information on scripting in the wless application environment.

A WMLScript encoder that supports EFI MUST supmdtEFI library functions defined in this chapter.
The EFI script library MUST have a LibrarylD 7 aischamed ‘EFI'.

7.6.1 Containers

The WMLScript APl makes extensive use of the cohogja container. The container is a structure ithaapable of storing
several named values. Each named value MUST ham&jae name. Both names and values are case-gerastper section
5.1.4. With names, leading and trailing spacesmes are ignored and MUST NOT be stored into tieagwer. Names that
are identical to the empty string MUST NOT be stiorethe container. Values that include spaceseegqual to the empty
string MUST be stored as such.

Due to the inability of WMLScript to handle struog directly, the EFI library provides functionssioplify the usage of
containers by applications. Containers are intestrakctures of EFI. Use of containers for purpasteer than those defined
by EFl is discouraged.

The internal structure of the variable that holdstainers is specific to the implementation andosdefined by the
Framework (the container is an opaque variabld) thie exception that the empty string is equivalerthe empty container.

Even though the container is designed as an opaarisble, the language may allow for some direetrafions on the
container, e.g. if interpreted as a string. Suaddraions are discouraged as non-portable and nsait ie the incorrect
structure of the container.

The maximum size of the container is equal to tagimum size of the variable of the type String [W8&tript]. The
container implements internal ordering of name=eglairs. The insertion of a new name=value paihemodification of
the value may modify the order of other name=valaies.

The WMLScript library defines a set of functionsitandle containers. These are not EFI serviceshmtld be considered
variable manipulation functions that are placethm EFI library for convenience.

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc Page 30 (57)

7.6.1.1 set

There is only one function that can be used to fgdgbe container and this function is used botadd a new name=value
pair to the container and to modify an existing.offeere is no function to remove a name=value fpain the container.

The function operates on the container that isqzhss the function as a parameter and returns tiafied container.

The contents of the returned, modified containey heve an internal order of name-value pairs diffiéfrom the original
one even if change affects only the value parteGapuld be taken if set() is used within the getRiame()/getNextName()
loop, as modifications to the container may resultaving some pairs not processed.

FUNCTION: outContainer=EFI.set(inContainer, name, value);

FUNCTION ID: 0

DESCRIPTION: Adds the name=value pair or modifies the valughefiame=value pair in the
inContainer creating theutContainer If the name does not exist, adds the
name=value pair to the container. If the name direxists, modifies the value part
by storing the new value. As a result of this fimttthe container returned by the
function is modified accordingly.

This function may change the internal orderinglefreents in the container.
Specifically, if used between getFirstName/getNextié, not all name=value pairs
may be processed

PARAMETERS: inContainer
The container whose contents should be modified
name
The 'name' element of the pair, case-sensitive
value
The 'value' element of the pair, case-sensitive
RETURN VALUE: « I[f the function performs correctly, it returns tmedified container

» Ifthere are errors in parameters, if the structfréne container is invalid or
when it is impossible to modify or add the namenegbair (e.g. due to memory
constraints), the function returirsvalid.

EXAMPLE var cont; // container

cont=EFl.set("", "Parameterl”, "123");
cont=EFl.set(cont, "Parameter2", "456");

/I cont contains: Parameter1=123
I Parameter2=456

cont=EFl.set(cont, "Parameterl”, "ABC");

/I cont contains: Parameterl=ABC
1 Parameter2=456

7.6.1.2 get

This is the only function to access values stoneithé container. In order to access the valuen#mee part of the
name=value pair must be known.

Values can be extracted from the container by plingithe name part of the name=value pair. Valtrgeral does not
change the container. Specifically, the interndeorof elements is not changed.

FUNCTION: |va|ue: EFl.getContainer, namg

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc Page 31 (57)

FUNCTION ID:
DESCRIPTION:

PARAMETERS:

RETURN VALUE:

EXAMPLE

1

Retrieves the value from the contalmespecifying the name. The container remains
unchanged. Specifically, the internal order of edats is not changed.
container
The container from which the value is retrieved
name
The name that is sought, case-sensitive. Searchrfame equal to the empty
string returns the empty string.
If the function performed correctly, it returns thalue' element of the
name=value pair
» If the container does not contain the specified eéme function returns the
empty string.
» If the structure of the container is invalid the@dtion returndnvalid.

var cont; // container
var value;

cont="",
cont=EFl.set(cont, "Parameterl”, "123");
cont=EFl.set(cont, "Parameter2", "456");

value = EFl.get(cont, "Parameterl");
/I value now is "123"

7.6.1.3 getFirstName

Two functions perform the iteration of the contairighe first one, getFirstName() returns the firatne stored in the
container according to the internal order of nanada® pairs. The second one, getNextName() protfdesame that is
'next' to the given one according to the curretgrimal order of name=value pairs.

Both functions are designed to be used togetharasp that parses the name=value pairs in theaswrt Note that the set()
function may modify the internal order of the can& and should not be used within the body ofldlop.

FUNCTION:
FUNCTION ID:

DESCRIPTION:

PARAMETERS:

RETURN VALUE:

EXAMPLE

|name: EFIl.getFirstNamepntaine); |
2

Returns the first name from the camgaiaccording to the internal ordering of names
in the container. The function can be used totiettae contents of the container. The
order of names is not specified, but the use dfigetName and subsequent calls to
getNextName guarantees that all names are processed

container

Container that is examined.
If the function performed correctly, it returns tiirst name from the container.
» Ifthere are no names (i.e. container is emptyXtietion returns empty string.
» If the container is not correctly formed the fupatireturndnvalid.

see "getNextName"

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc Page 32 (57)

7.6.1.4 getNextName

FUNCTION: |name: EFl.getNextName&pntainer, current |
FUNCTION ID: 3

DESCRIPTION: Returns the name from the given comtaihat is stored as the next one (according to
internal ordering) after any name that exists a¢hntainer, for example after the
name that has beentrieved with the previous getFirstName or getNextidaCan b
used to iterate the container. The order of namast specified, but the use of
getFirstName and subsequent calls to getNextNaramgtees that all names are
processed.

PARAMETERS: container
Container that is examined.
current
Name of one of the name=value pairs that existisércontainer.
RETURN VALUE: « I[f the function performed correctly, it returns thext name after theurrentone.

» Ifthere is no name after thoirrentone, or if thecurrentname cannot be found
in the container, including the case whendheentname is the empty string, t
function returns empty string.

» If the container is not correctly formatted thedtion returndnvalid.
EXAMPLE /I look for the name of the parameter that has valu e 'Xxx'

var cont; // container in question
var name;
name=EFI.getFirstName(cont);
while(name!=""
if(EFl.get(cont,name)=="xxx")
break;

name=EFI|.getNextName(cont,name);

}

7.6.2 Server Attributes

The library defines two attribute management flori The first one allows the application to cdli@tthe attributes of the
given server into the container so that they caitdvated or analysed. The second one can be used the name of the
attribute is known to the application and the aggilon is interested in the value of the given peeter only.

7.6.2.1 getAllAttributes

FUNCTION: |container: EFl.getAllAttributesgerve);
FUNCTION ID: 4

DESCRIPTION: Returns all the attributes for theagivserver in a form of a container. Attributes that
are not specified by EFI are also included.
PARAMETERS: server
The identifier of the server, as specified by taening convention, without
surrounding slash characters. Syntactically idehtiéth the Server part of the
namespace.

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc Page 33 (57)

RETURN VALUE: « |[f the function performed correctly, it returns tb@ntainer with name=value
pairs, one pair for each attribute. Any previousteat of the container is erased.

» If the server has no attributes the function retlempty container.

» If the server does not exist or if attributes cdrbereturned e.g. due to memory
constraints the function returhsvalid.

EXAMPLE var cont; // container
var value;

/I get attributes of the default unit of the class ‘wallet'

cont = EFl.getAllAttributes("wallet");

value = EFl.get(cont, "Manufacturer"); // value =" MyCompany"
value = EFl.get(cont, "Name"); /I value =

"TheNameOfMyUnit"

value = EFl.get(cont, "VersionMajor"); // value =" 1"

value = EFl.get(cont, "Options"); //value =" Optionallnfo"

7.6.2.2 getAttribute

FUNCTION: |va|ue: EFl.getAttributegerver, namg
FUNCTION ID: 5

DESCRIPTION: Returns the value of a specified laite for the given server. Can be used to retrieve
values of attributes that are specified by EFlefirced by the server.

PARAMETERS: server

The identifier of the server, as specified by taening convention, without
surrounding slash characters. Syntactically i@ahtivith the Server part of tl
namespace.

name
Name of the attribute of the given server. Caserisiive.
RETURN VALUE: « If the function performed correctly, it returns walof the given attribute.

» If the server does not exist or if the value carbeteturned e.g. due to memory
constraints the function returirssalid.

EXAMPLE var value;

value = EFl.getAttribute("wallet", "Manufacturer");

// value = "MyCompany"

7.6.3 Class Properties

The library defines one property management funcfidnis function allows an application to get tlaue of the property of
the known name. There is no method to verify whiapprties other than the mandated set are availedtethe Broker.

7.6.3.1 getClassProperty

FUNCTION: |va|ue: EFl.getClassPropergl@ss, namg
FUNCTION ID: 6

DESCRIPTION: Retrieves the value of the specifieapprty for the given class realisation. Can be
used to retrieve values of attributes that areiipddy EFI or are defined
additionally for the given class realisation.

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc Page 34 (57)

PARAMETERS: class
Name of the class, syntactically identical with folowing parts of the
namespace
Def-Unit-Spec-Class
Def-Unit-Vnd-Class
name
Name of the property of the given class.
If the function performed correctly, it returns thelue of the given property.
» If there is no property of the given name the fiorcteturns empty string.
» If the class does not exist or if the value carreoteturned due to memory
constraints the function returirsvalid.
EXAMPLE var value;

value = EFl.getClassProperty("wallet", "MinValueMaj or');

RETURN VALUE:

/I value = 1

7.6.4 Service Discovery

The service discovery functions allow applicatitm$éind out what services are available. Clastizaions may decide to
hide certain services, in which case they will betaccessible using the service discovery functi@ervice discovery and
visibility is described in section 7.4.

7.6.4.1 getUnits

This function returns the list of all units thatarisible within the given class realisation. Tis¢ ils provided as a string that
can be parsed with functions from the String lipf&/MLLib].

FUNCTION: list = EFl.getUnits¢lass;
FUNCTION ID: 7

DESCRIPTION: Lists all units within the given clagsalisation.

PARAMETERS: class
Name of the class. Must match the complete nantleeoflass, including dots
between segments and is syntactically identicdi thie following parts of the
namespace.
Def-Unit-Spec-Class
Def-Unit-Vnd-Class

The name is case-insensitive.

RETURN VALUE: « If the function performed correctly, it returns thteing that contains names of alll
the units linked by ampersand "&". No spaces aserited between the name of
the unit and an ampersand. No ampersand is pladfedelthe first name or after
the last name. Units are reported by their idegrsfiincluding the dot at the
beginning of the identifier. The default unit okthlass is not reported by the
name of the class, but it is rather included inliteof units that are listed by th
identifiers. Units are reported at no specific orde

» If the parameter does not match any class reaisétie function returninvalid.
Note that the class realisation must contain it leae visible unit in order to be
visible to this function. Therefore this functioever returns the empty string.

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc Page 35 (57)

EXAMPLE var value;
var count;

value = EFIl.getUnits("wallet");

/I note that this particular implementations use ca rdinal
numbers

/I as unigue names in the container returned

/I value = ".uw001&.uw002"
/l see how many units are reported

count=String.elements(value,"&");

7.6.4.2 query

This function can be used when the application kst server's identifier. It can also be usedimjunction with
getUnits() to scan all servers for the presendb@fjiven service.

Note that query is about servers, not about clealésations. Specifically, if the default unit betclass realisation elects not
to be visible, a query that uses only the naméeftass (i.e. a query about the default unit efdlass realisation) will
return 'false' even though the class realisatiop exést.

Note that there is no function to discover the clatgplist of services provided by the server.

FUNCTION: |yesn(= EFl.querygame); |
FUNCTION ID: 8

DESCRIPTION: Allows the application to determineetier a particular server or service exists.

PARAMETERS: name
Name of the server or service. For servers usadtaion identical with
Server part of the namespace. All variants of e are accepted, including
the use of class name to identify the default Iéimes are case-insensitive.

For services use the name that is identical wighSrver/Service parts of the
namespace.

If the component exists the function retutmnse.

» If the component does not exist or is not visible tunction returnfalse Note
that the server may elect whether it is visibletfos function.

» If the parameter format is incorrect the functieturnsinvalid.

RETURN VALUE:

EXAMPLE var v;
v = EFl.query("wallet"); // default unit of the cla ss wallet
v = EFl.query("vnd.acme"); // default unit of vendo r-specific
/I class
v = EFl.query("brake.agent"); // class agent of cl ass 'brake’
v = EFl.query("wallet/pay"); // service pay at the default unit
Il of the class walle t
v = EFl.query(".u001/status");// service 'status' o n server u001

7.6.5 Service Control

The following functions allow applications to laimservices and optionally block on the completibthe service.
Additionally, services that have been launchedlmnontrolled by the application. Service institn and control is
described in more detail in section 7.5.

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc Page 36 (57)

7.6.5.1 invoke

FUNCTION: |out: EFl.invokeéervice, timeout, inContaingr
FUNCTION ID: 9

DESCRIPTION: Invokes the instance of the servicigh mput values defined in tieContainerand
returns control back to the application.
PARAMETERS: service
Name of the service, identical with the namespagenents Server/Service
timeout
Maximum allowed time (in seconds) for the instateceun. The instance will
move into the non-existent state when it exceed$rtteout
Settingtimeoutto zero sets the timeout to the pre-defined vtiateis
specified for the service by class specification.
inContainer
The container that contains all the input paransetteait are necessary for the
service in a form of 'name=value' pairs. The Ifsteguired and optional
parameters is provided by the specification ofdtevice.
RETURN VALUE: « I[f the instance started successfully the functigmnns the non-negative instance
identifier.
» If the instance did not start, the method returnggative error code as described
in section 7.5.2 or in the class specification.

EXAMPLE See section 7.6.5.5 below.
7.6.5.2 call
FUNCTION: |out: EFl.callgervice, timeout, inContaingr
FUNCTION ID: 10
DESCRIPTION: Invokes the instance of the serviantdied by name with input values defined in the
inContainer Waits for the completion of the service and netutlata to the
application.

PARAMETERS: service
Name of the service, identical with the namespagenents Server/Service
timeout
Maximum allowed time (in seconds) for the instateceun. The instance will
move into the non-existent state when it exceed§rtteout
Settingtimeoutto zero sets the timeout to the pre-defined viiaeis
specified for the service by class specification.
inContainer
The container that contains all the input paranseteait are necessary for the
service in a form of 'name=value' pairs. The Ifsteguired and optional
parameters are provided by the specification okteice.
RETURN VALUE: « I[f the instance completed successfully, the fumctigturns the container that
contains all the values returned by the servicefiorm of 'name=value' pairs.
The list of returned parameters is provided bygjecification of the service.
» If the service does nokist or if the service cannot be executed for aason th
function returndnvalid. Detailed error diagnostic is not available.
EXAMPLE See section 7.6.5.5 below.

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc

7.6.5.3 status

FUNCTION:
FUNCTION ID:

DESCRIPTION:
PARAMETERS:

RETURN VALUE:

EXAMPLE

7.6.5.4 control

FUNCTION:
FUNCTION ID:

DESCRIPTION:
PARAMETERS:

RETURN VALUE:

EXAMPLE

|status: EFl.statusfistance;
11

Provides the current status of araimse.

instance
An instance of the service, as reported by thekat/function.

» If the function performed correctly, it returns thigrent status of the instance, as
listed in the table below. Only the following code® used:

-100 instance is in the running state
-200 instance is in the completed state

» If the instance identifier cannot be recognisedftimetion returngnvalid. This
applies also to instances that are in the nonentistate.

See section 7.6.5.5 below.

|out: EFl.control{nstance, action [, parametefs]
12

Sends control commands to the instance

instance
An instance of the service, as reported by thekat/function.
action
Numerical identifier of the required action. Seetwm 7.5.1 for the detailed
description of actions.
parameter
The container that contains all the input paranseteat are necessary for the
service in a form of 'name=value' pairs. The Ifsteguired and optional
parameters are provided by the specification oktrgice. Some actions for
some services may not require input parameters.
If the function performed correctly and if the iaiste has data to be passed to the
application, the function returns the containet guntains all the values returned
by the service in a form of 'name=value' pairs.y&Gme services retudata as
result of some actions. The list of actions andrrezd values are provided by the
specification of the service.
« If the function performed correctly but the instaritas no data to be passed tc
application, the function returns empty contairengty string).
« If the instance cannot be recognised or if the giaetion cannot be performed in
the given context the function returimsalid.
See section 7.6.5.5 below.

7.6.5.5 Example of Service Instantiation and Contro |

The following example illustrates a script invooatiof EFI services.

In this example, the unit of the hypothetical clasmter' is used to print the required text oa Banner printer. The script
verifies the existence of the class performingatial print request. The print service is contlby the ‘wait’ function.

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

Page 37 (57)

OMA-WAP-EFI-V1_1-20110315-A.doc

Page 38 (57)

extern function printBanner(text)

{
var input; // container with input parameters
var out; // container with return value(s)
var instance;

/I check the existence of the class realisation
/I by examining its default unit
if((EFl.query("printer"))

return false;

/I Prepare your input container for the call
input=EFl.set("", "colour", "black");
input=EFIl.set(input, "text", text);
input=EFl.set(input, "size", "128");

/[call the print service
instance = EFl.invoke("printer/print", 300, inpu

/I check if service started OK
if(instance<0)

return false;

}

// the application can do something in parallel
// doing the printout

/I wait for the service to complete
out = EFl.control(instance,4,™);

/I return, service done
return true;

}

t);

while

The next example modifies the previous one byrmglihe service rather than invoking it. The appiarawaits for the

completion of the service. This example also da#sheck for the existence of the class realisation

extern function printBanner(text)
{
var input; // container with input parameters
var out; // container with return value(s)

/I Prepare your input container for the call
input="",

input=EFl.set(input, "colour", "black");
input=EFl.set(input, "text", text);
input=EFl.set(input, "size", "128");

/I call the print service
out = EFl.call("printer/print", 300, input);

/I return what came out (assumes success)
return out;

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.

Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc Page 39 (57)

7.7 ECMAScript API

The ECMAScript API is realized as a single ECMA®tbject that is named “Efi”. This Object contaall the methods
required to interact with servers, classes, andcs.

The ECMAScript API also utilizes a new native errype called ‘EfiError’. This error type is a céast with the value
‘200, a reserved Native Error Type in the ECMA®tiMobile Profile Error (Exception) Object, see @8]. The
instances in which this error is thrown are desdilm the individual methods below.

Mobile clients supporting the ECMAScript APl MUSUiport the Efi Object, and MUST use the EfiErraoetype to
indicate error conditions as specified in the API.

7.7.1 Name/value collections

Parameter passing between ECMAScript applicatiodsEr| services makes extensive use of name/vale. pin the ‘Efi’
Object, these name/value pairs are represented adino dimensional array. It is important to nittet ESMP does not
support true multidimensional arrays. However, BESfibes however support an array of arrays andectioh of
parameters should be constructed as such. Whatimg& name/value collection, the parameter nard&Mbe the first
element in the secondary array, and the value MbSthe second element in the secondary arrayraltipe, this would be
implemented in the following way:

var paraml = new Array(nanme, val ue);
var param2 = new Array(nane, val ue);
var myParams = new Array(paraml, param2);

In this example, myParams[0][0] would be the naamsl myParams[0][1] would be the value; myParam8][Mjould be the
name, and myParams[1][1] would be the value, anahso

7.7.1.1 Parameter names

The formatting of parameter names is defined itice&.1.4. With names, leading and trailing spanasames are ignored
and MUST be ignored by EFI services. Names MUST NQuate to the empty string. All names in theemtibn MUST
be unique.

7.7.1.2 Parameter values

The formatting of parameter values is defined ittisa 5.1.4.Values that include spaces or are equale empty string
MUST be stored as such.

7.7.1.3 Version History

Version Affected Comment
1.1 Initial release.

7.7.1.4 Properties
7.7.14.1 version

The current version of the object is defined inXZ.3. This property is a string in the format defi in the Object
Management section of [ESMP].

7.7.1.5 Server Attribute Methods

The Object defines two attribute management methbs first one allows the application to collelttlae attributes of the
given server into an array so that they can batiéeror analysed. The second one can be used Wwheame of the attribute
is known to the application and the applicatiomtsrested in the value of the given attribute only

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc

Page 40 (57)

7.7.15.1 getAllAttributes()

Syntax:

anArray = Efi.getAllAttributes6erve)

Argument List:

Description:

Return Value Type:
Errors or Exceptions:

server- The identifier of the server, as specified bg ttaming convention,
without surrounding slash characters. Syntactiddiytical with the Server
part of the namespace.

Allows the application to collect #ile attributes of the given server. Serv:
attributes are described in section 7.2.

Name/value collection as descriin section 7.7.1.
EfiError is thrown if the sifeed server does not exist.

Example: var anArray = Efi.getAllAttributes(“wallet”);
for (i=0; i<anArray.length; i++)
if (anArray[i][0] == “Manufacturer”)
var manufacturer = anArrayf[i][1];
}
7.7.1.5.2 getAttribute()
Syntax: anAttr = Efi.getAttributeéerver, namg

Argument List:

Description:

Return Value Type:
Errors or Exceptions:
Example:

server- The identifier of the server, as specified bg ttaming convention,
without surrounding slash characters. Syntactiddiytical with the Server
part of the namespace.

name— Case-insensitive name of the attribute.
Returns the value of a specified latiie for the given server. Can be used

retrieve values of attributes that are specifieBy or defined by the servern.

Server attributes are described in section 7.2.

Value of the attribute as désatiin section 7.7.1.2

EfiError is thrown if the sifeed server or attribute does not exist.
/[anAttr is a name/value collection

var manufacturer = Efi.getAttribute(“wallet”,
“Manufacturer”);

7.7.1.6 Class Property Methods

The Object defines one property management mefftid.method allows an application to get the valtithe property of
the known name. There is no method to verify whapprties other than the mandated set are availedtethe Broker.

7.7.1.6.1 getClassProperty()

Syntax:

value= Efi.getClassPropertglass, namg

Argument List:

Description:

Return Value Type:
Errors or Exceptions:

class -Name of the class, syntactically identical with tbikowing parts of
the namespace

Def-Unit-Spec-Class
Def-Unit-Vnd-Class
name -Name of the property of the given class.

Retrieves the value of the specifieapprty for the given class realisation.
Can be used to retrieve values of attributes tteaspecified by EFI or are
defined additionally for the given class realisatio

Any or empty string if propediyes not exist

EfiError if class or propedyes not exist

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc Page 41 (57)

Example: var value;

value = Efi.getClassProperty("wallet", "MinValueMaj or');

/l value = 1
7.7.1.7 Service Discovery Methods

The service discovery methods allow applicationfinm out what services are available. Class zatithtns may decide to
hide certain services, in which case they will metaccessible using the service discovery meth8dsvice discovery and
visibility is described in section7.4.

7.7.1.71 getUnits()
Syntax: list = Efi.getUnits¢lass;
Argument List: class —Case-insensitive name of the class, syntacticaéntical with the
following parts of the namespace
Def-Unit-Spec-Class
Def-Unit-Vnd-Class
Description: Lists all the units within a classlieaion.
Return Value Type: Array
Errors or Exceptions: EfiError if class does nasex
Example: units = Efi.getUnits("wallet");
/I Note that actual unit names are specific to the
/I implementation, for example:
[/ units[0] = “.uw001”
/ units[1] = “.uw002”
7.7.1.7.2 query

This function can be used when the application lsxthve server's identifier. It can also be usedimjunction with
getUnits() to scan all servers for the presendb@fjiven service.

Note that query is about servers, not about ckealsations. Specifically, if the default unit bktclass realisation elects not
to be visible, a query that uses only the naméefctass (i.e. a query about the default unit efdlass realisation) will
return ‘false’ even though the class realisation exést.

Note that there is no function to discover the cletgplist of services provided by the server.

Syntax: yesno= Efi.queryfams;

Argument List: name -Name of the server or service. For servers usadtaion identical
with Server part of the namespace. All variantthefname are accepted,
including the use of class name to identify thead&funit. Names are case-
insensitive. For services use the name that itiickd with the
Server/Service parts of the namespace.

Description: Allows the application to determineetier a particular server or service
exists.
Return Value Type: boolean

Errors or Exceptions:

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc Page 42 (57)

Example: /I default unit of the class wallet
yesno = Efi.query("wallet");

/Il default unit of vendor-specific class
yesno = Efi.query("vnd.acme");

/I class agent of class 'brake'
yesno = Efi.query("brake.agent");

I service pay of the default unit of class wallet
yesno = Efi.query("wallet/pay");

/I service 'status' on server u001
yesno = Efi.query(".u001/status");

7.7.1.8 Service Control Methods

The following methods allow applications to laursgrvices and optionally block on the completiothef service.
Additionally, services that have been launchedlmoontrolled by the application. Service institin and control is
described in more detail in section7.5.

7.7.1.8.1 invoke()

Syntax: out = Efi.invokekervice, timeout, parametérs

Argument List: service Name of the service, identical with the namespagenents
Server/Service
timeout -Maximum allowed time (in seconds) for the instateeun. The
instance will move into the non-existent state wherxceeds thémeout
Settingtimeoutto zero sets the timeout to the pre-defined viiagis
specified for the service by class specification.
parameters 4nput parameters needed by the service. padrameters
variable is a collection of name/value pairs axdeed in section 7.7.1. The
list of required and optional parameters is progtidg the specification of the
service.

Description: Invokes the instance of the servicigh warametersand returns control back
to the application.

Return Value Type: integer

Notes: If the instance started successfully thetfan returns the non-negative
instance identifier.
If the instance did not start, the method returnggative error code as
described in section 7.5.2 or in the class spetifia.

Errors or Exceptions: EfiError is thrown if the @ee does not exist.
TypeError is thrown iparameterds not a collection of name/value pairs a$
described in section 7.7.1.

Example: See section 7.7.1.8.5 below.

7.7.1.8.2 call()
| Syntax: out = Efi.call(service, timeout, parametgrs

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc

Page 43 (57)

Argument List:

Description:

Return Value Type:
Notes:

Errors or Exceptions:

service Name of the service, identical with the namespagenents
Server/Service

timeout -Maximum allowed time (in seconds) for the instateeun. The
instance will move into the non-existent state wherxceeds thémeout
Settingtimeoutto zero sets the timeout to the pre-defined viiaeis
specified for the service by class specification.

parameters 4nput parameters needed by the service. padrameters
variable is a collection of name/value pairs asdeed in section 7.7.1. The
list of required and optional parameters is progtidg the specification of the
service.

Invokes the instance of the servicéh warametersand returns data to the
application.

Namel/value collection as desctiln section 7.7.1.

If the instance completed successfullyntle¢hod returns all the values
returned by the service in a form of a collectibmame/value pairs as
described in section 7.7.1. The list of returnechpeeters is provided by the
specification of the service.

EfiError is thrown if the @ee does not exist.

TypeError is thrown iparameterds not a collection of name/value pairs as$

described in section 7.7.1.

D

7.7.1.8.3

Example: See section 7.7.1.8.5 below.
status()
Syntax: status= Efi.statusifistance;
Argument List: instance -An instance of the service, as reported by thekevfunction.
Description: Provides the current status of théaimse as defined in section 7.5.2. Only

Return Value Type:

Errors or Exceptions:

Example:

the following codes are used:
-100
-200

instance is in the running state
instance is in the completed state
integer

EfiError is thrown if the iasce does not exist.

See section 7.7.1.8.5 below.

7.7.1.8.4

control()

Syntax:

out = Efi.control{nstance, action [, parametens]

Argument List:

Description:
Return Value Type:

instance -An instance of the service, as reported by thekefunction.

action -Numerical identifier of the required action. Seetmm 7.5.1 for the
detailed description of actions.

parameters Input parameters needed by the service. peltameters
variable is a collection of name/value pairs asdeed in section 7.7.1. The
list of required and optional parameters is progtidg the specification of the
service. Some actions for some services may naoinemput parameters.
Sends control commands to the instance

If the instance has data todssed to the application, the method returns
collection of name/value pairs as described inigedt.7.1 that contains all
the values returned by the service. Only some eesvieturn data as a resul
of some actions. The list of actions and returreddes are provided by the
specification of the service.

If instance has no data to be passed to the afiplicéhe function returns an

empty Array.

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc Page 44 (57)

Errors or Exceptions: EfiError is thrown if the faBce does not exist or the action cannot be
performed.

TypeError is thrown iparameterds not a collection of name/value pairs a$
described in section 7.7.1.

Example: See section 7.7.1.8.5 below.
7.7.1.8.5 Example of Service Instantiation and Cont rol

The following example illustrates a script invooatiof EFI services.

In this example, the unit of the hypothetical clasiter' is used to print the required text oa Banner printer. The script
verifies the existence of the class performingatial print request. The print service is contalby the ‘wait' function.

function printBanner(text)

{
Array input; // input parameters
Array out; // return value(s)
var instance;

/I check the existence of the class realisation
I/ by examining its default unit
if('Efi.query("printer"))

{

}

// Prepare your input parameters for the call
input = new Array(3);
input[0] = new Array("colour", "black");
input[1] = new Array("text", text);
input[2] = new Array("size", 128);

return false;

/I call the print service
instance = Efi.invoke("printer/print", 300, inp ut);

/I check if service started OK
if(instance<0)

return false;

}

// the application can do something in parallel while
// doing the printout

/I wait for the service to complete
out = Efi.control(instance, 4, ™);

/I return, service done
return out;

The next example modifies the previous one bymglihe service rather than invoking it. The appiaawaits for the
completion of the service. This example also da#sheck for the existence of the class realisation

function printBanner(text)
{
Array input; // input parameters
Array out; // return value(s)

// Prepare your input parameters for the call
input = new Array(3);
input[0] = new Array("colour", "black");

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc Page 45 (57)

input[1] = new Array("text", text);
input[2] = new Array("size", 128);

/[call the print service
out = Efi.call("printer/print", 300, input);

/I return what came out (assumes success)
return out;

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc Page 46 (57)

8. Markup API

To use the Markup API, the mobile client MUST sugpbe markup language specified by [WAE].

The Markup APl maps available services into the espace and makes them available through the artihité concept
where EFI namespace co-exists with other namessacdémt the browser can direct requests thatfstert 'efi:' to the local
broker rather than sending them out. The concegitipos EFI as a server, located at the mobilentliather than at the
other end of the wireless link. The implementalidAY integrate EFI and the transfer protocol stackdifferent levels and
by different means. However, the application usgh begular transfer protocol stack and EFIl ingame way.

The interaction model that is provided by Markupl Agsignificantly different from the model thatpsovided by the script
API. The interaction follows the simplified Web medénd consists of the browser's request-respaise ff he invocation
of the service is interpreted as a request toeretrthe contents of a certain URI. The requesates the service that MUST
compose and return the document in the markup Egeythat is accepted by the User Agent, as debigg@d/AE]. The
browser renders and displays the retrieved docutoghe user. The service may be also capablereétitig the browser to
display a particular fragment of the document. Faiteleases of the framework may include mechanibatsllow EFI
services to return content other than markup laggubat is acceptable to the User Agent.

The EFI service SHOULD honour preferences of therldgient when it comes to the preferred markupuage and it
SHOULD NOT send the document in a markup langubgethe User Agent does not support. The methalistmver the
preferred markup language is not within the scdgbe@EFI Framework.

The Class Specification provides the exact definitvf services. The Framework does not define peygific service. The
Framework defines only the method to invoke ses/tbeough Markup API.

When the document generated by the service is qpegéo the user, the user MUST be informed thainteraction is with
the EFI implementation.

8.1 Behaviour of the mobile client

The implementation of EFI Al as Markup API makese@sive use of the namespace. The service is Bcacalessible only
through the URI name scheme. The scheme is idémtittathe one defined by the Framework with theeption that the
scheme prefix MUST be always present. The generaidt of URI is as follows:

Scheme "://" Server "' [Service] ['?" Parameters]

The proper usage of the namespace allows accessvices that are provided by different serverduising access to
services that have no name.

Services may be initialised by using the "hreftiltite in the WML and XHTML navigational elemenEor example, using
the WML <go> element:

<go href="efi://location/displaypos"/>
or the <a> element from WML or XHTML.:

Current position
<la>

Parameters (if any) are passed to the serviceghrthe URI name=value format or through the wmitfpglsl structure or
through a mix of both methods. For example

or
<go href="efi://wallet/pay”>

<postfield name="value" value="200"/>

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc Page 47 (57)

<postfield name="currency" value="USD"/>
</go>
Note that EFI makes it possible to access sergtwlardised by OMA and vendor-specific serviaesdth cases the same

notation applies.

8.2 Servers

Following is the detailed discussion of the nanteeste and the behaviour of the mobile terminal wdiéferent servers are
accessed.

8.2.1 EF Broker

To access the EF Broker, the following general thartas used:

"efi://[" Service ['?" Parameters]

There are no services currently defined by the Evaonk that can be requested from the Broker thrddghkup API, except
the service with no name. The EF Broker SHOULD pie\a service with no name. The exact contentee@tibcument
returned depends on EF Broker implementation, litbntent of the document MUST present the listvafilable servers
in a readable format with content equivalent todtevice discovery function in the script interfaiceluding also class
agent if it exists. Note that some servers mayteletto be visible to service discovery functiomnkis election applies also
to this service. If the EF Broker does not prouite no-name service, the 404 service code ("Noh&9us returned.

8.2.2 EF Class Agent

In order to access the class agent one of theafisipgeneral notation is used
"efi:/[" Classagent-Spec-Class "/" Service ["?" Par ameters]
"efi:/I" Classagent-Vnd-Class "/" Service ['?" Para meters]

The EF Class Agent SHOULD provide a service witmame. The contents of the EF Class Agent docuthants returned
by this service depends upon the EFI Class spatiiiit, but the content of the document MUST preiemname of the
server. If the EF Class Agent does not providenthv@ame service, the 404 service code ("Not Fouisd’gturned.

The Class Specification defines details of the ania service for its Class Agent.

8.2.3 EF Unit

In order to access the unit, one of the followilgations is used.

"efi:/[" Identified-Unit "/" Service ["?" Parameter s]
"efi:/[" Def-Unit-Spec-Class "/" Service ['?" Param eters]
"efi:/[" Def-Unit-Vnd-Class "/" Service ['?" Parame ters]

In the first case the specified unit is accessethé latter two cases the default unit of the Sigetlass realisation is
accessed.

The EF Unit SHOULD provide a service with no narfiee contents of the EF Unit document that is regdrpy this service
depends upon the EFI Class specification, but timéent of the document MUST present the name o$dineer. If the EF
Unit does not provide the no-name service, theséd¥dice code ("Not Found") is returned.

The Class Specification defines details of the aoia service for its Units.

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc Page 48 (57)

8.3 Discontinuous mode

The EFI service, once started, takes control angmgges its own documents that are processed Hyrdleser. At this point
the application effectively releases control andgstmaly on the service to carry on the functioyaibd the control flow as
expected.

This discontinuity may be seen as disadvantagemusoime applications. In order to partly allevitite shortcomings of the
discontinuous mode, the class specification mayiregervices to support some of the concepts ibestbelow, namely
the 'continuation document' concept.

8.3.1 Continuation document

The continuation document is used to allow the ts@avigate from the EFI-generated document teva document, or a
document fragment, as specified by the contentoawirhis prevents users from getting “stuck” in &fel-generated
document and having to back out of the generatedrdent.

The concept of a continuation document does natire@ny specification within the Framework. Applion developers
may specify the continuation document as one optdrameters that are passed to the service, fongra

<go href="efi://music/play">
<postfield name="dest" value="example.wml#done" />
</go>

Names of the parameters that hold a referencestodhtinuation document and circumstances uponhithie service
chooses the specific continuation document shoellddfined in Class Specification.

8.3.2 Return variable

In order to return values back to the applicatimmgervice can use browser variables. Return Jagabay be set by the
service at one or more of its cards and passedtbable application as a part of the context. Nbé& the use of return
variables is restricted to WML. Also note that thgplementation of the service may not protectdbitext of the current
WML document. Specifically, another document magdmee current when the service terminates.

The concept of return variable does not requirespegification within the Framework. Applicationveédopers may specify
the name of the return variable as one of the petens that are passed to the service, for example:

<go href="efi://picture/take">
<postfield name="ret" value="retvar"/>
</go>

Names of the parameters that hold the name ofetinerr variable and the meaning of particular vaeisishould be defined
in Class Specification.

8.4 Context management

When accessed from a WML document, the serviceasiged within the context of a browser and malsesaf the context
of the caller. No new context is created unlesssthgice decides to create one. An applicatiomioasontrol over the
context.

The service may interfere with the context of thller by incidentally overwriting WML variables uséy the application if
they are identical with variables used internaljytie service. Note that the service does not prdibe current WML
context.

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc Page 49 (57)

8.5 Status codes

As the Markup APl makes use of URL request/resppns®col, the service may report one of the retires as defined in
[WSP] in accordance with [RFC2616].

The fact that the EFI server is local to the bravisttuences the interpretation of some of the oddne following table
summarises codes, their names and their meanihignviif-l. The implementation of EFI uses only statodes that are not
marked below as ‘(not used)'.

Code | Name Meaning

100 Continue as in [RFC2616]

101 Switch Protocols (not used)

200 OK as in [RFC2616]

201 Created (not used)

202 Accepted (not used)

203 Non-Authoritative Information (not used)

204 No Content (not used)

205 Reset Content (not used)

206 Partial Content (not used)

300 Multiple Choices (not used)

301 Moved Permanently (not used)

302 Found (not used)

303 See Other (not used)

304 Not Modified (not used)

305 Use Proxy (not used)

306 (Unused) (not used)

307 Temporary Redirect (not used)

400 Bad Request as in [RFC2616]; to be usedlftormed names, requests
and parameter errors

401 Unauthorised (not used)

402 Payment Required (not used)

403 Forbidden (not used)

404 Not Found as in [RFC2616]; SHOULD be usedhfam-existing class
realisations, server or services

405 Method Not Allowed (not used)

406 Not Acceptable (not used)

407 Proxy Authentication Required (not used)

408 Request Timeout as in [RFC2616]; SHOULD bedushen the processing
of the request takes more than the specified time.

409 Conflict as in [RFC2616]; SHOULD be used wii#t cannot
access all the required resources or devices dpesible
access conflicts that may be removed later

410 Gone (not used)

411 Length Required (not used)

412 Precondition Failed (not used)

413 Request Entity Too Large as in [RFC2616]

414 Request-URI Too Long as in [RFC2616]

415 Unsupported Media Type as in [RFC2616]

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve

d.

Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc Page 50 (57)

416 Requested Range Not Satisfied (not used)

417 Expectation Failed (not used)

500 Internal Server Error as in [RFC2616]; SHOUwdused for all broker errors
and all internal errors

501 Not Implemented as in [RFC2616]; SHOULD bedus the request is not
supported

502 Bad Gateway (not used)

503 Service Unavailable as in [RFC2616]; SHOUldused if there are not

enough resources to handle the request or if tingest has
been called in the context where it cannot be hethdl

504 Gateway Timeout (not used)

505 HTTP Version Not Supported as in [WSP]; SH@We used if the encoding version af
the request cannot be handled by the server

Table 7. Status codes

8.6 UAProf

The User Agent Profiling mechanism is defined il\Ryof].

As a side effect of the architecture, the EFI sergenerates documents that are displayed by tivesbr. This information
does not pass through the gateway so that theAggat Profile information cannot be utilised. Thephcation and the
service cannot assume that the UAProf informatem lwe applied.

This may lead to certain inconsistencies in uspeggnce where similar contents are rendered difttr depending on
whether they arrive from the origin server or fr&fl service.

EFI Framework recommends that the mobile client 8HD minimise those inconsistencies without changethe current
WAP architecture.

8.7 Cache

The cache mechanism [CACHE] MUST NOT be used whelnsErvices are accessed through the Markup AB&rdéess
of information in the header.

8.8 Example

The following example shows how an EFI service rlghinvoked from a WML document. When invoked EFI service
performs some action and returns a new WML docum@mtiL is used only for explanatory purposes; otimarkup
languages supported by the WAE may also be usiedoie EFI services. Some of the constructs is gxiample, such as
the continuation document and return variablegls®ussed in Section 8.3.

For this example, assume that there is a classchtiuat defines various playback/recording funaéiity. A service 'play'
plays back the given song. The service acceptiotlosving three parameters:

title - the title of the given song,
dest - name of the continuation document whererabisttransferred upon completion of the playback,
result - name of the variable in which the duratdmctual playback (in seconds) is stored.

These three parameters can be passed to the Elelesky including them in the URI itself

<go href="efi://music/play
?titte=banana&result=time&dest=example.wml #result"/>

or by composing the URI using the postfield tag

<go href="efi://music/play">

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc Page 51 (57)

<postfield name="title" value="banana"/>

<postfield name="result" value="time"/>

<postfield name="dest" value="example.wml#resul t'/>
</go>

Following is the example that shows the first inatb@n within the context of the document.

<l-- example.wm| -->
<wml>
<card id="play">
<do type="accept" label="Start">
<go href="efi://music/play

?title=banana&result=time&dest=example. wml#result"/>
</do>
<p>
Select 'Start' to play the banana
</p>

</card>
<card id="result">
That's it, $time seconds of pleasure
</card>
</wml>

In this example, the EFI service might generatefdthewing WML document to give the user a visuadlication that the
music is playing. The EFI-generated document adsigas the duration to the return variable andipies/a soft key so the
user can navigate to the continuation document.

<l-- EFI generated document -->

<wml>
<card>
<do type="accept" label="OK">
<l-- EFI service gets ‘example.wml#result’ from $dest -->
<go href="example.wml#result">
<l-- EFI service gets ‘time’ from $result -->
<l-- EFl service calculates duration of the mus ic -->
<setvar name="time" value="10"/>
</go>
</do>
<p>
<l-- EFl service gets ‘banana’ from $title -->
Playing banana
</p>
</card>
</wml>

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc

Page 52 (57)

Appendix A. Static Conformance Requirements

This static conformance requirement [IOPProc] lsstainimum set of functions that can be implememtelokelp ensure that

EFI implementations will be able to inter-operate.

The “Status” column indicates if the function ismdatory (M) or optional (O).

A.1 Script Encoder Options

Item Function Reference | Page | Status Requirements
EFIFRM-LIB-S-1 Encoding of set() 7.6.1.1 30 M
EFIFRM-LIB-S-2 Encoding of get() 7.6.1.2 30 M
EFIFRM-LIB-S-3 Encoding of getFirstName() 7.6.1.3 13 | M
EFIFRM-LIB-S-4 Encoding of getNextName() 7.6.14 32| M
EFIFRM-LIB-S-5 Encoding of getAllAttributes() 7.62 32 M
EFIFRM-LIB-S-6 Encoding of getAttribute() 7.6.2.2 33 M
EFIFRM-LIB-S-7 Encoding of getClassProperty() 7.6.3 33 M
EFIFRM-LIB-S-8 Encoding of getUnits() 7.6.4.1 34 M
EFIFRM-LIB-S-9 Encoding of query() 7.6.4.2 35 M
EFIFRM-LIB-S-10 | Encoding of invoke() 7.6.5.1 36 M
EFIFRM-LIB-S-11 | Encoding of call() 7.6.5.2 36 M
EFIFRM-LIB-S-12 | Encoding of status() 7.6.5.3 37 M
EFIFRM-LIB-S-13 | Encoding of control() 7.6.5.4 37 M
EFIFRM-LIB-S-14 | Encoding of library ID 7 22 M
A.2 Client Options
A.2.1 Broker
Item Function Reference | Page | Status Requirements
EFIFRM-BR-C-1 The user is informed, when 7,8.21 22,471 M
communicating with the EFI
implementation. Either Script o
Markup APl is used
EFIFRM-BR-C-2 The Broker supports EFI 5 16 M
scheme.
EFIFRM-BR-C-3 | Broker allows server to be eithgr7.4 23 M
visible through service discovery
or not. Broker exposes the names
of all visible servers.
EFIFRM-BR-C-4 | Every instance returns its 7.5 23 M
instance number, which is the
non-negative integer.
EFIFRM-BR-C-5 | |fitis not possible to invoke a | 7.5 23 M

particular service, the applicatig
is notified by the proper return
code.

=)

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

d.

OMA-WAP-EFI-V1_1-20110315-A.doc

Page 53 (57)

EFIFRM-BR-C-6

The instance identifier returned| 7.5

by the broker is unique within all
the instances of the services that

are maintained by EFI at any
time.

23

EFIFRM-BR-C-7

All suspended applications,
waiting for one service, are
resumed and receive the

identical copy of the result data

7.5

23

EFIFRM-BR-C-8

The instance of a service retains7.5

its result data until at all
suspended applications have
been resumed.

23

EFIFRM-BR-C-9

If no application waits for the

completion of the instance, the
instance retains its result data
and the number is not re-used.

7.5

23

A2.2

Scheme

Item

Function

Reference

Page

Status

Requirements

EFIFRM-SCH-C-1

Scheme-element in Script AP
is omitted.

7.1

22

EFIFRM-SCH-C-2

Scheme-element in Markup AP8.1

is used.

46

EFIFRM-SCH-C-3

The Scheme component is
treated case-insensitive in
Markup API.

51.1

16

EFIFRM-SCH-C-4

The Server component is treat
as case-insensitive

26b.1.2

16

EFIFRM-SCH-C-5

The Service component is
treated as case-sensitive

51.3

17

EFIFRM-SCH-C-6

The Parameters componentis 5.1 4

treated as case-sensitive

17

EFIFRM-SCH-C-7

The Values of parameters are| 5.1.4

treated as case-sensitive

17

EFIFRM-SCH-C-8

A Segment of a servers name
space is NOT one of the
reserved names

51.2,55

16, 19

EFIFRM-SCH-C-9

Unit identifiers are starting withj 5.1.2

the dot '.' character before the
only segment.

16

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve

Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

d.

OMA-WAP-EFI-V1_1-20110315-A.doc Page 54 (57)

A.2.3 APIs

Item Function Reference | Page Status Requirements

EFIFRM-API-C-1 | WMLScript API 7.6 29 0] WMLScript:MCF
AND
EFIFRM-LIB-C-14
AND
EFIFRM-LIB-C-15
AND
EFIFRM-LIB-C-16

EFIFRM-API-C-2 | Markup API 8 46 M EFIFRM-API-C-5
OR
EFIFRM-API-C-6

EFIFRM-API-C-3 | Script API 7 22 M EFIFRM-API-C-1
OR
EFIFRM-API-C-4

EFIFRM-API-C-4 | ECMAScript API 7.7 39 (0] ESMP:MCF
AND
EFIFRM-ES-C-1
AND
EFIFRM-ES-C-2
AND
EFIFRM-ES-C-3

EFIFRM-API-C-5 | Markup API using XHTML | 8 46 0] XHTMLMP:MCF

Mobile Profile

EFIFRM-API-C-6 | Markup APl using WML 8 46 0] WML1:MCEeR
WML2:MCF

A.2.4 WMLScript API

NOTE: Item 1 to 13 are collectively required innite.6.

Item Function Reference | Page Status Requirements

EFFRM-LIB-C-1 | set) 544 16 o

EFFRM-LIB-C-2 | get) 7612 30 o

EFIFRM-LIB-C-3 | getFirstName() 7613 31 o

EFIFRM-LIB-C-4 | getNextName() 7614 32 o

EFRFRM-LIB-C-5 | getAllAttributes() 7621 32 o

EFIFRM-LIB-C-6 | getAttribute() 7622 33 o

EFIFRM-LIB-C-7 | getClassProperty() 7631 33 o

EFIFRM-LIB-C-8 | getUnits() 7641 34 o

EFFRM-LIB-C9 | queny) 7642 35 o

EFFRM-LIB-C-10 | inveke) 7651 36 o

EFFRM-LIB-C-11 | call) 7652 36 o

EFIFRM-LIB-C-12 | status() 7653 37 o

EFIFRM-LIB-C-13 | control) 7654 37 o

EFIFRM-LIB-C-14 | Interpreting library 1D 7.6 29 0]

EFIFRM-LIB-C-15 | Support for Containers 7.6.1 29 (0]

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-

20110315-A.doc

Page 55 (57)

EFIFRM-LIB-C-16 | EFI function calls 76.2,7.6.832,33, | O
7.6.4,7.6.5| 34,35
A.2.5 ECMAScript API
Item Function Reference | Page Status Requirements
EFIFRM-ES-C-1 EfiError native error type 7.7 39 0]
EFIFRM-ES-C-2 Support for name/value 7.7.1 39 (@)
collections
EFIFRM-ES-C-3 Efi Object including all 7.7 39 0]
properties and methods
A.2.6 Attributes, Properties
Item Function Reference | Page Status Requirements
EFIFRM-ATTR-C-1 | Broker VersionMajor 7.2 22
EFIFRM-ATTR-C-2 VersionMinor 7.2 22 M
EFIFRM-ATTR-C-3 Manufacturer 7.2 22 (0]
EFIFRM-ATTR-C-4 ManVersionMajor | 7.2 22 0]
EFIFRM-ATTR-C-5 ManVersionMinor | 7.2 22 0]
EFIFRM-ATTR-C-6 | Unitor VersionMajor 7.2 22 M
EFIFRM-ATTR-C-7 | Class VersionMinor 7.2 22 M
EFIFRM-ATTR-C-8 | Agent Name 7.2 22 M
EFIFRM-ATTR-C-9 Manufacturer 7.2 22 M
EFIFRM-ATTR-C-10 ManVersionMajor| 7.2 22 O
EFIFRM-ATTR-C-11 ManVersionMinor| 7.2 22 0]
EFIFRM-ATTR-C-12| Class MinVersionMajor| 7.3 23 M
EFIFRM-ATTR-C-13| Propertiesf MinVersionMinor| 7.3 23 M
EFIFRM-ATTR-C-14 MaxVersionMajor | 7.3 23 M
EFIFRM-ATTR-C-15 MaxVersionMinor | 7.3 23

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

d.

OMA-WAP-EFI-V1_1-20110315-A.doc

Page 56 (57)

A.2.7

Local Server

Item

Function

Reference

Page

Status

Requirements

EFIFRM-LSRV-C-1

The request initiates the servi¢e8

that composes and returns a
well-formed document to the
browser.

46

EFIFRM-LSRV-C-2

The EF Broker provides a no-
name service.

8.2.1

47

EFIFRM-LSRV-C-3

EFIFRM-LSRV-C-3

The content of "efi:///" at least
present the list of available
servers in a readable format
with the content equivalent to
the getUnits() function.

8.2.1

47

EFIFRM-LSRV-C-4

The EF Class Agent provides
no-name service.

,8.2.1

47

EFIFRM-LSRV-C-5

EFIFRM-LSRV-C-5

The EF Class Agent provides
least the name of the server
within the generated documen

L8.2.2

t.

47

EFIFRM-LSRV-C-6

The EF Unit provides a no-
name service.

8.2.2

47

EFIFRM-LSRV-C-7

EFIFRM-LSRV-C-7

The EF Unit provides at least
the name of the server in the
generated document

8.2.3

47

EFIFRM-LSRV-C-8

Cache is NOT used for EFI
services with Markup API

8.7

50

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.

Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

OMA-WAP-EFI-V1_1-20110315-A.doc

Page 57 (57)

Appendix B. Change History
B.1 Approved Version History

(Informative)

Reference Date Description
WAP-231-EFI-20010511-a 11 May 2001 Initial
WAP-231-EFI-20011217-a, OMA V1_0 17 Dec 2001 Adititof XHTML API
OMA-WAP-EFI-V1_1-20110315-A 15 Mar 2011 Status ched to Approved by TP:
OMA-TP-2011-0082-INP_EFI_V1_1_ERP_for_Final_Apyab

[0 2011 Open Mobile Alliance Ltd. All Rights Reserve d.

Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

