Multimedia Messaging Service Client Transactions
Candidate Version 1.3 – 27 Sep 2005

Open Mobile Alliance
OMA-TS-MMS-CTR-V1_3-20050927-C
Contents

1. SCOPE ... 7

2. REFERENCES .. 8

 2.1. NORMATIVE REFERENCES .. 8

 2.2. INFORMATIVE REFERENCES ... 9

3. TERMINOLOGY AND CONVENTIONS .. 10

 3.1. CONVENTIONS ... 10

 3.2. DEFINITIONS ... 10

 3.3. ABBREVIATIONS .. 10

4. INTRODUCTION ... 12

5. INTRODUCTION TO MMS TRANSACTION MODEL .. 14

 5.1. MMBox SUPPORT ... 18

 5.2. ERROR CONSIDERATIONS ... 18

 5.3. STREAMING RETRIEVAL ... 18

6. MMS CLIENT TRANSACTIONS ... 19

 6.1. MMS CLIENT SENDING MESSAGE TO MMS PROXY-RELAY ... 19

 6.1.1. Transaction Flow ... 19

 6.1.2. Error Considerations ... 19

 6.2. MMS PROXY-RELAY SENDING NOTIFICATION TO MMS CLIENT .. 20

 6.2.1. Transaction Flow ... 21

 6.3. MMS CLIENT RETRIEVING MESSAGE FROM MMS PROXY-RELAY .. 21

 6.3.1. Transaction Flow ... 22

 6.3.2. Error Considerations ... 22

 6.3.3. Clarifications ... 22

 6.4. MMS CLIENT SENDING FORWARD REQUEST TO MMS PROXY-RELAY ... 23

 6.4.1. Transaction Flow ... 23

 6.5. MMS PROXY-RELAY SENDING DELIVERY REPORTS TO MMS CLIENT .. 24

 6.5.1. Transaction Flow ... 24

 6.5.2. Error Considerations ... 24

 6.5.3. Other Issues ... 24

 6.6. READ REPORTS .. 24

 6.6.1. Multimedia Message Read Report ... 24

 6.6.2. PDU Read Report ... 25

 6.6.3. Transaction Flow ... 26

 6.6.3.1. Multimedia Message Read Report Transaction Flow .. 26

 6.6.3.2. PDU Read Report Transaction Flow ... 26

 6.7. MMS PROXY-RELAY SENDING CANCEL REQUEST TO MMS CLIENT .. 27

 6.7.1. Transaction Flow ... 27

 6.8. MMS CLIENT DELETING A MM FROM THE MMS PROXY RELAY ... 28

 6.8.1. Transaction Flow ... 28

 6.8.2. Error Considerations ... 28

 6.9. MMS CLIENT SENDING REQUEST TO STORE OR UPDATE A MM IN MMBox TO MMS PROXY-RELAY 28

 6.9.1. Transaction Flow ... 28

 6.9.2. Error Considerations ... 29

 6.10. MMS CLIENT REQUESTING INFORMATION ABOUT MM IN MMBox FROM MMS PROXY-RELAY 30

 6.10.1. Transaction Flow ... 30

 6.10.2. Error Considerations .. 30

 6.11. MMS CLIENT UPLOADING A MM TO THE MMBox .. 31

 6.11.1. Transaction Flow ... 31

 6.11.2. Error Considerations ... 31

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
6.12. **MMS Client Deleting a MM from the MMBox** .. 32
 6.12.1. Transaction Flow .. 32
 6.12.2. Error Considerations .. 32
6.13. **Maintaining the MM State and MM Flags** .. 33
 6.13.1. MM State ... 33
 6.13.2. MM Flags ... 33
6.14. **Security Considerations** ... 33
7. **Terminal Capability Negotiation** ... 34
 7.1. MMS Attributes in Other Components of the UAPROF Schema 34
 7.2. Summary of the MMS Characteristics Component 34
8. **Binding to Transport Protocols** ... 37
 8.1. Binding When MMS Client Uses WSP Based Stack 37
 8.1.1. Sending an MM .. 38
 8.1.2. Notification .. 38
 8.1.3. Retrieving an MM ... 38
 8.1.4. Delivery Report .. 38
 8.1.5. Read Report ... 38
 8.1.6. Forward without Download .. 38
 8.1.7. Cancel .. 39
 8.1.8. Deleting MM from MMS Proxy-Relay ... 39
 8.1.9. The **M-Delete.req** is transported in the same way as the **M-Send.req**. The **M-Delete.conf** is transported in the same way as the **M-Send.conf**. Store-Update MM in MMBox ... 39
 8.1.10. Viewing MM Information from MMBox .. 39
 8.1.11. Uploading MM to MMBox .. 39
 8.1.12. Deleting MM from MMBox .. 39
 8.2. Binding When MMS Client Uses HTTP Based Stack 39
 8.2.1. Sending an MM .. 41
 8.2.2. Notification .. 41
 8.2.3. Retrieving an MM ... 41
 8.2.4. Delivery Report .. 41
 8.2.5. Read Report ... 41
 8.2.6. Forward without Download .. 41
 8.2.7. Cancel .. 41
 8.2.8. Deleting MM from MMS Proxy-Relay ... 41
 8.2.9. Store-Update MM in MMBox .. 42
 8.2.10. Viewing MM Information from MMBox .. 42
 8.2.11. Uploading MM to MMBox .. 42
 8.2.12. Deleting MM from MMBox .. 42
8.3. **URI Schemes** ... 42
 8.3.1. The http URI Scheme .. 42
 8.3.2. The https URI Scheme .. 42
APPENDIX A. **Static Conformance Requirements (Normative)** 44
 A.1 MMS Client ... 44
 A.1.1 Client Level Function Groups ... 44
 A.1.2 Send Transaction ... 44
 A.1.3 Notification Transaction ... 45
 A.1.4 Retrieve Transaction .. 45
 A.1.5 Forward Transaction ... 45
 A.1.6 Delivery Report Transaction .. 46
 A.1.7 Read Reports .. 46
 A.1.8 Store/Update Transaction ... 46
 A.1.9 View Transaction ... 47
 A.1.10 Upload Transaction .. 47
 A.1.11 Delete Transaction .. 48
 A.1.12 PDU Encapsulation Dependencies ... 48
 A.1.13 Cancel Transaction ... 50
A.1.14 Delete from MMS Proxy-Relay Transaction ...51
A.1.15 WAP PUSH Dependencies ...51
A.1.16 WSP/HTTP Dependencies ...52
A.2 MMS PROXY-RELAY ...54
A.2.1 Server Level Function Groups ..54
A.2.2 Send Transaction ..54
A.2.3 Notification Transaction ..54
A.2.4 Retrieve Transaction ..55
A.2.5 Forward Transaction ..55
A.2.6 Delivery Report Transaction ..56
A.2.7 Store/Update Transaction ..56
A.2.8 View Transaction ..56
A.2.9 Upload Transaction ...56
A.2.10 Delete Transaction ..57
A.2.11 WAP PUSH Dependencies ...57
A.2.12 Read Reports ...57
A.2.13 WSP/HTTP Dependencies ...58
A.2.14 Cancel Transaction ..58
A.2.15 Delete from MMS Proxy-Relay Transaction ...58

APPENDIX B. UAPROF SCHEMA FOR MMS CHARACTERISTICS (NORMATIVE)59
APPENDIX C. RELATIONSHIP TO 3GPP MMS SPECIFICATIONS (INFORMATIVE)65
APPENDIX D. CHANGE HISTORY (INFORMATIVE) ...69
D.1 APPROVED VERSION HISTORY ..69
D.2 DRAFT/CANDIDATE VERSION 1.3 HISTORY ...69

Figures

Figure 1: MMS Network Diagram with MMS Client to MMS Proxy-Relay Link Highlighted12
Figure 2: Implementation of MMS m Interface Using WAP 1.x Gateway13
Figure 3: Implementation of MMS m Interface Using HTTP Based Protocol Stack13
Figure 4: Example MMS m Transaction Flow – Sending ..14
Figure 5: Example MMS m Transaction Flow – Immediate Retrieval15
Figure 6: Example MMS m Transaction Flow – Deferred Retrieval15
Figure 7: Example MMS Transaction Flow – Deferred Retrieval16
Figure 8: Example MMS m Transaction Flow – Deferred Forwarding16
Figure 9: Example MMSm Transaction Flow – Deferred Forwarding17
Figure 10: Example MMS m Transaction Flow – Deleting an MM from MMS Proxy-Relay ...17
Figure 11: Example MMS Send Transaction ..19
Figure 12: Example MMS Notification Transaction ..20
Figure 13: Example MMS Retrieval Transaction without Acknowledgement21
Figure 14: Example MMS Retrieval Transaction with Acknowledgement22
Figure 15: Example MMS Forward Transaction .. 23
Figure 16: Example Delivery Report .. 24
Figure 17: Read Report transaction flow on the recipient side 25
Figure 18: Read Report transaction flow on the originating side 25
Figure 19: Example M-Cancel Transaction .. 27
Figure 20: Example MMS Delete from MMS Proxy Relay Transaction 27
Figure 21: Example MMS Mbox-StoreTransaction .. 28
Figure 22: Example MMS Mbox-View Transaction .. 30
Figure 23: Example MMS Upload to MMBox Transaction ... 31
Figure 24: Example MMS Delete from MMBox Transaction 32

Tables

Table 1: Attributes Defined within the MMS Characteristics Component 36
Table 2: MMS PDU Bindings When MMS Client Uses WSP Based Stack 37
Table 3: MMS PDU Bindings When MMS Client Uses HTTP Based Stack 40
Table 4: Relationship between WAP MMS PDUs and 3GPP MMS messages when the MMS Client sends a multimedia message to the MMS Proxy Relay 65
Table 5: Relationship between WAP MMS PDUs and 3GPP MMS messages when the MMS Proxy-Relay sends a notification to the MMS Client in case of deferred retrieval. ... 65
Table 6: Relationship between WAP MMS PDUs and 3GPP MMS messages when the MMS Proxy-Relay sends a notification to the MMS Client in case of immediate retrieval. .. 66
Table 7: Relationship between WAP MMS PDUs and 3GPP MMS messages when the MMS Client retrieves the message from the MMS Proxy-Relay .. 66
Table 8: Relationship between WAP MMS PDUs and 3GPP MMS messages in case of message forwarding 66
Table 9: Relationship between WAP MMS PDU and 3GPP MMS message when the MMS Proxy-Relay sends a delivery report to the MMS Client .. 67
Table 10: Relationship between WAP MMS PDUs and 3GPP MMS messages when the recipient MMS Client sends a read report as a regular MM to the originator MMS Client via one or more MMS Proxy-Relay(s) .. 67
Table 11: Relationship between WAP MMS PDUs and 3GPP MMS messages when the recipient MMS Client sends a read report as a PDU to the originator MMS Client via one or more MMS Proxy-Relay(s) .. 67
Table 12: Relationship between WAP MMS PDUs and 3GPP MMS messages when the MMS Proxy-Relay sends a cancel request to the MMS Client .. 68
Table 13: Relationship between WAP MMS PDUs and 3GPP MMS messages in case of deleting message from MMS Proxy-Relay .. 68
1. Scope

The Wireless Application Protocol (WAP) is a result of continuous work to define an industry-wide specification for developing applications that operate over wireless communication networks. The scope for the WAP Forum is to define a set of specifications to be used by service applications. The wireless market is growing very quickly, and reaching new customers and services. To enable operators and manufacturers to meet the challenges in advanced services, differentiation and fast/flexible service creation WAP Forum defines a set of protocols in transport, security, transaction, session and application layers. For additional information on the WAP architecture, please refer to “Wireless Application Protocol Architecture Specification” [WAPARCH].

Multimedia Messaging Service (MMS) is a system application by which a WAP client is able to provide a messaging operation with a variety of media types. The service is described in terms of actions taken by the WAP MMS Client and its service partner, the MMS Proxy-Relay, a device that operates as a WAP Origin Server for this specialised service. This specification defines the operational flow of the MMS Protocol Data Units (PDUs) that transit between the MMS Client and the MMS Proxy-Relay. The format of the specific PDUs is described in the “OMA MMS Encapsulation Protocol” [MMSENCAPS].

This document is part of the OMA MMS version 1.3 specification suite and complies with the requirements and service behaviours described in the technical specifications of the 3rd Generation Partnership Project (3GPP) and the 3rd Generation partnership Project 2 (3GPP2). These include the service aspects of MMS and the functional description of MMS which are contained in [TS23140] for 3GPP and [XS0016200] for 3GPP2.

For information about the MMS Architecture, the reader is advised to become familiar with the “OMA MMS Architecture Overview” [MMSARCH].
2. References

2.1. Normative References

[UAPROF] “User Agent Profile version 2.0”, Open Mobile Alliance™. URL: http://www.openmobilealliance.org

2.2. Informative References

[3G2VID] 3GPP2 S.R0021: “Video Streaming Services – Stage 1”

[PSSCOD] 3GPP TS 26.234 Rel-5: "Packet-switched Streaming Service (PSS); Protocols and Codecs".

[PSSGEN] 3GPP TS 26.233 Rel-5: "Packet-switched Streaming Service (PSS); General Description".

3. Terminology and Conventions

3.1. Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2. Definitions

This section introduces a terminology that will be used throughout this document.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Data</td>
<td>Data submitted and received by applications that may reside on top of an MMS Client or a network entity.</td>
</tr>
<tr>
<td>Forwarding MMS Client</td>
<td>An MMS Client forwarding an MM to another recipient without prior download.</td>
</tr>
<tr>
<td>Multimedia Messaging Service (MMS)</td>
<td>A system application by which a WAP client is able to provide a messaging operation with a variety of media types.</td>
</tr>
<tr>
<td>MMBox</td>
<td>Network storage associated with a user into which MMs, along with an MM State and MM Flags, may be stored, retrieved from, or deleted.</td>
</tr>
<tr>
<td>MM Flags</td>
<td>List of zero, one, or more keyword flags, defined by the MMS Client, associated with the MM.</td>
</tr>
<tr>
<td>MM State</td>
<td>The state of an MM within the MM Mailbox, as one of several, mutually exclusive, enumerated values.</td>
</tr>
<tr>
<td>MMS Client</td>
<td>The MMS service endpoint located on the WAP client device.</td>
</tr>
<tr>
<td>MMS Proxy-Relay</td>
<td>A server which provides access to various messaging systems. If the MMS Proxy-Relay operates as a WAP origin server it may be able to utilise features of the WAP system.</td>
</tr>
<tr>
<td>MMS Server</td>
<td>A server that provides storage and operational support for the MMS service.</td>
</tr>
<tr>
<td>MMSM Link</td>
<td>The interface between the MMS Client and its service partner, the MMS Proxy-Relay.</td>
</tr>
<tr>
<td>Terminal</td>
<td>A WAP client device.</td>
</tr>
<tr>
<td>Transaction</td>
<td>One or more PDU exchanges that collectively are considered logically separate from other PDU exchanges.</td>
</tr>
<tr>
<td>WAP Origin Server</td>
<td>A server that can deliver appropriate content upon request from a WAP client.</td>
</tr>
</tbody>
</table>

3.3. Abbreviations

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Email</td>
<td>Electronic mail</td>
</tr>
<tr>
<td>HTTP</td>
<td>HyperText Transfer Protocol</td>
</tr>
<tr>
<td>IANA</td>
<td>Internet Assigned Numbers Authority</td>
</tr>
<tr>
<td>ID</td>
<td>Identifier</td>
</tr>
<tr>
<td>MIME</td>
<td>Multipurpose Internet Mail Extensions</td>
</tr>
<tr>
<td>MM</td>
<td>Multimedia Message</td>
</tr>
<tr>
<td>MMS</td>
<td>Multimedia Messaging Service</td>
</tr>
<tr>
<td>OTA</td>
<td>Over The Air</td>
</tr>
<tr>
<td>PDF</td>
<td>Portable Document Format</td>
</tr>
<tr>
<td>PEP</td>
<td>Performance Enhancing Proxy</td>
</tr>
<tr>
<td>PDU</td>
<td>Protocol Data Unit</td>
</tr>
<tr>
<td>PGP</td>
<td>Push Proxy Gateway</td>
</tr>
<tr>
<td>RDF</td>
<td>Resource Description Format</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>RFC</td>
<td>Request For Comments</td>
</tr>
<tr>
<td>TCP</td>
<td>Transmission Control Protocol</td>
</tr>
<tr>
<td>TLS</td>
<td>Transport Layer Security</td>
</tr>
<tr>
<td>UAProf</td>
<td>User Agent Profile</td>
</tr>
<tr>
<td>URI</td>
<td>Uniform Resource Identifier</td>
</tr>
<tr>
<td>WAP</td>
<td>Wireless Application Protocol</td>
</tr>
<tr>
<td>WSP</td>
<td>Wireless Session Protocol</td>
</tr>
<tr>
<td>WTLS</td>
<td>Wireless Transport Layer Security</td>
</tr>
<tr>
<td>XML</td>
<td>eXtensible Markup Language</td>
</tr>
</tbody>
</table>
4. Introduction

This section is informative.

The Multimedia Messaging Service (MMS) is intended to provide non-real-time messaging services to consumers utilising WAP technologies. It is an application level service that fits into the current WAP architecture. The following figure shows the general MMS Architecture.

![MMS Network Diagram with MMS Client to MMS Proxy-Relay Link Highlighted](image)

The MMS client transactions described by this document take place on the interface labelled MMS_m in the preceding diagram.

The following figures present an amplified view of the MMS_m link. It is built on top of the WAP architecture, which permits several possible protocol stack configurations. In its role as an application, MMS provides for the delivery and services related to messaging and the data schemes that will permit presentation methods that provide for the multimedia user experience. These presentation methods are separate from MMS.
This figure includes a few items that need to be described. The MMS Proxy-Relay is the network entity that interacts with the user mailbox and is responsible for initiating the notification process to the MMS Client. The WAP 1.x Gateway provides standard WAP services needed to implement MMS in the original WAP architecture, these include: WSP invocation of HTTP methods, see [WAPWSP]; WAP PUSH services, see [PUSHARCH]; OTA security, see [WTLS]; and, Capability Negotiations, see [UAPROF].

The above figure also shows a payload that is carried by WSP and HTTP. This payload represents the MMS application layer PDUs, which are described in the MMS Message Encapsulation [MMSENCAPS] document. It is expected that this data will be transported in its entirety between the MMS Proxy-Relay and the MMS Client.

In a different architectural configuration HTTP is used to carry MMS PDUs directly between the MMS Client and the MMS Proxy-Relay, and a gateway is only needed for push functionality. The following figure outlines such an implementation of MMSM, note that the gateway needed for push services is omitted from the figure. Also note that a PEP may be included in the MMSM link to provide performance enhancements, as described in [WAPARCH].

The MMS application layer is the same in the different architectural configurations; the differences are contained in the two transport stacks, i.e., the WSP based protocol stack and the HTTP based protocol stack. The bindings of the MMS PDUs to these protocol stacks are defined in section 8.

This description does not address issues related to the movement or acquisition of MMs beyond the MMS Proxy-Relay as these are outside the scope of the MMSM link.
5. Introduction to MMS Transaction Model

This section is informative.

The MMS service is realised by the invocation of transactions between the MMS Client and the MMS Proxy-Relay. These transactions include information and affect state changes on these devices. This section introduces example transaction flows and section 6 describes each individual, logically separate transaction in more detail.

The general transaction flows on MMSM for sending, retrieving and forwarding MMs do not depend on what type of client the MM is sent to, received from, or forwarded to. The other endpoint for the MM may be another MMS Client served by the same or another MMS Proxy-Relay, it may be a client on a legacy wireless messaging system, or it may be an e-mail server.

The following figures provide general views of the MMSM transactions needed for: 1) an MMS Client to send an MM and receive back a resulting delivery notice; 2) an MMS Client to perform immediate retrieval of a new MM; 3) an MMS Client to perform deferred retrieval of a new MM; 4) an MMS Client to perform forwarding of an MM located at the MMS Proxy-Relay, 5) an MMS Proxy-Relay to cancel an already retrieved MM by an MMS Client, and 6) an MMS Client to delete an MM from the MMS Proxy-Relay. The arrow labels in the following figures indicate the MMS PDUs exchanged during transactions. These PDUs are defined in detail in [MMSENCAPS].

Figure 4: Example MMSM Transaction Flow – Sending

A receiving MMS Client is said to perform immediate retrieval of a new MM when it retrieves the data from the MMS Proxy-Relay before acknowledging the message notification.
Figure 5: Example \texttt{MMS}\textsubscript{m} Transaction Flow – Immediate Retrieval

A receiving MMS Client is said to perform deferred retrieval of a new MM when it first acknowledges the notification and at some later point retrieves the message from the MMS Proxy-Relay. A specific type of deferred retrieval is the manual retrieval, which requires the recipient user's confirmation prior to retrieving the message.

Figure 6: Example \texttt{MMS}\textsubscript{m} Transaction Flow – Deferred Retrieval

If both endpoints for the MM exchange are MMS Clients, the MMS\textsubscript{m} interface is involved both when the originating MMS Client sends the MM to the originating MMS Proxy-Relay and when the target MMS Client retrieves the MM from the target MMS Proxy-Relay. The following figure shows an example where both endpoints are MMS Clients and deferred retrieval is used.
A receiving MMS Client can request an MM located at the MMS Proxy-Relay to be forwarded to other recipients. A receiving MMS Client is said to perform deferred forwarding of an MM when it first acknowledges the notification and at some later point requests the MMS Proxy-Relay to forward the MM.
A receiving MMS Client is said to perform immediate forwarding of an MM when it completes a forwarding transaction with the MMS Proxy-Relay before acknowledging the message notification. Other transaction flows further include retrieval of the MM in reaction to the notification.

An MMS Proxy-Relay can request an MMS Client to cancel an MM, which is already retrieved by the MMS Client. A cancel request from a Value Added Service Provider (VASP) is usually mapped to such a request by the MMS Proxy-Relay, as described in [TS23140] and [XS0016200]. The following figure shows an example transaction flow for cancelling an MM in the MMS Client, where it is assumed that the relevant MM is previously retrieved (either immediate or deferred retrieval) by the MMS Client as described above.

![Diagram](image-url)

Figure 9: Example MMSm Transaction Flow – Deferred Forwarding

A receiving MMS Client can request an MM located at the MMS Proxy-Relay to be deleted. A receiving MMS Client first acknowledges the notification, and at some later point may requests the MMS Proxy-Relay to delete the MM.

![Diagram](image-url)

Figure 10: Example MMSm Transaction Flow – Deleting an MM from MMS Proxy-Relay
As can be seen in these examples, several PDU exchanges occur on MMSM. These PDU exchanges can be considered to form the following logically separate transactions:

- MMS Client Sending Message to MMS Proxy-Relay
- MMS Proxy-Relay Sending Notification to MMS Client
- MMS Client Retrieving Message from MMS Proxy-Relay
- MMS Client Sending Forward Request to MMS Proxy-Relay
- MMS Proxy-Relay Sending Delivery Report to MMS Client
- MMS Proxy-Relay Sending Cancel Request to MMS Client
- MMS Client Deleting Message from MMS Proxy-Relay

These transactions are described in more detail in section 6.

5.1. MMBox Support

Support for an MMBox is an optional feature of both the MMS Client and MMS Proxy-Relay. The MMBox may be used to store all or some of the MM that arrive for the particular MMS Client depending on user profiling or MMS Client actions. Issues related to profiling are outside the scope of this specification. The following four types of transactions support direct actions related to the MMBox:

- Store or update MM currently in the MMS Proxy-Relay into the MMBox (M-Mbox-Store.req, M-Mbox-Store.conf)
- View the contents of the MMBox (M-Mbox-View.req, M-Mbox-View.conf)
- Upload an MM that is currently on the MMS Client and store it into the MMBox (M-Mbox-Upload.req, M-Mbox-Upload.conf)
- Delete an MM from the MMBox (M-Mbox-Delete.req, M-Mbox-Delete.conf)

These transactions are described in more detail in section 6.

In addition, it may be possible to use optional parameters of the basic transactions, as described in the previous section, to:

- Save a copy of an MM in the MMBox parallel to sending it to a destination.
- Retrieve an MM from the MMBox
- Forward an MM that is stored in the MMBox to another MMS Client.

5.2. Error Considerations

Section 6 also contains general error considerations for each transaction. For more specific information, the reader is referred to the [MMSENCAPS] and [WAPWSP] documents. The [MMSENCAPS] document also contains considerations for the case where the MMS Client and the MMS Proxy-Relay implement different versions of the MMSM protocol described here.

5.3. Streaming Retrieval

Streaming aspects are considered outside the scope of this document and are not further discussed, except for the following paragraph.

The contents of a multimedia message may be streamed down to the recipient terminal from the MMS Proxy-Relay made available by the recipient MMS Proxy-Relay for streaming retrieval, as defined in [TS23140]. The recipient MMS Proxy-Relay may convert media types and/or formats of MM contents to make it available for streaming retrieval. The decision made by the recipient MMS Proxy-Relay on whether to use streaming or not when the MMS Client retrieves the MM is based on content of the MM and/or user settings/preferences and/or UAProf [UAPROF] capability negotiation and/or the capabilities of the MMS Proxy-Relay. If streaming retrieval is used, the streaming-specific protocols, codecs, presentation, file format, media adaptation, control, and session negotiation may be according to [PSSGEN], [PSSCOD] and [3G2VID]. The [TS23140] also defines the scope of [PSSGEN] and [PSSCOD] to be used for the streaming retrieval in MMS.
6. MMS Client Transactions

This section is normative. It describes MMS transactions at the application layer. For normative information about MMS PDU binding to the underlying transport, please refer to section 8. The PDUs and header fields referred to in the following SHALL comply with the definitions in [MMSENCAPS].

6.1. MMS Client Sending Message to MMS Proxy-Relay

The process for a client to send a message is built on top of the M-Send transaction. It provides the mechanism for the MMS Client to submit an MM to the MMS Proxy-Relay and to get back information in response. The following figure gives an example of this transaction.

![Figure 11: Example MMS Send Transaction](image)

6.1.1. Transaction Flow

The MMS Client that wishes to send an MM SHALL include the MM in an M-Send.req and submit the resulting PDU to the MMS Proxy-Relay that supports the specific MMS Client.

The MMS Client SHALL compose a fresh transaction ID for the submitted PDU. This transaction ID is used by the MMS Client and MMS Proxy-Relay to provide linkage between the originated M-Send.req and the response M-Send.conf PDUs. The value used for the transaction ID is determined by the MMS Client. The MMS Client is expected to use a big range of transaction ID values before re-using a transaction ID. No interpretation of the transaction ID is expected from the MMS Proxy-Relay except of the comparison whether two transaction ID from the same originator are equal.

Upon receipt of the M-Send.req PDU, the MMS Proxy-Relay SHALL respond with an M-Send.conf PDU. This response PDU SHALL provide a status code for the requested operation. If the MMS Proxy-Relay is willing to accept the request to send the message, the status SHALL be 'ok' and the PDU SHALL include a message-ID that MAY be used for following activities that need to refer to the specific sent MM (e.g. delivery reports).

If MMBox functionality is supported by the MMS Client and the MMS Client wishes to retain a copy of the MM in the MMBox parallel to sending the MM to its destinations, then this SHALL be indicated by using the optional M-Send.req header fields. If the MMS Proxy-Relay supports MMBox functionality then it SHALL store the MM in the MMBox with a MM State of “Sent”, unless a MM State is specified by the MMS Client, and SHALL supply a [RFC2396] compliant URI that indicates the location of the saved MM in the MMBox.

6.1.2. Error Considerations

Various error cases may exist. These include network faults, server faults and service faults. For network faults (e.g. server not available) or server faults (e.g. bad path) the MMS Proxy-Relay SHALL send an error indication that relates to the transport layer error that was detected. These errors MAY be recoverable (e.g. MMS Proxy-Relay down temporarily) or may be more permanent in nature. If the MMS Proxy-Relay does not provide an M-Send.conf PDU (for what ever reason) the MMS Client SHOULD be able to recover. Further strategies for recovery or retry are beyond the scope of this document to address.
Service errors are different. In these cases the MMS Proxy-Relay actually received the M-Send.req PDU and responds with an M-Send.conf PDU with the appropriate error code. If the MMS Client requested that the submitted MM be stored in the MMBox then this operation (of storing the MM) SHOULD be completed regardless of the success or failure of the sending of the MM to its destinations.

While an M-Send.conf PDU specifying the transaction ID that was used in the M-Send.req PDU is not received by the MMS Client, the MMS Client considers the MM as pending. The MMS Client ceases to consider an MM as pending in each of the following cases:

1. The MMS Client receives an M-Send.conf PDU
2. The MMS Client abandons submission of the MM

If an MM is pending and more time has elapsed than normally necessary for the transaction, the MMS Client SHALL either

- abandon submission of the pending MM or
- resend the same M-Send.req PDU (including the same transaction ID as was used for the original submission).

The MMS Proxy-Relay SHOULD check the transaction ID for M-Send.req PDUs in order to detect and remove duplicate M-Send.req PDUs. The MMS Proxy-Relay SHALL respond to every M-Send.req PDU with an M-Send.conf PDU even if it is duplicated.

If the MMS Proxy-Relay checks the transaction ID for M-Send.req PDUs in order to detect and remove duplicate M-Send.req PDUs it SHOULD follow one or both of the following procedures:

1. The MMS Proxy-Relay does not forward the duplicate MM (on MM3, MM4, MM7), does not store the duplicate MM in the MMBox and does not initiate a notification for the duplicate MM.
2. The MMS Proxy-Relay generates a CDR for the duplicate MM including the transaction-ID so that the billing system can discover this duplication.

6.2. MMS Proxy-Relay Sending Notification to MMS Client

To inform an MMS Client that an MM is available and for it to return back information, a set of asynchronous PDUs, M-Notification.ind and M-NotifyResp.ind, are utilized. This provides the mechanism for the MMS Proxy-Relay to notify the MMS Client with certain factors about the new MM. This will let the MMS Client retrieve the MM.

Figure 12: Example MMS Notification Transaction
6.2.1. Transaction Flow

The MMS Proxy-Relay SHALL utilise the `M-Notification.ind` PDU when it needs to inform the MMS Client that a message is available for delivery.

The information conveyed SHALL include an [RFC2396] compliant URI that will be used to actually retrieve the MM in a subsequent operation by the MMS Client. Additional information about the message (e.g. message size, expiry, recommended retrieval mode) may be used by the MMS Client to determine its behaviour. For example, the MMS Client may defer the retrieval of the MM until after a user confirmation if manual retrieval is recommended or if it exceeds a size threshold. It should be noted that this additional information may have changed from when the `M-Notification.ind` PDU was sent to the MMS Client, and when the MMS Client requests delivery of the MM.

The MMS Proxy-Relay SHALL compose a transaction ID for the notification PDU. This transaction ID is used by the MMS Client and MMS Proxy-Relay to provide linkage between the originated `M-Notification.ind` and the response `M-NotifyResp.ind` PDUs. The value used for the transaction ID is determined by the MMS Proxy-Relay and no interpretation is expected by the MMS Client.

Upon receipt of the `M-Notification.ind` PDU, the MMS Client SHALL respond with an `M-NotifyResp.ind` PDU to the MMS Proxy-Relay that supports the specific MMS Client.

The `M-NotifyResp.ind` response PDU SHALL provide a message retrieval status code. The status ‘retrieved’ SHALL be used only if the MMS Client has successfully retrieved the MM prior to sending the `NotifyResp.ind` response PDU.

6.3. MMS Client Retrieving Message from MMS Proxy-Relay

The operation for retrieval of the MM by the MMS Client from the MMS Proxy-Relay is built upon the normal WSP/HTTP `GET` functionality. Therefore, no new operation is actually defined. The message type for the PDU returned from the MMS Proxy-Relay to the MMS Client is `M-retrieve.conf`.

Delivery of the MM MAY be either before or after the `M-NotifyResp.ind` PDU, depending on immediate retrieval or deferred retrieval of MM respectively. The MMS Proxy-Relay MAY therefore decide to request an acknowledgement from the MMS Client to confirm successful retrieval in case of deferred retrieval. These variations are shown in the 2 following figures.

```
Figure 13: Example MMS Retrieval Transaction without Acknowledgement
```
6.3.1. Transaction Flow

The MMS Client SHALL initiate the retrieval activity by utilizing the URI that was delivered to it in the M-Notification.ind PDU using the normal WSP/HTTP GET method operation.

The response PDU M-retrieve.conf, if successful, contains the MM. This PDU SHALL include MMS header fields providing additional information. This response PDU MAY provide a status code for the requested retrieval operation.

Depending on the MMS Proxy-Relay needs, the M-retrieve.conf response that it provides MAY request an acknowledgement to be generated by the MMS Client. The MMS Proxy-Relay MAY make this request based on whether or not it needs to provide a delivery notice back to the originator of the MM. Alternatively, it MAY make that request based upon an expectation that it would then be able to delete the MM from its own store. This decision is not a part of this transaction.

The MMS Proxy-Relay SHALL make this request for acknowledgement by including a transaction ID in the M-retrieve.conf PDU. This transaction ID is used by the MMS Client and MMS Proxy-Relay to provide linkage between the originated M-retrieve.conf and the response M-Acknowledge.ind PDUs. The value used for the transaction ID is determined by the MMS Proxy-Relay and no interpretation is expected by the MMS Client.

If an acknowledgement is requested, the MMS Client SHALL respond with an M-Acknowledge.ind PDU to the MMS Proxy-Relay that supports the specific MMS Client. The M-Acknowledge.ind PDU confirms successful message retrieval to the MMS Proxy Relay.

6.3.2. Error Considerations

If the URI can not be resolved, a network or server fault MAY be returned. For example, if the MMS Server deletes the MM from the store, making the requested MM unavailable, it is expected that the WSP/HTTP request will generate a ‘Data Not Available’ status code (e.g. 404). In this case, the lower level error would be returned.

Service/application level errors are different. In these cases, the MMS Proxy-Relay actually received the WSP/HTTP GET message and responds with an M-retrieve.conf PDU with the appropriate error code. The MMS Proxy-Relay SHALL not include the transaction ID in the M-retrieve.conf PDU for these error cases.

If the MMS Proxy-Relay does not provide the M-retrieve.conf PDU or the lower protocol layer error message the MMS Client SHOULD be able to recover.

6.3.3. Clarifications

To some readers it may not appear consistent that the WSP/HTTP GET message is shown in 0and 0as this message belongs to a different protocol layer than the MMS PDUs. However, the figures are consistent in that they define the MMS Client Transactions in terms of the packets sent “across the wire” between peer entities (and not in terms of primitives, which are defined between layers in a protocol stack). The appearance of WSP/HTTP GET in the diagrams is not to be taken as a recommendation to bypass the implementation of layered protocols.
6.4. MMS Client Sending Forward Request to MMS Proxy-Relay

The **M-Forward** transaction enables an MMS Client to request forwarding of an MM located at the MMS Proxy-Relay and to get back information in response. The following figure gives an example of this transaction.

![Example MMS Forward Transaction](image)

Figure 15: Example MMS Forward Transaction

6.4.1. Transaction Flow

Support of the MMS forward transaction is OPTIONAL for MMS Proxy-Relay and MMS Client. The following description applies when both entities support the forward transaction.

The MMS Client that intends to forward an MM located at the MMS Proxy-Relay SHALL send an **M-Forward.req** PDU to the MMS Proxy-Relay that supports the specific MMS Client. The message SHALL contain the URI of the MM to be forwarded which was conveyed to the MMS Client as part of the **M-Notification.ind** PDU. Additionally the **M-Forward.req** PDU SHALL contain the address of one or more recipients that the MM should be forwarded to.

The MMS Client SHALL compose a transaction ID and include it in the **M-Forward.req** PDU. This transaction ID is used by the MMS Client and MMS Proxy-Relay to provide linkage between the originated **M-Forward.req** PDU and the corresponding **M-Forward.conf** PDU. The value used for the transaction ID is determined by the MMS Client and no interpretation is expected by the MMS Proxy-Relay.

After reception of the **M-Forward.req** PDU, the MMS Proxy-Relay SHALL respond with an **M-Forward.conf** PDU. This response PDU SHALL provide a status code for the requested operation. If the MMS Proxy-Relay is willing to accept the request to forward the MM, the status SHALL be ‘*ok*’ and the PDU SHALL include a message-ID that MAY be used for following activities that need to refer to the specific message forwarded (e.g. delivery reports).

If MMBox functionality is supported by the MMS Client and the MMS Client wishes to retain a copy of the MM in the MMBox parallel to forwarding the MM to its destinations, then this SHALL be indicated by using the optional **M-Forward.req** header fields. If the MMS Proxy-Relay supports MMBox functionality then it SHALL store the MM in the MMBox with a MM State of “*Forwarded*”, unless a MM State is specified by the MMS Client, and SHALL supply a [RFC2396] compliant URI that indicates the location of the saved MM in the MMBox.

The MMS forward transaction is logically independent to both the MMS notification transaction and the MMS retrieval transaction, i.e., the MMS Client SHALL react to an **M-Notification.ind** PDU by sending an **M-NotifyResp.ind** PDU before, during or after an optional MMS forward transaction. Furthermore the MMS Client MAY also react to an **M-Notification.ind** PDU by initiating a retrieval operation. This additional operation on the MM may be supported by the MMS Client and/or the MMS Proxy-Relay.

6.4.2. Error Considerations

Various error cases may exist. These include network faults, server faults and service faults. For network faults (e.g. server not available) or server faults (e.g. bad path) the MMS Client SHALL receive an error indication that relates to the transport layer error that was detected. These errors MAY be recoverable (e.g. MMS Proxy-Relay down temporarily) or may be more permanent in nature. If the MMS Proxy-Relay does not provide the **M-forward.conf** PDU or the lower protocol layer error message the MMS Client should be able to recover. Further strategies for recovery or retry are beyond the scope of this document to address.
Service errors are different. In these cases the MMS Proxy-Relay actually received the M-Forward.req PDU and responds with either an M-Forward.conf PDU if it does support MMS forward transactions, or an M-Send.conf PDU if it does not support MMS forward transactions; in either case the appropriate error code SHALL be included in the response. If the MMS Client requested that the submitted MM be stored in the MMBox then this operation (of storing the MM) SHOULD be completed regardless of the success or failure of the forwarding of the MM to its destinations.

6.5. MMS Proxy-Relay Sending Delivery Reports to MMS Client

To permit the originating MMS Client to know when a message delivery has occurred the M-Delivery.ind PDU has been defined to provide that information. The M-Delivery.ind PDU originates at the MMS Proxy-Relay providing information to the MMS Client about the MM that was delivered. There is no associated response or acknowledgment PDU. The following figure shows an example of this transaction.

![Figure 16: Example Delivery Report](image)

6.5.1. Transaction Flow

The M-Delivery.ind PDU SHALL be sent by the MMS Proxy-Relay to the MMS Client to convey information about the status of a particular MM delivery that was performed. The MM is identified by the message-ID that was generated when the original message was submitted or forwarded. It also provides addressing information of the originally targeted entity.

If an MM was addressed to multiple entities, multiple M-Delivery.ind PDUs SHOULD be expected to be returned, one for each addressed entity.

6.5.2. Error Considerations

The M-Delivery.ind PDU is generated when the MMS Proxy-Relay is satisfied that it has sufficient information to declare that the MM was delivered or other status can be declared. As such, there may be cases where the MMS Proxy-Relay makes a decision about the delivery status that may be incorrect (e.g. timer expiry may generate an expiry notice but target MMS Client may actually retrieve MM if the read occurred before the MM was deleted).

There is no associated response or acknowledgment PDU defined for the M-Delivery.ind PDU. The success rate for transmittal of the M-Delivery.ind PDU is dependent upon the quality of service provided by the transport service(s) utilized.

6.5.3. Other Issues

A target MMS Client may, within an M-NotifyResp.ind PDU or an M-Acknowledge.ind PDU, request denial of an originator’s request for delivery notification. Therefore, an MMS Client SHOULD NOT expect to receive all the delivery reports that it may have requested.

6.6. Read Reports

There are two ways of handling Read Reports, either in the form of an MM or in the form of a PDU designed for that purpose. If the MMS Client is of higher version than 1.0 and if it supports read reporting it MUST also support the handling of Read Report PDUs.

6.6.1. Multimedia Message Read Report

When the originating MMS Client requests a Read Report for an MM, the receiving MMS Client MAY send a Read Report back to it. This report MAY be sent and delivered as a regular MM using the mechanisms described in this section.
To permit a user to determine that an MM is a Read Report, a few fields can be used to provide that information:

- The subject field should be copied from the original, prepending a ‘Read:’ to the text.
- The Message-ID of the original message is available and should be included in the message body.
- The body of the message may provide information about the read action or status.

The following is an example of a Read Report MM. It is in response to an MM that user A had sent to user B:

```
From: B  
To: A
Sent: Friday, January 21, 2000 1:50 PM
Subject: Read: My Message
Your message

To: B
Subject: My Message
Message-ID: <200002211806.MAA26265@mail1.domain.com>
Sent: 1/21/2000 1:29 PM

was read on 1/21/2000 1:50 PM.
```

6.6.2. PDU Read Report

When the originating MMS Client requests a Read Report for an MM, the receiving MMS Client MAY send a Read Report back to it. This report MAY be sent in the form of a PDU and delivered using the mechanisms described in this section.

The M-read-rec.ind PDU originates at the recipient MMS Client and is sent via the recipient MMS Proxy-Relay to the originating MMS Proxy-Relay. Upon receiving the M-read-rec.ind, the originating MMS Proxy-Relay forwards an M-read-orig.ind PDU to the originating MMS Client. The 2 following figures outline the transaction flow.

![Read Report transaction flow on the recipient side](image1.png)

![Read Report transaction flow on the originating side](image2.png)
6.6.3. Transaction Flow

If supported by a receiving MMS Client a Read Report to an MM marked with the Read-Report flag MAY be sent in the form of a new MM, in the form of a PDU or not sent at all.

6.6.3.1. Multimedia Message Read Report Transaction Flow

When the Read Report is sent in the form of a regular MM the report SHALL be sent using the normal M-Send operation as it is just another MM origination. As such, it SHALL be delivered using the normal delivery methods. Due to the nature of the MM, the Message-Class header field SHALL have the value ‘Auto’, the Read-Report flag MUST NOT be set, and the Delivery-Report flag MUST NOT be set in a Read Report MM.

The MMS Client receiving a Read Report MM will see it as a new MM. The interpretation as a Read Report is done by context. In cases where the original MM had multiple addresses, the MMS Client SHOULD expect that multiple Read Reports will be returned.

6.6.3.2. PDU Read Report Transaction Flow

When the Read Report is handled by PDUs and the recipient MMS Client wishes to send a Read Report a M-read-rec.ind MUST be sent to the recipient Proxy-Relay from the recipient MMS Client. The recipient Proxy-Relay then forwards the M-read-rec.ind information to the originating Proxy-Relay, that transaction is however out of scope for the WAP Forum specifications.

To handle backward compatibility, the originating Proxy-Relay MAY keep a record of what version of M-Send.req the originating MMS Client used for submitting the corresponding MM. If that version number is 1.0 the originating Proxy-Relay MAY transform the M-read-rec.ind information into an MM. If a Read Report is sent as an MM, it MUST follow the rules described in sections 6.6.1 and 6.6.3.1.

If the originating Proxy-Relay is aware of that the originating MMS Client is of higher version than 1.0 or is unaware of the MMS Client version, it MUST forward a Read Report in the form of a M-read-orig.ind PDU upon receiving the M-read-rec.ind information.

In cases where the original message had multiple addresses, the MMS Client SHOULD expect that multiple Read Report PDUs will be returned.

6.6.4. Error Considerations

Origination and delivery of a Read Report MM is as for a normal MM and does not require additional error considerations.

6.6.5. Other Issues

Since the handling of Read Reports is an optional capability of the recipient MMS Client and the recipient MMS Client may in any case choose not to send a Read Report, an originating MMS Client SHOULD NOT depend upon receiving a Read Report in all cases.

If the originating MMS Proxy-Relay does not track the version number of the originating MMS Client, the originating MMS Client may not receive a Read Report it can understand. In this case the MMS Client shall notify the MMS Proxy-Relay according to the regular procedures used when an MMS Client receives a PDU it does not understand (as described in section 6.12 of [MMSENCAPS]). Upon receiving this compatibility problem information, the MMS Proxy-Relay MAY create an MM Read Report as described in sections 6.6.1 and 6.6.3.1 and send it to the originating MMS Client.

Due to backward compatibility a Read Report may always come in the form of an MM since there is no mandated or standardized function to transform a Read Report MM into a Read Report PDU.
6.7. MMS Proxy-Relay Sending Cancel Request to MMS Client

The **M-Cancel** transaction enables an MMS Proxy-Relay to request cancelling an MM located at the MMS Client and to get back information in response. The following figure gives an example of this transaction.

![Figure 19: Example M-Cancel Transaction](image)

6.7.1. Transaction Flow

Support of the M-Cancel transaction is OPTIONAL for both MMS Proxy-Relay and MMS Client. The following description applies when both entities support the M-Cancel transaction.

The MMS Proxy-Relay SHALL utilise the **M-Cancel.req** PDU when it needs to request the MMS Client to cancel a message. The PDU SHALL contain the reference of the MM (i.e. cancel ID) to be cancelled.

The MMS Proxy-Relay SHALL compose a transaction ID for the cancel PDU. This transaction ID is used by the MMS Client and MMS Proxy-Relay to provide linkage between the originated M-Cancel.req and the response M-Cancel.conf PDUs. The value used for the transaction ID is determined by the MMS Proxy-Relay and no interpretation is expected by the MMS Client.

Upon receipt of the **M-Cancel.req** PDU, the MMS Client SHALL respond with an **M-Cancel.conf** PDU to the MMS Proxy-Relay that supports the specific MMS Client.

6.8. MMS Client Deleting a MM from the MMS Proxy Relay

The **M-Delete** transaction allows a MMS Client to delete a MM from the MMS Proxy Relay. The following figure illustrates an example transaction interchange.

![Figure 20: Example MMS Delete from MMS Proxy Relay Transaction](image)
6.8.1. Transaction Flow

Support for this transaction is OPTIONAL for both the MMS Client and the MMS Proxy-Relay. The following description assumes that both the MMS Client and the MMS Proxy-Relay support the transaction.

When the MMS Client wishes to delete (one or more) MM that is stored in the MMS Proxy-Relay it SHALL generate a M-Delete.req PDU and transfer it to the MMS Proxy-Relay. The PDU SHALL include one or more URI that uniquely identifies the MM(s) to be deleted. This URI SHOULD be one that was received in a prior notification transaction.

The MMS Client SHALL compose a transaction ID and include it in the M-Delete.req PDU. This transaction ID is used by the MMS Client and MMS Proxy-Relay to provide linkage between the originated M-Delete.req PDU and the corresponding M-Delete.conf PDU. The value used for the transaction ID is determined by the MMS Client and no interpretation is expected by the MMS Proxy-Relay.

After accepting the M-Delete.req, the MMS Proxy-Relay SHALL respond with a M-Delete.conf PDU that SHALL indicate the status of the completion of the request. If the request was not successful for any of the requested URI then the MMS Proxy-Relay SHALL include the URI that failed in the M-Delete.conf PDU.

6.8.2. Error Considerations

Various error cases may exist. These include network faults, server faults and service faults. For network faults (e.g. server not available) or server faults (e.g. bad path) the MMS Client SHALL receive an error indication that relates to the transport layer error that was detected. These errors MAY be recoverable (e.g. MMS Proxy-Relay down temporarily) or may be more permanent in nature. Strategies for recovery or retry are beyond the scope of this document to address.

Service errors are different. In these cases, e.g. MM not found, the MMS Proxy-Relay actually received the M-Delete.req PDU and responds with either an M-Delete.conf PDU if it does support the delete transactions, the appropriate error code SHALL be included in the response.

6.9. MMS Client Sending Request to Store or Update a MM in MMBox to MMS Proxy-Relay

The M-Mbox-Store.req transaction enables an MMS Client to request that the MMS Proxy-Relay either transfer an MM from the temporary storage to the MMBox or update the MM State or MM Flags of an MM already in the MMBox. The following figure gives an example of this transaction.

![Figure 21: Example MMS Mbox-StoreTransaction](image)

6.9.1. Transaction Flow

Support of the MMBox Store and Update transaction is OPTIONAL for both the MMS Proxy-Relay and the MMS Client. The following description applies when both entities support this functionality.

The transaction may be used in two situations.
In the first case, the MMS Client received notification that an MM has arrived and it has not been stored in the MMBox. The notification includes a URI that identifies the MM. The MMS Client that wishes to store this MM into the MMBox SHALL send an **M-Mbox-Store.req** PDU to the MMS Proxy-Relay. The message SHALL contain the URI, from the notification. Additionally, the MMS Client MAY indicate, in the **M-Mbox-Store.req**, an MM State or MM Flags to be stored together with the MM.

In the second case, the MMS Client has a URI that identifies an MM that is already in the MMBox. If the MMS Client wishes to change the MM State or MM Flags associated with the MM, the MMS Client SHALL send a **M-Mbox-Store.req** PDU to the MMS Proxy-Relay. The MMS Client SHALL include the URI that identifies the MM in the message together with the new MM State or MM Flags values.

The MMS Client SHALL compose a transaction ID and include it in the **M-Mbox-Store.req** PDU. This transaction ID is used by the MMS Client and MMS Proxy-Relay to provide linkage between the originated **M-Mbox-Store.req** PDU and the corresponding **M-Mbox-Store.conf** PDU. The value used for the transaction ID is determined by the MMS Client and no interpretation is expected by the MMS Proxy-Relay.

After reception of the **M-Mbox-Store.req** PDU, the MMS Proxy-Relay SHALL identify the MM indicated by the Content-Location and store the MM into the MMBox together with the MM State and MM Flags that were included in the PDU. If no MM State is included then the MMS Proxy-Relay SHALL store the MM with a MM State of “New”.

The MMS Proxy-Relay SHALL respond with an **M-Mbox-Store.conf** PDU. This response PDU SHALL include an [RFC2396] compliant URI that may be used to uniquely reference the MM in the MMBox for subsequent MMS operations. In addition, the response PDU SHALL include a status code for the requested operation. If the MMS Proxy-Relay is willing to accept the request and can locate the MM, the status SHALL be “Success”.

6.9.2. Error Considerations

Various error cases may exist. These include network faults, server faults and service faults. For network faults (e.g. server not available) or server faults (e.g. bad path) the MMS Client SHALL receive an error indication that relates to the transport layer error that was detected. These errors MAY be recoverable (e.g. MMS Proxy-Relay down temporarily) or may be more permanent in nature. If the MMS Proxy-Relay does not provide the **M-store.conf** PDU or the lower protocol layer error message the MMS Client SHOULD be able to recover. Further strategies for recovery or retry are beyond the scope of this document to address.

Service errors are different. In these cases, e.g. MMBox full, the MMS Proxy-Relay actually received the **M-Mbox-Store.req** PDU and responds with either an **M-Mbox-Store.conf** PDU if it does support MMBox transactions, or an **M-Send.conf** PDU if it does not support MMBox transactions; in either case the appropriate error code SHALL be included in the response.
6.10. MMS Client Requesting Information about MM in MMBox from MMS Proxy-Relay

The \texttt{M-Mbox-View} transaction enables an MMS Client to request information about one or more MMs that are currently stored in the MMBox. The following figure illustrates this transaction. It should be noted that the response PDU from the MMS Proxy-Relay to the MMS Client may include multipart content of \texttt{M-Retrieve.conf} header PDUs.

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{example_mms_mbox-view_transaction.png}
\caption{Example MMS Mbox-View Transaction}
\end{figure}

6.10.1. Transaction Flow

Support for this transaction is \textit{OPTIONAL} for both the MMS Client and the MMS Proxy-Relay. The following description assumes that the transaction is supported by both the MMS Client and the MMS Proxy-Relay.

When the MMS Client wishes to obtain information concerning MMs that are stored in the MMBox, the MMS Client \texttt{SHALL} generate a \texttt{M-Mbox-View.req} message. This PDU \texttt{MAY} identify the (one or more) MM that the information is requested for. The identification of the MM \texttt{MAY} be either of the following –

\begin{itemize}
 \item A URI that was obtained from a previous notification or store transaction
 \item A filtering criteria based on the MM State or MM Flags associated with the MM in the MMBox
\end{itemize}

In addition, the MMS Client \texttt{MAY} specify a range of the selected MM to be returned.

In addition to the selection criteria, the MMS Client \texttt{MAY} specify a list of Information Elements to return for the selected MM. The list of Information Elements \texttt{MAY} include an indication to retrieve the contents of the selected MM as part of the view of the MMBox.

The MMS Client \texttt{SHALL} compose a transaction ID and include it in the \texttt{M-Mbox-View.req} PDU. This transaction ID is used by the MMS Client and MMS Proxy-Relay to provide linkage between the originated \texttt{M-Mbox-View.req} PDU and the corresponding \texttt{M-Mbox-View.conf} PDU. The value used for the transaction ID is determined by the MMS Client and no interpretation is expected by the MMS Proxy-Relay.

After receiving the request the MMS Proxy-Relay \texttt{SHALL} select all MM that match the selection criteria in the MMBox and establish an order between the selected MM. If the \texttt{M-Mbox-View.req} included Start and Limit fields then the MMS Proxy-Relay \texttt{SHALL} select only those selected MM that fall in the range indicated according to the order that was established. The MMS Proxy-Relay \texttt{SHALL} generate a \texttt{M-Mbox-View.conf} PDU that includes in the header fields the selection criteria that were used to select the MM as well as the MMBox totals and quota information if requested as part of the \texttt{M-Mbox-View.req} PDU. In addition, the MMS Proxy-Relay \texttt{SHALL} add as content the set of selected MM information-elements and content (if requested) each encoded as a separate part in a multipart.mixed encoded content of the \texttt{M-Mbox-View.conf} PDU.

6.10.2. Error Considerations

Various error cases may exist. These include network faults, server faults and service faults. For network faults (e.g. server not available) or server faults (e.g. bad path) the MMS Client \texttt{SHALL} receive an error indication that relates to the transport layer error that was detected. These errors \texttt{MAY} be recoverable (e.g. MMS Proxy-Relay down temporarily) or may be more permanent in nature. If the MMS Proxy-Relay does not provide the \texttt{M-Mbox-View.conf} PDU or the lower protocol layer error message the MMS Client \texttt{SHOULD} be able to recover. Further strategies for recovery or retry are beyond the scope of this document to address.
Service errors are different. In these cases, e.g. MM not found, the MMS Proxy-Relay actually received the **M-Mbox-View.req** PDU and responds with either an **M-Mbox-View.conf** PDU if it does support MMBox transactions, or an **M-Send.conf** PDU if it does not support MMBox transactions; in either case the appropriate error code SHALL be included in the response.

6.11. MMS Client uploading a MM to the MMBox

The **M-Mbox-Upload** transaction allows an MMS Client to upload an MM, currently stored in the MMS Terminal, to the MMS Proxy-Relay for storage in the MMBox. The following figure illustrates an example of this transaction.

![Figure 23: Example MMS Upload to MMBox Transaction](image)

6.11.1. Transaction Flow

Support for this transaction is OPTIONAL for both the MMS Client and the MMS Proxy-Relay. The following description assumes that the transaction is supported by both the MMS Client and the MMS Proxy-Relay.

When the MMS Client has MM content, resident on MMS Terminal, that it wishes to store in the MMBox, the MMS Client SHALL compose a **M-Mbox-Upload.req** PDU. The PDU SHALL include the actual content to be stored.

The MMS Client SHALL compose a transaction ID and include it in the **M-Mbox-Upload.req** PDU. This transaction ID is used by the MMS Client and MMS Proxy-Relay to provide linkage between the originated **M-Mbox-Upload.req** PDU and the corresponding **M-Mbox-Upload.conf** PDU. The value used for the transaction ID is determined by the MMS Client and no interpretation is expected by the MMS Proxy-Relay.

After acceptance of the request, the MMS Proxy-Relay SHALL store the contents and the associated information in the MMBox. If no MM State was provided by the MMS Client then the MMS Proxy-Relay SHALL set the MM State of the stored MM to “Draft”. The MMS Proxy-Relay SHALL respond with a **M-Mbox-Upload.conf** PDU and SHALL include a URI that defines the location of the stored MM and MAY be used to reference the MM.

6.11.2. Error Considerations

Various error cases may exist. These include network faults, server faults and service faults. For network faults (e.g. server not available) or server faults (e.g. bad path) the MMS Client SHALL receive an error indication that relates to the transport layer error that was detected. These errors MAY be recoverable (e.g. MMS Proxy-Relay down temporarily) or may be more permanent in nature. If the MMS Proxy-Relay does not provide the **M-Mbox-Upload.conf** PDU or the lower protocol layer error message the MMS Client SHOULD be able to recover. Further strategies for recovery or retry are beyond the scope of this document to address.

Service errors are different. In these cases, e.g. MMBox full, the MMS Proxy-Relay actually received the **M-Mbox-Upload.req** PDU and responds with either an **M-Mbox-Upload.conf** PDU if it does support MMBox transactions, or an **M-Send.conf** PDU if it does not support MMBox transactions; in either case the appropriate error code SHALL be included in the response.
6.12. MMS Client Deleting a MM from the MMBox

The **M-Mbox-Delete** transaction allows a MMS Client to delete a MM from the MMBox. The following figure illustrates an example transaction interchange.

![MMS delete transaction](image)

Figure 24: Example MMS Delete from MMBox Transaction

6.12.1. Transaction Flow

Support for this transaction is OPTIONAL for both the MMS Client and the MMS Proxy-Relay. The following description assumes that both the MMS Client and the MMS Proxy-Relay support the transaction.

When the MMS Client wishes to delete (one or more) MM that is stored in the MMBox it SHALL generate a **M-Mbox-Delete.req** PDU and transfer it to the MMS Proxy-Relay. The PDU SHALL include a URI that uniquely identifies the MM to be deleted. This URI SHOULD be one that was received in a prior notification, storing, or viewing transaction.

The MMS Client SHALL compose a transaction ID and include it in the **M-Mbox-Delete.req** PDU. This transaction ID is used by the MMS Client and MMS Proxy-Relay to provide linkage between the originated **M-Mbox-Delete.req** PDU and the corresponding **M-Mbox-Delete.conf** PDU. The value used for the transaction ID is determined by the MMS Client and no interpretation is expected by the MMS Proxy-Relay.

After accepting the **M-Mbox-Delete.req**, the MMS Proxy-Relay SHALL respond with a **M-Mbox-Delete.conf** PDU that SHALL indicate the status of the completion of the request. If the request was not successful for any of the requested URI then the MMS Proxy-Relay SHALL include the URI that failed in the **M-Mbox-Delete.conf** PDU.

6.12.2. Error Considerations

Various error cases may exist. These include network faults, server faults and service faults. For network faults (e.g. server not available) or server faults (e.g. bad path) the MMS Client SHALL receive an error indication that relates to the transport layer error that was detected. These errors MAY be recoverable (e.g. MMS Proxy-Relay down temporarily) or may be more permanent in nature. If the MMS Proxy-Relay does not provide the **M-Mbox-Delete.conf** PDU or the lower protocol layer error message the MMS Client SHOULD be able to recover. Further strategies for recovery or retry are beyond the scope of this document to address.

Service errors are different. In these cases, e.g. MM not found, the MMS Proxy-Relay actually received the **M-Mbox-Delete.req** PDU and responds with either an **M-Mbox-Delete.conf** PDU if it does support MMBox transactions, or an **M-Send.conf** PDU if it does not support MMBox transactions; in either case the appropriate error code SHALL be included in the response.
6.13. Maintaining the MM State and MM Flags

6.13.1. MM State

The MM State of a MM that is stored in the MMBox SHALL be maintained by the MMS Proxy-Relay but MAY be overridden by the MMS Client. When the MMS Client does not intervene, the MMS Proxy-Relay SHALL set the MM State as follows:

- When the MM is stored in the MMBox as a result of the **M-Send** request the MM State SHALL be set to "Sent".
- When the MM is stored in the MMBox as a result of the **M-Forward** request, the MM State SHALL be set to "Forwarded".
- When the MM is stored in the MMBox as a result of the **M-Mbox-Store** request, the MM State SHALL be set to "New".
- When the MM is stored in the MMBox as a result of the **M-Mbox-Upload** request, the MM State SHALL be set to "Draft".
- After the MM is successfully retrieved from the MMBox as a result of the WSP/HTTP GET request, the MM State SHOULD be changed to "Retrieved".

These are the only values that the MM State SHALL have.

6.13.2. MM Flags

The MM Flags value SHALL be maintained by the MMS Client. The MMS Proxy-Relay SHALL store the value of this field together with the stored MM. The MMS Proxy-Relay SHALL only attach significance to the value of the MM Flags for filtering of MM in the **M-Mbox-View** transaction.

At present, the end-to-end security aspects of the **MMS** PDUs are dependent upon the security provided by the transport service(s) utilized. The use of MMS with transport layer hop-by-hop security protocols is described in section 8.3.2.

When the MMS Proxy-Relay in an M-Notification.ind PDU identifies a new MM to the MMS Client using the https URI scheme, the MMS Client SHALL use a secure transport for a subsequent retrieval operation, or indicate an error to the user.
7. Terminal Capability Negotiation

This section is normative.

If the MMS Client performs capability negotiation then it MUST use the mechanism specified in [UAPROF]. The MMS Proxy Relay SHOULD support this mechanism.

If using capability negotiation, the MMS Client SHALL indicate its capabilities within the UAProf information by using attributes from the MMS Characteristics component defined below and OPTIONALLY by using attributes from other components of the UAProf schema. The MMS Proxy-Relay SHOULD use this information in preparation of messages to be delivered to the MMS Client.

The MMS Proxy-Relay MAY adjust an MM to be delivered that contains media types that are not supported by the MMS Client. This adjustment MAY involve the deletion or adaptation of those unsupported media types.

The MMS Proxy-Relay SHALL not perform content adaptation on an MM that contains application data. The details of handling of such an MM by the MMS Proxy-Relay SHALL be according to [23.140].

7.1. MMS attributes in other components of the UAProf schema

This section is informative.

The UAProf specification includes a schema containing attributes that describe the client hardware, the browser user-agent, network characteristics and more. Some of the attributes included in the aforementioned specification also apply to the MMS Client, e.g. “ScreenSize”, “CpuType”, and “PushMessageSize”. For a complete reference to the attributes available in the UAProf schema, please see [UAPROF].

7.2. Summary of the MMS Characteristics component

This section is informative. A normative description can be found in Appendix B.

The table below summarizes the attributes defined within the MMS Characteristics component.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Resolution Rule</th>
<th>Type</th>
<th>Sample Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>MmsMaxMessageSize</td>
<td>The maximum size of a multimedia message in bytes.</td>
<td>Locked</td>
<td>Number</td>
<td>20480</td>
</tr>
<tr>
<td>MmsMaxImageResolution</td>
<td>The maximum size of an image in units of pixels (horizontal x vertical).</td>
<td>Locked</td>
<td>Literal</td>
<td>"80x60"</td>
</tr>
<tr>
<td>MmsCcppAccept</td>
<td>List of supported content types conveyed as MIME types.</td>
<td>Locked</td>
<td>Literal bag</td>
<td>“image/jpeg”, “audio/wav”, “video/mpeg-4”, “application/vnd.o ma.drm.message”</td>
</tr>
<tr>
<td>MmsCcppAcceptCharSet</td>
<td>List of character sets that the MMS Client supports. Each item in the list is a character set name registered with IANA.</td>
<td>Locked</td>
<td>Literal bag</td>
<td>“US-ASCII”, “ISO-8859-1”</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
<td>Locked</td>
<td>Type</td>
<td>Value</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
<td>--------</td>
<td>------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>MmsCcppAcceptLanguage</td>
<td>List of preferred languages. The first item in the list should be considered the user’s first choice. Property value is a list of natural languages, where each item in the list is the name of a language as defined by [RFC1766].</td>
<td></td>
<td>Literal bag</td>
<td>“en”, “fr”</td>
</tr>
<tr>
<td>MmsCcppAcceptEncoding</td>
<td>List of transfer encodings that the MMS Client supports. Property value is a list of transfer encodings, where each item in the list is a transfer encoding name as specified by [RFC2045] and registered with IANA.</td>
<td></td>
<td>Literal bag</td>
<td>“base64”, “quoted-printable”</td>
</tr>
<tr>
<td>MmsVersion</td>
<td>The MMS versions supported by the MMS Client conveyed as majorVersionNumber.minorVersionNumber.</td>
<td></td>
<td>Literal bag</td>
<td>“2.0”, “1.3”</td>
</tr>
<tr>
<td>MmsCcppStreamingCapable</td>
<td>Indicates whether the MMS Client is capable of invoking streaming.</td>
<td></td>
<td>Boolean</td>
<td>“Yes”, “No”</td>
</tr>
<tr>
<td>MmsSmilBaseSet</td>
<td>Indicates one or more base sets of SMIL modules that the client supports. "SMIL-CONF-1-2" identifies the SMIL base set and associated limitations defined in [MMSCONF]. Predefined values for base sets defined in [3GPP26234] may also be used (e.g. "SMIL-3GPP-R4" and "SMIL-3GPP-R5").</td>
<td></td>
<td>Literal bag</td>
<td>“SMIL-CONF-1-2”</td>
</tr>
<tr>
<td>MmsContentClass</td>
<td>List of supported MM Content Classes</td>
<td></td>
<td>Literal bag</td>
<td>“TX”, “IB”, “IR”, “VB”, “VR”, “MP”, “CB”, “CR”</td>
</tr>
<tr>
<td>MmsSuppressContentAdaptation</td>
<td>Requests that MMS Proxy-Relay performs no content adaptation in general.</td>
<td></td>
<td>Boolean</td>
<td>“Yes”, “No”</td>
</tr>
<tr>
<td>Attribute</td>
<td>Description</td>
<td>Lockable</td>
<td>Value Type</td>
<td>Value</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
<td>----------</td>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>MmsXHTMLBaseSet</td>
<td>Indicates one or more base sets of XHTML that the client supports in SMIL text regions in the context of retrieval/presentation. "XHTMLMP-CONF-1-3" identifies the XHTML MP base set and associated limitations defined in [MMSCONF] for retrieval and presentation. Predefined values for full support of XHTML MP may also be used (e.g. "XHTMLMP-FULL-1-0" and "XHTMLMP-FULL-1-1").</td>
<td>Locked</td>
<td>Literal bag</td>
<td>"XHTMLMP-CONF-1-3"</td>
</tr>
<tr>
<td>MmsApplicAddressing Capable</td>
<td>Indication that the MMS Client supports the transport of application specific data.</td>
<td>Locked</td>
<td>Boolean</td>
<td>“Yes”, “No”</td>
</tr>
<tr>
<td>MmsCMFBaseSet</td>
<td>It indicates that the client support CMF. "3GPP2-CMF-v1.0" indicates the CMF base set according to 3GPP2 C.S0050-0 v1.0, dated December 12, 2003.</td>
<td>Locked</td>
<td>Literal bag</td>
<td>"3GPP2-CMF-V1_0"</td>
</tr>
<tr>
<td>MmsDrmClass</td>
<td>List of the supported OMA DRM v1.0 download methods.</td>
<td>Locked</td>
<td>Literal bag</td>
<td>“ForwardLock”, “CombinedDelivery”, “SeparateDelivery”</td>
</tr>
</tbody>
</table>

Table 1: Attributes Defined within the MMS Characteristics Component
8. Binding to Transport Protocols

This section is normative; it defines how the MMS PDUs can be conveyed over HTTP, WSP and WAP Push. The structures of the MMS PDUs are defined in [MMSENCAPS].

The HTTP/WSP response codes reflect only HTTP/WSP layer conditions. MMS is defined at the application layer; MMS status codes and error conditions are handled through the MMS PDUs.

The Content-Type header defined in [RFC2616], [WSP] and [PUSHMSG] MUST be used with the MMS PDUs. The content type of the PDUs is application/vnd.wap.mms-message.

When setting up a WSP session and when sending WSP/HTTP GET requests the MMS Client SHOULD convey the capabilities of the terminal and of the MMS Client. For more details see section 7 on Terminal Capability Negotiation.

8.1. Binding When MMS Client Uses WSP Based Stack

The table below gives an overview of how MMS PDUs are bound to the WSP based protocol stack and the HTTP based protocol stack when MMS is implemented using a WAP 1.x Gateway.

<table>
<thead>
<tr>
<th>PDU</th>
<th>Client ↔ Proxy-Relay</th>
<th>Client ↔ WAP 1.x Gateway/PPG</th>
<th>WAP 1.x Gateway/PPG ↔ Proxy-Relay</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-Send.req</td>
<td>→</td>
<td>WSP POST</td>
<td>HTTP POST</td>
</tr>
<tr>
<td>M-Send.conf</td>
<td>←</td>
<td>WSP 200 OK</td>
<td>HTTP 200 OK</td>
</tr>
<tr>
<td>M-Retrieve.conf</td>
<td>←</td>
<td>WSP 200 OK</td>
<td>HTTP 200 OK</td>
</tr>
<tr>
<td>M-Notification.ind</td>
<td>←</td>
<td>Confirmed Push or Unconfirmed Push</td>
<td>Push Access Protocol</td>
</tr>
<tr>
<td>M-NotifyResp.ind</td>
<td>→</td>
<td>WSP POST</td>
<td>HTTP POST</td>
</tr>
<tr>
<td>M-Delivery.ind</td>
<td>←</td>
<td>Confirmed Push or Unconfirmed Push</td>
<td>Push Access Protocol</td>
</tr>
<tr>
<td>M-Acknowledge.ind</td>
<td>→</td>
<td>WSP POST</td>
<td>HTTP POST</td>
</tr>
<tr>
<td>M-Read-Rec.ind</td>
<td>←</td>
<td>WSP POST</td>
<td>HTTP POST</td>
</tr>
<tr>
<td>M-Read-Orig.ind</td>
<td>←</td>
<td>Confirmed Push or Unconfirmed Push</td>
<td>Push Access Protocol</td>
</tr>
<tr>
<td>M-Forward.req</td>
<td>→</td>
<td>WSP POST</td>
<td>HTTP POST</td>
</tr>
<tr>
<td>M-Forward.conf</td>
<td>←</td>
<td>WSP 200 OK</td>
<td>HTTP 200 OK</td>
</tr>
<tr>
<td>M-Mbox-Store.req</td>
<td>→</td>
<td>WSP POST</td>
<td>HTTP POST</td>
</tr>
<tr>
<td>M-Cancel.req</td>
<td>←</td>
<td>Confirmed Push or Unconfirmed Push</td>
<td>Push Access Protocol</td>
</tr>
<tr>
<td>M-Cancel.conf</td>
<td>→</td>
<td>WSP POST</td>
<td>HTTP POST</td>
</tr>
<tr>
<td>M-Delete.req</td>
<td>→</td>
<td>WSP POST</td>
<td>HTTP POST</td>
</tr>
<tr>
<td>M-Delete.conf</td>
<td>←</td>
<td>WSP 200 OK</td>
<td>HTTP 200 OK</td>
</tr>
<tr>
<td>M-Mbox-Store.conf</td>
<td>←</td>
<td>WSP 200 OK</td>
<td>HTTP 200 OK</td>
</tr>
<tr>
<td>M-Mbox-View.req</td>
<td>→</td>
<td>WSP POST</td>
<td>HTTP POST</td>
</tr>
<tr>
<td>M-Mbox-View.conf</td>
<td>←</td>
<td>WSP 200 OK</td>
<td>HTTP 200 OK</td>
</tr>
<tr>
<td>M-Mbox-Upload.req</td>
<td>→</td>
<td>WSP POST</td>
<td>HTTP POST</td>
</tr>
<tr>
<td>M-Mbox-Upload.conf</td>
<td>←</td>
<td>WSP 200 OK</td>
<td>HTTP 200 OK</td>
</tr>
<tr>
<td>M-Mbox-Delete.req</td>
<td>→</td>
<td>WSP POST</td>
<td>HTTP POST</td>
</tr>
<tr>
<td>M-Mbox-Delete.conf</td>
<td>←</td>
<td>WSP 200 OK</td>
<td>HTTP 200 OK</td>
</tr>
</tbody>
</table>

Table 2: MMS PDU Bindings When MMS Client Uses WSP Based Stack
WSP [WAPWSP] provides both a connection-mode session service and a connectionless session service. The MMS Client may utilize either of these when invoking a WSP request operation. If using the connection-mode service, then, unless there is an existing WSP session between the WAP 1.x Gateway and the terminal, one has to be set up before the sending of a WSP request.

For more details about the transport layer bindings when the MMS Client uses the WSP based protocol stack, please refer to section 8.1.1 through 8.1.12.

8.1.1. Sending an MM

To submit an MM, the MMS Client SHALL invoke a WSP POST operation with the M-Send.req PDU embedded as the content body. This POST is submitted using a URI that addresses the MMS Proxy-Relay that supports the specific MMS Client. The WAP 1.x Gateway then forwards the PDU to the MMS Proxy-Relay using regular HTTP POST [RFC2616].

The ‘200 OK’ response to the WSP/HTTP POST that contained the M-Send.req PDU carries the confirmation PDU, i.e., the M-Send.conf.

8.1.2. Notification

The M-Notification.ind is carried as push content, either over confirmed or unconfirmed push [PUSHOTA]. The Push Initiator, i.e., the MMS Proxy-Relay, requests the type of push to be used [PUSHPAP] when submitting the M-Notification.ind to the PPG.

The M-Notification.ind PDU SHALL be sent as the message body of a [PUSHMSG]. The X-Wap-Application-Id message header of that push message MUST be set to ‘x-wap-application:mms.ua’ if the absoluteURI form of the app-id syntax is used, and MUST be set to ‘4’ if the app-assigned-code form of the app-id syntax is used.

To send a notification response, the MMS Client SHALL invoke a WSP POST operation with an M-NotifyResp.ind PDU embedded as the content body. This POST is submitted using a URI that addresses the MMS Proxy-Relay that supports the specific MMS Client. The WAP 1.x Gateway then forwards the PDU to the MMS Proxy-Relay using regular HTTP POST [RFC2616]. The MMS Client SHOULD ignore the associated WSP/HTTP POST response from the MMS Proxy-Relay.

8.1.3. Retrieving an MM

The terminal invokes a WSP GET operation. The ‘200 OK’ response to the GET contains the M-Retrieve.conf PDU, which includes the actual MM.

The M-Acknowledge.ind PDU is transported in the same way as the M-NotifyResp.ind PDU, i.e., by a WSP POST between the terminal and the WAP 1.x Gateway and then forwarded via HTTP to the MMS Proxy-Relay. The MMS Client SHOULD ignore the associated WSP/HTTP POST response from the MMS Proxy-Relay.

8.1.4. Delivery Report

The M-Delivery.ind is pushed from the originating MMS Proxy-Relay to the originating terminal the same way as the M-Notification.ind on the receiving side.

8.1.5. Read Report

The M-Read-Rec.ind PDU is transported in the same way as the M-NotifyResp.ind PDU. The M-Read-Orig.ind PDU is transported in the same way as the M-Notification.ind PDU.

8.1.6. Forward without Download

The M-Forward.req is transported in the same way as the M-Send.req. The M-Forward.conf is transported in the same way as the M-Send.conf.
8.1.7. Cancel

The M-Cancel.req is pushed from the MMS Proxy-Relay to the receiving terminal the same way as the M-Notification.ind. The M-Cancel.conf PDU is transported in the same way as the M-NotifyResp.ind PDU.

8.1.8. Deleting MM from MMS Proxy-Relay

8.1.9. The M-Delete.req is transported in the same way as the M-Send.req. The M-Delete.conf is transported in the same way as the M-Send.conf. Store-Update MM in MMBox

The M-Mbox-Store.req is transported in the same way as the M-Send.req. The M-Mbox-Store.conf is transported in the same way as the M-Send.conf.

8.1.10. Viewing MM Information from MMBox

The M-Mbox-View.req is transported in the same way as the M-Send.req. The M-Mbox-View.conf is transported in the same way as the M-Send.conf.

8.1.11. Uploading MM to MMBox

The M-Mbox-Upload.req is transported in the same way as the M-Send.req. The M-Mbox-Upload.conf is transported in the same way as the M-Send.conf.

8.1.12. Deleting MM from MMBox

The M-Mbox-Delete.req is transported in the same way as the M-Send.req. The M-Mbox-Delete.conf is transported in the same way as the M-Send.conf.

8.2. Binding When MMS Client Uses HTTP Based Stack

The table below gives an overview of how MMS PDUs are bound to the HTTP based protocol stack when the MMS link does not employ a WAP 1.x Gateway.

<table>
<thead>
<tr>
<th>PDU</th>
<th>Client ↔ Proxy-Relay</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-Send.req</td>
<td>→</td>
<td>HTTP POST</td>
</tr>
<tr>
<td>M-Send.conf</td>
<td>←</td>
<td>HTTP 200 OK</td>
</tr>
<tr>
<td>M-Retrieve.conf</td>
<td>←</td>
<td>HTTP 200 OK</td>
</tr>
<tr>
<td>M-Notification.ind</td>
<td>←</td>
<td>Push Access Protocol between MMS Proxy-Relay and PPG; Confirmed Push or Unconfirmed Push between PPG and MMS Client</td>
</tr>
<tr>
<td>M-NotifyResp.ind</td>
<td>→</td>
<td>HTTP POST</td>
</tr>
<tr>
<td>PDU</td>
<td>Client ↔ Proxy-Relay</td>
<td>Method</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>M-Delivery.ind</td>
<td>←</td>
<td>Push Access Protocol between MMS Proxy-Relay and PPG; Confirmed Push or Unconfirmed Push between PPG and MMS Client</td>
</tr>
<tr>
<td>M-Acknowledge.ind</td>
<td>→</td>
<td>HTTP POST</td>
</tr>
<tr>
<td>M-Read-Rec.ind</td>
<td>→</td>
<td>HTTP POST</td>
</tr>
<tr>
<td>M-Read-Orig.ind</td>
<td>←</td>
<td>Push Access Protocol between MMS Proxy-Relay and PPG; Confirmed Push or Unconfirmed Push between PPG and MMS Client</td>
</tr>
<tr>
<td>M-Forward.req</td>
<td>→</td>
<td>HTTP POST</td>
</tr>
<tr>
<td>M-Forward.conf</td>
<td>←</td>
<td>HTTP 200 OK</td>
</tr>
<tr>
<td>M-Cancel.req</td>
<td>←</td>
<td>Push Access Protocol between MMS Proxy-Relay and PPG; Confirmed Push or Unconfirmed Push between PPG and MMS Client</td>
</tr>
<tr>
<td>M-Cancel.conf</td>
<td>→</td>
<td>HTTP POST</td>
</tr>
<tr>
<td>M-Delete.req</td>
<td>→</td>
<td>HTTP POST</td>
</tr>
<tr>
<td>M-Delete.conf</td>
<td>←</td>
<td>HTTP 200 OK</td>
</tr>
<tr>
<td>M-Mbox-Store.req</td>
<td>→</td>
<td>HTTP POST</td>
</tr>
<tr>
<td>M-Mbox-Store.conf</td>
<td>←</td>
<td>HTTP 200 OK</td>
</tr>
<tr>
<td>M-Mbox-View.req</td>
<td>→</td>
<td>HTTP POST</td>
</tr>
<tr>
<td>M-Mbox-View.conf</td>
<td>←</td>
<td>HTTP 200 OK</td>
</tr>
<tr>
<td>M-Mbox-Upload.req</td>
<td>→</td>
<td>HTTP POST</td>
</tr>
<tr>
<td>M-Mbox-Upload.conf</td>
<td>←</td>
<td>HTTP 200 OK</td>
</tr>
<tr>
<td>M-Mbox-Delete.req</td>
<td>→</td>
<td>HTTP POST</td>
</tr>
<tr>
<td>M-Mbox-Delete.conf</td>
<td>←</td>
<td>HTTP 200 OK</td>
</tr>
</tbody>
</table>

Table 3: MMS PDU Bindings When MMS Client Uses HTTP Based Stack

For more details about the transport layer bindings when the MMS Client uses the HTTP based protocol stack, please refer to section 8.2.1 through 8.2.12.
8.2.1. Sending an MM

Unless there is an existing TCP connection between the MMS Proxy-Relay and the terminal, one has to be set up before the sending of an MM [WP-HTTP]. To submit an MM, the MMS Client SHALL invoke an HTTP POST operation with the M-Send.req PDU embedded as the content body. This POST is submitted using a URI that addresses the MMS Proxy-Relay that supports the specific MMS Client.

The ‘200 OK’ response to the HTTP POST that contained the M-Send.req PDU carries the confirmation PDU, i.e., the M-Send.conf.

8.2.2. Notification

The M-Notification.ind is carried as push content, either over confirmed or unconfirmed push [PUSHOTA]. The Push Initiator, i.e., the MMS Proxy-Relay, requests the type of push to be used [PUSHPAP] when submitting the M-Notification.ind to the PPG.

The M-Notification.ind PDU SHALL be sent as the message body of a [PUSHMSG]. The X-Wap-Application-Id message header of that push message MUST be set to ‘x-wap-application:mms.ua’ if the absoluteURI form of the app-id syntax is used, and MUST be set to ‘4’ if the app-assigned-code form of the app-id syntax is used.

To send a notification response, the MMS Client SHALL invoke an HTTP POST operation with an M-NotifyResp.ind PDU embedded as the content body. This POST is submitted using a URI that addresses the MMS Proxy-Relay that supports the specific MMS Client. The MMS Client SHOULD ignore the associated HTTP POST response from the MMS Proxy-Relay.

8.2.3. Retrieving an MM

If there is no existing TCP connection one has to be set up before the retrieval of an MM. The terminal uses the established TCP connection to do an HTTP GET operation. The ‘200 OK’ response to the GET contains the M-Retrieve.conf PDU, which includes the actual MM.

The M-Acknowledge.ind PDU is transported in the same way as the M-Notify.ind PDU, i.e., by an HTTP POST over a TCP connection between the terminal and the MMS Proxy-Relay. The MMS Client SHOULD ignore the associated HTTP POST response from the MMS Proxy-Relay.

8.2.4. Delivery Report

The M-Delivery.ind is pushed from the originating MMS Proxy-Relay to the originating terminal the same way as the M-Notification.ind on the receiving side.

8.2.5. Read Report

The M-Read-Rec.ind PDU is transported in the same way as the M-NotifyResp.ind PDU. The M-Read-Orig.ind PDU is transported in the same way as the M-Notification.ind PDU.

8.2.6. Forward without Download

The M-Forward.req is transported in the same way as the M-Send.req. The M-Forward.conf is transported in the same way as the M-Send.conf.

8.2.7. Cancel

The M-Cancel.req is pushed from the MMS Proxy-Relay to the receiving terminal the same way as the M-Notification.ind. The M-Cancel.conf PDU is transported in the same way as the M-NotifyResp.ind PDU.

8.2.8. Deleting MM from MMS Proxy-Relay

The M-Delete.req is transported in the same way as the M-Send.req. The M-Delete.conf is transported in the same way as the M-Send.conf.
8.2.9. Store-Update MM in MMBox

The **M-Mbox-Store.req** is transported in the same way as the **M-Send.req**. The **M-Mbox-Store.conf** is transported in the same way as the **M-Send.conf**.

8.2.10. Viewing MM Information from MMBox

The **M-Mbox-View.req** is transported in the same way as the **M-Send.req**. The **M-Mbox-View.conf** is transported in the same way as the **M-Send.conf**.

8.2.11. Uploading MM to MMBox

The **M-Mbox-Upload.req** is transported in the same way as the **M-Send.req**. The **M-Mbox-Upload.conf** is transported in the same way as the **M-Send.conf**.

8.2.12. Deleting MM from MMBox

The **M-Mbox-Delete.req** is transported in the same way as the **M-Send.req**. The **M-Mbox-Delete.conf** is transported in the same way as the **M-Send.conf**.

8.3. URI Schemes

Every WSP request and every HTTP request includes a URI. The following standard URI schemes are defined for MMS Clients.

8.3.1. The http URI Scheme

The http URI scheme identifies a particular URI syntax suitable for naming resources stored on hypermedia origin servers. The specification of an http scheme does not imply the use of a particular communication protocol between an MMS Client and an MMS Proxy-Relay or a WAP 1.x Gateway. An MMS Client SHALL access the MMS Proxy-Relay specified by the URI either directly using WP-HTTP/HTTP, or via a WAP 1.x Gateway that supports protocol conversion between HTTP and WSP. Alternatively the URI may specify an MMS Proxy-Relay, which combines the function of a WAP 1.x Gateway and MMS Proxy-Relay into one entity. In this case the resource SHALL be accessed directly across the WSP protocol.

8.3.2. The https URI Scheme

The https URI scheme indicates that the named resource is on a secure origin server. This conventionally implies the use of HTTP [RFC2616] over a transport layer security protocol such as TLS between the client and the origin server.

An MMS Client accessing the resource specified by the https URI using the connection-oriented protocol stack, consisting of Wireless Profiled HTTP [WP-HTTP] and Wireless Profiled TCP [WP-TCP], MUST use Wireless Profiled HTTP over the transport layer security protocol in accordance with “WAP TLS Profile and Tunnelling Specification” [WP-TLS] to communicate with the MMS Proxy-Relay; otherwise, an indication of lack of security MUST be given to the user and the operation MUST be aborted.

If an MMS Client uses the connection-oriented protocol through a PEP to communicate with the MMS Proxy-Relay, the PEP behaves in accordance with [RFC2817] and tunnels the transport layer security protocol (e.g., WP-TLS) through the PEP for the duration of the secure session. The MMS Client MUST use the HTTP CONNECT method [WP-TLS] to establish the secure transport protocol tunnel with the MMS Proxy-Relay. An indication MUST be given to the user and the operation MUST be aborted if a tunnel cannot be established.

The establishment of a secure session using the connection-oriented protocol SHOULD be indicated to the user. This applies whether the secure session operates directly or through one or more PEPs.

An MMS Client accessing the resource specified by the https URI using the datagram-oriented protocol stack, consisting of WDP, WTP + WSP with WTLS providing the transport layer security protocol, MUST request the resource via WAPWSP using a WTLS secured session. An indication MUST be given to the user and the operation MUST be aborted if the WTLS session cannot be established.
If the MMS Client accessing the resource specified by the https URI uses the datagram-oriented protocol through a WAP 1.x Gateway to communicate to the MMS Proxy-Relay, the WAP 1.x Gateway uses HTTP/1.1 [RFC2616] over TLS or SSL to communicate with the MMS Proxy-Relay; otherwise, the WAP 1.x Gateway denies the operation and responds with an indication to the MMS Client by a well known warning or error code. In order to indicate to the MMS Proxy-Relay that the transport layer security consists of WTLS between MMS Client and WAP 1.x Gateway, the WAP 1.x Gateway inserts the HTTP VIA header with the received-protocol for the secure WSP connection being indicated as WSPS/<WSP version number> to indicate secure WSP.
Appendix A. Static Conformance Requirements (Normative)

The format, contents and syntax of the tables in this section are as mandated by [CREQ].

The SCR items in the “Requirement” column can be found in the following WAP specifications:

- SCR items starting with “UAProf” are defined in [UAPROF].
- SCR items starting with “MMSE” are defined in [MMSENCAPS].
- SCR items starting with “MSG” are defined in [PUSHMSG].
- SCR items starting with “OTA” are defined in [PUSHOTA].
- SCR items starting with “WSP” are defined in [WAPWSP].
- SCR items starting with “HTTP” are defined in [WP-HTTP].
- SCR items starting with “TLS” are defined in [WP-TLS].
- SCR items starting with “WTLS” are defined in [WTLS].

A.1 MMS Client

A.1.1 Client Level Function Groups

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Reference</th>
<th>Status</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSCTR-CLF-C-001</td>
<td>Support for MMS Client Functions</td>
<td>6</td>
<td>M</td>
<td>MMSCTR-CLF-C-002 OR MMSCTR-CLF-C-003</td>
</tr>
<tr>
<td>MMSCTR-CLF-C-002</td>
<td>Support for Originating MMS Client Functions</td>
<td>6.1, 6.5</td>
<td>O</td>
<td>MMSCTR-SND-C-001 AND MMSCTR-DRP-C-001</td>
</tr>
<tr>
<td>MMSCTR-CLF-C-003</td>
<td>Support for Receiving MMS Client Functions</td>
<td>6.2, 6.3</td>
<td>O</td>
<td>MMSCTR-NTF-C-001 AND MMSCTR-FTC-C-001</td>
</tr>
<tr>
<td>MMSCTR-CLF-C-004</td>
<td>Capability Negotiation between Receiving MMS Client and MMS Proxy-Relay using the UAProf Component MMS Characteristics</td>
<td>7, 8</td>
<td>O</td>
<td>MMSCTR-CLF-C-003 AND UAProf: MCF</td>
</tr>
<tr>
<td>MMSCTR-CLF-C-005</td>
<td>Support for MMBox functionality</td>
<td>7</td>
<td>O</td>
<td></td>
</tr>
</tbody>
</table>

A.1.2 Send Transaction

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Reference</th>
<th>Status</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSCTR-SND-C-001</td>
<td>Send Transaction between Originating MMS Client and MMS Proxy-Relay</td>
<td>6.1</td>
<td>O</td>
<td>MMSCTR-SND-C-002 AND MMSCTR-SND-C-003</td>
</tr>
<tr>
<td>MMSCTR-SND-C-002</td>
<td>Originating MMS Client Sending M-Send.req to MMS Proxy-Relay</td>
<td>6.1.1</td>
<td>O</td>
<td>MMSCTR-PDU-C-001 AND MMSCTR-WSP-C-001</td>
</tr>
<tr>
<td>MMSCTR-SND-C-003</td>
<td>MMS Proxy-Relay Sending M-Send.conf to Originating MMS Client</td>
<td>6.1.1</td>
<td>O</td>
<td>MMSCTR-PDU-C-002 AND MMSCTR-WSP-C-002</td>
</tr>
</tbody>
</table>
A.1.3 Notification Transaction

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Reference</th>
<th>Status</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSCTR-NTF-C-001</td>
<td>Notification Transaction between MMS Proxy-Relay and Receiving MMS Client</td>
<td>6.2</td>
<td>O</td>
<td>MMSCTR-NTF-C-002 AND MMSCTR-NTF-C-003</td>
</tr>
<tr>
<td>MMSCTR-NTF-C-002</td>
<td>MMS Proxy-Relay Sending M-Notification.ind to Receiving MMS Client</td>
<td>6.2.1</td>
<td>O</td>
<td>MMSCTR-PDU-C-003 AND MMSCTR-PSH-C-001 AND MMSCTR-PSH-C-002 AND MMSCTR-PSH-C-003</td>
</tr>
<tr>
<td>MMSCTR-NTF-C-003</td>
<td>Receiving MMS Client Sending M-NotifyResp.ind to MMS Proxy-Relay</td>
<td>6.2.1</td>
<td>O</td>
<td>MMSCTR-PDU-C-004 AND MMSCTR-WSP-C-001</td>
</tr>
</tbody>
</table>

A.1.4 Retrieve Transaction

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Reference</th>
<th>Status</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSCTR-FTC-C-001</td>
<td>Retrieval Transaction between Receiving MMS Client and MMS Proxy-Relay</td>
<td>6.3</td>
<td>O</td>
<td>MMSCTR-FTC-C-002 AND MMSCTR-FTC-C-003 AND MMSCTR-FTC-C-004</td>
</tr>
<tr>
<td>MMSCTR-FTC-C-002</td>
<td>Receiving MMS Client Sending Retrieve Request to MMS Proxy-Relay</td>
<td>6.3.1</td>
<td>O</td>
<td>MMSCTR-WSP-C-003</td>
</tr>
<tr>
<td>MMSCTR-FTC-C-003</td>
<td>MMS Proxy-Relay Sending M-retrieve.conf to Receiving MMS Client</td>
<td>6.3.1</td>
<td>O</td>
<td>MMSCTR-PDU-C-005 AND MMSCTR-WSP-C-004</td>
</tr>
<tr>
<td>MMSCTR-FTC-C-004</td>
<td>Receiving MMS Client Sending M-Acknowledge.ind to MMS Proxy-Relay</td>
<td>6.3.1</td>
<td>O</td>
<td>MMSCTR-PDU-C-006 AND MMSCTR-WSP-C-001</td>
</tr>
</tbody>
</table>

A.1.5 Forward Transaction

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Reference</th>
<th>Status</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSCTR-FWD-C-001</td>
<td>Forward Transaction between Forwarding MMS Client and MMS Proxy-Relay</td>
<td>6.4</td>
<td>O</td>
<td>MMSCTR-FWD-C-002 AND MMSCTR-FWD-C-003</td>
</tr>
<tr>
<td>MMSCTR-FWD-C-002</td>
<td>Forwarding MMS Client Sending M-Forward.req to MMS Proxy-Relay</td>
<td>6.4.1</td>
<td>O</td>
<td>MMSCTR-PDU-C-010 AND MMSCTR-WSP-C-001</td>
</tr>
<tr>
<td>MMSCTR-FWD-C-003</td>
<td>MMS Proxy-Relay Sending M-Forward.conf to Forwarding MMS Client</td>
<td>6.4.1</td>
<td>O</td>
<td>MMSCTR-PDU-C-011 AND MMSCTR-WSP-C-002</td>
</tr>
</tbody>
</table>
A.1.6 Delivery Report Transaction

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Reference</th>
<th>Status</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSCTR-DRP-C-001</td>
<td>Delivery Report Transaction between MMS Proxy-Relay and Originating MMS Client</td>
<td>6.5</td>
<td>O</td>
<td>MMSCTR-DRP-C-002</td>
</tr>
<tr>
<td>MMSCTR-DRP-C-002</td>
<td>MMS Proxy-Relay Sending M-Delivery.ind to Originating MMS Client</td>
<td>6.5.1</td>
<td>O</td>
<td>MMSCTR-PDU-C-007 AND MMSCTR-PSH-C-001 AND MMSCTR-PSH-C-002 AND MMSCTR-PSH-C-003</td>
</tr>
</tbody>
</table>

A.1.7 Read Reports

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Reference</th>
<th>Status</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSCTR-RRP-C-001</td>
<td>Ability to Generate Read Report in Receiving MMS Client</td>
<td>6.6.1, 6.6.3.1</td>
<td>O</td>
<td>MMSCTR-SND-C-001</td>
</tr>
<tr>
<td>MMSCTR-RRP-C-002</td>
<td>Ability to Receive Read Report in Originating MMS Client</td>
<td>6.6.1, 6.6.3.1</td>
<td>O</td>
<td>MMSCTR-NTF-C-001 AND MMSCTR-FTC-C-001</td>
</tr>
<tr>
<td>MMSCTR-RRP-C-003</td>
<td>Ability to handle Read Reports</td>
<td>6.6</td>
<td>O</td>
<td>MMSCTR-RRP-C-004 OR MMSCTR-RRP-C-005</td>
</tr>
<tr>
<td>MMSCTR-RRP-C-004</td>
<td>Ability to handle Read Reports in the form of a multimedia message</td>
<td>6.6.1, 6.6.3.1</td>
<td>O</td>
<td>MMSCTR-RRP-C-001 AND MMSCTR-RRP-C-002</td>
</tr>
<tr>
<td>MMSCTR-RRP-C-005</td>
<td>Ability to handle Read reports in the form of PDUs</td>
<td>6.6.2, 6.6.3.2</td>
<td>O</td>
<td>MMSCTR-RRP-C-006 AND MMSCTR-RRP-C-007 AND MMSCTR-RRP-C-008</td>
</tr>
<tr>
<td>MMSCTR-RRP-C-006</td>
<td>Ability to Generate Read Report PDU in Receiving MMS Client</td>
<td>6.6.26.6.3.2</td>
<td>O</td>
<td>MMSCTR-PDU-C-008</td>
</tr>
<tr>
<td>MMSCTR-RRP-C-007</td>
<td>Ability to Send Read Report PDU from Receiving MMS Client to MMS Proxy-Relay</td>
<td>6.6.2, 6.6.3.2</td>
<td>O</td>
<td>MMSCTR-WSP-C-001</td>
</tr>
<tr>
<td>MMSCTR-RRP-C-008</td>
<td>Ability to Receive Read Report PDU in Originating MMS Client</td>
<td>6.6.2, 6.6.3.2</td>
<td>O</td>
<td>MMSCTR-PSH-C-001 AND MMSCTR-PSH-C-002 AND MMSCTR-PSH-C-003</td>
</tr>
</tbody>
</table>

A.1.8 Store/Update Transaction

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Reference</th>
<th>Status</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSCTR-UPD-C-001</td>
<td>Store Transaction between Originating MMS Client and MMS Proxy-Relay</td>
<td>6.9</td>
<td>O</td>
<td>MMSCTR-UPD-C-002 AND MMSCTR-UPD-C-003</td>
</tr>
</tbody>
</table>

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Reference</th>
<th>Status</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSCTR-UPD-C-002</td>
<td>Originating MMS Client Sending M-Mbox-Store.req to MMS Proxy-Relay</td>
<td>6.9.1</td>
<td>O</td>
<td>MMSCTR-PDU-C-001 AND MMSCTR-WSP-C-001</td>
</tr>
<tr>
<td>MMSCTR-UPD-C-003</td>
<td>MMS Proxy-Relay Sending M-Mbox-Store.conf to Originating MMS Client</td>
<td>6.9.1</td>
<td>O</td>
<td>MMSCTR-PDU-C-002 AND MMSCTR-WSP-C-002</td>
</tr>
</tbody>
</table>

A.1.9 View Transaction

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Reference</th>
<th>Status</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSCTR-VEW-C-001</td>
<td>View Transaction between Originating MMS Client and MMS Proxy-Relay</td>
<td>6.10</td>
<td>O</td>
<td>MMSCTR-VEW-C-002 AND MMSCTR-VEW-C-003</td>
</tr>
<tr>
<td>MMSCTR-VEW-C-002</td>
<td>Originating MMS Client Sending M-Mbox-View.req to MMS Proxy-Relay</td>
<td>6.10.1</td>
<td>O</td>
<td>MMSCTR-PDU-C-001 AND MMSCTR-WSP-C-001</td>
</tr>
<tr>
<td>MMSCTR-VEW-C-003</td>
<td>MMS Proxy-Relay Sending M-Mbox-View.conf to Originating MMS Client</td>
<td>6.10.1</td>
<td>O</td>
<td>MMSCTR-PDU-C-002 AND MMSCTR-WSP-C-002</td>
</tr>
<tr>
<td>MMSCTR-VEW-C-004</td>
<td>MMS Proxy-Relay sending Information Elements of selected MM in multipart.mixed content of M-Mbox-View.conf PDU to originating MMS Client</td>
<td>6.10.1</td>
<td>O</td>
<td>MMSCTR-PDU-C-002 AND MMSCTR-WSP-C-002</td>
</tr>
</tbody>
</table>

A.1.10 Upload Transaction

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Reference</th>
<th>Status</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSCTR-UPL-C-001</td>
<td>Upload Transaction between Originating MMS Client and MMS Proxy-Relay</td>
<td>6.11 above</td>
<td>O</td>
<td>MMSCTR-UPL-C-002 AND MMSCTR-UPL-C-003</td>
</tr>
<tr>
<td>MMSCTR-UPL-C-002</td>
<td>Originating MMS Client Sending M-Mbox-Upload.req to MMS Proxy-Relay</td>
<td>6.11.1 above</td>
<td>O</td>
<td>MMSCTR-PDU-C-001 AND MMSCTR-WSP-C-001</td>
</tr>
<tr>
<td>MMSCTR-UPL-C-003</td>
<td>MMS Proxy-Relay Sending M-Mbox-Upload.conf to Originating MMS Client</td>
<td>6.11.1 above</td>
<td>O</td>
<td>MMSCTR-PDU-C-002 AND MMSCTR-WSP-C-002</td>
</tr>
</tbody>
</table>
A.1.11 Delete Transaction

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Reference</th>
<th>Status</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSCTR-DLT-C-001</td>
<td>Delete Transaction between Originating MMS Client and MMS Proxy-Relay</td>
<td>6.12</td>
<td>O</td>
<td>MMSCTR-DLT-C-002 AND MMSCTR-DLT-C-003</td>
</tr>
<tr>
<td>MMSCTR-DLT-C-002</td>
<td>Originating MMS Client Sending M-Mbox-Delete.req to MMS Proxy-Relay</td>
<td>6.12.1</td>
<td>O</td>
<td>MMSCTR-PDU-C-001 AND MMSCTR-WSP-C-001</td>
</tr>
<tr>
<td>MMSCTR-DLT-C-003</td>
<td>MMS Proxy-Relay Sending M-Mbox-Delete.conf to Originating MMS Client</td>
<td>6.12.1</td>
<td>O</td>
<td>MMSCTR-PDU-C-002 AND MMSCTR-WSP-C-002</td>
</tr>
</tbody>
</table>

A.1.12 PDU Encapsulation Dependencies

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Reference</th>
<th>Status</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSCTR-PDU-C-001</td>
<td>Originating MMS Client Sending Encapsulated M-Send.req PDU to MMS Proxy-Relay</td>
<td>6.1.1</td>
<td>O</td>
<td>MMSE-C-016 AND MMSE-C-017 AND MMSE-C-018 AND MMSE-C-020 AND MMSE-C-024 AND MMSE-C-033 AND MMSE-C-036</td>
</tr>
<tr>
<td>MMSCTR-PDU-C-002</td>
<td>MMS Proxy-Relay Sending Encapsulated M-Send.conf PDU to Originating MMS Client</td>
<td>6.1.1</td>
<td>O</td>
<td>MMSE-C-016 AND MMSE-C-017 AND MMSE-C-018 AND MMSE-C-034 AND MMSE-C-037</td>
</tr>
<tr>
<td>MMSCTR-PDU-C-003</td>
<td>MMS Proxy-Relay Sending Encapsulated M-Notification.ind PDU to Receiving MMS Client</td>
<td>6.2.1</td>
<td>O</td>
<td>MMSE-C-042 AND MMSE-C-043 AND MMSE-C-044 AND MMSE-C-047 AND MMSE-C-048 AND MMSE-C-049 AND MMSE-C-050</td>
</tr>
<tr>
<td>MMSCTR-PDU-C-004</td>
<td>Receiving MMS Client Sending Encapsulated M-NotifyResp.ind PDU to MMS Proxy-Relay</td>
<td>6.2.1</td>
<td>O</td>
<td>MMSE-C-042 AND MMSE-C-043 AND MMSE-C-044 AND MMSE-C-051</td>
</tr>
<tr>
<td>MMSCTR-PDU-C-005</td>
<td>MMS Proxy-Relay Sending Encapsulated M-retrieve.conf PDU to Receiving MMS Client</td>
<td>6.3.1</td>
<td>O</td>
<td>MMSE-C-058 AND MMSE-C-061 AND MMSE-C-062 AND MMSE-C-063 AND MMSE-C-072</td>
</tr>
<tr>
<td>MMSCTR-PDU-C-006</td>
<td>Receiving MMS Client Sending Encapsulated M-Acknowledge.ind PDU to MMS Proxy-Relay</td>
<td>6.3.1</td>
<td>O</td>
<td>MMSE-C-083 AND MMSE-C-084 AND MMSE-C-085</td>
</tr>
<tr>
<td>MMSCTR-PDU-C-007</td>
<td>MMS Proxy-Relay Sending Encapsulated M-Delivery.ind PDU to Originating MMS Client</td>
<td>6.5.1</td>
<td>O</td>
<td>MMSE-C-083 AND MMSE-C-085 AND MMSE-C-087 AND MMSE-C-088 AND MMSE-C-089 AND MMSE-C-090</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>MMSCTR-PDU-C-008</td>
<td>Receiving MMS Client Sending Encapsulated M-Read-Rec.ind PDU to MMS Proxy-Relay</td>
<td>6.6.2</td>
<td>O</td>
<td>MMSE-RDR-C-004 AND MMSE-RDR-C-005 AND MMSE-RDR-C-006 AND MMSE-RDR-C-007 AND MMSE-RDR-C-008 AND MMSE-RDR-C-011</td>
</tr>
<tr>
<td>MMSCTR-PDU-C-009</td>
<td>MMS Proxy-Relay Sending Encapsulated M-Read-Orig.ind PDU to Originating MMS Client</td>
<td>6.6.2</td>
<td>O</td>
<td>MMSE-RDR-C-004 AND MMSE-RDR-C-005 AND MMSE-RDR-C-006 AND MMSE-RDR-C-007 AND MMSE-RDR-C-008 AND MMSE-RDR-C-010 AND MMSE-RDR-C-011</td>
</tr>
<tr>
<td>MMSCTR-PDU-C-010</td>
<td>MMS Client Sending Encapsulated M-Forward.req PDU to MMS Proxy-Relay</td>
<td>6.4.1</td>
<td>O</td>
<td>MMSE-FWD-C-002 AND MMSE-FWD-C-003 AND MMSE-FWD-C-004 AND MMSE-FWD-C-006 AND MMSE-FWD-C-015 AND MMSE-FWD-C-019</td>
</tr>
<tr>
<td>MMSCTR-PDU-C-011</td>
<td>MMS Proxy-Relay Sending Encapsulated M-Forward.conf PDU to MMS Client</td>
<td>6.4.1</td>
<td>O</td>
<td>MMSE-FWD-C-002 AND MMSE-FWD-C-003 AND MMSE-FWD-C-004 AND MMSE-FWD-C-006 AND MMSE-FWD-C-015 AND MMSE-FWD-C-019</td>
</tr>
<tr>
<td>MMSCTR-PDU-C-012</td>
<td>MMS Client Sending Encapsulated M-Mbox-Store.req PDU to MMS Proxy-Relay</td>
<td>6.9.1</td>
<td>O</td>
<td>MMSE-STR-C-002 AND MMSE-STR-C-003 AND MMSE-STR-C-004 AND MMSE-STR-C-005</td>
</tr>
<tr>
<td>MMSCTR-PDU-C-013</td>
<td>MMS Proxy-Relay Sending Encapsulated M-Mbox-Store.conf PDU to MMS Client</td>
<td>6.9.1</td>
<td>O</td>
<td>MMSE-STR-C-002 AND MMSE-STR-C-003 AND MMSE-STR-C-004 AND MMSE-STR-C-009</td>
</tr>
<tr>
<td>MMSCTR-PDU-C-014</td>
<td>MMS Client Sending Encapsulated M-Mbox-View.req PDU to MMS Proxy-Relay</td>
<td>6.10.1</td>
<td>O</td>
<td>MMSE-VEW-C-002 AND MMSE-VEW-C-003 AND MMSE-VEW-C-004</td>
</tr>
<tr>
<td>MMSCTR-PDU-C-015</td>
<td>MMS Proxy-Relay Sending Encapsulated M-Mbox-View.conf PDU to MMS Client</td>
<td>6.10.1</td>
<td>above</td>
<td>MMSE-VEW-C-002 AND MMSE-VEW-C-003 AND MMSE-VEW-C-004 AND MMSE-VEW-C-012 AND MMSE-VEW-C-017</td>
</tr>
</tbody>
</table>
A.1.13 Cancel Transaction

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Reference</th>
<th>Status</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSCTR-CNC-C-001</td>
<td>Cancel Transaction between MMS Proxy-Relay and Receiving MMS Client</td>
<td>6.7</td>
<td>O</td>
<td>MMSCTR-CNC-C-002 AND MMSCTR-CNC-C-003</td>
</tr>
<tr>
<td>MMSCTR-CNC-C-002</td>
<td>MMS Proxy-Relay Sending M-Cancel.req to Receiving MMS Client</td>
<td>6.7.1</td>
<td>O</td>
<td>MMSCTR-PDU-C-020 AND MMSCTR-PSH-C-001 AND MMSCTR-PSH-C-002 AND MMSCTR-PSH-C-003</td>
</tr>
</tbody>
</table>
A.1.14 Delete from MMS Proxy-Relay Transaction

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Reference</th>
<th>Status</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSCTR-DPR-C-001</td>
<td>Delete Transaction between MMS Client and MMS Proxy-Relay</td>
<td>6.8</td>
<td>O</td>
<td>MMSCTR-DPR-C-002 AND MMSCTR-DPR-C-003</td>
</tr>
<tr>
<td>MMSCTR-DPR-C-002</td>
<td>MMS Client Sending M-Delete.req to MMS Proxy-Relay</td>
<td>6.8.1</td>
<td>O</td>
<td>MMSCTR-PDU-C-022 AND MMSCTR-WSP-C-001</td>
</tr>
<tr>
<td>MMSCTR-DPR-C-003</td>
<td>MMS Proxy-Relay Sending M-Delete.conf to MMS Client</td>
<td>6.8.1</td>
<td>O</td>
<td>MMSCTR-PDU-C-023 AND MMSCTR-WSP-C-002</td>
</tr>
</tbody>
</table>

A.1.15 WAP PUSH Dependencies

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Reference</th>
<th>Status</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSCTR-PSH-C-001</td>
<td>MMS Proxy-Relay Using WAP PUSH Operation to Send MMS PDU to MMS Client</td>
<td>8.1.2, 8.1.4, 8.1.5, 8.2.2, 8.2.4, 8.2.5</td>
<td>O</td>
<td>MMSCTR-PSH-C-004 OR MMSCTR-PSH-C-005 OR MMSCTR-PSH-C-008</td>
</tr>
<tr>
<td>MMSCTR-PSH-C-002</td>
<td>Format and Contents of Push Message</td>
<td>8.1.2, 8.1.4, 8.1.5, 8.2.2, 8.2.4, 8.2.5</td>
<td>O</td>
<td>MSG-GEN-C-002 AND MSG-GEN-C-003 AND MSG-GEN-C-005</td>
</tr>
<tr>
<td>MMSCTR-PSH-C-003</td>
<td>Push Application Addressing and Dispatching to MMS Client</td>
<td>8.1.2, 8.1.4, 8.1.5, 8.2.2, 8.2.4, 8.2.5</td>
<td>O</td>
<td>(OTA-WSP-C-006 AND OTA-WSP-C-007) OR OTA-HTTP-C-011</td>
</tr>
<tr>
<td>MMSCTR-PSH-C-004</td>
<td>Non-secure Port for Connectionless Push</td>
<td>8.1.2, 8.1.4, 8.1.5, 8.2.2, 8.2.4, 8.2.5</td>
<td>O</td>
<td>OTA-CL-C-001 AND OTA-CL-C-002</td>
</tr>
</tbody>
</table>
A.1.16 WSP/HTTP Dependencies

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Reference</th>
<th>Status</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSCTR-WSP-C-001</td>
<td>MMS Client Using WSP/HTTP POST Request to Send MMS PDU to MMS Proxy-Relay</td>
<td>8.1.1, 8.1.2, 8.1.3, 8.1.4, 8.1.5, 8.1.6, 8.2.1, 8.2.2, 8.2.3, 8.2.4, 8.2.5, 8.2.6</td>
<td>O</td>
<td>WSP-C-001 OR HTTP-CLT-C-001</td>
</tr>
<tr>
<td>MMSCTR-WSP-C-002</td>
<td>MMS Proxy-Relay Using WSP/HTTP POST Response to Send MMS PDU to MMS Client</td>
<td>8.1.1, 8.1.6, 8.2.1, 8.2.6</td>
<td>O</td>
<td>WSP-C-001 OR HTTP-CLT-C-001</td>
</tr>
<tr>
<td>MMSCTR-WSP-C-003</td>
<td>MMS Client Using WSP/HTTP GET Request to Request MMS PDU from MMS Proxy-Relay</td>
<td>8.1.3, 8.2.2</td>
<td>O</td>
<td>WSP-C-001 OR HTTP-CLT-C-001</td>
</tr>
<tr>
<td>MMSCTR-WSP-C-004</td>
<td>MMS Proxy-Relay Using WSP/HTTP GET Response to Send MMS PDU to MMS Client</td>
<td>8.1.3, 8.2.2</td>
<td>O</td>
<td>WSP-C-001 OR HTTP-CLT-C-001</td>
</tr>
<tr>
<td>MMSCTR-WSP-C-006</td>
<td>http URI Scheme</td>
<td>8.3.1</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>MMSCTR-WSP-C-007</td>
<td>https URI Scheme</td>
<td>8.3.2</td>
<td>M</td>
<td>MMSCTR-WSP-C-008 OR MMSCTR-WSP-C-009 OR MMSCTR-WSP-C-010</td>
</tr>
<tr>
<td>MMSCTR-WSP-C-008</td>
<td>https URI Scheme over WP-HTTP</td>
<td>8.3.2</td>
<td>O</td>
<td>TLS:MCF</td>
</tr>
<tr>
<td>MMSCTR-WSP-C-009</td>
<td>https URI Scheme over WSP</td>
<td>8.3.2</td>
<td>O</td>
<td>WTLS:MCF</td>
</tr>
<tr>
<td>MMSCTR-WSP-C-010</td>
<td>Report an Error When No TLS or WTLS Security Service is Available in the Terminal</td>
<td>8.3.2</td>
<td>O</td>
<td></td>
</tr>
</tbody>
</table>
A.2 MMS Proxy-Relay

A.2.1 Server Level Function Groups

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Reference</th>
<th>Status</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSCTR-SLF-S-004</td>
<td>Capability Negotiation between Receiving MMS Client and MMS Proxy-Relay using the UAProf Component MMS Characteristics</td>
<td>7, 8</td>
<td>O</td>
<td>UAProf: MSF</td>
</tr>
<tr>
<td>MMSCTR-SLF-S-005</td>
<td>Support for storing and retrieving MM from MMBox</td>
<td>6</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>MMSCTR-SLF-S-006</td>
<td>Suppression of Content Adaptation when MMS is used to transport application data</td>
<td>7</td>
<td>O</td>
<td>MMSCTR-SLF-S-004</td>
</tr>
</tbody>
</table>

A.2.2 Send Transaction

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Reference</th>
<th>Status</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSCTR-SND-S-001</td>
<td>Send Transaction between Originating MMS Client and MMS Proxy-Relay</td>
<td>6.1</td>
<td>M</td>
<td>MMSCTR-SND-S-002 AND MMSCTR-SND-S-003</td>
</tr>
<tr>
<td>MMSCTR-SND-S-002</td>
<td>Originating MMS Client Sending M-Send.req to MMS Proxy-Relay</td>
<td>6.1.1</td>
<td>O</td>
<td>MMSE-S-076</td>
</tr>
<tr>
<td>MMSCTR-SND-S-003</td>
<td>MMS Proxy-Relay Sending M-Send.conf to Originating MMS Client</td>
<td>6.1.1</td>
<td>O</td>
<td>MMSE-S-076</td>
</tr>
<tr>
<td>MMSCTR-SND-S-004</td>
<td>Storage of sent MM to MMBox with proper MMState</td>
<td>6.1.1</td>
<td>O</td>
<td>MMSCTR-SLF-S-005</td>
</tr>
</tbody>
</table>

A.2.3 Notification Transaction

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Reference</th>
<th>Status</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSCTR-NTF-S-001</td>
<td>Notification Transaction between MMS Proxy-Relay and Receiving MMS Client</td>
<td>6.2</td>
<td>M</td>
<td>MMSCTR-NTF-S-002 AND MMSCTR-NTF-S-003</td>
</tr>
<tr>
<td>MMSCTR-NTF-S-002</td>
<td>MMS Proxy-Relay Sending M-Notification.ind to Receiving MMS Client</td>
<td>6.2.1</td>
<td>O</td>
<td>MMSE-S-077 AND MMSCTR-PSH-S-002</td>
</tr>
</tbody>
</table>
A.2.4 Retrieve Transaction

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Reference</th>
<th>Status</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSCTR-FTC-S-001</td>
<td>Retrieval Transaction between Receiving MMS Client and MMS Proxy-Relay</td>
<td>6.3</td>
<td>M</td>
<td>MMSCTR-FTC-S-002 AND MMSCTR-FTC-S-003 AND MMSCTR-FTC-S-004</td>
</tr>
<tr>
<td>MMSCTR-FTC-S-002</td>
<td>Receiving MMS Client Sending Retrieve Request to MMS Proxy-Relay</td>
<td>6.3.1</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>MMSCTR-FTC-S-003</td>
<td>MMS Proxy-Relay Sending M-retrieve.conf to Receiving MMS Client</td>
<td>6.3.1</td>
<td>O</td>
<td>MMSE-S-078</td>
</tr>
<tr>
<td>MMSCTR-FTC-S-004</td>
<td>Receiving MMS Client Sending M-Accknowlege.ind to MMS Proxy-Relay</td>
<td>6.3.1</td>
<td>O</td>
<td>MMSE-S-078</td>
</tr>
</tbody>
</table>

A.2.5 Forward Transaction

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Reference</th>
<th>Status</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSCTR-FWD-S-001</td>
<td>Forward Transaction between Forwarding MMS Client and MMS Proxy-Relay</td>
<td>6.4</td>
<td>O</td>
<td>MMSCTR-FWD-S-002 AND MMSCTR-FWD-S-003</td>
</tr>
<tr>
<td>MMSCTR-FWD-S-002</td>
<td>Forwarding MMS Client Sending M-Forward.req to MMS Proxy-Relay</td>
<td>6.4.1</td>
<td>O</td>
<td>MMSE-S-097</td>
</tr>
<tr>
<td>MMSCTR-FWD-S-003</td>
<td>MMS Proxy-Relay Sending M-Forward.conf to Forwarding MMS Client</td>
<td>6.4.1</td>
<td>O</td>
<td>MMSE-S-097</td>
</tr>
<tr>
<td>MMSCTR-FWD-S-004</td>
<td>Storage of forwarded MM to MMBox with proper MMState</td>
<td>6.4.1</td>
<td>O</td>
<td>MMSCTR-SLF-S-005</td>
</tr>
</tbody>
</table>
A.2.6 Delivery Report Transaction

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Reference</th>
<th>Status</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSCTR-DRP-S-001</td>
<td>Delivery Report Transaction between MMS Proxy-Relay and Originating MMS Client</td>
<td>6.5</td>
<td>M</td>
<td>MMSCTR-DRP-S-002</td>
</tr>
<tr>
<td>MMSCTR-DRP-S-002</td>
<td>MMS Proxy-Relay Sending M-Delivery.ind to Originating MMS Client</td>
<td>6.5.1</td>
<td>O</td>
<td>MMSE-S-079 AND MMSCTR-PSH-S-002</td>
</tr>
</tbody>
</table>

A.2.7 Store/Update Transaction

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Reference</th>
<th>Status</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSCTR-UPD-S-001</td>
<td>Store Transaction between Originating MMS Client and MMS Proxy-Relay</td>
<td>6.9</td>
<td>O</td>
<td>MMSCTR-UPD-S-002 AND MMSCTR-UPD-S-003</td>
</tr>
<tr>
<td>MMSCTR-UPD-S-002</td>
<td>Originating MMS Client Sending M-Mbox-Store.req to MMS Proxy-Relay</td>
<td>6.9.1</td>
<td>O</td>
<td>MMSE-MBX-S-001</td>
</tr>
<tr>
<td>MMSCTR-UPD-S-003</td>
<td>MMS Proxy-Relay Sending M-Mbox-Store.conf to Originating MMS Client</td>
<td>6.9.1</td>
<td>O</td>
<td>MMSE-MBX-S-001</td>
</tr>
</tbody>
</table>

A.2.8 View Transaction

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Reference</th>
<th>Status</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSCTR-VEW-S-001</td>
<td>View Transaction between Originating MMS Client and MMS Proxy-Relay</td>
<td>6.10</td>
<td>O</td>
<td>MMSCTR-VEW-S-002 AND MMSCTR-VEW-S-003</td>
</tr>
<tr>
<td>MMSCTR-VEW-S-002</td>
<td>Originating MMS Client Sending M-Mbox-View.req to MMS Proxy-Relay</td>
<td>6.10.1</td>
<td>O</td>
<td>MMSE-MBX-S-001</td>
</tr>
<tr>
<td>MMSCTR-VEW-S-003</td>
<td>MMS Proxy-Relay Sending M-Mbox-View.conf to Originating MMS Client</td>
<td>6.10.1</td>
<td>O</td>
<td>MMSE-MBX-S-001</td>
</tr>
</tbody>
</table>

A.2.9 Upload Transaction

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Reference</th>
<th>Status</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSCTR-UPL-S-001</td>
<td>Upload Transaction between Originating MMS Client and MMS Proxy-Relay</td>
<td>6.11</td>
<td>O</td>
<td>MMSCTR-UPL-S-002 AND MMSCTR-UPL-S-003</td>
</tr>
</tbody>
</table>
A.2.10 Delete Transaction

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Reference</th>
<th>Status</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSCTR-DLT-S-001</td>
<td>Delete Transaction between Originating MMS Client and MMS Proxy-Relay</td>
<td>6.12</td>
<td>O</td>
<td>MMSCTR-DLT-S-002 AND MMSCTR-DLT-S-003</td>
</tr>
<tr>
<td>MMSCTR-DLT-S-002</td>
<td>Originating MMS Client Sending M-Mbox-Delete.req to MMS Proxy-Relay</td>
<td>6.12.1</td>
<td>O</td>
<td>MMSE-MBX-S-001</td>
</tr>
<tr>
<td>MMSCTR-DLT-S-003</td>
<td>MMS Proxy-Relay Sending M-Mbox-Delete.conf to Originating MMS Client</td>
<td>6.12.1</td>
<td>O</td>
<td>MMSE-MBX-S-001</td>
</tr>
</tbody>
</table>

A.2.11 WAP PUSH Dependencies

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Reference</th>
<th>Status</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSCTR-PSH-S-002</td>
<td>Format and Contents of Push Message</td>
<td>8.1.2, 8.1.4, 8.1.5, 8.2.2, 8.2.4, 8.2.5</td>
<td>O</td>
<td>MSG-GEN-S-002 AND MSG-GEN-S-003 AND MSG-GEN-S-005</td>
</tr>
</tbody>
</table>

A.2.12 Read Reports

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Reference</th>
<th>Status</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSCTR-RRP-S-001</td>
<td>Read Report PDU transaction</td>
<td>6.6</td>
<td>M</td>
<td>MMSCTR-RRP-S-002 AND MMSCTR-RRP-S-003</td>
</tr>
<tr>
<td>MMSCTR-RRP-S-002</td>
<td>Ability to handle Read Report PDU</td>
<td>6.6.2, 6.6.3.2</td>
<td>O</td>
<td>MMSE-S-091 AND MMSE-S-092</td>
</tr>
<tr>
<td>MMSCTR-RRP-S-003</td>
<td>Ability to send M-Read-Orig.ind PDU from MMS Proxy-Relay to Originating MMS Client</td>
<td>6.6.2, 6.6.3.2</td>
<td>O</td>
<td>MMSCTR-PSH-S-002</td>
</tr>
</tbody>
</table>
MMSCTR-RRP-S-004 | Ability to transform an M-Read-Orig.ind PDU into a multimedia message. | 6.6.2, 6.6.3.2 | O |

A.2.13 WSP/HTTP Dependencies

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Reference</th>
<th>Status</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSCTR-WSP-S-006</td>
<td>http URI Scheme</td>
<td>8.3.1</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>MMSCTR-WSP-S-007</td>
<td>https URI Scheme</td>
<td>8.3.2</td>
<td>O</td>
<td>MMSCTR-WSP-S-008</td>
</tr>
<tr>
<td>MMSCTR-WSP-S-008</td>
<td>https URI Scheme over HTTP</td>
<td>8.3.2</td>
<td>O</td>
<td>TLS:MSF</td>
</tr>
</tbody>
</table>

A.2.14 Cancel Transaction

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Reference</th>
<th>Status</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSCTR-CNC-S-001</td>
<td>Cancel Transaction between MMS Proxy-Relay and Receiving MMS Client</td>
<td>6.7</td>
<td>O</td>
<td>MMSCTR-CNC-S-002 AND MMSCTR-CNC-S-003</td>
</tr>
<tr>
<td>MMSCTR-CNC-S-002</td>
<td>MMS Proxy-Relay Sending M-Cancel.req to Receiving MMS Client</td>
<td>6.7.1</td>
<td>O</td>
<td>MMSE-S-104 AND MMSCTR-PSH-S-002</td>
</tr>
<tr>
<td>MMSCTR-CNC-S-003</td>
<td>Receiving MMS Client Sending M-Cancel.conf to MMS Proxy-Relay</td>
<td>6.7.1</td>
<td>O</td>
<td>MMSE-S-104</td>
</tr>
</tbody>
</table>

A.2.15 Delete from MMS Proxy-Relay Transaction

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Reference</th>
<th>Status</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSCTR-DPR-S-001</td>
<td>Delete Transaction between MMS Client and MMS Proxy-Relay</td>
<td>6.8</td>
<td>O</td>
<td>MMSCTR-DPR-S-002 AND MMSCTR-DPR-S-003</td>
</tr>
<tr>
<td>MMSCTR-DPR-S-002</td>
<td>MMS Client Sending M-Delete.req to MMS Proxy-Relay</td>
<td>6.8.1</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>MMSCTR-DPR-S-003</td>
<td>MMS Proxy-Relay Sending M-Delete.conf to MMS Client</td>
<td>6.8.1</td>
<td>O</td>
<td></td>
</tr>
</tbody>
</table>
Appendix B. UAPerf Schema for MMS Characteristics (Normative)

This section is normative.

```xml
<!DOCTYPE rdf:RDF [
<!ENTITY ns-rdf 'http://www.w3.org/1999/02/22-rdf-syntax-ns#'>
<!ENTITY ns-rdfs 'http://www.w3.org/2000/01/rdf-schema#'>
<!ENTITY ns-prf 'http://www.openmobilealliance.org/tech/profiles/UAPROF/NEWMMSSCHEMA-FIXDATE#'>
<!ENTITY ns-prf-base 'http://www.openmobilealliance.org/tech/profiles/UAPROF/ccpschema-20030226#'>
<!ENTITY prf-dt 'http://www.openmobilealliance.org/tech/profiles/UAPROF/xmlschema-20030226#'>
<!ENTITY xsd 'http://www.w3.org/2001/XMLSchema#'>]
]

<rdf:RDF
  xmlns = '&ns-rdf;'
  xmlns:rdf  = '&ns-rdfs;'
  xmlns:rdfs = '&ns-prf;'
  xmlns:prf -base ='&ns-prf-base;'
>
  <!--  ********************************************************* ********* -->
  <!--  ***** Component Definitions ***** -->
  <rdf:Description rdf:ID="MmsCharacteristics">
    <rdf:type rdf:resource="&ns-rdf;Class"/>
    <rdfs:subClassOf rdf:resource="&ns-prf-base;Component"/>
    <rdfs:comment xml:lang='en'>Component: MmsCharacteristics</rdfs:comment>
    The MmsCharacteristics component contains properties of the device's
    Multimedia messaging capabilities, such as maximum message size, maximum
    image resolution, etc.
  </rdfs:comment></rdf:Description>

  <!--  ********************************************************* ********* -->
  <!--  ***** Component: MmsCharacteristics ***** -->
  <!--  ********************************************************* -->
  <!--  ***** Attributes for component: MmsCharacteristics ***** -->
  <rdf:Description rdf:ID="MmsMaxMessageSize">
    <rdf:type rdf:resource="&ns-rdf;Property"/>
    <rdfs:domain rdf:resource="#MmsCharacteristics"/>
    <rdfs:comment xml:lang='en'>
      Maximum message size
    </rdfs:comment>
  </rdf:Description>
```

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
Description: Maximum size of an MMS message in bytes.
Examples: 2048
</rdfs:comment>
<rdfs:range rdf:resource='&prf-dt;Number'/>
<prf-base:ResolutionRule rdf:datatype='&prf-dt;ResolutionRule'>Locked</prf-base:ResolutionRule>
</rdf:Description>

<rdf:Description rdf:ID="MmsMaxImageResolution">
 <rdf:type rdf:resource="&ns-rdf;Property"/>
 <rdfs:domain rdf:resource="#MmsCharacteristics"/>
 <rdfs:comment xml:lang='en'>
 Description: The maximum size of an image in units of pixels
 (horizontal x vertical).
 Examples: 80x60
 </rdfs:comment>
 <rdfs:range rdf:resource='&prf-dt;Literal'/>
 <prf-base:ResolutionRule rdf:datatype='&prf-dt;ResolutionRule'>Locked</prf-base:ResolutionRule>
</rdf:Description>

<rdf:Description rdf:ID="MmsCcppAccept">
 <rdf:type rdf:resource="&ns-rdf;Property"/>
 <rdfs:domain rdf:resource="#MmsCharacteristics"/>
 <rdfs:comment xml:lang='en'>
 Description: Property value is a list of supported content types
 where each item in the list is a content type name
 registered as a MIME type
 Examples: "image/jpeg", "audio/wav", "video/mpeg-4"
 </rdfs:comment>
 <rdfs:range rdf:resource="&ns-rdf;Bag"/>
 <rdfs:range rdf:resource='&prf-dt;Literal'/>
 <prf-base:ResolutionRule rdf:datatype='&prf-dt;ResolutionRule'>Locked</prf-base:ResolutionRule>
</rdf:Description>

<rdf:Description rdf:ID="MmsCcppAcceptCharSet">
 <rdf:type rdf:resource="&ns-rdf;Property"/>
 <rdfs:domain rdf:resource="#MmsCharacteristics"/>
 <rdfs:comment xml:lang='en'>
 Description: List of character sets that the MMS Client supports.
 Property value is a list of character sets, where
 each item in the list is a character set name registered
 with IANA
 Examples: "US-ASCII", "ISO-8859-1"
<rdfs:comment>
 List of preferred languages. The first item in the list should be considered the user's first choice.
 Property value is a list of natural languages, where each item in the list is the name of a language as defined by RFC 1766.
 Examples: "en", "fr"
</rdfs:comment>

Description: List of transfer encodings that the MMS Client supports.
Property value is a list of transfer encodings, where each item in the list is a transfer encoding name as specified by RFC 2045 and registered with IANA.
Examples: "base64", "quoted-printable"

Description: The MMS versions supported by the MMS Client conveyed
as majorVersionNumber.minorVersionNumber.
Examples: "2.0", "1.3"
</rdfs:comment>
<rdfs:range rdf:resource="&ns-rdf;Bag"/>
<rdfs:range rdf:resource='&prf-dt;Literal'/>
<preference:ResolutionRule rdf:datatype='&prf-dt;ResolutionRule'>Locked</preference:ResolutionRule>
</rdf:Description>

<rdf:Description rdf:ID="MmsCcppStreamingCapable">
 <rdf:type rdf:resource="&ns-rdf;Property"/>
 <rdfs:domain rdf:resource="#MmsCharacteristics"/>
 <rdfs:comment xml:lang='en'>
 Description: Indicates whether the MMS Client is capable of invoking streaming.
 Examples: "Yes", "No"
 </rdfs:comment>
 <rdfs:range rdf:resource='&prf-dt;Boolean'/>
 <preference:ResolutionRule rdf:datatype='&prf-dt;ResolutionRule'>Locked</preference:ResolutionRule>
</rdf:Description>

<rdf:Description rdf:ID="MmsSmilBaseSet">
 <rdf:type rdf:resource="&ns-rdf;Property"/>
 <rdfs:domain rdf:resource="#MmsCharacteristics"/>
 <rdfs:comment xml:lang='en'>
 Description: Indicates one or more base sets of SMIL modules that the client supports. Legal values are the following pre-defined identifiers: "SMIL-CONF-1-2" indicates the SMIL base set and associated limitations defined in the OMA MMS Conformance Document. Values defined in 3GPP TS 26.234 for the "SmilBaseSet" component may also be used.
 Examples: "SMIL-CONF-1-2", "SMIL-3GPP-R4", "SMIL-3GPP-R5"
 </rdfs:comment>
 <rdfs:range rdf:resource='&ns-rdf;Bag'/>
 <rdfs:range rdf:resource='&prf-dt;Literal'/>
 <preference:ResolutionRule rdf:datatype='&prf-dt;ResolutionRule'>Locked</preference:ResolutionRule>
</rdf:Description>

<rdf:Description rdf:ID="MmsContentClass">
 <rdf:type rdf:resource="&ns-rdf;Property"/>
 <rdfs:domain rdf:resource="#MmsCharacteristics"/>
 <rdfs:comment xml:lang='en'>
 Description: Property value is a list of supported content classes where each item in the list is an MMS content class as defined in the MMS Conformance Document.
 Examples: "TX", "IB", "IR", "VB", "VR", "MP", "CB", "CR"
 </rdfs:comment>
</rdf:Description>
<rdf:Description rdf:ID="MmsSuppressContentAdaptation">
 <rdf:type rdf:resource="&ns-rdf;Property"/>
 <rdfs:domain rdf:resource="#MmsCharacteristics"/>
 <rdfs:comment xml:lang='en'>
 Description: Indicates that no content adaptation is to be performed by the MMS Proxy-Relay.
 Examples: "Yes", "No"
 Default: "No"
 </rdfs:comment>
</rdf:Description>

<rdf:Description ID="MmsXHTMLBaseSet">
 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Property"/>
 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Bag"/>
 <rdfs:domain rdf:resource="#MmsCharacteristics"/>
 <rdfs:comment>
 Description: Indicates one or more base sets of XHTML that the client supports in SMIL text regions in the context of retrieval/presentation. Legal values are the following pre-defined identifiers: "XHTMLMP-CONF-1-3" indicates the XHTML MP base set and associated limitations defined in the OMA MMS Conformance Document for retrieval and presentation.
 Type: Literal bag
 Resolution: Locked
 Examples: "XHTMLMP-CONF-1-3", "XHTMLMP-FULL-1-0", "XHTMLMP-FULL-1-1"
 </rdfs:comment>
</rdf:Description>

<rdf:Description ID="MmsApplicAddressingCapable">
 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Property"/>
 <rdfs:domain rdf:resource="#MmsCharacteristics"/>
 <rdfs:comment>
 Description: Indicates whether the MMS Client supports the transport of application specific data.
 Type: Boolean
 Resolution: Locked
 Examples: "Yes", "No"
 Default: "Yes"
 </rdfs:comment>
</rdf:Description>

<rdf:Description ID="MmsCMFBaseSet">
 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Property"/>
 <rdfs:domain rdf:resource="#MmsCharacteristics"/>
 <rdfs:comment>
 Description: It indicates that the client support CMF. Legal values are the following pre-defined identifier: "3GPP2-CMF-v1.0" indicates the CMF base set according to 3GPP2 C.S0050-0 v1.0, dated December 12, 2003.
 Type: Literal bag
Resolution: Locked
Examples: "3GPP2-CMF-V1_0"
</rdfs:comment>
</rdf:Description>

<rdf:Description ID="MmsDrmClass">
 <rdf:Type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property/>
 <rdf:Type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Bag"/>
 <rdfs:domain rdf:resource="#MmsCharacteristics"/>
 <rdfs:comment>
 Lists the supported OMA DRM v1.0 download methods.
 Type: Literal bag
 Resolution: Locked
 Examples: "ForwardLock", "CombinedDelivery", "SeparateDelivery"
 </rdfs:Comment>
</rdf:Description>

</rdf:RDF>
Appendix C. Relationship to 3GPP MMS Specifications (Informative)

This appendix is informative.

The client transactions defined in this document aim at fulfilling the requirements stated in the technical specifications of the 3rd Generation Partnership Project. These include the service aspects of MMS described in [TS22140] and the functional description contained in [TS23140].

In order to provide for an unambiguous relationship between WAP MMS PDUs and 3GPP MMS messages this appendix contains a mapping between these PDUs and messages.

WAP PDUs are defined for the interface between the MMS Proxy-Relay and the MMS Client. This interface corresponds to the interface between the MMS Relay/Server and the MMS User Agent, called “MM1” in the 3GPP specifications.

The following sections cover the different transactions defined in this specification.

NOTE: The distinction between immediate and deferred retrieval is only done in the WAP MMS specifications. Therefore the relationship between WAP MMS PDUs and 3GPP MMS messages are slightly different for the two retrieval cases.

a) MMS Client Sending Message to MMS Proxy-Relay

The following table figures out the relationship between WAP MMS PDUs and the corresponding 3GPP MMS messages when the MMS Client sends a multimedia message to the MMS Proxy Relay.

<table>
<thead>
<tr>
<th>WAP MMS PDU</th>
<th>3GPP MMS Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-Send.req</td>
<td>MM1_submit.REQ</td>
</tr>
<tr>
<td>M-Send.conf</td>
<td>MM1_submit.RES</td>
</tr>
</tbody>
</table>

Table 4: Relationship between WAP MMS PDUs and 3GPP MMS messages when the MMS Client sends a multimedia message to the MMS Proxy Relay.

b) MMS Proxy-Relay Sending Notification to MMS Client in case of Deferred Retrieval

The following table figures out the relationship between WAP MMS PDUs and the corresponding 3GPP MMS messages when the MMS Proxy-Relay sends a notification to the MMS Client in case of deferred retrieval.

<table>
<thead>
<tr>
<th>WAP MMS PDU</th>
<th>3GPP MMS Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-Notification.ind</td>
<td>MM1_notification.REQ</td>
</tr>
<tr>
<td>M-NotifyResp.ind</td>
<td>MM1_notification.RES</td>
</tr>
</tbody>
</table>

Table 5: Relationship between WAP MMS PDUs and 3GPP MMS messages when the MMS Proxy-Relay sends a notification to the MMS Client in case of deferred retrieval.
c) MMS Proxy-Relay Sending Notification to MMS Client in case of Immediate Retrieval

The following table figures out the relationship between WAP MMS PDUs and the corresponding 3GPP MMS messages when the MMS Proxy-Relay sends a notification to the MMS Client in case of immediate retrieval.

<table>
<thead>
<tr>
<th>WAP MMS PDU</th>
<th>3GPP MMS Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-Notification.ind</td>
<td>MM1_notification.REQ</td>
</tr>
<tr>
<td>M-NotifyResp.ind</td>
<td>MM1_acknowledgement.REQ</td>
</tr>
</tbody>
</table>

Table 6: Relationship between WAP MMS PDUs and 3GPP MMS messages when the MMS Proxy-Relay sends a notification to the MMS Client in case of immediate retrieval.

d) MMS Client Retrieving Message from MMS Proxy-Relay

The following table figures out the relationship between WAP MMS PDUs and the corresponding 3GPP MMS messages when the MMS Client retrieves the multimedia message from the MMS Proxy-Relay.

<table>
<thead>
<tr>
<th>WAP MMS PDU</th>
<th>3GPP MMS Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSP/HTTP GET</td>
<td>MM1_retrieve.REQ</td>
</tr>
<tr>
<td>M-Retrieve.conf</td>
<td>MM1_retrieve.RES</td>
</tr>
<tr>
<td>M-Acknowledge.ind</td>
<td>MM1_acknowledgement.REQ</td>
</tr>
</tbody>
</table>

Table 7: Relationship between WAP MMS PDUs and 3GPP MMS messages when the MMS Client retrieves the message from the MMS Proxy-Relay.

NOTE: In case of immediate retrieval the PDU M-Acknowledge.ind is omitted from this transaction. Its task is fulfilled by the M-NotifyResp.ind contained in the transaction of sending a notification from the MMS Proxy-Relay to an MMS Client described in the section above.

e) Message Forwarding

The following table figures out the relationship between WAP MMS PDUs and the corresponding 3GPP MMS messages in the case of message forwarding without prior retrieval of the message.

<table>
<thead>
<tr>
<th>WAP MMS PDU</th>
<th>3GPP MMS Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-Forward.req</td>
<td>MM1_forward.REQ</td>
</tr>
<tr>
<td>M-Forward.conf</td>
<td>MM1_forward.RES</td>
</tr>
</tbody>
</table>

Table 8: Relationship between WAP MMS PDUs and 3GPP MMS messages in case of message forwarding.
f) MMS Proxy-Relay Sending Delivery Report to MMS Client

The following table figures out the relationship between WAP MMS PDU and the corresponding 3GPP MMS message when the MMS Proxy-Relay sends a delivery report to the MMS Client.

<table>
<thead>
<tr>
<th>WAP MMS PDU</th>
<th>3GPP MMS Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-Delivery.ind</td>
<td>MM1_delivery_report.REQ</td>
</tr>
</tbody>
</table>

Table 9: Relationship between WAP MMS PDU and 3GPP MMS message when the MMS Proxy-Relay sends a delivery report to the MMS Client.

g) Recipient MMS Client Sending Read Report to Originator MMS Client

The following table figures out the relationship between WAP MMS PDUs and the corresponding 3GPP MMS messages when the recipient MMS Client sends a read report as a regular MM to the originator MMS Client via one or more MMS Proxy-Relay(s).

<table>
<thead>
<tr>
<th>WAP MMS PDU</th>
<th>3GPP MMS Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>new MMS-Message: M-Send.req</td>
<td>MM1_read_reply_recipient.REQ</td>
</tr>
<tr>
<td>M-Notification.ind + M-Retrieve.conf</td>
<td>MM1_read_reply_originator.REQ</td>
</tr>
</tbody>
</table>

Table 10: Relationship between WAP MMS PDUs and 3GPP MMS messages when the recipient MMS Client sends a read report as a regular MM to the originator MMS Client via one or more MMS Proxy-Relay(s).

The following table figures out the relationship between WAP MMS PDUs and the corresponding 3GPP MMS messages when the recipient MMS Client sends a read report as a PDU to the originator MMS Client via one or more MMS Proxy-Relay(s).

<table>
<thead>
<tr>
<th>WAP MMS PDU</th>
<th>3GPP MMS Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-ReadRec.ind</td>
<td>MM1_read_reply_recipient.REQ</td>
</tr>
<tr>
<td>M-ReadOrig.ind</td>
<td>MM1_read_reply_originator.REQ</td>
</tr>
</tbody>
</table>

Table 11: Relationship between WAP MMS PDUs and 3GPP MMS messages when the recipient MMS Client sends a read report as a PDU to the originator MMS Client via one or more MMS Proxy-Relay(s).

h) MMS Proxy-Relay Sending Cancel Request to MMS Client

The following table figures out the relationship between WAP MMS PDUs and the corresponding 3GPP MMS messages when the MMS Proxy-Relay sends a cancel request to the MMS Client.
WAP MMS PDU	3GPP MMS Message
M-Cancel.req | MM1_cancel.REQ
M-Cancel.conf | MM1_cancel.RES

Table 12: Relationship between WAP MMS PDUs and 3GPP MMS messages when the MMS Proxy-Relay sends a cancel request to the MMS Client.

i) Deleting message from MMS Proxy-Relay

The following table figures out the relationship between WAP MMS PDUs and the corresponding 3GPP MMS messages in the case of deleting message from MMS Proxy-Relay.

<table>
<thead>
<tr>
<th>WAP MMS PDU</th>
<th>3GPP MMS Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-Delete.req</td>
<td>MM1_delete.REQ</td>
</tr>
<tr>
<td>M-Delete.conf</td>
<td>MM1_delete.RES</td>
</tr>
</tbody>
</table>

Table 13: Relationship between WAP MMS PDUs and 3GPP MMS messages in case of deleting message from MMS Proxy-Relay.
Appendix D. Change History

D.1 Approved Version History

<table>
<thead>
<tr>
<th>Reference</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMA-MMS-CTR-v1_2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D.2 Draft/Candidate Version 1.3 History

<table>
<thead>
<tr>
<th>Draft versions</th>
<th>Date</th>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMA-MMS-CTR-v1_3</td>
<td>15 Dec 2003</td>
<td></td>
<td>Initial version of this document</td>
</tr>
<tr>
<td>OMA-MMS-CTR-v1_3</td>
<td>07 Jul 2004</td>
<td>5, 6.2.1, D.2</td>
<td>1) Implement CR OMA-MMSG-2004-0147R1 (Recommended retrieval modes), excluding change to section 5 first para., 2) editor corrected minute typos.</td>
</tr>
</tbody>
</table>
| OMA-MMS-CTR-v1_3 | 28 Jan 2005 | | Clarify D.2 to say that it is “2004-0211R01-Error-case-where-MMS-needs-to-be-resubmitted”, not 211, that has been added to 20 September 2004. Implemented CRs:
- 2004-0262R01-CR-Update-UAProf-schema-for-new-message-content-classes (Vodafone). Note: p. 2 of the contr is erroneous as it shows a table in 6.1, while there is none. Table replicated in 7.2.
- 2004-0268R02-Application-Addressing-CR-CTR (Infineon, Nokia, Samsung, SonyEriscon)
- 2004-0278R01-Additions in error handling (T-Mobile)
- 2004-0312-Adding-CMF-to-UAProf (Qualcomm) Note: contribution is not per the norm. Editor did its best to include the new text where it thought relevant. Editorial license: title page, table of contents. |
| OMA-MMS-CTR-v1_3 | 02 Feb 2005 | | Previous version inadequate. Resubmission of OMA-MMS-CTR-v1_3-20050128-d. |
| OMA-MMS-CTR-v1_3 | 16 Feb 2005 | | Show changes with respect to OMA-MMS-CTR-v1_3-20050202-d. Editorial license: title page, table of contents. Implemented CRs:
- OMA-MMSG-2004-0287R01-Deplicated-and-Lost-MM-Submission
- OMA-MMSG-2004-0308-CR-UAProf MMS v1.3
| OMA-MMS-CTR-v1_3 | 21 Mar 2005 | | Show changes with respect to OMA-MMS-CTR-v1_3-20050216-d. Editorial license: title page, table of contents, reference to figures. Implemented CRs:
- OMA-MMS-2004-0283R02-DeletePDU(CTR). |
<p>| OMA-MMS-CTR-v1_3 | 22 Mar 2005 | | Republished to comply with new OAM naming convention (i.e., filename of “OMA-TS-MMS-CTR-v1_3xxx” instead of “OMA-MMS-CTR-v1_3xxx”). |</p>
<table>
<thead>
<tr>
<th>Document Identifier</th>
<th>Date</th>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>18 May 2005</td>
<td>Cover page,</td>
<td>Incorporate OMA MMSG 2005/05 (London) approved CR OMA-MMSG-2005-0146-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOC, Appendix B</td>
<td>Missing-Content-Classes-Appendix-B-CTR.</td>
</tr>
<tr>
<td></td>
<td>31 May 2005</td>
<td>File name,</td>
<td>Changed document version back to V1.3 (it had mistakenly been changed to 1_3_2).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cover page</td>
<td></td>
</tr>
<tr>
<td>Candidate versions</td>
<td>01 Aug 2005</td>
<td>7.2, Appendix B</td>
<td>CR# OMA-MMSG-2005-0180R01_DRM_Support_Indication_in_OMA_1_3-CTR implemented</td>
</tr>
<tr>
<td>OMA-TS-MMS-CTR-V1_3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27 Sep 2005</td>
<td>1, 2.1, 2.2,</td>
<td>Incorporation of CR# OMA-MMSG-2005-0188R01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1.2, A.1.12</td>
<td></td>
</tr>
</tbody>
</table>