
 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

RESTful Network API for Notification Channel
Candidate Version 1.0 – 19 Mar 2020

Open Mobile Alliance
OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 2 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

Use of this document is subject to all of the terms and conditions of the Use Agreement located at

https://www.omaspecworks.org/about/policies-and-terms-of-use/.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an

approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not

modify, edit or take out of context the information in this document in any manner. Information contained in this document

may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior

written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided

that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials

and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products

or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely

manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification.

However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available

to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at

https://www.omaspecworks.org/about/intellectual-property-rights/. The Open Mobile Alliance has not conducted an

independent IPR review of this document and the information contained herein, and makes no representations or warranties

regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain

inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined

terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN

MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF

THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE

ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT

SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT,

PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN

CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms set forth above.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 3 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

Contents
1. SCOPE .. 8

2. REFERENCES... 9

2.1 NORMATIVE REFERENCES .. 9
2.2 INFORMATIVE REFERENCES ... 9

3. TERMINOLOGY AND CONVENTIONS .. 11

3.1 CONVENTIONS ... 11
3.2 DEFINITIONS .. 11
3.3 ABBREVIATIONS .. 11

4. INTRODUCTION ... 13

4.1 VERSION 1.0 .. 13

5. NOTIFICATION CHANNEL API DEFINITION.. 14

5.1 RESOURCES SUMMARY ... 17
5.2 DATA TYPES .. 21

5.2.1 XML Namespaces .. 21
5.2.2 Structures ... 21

5.2.2.1 Type: NotificationChannelList ... 21
5.2.2.2 Type: NotificationChannel ... 21
5.2.2.3 Type: NotificationList .. 23
5.2.2.4 Type: LargePollingNotification ... 23
5.2.2.5 Type: ChannelData .. 24
5.2.2.6 Type: LongPollingData .. 24
5.2.2.7 Type: OMAPushData ... 24
5.2.2.8 Type: LargeDataPolling .. 25
5.2.2.9 Type: LongPollingRequestParameters ... 25
5.2.2.10 Type: WebSocketsData .. 26
5.2.2.11 Type: ConnCheck .. 26
5.2.2.12 Type: ConnAck .. 26
5.2.2.13 Type: NativeChannelData ... 27
5.2.2.14 Type: NotificationChannelLifetime .. 28

5.2.3 Enumerations ... 28
5.2.3.1 Enumeration: ChannelType ... 28
5.2.3.2 Enumeration: NativeChannelSubType ... 28

5.2.4 Values of the Link “rel” attribute ... 29
5.3 SEQUENCE DIAGRAMS .. 30

5.3.1 Create Notification Channel (Long Polling Method) ... 30
5.3.2 Notifications delivered to application using Long Polling ... 31
5.3.3 Long Polling request timeout response .. 32
5.3.4 Multiple notifications delivered to application in response to the Long Polling request 33
5.3.5 Max number of notifications reached during the Long Polling ... 34
5.3.6 Max wait time or max number of notifications reached during the Long Polling ... 35
5.3.7 Create Notification Channel (OMA Push Method) .. 38
5.3.8 Notifications delivered to application using OMA Push .. 38
5.3.9 Create Notification Channel (OMA Push method with Large Data Polling enabled).. 40
5.3.10 Notifications delivered to application using OMA Push while Large Data Polling is enabled 41
5.3.11 Create Notification Channel (WebSockets) ... 43
5.3.12 Notifications delivered to application using WebSockets .. 44
5.3.13 Create Notification Channel (Native Channel Method) ... 45
5.3.14 Notifications delivered to application using Native Channel while Large Data Polling is enabled 46
5.3.15 Refreshing a Notification Channel ... 47
5.3.16 Client-initiated ConnCheck/ConnAck ... 49
5.3.17 Successful server-initiated ConnCheck/ConnAck ... 50
5.3.18 Unsuccessful server-initiated ConnCheck/ConnAck ... 51
5.3.19 Notifications delivered to application using Long Polling ... 51

6. DETAILED SPECIFICATION OF THE RESOURCES ... 53

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 4 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

6.1 RESOURCE: NOTIFICATION CHANNELS .. 53
6.1.1 Request URL variables .. 53
6.1.2 Response Codes and Error Handling ... 54
6.1.3 GET .. 54

6.1.3.1 Example: Retrieve active Notification Channels (Informative) .. 54
6.1.3.1.1 Request ... 54
6.1.3.1.2 Response ... 54

6.1.4 PUT .. 55
6.1.5 POST .. 55

6.1.5.1 Example: Create Notification Channel (Long Polling method), using tel URI (Informative) .. 55
6.1.5.1.1 Request ... 55
6.1.5.1.2 Response ... 55

6.1.5.2 Example: Create Notification Channel (OMA Push method), using tel URI (Informative) ... 56
6.1.5.2.1 Request ... 56
6.1.5.2.2 Response ... 56

6.1.5.3 Example: Create Notification Channel (OMA Push method with largeDataPolling), using tel URI (Informative) 56
6.1.5.3.1 Request ... 56
6.1.5.3.2 Response ... 57

6.1.5.4 Example: Create Notification Channel (OMA Push method with LargeDataPolling) not supported (Informative) 57
6.1.5.4.1 Request ... 57
6.1.5.4.2 Response ... 58

6.1.5.5 Example: Create Notification Channel (Long Polling method), using ACR (Informative) .. 58
6.1.5.5.1 Request ... 58
6.1.5.5.2 Response ... 59

6.1.5.6 Example: Create Notification Channel (WebSockets method), using tel URI (Informative) .. 59
6.1.5.6.1 Request ... 59
6.1.5.6.2 Response ... 59

6.1.5.7 Example: Attempt to create Notification Channel of unsupported type (Informative) ... 60
6.1.5.7.1 Request ... 60
6.1.5.7.2 Response ... 60

6.1.5.8 Example: Create Notification Channel (Native Channel method with largeDataPolling), using tel URI (Informative) .. 61
6.1.5.8.1 Request ... 61
6.1.5.8.2 Response ... 61

6.1.6 DELETE .. 62
6.2 RESOURCE: INDIVIDUAL NOTIFICATION CHANNEL .. 62

6.2.1 Request URL variables .. 62
6.2.2 Response Codes and Error Handling ... 62
6.2.3 GET .. 62

6.2.3.1 Example: Retrieve individual Notification Channel (Informative) ... 62
6.2.3.1.1 Request ... 62
6.2.3.1.2 Response ... 63

6.2.4 PUT .. 63
6.2.5 POST .. 63
6.2.6 DELETE .. 63

6.2.6.1 Example: Removing Notification Channel (Informative) ... 63
6.2.6.1.1 Request ... 63
6.2.6.1.2 Response ... 63

6.3 RESOURCE: NOTIFICATION LIST .. 63
6.3.1 Request URL variables .. 64
6.3.2 Response Codes and Error Handling ... 64
6.3.3 GET .. 64
6.3.4 PUT .. 64
6.3.5 POST .. 64

6.3.5.1 Example 1: Single notification delivered in a NotificationList (Informative) ... 64
6.3.5.1.1 Request ... 64
6.3.5.1.2 Response ... 64

6.3.5.2 Example 2: Multiple notifications delivered (Informative) .. 65
6.3.5.2.1 Request ... 65
6.3.5.2.2 Response ... 65

6.3.5.3 Example 3: Server timeout (Informative) ... 66
6.3.5.3.1 Request ... 66

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 5 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

6.3.5.3.2 Response ... 66
6.3.5.4 Example 4: Single notification delivered outside a NotificationList (Informative) .. 67

6.3.5.4.1 Request ... 67
6.3.5.4.2 Response ... 67

6.3.6 DELETE .. 67
6.4 RESOURCE: NOTIFICATION CHANNEL LIFETIME .. 67

6.4.1 Request URL variables .. 67
6.4.2 Response Codes and Error Handling ... 68
6.4.3 GET .. 68

6.4.3.1 Example: Retrieve remaining Notification Channel lifetime (Informative) .. 68
6.4.3.1.1 Request ... 68
6.4.3.1.2 Response ... 68

6.4.4 PUT .. 68
6.4.4.1 Example: Update Notification Channel lifetime (Informative) .. 68

6.4.4.1.1 Request ... 68
6.4.4.1.2 Response ... 69

6.4.5 POST .. 69
6.4.6 DELETE .. 69

7. FAULT DEFINITIONS... 70

7.1 SERVICE EXCEPTIONS ... 70
7.1.1 SVC1012: Simultaneous channel requests not supported .. 70

7.2 POLICY EXCEPTIONS .. 70
7.2.1 POL1023: Notification channel type not supported ... 70

APPENDIX A. CHANGE HISTORY (INFORMATIVE) .. 71

A.1 APPROVED VERSION HISTORY ... 71
A.2 DRAFT/CANDIDATE VERSION 1.0 HISTORY ... 71

APPENDIX B. STATIC CONFORMANCE REQUIREMENTS (NORMATIVE) ... 75

B.1 SCR FOR REST.NC SERVER .. 75
B.1.1 SCR for REST.NC.Channels Server .. 75
B.1.2 SCR for REST.NC.IndividualChannel Server ... 76
B.1.3 SCR for REST.NC.LongPolling Server ... 76
B.1.4 SCR for REST.NC.OMAPush Server .. 76
B.1.5 SCR for REST.NC.Refresh Server .. 76
B.1.6 SCR for REST.NC.WebSockets Server ... 76

APPENDIX C. APPLICATION/X-WWW-FORM-URLENCODED REQUEST FORMAT FOR POST

OPERATIONS (NORMATIVE) .. 77

C.1 CREATING A NOTIFICATION CHANNEL .. 77
C.1.1 Example 1: Create Notification Channel (Long Polling method), using tel URI (Informative) 78

C.1.1.1 Request ... 78
C.1.1.2 Response .. 78

C.1.2 Example 2: Create Notification Channel (OMA Push method), using tel URI (Informative) 79
C.1.2.1 Request ... 79
C.1.2.2 Response .. 79

C.1.3 Example 3: Create Notification Channel, using ACR (Informative) .. 79
C.1.3.1 Request ... 79
C.1.3.2 Response .. 80

C.2 RETRIEVING NOTIFICATIONS FROM THE NOTIFICATION SERVER .. 80
C.2.1 Example 1: Single notification delivered in a NotificationList (Informative) ... 80

C.2.1.1 Request ... 80
C.2.1.2 Response .. 81

C.2.2 Example 2: Single notification delivered outside a NotificationList (Informative) 81
C.2.2.1 Request ... 81
C.2.2.2 Response .. 81

APPENDIX D. JSON EXAMPLES (INFORMATIVE) ... 83

D.1 RETRIEVE ACTIVE NOTIFICATION CHANNELS (SECTION 6.1.3.1) ... 83
D.2 CREATE NOTIFICATION CHANNEL (LONG POLLING METHOD), USING TEL URI (SECTION 6.1.5.1) 84
D.3 CREATE NOTIFICATION CHANNEL (OMA PUSH METHOD), USING TEL URI (SECTION 6.1.5.2) 85

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 6 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

D.4 CREATE NOTIFICATION CHANNEL (OMA PUSH METHOD WITH LARGEDATAPOLLING), USING TEL URI

(SECTION 6.1.5.3) ... 85
D.5 CREATE NOTIFICATION CHANNEL (OMA PUSH METHOD WITH LARGEDATAPOLLING) NOT SUPPORTED

(SECTION 6.1.5.4) ... 86
D.6 CREATE NOTIFICATION CHANNEL (LONG POLLING METHOD), USING ACR (SECTION 6.1.5.5) 87
D.7 CREATE NOTIFICATION CHANNEL (WEBSOCKETS METHOD), USING TEL URI (SECTION 6.1.5.6) 88
D.8 EXAMPLE: ATTEMPT TO CREATE NOTIFICATION CHANNEL OF UNSUPPORTED TYPE (SECTION 6.1.5.7) 89
D.9 CREATE NOTIFICATION CHANNEL (NATIVE CHANNEL METHOD WITH LARGEDATAPOLLING) NOT SUPPORTED

(SECTION 6.1.5.8) ... 89
D.10 RETRIEVE INDIVIDUAL NOTIFICATION CHANNEL (SECTION 6.2.3.1) .. 90
D.11 REMOVING NOTIFICATION CHANNEL (SECTION 6.2.6.1)... 91
D.12 SINGLE NOTIFICATION DELIVERED IN A NOTIFICATIONLIST (SECTION 6.3.5.1) .. 91
D.13 MULTIPLE NOTIFICATIONS DELIVERED (SECTION 6.3.5.2) .. 92
D.14 SERVER TIMEOUT (SECTION 6.3.5.3) .. 93
D.15 SINGLE NOTIFICATION DELIVERED IN A NOTIFICATIONLIST (SECTION 6.3.5.4) .. 93
D.16 RETRIEVE REMAINING NOTIFICATION CHANNEL LIFETIME (SECTION 6.4.3.1) ... 94
D.17 UPDATE NOTIFICATION CHANNEL LIFETIME (SECTION 6.4.4.1) ... 94

APPENDIX E. OPERATIONS MAPPING TO A PRE-EXISTING BASELINE SPECIFICATION

(INFORMATIVE) ... 95

APPENDIX F. LIGHT-WEIGHT RESOURCES (INFORMATIVE) .. 96

APPENDIX G. AUTHORIZATION ASPECTS (NORMATIVE) ... 97

G.1 USE WITH OMA AUTHORIZATION FRAMEWORK FOR NETWORK APIS ... 97
G.1.1 Scope values... 97

G.1.1.1 Definitions .. 97
G.1.1.2 Downscoping ... 97
G.1.1.3 Mapping with resources and methods .. 98

G.1.2 Use of ‘acr:auth’ .. 100

APPENDIX H. NOTIFICATION SERVER - PUSH ENABLER INTERACTION (INFORMATIVE) 101

APPENDIX I. NOTIFICATION DELIVERY USING WEBSOCKETS (NORMATIVE) 105

I.1 DELIVERY MECHANISM ... 105
I.2 SUBPROTOCOL REGISTRATION ... 105
I.3 CONNECTION CHECKING AND KEEP-ALIVE .. 105
I.4 NOTIFICATION PAYLOAD EXAMPLES – XML FORMAT (INFORMATIVE) .. 106

I.4.1 Example: Single notification delivered in a NotificationList ... 106
I.4.2 Example: Multiple notifications delivered ... 106
I.4.3 Example: Single notification delivered outside a NotificationList .. 107

I.5 NOTIFICATION PAYLOAD EXAMPLES – JSON (INFORMATIVE) .. 108
I.5.1 Single notification delivered in a NotificationList ... 108
I.5.2 Multiple notifications delivered ... 108
I.5.3 Single notification delivered in a NotificationList ... 109

APPENDIX J. NOTIFICATION SERVER – DEVICE-SPECIFIC NATIVE NOTIFICATION SERVICE

INTERACTION (INFORMATIVE) .. 110

Figures

Figure 1 Resource structure defined by this specification .. 18

Figure 2 Create Notification Channel .. 30

Figure 3 Notifications delivered to application ... 31

Figure 4 Request timeout .. 32

Figure 5 Multiple notifications delivered to application in response .. 33

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 7 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

Figure 6 Maximum number of notifications in the response to the Long Polling .. 34

Figure 7 Max wait time or max number of notifications criterion used to respond to the Long Polling 36

Figure 8 Create Notification Channel (OMA Push Method) ... 38

Figure 9 Notifications delivered to application using OMA Push ... 39

Figure 10 Create Notification Channel (OMA Push method with Large Data Polling enabled) 40

Figure 11 Notifications delivered to application using OMA Push ... 41

Figure 12 Create Notification Channel (WebSockets) .. 43

Figure 13 Notifications delivered to application using WebSockets .. 44

Figure 14 Create Notification Channel (Native Channel Method) .. 45

Figure 15 Notifications delivered to application using Native Channel .. 46

Figure 16 Notification Channel refresh ... 48

Figure 17 Client-initiated ConnCheck/ConnAck for session keep-alive ... 49

Figure 18 Successful server-initiated ConnCheck/ConnAck for session keep-alive .. 50

Figure 19 Unsuccessful server-initiated ConnCheck/ConnAck for session keep-alive .. 51

Tables

Table 1: Scope values for RESTful Notification Channel API .. 97

Table 2: Required scope values for: Management of Notification Channel ... 99

Table 3: Required scope values for: Retrieval of notifications from Notification Server.. 99

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 8 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

1. Scope

This specification defines a RESTful API for Notification Channel using HTTP protocol bindings.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 9 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

2. References

2.1 Normative References

[OMA_PUSH] “OMA Push 2.3” Open Mobile Alliance™. OMA-ERP-Push-V2_3

URL:http://www.openmobilealliance.org/

[REST_NetAPI_ACR] “RESTful Network API for Anonymous Customer Reference Management”, Open Mobile Alliance™,

OMA-TS-REST_NetAPI_ACR-V1_0, URL: http://www.openmobilealliance.org/

[REST_NetAPI_Common] “Common definitions for RESTful Network APIs”, Open Mobile Alliance™, OMA-TS-

REST_NetAPI_Common-V1_0, URL:http://www.openmobilealliance.org/

[REST_SUP_Notification

Channel]

“XML schema for the RESTful Network API for Notification Channel”, Open Mobile Alliance™,

OMA-SUP-XSD_rest_netapi_notificationchannel-V1_0, URL:http://www.openmobilealliance.org/

[RFC2119] “Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997,

URL:http://www.ietf.org/rfc/rfc2119.txt

[RFC3261] “SIP: Session Initiation Protocol”, J. Rosenberg et al., June 2002,

URL:http://www.rfc-editor.org/rfc/rfc3261.txt

[RFC3966] “The tel URI for Telephone Numbers”, H.Schulzrinne, December 2004,

URL:http://www.ietf.org/rfc/rfc3966.txt

[RFC3986] “Uniform Resource Identifier (URI): Generic Syntax”, R. Fielding et. al, January 2005,

URL:http://www.ietf.org/rfc/rfc3986.txt

[RFC6455] “The WebSocket Protocol”, I. Fette and A. Melnikov, December 2011,

URL:http://www.ietf.org/rfc/rfc6455.txt

[RFC7159] “The JavaScript Object Notation (JSON) Data Interchange Format”, T. Bray, Ed., March 2014,

URL:http:// tools.ietf.org/html/rfc7159.txt

[RFC7231] “Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content”, R. Fielding, Ed., J.Raschke, Ed.,

June 2014, URL:http://tools.ietf.org/html/rfc7231.txt

[SCRRULES] “SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures,

URL:http://www.openmobilealliance.org/

[W3C_URLENC] HTML 4.01 Specification, Section 17.13.4 Form content types, The World Wide Web Consortium,

URL:http://www.w3.org/TR/html401/interact/forms.html#h-17.13.4.1

[XMLSchema1] W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures, W3C Recommendation 5 April

2012, URL: http://www.w3.org/TR/xmlschema11-1/

[XMLSchema2] W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes, W3C Recommendation 5 April

2012, URL: http://www.w3.org/TR/xmlschema11-2/

2.2 Informative References

[IANA] Protocol Assignments, Internet Assigned Numbers Authority, URL:http://www.iana.org

[OMADICT] “Dictionary for OMA Specifications”, Version 2.9, Open Mobile Alliance™,

OMA-ORG-Dictionary-V2_9, URL:http://www.openmobilealliance.org/

[PushOTA] “Push Over-the-Air”, Open Mobile Alliance™. OMA-TS-PushOTA-V2_3,

URL:http://www.openmobilealliance.org/

[PushPAP] “Push Access Protocol”, Open Mobile Alliance™. OMA-TS-PAP-V2_3,

URL:http://www.openmobilealliance.org/

[PushREST] “RESTful Network API for OMA Push”, Open Mobile Alliance™. OMA-TS-REST_NetAPI_Push-V1_0,

URL:http://www.openmobilealliance.org/

[REST_WP] “Guidelines for RESTful Network APIs”, Open Mobile Alliance™, OMA-WP-

Guidelines_for_RESTful_Network_APIs, URL:http://www.openmobilealliance.org/

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 10 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

[RFC6202] “Known Issues and Best Practices for the Use of Long Polling and Streaming in Bidirectional HTTP”,

April 2011, URL:http://tools.ietf.org/rfc/rfc6202.txt

[W3C_WebSock] “The WebSocket API”, W3C Candidate Recommendation 20 September 2012, Ian Hickson, ed.,

URL:http://www.w3.org/TR/websockets/

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 11 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,

“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be

informative.

3.2 Definitions

For the purpose of this TS, all definitions from the OMA Dictionary apply [OMADICT].

Client-side

Notification

URL

An HTTP URL exposed by a client, on which it is capable of receiving notifications and that can be used by the

client when subscribing to notifications.

Long Polling A variation of the traditional polling technique, where the server does not reply to a request unless a particular event,

status or timeout has occurred. Once the server has sent a response, it closes the connection, and typically the client

immediately sends a new request. This allows the emulation of an information push from a server to a client.

Notification

Channel

A channel created on the request of the client and used to deliver notifications from a server to a client. The channel

is represented as a resource and provides means for the server to post notifications and for the client to receive them

via specified delivery mechanisms.

For example in the case of Long Polling the channel resource is defined by a pair of URLs. One of the URLs is used

by the client as a callback URL when subscribing for notifications. The other URL is used by the client to retrieve

notifications from the Notification Server.

Notification

Server
A server that is capable of creating and maintaining Notification Channels.

Server-side

Notification

URL

An HTTP URL exposed by a Notification Server, that identifies a Notification Channel and that can be used by a

client when subscribing to notifications.

3.3 Abbreviations

ACR Anonymous Customer Reference

API Application Programming Interface

HTTP HyperText Transfer Protocol

JSON JavaScript Object Notation

MIME Multipurpose Internet Mail Extensions

OMA Open Mobile Alliance

PAP Push Access Protocol

PPG Push Proxy Gateway

REST REpresentational State Transfer

SCR Static Conformance Requirements

SIP Session Initiation Protocol

TS Technical Specification

URI Uniform Resource Identifier

URL Uniform Resource Locator

WP White Paper

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 12 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

XML eXtensible Markup Language

XSD XML Schema Definition

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 13 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

4. Introduction

The Technical Specification for the RESTful Network API for Notification Channel contains HTTP protocol bindings for

Notification Channel, using the REST architectural style. The specification provides resource definitions, the HTTP verbs

applicable for each of these resources, and the element data structures, as well as support material including flow diagrams

and examples using the various supported message body formats (i.e. XML, JSON, and application/x-www-form-

urlencoded).

This specification defines Pull methods and Push methods to deliver the notifications to the client.

4.1 Version 1.0

Version 1.0 of this specification supports the following operations:

 Manage Notification Channel

 Retrieve asynchronous notifications from the Notification Server via Long Polling (a Pull method)

 Receive asynchronous notifications from the Notification Server via OMA Push (a Push method)

 Receive asynchronous notifications from the Notification Server via WebSockets (a Push method)

In addition, this specification provides:

 Support for scope values used with authorization framework defined in [Autho4API_10]

 Support for Anonymous Customer Reference (ACR) as an end user identifier

 Support for “acr:auth” as a reserved keyword in a resource URL variable that identifies an end user

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 14 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

5. Notification Channel API definition

This section is organized to support a comprehensive understanding of the Notification Channel API design. It specifies the

definition of all resources, definition of all data structures, and definitions of all operations permitted on the specified

resources.

This specification introduces methods for a client (e.g. a browser or a native application) to receive asynchronous

notifications from a Notification Server about the events the client has subscribed to with one or more Enabler servers. The

notification delivery methods specified in this document fall into two groups: Pull and Push methods. For Pull, the

notification delivery method specified is based on HTTP requests and often referred as “HTTP Long Polling” [RFC6202].

For Push, two notification delivery methods are defined: WebSockets [RFC6455] and OMA Push [PUSH_ARCH]. For OMA

Push delivery, this specification assumes the Notification Server, as a Push Initiator, knows how to interact with PPG using

Push Access Protocol (PAP) [OMA PUSH] and as such not in the scope of this document.

For all notification delivery methods, as notifications are conveyed through a Notification Channel, the channel must be

created first before any further interaction can be invoked, such as a Long Polling request invoked by the client, or an

asynchronous event-push initiated by the channel onto PPG for OMA Push.

A single Notification Channel may handle notifications from several Enabler servers. Note that the client subscriptions to

notifications are specific for each Enabler server and they are not in the scope of this specification.

The following applies selectively to the different types of notification channels.

1) Long Polling:

In response to a channel creation request containing channelType = LongPolling, the Notification Server will

provide two URLs: callback URL and channel URL. The client uses callback URL as the notification endpoint when

subscribing to notifications from the Enabler server(s). Thus, each Enabler server will send subsequent notifications

using this callback URL referring to the Notification Server. The channel URL is used to retrieve notifications from

the Notification Server using the HTTP Long Polling mechanism. When the Notification Server receives a

notification from an Enabler server, it possibly groups multiple notifications prior to delivery, and conveys the

notification(s) to the client with the response to the pending HTTP Long Polling request.

A Notification Channel has certain time-to-live and therefore in order to continue using it, the channel has to be

maintained (“refreshed”) by the client. For the Long Polling delivery method, the channel is refreshed implicitly:

With each Long Polling request, the Notification Server will reset the channel life time to its original value.

Clients SHOULD NOT establish more than one simultaneous connection to the channel URL, and servers SHOULD

NOT allow more than one simultaneous connection to the channel URL. If another Long Polling request arrives at

the Notification Server while a Long Polling request for the same channel URL is still open, the server SHOULD

terminate the first request with an appropriate error (e.g., SVC1012 Simultaneous channel requests not supported),

and pass notifications to the client in response to the newly arrived Long Polling request.

Clients SHOULD issue a new Long Polling request as quickly as possible after receiving a notification.

2) OMA Push:

In response to a channel creation request containing channelType = OMAPush, the Notification Server will only

provide a callback URL. That is, for the OMA Push notification delivery method, the notification server does not

provide a channel URL as the client application is expected to asynchronously receive notifications via the OMA

Push enabler [OMA_PUSH]. As explained earlier above, the client application would use the callback URL as

notification endpoint when subscribing to notifications from the Enabler server(s).

Additionally, the request for a channel creation of type OMA Push may contain a unique application Id (appId)

which is required by the OMA Push infrastructure [OMA_PUSH] to direct the asynchronous push messages to a

particular client application on the device. However, if the application Id is not present in the channel creation

request, it is assumed that the Notification Sever has other means of retrieving the application Id (e.g. through the

usage of the available OAuth token in the Notification Channel creation request).

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 15 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

When the Notification Server receives a notification from an Enabler server, it possibly groups multiple notifications

prior to delivery, and conveys the notification(s) to the client via the PPG.

If the client expects a high-traffic notifications behaviour from a given backend enabler, the client SHOULD enable

the “largeDataPolling” feature of the OMA Push channel (see LargeDataPolling Mechanism section below).

An OMA Push Notification Channel has certain time-to-live and therefore in order to continue using it, the channel

has to be maintained (“refreshed”) by the client. For this purpose, a resource is provided that the application can use

to explicitly refresh the channel (see section 6.4).

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 16 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

3) WebSockets:

In response to a channel creation request containing channelType = WebSockets, the Notification Server will

provide a callback URL and a channel URL. The client uses the callback URL as notification endpoint when

subscribing to notifications from the Enabler server(s). Thus, each Enabler server will send subsequent notifications

using this callback URL referring to the Notification Server. The channel URL is used to establish a WebSockets

connection to receive notifications from the Notification Server, whereas the transmission of a (set of) notification(s)

is initiated by the Notification Server.

When the Notification Server receives a notification from an Enabler server, it possibly groups multiple notifications

prior to delivery, and conveys the notification(s) to the client in the server-to-client leg of the bidirectional

WebSockets connection. The client-to-server leg of the connection is currently unused except for connectivity

checking and keep-alive.

A Notification Channel has certain time-to-live and therefore in order to continue using it, the channel has to be

maintained (“refreshed”) by the client. For this purpose, a resource is provided that the application can use to

explicitly refresh the channel (see section 6.4). Alternatively, the mechanism for connection checking and keep-alive

defined in this specification (Appendix I.3) can be used for refresh.

4) NativeChannel:

In response to a channel creation request containing channelType = NativeChannel, the Notification Server will

provide a callback URL.

The client uses the callback URL as notification endpoint when subscribing to notifications from the Enabler

server(s). Thus, each Enabler server will send subsequent notifications using this callback URL referring to the

Notification Server.

Additionally, the request for a channel creation of type NativeChannel MUST identify the device-specific native

notification service (e.g. Google GCM, Apple APNS, Windows WNS) as well as contain a “registrationToken”

which uniquely identifies the client application to the given device-specific notification service. The

“registrationToken” is obtained by the client as part of its registration process with a given native notification

service (e.g. GCM) and hence out of the scope of this document.

When the Notification Server receives a notification from an Enabler server, it possibly groups multiple notifications

prior to delivery, and conveys the notification(s) to the client via the requested native notification service (e.g.

GCM).

If the client expects a high-traffic notifications behaviour from a given backend enabler, the client SHOULD enable

the “largeDataPolling” feature of the NativeChannel (see LargeDataPolling Mechanism section below).

A NativeChannel Notification Channel has certain time-to-live and therefore in order to continue using it, the

channel has to be maintained (”refreshed”) by the client. For this purpose, a resource is provided that the application

can use to explicitly refresh the channel (see section 6.4).

5) LargeDataPolling Mechanism:

When the “largeDataPolling” mechanism is enabled (i.e. “largeDataPolling.pollingEnabled” = true) by the client,

any time the number of notifications is more than the channel’s specified “maxNotifications” or the notification size

is beyond the known limitation of the channel or certain server policy is met, the client is informed (by the server

using the channel) via an asynchronous event (i.e. “LargePollingNotification”) which contains a dynamically created

“channelURL”.

The “channelURL” is to be used by the client to retrieve awaiting notifications from the Notification Server using a

HTTP Polling mechanism which is similar to the Long Polling explained above with the difference that once the

queued up notifications have all been fetched from the “channelURL”, the server marks the “notificationList” as

complete (by setting the “ncListComplete” parameter to true) and destroys the “channelURL” accordingly. At this

point the dynamically created “channelURL” is no longer valid (hence the client should stop polling it) while the

channel itself (e.g. OMA Push, NativeChannel) continues its normal life cycle.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 17 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

Depending on the number of awaiting events in the channel and the requested “maxPollingNotifications”, the client

may repeat polling on “channelURL” multiple times in order to retrieve all the awaiting notifications.

It should be noted that in order not to disclose underlying network topology, the Notification Server usually sends to the

client a mapped version of the real callback URL. Later, when the Enabler server receives such mapped callback URL, it will

apply de-mapping of the URL before it can be used. How this mapping and de-mapping is performed on the server is out of

scope for this specification.

The remainder of this document is structured as follows:

Section 5 starts with a diagram representing the resources hierarchy, followed by a table listing all the resources (and their

URL) used by this API, along with the data structure and the supported HTTP verbs (section 5.1). What follows are the data

structures (section 5.2). A sample of typical use cases is included in section 5.3, described as high level flow diagrams.

Section 6 contains detailed specification for each of the resources. Each such subsection defines the resource, the request

URL variables that are common for all HTTP commands, the possible HTTP response codes, and the supported HTTP verbs.

For each supported HTTP verb, a description of the functionality is provided, along with an example of a request and an

example of a response. For each unsupported HTTP verb, the returned HTTP error status is specified, as well as what should

be returned in the Allow header.

All examples in section 6 use XML as the format for the message body. Application/x-www-form-urlencoded examples are

provided in Appendix C, while JSON examples are provided in Appendix D.

Section 7 contains fault definition details such as Service Exceptions and Policy Exceptions. Appendix B provides the Static

Conformance Requirements (SCR).

Appendix E provides the operations mapping to a pre-existing baseline specification, where applicable.

Appendix F provides a list of all light-weight resources, where applicable.

Appendix G defines authorization aspects to control access to the resources defined in this specification.

Note: Throughout this document client and application can be used interchangeably.

5.1 Resources Summary

This section summarizes all the resources used by the RESTful Notification Channel API.

The "apiVersion" URL variable SHALL have the value "v1" to indicate that the API corresponds to this version of the

specification. See [REST_NetAPI_Common] which specifies the semantics of this variable.

The figure below visualizes the resource structure defined by this specification. Note that those nodes in the resource tree

which have associated HTTP methods defined in this specification are depicted by solid boxes.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 18 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

Figure 1 Resource structure defined by this specification

The following tables give a detailed overview of the resources defined in this specification, the data type of their

representation and the allowed HTTP methods.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 19 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

Purpose: To allow the client to manage Notification Channels

Resource URL
Base URL:
http://{serverRoot}/notif
icationchannel/{apiVers
ion}

Data Structures HTTP verbs

GET PUT POST DELETE

Notification
Channels

/{userId}/channels NotificationChannelList
(used for GET)

NotificationChannel
(used for POST)

Retrieves a list
of Notification
Channels.

no Creates a new
Notification
Channel.

no

Individual
Notification
Channel

/{userId}/channels/{chann
elId}

NotificationChannel
(used for GET)

Retrieves an
individual
Notification
Channel.

no no Removes an
individual
Notification
Channel.

Notification
Channel lifetime

/{userId}/channels/{chann
elId}/channelLifetime

NotificationChannelLifetime Retrieves the
lifetime of a
Notification
Channel.

Updates
(“refreshes”) the
lifetime of a
Notification
Channel

no no

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 20 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

Purpose: To allow the client to retrieve notifications from the Notification Server by using Long Polling

Resource URL:
<specified by the
server>

Data Structures HTTP verbs

GET PUT POST DELETE

Notification list < Resource URL is
received with
“channelURL“ in
response from the server
when a Long Polling
Notification Channel is
created>

LongPollingRequestParamet
ers
(used for POST request)

NotificationList or notification
as defined by individual
enabler specification (used in
response to the Long Polling
POST request)

no no Retrieves
pending
notifications
from the
identified Long
Polling
Notification
Channel.
At the same
time the channel
life time is reset
to its original
value.

no

Note: The URL of this resource is used by WebSockets-based notification channels to create the WebSockets connection through which the server can send

notifications to the client. When using WebSockets, this is however not a resource in the RESTful sense; therefore, WebSockets-based notification channels are not

mentioned in the table above.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 21 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

5.2 Data Types

5.2.1 XML Namespaces

The XML namespace for the Notification Channel data types is:

 urn:oma:xml:rest:netapi:notificationchannel:1

The 'xsd' namespace prefix is used in the present document to refer to the XML Schema data types defined in XML Schema

[XMLSchema1, XMLSchema2]. The 'common' namespace prefix is used in the present document to refer to the data types

defined in [REST_NetAPI_Common]. The use of namespace prefixes such as 'xsd' is not semantically significant.

The XML schema for the data structures defined in the section below is given in [REST_SUP_NotificationChannel].

5.2.2 Structures

The subsections of this section define the data structures used in the Notification Channel API.

Some of the structures can be instantiated as so-called root elements.

5.2.2.1 Type: NotificationChannelList

This type defines a list of Notification Channels.

Element Type Optional Description

notificationChannel NotificationChannel
[0..unbounded]

Yes May contain an array of Notification Channels.

resourceURL xsd:anyURI No Self referring URL

A root element named notificationChannelList of type NotificationChannelList is allowed in response bodies.

5.2.2.2 Type: NotificationChannel

This type defines a single Notification Channel.

Element Type Optional Description

clientCorrelator xsd:string Yes A correlator that the client can use to tag this particular
resource representation during a request to create a
resource on the server.

This element SHOULD be present. Note: this allows
the client to recover from communication failures
during resource creation and therefore avoids
duplicate channel creation in such situations.

In case the field is present, the server SHALL not alter
its value, and SHALL provide it as part of the
representation of this resource. In case the field is not
present, the server SHALL NOT generate it.

applicationTag xsd:string Yes A tag that the client MAY use to tag this particular
resource on the server. In case the field is present, the
server SHALL not alter its value, and SHALL provide it
as part of the representation of this resource. In case
the field is not present, the server SHALL NOT
generate it.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 22 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

channelType ChannelType No Specifies the type of Notification Channel to be used
and thereby defines the method that will be used to
receive new notifications on the channel.

channelData ChannelData Yes Contains specific information for the Notification
Channel type specified in channelType.

The channelData MUST be included in the response
to the request for the creation of Notification Channel
for Long Polling, OMA Push or WebSockets.

Note that for Long Polling, the channel data is defined
in the type LongPollingData (see 5.2.2.6). For OMA
Push, the channel data is defined in the type
OMAPushData (see 5.2.2.7). For WebSockets, the
channel data is defined in the type WebSocketsData
(see 5.2.2.10). All these data types are derived from
ChannelData.

In XML implementation for channelData,
LongPollingData, OMAPushData or WebSocket Data,
the type is identified by the xsi:type attribute.

channelLifetime xsd:int Yes Lifetime (duration) of Notification Channel in seconds.

Client can specify desired lifetime of Notification
Channel in POST request when creating Notification
Channel, however the server in the response to the
request may change the desired lifetime according to
its server policy.

If the element is not present in the POST request, a
default channel lifetime specified by server policy will
apply.

The server SHALL always include the channel lifetime
in the response.

callbackURL xsd:anyURI Yes Specified by the server. Contains a callback URL used
when establishing subscriptions for notifications from
the respective Enabler server (not part of this
specification). The callbackURL SHALL NOT be
included in POST request to create the Notification
Channel resource. MUST be included in responses to
the channel creation and any HTTP method that
returns an entity body.

resourceURL xsd:anyURI Yes Self referring URL. The resourceURL SHALL NOT be
included in POST requests by the client, but MUST be
included in POST requests representing notifications
by the server to the client, when a complete
representation of the resource is embedded in the
notification. The resourceURL MUST be also included
in responses to any HTTP method that returns an
entity body, and in PUT requests.

A root element named notificationChannel of type NotificationChannel is allowed in request and/or response bodies.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 23 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

5.2.2.3 Type: NotificationList

This type defines a list of notifications that are being delivered to the client.

Element Type Optional Description

<Element is
defined by
respective Enabler
server API>

<Type is defined by
respective enabler API>
[0..unbounded]

Yes Contains a list (array) of notifications. The notification
types are defined by the different OMA RESTful
Network APIs. The list does not impose any further
restriction on its content, i.e. notifications of a
particular type can occur 0 or more times in the list.

ncListComplete xsd:boolean Yes Specified by the server only for the OMA Push and
Native channel types, on the Polling channel and if the
client has set “largeDataPolling.pollingEnabled” to true
as part of the channel creation.

This parameter SHALL be set to true by the server
when the notificationList is complete (i.e. no more
notifications are left in the “channelURL”) and the
“channelURL” has accordingly been destroyed by the
server.

When this parameter is true, the client SHOULD stop
Polling the “channelURL” which was previously
reported to it through “LargePollingNotification”. See
section 5.2.2.4 and LargeDataPolling Mechanism in
section 5 for further information.

A root element named notificationList of type NotificationList is allowed in request and/or response bodies.

5.2.2.4 Type: LargePollingNotification

This type represents a wakeup call notification.

Element Type Optional Description

channelURL xsd:anyURI No Specified by the server. Contains the URL used to
retrieve the events from a dynamically created Polling
Channel.

channelExpiry xsd:dateTimeStamp No Specified by the server. The time at which the
channelURL will expire if the channel stays inactive
(i.e. if channelURL is not polled by the client before
expiry time).

Once, the client polls the channelURL, the
channelExpiry SHALL be extended appropriately by
the server until the client retrieves all the events in a
HTTP Polling fashion at which point the server reports
the end of the notificationList to the client (see section
5.2.2.3).

If the channelURL expires due to client’s inactivity (i.e.
client doesn’t perform repeated polling request to
retrieve the remaining events) the accumulated
notifications MAY be deleted based on Notification
server’s policy.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 24 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

A root element named largePollingNotification of type LargePollingNotification is allowed in notification request bodies.

5.2.2.5 Type: ChannelData

This is an abstract data type that contains no elements. Data type that is used to define specific information for a particular

Notification Channel type (channelData in 5.2.2.2), SHALL be derived from this data type.

5.2.2.6 Type: LongPollingData

This type is derived from ChannelData and it defines specific data for the Long Polling mechanism that is used on the

Notification Channel. It is used inside the ‘channelData’ element when a channel is created, and it is identified by xsi:type

attribute. The xsi:type attribute SHALL be included in XML instances, and SHALL NOT be included in JSON instances.

Element Type Optional Description

channelURL xsd:anyURI Yes Specified by the server. Contains the URL used to
retrieve new events. The channelURL SHALL NOT be
included in POST request to create the Notification
Channel resource, but MUST be included in the
response to the channel creation and any HTTP
method that returns an entity body.

maxNotifications xsd:int Yes Defines the maximum number of notifications that may
be delivered in a notification list.
If not specified, a default value specified by the server
policy will apply, and the server SHOULD include that
value in the response to the client.

maxWaitTime xsd:int Yes Defines the maximum wait time in seconds, the client
is willing to wait before it is notified of awaiting events
at the notification server. If there are awaiting events,
the server MUST notify the client of the awaiting
events if either the maxNotifications or maxWaitTime
criterion has been reached.

If not specified, the server default value SHALL take
effect. Setting the maxWaitTime to zero indicates the
client’s intent to get notifications (not to exceed
maxNotifications in a single response) as soon as
there is a notification at the notification server. See
section 5.3.6 for further information.

5.2.2.7 Type: OMAPushData

This type is derived from ChannelData and it defines specific data for the OMAPush mechanism that is used on the

Notification Channel. It is used inside the ‘channelData’ element when a channel is created, and it is identified by xsi:type

attribute. The xsi:type attribute SHALL be included in XML instances, and SHALL NOT be included in JSON instances.

Element Type Optional Description

appId xsd:string Yes appId is a required data parameter by OMA Push
enabler for routing the Push Message to the
appropriate application on the target device/MSISDN.

maxNotifications xsd:int Yes Defines the maximum number of notifications that may
be delivered in a notification list. Note: the actual
deliverable notifications may be limited by the
capabilities of the Push-OTA bearer, e.g. up to a
particular total size of the notification data.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 25 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

If not specified, a default value specified by the server
policy will apply, and the server SHOULD include that
value in the response to the client.

largeDataPolling LargeDataPolling Yes Used by the client if it wishes to enable the
LargeDataPolling mechanism which enables it to
retrieve large notifications in a HTTP Polling fashion
as opposed to receiving them over OMA Push
channel. See the OMA Push description in section 5
for further information.

5.2.2.8 Type: LargeDataPolling

This type defines parameters for LargeDataPolling.

Element Type Optional Description

pollingEnabled xsd:boolean Yes If set to true and the number of notifications to be
delivered over the channel are more than the specified
maxNotifications or beyond the known limitation of
channel’s delivery method or certain server policy is
met then the server SHALL dynamically create a
“channelURL” and inform the client via the
“LargePollingNotification” asynchronous event (see
5.2.2.4). The client is then able to use the
“channelURL” and retrieve all the notifications in a
HTTP Polling manner.

If the element is not present or set to false, then the
events are only reported via the channel’s
asynchronous delivery method (i.e. the client is not
provided with the “LargePollingNotification”).

maxPollingNotificat
ions

xsd:int Yes Defines the maximum number of notifications (in the
notificationList) that may be delivered over the
dynamically created “channelURL”.
If not specified, a default value specified by the server
policy will apply, and the server SHOULD include that
value in the response to the client.

5.2.2.9 Type: LongPollingRequestParameters

This type defines parameters for Long Polling request.

Element Type Optional Description

(empty) In the current version of this specifications, this type is
empty

A root element named longPollingRequestParameters of type LongPollingRequestParameters is allowed in request bodies.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 26 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

5.2.2.10 Type: WebSocketsData

This type is derived from ChannelData and it defines specific data for a WebSockets-based Notification Channel. It is used

inside the ‘channelData’ element when a channel is created, and it is identified by xsi:type attribute. The xsi:type attribute

SHALL be included in XML instances, and SHALL NOT be included in JSON instances.

Element Type Optional Description

channelURL xsd:anyURI Yes Specified by the server. Contains the URL used to
open a WebSockets connection to receive event
notification.

The channelURL SHALL NOT be included in POST
request to create the Notification Channel resource,
but MUST be included in the response to the channel
creation and any HTTP method that returns an entity
body.

maxNotifications xsd:int Yes Defines the maximum number of notifications that may
be delivered in a notification list.
If not specified, a default value specified by the server
policy will apply, and the server SHOULD include that
value in the response to the client.

5.2.2.11 Type: ConnCheck

This type defines a message for WebSockets-based notification channels, see I.3.

Element Type Optional Description

checkInterval xsd:int Yes Time interval in seconds after which the sender of the
ConnCheck message intends to send the next
ConnCheck message.

newChannelLifetim
e

xsd:int Yes Offered new channel lifetime (duration) of Notification
Channel in seconds.

This new channel lifetime starts once the connAck
message from the client corresponding to this
connCheck message arrives at the server.

MUST be instantiated by the server, and MUST NOT
be instantiated by the client.

A root element named connCheck of type ConnCheck is allowed in WebSockets messages.

5.2.2.12 Type: ConnAck

This type defines a message for WebSockets-based notification channels, see I.3.

Element Type Optional Description

channelLifetime xsd:int Yes Lifetime (duration) of Notification Channel in seconds.

MUST be instantiated by the server, and MUST NOT
be instantiated by the client.

A root element named connAck of type ConnAck is allowed in WebSockets messages.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 27 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

5.2.2.13 Type: NativeChannelData

This type is derived from ChannelData and it defines specific data for the NativeChannel mechanism that is used on the

Notification Channel. It is used inside the ‘channelData’ element when a channel is created, and it is identified by xsi:type

attribute. The xsi:type attribute SHALL be included in XML instances, and SHALL NOT be included in JSON instances.

Element Type Optional Description

channelSubType NativeChannelSubType No SHALL be specified by the client in the request.

This element identifies the device-specific notification
service (e.g. GCM, APNS, WNS) which SHALL be
used by the Notification Channel to deliver events to
the client.

registrationToken xsd:string No SHALL be specified by the client in the request.

For a GCM channel, registrationToken SHALL contain
“RegistrationID”, for an APNs channel,
registrationToken SHALL contain “DeviceToken” and
for a WNS channel, registrationToken SHALL contain
“NotificationChannelURI”).

registrationToken enables the device-specific
notification service, as indicated by channelSubType,
to identify the client and deliver events accordingly

How the client obtains such a token is dependent
upon the channelSubType’s registration process and
hence out of the scope of this document.

channelSubTypeV
ersion

xsd:string Yes Identifies the specific version of channelSubType, the
client has registered with (to receive asynchronous
events).

If this element is specified by the client in the request,
and this version of channelSubType is supported by
the Notification Channel, it SHALL be used by the
Notification Channel to appropriately interact with the
channelSubType. However, if the specified version of
channelSubType is not supported by the Notification
Channel, an appropriate error SHALL be provided to
the client in the POST response.

If this element is not present, the Notification Channel
SHALL use a default channelSubType version. The
default channelSubType SHALL be provided to the
client in the POST response.

maxNotifications xsd:int Yes Defines the maximum number of notifications that may
be delivered in a notification list. Note: the actual
deliverable notifications may be limited by the
capabilities of the Native Channel, e.g. up to a
particular total size of the notification data.
If not specified, a default value specified by the server
policy will apply, and the server SHOULD include that
value in the response to the client.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 28 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

largeDataPolling LargeDataPolling Yes Used by the client if it wishes to enable the
LargeDataPolling mechanism which enables it to
retrieve large notifications in a HTTP Polling fashion
as opposed to receiving them over NativeChannel.
See the Native Channel description in section 5 for
further information.

5.2.2.14 Type: NotificationChannelLifetime

This type defines the lifetime of a Notification Channel.

Element Type Optional Description

channelLifetime xsd:int Yes Remaining lifetime (duration) of Notification Channel in
seconds.

The client can specify the desired lifetime of the
Notification Channel in PUT request when “refreshing”
a Notification Channel, however the server in the
response to the request may change the desired
lifetime according to its server policy.

If the element is not present in the request, a default
channel lifetime specified by server policy will apply.

The server SHALL always include the channel lifetime
in the response.

A root element named notificationChannelLifetime of type NotificationChannelLifetime is allowed in request and/or

response bodies.

5.2.3 Enumerations

The subsections of this section define the enumerations used in the Notification Channel API.

5.2.3.1 Enumeration: ChannelType

Enumeration Description

LongPolling Indicates that the HTTP Long Polling mechanism is to be used on the
Notification Channel to retrieve notifications from the Notification Server.

OMAPush Indicates that the OMA Push mechanism is to be used by the Notification
Server to asynchronously notify the client of events.

WebSockets Indicates that a WebSockets connection is to be used by the Notification
Server to asynchronously notify the client of events.

NativeChannel Indicates that some form of a device-specific Native notification service is to
be used by the Notification Channel to asynchronously notify the client of
events.

5.2.3.2 Enumeration: NativeChannelSubType

Enumeration Description

GCM Indicates that the Google Notification Messaging mechanism is to be used
by the Notification Channel to asynchronously push notifications to the

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 29 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

client.

APNS Indicates that the Apple Push Notification Service mechanism is to be used
by the Notification Channel to asynchronously push notifications to the
client.

WNS Indicates that the Windows Notification Service mechanism is to be used by
the Notification Channel to asynchronously push notifications to the client.

5.2.4 Values of the Link “rel” attribute

The “rel” attribute of the Link element is a free string set by the server implementation, to indicate a relationship between the

current resource and an external resource. The following are possible strings (list is non-exhaustive, and can be extended):

 NotificationChannelList

 NotificationChannel

These values indicate the kind of resource that the link points to.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 30 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

5.3 Sequence Diagrams

The following subsections describe the resources, methods and steps involved in typical scenarios.

Note that signalling sequences between the Notification Server and Enabler servers X (e.g. Presence server) and Y (e.g.

Messaging server), as well as the signalling sequences between the application and the Enabler servers X and Y (depicted in

grey colour) are not part of this specifications; those sequences in the flows are shown for completeness only.

Upon creation of a Notification Channel, the application is required to inform the Notification Server as to the desired

notification delivery mechanism. The following four notification delivery mechanisms are supported:

1. Long Polling

2. OMA Push

3. WebSockets

4. NativeChannel (GCM, APNS, WNS)

5.3.1 Create Notification Channel (Long Polling Method)

This figure below shows a scenario for creation of a Notification Channel by an application using the Long Polling

notification delivery mechanism.

The resources:

 To create Notification Channel:

http://{serverRoot}/notificationchannel/{apiVersion}/{userId}/channels

 To retrieve new notifications:

The resource to be used is provided in the response to the channel creation.

Application

Server
(Notification)

Server
(Enabler X)

1. POST Notification Channel

(channelType = LongPolling)

Create Notification

ChannelResponse with created channel info incl.

channel URL, callback URL

2. POST subscription + callback URL

Response

4. POST channel URL

Long Polling request

Subscriptions for

notifications created

towards each

enabler.

(NOTE: Not part of

this API)

Server
(Enabler Y)

3. POST subscription + callback URL

Response

Sequences in scope of this specification

NOT in scope of this specification

Legend:

Figure 2 Create Notification Channel

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 31 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

Outline of the flows:

1. Application creates a Notification Channel by sending a POST request to the Notification Server indicating the desire to

use the Long Polling notification delivery method by setting the channelType = LongPolling (the request may include a

limit to the number of notifications that the application can receive in the responses).

A successful response includes a body containing a unique channel URL which is to be used when issuing the Long

Polling request and callback URL which is to be used when subscribing for notifications to a particular Enabler server.

2. Application creates a subscription for notifications from Enabler X server. The included callback URL instructs the

Enabler X server to send notifications to the Notification Server (this operation is not part of this API).

The Enabler server returns a response (this operation is not part of this API).

3. Application creates a subscription for notifications from Enabler Y server. The included callback URL instructs the

Enabler server to send notifications to the Notification Server (this operation is not part of this API).

The Enabler Y server returns a response (this operation is not part of this API).

4. Application initiates a Long Polling request using the channel URL received in the response to POST in step 1 and

waits for a new event.

5.3.2 Notifications delivered to application using Long Polling

This figure below shows a scenario where two notifications are delivered to the application, generated by two different

servers.

The resource used by the application for the Long Polling requests is provided by the Notification Server (e.g. received in the

response to creation of the Notification Channel, see section 5.3.1).

1. POST channel URL

2. POST Notification containing new message

Response

Response incl. new message notification

5. POST channel URL

3. POST channel URL

4.POST Notification containing

presence update

Response

Response incl. presence update notification

Long Polling request

Long Polling request

Long Polling request

Application
Server

(Notification)

Server
(Enabler X)

Server
(Enabler Y)

Sequences in scope of this specification

NOT in scope of this specification

Legend:

1. POST channel URL

2. POST Notification containing new message

Response

Response incl. new message notification

5. POST channel URL

3. POST channel URL

4.POST Notification containing

presence update

Response

Response incl. presence update notification

Long Polling request

Long Polling request

Long Polling request

Application
Server

(Notification)

Server
(Enabler X)

Server
(Enabler Y)

Sequences in scope of this specification

NOT in scope of this specification

Legend:

Sequences in scope of this specification

NOT in scope of this specification

Legend:

Figure 3 Notifications delivered to application

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 32 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

Outline of the flows:

1. Application initiates a Long Polling request using the channel URL received when the Notification Channel was created.

2. A new message is received, which triggers a notification being sent from the Enabler Y server to the Notification Server

using the callback URL provided when the Notification Channel was created (this operation is not part of this API).

A response to the Long Polling request in step 1 is delivered to the application including the new message.

A response to the notification received in step 2 is sent to Enabler Y server after the response is delivered to the

application (this operation is not part of this API).

3. Application immediately initiates a new Long Polling request.

4. A new event occurs; in this case a presence update notification is received in the Notification Server using the callback

URL provided when the Notification Channel was created (this operation is not part of this API).

A response to the Long Polling request in step 3 is delivered to the application including the presence update.

A response to the notification received in step 4 is sent to Enabler X server after the response is delivered to the

application (this operation is not part of this API).

5. Application immediately initiates a new Long Polling request and waits for a new event.

5.3.3 Long Polling request timeout response

This figure below shows a scenario where a Long Polling request times out and a new Long Polling request is sent.

Note that the timeout mentioned below is a value specific to the Long Polling implementation, and not the “channelLifetime”

as defined in section 5.2.2.2.

The resource used by the application for the Long Polling requests is provided by the Notification Server (e.g. received in the

response to creation of the Notification Channel, see section 5.3.1).

1. POST channel URL

Long Polling request

Response sent due to connection timeout

2. POST channel URL

Long Polling request

Application
Server

(Notification)

1. POST channel URL

Long Polling request

Response sent due to connection timeout

2. POST channel URL

Long Polling request

Application
Server

(Notification)

Figure 4 Request timeout

Outline of the flows:

1. Application initiates a Long Polling request using the channel URL received when the Notification Channel was created.

No new event is received within a given time limit causing the request to timeout. An empty response is returned to the

application.

2. Application immediately initiates a new Long Polling request and waits for a new event.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 33 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

5.3.4 Multiple notifications delivered to application in response to the
Long Polling request

This figure below shows a scenario where two notifications are delivered to the application in the same response.

The resource used by the application for the Long Polling requests is provided by the Notification Server (e.g. received in the

response to creation of the Notification Channel, see section 5.3.1).

3. POST channel URL

1. POST Notification containing new message

Response (1)

Response incl. new message and presence

update notification

4. POST channel URL

2. POST Notification containing

presence update

Response (2)

Long Polling request

Long Polling request

Application
Server

(Notification)

Server
(Enabler X)

Server
(Enabler Y)

Sequences in scope of this specification

NOT in scope of this specification

Legend:

3. POST channel URL

1. POST Notification containing new message

Response (1)

Response incl. new message and presence

update notification

4. POST channel URL

2. POST Notification containing

presence update

Response (2)

Long Polling request

Long Polling request

Application
Server

(Notification)

Server
(Enabler X)

Server
(Enabler Y)

Sequences in scope of this specification

NOT in scope of this specification

Legend:

Sequences in scope of this specification

NOT in scope of this specification

Legend:

Figure 5 Multiple notifications delivered to application in response

Outline of the flows:

1. A new message is received but in this case there is no outstanding Long Polling request from the application so the

notification will be pending in the Notification Server (this operation is not part of this API).

2. A new event occurs; in this case a presence update notification is received. As there is no outstanding Long Polling

request from the application the notification will be pending in the Notification Server (this operation is not part of this

API).

3. Application initiates a Long Polling request using the channel URL received when the Notification Channel was created.

A response to the Long Polling request in step 3 is delivered to the application including the new message and the

presence update notification (assuming that the application allowed multiple notifications in the response when the

Notification Channel was created).

A response to the notification received in step 1 is sent to Enabler Y server after the response is delivered to the

application (this operation is not part of this API).

A response to the notification received in step 2 is sent to Enabler X server after the response is delivered to the

application (this operation is not part of this API).

4. Application immediately initiates a new Long Polling request and waits for a new event.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 34 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

5.3.5 Max number of notifications reached during the Long Polling

This figure below shows a scenario where the limit for the number of notifications in the response to the application (in this

example, 3 notifications) has been reached, which triggered response back to the application.

The resource used by the application for the Long Polling requests is provided by the Notification Server (e.g. received in the

response to creation of the Notification Channel, see section 5.3.1).

1. POST channel URL

2. POST Notification containing new message

Response (2)

Response incl. new message and presence

update notification

5. POST channel URL

3. POST Notification containing

presence update

Response (3)

Long Polling request

Long Polling request

4. POST Notification containing

presence update

Max number of

notifications reached

Response (4)

Application
Server

(Notification)

Server
(Enabler X)

Server
(Enabler Y)

Sequences in scope of this specification

NOT in scope of this specification

Legend:

1. POST channel URL

2. POST Notification containing new message

Response (2)

Response incl. new message and presence

update notification

5. POST channel URL

3. POST Notification containing

presence update

Response (3)

Long Polling request

Long Polling request

4. POST Notification containing

presence update

Max number of

notifications reached

Response (4)

Application
Server

(Notification)

Server
(Enabler X)

Server
(Enabler Y)

Sequences in scope of this specification

NOT in scope of this specification

Legend:

Sequences in scope of this specification

NOT in scope of this specification

Legend:

Figure 6 Maximum number of notifications in the response to the Long Polling

Outline of the flows:

1. Application initiates a Long Polling request using the channel URL received when the Notification Channel was created.

2. A new message has been received and the Notification Server is notified (this operation is not part of this API). Since

the maxNotifications limit is not yet reached no response to the Long Polling request is sent back to the application.

3. A new event occurs; in this case a presence update notification is received at the Notification Server (this operation is

not part of this API). The maxNotifications limit is still not reached.

4. A new event occurs; in this case another presence update notification is received at the Notification Server (this

operation is not part of this API).

The maximum number of notifications allowed in the response has been reached and the response to the Long Polling

request in step 1 is sent to the application. The response includes the new message and the two presence update

notifications.

A response to the notification received in step 2 is sent to Enabler Y server after the response is delivered to the

application (this operation is not part of this API).

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 35 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

A response to the notification received in step 3 is sent to Enabler X server after the response is delivered to the

application (this operation is not part of this API).

A response to the notification received in step 4 is sent to Enabler X server after the response is delivered to the

application (this operation is not part of this API).

5. Application immediately initiates a new Long Polling request.

5.3.6 Max wait time or max number of notifications reached during the
Long Polling

This figure below shows a scenario where the limit for the maximum wait time or maximum number of notifications in the

response to the application has been reached, which triggers a response back to the application. In the example below the

following assumptions have been used:

 Client application at Long Polling Notification Channel creation has set maxWaitTime = 5 second and

maxNotifications = 3 events.

 Server’s Long Polling connection timeout = 45 seconds (i.e. Long Polling request to the server times out in 45

seconds if there is no event received within 45 seconds. The client needs to immediately send a new Long Polling

request upon receiving an empty response to a prior Long Polling request).

The resource used by the application for the Long Polling requests is provided by the Notification Server (e.g. received in the

response to creation of the Notification Channel, see section 5.3.1).

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 36 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

Figure 7 Max wait time or max number of notifications criterion used to respond to the Long Polling

Outline of the flows (where t is time in seconds):

1. Application initiates a Long Polling request at t= 0 using the channel URL received when the Notification Channel was

created.

2. No new event is received within a given time limit (45 seconds in this example) causing the request to timeout. An

empty response is returned to the application at t=45.

3. Application immediately initiates a new Long Polling request at t= 45

4. At t=55 event “A” arrives at the Notification Server. Since the maxWaitTime (from the time this event has arrived) nor

maxNotifications has been reached, the server holds onto the event

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 37 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

5. At t=56 event “B” arrives at the Notification Server. Since the maxWaitTime nor maxNotifications has been reached,

the server holds onto the event

6. At t=58 event “C” arrives at the Notification Server. The maximum number of notifications allowed (maxNotifications

=3 events) in the response has been reached

7. The response to the Long Polling request in step 3 is sent to the application at t=58. The response includes events “A”,

“B” and “C”.

8. Application immediately initiates a new Long Polling request at t= 58

9. At t=70 event “D” arrives at the Notification Server. Since the maxWaitTime (from the time this event has arrived) nor

maxNotifications has been reached, the server holds onto the event

Time passes by and at t=75, maxWaitTime = 5 seconds (from the time the first event arrived) limit is reached.

10. The response to the Long Polling request in step 8 is sent to the application at t=75. The response includes events “D”.

11. Application immediately initiates a new Long Polling request at t= 75

12. At t=118 event “E” arrives at the Notification Server. Since the maxWaitTime nor maxNotifications has been reached,

the server holds onto the event

Time passes by and at t=120, server’s connection timeout kicks in

13. The response to the Long Polling request in step 11 is sent to the application at t=120. The response includes events “E”.

14. Application immediately initiates a new Long Polling request at t= 120

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 38 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

5.3.7 Create Notification Channel (OMA Push Method)

This figure below shows a scenario for creation of a Notification Channel by an application using the OMA Push notification

delivery mechanism.

The resources:

 To create Notification Channel:

http://{serverRoot}/notificationchannel/{apiVersion}/{userId}/channels

Application
Server

(Notification)

Server
(Enabler X)

1. POST Notification Channel

(channelType = OMAPush)

Create Notification

ChannelResponse with created channel info incl.

callback URL

2. POST subscription + callback URL

Response

Subscriptions for

notifications created

towards each

enabler.

(NOTE: Not part of

this API)

Server
(Enabler Y)

3. POST subscription + callback URL

Response

Sequences in scope of this specification

NOT in scope of this specification

Legend:

Figure 8 Create Notification Channel (OMA Push Method)

Outline of the flows:

1. Application creates a Notification Channel by sending a POST request to the Notification Server indicating the desire to

use the OMA Push notification delivery method by setting the channelType = OMAPush. The request may include a

limit to the number of notifications that the application can receive in the asynchronous notification list. Additionally,

the request may contain an appId which uniquely identify the application to the OMA Push Enabler.

A successful response includes a body containing a callback URL which is to be used when subscribing for

notifications to a particular Enabler server.

2. Application creates a subscription for notifications from Enabler X server. The included callback URL instructs the

Enabler X server to send notifications to the Notification Server (this operation is not part of this API).

The Enabler server returns a response (this operation is not part of this API).

3. Application creates a subscription for notifications from Enabler Y server. The included callback URL instructs the

Enabler server to send notifications to the Notification Server (this operation is not part of this API).

The Enabler Y server returns a response (this operation is not part of this API).

5.3.8 Notifications delivered to application using OMA Push

This figure below shows a scenario where two notifications generated by two different servers are delivered to the application

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 39 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

Application
Server

(Notification)

Server
(Enabler X)

2. Push MESSAGE sent to

target MSISDN & appId

1. POST Notification containing new message

Server
(Enabler Y)

Response

Sequences in scope of this specification

NOT in scope of this specification

Legend:

Push Enabler

Push MESSAGE sent to

target MSISDN & appId

Response
Response

3. POST Notification

containing new message

Response

Response

Response

4. Push MESSAGE sent to

target MSISDN & appIdPush MESSAGE sent to

target MSISDN & appId

Figure 9 Notifications delivered to application using OMA Push

Outline of the flows:

1. An event occurs which triggers a notification being sent from Enabler Y server to the Notification Server using the

callback URL provided when the Notification Channel was created (this operation is not part of this API).

2. The Notification Server maps the callback URL at which it received the event to the associated MSISDN and appId

which it had previously captured as part of the channel creation process. A Push MESSAGE containing the new event

is then sent from the Notification Server to the Push Enabler targeting the appropriate MSISDN and appId (this

operation is not part of this API. See Appendix H for further information regarding Notification Server and Push

Enabler interaction).

Note: In advance configuration of the Notification Server with the appropriate Push Enabler (e.g. PPG) address is

outside the scope of this document.

In turn, Push Enabler passes the Push MESSAGE containing the new event to the application on the device via the Push

client residing on the device (this operation is not part of this API).

If requested by the Notification Server, the Push client or application may provide a delivery confirmation, which is

forwarded to the Notification Server by the Push Enabler (this operation is not part of this API).

A response to the notification received in step 1 is sent to Enabler Y server after the response is delivered to the

application (this operation is not part of this API).

3. The same process as explain in step 1 above involving Enabler X.

4. The same process as explain in step 2 above involving Enabler X.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 40 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

5.3.9 Create Notification Channel (OMA Push method with Large Data
Polling enabled)

This figure (below) shows a scenario for creation of a Notification Channel by an application using the OMA Push

notification delivery mechanism with “LargeDataPolling” feature enabled.

The resources:

 To create Notification Channel:

http://{serverRoot}/notificationchannel/{apiVersion}/{userId}/channels

Figure 10 Create Notification Channel (OMA Push method with Large Data Polling enabled)

Outline of the flows:

1. Application creates a Notification Channel by sending a POST request to the Notification Server indicating the desire to

use the OMA Push notification delivery method with the “largeDataPolling” feature enabled (i.e. channelType =

OMAPush and “largeDataPolling.pollingEnabled” = true). The request includes maxNotifications indicating the

number of notifications that the application can receive over the OMA Push delivery method and if the number of

messages exceed the maxNotifications limit (or notification size is beyond the known limitation), then the desire to

receive the events over a polling channel (i.e. LargeDataPolling channelURL). Additionally, the request may contain an

appId which uniquely identify the application to the OMA Push Enabler.

A successful response includes a body containing a callback URL which is to be used when subscribing for

notifications to a particular Enabler server.

2. Application creates a subscription for notifications from Enabler X server. The included callback URL instructs the

Enabler X server to send notifications to the Notification Server (this operation is not part of this API).

The Enabler server returns a response (this operation is not part of this API).

3. Application creates a subscription for notifications from Enabler Y server. The included callback URL instructs the

Enabler server to send notifications to the Notification Server (this operation is not part of this API).

The Enabler Y server returns a response (this operation is not part of this API).

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 41 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

5.3.10 Notifications delivered to application using OMA Push while Large
Data Polling is enabled

This figure (below) shows a scenario where notifications are delivered to the application over a dynamically generated Large

Data Polling channel URL when certain conditions are met (e.g. number of notifications are more than maxNotifications).

Figure 11 Notifications delivered to application using OMA Push

Outline of the flows:

1. An event occurs which triggers a notification being sent from Enabler Y server to the Notification Server using the

callback URL provided when the Notification Channel was created (this operation is not part of this API).

2. The Notification Server maps the callback URL at which it received the event to the associated MSISDN and appId

which it had previously captured as part of the channel creation process. Since, the notification size and the number of

notifications does not meet the conditions requiring a dynamic Channel URL generation (i.e. the event can be delivered

through OMA Push delivery method), a Push MESSAGE containing the new event (from Enabler Y) is then sent from

the Notification Server to the Push Enabler targeting the appropriate MSISDN and appId (this operation is not part of

this API. See Appendix H for further information regarding Notification Server and Push Enabler interaction).

Note: In advance configuration of the Notification Server with the appropriate Push Enabler (e.g. PPG) address is

outside the scope of this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 42 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

In turn, Push Enabler passes the Push MESSAGE containing the new event to the application on the device via the Push

client residing on the device (this operation is not part of this API).

If requested by the Notification Server, the Push client or application may provide a delivery confirmation, which is

forwarded to the Notification Server by the Push Enabler (this operation is not part of this API).

A response to the notification received in step 1 is sent to Enabler Y server after the response is delivered to the

application (this operation is not part of this API).

3. After some time, an event occurs which triggers a notification being sent from Enabler Y server to the Notification

Server (as explain in step 1 above).

4. Concurrent to step 3, another event occurs in Enabler X which triggers a notification being sent to the Notification

Server (as explain in step 1 above).

The Notification Server realizes that, as per client’s request, it needs to inform the client that it should poll the awaiting

notifications (i.e. number of notifications arrived at the Notification Server is more than maxNotification =1).

5. The Notification Server, sends a Push MESSAGE (to the appropriate MSISDN and appId) containing a

“LargePollingNotification” which itself contains a dynamically created “channelURL” (this operation is not part of this

API. See Appendix H for further information regarding Notification Server and Push Enabler interaction).

6. In turn, Push Enabler passes the Push MESSAGE containing the “LargePollingNotification” to the application on the

device via the Push client residing on the device (this operation is not part of this API).

7. The client invokes a POST onto the “channelURL” which it extracted from the “LargePollingNotification”.

8. The Notification server responds with a “NotificationList” containing events which it received from Enabler Y and X

(as shown step 3 & 4). The Server indicates the end of NotificationList to the client by setting “ncListComplete” = true.

The Notification server also destroys the dynamically created channel URL (which was reported through

LargePollingNotification in step 5).

A response to the notifications received in step 3 and 4 are sent to Enabler Y and X server after the notifications are delivered

to the application (this operation is not part of this API).

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 43 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

5.3.11 Create Notification Channel (WebSockets)

This figure below shows a scenario for creation of a Notification Channel by an application using WebSockets as the

delivery mechanism.

The resources:

 To create a Notification Channel:

http://{serverRoot}/notificationchannel/{apiVersion}/{userId}/channels

Application
Server

(Notification)
Server

(Enabler X)

1. POST Notification Channel

(channelType= WebSockets)

Create Notification

ChannelResponse with created channel info incl.

channel URL, callback URL

3. POST subscription + callback URL

Response

2. Open WebSockets connection on channelURL
Subscriptions for

notifications created
towards each
enabler.

(NOTE: Not part of

this API)

Server
(Enabler Y)

4. POST subscription + callback URL

Response

Sequences in scope of this specification

NOT in scope of this specification

Legend:

Figure 12 Create Notification Channel (WebSockets)

Outline of the flows:

1. The application creates a Notification Channel by sending a POST request to the Notification Server indicating the

desire to use the WebSockets notification delivery method by setting channelType = WebSockets (the request may

include a limit to the number of notifications that the application can receive in one batch).

A successful response includes a body containing a unique channel URL which is to be used to open the WebSockets

connection, and a callback URL which is to be used when subscribing for notifications to a particular Enabler server.

2. The application opens a WebSockets connection on the channel URL received in the response to POST in step 1 and

waits for notifications arriving via this connection.

3. The application creates a subscription for notifications from Enabler X server. The included callback URL instructs the

Enabler X server to send notifications to the Notification Server (this operation is not part of this API).

The Enabler server returns a response (this operation is not part of this API).

4. The application creates a subscription for notifications from Enabler Y server. The included callback URL instructs the

Enabler server to send notifications to the Notification Server (this operation is not part of this API).

The Enabler Y server returns a response (this operation is not part of this API).

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 44 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

5.3.12 Notifications delivered to application using WebSockets

This figure below shows a scenario where two notifications generated by two different servers are delivered to the

application using WebSockets,

The resources:

 There is no HTTP resource involved in delivering the notifications, as these are received via the WebSockets

connection.

3. Response

2. New message notification via WebSockets

4.POST Notification containing
presence update

6. Response

5. Presence update notification via WebSockets

Application
Server

(Notification)
Server

(Enabler X)
Server

(Enabler Y)

1. POST Notification containing new message

Application
Server

(Notification)

Sequences in scope of this specification

NOT in scope of this specification

Legend:

Sequences in scope of this specification

NOT in scope of this specification

Legend:Legend:

Figure 13 Notifications delivered to application using WebSockets

Outline of the flows:

1. A new message is received by the Enabler Y server, which triggers a notification being sent from the Enabler Y server

to the Notification Server (this operation is not part of this API).

2. A notification including the new message is delivered to the application via the WebSockets connection.

3. A response to the notification received in step 1 is sent to Enabler Y server after the response has been delivered to the

application (this operation is not part of this API).

4. A new event occurs; in this case a presence update notification is received in the Notification Server from Enabler X

server (this operation is not part of this API).

5. A notification regarding the presence update is delivered to the application via the WebSockets connection.

6. A response to the notification received in step 4 is sent to Enabler X server after the response has been delivered to the

application (this operation is not part of this API).

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 45 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

5.3.13 Create Notification Channel (Native Channel Method)

This figure below shows a scenario for creation of a Notification Channel by an application using the Native Channel

notification delivery mechanism.

The resources:

 To create Notification Channel:

http://{serverRoot}/notificationchannel/{apiVersion}/{userId}/channels

Figure 14 Create Notification Channel (Native Channel Method)

Outline of the flows:

1. Application creates a Notification Channel by sending a POST request to the Notification Server indicating the desire to

use the Native Chanel notification delivery method and also the desire to have the “largeDataPolling” feature enabled

(i.e. channelType = NativeChannel and “largeDataPolling.pollingEnabled” = true). The client application in the request

identifies the GCM as OEM’s notification service it has registered with (e.g. nativeChannelSubType =GCM) and also

provides the “registrationToken” which it received as part of its registration with GCM which would allow the OEM’s

notification service uniquely identify the application and route the events accordingly (note: how the application client

obtains this registrationToken is outside the scope of this document). The request also includes a limit to the number of

notifications that the application can receive in the asynchronous notification list (e.g. maxNotifications = 1).

A successful response includes a body containing a callback URL which is to be used when subscribing for

notifications to a particular Enabler server.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 46 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

2. Application creates a subscription for notifications from Enabler X server. The included callback URL instructs the

Enabler X server to send notifications to the Notification Server (this operation is not part of this API).

The Enabler server returns a response (this operation is not part of this API).

3. Application creates a subscription for notifications from Enabler Y server. The included callback URL instructs the

Enabler server to send notifications to the Notification Server (this operation is not part of this API).

The Enabler Y server returns a response.(this operation is not part of this API).

5.3.14 Notifications delivered to application using Native Channel while
Large Data Polling is enabled

This figure (below) shows a scenario where notifications are delivered to the application over Native Channel as well as a

dynamically generated Large Data Polling channel URL when certain conditions are met (e.g. number of notifications are

more than maxNotifications).

Figure 15 Notifications delivered to application using Native Channel

Outline of the flows:

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 47 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

1. An event occurs which triggers a notification being sent from Enabler Y server to the Notification Server using the

callback URL provided when the Notification Channel was created (this operation is not part of this API).

2. The Notification Server maps the callback URL at which it received the event to the associated Native Channel and the

“registrationToken” which it had previously captured as part of the channel creation process. Since, the notification size

and the number of notifications does not meet the conditions requiring a dynamic Channel URL generation, the new

event is pushed from the Notification Server to the OEM’s notification service (e.g. GCM) corresponding to the Native

channel. The “registrationToken” associated with the Native Channel accompanies the event (this operation is not part

of this API).

Note: In advance integration of the Notification Server with the OEM’s notification services (e.g. APNs, GCM, WNS)

is outside the scope of this document.

In turn, OEM’s notification services passes the event to the application on the device using the “registrationToken” (this

operation is not part of this API).

The OEM’s notification services confirms delivery of the event back to the Notification Server (this operation is not

part of this API).

A response to the notification received in step 1 is sent to Enabler Y server (this operation is not part of this API).

3. After some time, an event occurs which triggers a notification being sent from Enabler Y server to the Notification

Server.

4. Concurrent to step 3, another event occurs in Enabler X which triggers a notification being sent to the Notification

Server.

The Notification Server realizes that, as per client’s request, it needs to inform the client that it should poll the awaiting

notifications (i.e. number of notifications arrived at the Notification Server is more than maxNotification =1 and also

the overall size of the events in the notificationList is larger than the OEM’s notification service size limit).

5. The Notification Server, sends a “LargePollingNotification” which itself contains a dynamically created “channelURL”

to the OEM’s notification service

6. In turn, OEM’s notification service passes the “LargePollingNotification” to the application on the device via its

internal means using the “registrationToken” (this operation is not part of this API).

7. The client invokes a POST onto the “channelURL” which it extracts from the “LargePollingNotification”.

8. The Notification server responds with a “NotificationList” containing events which it received from Enabler Y and X

(as shown step 3 & 4). The Server indicates the end of NotificationList to the client by setting “ncListComplete” = true.

The Notification server also destroys the dynamically created channel URL (which was reported through

LargePollingNotification in step 5).

A response to the notifications received in step 3 and 4 are sent to Enabler Y and X server after the notifications are

delivered to the application (this operation is not part of this API).

5.3.15 Refreshing a Notification Channel

This figure below shows how the application can refresh a Notification Channel.

The resources:

 To refresh a Notification Channel:

http://{serverRoot}/notificationchannel/{apiVersion}/{userId}/channels/{channelId}/channelLifetime

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 48 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

1. PUT channelLifetime

2. Response

Application
Server

(Notification)
Application

Server
(Notification)

Figure 16 Notification Channel refresh

Outline of the flows:

1. To refresh a notification channel, the application uses the PUT method to set a new value of the resource representing

the channel lifetime.

2. The server returns a response confirming the update, possibly returning a different channel lifetime value than the one

in the request if that one was modified due to a policy.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 49 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

5.3.16 Client-initiated ConnCheck/ConnAck

This figure below shows how the application can use ConnCheck/ConnAck for session keep-alive.

This flow is only relevant for Websockets-based notification channels.

Figure 17 Client-initiated ConnCheck/ConnAck for session keep-alive

Outline of the flows:

1. The application sends a connCheck message to the server

2. The server responds with a connAck message, indicating the lifetime of the channel after sending the connAck. The

server resets the channel lifetime to the value indicated to the application.

3. After a certain time interval, the application sends another connCheck message to the server. No answer arrives during

a time interval in which an answer is expected (note that the server is usually responding to a connCheck immediately).

4. The application considers the Websockets connection defunct and closes it.

5. The application opens a new Websockets connection with the server. The server resets the channel lifetime to a default

value depending on operator policies.

6. The server confirms the successful creation of the Websockets connection.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 50 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

5.3.17 Successful server-initiated ConnCheck/ConnAck

This figure below shows how the server can use ConnCheck/ConnAck for session keep-alive.

This flow is only relevant for Websockets-based notification channels.

Figure 18 Successful server-initiated ConnCheck/ConnAck for session keep-alive

Outline of the flows:

1. The server sends to the application a connCheck message, indicating the lifetime of the channel it intends to use after it

will receive the connAck, and further indicating a time interval after which it intends to send the next check.

2. The application responds with a connAck message. Upon receiving this message, the server resets the channel lifetime

to the value indicated in the connCheck message.

3. Before the expiry of the time interval announced in the “checkInterval” parameter in the previous connCheck message,

the server sends another connCheck message to the application.

4. The application responds with a connAck message. Upon receiving this message, the server resets the channel lifetime

to the value indicated in the connCheck message.

5. The application expects to receive another connCheck message within the interval announced in the “chewckInterval”

parameter of the previous connCheck message, however such message does not arrive. The application therefore

considers the Websockets connection defunct and closes it.

6. No answer arrives during a time interval in which an answer is expected (note that the server is usually responding to a

connCheck immediately).

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 51 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

7. The application considers the Websockets connection defunct and closes it.

8. The application opens a new Websockets connection with the server. The server resets the channel lifetime to a default

value depending on operator policies.

9. The server confirms the successful creation of the Websockets connection.

5.3.18 Unsuccessful server-initiated ConnCheck/ConnAck

This figure below shows a flow of an unsuccessful server-initiated session keep-alive, due to the client failing to respond.

This flow is only relevant for Websockets-based notification channels.

Figure 19 Unsuccessful server-initiated ConnCheck/ConnAck for session keep-alive

Outline of the flows:

1. The server sends to the application a connCheck message, indicating the lifetime of the channel it intends to use after it

will receive the connAck, and further indicating a time interval after which it intends to send the next check.

2. The application fails to respond. The server might send additional connCheck messages until an implementation-

specific timeout occurs.

3. After that timeout has occurred, the server closes the Websockets connection, since the application has failed to respond

to any of the previous connCheck messages.

5.3.19 Notifications delivered to application using Long Polling

This figure below shows a scenario where the Long Polling request suffers a connection failure causing the client to

reconnect. On receiving the request the server rejects the initial (failed) request and continues with the second.

The resource used by the application for the Long Polling requests is provided by the Notification Server (e.g. received in the

response to creation of the Notification Channel, see section 5.3.1).

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 52 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

Outline of the flows:

1. Application initiates a Long Polling request using the channel URL received when the Notification Channel was

created.

2. For some reason the application decides to re-initiate a Long Polling request using the same channel URL as (1).

3. Notification Server detects multiple Long Polling requests for the same channel URL. It rejects the first (i.e., the one

initiated in (1)), but establishes the second.

4. Notification Server responds to the second Long Polling request (i.e., the one initiated in (2)) with notifications

received.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 53 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

6. Detailed specification of the resources

The following applies to all resources defined in this specification regardless of the representation format (i.e. XML, JSON,

application/x-www-form-urlencoded):

 Reserved characters in URL variables (parts of a URL denoted below by a name in curly brackets) MUST be

percent-encoded according to [RFC3986]. Note that this always applies, no matter whether the URL is used as a

Request URL or inside the representation of a resource (such as in “resourceURL” and “link” elements).

 If a user identifier (e.g. address, userId, etc) of type anyURI is in the form of an MSISDN, it MUST be defined as a

global number according to [RFC3966] (e.g. tel:+19585550100). The use of characters other than digits and the

leading “+” sign SHOULD be avoided in order to ensure uniqueness of the resource URL. This applies regardless of

whether the user identifier appears in a URL variable or in a parameter in the body of an HTTP message.

 If a user identifier (e.g. address, userId, etc) of type anyURI is in the form of a SIP URI, it MUST be defined

according to [RFC3261].

 If a user identifier (e.g. address, userId, etc) of type anyURI is in the form of an Anonymous Customer Reference

(ACR), it MUST be defined according to Appendix H of [REST_NetAPI_ACR].

o The ACR ‘auth’ is a supported reserved keyword, and MUST NOT be assigned as an ACR to any

particular end user. See G.1.2 for details regarding the use of this reserved keyword.

 For requests and responses that have a body, the following applies: in the requests received, the server SHALL

support JSON and XML encoding of the parameters in the body, and MAY support application/x-www-form-

urlencoded parameters in the body. The Server SHALL return either JSON or XML encoded parameters in the

response body, according to the result of the content type negotiation as specified in [REST_NetAPI_Common]. In

notifications to the Client, the server SHALL use either XML or JSON encoding, depending on which format the

client has specified in the related subscription. The generation and handling of the JSON representations SHALL

follow the rules for JSON encoding in HTTP Requests/Responses as specified in [REST_ NetAPI_Common].

6.1 Resource: Notification channels

The resource used is:

http://{serverRoot}/notificationchannel/{apiVersion}/{userId}/channels

This resource is used for create a new Notification Channel as well as to obtain a list of active Notification Channels for the

specified user.

6.1.1 Request URL variables

The following request URL variables are common for all HTTP commands:

Name Description

serverRoot
Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

apiVersion
Version of the API client wants to use. The value of this variable is defined in section
5.1.

userId User identifier. Examples: tel:+19585550100, acr:pseudonym123

See section 6 for a statement on the escaping of reserved characters in URL variables.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 54 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

6.1.2 Response Codes and Error Handling

For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Notification Channel, see section 7.

6.1.3 GET

This operation is used for retrieval of active Notification Channels.

6.1.3.1 Example: Retrieve active Notification Channels (Informative)

6.1.3.1.1 Request

GET /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels HTTP/1.1
Host: example.com
Accept: application/xml

6.1.3.1.2 Response

HTTP/1.1 200 OK
Content-Type: application/xml
Content-Length: nnnn
Date: Thu, 04 Jun 2009 02:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationChannelList xmlns:nc="urn:oma:xml:rest:netapi:notificationchannel:1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
<notificationChannel>
 <clientCorrelator>123</clientCorrelator>
 <applicationTag>myApp</applicationTag>
 <channelType>LongPolling</channelType>
 <channelData xsi:type="nc:LongPollingData">
 <channelURL>http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch123/notifications
 </channelURL>
 <maxNotifications>1</maxNotifications>

</channelData>
<channelLifetime>7200</channelLifetime>

 <callbackURL>http://example.com/callBackUrl/cbu111</callbackURL>
 <resourceURL>http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch123</resourceURL>
</notificationChannel>
<notificationChannel>
 <clientCorrelator>987</clientCorrelator>
 <applicationTag>someOtherApp</applicationTag>
 <channelType>OMAPush</channelType>
 <channelData xsi:type="nc:OMAPushData">
 <appId>x-wap-application:wml.ua</appId>
 <maxNotifications>5</maxNotifications>

</channelData>
<channelLifetime>3600</channelLifetime>

 <callbackURL>http://example.com/callBackUrl/cbu222</callbackURL>
 <resourceURL>http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch987</resourceURL>
</notificationChannel>
<resourceURL>http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels</resourceURL>
</nc:notificationChannelList>

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 55 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

6.1.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET,

POST’ field in the response as per sections 6.5.5 and 7.4.1 of [RFC7231].

6.1.5 POST

This operation is used for creation of a Notification Channel in order to receive notifications from an Enabler server to which

the client has subscribed for notifications.

6.1.5.1 Example: Create Notification Channel (Long Polling method), using tel URI
 (Informative)

6.1.5.1.1 Request

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels HTTP/1.1
Host: example.com
Accept: application/xml
Content-Type: application/xml
Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationChannel xmlns:nc="urn:oma:xml:rest:netapi:notificationchannel:1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <clientCorrelator>123</clientCorrelator>
 <applicationTag>myApp</applicationTag>
 <channelType>LongPolling</channelType>
 <channelData xsi:type="nc:LongPollingData">
 <maxNotifications>1</maxNotifications>
 </channelData>

<channelLifetime>7200</channelLifetime>
</nc:notificationChannel>

6.1.5.1.2 Response

HTTP/1.1 201 Created
Location: http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch123
Date: Thu, 04 Jun 2009 02:51:59 GMT
Content-Type: application/xml
Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationChannel xmlns:nc="urn:oma:xml:rest:netapi:notificationchannel:1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" >
<clientCorrelator>123</clientCorrelator>
<applicationTag>myApp</applicationTag>
<channelType>LongPolling</channelType>
<channelData xsi:type="nc:LongPollingData">
 <channelURL> http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch123/notifications
 </channelURL>
 <maxNotifications>1</maxNotifications>
</channelData>
<channelLifetime>7200</channelLifetime>
<callbackURL>http://example.com/callBackUrl/cbu111</callbackURL>
<resourceURL>http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch123</resourceURL>
</nc:notificationChannel>

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 56 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

6.1.5.2 Example: Create Notification Channel (OMA Push method), using tel URI
 (Informative)

6.1.5.2.1 Request

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels HTTP/1.1
Host: example.com
Accept: application/xml
Content-Type: application/xml
Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationChannel xmlns:nc="urn:oma:xml:rest:netapi:notificationchannel:1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <clientCorrelator>987</clientCorrelator>
 <applicationTag>myApp</applicationTag>
 <channelType>OMAPush</channelType>
 <channelData xsi:type="nc:OMAPushData">
 <appId>x-wap-application:wml.ua</appId>
 <maxNotifications>1</maxNotifications>
 </channelData>

<channelLifetime>7200</channelLifetime>
</nc:notificationChannel>

6.1.5.2.2 Response

HTTP/1.1 201 Created
Location: http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch987
Date: Thu, 04 Jun 2009 02:51:59 GMT
Content-Type: application/xml
Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationChannel xmlns:nc="urn:oma:xml:rest:netapi:notificationchannel:1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" >
<clientCorrelator>987</clientCorrelator>
<applicationTag>myApp</applicationTag>
<channelType>OMAPush</channelType>
<channelData xsi:type="nc:OMAPushData">
 <appId>x-wap-application:wml.ua</appId>
 <maxNotifications>1</maxNotifications>
</channelData>
<channelLifetime>7200</channelLifetime>
<callbackURL>http://example.com/callBackUrl/cbu222</callbackURL>
<resourceURL>http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch987</resourceURL>
</nc:notificationChannel>

6.1.5.3 Example: Create Notification Channel (OMA Push method with
largeDataPolling), using tel URI (Informative)

6.1.5.3.1 Request

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels HTTP/1.1
Host: example.com
Accept: application/xml
Content-Type: application/xml

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 57 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationChannel xmlns:nc="urn:oma:xml:rest:netapi:notificationchannel:1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <clientCorrelator>987</clientCorrelator>
 <applicationTag>myApp</applicationTag>
 <channelType>OMAPush</channelType>
 <channelData xsi:type="nc:OMAPushData">
 <appId>x-wap-application:wml.ua</appId>
 <maxNotifications>1</maxNotifications>
 <largeDataPolling>
 <pollingEnabled>true</pollingEnabled>
 <maxPollingNotifications>10</maxPollingNotifications>
 </largeDataPolling>
 </channelData>

<channelLifetime>7200</channelLifetime>
</nc:notificationChannel>

6.1.5.3.2 Response

HTTP/1.1 201 Created
Location: http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch987
Date: Thu, 04 Jun 2015 02:51:59 GMT
Content-Type: application/xml
Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationChannel xmlns:nc="urn:oma:xml:rest:netapi:notificationchannel:1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" >
<clientCorrelator>987</clientCorrelator>
<applicationTag>myApp</applicationTag>
<channelType>OMAPush</channelType>
<channelData xsi:type="nc:OMAPushData">
 <appId>x-wap-application:wml.ua</appId>
 <maxNotifications>1</maxNotifications>
 <largeDataPolling>
 <pollingEnabled>true</pollingEnabled>
 <maxPollingNotifications>10</maxPollingNotifications>
 </largeDataPolling>
</channelData>
<channelLifetime>7200</channelLifetime>
<callbackURL>http://example.com/callBackUrl/cbu222</callbackURL>
<resourceURL>http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch987</resourceURL>
</nc:notificationChannel>

6.1.5.4 Example: Create Notification Channel (OMA Push method with
LargeDataPolling) not supported (Informative)

6.1.5.4.1 Request

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels HTTP/1.1
Host: example.com
Accept: application/xml
Content-Type: application/xml

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 58 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationChannel xmlns:nc="urn:oma:xml:rest:netapi:notificationchannel:1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <clientCorrelator>987</clientCorrelator>
 <applicationTag>myApp</applicationTag>
 <channelType>OMAPush</channelType>
 <channelData xsi:type="nc:OMAPushData">
 <appId>x-wap-application:wml.ua</appId>
 <maxNotifications>1</maxNotifications>
 <largeDataPolling>
 <pollingEnabled>true</pollingEnabled>
 <maxPollingNotifications>10</maxPollingNotifications>
 </largeDataPolling>
 </channelData>

<channelLifetime>7200</channelLifetime>
</nc:notificationChannel>

6.1.5.4.2 Response

HTTP/1.1 403 Forbidden
Date: Thu, 04 Jun 2015 02:51:59 GMT
Content-Type: application/xml
Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<common:requestError xmlns:common="urn:oma:xml:rest:netapi:common:1">
 <policyException>
 <messageId>POL2006</messageId>
 <text>Requested feature %1 is not available</text>
 <variables>LargeDataPolling</variables>
 </policyException>
</common:requestError>

6.1.5.5 Example: Create Notification Channel (Long Polling method), using ACR
 (Informative)

6.1.5.5.1 Request

POST /exampleAPI/notificationchannel/v1/acr%3Apseudonym123/channels HTTP/1.1
Host: example.com
Accept: application/xml
Content-Type: application/xml
Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationChannel xmlns:nc="urn:oma:xml:rest:netapi:notificationchannel:1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <clientCorrelator>123</clientCorrelator>
 <applicationTag>myApp</applicationTag>
 <channelType>LongPolling</channelType>
 <channelData xsi:type="nc:LongPollingData">
 <maxNotifications>1</maxNotifications>
 </channelData>

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 59 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

<channelLifetime>7200</channelLifetime>
</nc:notificationChannel>

6.1.5.5.2 Response

HTTP/1.1 201 Created
Location: http://example.com/exampleAPI/notificationchannel/v1/acr%3Apseudonym123/channels/ch123
Date: Thu, 04 Jun 2009 02:51:59 GMT
Content-Type: application/xml
Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationChannel xmlns:nc="urn:oma:xml:rest:netapi:notificationchannel:1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" >
<clientCorrelator>123</clientCorrelator>
<applicationTag>myApp</applicationTag>
<channelType>LongPolling</channelType>
<channelData xsi:type="nc:LongPollingData">
 <channelURL> http://example.com/exampleAPI/notificationchannel/v1/acr%3Apseudonym123/channels/ch123/notifications
 </channelURL>
 <maxNotifications>1</maxNotifications>
</channelData>
<channelLifetime>7200</channelLifetime>
<callbackURL>http://example.com/callBackUrl/cbu111</callbackURL>
<resourceURL>http://example.com/exampleAPI/notificationchannel/v1/acr%3Apseudonym123/channels/ch123</resourceURL>
</nc:notificationChannel>

6.1.5.6 Example: Create Notification Channel (WebSockets method), using tel URI
 (Informative)

6.1.5.6.1 Request

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels HTTP/1.1
Host: example.com
Accept: application/xml
Content-Type: application/xml
Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationChannel xmlns:nc="urn:oma:xml:rest:netapi:notificationchannel:1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <clientCorrelator>987</clientCorrelator>
 <applicationTag>myApp</applicationTag>
 <channelType>WebSockets</channelType>
 <channelData xsi:type="nc:WebSocketsData">
 <maxNotifications>5</maxNotifications>
 </channelData>
 <channelLifetime>7200</channelLifetime>
</nc:notificationChannel>

6.1.5.6.2 Response

HTTP/1.1 201 Created
Location: http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch378
Date: Thu, 28 Jun 2013 02:51:59 GMT

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 60 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

Content-Type: application/xml
Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationChannel xmlns:nc="urn:oma:xml:rest:netapi:notificationchannel:1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" >
 <clientCorrelator>987</clientCorrelator>
 <applicationTag>myApp</applicationTag>
 <channelType>WebSockets</channelType>
 <channelData xsi:type="nc:WebSocketsData">
 <channelURL>ws://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch378/ws</channelURL>
 <maxNotifications>5</maxNotifications>
 </channelData>
 <channelLifetime>3600</channelLifetime>
 <callbackURL>http://example.com/callBackUrl/cbu112</callbackURL>
 <resourceURL>http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch378</resourceURL>
</nc:notificationChannel>

6.1.5.7 Example: Attempt to create Notification Channel of unsupported type
 (Informative)

6.1.5.7.1 Request

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels HTTP/1.1
Host: example.com
Accept: application/xml
Content-Type: application/xml
Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationChannel xmlns:nc="urn:oma:xml:rest:netapi:notificationchannel:1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <clientCorrelator>123</clientCorrelator>
 <applicationTag>myApp</applicationTag>
 <channelType>LongPolling</channelType>
 <channelData xsi:type="nc:LongPollingData">
 <maxNotifications>1</maxNotifications>
 </channelData>

<channelLifetime>7200</channelLifetime>
</nc:notificationChannel>

6.1.5.7.2 Response

HTTP/1.1 400 Bad Request
Date: Thu, 28 Jun 2013 02:51:59 GMT
Content-Type: application/xml
Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<common:requestError xmlns:common="urn:oma:xml:rest:netapi:common:1">
 <policyException>
 <messageId>POL1023</messageId>
 <text>Notification channel type %1 not supported. Supported types: %2.</text>
 <variables>LongPolling</variables>
 <variables>OMAPush, WebSockets</variables>

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 61 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

 </policyException>
</common:requestError>

6.1.5.8 Example: Create Notification Channel (Native Channel method with
largeDataPolling), using tel URI (Informative)

6.1.5.8.1 Request

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels HTTP/1.1
Host: example.com
Accept: application/xml
Content-Type: application/xml
Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationChannel xmlns:nc="urn:oma:xml:rest:netapi:notificationchannel:1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <clientCorrelator>987</clientCorrelator>
 <applicationTag>myApp</applicationTag>
 <channelType>NativeChannel</channelType>
 <channelData xsi:type="nc:NativeChannelData">
 <channelSubType>GCM</channelSubType>
 <registrationToken>CI2k_HHwgIpoDKCIZvvDMExUdFQ3P1</registrationToken>
 <channelSubTypeVersion>1.0</channelSubTypeVersion>
 <maxNotifications>1</maxNotifications>
 <largeDataPolling>
 <pollingEnabled>true</pollingEnabled>
 <maxPollingNotifications>10</maxPollingNotifications>
 </largeDataPolling>
 </channelData>

<channelLifetime>7200</channelLifetime>
</nc:notificationChannel>

6.1.5.8.2 Response

HTTP/1.1 201 Created
Location: http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch309
Date: Sat, 23 Apr 2016 06:55:50 GMT
Content-Type: application/xml
Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationChannel xmlns:nc="urn:oma:xml:rest:netapi:notificationchannel:1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" >
 <clientCorrelator>987</clientCorrelator>
 <applicationTag>myApp</applicationTag>
 <channelType>NativeChannel</channelType>
 <channelData xsi:type="nc:NativeChannelData">
 <channelSubType>GCM</channelSubType>
 <registrationToken>CI2k_HHwgIpoDKCIZvvDMExUdFQ3P1</registrationToken>
 <channelSubTypeVersion>1.0</channelSubTypeVersion>
 <maxNotifications>1</maxNotifications>
 <largeDataPolling>
 <pollingEnabled>true</pollingEnabled>
 <maxPollingNotifications>10</maxPollingNotifications>

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 62 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

 </largeDataPolling>
 </channelData>
 <channelLifetime>7200</channelLifetime>
 <callbackURL>http://example.com/callBackUrl/cbu899</callbackURL>
 <resourceURL>http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch309</resourceURL>
</nc:notificationChannel>

6.1.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET,

POST’ field in the response as per sections 6.5.5 and 7.4.1 of [RFC7231].

6.2 Resource: Individual Notification Channel

The resource used is:

http://{serverRoot}/notificationchannel/{apiVersion}/{userId}/channels/{channelId}

This resource is used for management of an individual Notification Channel, operations such as: to retrieve information of the

Notification Channel or to remove (terminate) Notification Channel.

6.2.1 Request URL variables

The following request URL variables are common for all HTTP commands:

Name Description

serverRoot
Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

apiVersion
Version of the API client wants to use. The value of this variable is defined in section
5.1.

userId User identifier. Examples: tel:+19585550100, acr:pseudonym123

channelId Channel identifier. Example: ch456

See section 6 for a statement on the escaping of reserved characters in URL variables.

6.2.2 Response Codes and Error Handling

For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Notification Channel, see section 7.

6.2.3 GET

This operation is used for retrieval of an individual Notification Channel.

6.2.3.1 Example: Retrieve individual Notification Channel (Informative)

6.2.3.1.1 Request

GET /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch456 HTTP/1.1
Host: example.com
Accept: application/xml

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 63 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

6.2.3.1.2 Response

HTTP/1.1 200 OK
Content-Type: application/xml
Content-Length: nnnn
Date: Thu, 04 Jun 2009 02:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationChannel xmlns:nc="urn:oma:xml:rest:netapi:notificationchannel:1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <clientCorrelator>456</clientCorrelator>
 <applicationTag>someOtherApp</applicationTag>
 <channelType>LongPolling</channelType>
 <channelData xsi:type="nc:LongPollingData">
 <channelURL>http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch456/notifications
 </channelURL>
 <maxNotifications>5</maxNotifications>
 </channelData>
 <channelLifetime>7200</channelLifetime>
 <callbackURL>http://example.com/callBackUrl/cbu333</callbackURL>
 <resourceURL>http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch456</resourceURL>
</nc:notificationChannel>

6.2.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET,

DELETE’ field in the response as per sections 6.5.5 and 7.4.1 of [RFC7231].

6.2.5 POST

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET,

DELETE’ field in the response as per sections 6.5.5 and 7.4.1 of [RFC7231].

6.2.6 DELETE

This operation is used for removing an individual Notification Channel. Any outstanding poll request will immediately be

responded with a 404 Not Found.

6.2.6.1 Example: Removing Notification Channel (Informative)

6.2.6.1.1 Request

DELETE /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch456 HTTP/1.1
Host: example.com

6.2.6.1.2 Response

HTTP/1.1 204 No Content
Date: Thu, 04 Jun 2009 02:51:59 GMT

6.3 Resource: Notification list

The resource URL is provided by the server (channel URL received when the Long Polling Notification Channel or

WebSockets Notification Channel is created) and therefore this specification does not make any assumption about the

structure of this URL.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 64 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

For the Long Polling method, this resource is used for retrieval of new notifications from the Notification Server, for which

the application has subscribed from the respective Enabler server. At the same time, the server resets the channel lifetime to

its original value.

For the WebSockets method, this resource is used to create a WebSockets connection through which the server can send

notifications to the client, and which the client can check for connectivity using the ConnCheck and ConnAck messages. This

means it is not a resource used in a RESTful manner for WebSockets-based notification channels.

6.3.1 Request URL variables

Provided by the Notification Server in response to request for creation of a Long Polling Notification Channel, if any.

6.3.2 Response Codes and Error Handling

For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Notification Channel, see section 7.

6.3.3 GET

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow:

POST’ field in the response as per sections 6.5.5 and 7.4.1 of [RFC7231].

6.3.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow:

POST’ field in the response as per sections 6.5.5 and 7.4.1 of [RFC7231].

6.3.5 POST

This operation is used for retrieval of new notifications from the Notification Server if the Notification Channel involved is of

Long Polling type.

6.3.5.1 Example 1: Single notification delivered in a NotificationList (Informative)

In this example a presence update is delivered to the application.

6.3.5.1.1 Request

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch123/notifications HTTP/1.1
Host: example.com
Accept: application/xml
Content-Type: application/xml
Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nc:longPollingRequestParameters xmlns:nc="urn:oma:xml:rest:netapi:notificationchannel:1"/>

6.3.5.1.2 Response

HTTP/1.1 200 OK
Date: Thu, 04 Jun 2009 02:51:59 GMT
Content-Type: application/xml
Connection: close
Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 65 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

<nc:notificationList xmlns:nc="urn:oma:xml:rest:netapi:notificationchannel:1">
 <pr:presenceNotification xmlns:pr="urn:oma:xml:rest:netapi:presence:1">
 <presentityUserId>tel:+19585550100</presentityUserId>
 <callbackData>1234</callbackData>
 <resourceStatus>Active</resourceStatus>
 <presence>
 <person>
 <mood>
 <moodValue>Happy</moodValue>
 </mood>
 </person>
 </presence>
 <link rel="PresenceSubscription"
 href="http://example.com/exampleAPI/v1/presence/tel%3A%2B19585550101/subscriptions/presenceSubscriptions/
 tel%3A%2B19585550100/sub001"/>
 </pr:presenceNotification>
</nc:notificationList>

6.3.5.2 Example 2: Multiple notifications delivered (Informative)

In this example a presence update and message notification are delivered to the application.

6.3.5.2.1 Request

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch123/notifications HTTP/1.1
Host: example.com
Accept: application/xml
Content-Type: application/xml
Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nc:longPollingRequestParameters xmlns:nc="urn:oma:xml:rest:netapi:notificationchannel:1"/>

6.3.5.2.2 Response

HTTP/1.1 200 OK
Date: Thu, 04 Jun 2009 02:51:59 GMT
Content-Type: application/xml
Connection: close
Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationList xmlns:nc="urn:oma:xml:rest:netapi:notificationchannel:1">
 <pr:presenceNotification xmlns:pr="urn:oma:xml:rest:netapi:presence:1">
 <presentityUserId>tel:+19585550100</presentityUserId>
 <callbackData>1234</callbackData>
 <resourceStatus>Active</resourceStatus>
 <presence>
 <person>
 <mood>
 <moodValue>Happy</moodValue>
 </mood>
 </person>
 </presence>
 <link rel="PresenceSubscription"
href="http://example.com/exampleAPI/v1/presence/tel%3A%2B19585550101/subscriptions/presenceSubscriptions/

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 66 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

 tel%3A%2B19585550100/sub001"/>
</pr:presenceNotification>
<mms:inboundMessageNotification xmlns:mms="urn:oma:xml:rest:netapi:messaging:1">
 <inboundMessage>
 <destinationAddress>tel:+19585550100</destinationAddress>
 <senderAddress>tel:+19585550101</senderAddress>
 <resourceURL>http://example.com/exampleAPI/v1/messaging/inbound/registrations/reg123/messages/msg123
 </resourceURL>
 <link rel="Subscription" href="http://example.com/exampleAPI/v1/messaging/inbound/subscriptions/sub123"/>
 <messageId>msg123</messageId>
 <inboundMMSMessage>
 <subject>Who is RESTing on the beach?</subject>
 </inboundMMSMessage>
 </inboundMessage>
</mms:inboundMessageNotification>
 <mms:inboundMessageNotification xmlns:mms="urn:oma:xml:rest:netapi:messaging:1">
 <inboundMessage>
 <destinationAddress>tel:+19585550100</destinationAddress>
 <senderAddress>tel:+19585550102</senderAddress>
 <resourceURL>http://example.com/exampleAPI/v1/messaging/inbound/registrations/reg123/messages/msg1234
 </resourceURL>
 <link rel="Subscription" href="http://example.com/exampleAPI/v1/messaging/inbound/subscriptions/sub123"/>
 <messageId>msg1234</messageId>
 <inboundMMSMessage>
 <subject>Who is still RESTing on the beach?</subject>
 </inboundMMSMessage>
 </inboundMessage>
</mms:inboundMessageNotification>
</nc:notificationList>

6.3.5.3 Example 3: Server timeout (Informative)

In this example a Long Polling request times out in the Notification Server before any new notifications from Enabler servers

have been received on the server. The server responds with an empty response.

6.3.5.3.1 Request

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch123/notifications HTTP/1.1
Host: example.com
Accept: application/xml
Content-Type: application/xml
Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nc:longPollingRequestParameters xmlns:nc="urn:oma:xml:rest:netapi:notificationchannel:1"/>

6.3.5.3.2 Response

HTTP/1.1 200 OK
Date: Thu, 04 Jun 2009 02:51:59 GMT
Content-Type: application/xml
Connection: close
Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationList xmlns:nc="urn:oma:xml:rest:netapi:notificationchannel:1"/>

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 67 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

6.3.5.4 Example 4: Single notification delivered outside a NotificationList
 (Informative)

In this example a presence update is delivered to the application.

6.3.5.4.1 Request

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch123/notifications HTTP/1.1
Host: example.com
Accept: application/xml
Content-Type: application/xml
Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nc:longPollingRequestParameters xmlns:nc="urn:oma:xml:rest:netapi:notificationchannel:1"/>

6.3.5.4.2 Response

HTTP/1.1 200 OK
Date: Thu, 04 Jun 2009 02:51:59 GMT
Content-Type: application/xml
Connection: close
Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<pr:presenceNotification xmlns:pr="urn:oma:xml:rest:netapi:presence:1">
 <presentityUserId>tel:+19585550100</presentityUserId>
 <callbackData>1234</callbackData>
 <resourceStatus>Active</resourceStatus>
 <presence>
 <person>
 <mood>
 <moodValue>Happy</moodValue>
 </mood>
 </person>
 </presence>
 <link rel="PresenceSubscription"
 href="http://example.com/exampleAPI/v1/presence/tel%3A%2B19585550101/subscriptions/presenceSubscriptions/
 tel%3A%2B19585550100/sub001"/>
</pr:presenceNotification>

6.3.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow:

POST’ field in the response as per sections 6.5.5 and 7.4.1 of [RFC7231].

6.4 Resource: Notification Channel lifetime

The resource used is:

http://{serverRoot}/notificationchannel/{apiVersion}/{userId}/channels/{channelId}/channelLifetime

This resource is used to retrieve and update (“refresh”) the Notification Channel lifetime.

6.4.1 Request URL variables

The following request URL variables are common for all HTTP commands:

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 68 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

Name Description

serverRoot
Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

apiVersion
Version of the API client wants to use. The value of this variable is defined in section
5.1.

userId User identifier. Examples: tel:+19585550100, acr:pseudonym123

channelId Channel identifier. Example: ch456

See section 6 for a statement on the escaping of reserved characters in URL variables.

6.4.2 Response Codes and Error Handling

For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Notification Channel, see section 7.

6.4.3 GET

This operation is used for retrieval of the remaining Notification Channel lifetime.

6.4.3.1 Example: Retrieve remaining Notification Channel lifetime (Informative)

6.4.3.1.1 Request

GET /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch456/channelLifetime HTTP/1.1
Host: example.com
Accept: application/xml

6.4.3.1.2 Response

HTTP/1.1 200 OK
Content-Type: application/xml
Content-Length: nnnn
Date: Thu, 28 Jun 2013 02:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationChannelLifetime xmlns:nc="urn:oma:xml:rest:netapi:notificationchannel:1">
 <channelLifetime>1724</channelLifetime>
</nc:notificationChannelLifetime>

6.4.4 PUT

This operation is used for retrieval of the remaining Notification Channel lifetime, i.e. “refresh” the channel.

6.4.4.1 Example: Update Notification Channel lifetime (Informative)

6.4.4.1.1 Request

PUT /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch456/channelLifetime HTTP/1.1
Host: example.com
Accept: application/xml
Content-Type: application/xml
Content-Length: nnnn

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 69 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationChannelLifetime xmlns:nc="urn:oma:xml:rest:netapi:notificationchannel:1">
 <channelLifetime>7200</channelLifetime>
</nc:notificationChannelLifetime>

6.4.4.1.2 Response

HTTP/1.1 200 OK
Content-Type: application/xml
Content-Length: nnnn
Date: Thu, 28 Jun 2013 02:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationChannelLifetime xmlns:nc="urn:oma:xml:rest:netapi:notificationchannel:1">
 <channelLifetime>3600</channelLifetime>
</nc:notificationChannelLifetime>

6.4.5 POST

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET,

PUT’ field in the response as per sections 6.5.5 and 7.4.1 of [RFC7231].

6.4.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET,

PUT’ field in the response as per sections 6.5.5 and 7.4.1 of [RFC7231].

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 70 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

7. Fault definitions

7.1 Service Exceptions

For common Service Exceptions refer to [REST_NetAPI_Common].

The following additional Service Exception codes are defined for the Notification Channel API.

7.1.1 SVC1012: Simultaneous channel requests not supported

Name Description

MessageID SVC1012

Text Simultaneous channel requests not supported

Variables None

HTTP status code(s) 409 Conflict

7.2 Policy Exceptions

For common Policy Exceptions refer to [REST_NetAPI_Common].

The following additional Policy Exception codes are defined for the Notification Channel API.

7.2.1 POL1023: Notification channel type not supported

Name Description

MessageID POL1023

Text Notification channel type %1 not supported. Supported types: %2.

Variables %1 – Type of the notification channel

%2 – List of supported channel types

HTTP status code(s) 403 Forbidden

The variable %1 SHALL contain one of the types as defined in section 5.2.3.1, %2 a comma-separated list of one or more

types as defined in section 5.2.3.1.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 71 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

Appendix A. Change History (Informative)

A.1 Approved Version History
Reference Date Description

n/a n/a No prior version

A.2 Draft/Candidate Version 1.0 History
Document Identifier Date Sections Description

Draft Versions:

REST_NetAPI_NotificationChannel-V1_0

28 Apr 2011 Many This is the first version of the document that is based on agreed
contribution OMA-ARC-RC-APIs-2011-0040R03-

INP_Proposal_for_Notification_Channel_TS. In addition, the

document title is updated to address the issues from ARC-2011-
A071.

25 May 2011 Many Implemented CR, OMA-ARC-REST-NetAPI-2011-0008-

CR_TS_changes_for_NotificationChannel

02 Jul 2011 Many Implemented CRs:

OMA-ARC-REST-NetAPI-2011-0092-CR

_TS_NotificationChannel_alignment_with_new_template

OMA-ARC-REST-NetAPI-2011-0096-CR
_TS_NotificationChannel_channelData_type

25 Jul 2011 Many Implemented CRs:

OMA-ARC-REST-NetAPI-2011-0135R01-CR

_TS_NC_duration_timer

OMA-ARC-REST-NetAPI-2011-0137-CR

_TS_NC_Additional_SCRs

OMA-ARC-REST-NetAPI-2011-0147R01-CR
_TS_NC_Appendix_C_and_D

08 Sep 2011 Many Implemented CRs:

OMA-ARC-REST-NetAPI-2011-0210R01-

CR_NC_XML_examples_for_channel_duration

OMA-ARC-REST-NetAPI-2011-0224-

CR_NC_telURI_resourceURL_changes

21 Sep 2011 Many Implemented CRs:

OMA-ARC-REST-NetAPI-2011-0241-CR _NC_TS_ACR_changes

OMA-ARC-REST-NetAPI-2011-0253R02-CR_

NC_TS_clarifications_and_tidy_ups

03 Nov 2011 Many Implemented CR:

OMA-ARC-REST-NetAPI-2011-0330R02-

CR_NC_TS_CONRR_fixing_editorial_comments

20 Dec 2011 Many Implemented CRs:

OMA-ARC-REST-NetAPI-2011-0451-

CR_NC_TS_CONRR_technical_comments_resolution

OMA-ARC-REST-NetAPI-2011-0454-CR_NC_TS_Appendix_G

Candidate Version:

REST_NetAPI_NotificationChannel-V1_0

17 Jan 2012 n/a Status changed to Candidate by TP

TP Ref # OMA-TP-2012-0007-

INP_REST_NetAPI_NotificationChannel_1_0_ERP_and_ETR_for_

Candidate_Approval

Draft Versions:

REST_NetAPI_NotificationChannel-V1_0

24 Jul 2012 5, 6.1.2, 6.2.2,

6.3.2, 7,

G.1.1.3

Incorporated CR:

 OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20120117-

C_changes_CR0162

Editorial changes

24 Aug 2012 5.2.2.2,

C.1

Incorporated CR:

 OMA-ARC-REST-NetAPI-2012-0233-

CR_NC_TS_issue_20_clientCorrelator_resolution

Editorial changes

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 72 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

Document Identifier Date Sections Description

15 Oct 2012 2.1,

2.2, 3.3, 4.1, 5,

5.1, 5.2.2.2,

5.2.2.6, 5.2.3.1,

5.3, 5.3.1,
5.3.5, 5.3.6,

5.3.7, 6.1.3.1.2,
6.1.5.1,

6.1.5.1.2,

6.1.5.2, 6.1.5.3,
6.1.5.3.2, 6.3,

6.3.1, 6.3.5,
7.2,

B.1.1, B.1.4,

C.1.1, C.1.2,

C.1.3, C.2, D.1,
D.2, D.3, D.4,,

D.5, G.1.1.1,

G.1.1.2,
G.1.1.3

Incorporated CR:

 OMA-ARC-REST-NetAPI-2012-0254R01-

CR_Notification_Channel_support_for_OMA_Push

Editorial changes

08 Nov 2012 2.2, 3.2, 5.1,

5.2.2, 5.2.3.1,

6.1.1, 6.2.1,

7.2.1, B.1,
B.1.1, B.1.2,

B.1.3, B.1.4,
C.1, C.2, D.9, F

Incorporated CR:

 OMA-ARC-REST-NetAPI-2012-0273R01-

CR_NC_TS_NotificationList_fixing_element_description

Editorial changes

19 Nov 2012 6.3.5.2.2, D.9 Incorporated CR:

 OMA-ARC-REST-NetAPI-2012-0276-

CR_Notification_Channel_fixing_and_extending_examples

13 Dec 2012 4.1, 6, B,

G.1.1.1,
G.1.1.3, G.1.2,

Incorporated CR:

 OMA-ARC-REST-NetAPI-2012-0291-

CR_NC_TS_implementing_blueprint_for_authorization

Template changed to OMA-TEMPLATE-

TS_RESTful_Network_API-20120813-I

Editorial changes

15 Apr 2013 2.1, 2.2, 5.3.7,

7.2.1, H
Incorporated CR:

 OMA-ARC-REST-NetAPI-2013-0019R01-

CR_Notification_Server_Push_Enabler_interaction_info

Editorial changes

15 Jul 2013 H Incorporated CR:

 OMA-ARC-REST-NetAPI-2013-0048-

CR_NotifChannel_fixing_xml_example_for_push_pap

Editorial changes

Candidate Version:

REST_NetAPI_NotificationChannel-V1_0

30 Jul 2013 n/a Status changed to Candidate by TP

 TP Ref # OMA-TP-2013-0224-
INP_REST_NetAPI_NotificationChannel_V1_0_ERP_for_Candidat

e_re_approval

Draft Versions:

REST_NetAPI_NotificationChannel-V1_0

27 Sep 2013 2, 4, 5, 5.1,

5.2.2.2, 5.2.2.3,

5.2.2.8, 5.2.2.9,
5.2.3.1, 5.2.4,

5.3, 5.3.1,

5.3.3, 5.3.8,
5.3.9, 5.3.10,

6.1.5.4, 6.1.5.5,
6.3.1, 6.4,

7.2.1, B.1.1,

B.1.4, B.1.5, C,
D.5, D.6, D.12,

D.13, G.1.1, I

Incorporated CR:

 OMA-ARC-REST-2013-0052R01-CR_Notif_WebSockets_TS

Editorial changes

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 73 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

Document Identifier Date Sections Description

15 Jan 2014 5.2.2.8, 5.2.2.9,

5.2.2.10,

5.2.2.11, 6.3,
6.3.5.1, 6.3.5.2,

6.3.5.4, B.1.1,

B.1.3, B.1.6,
C.2.1, C.2.2,

D.9, D.10,
D.12, I

Incorporated CRs:

 OMA-ARC-REST-NetAPI-2014-0001R01-

CR_Single_Notification_delivery

 OMA-ARC-REST-NetAPI-2014-0003R01-

CR_Long_Polling_Optionality_Bugfix_NotifChannel_TS

 OMA-ARC-REST-NetAPI-2014-0005-

CR_Notif_No_Headers_No_Compression

 OMA-ARC-REST-NetAPI-2014-0007R01-CR_Notif_Ping_Pong

Editorial changes

29 Jan 2014 G.1.1.3 Incorporated CR:

 OMA-ARC-REST-NetAPI-2014-0008-

CR_Notif_Protected_access_to_Channel_URL

Editorial changes

13 Feb 2014 7.2.1 Incorporated CR:

 OMA-ARC-REST-NetAPI-2014-0016-

CR_Notif_section_7_HTTP_code_fix

18 Feb 2014 5.1 Incorporated CR:

 OMA-ARC-REST-NetAPI-2014-0022-

CR_Notif_Explaining_meaning_of_Notification_List_for_Websocke
ts

19 Mar 2014 5.2.2.5, 5.2.2.6,
5.2.2.8, D.1-

D.7

Incorporated CR:

 OMA-ARC-REST-NetAPI-2014-0033-CR_xsi_type_NotifChannel

08 May 2014 5, 5.2.2.9,

5.2.2.10,

5.3.11, 5.3.12,
5.3.13, I.3

Incorporated CR:

 OMA-ARC-REST-NetAPI-2014-0039R01-

CR_Notif_WS_Connection_Re_Establishment

Editorial changes

09 Jun 2014 5, 5.3.14,

6.1.5.5.2, 7.1,
D.6, I.1, I.4, I.5

Incorporated CRs:

 OMA-ARC-REST-NetAPI-2014-0048R02-

CR_NC_Multiple_long_polls

 OMA-ARC-REST-NetAPI-2014-0051-

CR_Notification_Channel_Examples_and_Fixes

14 Oct 2014 2.1, 6 Incorporated CR:

 OMA-ARC-REST-NetAPI-2014-0076-

CR_ACR_reference_in_TS_NotifChnl

04 Mar 2015 2.1, 6.1.4,

6.1.6, 6.2.4,

6.2.5, 6.3.3,
6.3.4, 6.3.6,

6.4.5, 6.4.6, D,

G.1.2

Incorporated CR:

 OMA-ARC-REST-NetAPI-2015-0021-

CR_NotifChnl_TS_updating_references

Editorial changes

11 Jun 2015 5, 5.1, 5.2.2.3,

5.2.2.4, 5.2.2.7,
5.2.2.8, 5.3,

5.3.7, 5.3.8,
5.3.9, 6.1.5.3,

6.1.5.4, D.4,

D.5, H

Incorporated CRs:

 OMA-ARC-REST-NetAPI-2015-0059R02-

CR_NotifChannel_Dynamic_Polling_channelURL

 OMA-ARC-REST-NetAPI-2015-0062-

CR_NotifChannel_Dynamic_Polling_XmlJson

 OMA-ARC-REST-NetAPI-2015-0063-

CR_LargePollingNotification_Example

 OMA-ARC-REST-NetAPI-2015-0064R01-
CR_NotifChannel_LargeDataPolling_SeqDiagrams

21 Oct 2015 5.2.2.6, 5.3.6 Incorporated CR:

 OMA-ARC-REST-NetAPI-2015-0071-

CR_Notification_Channel_maxWaitTime

Editorial changes

03 Dec 2015 6.3.5.1.2,

6.3.5.2.2,

6.3.5.4.2, A.2,
C.2.1.2,

C.2.2.2, D.1, H,
I.4

Incorporated CR:

 OMA-ARC-REST-NetAPI-2015-0095-

CR_Notification_Channel_fixing_validation_errors

Editorial changes

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 74 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

Document Identifier Date Sections Description

Candidate Version:

REST_NetAPI_NotificationChannel-V1_0

22 Dec 2015 n/a Status changed to Candidate by TP

 TP Ref # OMA-TP-2015-0220-

INP_REST_NetAPI_NotificationChannel_V1_0_ERP_for_Candidat

e_re_approval

Draft Versions:

REST_NetAPI_NotificationChannel-V1_0

27 Jan 2016 5, 5.2.2.3,

5.2.2.8,

5.2.2.13,
5.2.3.1, 5.2.3.2,

5.3, 5.3.13,
5.3.14

Incorporated CRs:

 OMA-ARC-REST-NetAPI-2016-0001R01-

CR_Notification_Channel_NativeChannel

 OMA-ARC-REST-NetAPI-2016-0002R01-

CR_Notification_Channel_NativeChannel_SeqDig

09 May 2016 6.1.5.8, D.4,
D.5, D.9

Incorporated CR:

 OMA-ARC-REST-NetAPI-2016-0006-

CR_Notification_Channel_NativeChannel_example

11 May 2016 J Incorporated CR:

 OMA-ARC-REST-NetAPI-2016-0007-

CR_Notification_Channel_NativeChannel_Appendix

Candidate Version:

REST_NetAPI_NotificationChannel-V1_0

19 Mar 2020 n/a Status changed to Candidate by ARC WG

 ARC WG Ref # OMA-ARC-2020-0003-

INP_REST_NetAPI_NotificationChannel_V1_0_ERP_for_Candidat

e_Approval

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 75 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

Appendix B. Static Conformance Requirements (Normative)

The notation used in this appendix is specified in [SCRRULES].

B.1 SCR for REST.NC Server
Item Function Reference Requirement

REST-NC-SUPPORT-S-001-M Support for the RESTful

Notification Channel API

5, 6

REST-NC-SUPPORT-S-002-M Support for the XML request &

response format

6

REST-NC-SUPPORT-S-003-M Support for the JSON request &

response format

6

REST-NC-SUPPORT-S-004-O Support for the application/x-

www-form-urlencoded format

Appendix C

B.1.1 SCR for REST.NC.Channels Server
Item Function Reference Requirement

REST-NC-CHANNELS-S-001-M Support for management of

Notification Channels

6.1 REST-NC-

CHANNELS-S-

003-O

OR

REST-NC-

CHANNELS-S-

004-O

OR

REST-NC-

CHANNELS-S-

006-O

REST-NC-CHANNELS-S-002-O Retrieving a list of Notification

Channels - GET

6.1.3

REST-NC-CHANNELS-S-003-O Creating a Long Polling

Notification Channel – POST

(XML or JSON)

6.1.5 REST-NC-

LONGPOLL-S-

001-O

REST-NC-CHANNELS-S-004-O Creating a OMA Push

Notification Channel – POST

(XML or JSON)

6.1.5 REST-NC-

OMAPUSH-S-

001-O

AND

REST-NC-

REFRESH-S-001-

O

REST-NC-CHANNELS-S-005-O Creating a Notification Channel

– POST

(application/x-www-form-

urlencoded)

C.1

REST-NC-CHANNELS-S-006-O Creating a WebSockets

Notification Channel – POST

(XML or JSON)

6.1.5 REST-NC-

REFRESH-S-001-

O

AND

REST-NC-

WEBSOCK-S-

001-O

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 76 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

B.1.2 SCR for REST.NC.IndividualChannel Server
Item Function Reference Requirement

REST-NC-INDCHANNEL-S-001-

M

Support for access to individual

Notification Channel

6.2

REST-NC-INDCHANNEL-S-002-

M

Retrieving Notification Channel

information - GET

6.2.3

REST-NC-INDCHANNEL-S-003-

M

Terminating Notification

Channel – DELETE

6.2.6

B.1.3 SCR for REST.NC.LongPolling Server
Item Function Reference Requirement

REST-NC-LONGPOLL-S-001-O Support for access to

notifications via long polling

6.3 REST-NC-

LONGPOLL-S-

002-O

REST-NC-LONGPOLL-S-002-O Retrieving notifications from the

server using Long Polling –

POST (XML or JSON)

6.3.5

REST-NC-LONGPOLL-S-003-O Retrieving notifications from the

server using Long Polling –

POST

(application/x-www-form-

urlencoded)

C.2

B.1.4 SCR for REST.NC.OMAPush Server
Item Function Reference Requirement

REST-NC-OMAPUSH-S-001-O Acting as a Push Initiator by

pushing notifications to OMA

Push Enabler

-

B.1.5 SCR for REST.NC.Refresh Server
Item Function Reference Requirement

REST-NC-REFRESH-S-001-O Support for Refresh of

Notification Channel

6.4 REST-NC-

REFRESH-S-003-

O

REST-NC-REFRESH-S-002-O Retrieving ChannelLifetime –

GET

6.4.3

REST-NC-REFRESH-S-003-O Updating ChannelLifetime –

PUT

6.4.4

B.1.6 SCR for REST.NC.WebSockets Server
Item Function Reference Requirement

REST-NC-WEBSOCK-S-001-O Allow opening a WebSockets

connection, serve notifications

through this connection

I.1 REST-NC-

WEBSOCK-S-

002-O

REST-NC-WEBSOCK-S-002-O Support the connCheck/connAck

mechanism

I.3

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 77 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

Appendix C. Application/x-www-form-urlencoded Request Format for
POST Operations (Normative)

This section defines a format for the RESTful Notification Channel REST API requests where the body of the request is

encoded using the application/x-www-form-urlencoded MIME type.

Note: only the request body is encoded as application/x-www-form-urlencoded, the response is still encoded as XML or

JSON depending on the preference of the client and the capabilities of the server. Names and values MUST follow the

application/x-www-form-urlencoded character escaping rules from [W3C_URLENC].

The encoding is defined below for the following Notification Channel REST operations which are based on POST requests:

 Create a Notification Channel

 Retrieve notifications from Notification Server

The application/ x-www-form-urlencoded request format is not supported for a WebSockets-based Notification Channel.

C.1 Creating a Notification Channel

This operation is used to create a Notification Channel, see section 6.1.5.

The request parameters are as follows:

Name Type/Values Optional Description

clientCorrelator xsd:string Yes A correlator that the client can use to tag this particular
resource representation during a request to create a
resource on the server.

This element SHOULD be present. Note: this allows the
client to recover from communication failures during
resource creation and therefore avoids duplicate
channel creation in such situations.

In case the field is present, the server SHALL not alter
its value, and SHALL provide it as part of the
representation of this resource. In case the field is not
present, the server SHALL NOT generate it.

applicationTag xsd:string Yes A tag that the client MAY use to tag this particular
resource on the server. In case the field is present, the
server SHALL not alter its value, and SHALL provide it
as part of the representation of this resource. In case
the field is not present, the server SHALL NOT generate
it.

channelType xsd:string No Specifies the type of Notification Channel to be used
(method that will be used to receive new notifications on
the channel). Allowed string values are defined in
5.2.3.1.

maxNotifications xsd:int Yes Defines the maximum number of notifications that may
be delivered in a notification list.
If not specified, a default value specified by the server
policy will apply, and the server SHOULD include that
value in the response to the client.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 78 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

channelLifetime xsd:int Yes Lifetime (duration) of Notification Channel in seconds.

Client can specify desired lifetime of Notification
Channel in POST request when creating Notification
Channel, however the server in the response to the
request may change the desired lifetime according to its
server policy.

If the element is not present in the POST request, a
default channel lifetime specified by server policy will
apply.

The server SHALL always include the channe lifetime in
the response either when it was modified compared to
what the client requested, or a default channel lifetime is
used.

C.1.1 Example 1: Create Notification Channel (Long Polling method),
using tel URI (Informative)

C.1.1.1 Request

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels HTTP/1.1
Host: example.com
Content-Type: application/x-www-form-urlencoded
Content-Length: nnnn
Accept: application/xml

clientCorrelator=123&
applicationTag=myApp&
channelType=LongPolling&
maxNotifications=1&
channelLifetime=7200

C.1.1.2 Response

HTTP/1.1 201 Created
Location: http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch123
Date: Thu, 04 Jun 2009 02:51:59 GMT
Content-Type: application/xml
Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationChannel xmlns:nc="urn:oma:xml:rest:netapi:notificationchannel:1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" >
 <clientCorrelator>123</clientCorrelator>
 <applicationTag>myApp</applicationTag>
 <channelType>LongPolling</channelType>
 <channelData xsi:type="nc:LongPollingData">
 <channelURL>http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch123/notifications
 </channelURL>
 <maxNotifications>1</maxNotifications>
 </channelData>
 <channelLifetime>7200</channelLifetime>
 <callbackURL>http://example.com/callBackUrl/cbu111</callbackURL>

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 79 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

 <resourceURL>http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch123</resourceURL>
</nc:notificationChannel>

C.1.2 Example 2: Create Notification Channel (OMA Push method), using
tel URI (Informative)

C.1.2.1 Request

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels HTTP/1.1
Host: example.com
Content-Type: application/x-www-form-urlencoded
Content-Length: nnnn
Accept: application/xml

clientCorrelator=987&
applicationTag=myApp&
channelType=OMAPush&
appId=x-wap-application:wml.ua&
maxNotifications=1&
channelLifetime=7200

C.1.2.2 Response

HTTP/1.1 201 Created
Location: http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch987
Date: Thu, 04 Jun 2009 02:51:59 GMT
Content-Type: application/xml
Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationChannel xmlns:nc="urn:oma:xml:rest:netapi:notificationchannel:1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" >
 <clientCorrelator>987</clientCorrelator>
 <applicationTag>myApp</applicationTag>
 <channelType>OMAPush</channelType>
 <channelData xsi:type="nc:OMAPushData">
 <appId>x-wap-application:wml.ua</appId>
 <maxNotifications>1</maxNotifications>
 </channelData>
 <channelLifetime>7200</channelLifetime>
 <callbackURL>http://example.com/callBackUrl/cbu222</callbackURL>
 <resourceURL>http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch987</resourceURL>
</nc:notificationChannel>

C.1.3 Example 3: Create Notification Channel, using ACR
(Informative)

C.1.3.1 Request

POST /exampleAPI/notificationchannel/v1/acr%3Apseudonym123/channels HTTP/1.1
Host: example.com
Content-Type: application/x-www-form-urlencoded
Content-Length: nnnn

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 80 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

Accept: application/xml

clientCorrelator=123&
applicationTag=myApp&
channelType=LongPolling&
maxNotifications=1&
channelLifetime=7200

C.1.3.2 Response

HTTP/1.1 201 Created
Location: http://example.com/exampleAPI/notificationchannel/v1/acr%3Apseudonym123/channels/ch123
Date: Thu, 04 Jun 2009 02:51:59 GMT
Content-Type: application/xml
Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationChannel xmlns:nc="urn:oma:xml:rest:netapi:notificationchannel:1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" >
 <clientCorrelator>123</clientCorrelator>
 <applicationTag>myApp</applicationTag>
 <channelType>LongPolling</channelType>
 <channelData xsi:type="nc:LongPollingData">
 <channelURL>http://example.com/exampleAPI/notificationchannel/v1/acr%3Apseudonym123/channels/ch123/notifications
 </channelURL>
 <maxNotifications>1</maxNotifications>
 </channelData>
 <channelLifetime>7200</channelLifetime>
 <callbackURL>http://example.com/callBackUrl/cbu111</callbackURL>
 <resourceURL>http://example.com/exampleAPI/notificationchannel/v1/acr%3Apseudonym123/channels/ch123</resourceURL>
</nc:notificationChannel>

C.2 Retrieving notifications from the Notification Server

This operation is used to retrieve new notifications from the Notification Server if the Notification Channel involved is of

Long Polling type, see section 6.3.5.

The request parameters are as follows:

Name Type/Values Optional Description

longPollingRequestParameters (empty) No Provides the body of the request, which is an
empty string in this version of specification.

C.2.1 Example 1: Single notification delivered in a NotificationList
(Informative)

C.2.1.1 Request

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch123/notifications HTTP/1.1
Host: example.com
Content-Type: application/x-www-form-urlencoded
Content-Length: nnnn
Accept: application/xml

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 81 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

longPollingRequestParmeters=

C.2.1.2 Response

HTTP/1.1 200 OK
Date: Thu, 04 Jun 2009 02:51:59 GMT
Content-Type: application/xml
Connection: close
Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationList xmlns:nc="urn:oma:xml:rest:netapi:notificationchannel:1">
 <pr:presenceNotification xmlns:pr="urn:oma:xml:rest:netapi:presence:1">
 <presentityUserId>tel:+19585550100</presentityUserId>
 <callbackData>1234</callbackData>
 <resourceStatus>Active</resourceStatus>
 <presence>
 <person>
 <mood>
 <moodValue>Happy</moodValue>
 </mood>
 </person>
 </presence>
 <link rel="PresenceSubscription"
 href="http://example.com/exampleAPI/v1/presence/tel%3A%2B19585550101/subscriptions/presenceSubscriptions/
 tel%3A%2B19585550100/sub001"/>
 </pr:presenceNotification>
</nc:notificationList>

C.2.2 Example 2: Single notification delivered outside a NotificationList
 (Informative)

C.2.2.1 Request

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch123/notifications HTTP/1.1
Host: example.com
Content-Type: application/x-www-form-urlencoded
Content-Length: nnnn
Accept: application/xml

longPollingRequestParmeters=

C.2.2.2 Response

HTTP/1.1 200 OK
Date: Thu, 04 Jun 2009 02:51:59 GMT
Content-Type: application/xml
Connection: close
Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<pr:presenceNotification xmlns:pr="urn:oma:xml:rest:netapi:presence:1">
 <presentityUserId>tel:+19585550100</presentityUserId>

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 82 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

 <callbackData>1234</callbackData>
 <resourceStatus>Active</resourceStatus>
 <presence>
 <person>
 <mood>
 <moodValue>Happy</moodValue>
 </mood>
 </person>
 </presence>
 <link rel="PresenceSubscription"
 href="http://example.com/exampleAPI/v1/presence/tel%3A%2B19585550101/subscriptions/presenceSubscriptions/
 tel%3A%2B19585550100/sub001"/>
</pr:presenceNotification>

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 83 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

Appendix D. JSON examples (Informative)

JSON (JavaScript Object Notation) is a lightweight, text-based, language-independent data interchange format. It provides a

simple means to represent basic name-value pairs, arrays and objects. JSON is relatively trivial to parse and evaluate using

standard JavaScript libraries, and hence is suited for REST invocations from browsers or other processors with JavaScript

engines. Further information on JSON can be found at [RFC7159].

The following examples show the request and response for various operations using the JSON data format. The examples

follow the XML to JSON serialization rules in [REST_NetAPI_Common]. A JSON response can be obtained by using the

content type negotiation mechanism specified in [REST_NetAPI_Common].

For full details on the operations themselves please refer to the section number indicated.

D.1 Retrieve active Notification Channels (section 6.1.3.1)

Request:

GET /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels HTTP/1.1
Host: example.com
Accept: application/json

Response:

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: nnnn
Date: Thu, 04 Jun 2009 02:51:59 GMT

{"notificationChannelList": {
 "notificationChannel": [
 {
 "applicationTag": "myApp",
 "callbackURL": "http://example.com/callBackUrl/cbu111",
 "channelData": {
 "channelURL": "http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch123/notifications
",
 "maxNotifications": "1",
 },
 "channelLifetime": "7200",
 "channelType": "LongPolling",
 "clientCorrelator": "123",
 "resourceURL": "http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch123"
 },
 {
 "applicationTag": "someOtherApp",
 "callbackURL": "http://example.com/callBackUrl/cbu222",
 "channelData": {

 "appId": "x-wap-application:wml.ua”, "maxNotifications": "5",
 },
 "channelLifetime": "3600",
 "channelType": "OMAPush",
 "clientCorrelator": "987",
 "resourceURL": "http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch987"
 }

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 84 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

],
 "resourceURL": "http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels"
}}

D.2 Create Notification Channel (Long Polling method), using tel
URI (section 6.1.5.1)

Request:

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels HTTP/1.1
Host: example.com
Content-Type: application/json
Content-Length: nnnn
Accept: application/json

{"notificationChannel": {
 "applicationTag": "myApp",
 "channelData": {
 "maxNotifications": "1",
 },
 "channelLifetime": "7200",
 "channelType": "LongPolling",
 "clientCorrelator": "123"
}}

Response:

HTTP/1.1 201 Created
Location: http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch123
Date: Thu, 04 Jun 2009 02:51:59 GMT
Content-Type: application/json
Content-Length: nnnn

{"notificationChannel": {
 "applicationTag": "myApp",
 "callbackURL": "http://example.com/callBackUrl/cbu111",
 "channelData": {
 "channelURL": "http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch123/notifications",
 "maxNotifications": "1",
 },
 "channelLifetime": "7200",
 "channelType": "LongPolling",
 "clientCorrelator": "123",
 "resourceURL": "http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch123"
}}

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 85 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

D.3 Create Notification Channel (OMA Push method), using tel
URI (section 6.1.5.2)

Request:

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels HTTP/1.1
Host: example.com
Content-Type: application/json
Content-Length: nnnn
Accept: application/json

{"notificationChannel": {
 "applicationTag": "myApp",
 "channelData": {
 “appId”: “x-wap-application:wml.ua”,
 "maxNotifications": "1",
 },
 "channelLifetime": "7200",
 "channelType": "OMAPush",
 "clientCorrelator": "987"
}}

Response:

HTTP/1.1 201 Created
Location: http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch987
Date: Thu, 04 Jun 2009 02:51:59 GMT
Content-Type: application/json
Content-Length: nnnn

{"notificationChannel": {
 "applicationTag": "myApp",
 "callbackURL": "http://example.com/callBackUrl/cbu222",
 "channelData": {
 “appId”: “x-wap-application:wml.ua”,
 "maxNotifications": "1",
 },
 "channelLifetime": "7200",
 "channelType": "OMAPush",
 "clientCorrelator": "987",
 "resourceURL": "http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch987"
}}

D.4 Create Notification Channel (OMA Push method with
largeDataPolling), using tel URI (section 6.1.5.3)

Request:

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels HTTP/1.1
Host: example.com
Accept: application/json
Content-Type: application/json
Content-Length: nnnn

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 86 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

 {"notificationChannel": {
 "applicationTag": "myApp",
 "channelData": {
 "appId": "x-wap-application:wml.ua",
 "largeDataPolling": {
 "maxPollingNotifications": "10",
 "pollingEnabled": "true"
 },
 "maxNotifications": "1"
 },
 "channelLifetime": "7200",
 "channelType": "OMAPush",
 "clientCorrelator": "987"
}}

Response:

HTTP/1.1 201 Created
Location: http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch987
Date: Thu, 04 Jun 2015 02:51:59 GMT
Content-Type: application/json
Content-Length: nnnn

 {"notificationChannel": {
 "applicationTag": "myApp",
 "callbackURL": "http://example.com/callBackUrl/cbu222",
 "channelData": {
 "appId": "x-wap-application:wml.ua",
 "largeDataPolling": {
 "maxPollingNotifications": "10",
 "pollingEnabled": "true"
 },
 "maxNotifications": "1"
 },
 "channelLifetime": "7200",
 "channelType": "OMAPush",
 "clientCorrelator": "987",
 "resourceURL": "http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch987"
}}

D.5 Create Notification Channel (OMA Push method with
LargeDataPolling) not supported (section 6.1.5.4)

Request:

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels HTTP/1.1
Host: example.com
Accept: application/json
Content-Type: application/json
Content-Length: nnnn

 {"notificationChannel": {
 "applicationTag": "myApp",

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 87 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

 "channelData": {
 "appId": "x-wap-application:wml.ua",
 "largeDataPolling": {
 "maxPollingNotifications": "10",
 "pollingEnabled": "true"
 },
 "maxNotifications": "1"
 },
 "channelLifetime": "7200",
 "channelType": "OMAPush",
 "clientCorrelator": "987"
}}

Response:

HTTP/1.1 403 Forbidden
Date: Thu, 04 Jun 2015 02:51:59 GMT
Content-Type: application/json
Content-Length: nnnn

{"requestError": {"policyException": {
 "messageId": "POL2006",
 "text": "Requested feature %1 is not available",
 "variables": "LargeDataPolling"
}}}

D.6 Create Notification Channel (Long Polling method), using
ACR (section 6.1.5.5)

Request:

POST /exampleAPI/notificationchannel/v1/acr%3Apseudonym123/channels HTTP/1.1
Host: example.com:80
Content-Type: application/json
Content-Length: nnnn
Accept: application/json

{"notificationChannel": {
 "applicationTag": "myApp",
 "channelData": {
 "maxNotifications": "1",
 },
 "channelLifetime": "7200",
 "channelType": "LongPolling",
 "clientCorrelator": "123"
}}

Response:

HTTP/1.1 201 Created
Location: http://example.com/exampleAPI/notificationchannel/v1/acr%3Apseudonym123/channels/ch123
Date: Thu, 04 Jun 2009 02:51:59 GMT
Content-Type: application/json
Content-Length: nnnn

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 88 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

{"notificationChannel": {
 "applicationTag": "myApp",
 "callbackURL": "http://example.com/callBackUrl/cbu111",
 "channelData": {
 "channelURL": " http://example.com/exampleAPI/notificationchannel/v1/ acr%3Apseudonym123/channels/ch123/notifications ",
 "maxNotifications": "1",
 },
 "channelLifetime": "7200",
 "channelType": "LongPolling",
 "clientCorrelator": "123",
 "resourceURL": "http://example.com/exampleAPI/notificationchannel/v1/acr%3Apseudonym123/channels/ch123"
}}

D.7 Create Notification Channel (WebSockets method), using tel
URI (section 6.1.5.6)

Request:

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels HTTP/1.1
Host: example.com
Content-Type: application/json
Content-Length: nnnn
Accept: application/json

{"notificationChannel": {
 "applicationTag": "myApp",
 "channelData": {
 "maxNotifications": "5",
 },
 "channelLifetime": "7200",
 "channelType": "WebSockets",
 "clientCorrelator": "987"
}}

Response:

HTTP/1.1 201 Created
Location: http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch378
Date: Thu, 28 Jun 2013 02:51:59 GMT
Content-Type: application/json
Content-Length: nnnn

{"notificationChannel": {
 "applicationTag": "myApp",
 "callbackURL": "http://example.com/callBackUrl/cbu112",
 "channelData": {
 "channelURL": "ws://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch378/ws",
 "maxNotifications": "5",
 },
 "channelLifetime": "3600",
 "channelType": "WebSockets",
 "clientCorrelator": "987",
 "resourceURL": "http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch378"

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 89 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

}}

D.8 Example: Attempt to create Notification Channel of
unsupported type (section 6.1.5.7)

Request:

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels HTTP/1.1
Host: example.com
Accept: application/json
Content-Type: application/json
Content-Length: nnnn

{"notificationChannel": {
 "applicationTag": "myApp",
 "channelData": {
 "maxNotifications": "1",
 },
 "channelLifetime": "7200",
 "channelType": "LongPolling",
 "clientCorrelator": "123"
}}

Response:

HTTP/1.1 400 Bad Request
Date: Thu, 28 Jun 2013 02:51:59 GMT
Content-Type: application/json
Content-Length: nnnn

{"requestError": {"policyException": {
 "messageId": "POL1023",
 "text": "Notification channel type %1 not supported. Supported types: %2.",
 "variables": [
 "LongPolling",
 "OMAPush, WebSockets"
]
}}}

D.9 Create Notification Channel (Native Channel method with
LargeDataPolling) not supported (section 6.1.5.8)

Request:

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels HTTP/1.1
Host: example.com
Accept: application/json
Content-Type: application/json
Content-Length: nnnn

 {"notificationChannel": {
 "applicationTag": "myApp",
 "channelData": {

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 90 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

 "channelSubType": "GCM",
 "registrationToken": "CI2k_HHwgIpoDKCIZvvDMExUdFQ3P1",
 "channelSubTypeVersion": "1.0",
 "largeDataPolling": {
 "maxPollingNotifications": "10",
 "pollingEnabled": "true"
 },
 "maxNotifications": "1"
 },
 "channelLifetime": "7200",
 "channelType": "NativeChannel",
 "clientCorrelator": "987"
}}

Response:

HTTP/1.1 201 Created
Location: http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch309
Date: Sat, 23 Apr 2016 06:55:50 GMT
Content-Type: application/json
Content-Length: nnnn

 {"notificationChannel": {
 "applicationTag": "myApp",
 "callbackURL": "http://example.com/callBackUrl/cbu899",
 "channelData": {
 "channelSubType": "GCM",
 "registrationToken": "CI2k_HHwgIpoDKCIZvvDMExUdFQ3P1",
 "channelSubTypeVersion": "1.0",
 "largeDataPolling": {
 "maxPollingNotifications": "10",
 "pollingEnabled": "true"
 },
 "maxNotifications": "1"
 },
 "channelLifetime": "7200",
 "channelType": "NativeChannel",
 "clientCorrelator": "987",
 "resourceURL": "http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch309"
}}

D.10 Retrieve individual Notification Channel (section 6.2.3.1)

Request:

GET /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch456 HTTP/1.1
Host: example.com
Accept: application/json

Response:

HTTP/1.1 200 OK
Content-Type: application/json

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 91 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

Content-Length: nnnn
Date: Thu, 04 Jun 2009 02:51:59 GMT

{"notificationChannel": {
 "applicationTag": "someOtherApp",
 "callbackURL": "http://example.com/callBackUrl/cbu333",
 "channelData": {
 "channelURL": "http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch456/notifications",
 "maxNotifications": "5",
 },
 "channelLifetime": "7200",
 "channelType": "LongPolling",
 "clientCorrelator": "456",
 "resourceURL": "http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch456"
}}

D.11 Removing Notification Channel (section 6.2.6.1)

Request:

DELETE /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch456 HTTP/1.1
Host: example.com
Accept: application/json

Response:

HTTP/1.1 204 No Content
Date: Thu, 04 Jun 2009 02:51:59 GMT

D.12 Single notification delivered in a NotificationList (section
6.3.5.1)

Request:

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch123/notifications HTTP/1.1
Host: example.com
Accept: application/json
Content-Type: application/json
Content-Length: nnnn

{"longPollingRequestParameters": null}

Response:

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: nnnn
Date: Thu, 04 Jun 2009 02:51:59 GMT

{"notificationList": {"presenceNotification": {
 "callbackData": "1234",

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 92 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

 "link": {
 "href": "http://example.com/exampleAPI/v1/presence/tel%3A%2B19585550101/subscriptions/presenceSubscriptions/
tel%3A%2B19585550100/sub001",
 "rel": "PresenceSubscription"
 },
 "presence": {"person": {"mood": {"moodValue": "Happy"}}},
 "presentityUserId": "tel:+19585550100",
 "resourceStatus": "Active"
}}}

D.13 Multiple notifications delivered (section 6.3.5.2)

Request:

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch123/notifications HTTP/1.1
Host: example.com
Accept: application/json
Content-Type: application/json
Content-Length: nnnn

{"longPollingRequestParameters": null}

Response:

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: nnnn
Date: Thu, 04 Jun 2009 02:51:59 GMT

{"notificationList": [
 { "inboundMessageNotification": {"inboundMessage": {
 "destinationAddress": "tel:+19585550100",
 "inboundMMSMessage": {"subject": "Who is RESTing on the beach?"},
 "link": {
 "href": "http://example.com/exampleAPI/v1/messaging/inbound/subscriptions/sub123",
 "rel": "Subscription"
 },
 "messageId": "msg123",
 "resourceURL": "http://example.com/exampleAPI/v1/messaging/inbound/registrations/reg123/messages/msg123 ",
 "senderAddress": "tel:+19585550101"
 }}},
 {"inboundMessageNotification": {"inboundMessage": {
 "destinationAddress": "tel:+19585550100",
 "inboundMMSMessage": {"subject": "Who is still RESTing on the beach?"},
 "link": {
 "href": "http://example.com/exampleAPI/v1/messaging/inbound/subscriptions/sub123",
 "rel": "Subscription"
 },
 "messageId": "msg1234",
 "resourceURL": "http://example.com/exampleAPI/v1/messaging/inbound/registrations/reg123/messages/msg1234",
 "senderAddress": "tel:+19585550102"
 }}},
 { "presenceNotification": {
 "callbackData": "1234",
 "link": {

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 93 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

 "href": "http://example.com/exampleAPI/v1/presence/tel%3A%2B19585550101/subscriptions/presenceSubscriptions/
tel%3A%2B19585550100/sub001",
 "rel": "PresenceSubscription"
 },
 "presence": {"person": {"mood": {"moodValue": "Happy"}}},
 "presentityUserId": "tel:+19585550100",
 "resourceStatus": "Active"
 }
}]}

D.14 Server timeout (section 6.3.5.3)

Request:

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch123/notifications HTTP/1.1
Host: example.com
Accept: application/json
Content-Type: application/json
Content-Length: nnnn

{"longPollingRequestParameters": null}

Response:

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: nnnn
Date: Thu, 04 Jun 2009 02:51:59 GMT

{"notificationList": null}

D.15 Single notification delivered in a NotificationList (section
6.3.5.4)

Request:

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch123/notifications HTTP/1.1
Host: example.com
Accept: application/json
Content-Type: application/json
Content-Length: nnnn

{"longPollingRequestParameters": null}

Response:

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: nnnn
Date: Thu, 04 Jun 2009 02:51:59 GMT

{"presenceNotification": {
 "callbackData": "1234",

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 94 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

 "link": {
 "href": "http://example.com/exampleAPI/v1/presence/tel%3A%2B19585550101/subscriptions/presenceSubscriptions/
tel%3A%2B19585550100/sub001",
 "rel": "PresenceSubscription"
 },
 "presence": {"person": {"mood": {"moodValue": "Happy"}}},
 "presentityUserId": "tel:+19585550100",
 "resourceStatus": "Active"
}}

D.16 Retrieve remaining Notification Channel lifetime (section
6.4.3.1)

Request:

GET /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch456/channelLifetime HTTP/1.1
Host: example.com
Accept: application/json

Response:

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: nnnn
Date: Thu, 28 Jun 2013 02:51:59 GMT

{"notificationChannelLifetime": {"channelLifetime": "1724"}}

D.17 Update Notification Channel lifetime (section 6.4.4.1)

Request:

PUT /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch456/channelLifetime HTTP/1.1
Host: example.com
Accept: application/json
Content-Type: application/json
Content-Length: nnnn

{"notificationChannelLifetime": {"channelLifetime": "7200"}}

Response:

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: nnnn
Date: Thu, 28 Jun 2013 02:51:59 GMT

{"notificationChannelLifetime": {"channelLifetime": "3600"}}

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 95 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

Appendix E. Operations mapping to a pre-existing baseline
specification (Informative)

As this specification does not have a baseline specification, this appendix is empty

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 96 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

Appendix F. Light-weight resources (Informative)

As this version of the specification does not define any Light-weight Resources, this appendix is empty.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 97 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

Appendix G. Authorization aspects (Normative)

This appendix specifies how to use the RESTful Notification Channel API in combination with some authorization

frameworks.

G.1 Use with OMA Authorization Framework for Network APIs

The RESTful Notification Channel API MAY support the authorization framework defined in [Autho4API_10].

A RESTful Notification Channel API supporting [Autho4API_10]:

 SHALL conform to section D.1 of [REST_NetAPI_Common];

 SHALL conform to this section G.1.

G.1.1 Scope values

G.1.1.1 Definitions

In compliance with [Autho4API_10], an authorization server serving clients requests for getting authorized access to the

resources exposed by the RESTful Notification Channel API:

 SHALL support the scope values defined in the table below;

 MAY support scope values not defined in this specification.

Scope value Description For one-time
access token

oma_rest_notificationchannel.all_{apiVersion} Provide access to all defined
operations on the resources in this
version of the API. The {apiVersion}
part of this identifier SHALL have the
same value as the “apiVersion” URL
variable which is defined in section
5.1. This scope value is the union of
the other scope values listed in next
rows of this table.

No

oma_rest_notificationchannel.longpoll Provide access to all operations
defined for using Long Polling on
Notification Channel.

No

oma_rest_notificationchannel.omapush Provide access to all operations
defined for using OMA Push on
Notification Channel.

No

oma_rest_notificationchannel.websockets Provide access to all operations
defined for using WebSockets on
Notification Channel.

No

Table 1: Scope values for RESTful Notification Channel API

G.1.1.2 Downscoping

In the case where the client requests authorization for “oma_rest_notificationchannel.all_{apiVersion}” scope, the

authorization server and/or resource owner MAY restrict the granted scope to some of the following scope values:

 “oma_rest_notificationchannel.longpoll”

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 98 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

 “oma_rest_notificationchannel.omapush”

 “oma_rest_notificationchannel.websockets”

G.1.1.3 Mapping with resources and methods

Tables in this section specify how the scope values defined in section G.1.1.1 for the RESTful Notification Channel API map

to the REST resources and methods of this API. In these tables, the root “oma_rest_notificationchannel.” of scope values is

omitted for readability reasons.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 99 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

Resource

URL
Base URL:
http://{serverRoot}/notificationchannel/{a
piVersion}

Section
reference

HTTP verbs

GET PUT POST DELETE

Notification
Channels

/{userId}/channels 6.1
all_{apiVersion}

or longpoll or
omapush or
websockets

n/a
all_{apiVersi

on} or
longpoll or

omapush or
websockets

n/a

Individual
Notification
Channel

/{userId}/channels/{channelId} 6.2
all_{apiVersion}

or longpoll or
omapush or
websockets

n/a n/a
all_{apiVersi

on} or
longpoll or
omapush or
websockets

Notification
Channel lifetime

/{userId}/channels/{channelId}/channelLifeti
me

6.4
all_{apiVersion}
or omapush or
websockets

n/a n/a
all_{apiVersi

on} or
omapush or
websockets

Table 2: Required scope values for: Management of Notification Channel

Resource
URL
<specified by the server>

Section
reference

HTTP verbs

GET PUT POST DELETE

Notification list <Resource URL is provided by the server
when the Notification Channel is created>

6.3 n/a n/a
all_{apiVersi

on} or
longpoll

n/a

Table 3: Required scope values for: Retrieval of notifications from Notification Server

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 100 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

G.1.2 Use of ‘acr:auth’
This section specifies the use of ‘acr:auth’ in place of an end user identifier in a resource URL path.

An ‘acr’ URI of the form ‘acr:auth’, where ‘auth’ is a reserved keyword MAY be used to avoid exposing a real end user

identifier in the resource URL path.

A client MAY use ‘acr:auth’ in a resource URL in place of the{userId} resource URL variable in the resource URL path,

when the RESTful Notification Channel API is used in combination with [Autho4API_10].

In the case the RESTful Notification Channel API supports [Autho4API_10], the server:

 SHALL accept ‘acr:auth’ as a valid value for the resource URL variable {userId}.

SHALL conform to [REST_NetAPI_Common] section 5.8.1.1 regarding the processing of ‘acr:auth’

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 101 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

Appendix H. Notification server - Push enabler interaction
 (Informative)

This appendix provides further information on Notification Server Interaction with the Push Enabler for forwarding the event

to the targeted device and application on the device.

In delivering the Push MESSAGE, the Notification Server has several implementation options:

a) Delivery via a Push Proxy Gateway (PPG) as defined in [OMA_PUSH], using either the Push Access Protocol

[PushPAP] or the PushREST API [PushREST]. Depending upon the size of the notification and the intended

bearer(s), the Notification Server may deliver the notification content directly, or provide an indirect reference to the

notification content which the application may retrieve upon receiving the Push message. How the Notification

Server determines the supported notification content size is unspecified, but as a general rule any notification content

of less than 512 compressed/binary bytes or less than 2K uncompressed bytes should be deliverable via any OMA

Push-OTA bearer binding.

Push PAP Example: Delivering Indirect Reference to Notification Content Available from Enabler Server

POST /pap HTTP/1.1
Content-Length: 1041
Content-Type: multipart/related; boundary=PMasdfglkjhqwert; type="application/xml"
Host: ppg.example.com:9002
Connection: close

--PMasdfglkjhqwert
Content-Type: application/xml

<?xml version="1.0"?>
<!DOCTYPE pap PUBLIC "-//WAPFORUM//DTD PAP 1.0//EN" "http://www.wapforum.org/DTD/pap_1.0.dtd">
<pap product-name="OMA-Notification-Server-1.0">
<push-message push-id="1079025501l:mms_12.25.203.86_1223_1078969978_21:134:0:1"
 source-reference="notserver.example.com">
 <address address-value="WAPPUSH=+14255551212/TYPE=PLMN@example.com"/>
 <quality-of-service bearer="SMS" bearer-required="false" delivery-method="unconfirmed" network="GSM"
 network-required="false"/>
</push-message>
</pap>
--PMasdfglkjhqwert

Content-Length: 373
Content-Type: text/vnd.wap.si
X-Wap-Application-Id: myapp.com/f7adaea2-2bfe-1869-8314-1cc82b1aa4b8

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE si PUBLIC "-//WAPFORUM//DTD SI 1.0//EN" "http://www.wapforum.org/DTD/SI.dtd">
<si>
 <indication href="http://mmsapi.example.com/notification/myapp.com/f7adaea2-2bfe-1869-8314-1cc82b1aa4b8"
 si-id = "1079025501l:mms_12.25.203.86_1223_1078969978_21:134:0:1"
 >Your message was delivered.</indication>
</si>

--PMasdfglkjhqwert—

http://www.wapforum.org/DTD/pap_1.0.dtd
http://www.wapforum.org/DTD/SI.dtd

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 102 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

Push PAP Example: Delivering a “largePollNotification”

POST /pap HTTP/1.1
Content-Length: 1041
Content-Type: multipart/related; boundary=PMasdfglkjhqwert; type="application/xml"
Host: ppg.example.com:9002
Connection: close

--PMasdfglkjhqwert
Content-Type: application/xml

<?xml version="1.0"?>
<!DOCTYPE pap PUBLIC "-//WAPFORUM//DTD PAP 1.0//EN" "http://www.wapforum.org/DTD/pap_1.0.dtd">
<pap product-name="OMA-Notification-Server-1.0">
<push-message push-id="1079025501l:mms_12.25.203.86_1223_1078969978_21:134:0:1"
 source-reference="notserver.example.com">
 <address address-value="WAPPUSH=+14255551212/TYPE=PLMN@example.com"/>
 <quality-of-service bearer="SMS" bearer-required="false" delivery-method="unconfirmed" network="GSM"
 network-required="false"/>
</push-message>
</pap>
--PMasdfglkjhqwert

Content-Length: nnn
Content-Type: application/xml
X-Wap-Application-Id: myapp.com/f7adaea2-2bfe-1869-8314-1cc82b1aa4b8

<?xml version="1.0" encoding="UTF-8"?>
<nc:largePollingNotification xmlns:nc="urn:oma:xml:rest:netapi:notificationchannel:1">
 <channelURL>http://example.com/largePollingChannel/123</channelURL>
 <channelExpiry>2015-06-03T21:32:52Z</channelExpiry>
</nc:largePollingNotification>

--PMasdfglkjhqwert—

PushREST Example: Directly Delivering Notification Content

PUT /ExampleAPI/push/v1/pi1.example.com/pushMessages/id123 HTTP/1.1
Host: ppg.example.com:9002
Content-Type: multipart/related; boundary=qwertyuioplkjhgfdsazxcvbnm; type="application/json"
Accept: application/json
Content-Length: 2794
Connection: close

--qwertyuioplkjhgfdsazxcvbnm
Content-Type: application/json

{"push-message": {
 "address": [
 {"address-value": "wappush=+14255551212/type=plmn@example.com "}
],
 "deliver-before-timestamp": "2010-11-08T18:13:51.0Z",
 "ppg-notify-requested-to": "http://notserver.example.com/Push/f7adaea2-2bfe-1869-8314-1cc82b1aa4b8",
 "progress-notes-requested": "true",
 "quality-of-service": {"priority": "medium", "bearer": "SMS" "bearer-required": "false" "delivery-method":

http://www.wapforum.org/DTD/pap_1.0.dtd

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 103 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

 "confirmed" "network": "GSM" "network-required": "false"},
 "source-reference": "notserver.example.com"
}}

--qwertyuioplkjhgfdsazxcvbnm
 Content-Type: application/xml
X-Wap-Application-Id: myapp.com/f7adaea2-2bfe-1869-8314-1cc82b1aa4b8

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationList xmlns:nc="urn:oma:xml:rest:netapi:notificationchannel:1">
 <pr:presenceNotification xmlns:pr="urn:oma:xml:rest:netapi:presence:1">
 <presentityUserId>tel:+19585550100</presentityUserId>
 <callbackData>1234</callbackData>
 <resourceStatus>Active</resourceStatus>
 <presence>
 <person>
 <mood>
 <moodValue>Happy</moodValue>
 </mood>
 </person>
 </presence>
 <link rel="PresenceSubscription"
href="http://example.com/exampleAPI/v1/presence/tel%3A%2B19585550101/subscriptions/presenceSubscriptions/
 tel%3A%2B19585550100/sub001"/>
</pr:presenceNotification>
<mms:inboundMessageNotification xmlns:mms="urn:oma:xml:rest:netapi:messaging:1">
 <inboundMessage>
 <destinationAddress>tel:+19585550100</destinationAddress>
 <senderAddress>tel:+19585550101</senderAddress>
 <resourceURL>http://example.com/exampleAPI/v1/messaging/inbound/registrations/reg123/messages/msg123
 </resourceURL>
 <link rel="Subscription" href="http://example.com/exampleAPI/v1/messaging/inbound/subscriptions/sub123"/>
 <messageId>msg123</messageId>
 <inboundMMSMessage>
 <subject>Who is RESTing on the beach?</subject>
 </inboundMMSMessage>
 </inboundMessage>
</mms:inboundMessageNotification>
 <mms:inboundMessageNotification xmlns:mms="urn:oma:xml:rest:netapi:messaging:1">
 <inboundMessage>
 <destinationAddress>tel:+19585550100</destinationAddress>
 <senderAddress>tel:+19585550102</senderAddress>
 <resourceURL>http://example.com/exampleAPI/v1/messaging/inbound/registrations/reg123/messages/msg1234
 </resourceURL>
 <link rel="Subscription" href="http://example.com/exampleAPI/v1/messaging/inbound/subscriptions/sub123"/>
 <messageId>msg1234</messageId>
 <inboundMMSMessage>
 <subject>Who is still RESTing on the beach?</subject>
 </inboundMMSMessage>
 </inboundMessage>
</mms:inboundMessageNotification>
</nc:notificationList>
--qwertyuioplkjhgfdsazxcvbnm--

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 104 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

b) Direct delivery of an OMA Push message using a Push-OTA (Over the Air) binding supported by the target device.

How the Notification Server determines the supported Push-OTA bindings is unspecified. For details of Push-OTA

bearer bindings, see [PushOTA].

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 105 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

Appendix I. Notification delivery using WebSockets (Normative)

I.1 Delivery mechanism

Subsequently to the creation of a NotificationChannel with channelType=WebSockets, the server responds with a

NotificationChannel data structure that includes a “channelURL” element which provides a URI of scheme “ws:” or “wss”.

The application creates a WebSockets connection on that URL returned, and listens on it for event notifications. As part of

the WebSockets handshake, the application MUST use the subprotocol identifier defined in the next section.

When sending a single notification in the channel, the server MAY choose to encapsulate it in a NotificationList or send it

direct as a root element. When sending multiple notifications in the channel at once, the server MUST encapsulate them in a

NotificationList.

Occasionally, the server MAY choose to send an empty NotificationList through the connection. In contrast to the Long

Polling delivery method, receiving an empty NotificationList SHALL NOT be interpreted by the client as an attempt of the

server to close the connection.

I.2 Subprotocol registration

Implementations compliant with this specification MUST use “notificationchannel-netapi-rest.openmobilealliance.org” in the

“Sec-WebSocket-Protocol” header [RFC6455].

The protocol identifier is registered with [IANA] with the following information:

Subprotocol Identifier: notificationchannel-netapi-rest.openmobilealliance.org

Subprotocol Common Name: OMA RESTful Network API for Notification Channel

Subprotocol Definition: OMA RESTful Network API for Notification Channel V 1.0, Open Mobile Alliance, OMA-TS-

REST_NetAPI_NotificationChannel-V1_0, available from http://www.openmobilealliance.org

Reference: OMNA - Open Mobile Naming Authority <OMA-OMNA@mail.openmobilealliance.org>

I.3 Connection checking and keep-alive

The WebSockets protocol [RFC6455] defines a pair of messages called Ping and Pong which can be used to check whether a

connection is still functioning, and to keep alive the connection. However, the WebSockets API [W3C_WebSock] does not

expose these messages. Therefore, web applications would have to rely on the underlying infrastructure for connection

checking and keep-alive purposes.

For web applications which want to deploy an application-layer mechanism for that, this specification defines the elements

“ConnCheck” and “ConnAck” (see sections 5.2.2.11 and 5.2.2.12).

Servers that support WebSockets-based Notification channels MUST support receiving the connCheck element, and MUST

return a connAck element as response. Additionally, the server MUST reset the channel lifetime upon successful delivery of

the connAck element, and MUST return the new channel lifetime in the connAck element.

Client support for receiving the connCheck element is RECOMMENDED for clients that support WebSockets-based

Notification channels. Clients that support the connCheck message MUST respond to a connCheck message with a connAck

message without the channelLifetime element instantiated. On receipt of such a connAck message, the server MUST reset the

channelLifetime to the value announced in the previous connCheck message.

If the server that has sent the connCheck message does not receive the connAck message before the next connCheck message

is due to be sent, it MAY send additional connCheck messages and SHOULD consider the current Websockets connection

faulty and close it if none of these messages is answered before an implementation-specific timeout occurs.

http://www.openmobilealliance.org/
mailto:OMA-OMNA@mail.openmobilealliance.org

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 106 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

If the server has announced in a previous connCheck message that it intends a new connCheck message at a certain time and

that message does not arrive within a sensible time interval, the client SHOULD consider the current Websockets connection

faulty, close it and open another one.

A server that receives a request to open a Websockets connection from a client even though there exists a connection with

that client SHOULD

 assume that the client has no intention of using the existing connection any longer

 refrain from sending any more notifications or connCheck messages over that connection

 use only the new connection for sending any messages, apart from outstanding connAck messages

 attempt to close the existing connection

Note: Clients and servers can also use the Ping-Pong mechanism that is defined by [RFC6455] to initiate connectivity

checking and keep-alive. However, this is outside the scope of this specification as this mechanism is not exposed to the

application layer.

I.4 Notification Payload Examples – XML format (Informative)

I.4.1 Example: Single notification delivered in a NotificationList

In this example a presence update is delivered to the application.

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationList xmlns:nc="urn:oma:xml:rest:netapi:notificationchannel:1">
 <pr:presenceNotification xmlns:pr="urn:oma:xml:rest:netapi:presence:1">
 <presentityUserId>tel:+19585550100</presentityUserId>
 <callbackData>1234</callbackData>
 <resourceStatus>Active</resourceStatus>
 <presence>
 <person>
 <mood>
 <moodValue>Happy</moodValue>
 </mood>
 </person>
 </presence>
 <link rel="PresenceSubscription"
 href="http://example.com/exampleAPI/v1/presence/tel%3A%2B19585550101/subscriptions/presenceSubscriptions/
 tel%3A%2B19585550100/sub001"/>
 </pr:presenceNotification>
</nc:notificationList>

I.4.2 Example: Multiple notifications delivered

In this example a presence update and message notification are delivered to the application.

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationList xmlns:nc="urn:oma:xml:rest:netapi:notificationchannel:1">
 <pr:presenceNotification xmlns:pr="urn:oma:xml:rest:netapi:presence:1">
 <presentityUserId>tel:+19585550100</presentityUserId>
 <callbackData>1234</callbackData>
 <resourceStatus>Active</resourceStatus>
 <presence>
 <person>
 <mood>

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 107 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

 <moodValue>Happy</moodValue>
 </mood>
 </person>
 </presence>
 <link rel="PresenceSubscription"
href="http://example.com/exampleAPI/v1/presence/tel%3A%2B19585550101/subscriptions/presenceSubscriptions/
 tel%3A%2B19585550100/sub001"/>
</pr:presenceNotification>
<mms:inboundMessageNotification xmlns:mms="urn:oma:xml:rest:netapi:messaging:1">
 <inboundMessage>
 <destinationAddress>tel:+19585550100</destinationAddress>
 <senderAddress>tel:+19585550101</senderAddress>
 <resourceURL>http://example.com/exampleAPI/v1/messaging/inbound/registrations/reg123/messages/msg123
 </resourceURL>
 <link rel="Subscription" href="http://example.com/exampleAPI/v1/messaging/inbound/subscriptions/sub123"/>
 <messageId>msg123</messageId>
 <inboundMMSMessage>
 <subject>Who is RESTing on the beach?</subject>
 </inboundMMSMessage>
 </inboundMessage>
</mms:inboundMessageNotification>
 <mms:inboundMessageNotification xmlns:mms="urn:oma:xml:rest:netapi:messaging:1">
 <inboundMessage>
 <destinationAddress>tel:+19585550100</destinationAddress>
 <senderAddress>tel:+19585550102</senderAddress>
 <resourceURL>http://example.com/exampleAPI/v1/messaging/inbound/registrations/reg123/messages/msg1234
 </resourceURL>
 <link rel="Subscription" href="http://example.com/exampleAPI/v1/messaging/inbound/subscriptions/sub123"/>
 <messageId>msg1234</messageId>
 <inboundMMSMessage>
 <subject>Who is still RESTing on the beach?</subject>
 </inboundMMSMessage>
 </inboundMessage>
</mms:inboundMessageNotification>
</nc:notificationList>

I.4.3 Example: Single notification delivered outside a NotificationList

In this example a presence update is delivered to the application.

<?xml version="1.0" encoding="UTF-8"?>
<pr:presenceNotification xmlns:pr="urn:oma:xml:rest:netapi:presence:1">
 <presentityUserId>tel:+19585550100</presentityUserId>
 <callbackData>1234</callbackData>
 <resourceStatus>Active</resourceStatus>
 <presence>
 <person>
 <mood>
 <moodValue>Happy</moodValue>
 </mood>
 </person>
 </presence>
 <link rel="PresenceSubscription"
 href="http://example.com/exampleAPI/v1/presence/tel%3A%2B19585550101/subscriptions/presenceSubscriptions/
 tel%3A%2B19585550100/sub001"/>

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 108 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

</pr:presenceNotification>

I.5 Notification Payload Examples – JSON (Informative)

I.5.1 Single notification delivered in a NotificationList

{"notificationList": {"presenceNotification": {
 "callbackData": "1234",
 "link": {
 "href": "http://example.com/exampleAPI/v1/presence/tel%3A%2B19585550101/subscriptions/presenceSubscriptions/
tel%3A%2B19585550100/sub001",
 "rel": "PresenceSubscription"
 },
 "presence": {"person": {"mood": {"moodValue": "Happy"}}},
 "presentityUserId": "tel:+19585550100",
 "resourceStatus": "Active"
}}}

I.5.2 Multiple notifications delivered

{"notificationList": [
 { "inboundMessageNotification": {"inboundMessage": {
 "destinationAddress": "tel:+19585550100",
 "inboundMMSMessage": {"subject": "Who is RESTing on the beach?"},
 "link": {
 "href": "http://example.com/exampleAPI/v1/messaging/inbound/subscriptions/sub123",
 "rel": "Subscription"
 },
 "messageId": "msg123",
 "resourceURL": "http://example.com/exampleAPI/v1/messaging/inbound/registrations/reg123/messages/msg123 ",
 "senderAddress": "tel:+19585550101"
 }}},
 {"inboundMessageNotification": {"inboundMessage": {
 "destinationAddress": "tel:+19585550100",
 "inboundMMSMessage": {"subject": "Who is still RESTing on the beach?"},
 "link": {
 "href": "http://example.com/exampleAPI/v1/messaging/inbound/subscriptions/sub123",
 "rel": "Subscription"
 },
 "messageId": "msg1234",
 "resourceURL": "http://example.com/exampleAPI/v1/messaging/inbound/registrations/reg123/messages/msg1234",
 "senderAddress": "tel:+19585550102"
 }}},
 { "presenceNotification": {
 "callbackData": "1234",
 "link": {
 "href": "http://example.com/exampleAPI/v1/presence/tel%3A%2B19585550101/subscriptions/presenceSubscriptions/
tel%3A%2B19585550100/sub001",
 "rel": "PresenceSubscription"
 },
 "presence": {"person": {"mood": {"moodValue": "Happy"}}},
 "presentityUserId": "tel:+19585550100",
 "resourceStatus": "Active"
 }

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 109 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

}]}

I.5.3 Single notification delivered in a NotificationList

{"presenceNotification": {
 "callbackData": "1234",
 "link": {
 "href": "http://example.com/exampleAPI/v1/presence/tel%3A%2B19585550101/subscriptions/presenceSubscriptions/
tel%3A%2B19585550100/sub001",
 "rel": "PresenceSubscription"
 },
 "presence": {"person": {"mood": {"moodValue": "Happy"}}},
 "presentityUserId": "tel:+19585550100",
 "resourceStatus": "Active"
}}

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 110 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

Appendix J. Notification server – Device-specific Native notification
service interaction (Informative)

This appendix provides further information on interaction between the Notification server and a device-specific native

notification service (e.g. Google GCM or Apple APNS or Microsoft WNS) for the purpose of forwarding events

asynchronously to the targeted device and application on the device.

There are cases where a client application does not have its own application server and wishes to use the device-specific

native notification service offered by its OEM (e.g. GCM or Apple APNS or Microsoft WNS) as the intermediary to have

network events forwarded to it asynchronously. Under such circumstances, the client application creates a Notification

channel of type NativeChannel and provides the necessary information (section 5.2.2.13) about the native notification service

as part of the channel creation process. As a result, the Notification server/channel pushes events to the device’s native

notification service which in turn forwards the events to the client application on the device.

Below, examples of such interaction between the Notification server and GCM, APNS and WNS native notification services

are shown respectively. Note that, in the examples below, it is assumed that, the number of events to be pushed is bigger than

what the client asked for (in its NativeChannel creation request). Hence, the pushed event (from the Notification server)

contains a URL which the application client would have to use in order to pull the awaiting events from the Notification

server (see “largeDataPolling” feature of the NativeChannel in section 5.

Note: Information in this Appendix is only for demonstration purposes and may become outdated as changes to GCM, APNS

and WNS are introduced.

GCM Example: Notification Server pushing events to GCM

Request:

POST /gcm/send HTTP/1.1
Content-Length: nnn
Content-Type:application/json
Authorization:key=AIzaSyZ-1u...0GBYzPu7Udno5aA

{
 "to": "bk3RNwTe3H0:CI2k_HHwgIpoDKCIZvvDMExUdFQ3P1...",
 "data": {
 "largePollingNotification": {
 "channelURL": "http://example.com/largePollingChannel/123",
 "channelExpiry": "2016-02-04T21:32:52Z"
 }
 }
}

Response:

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: nnn
Date: Thu, 04 Feb 2016 02:51:59 GMT

{ "multicast_id": 108,
 "success": 1,
 "failure": 0,
 "canonical_ids": 0,
 "results": [
 { "message_id": "1:08" }
]

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 111 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

}

APNS Example: Notification Server pushing events to APNS

Request:

HEADERS
 - END_STREAM
 + END_HEADERS
 :method = POST
 :scheme = https
 :path = /3/device/00fc13adff785122b4ad28809a3420982341241421348097878e577c991de8f0
 host = api.development.push.apple.com
 apns-id = eabeae54-14a8-11e5-b60b-1697f925ec7b
 apns-expiration = 1454550296
 apns-priority = 10
 content-length = nnn
DATA
 + END_STREAM
 {
 "largePollingNotification": {
 "channelURL": "http://example.com/largePollingChannel/123",
 "channelExpiry": "2016-02-04T21:32:52Z"
 }

Response:

HEADERS
 + END_STREAM
 + END_HEADERS
 :status = 200

WNS Example: Notification Server pushing events to WNS

Request:

POST https://cloud.notify.windows.com/?token=AQE%bU%2fSjZOCvRjjpILow%3d%3d HTTP/1.1
Content-Type: application/octet-stream
X-WNS-Type: wns/raw
Authorization: Bearer EgAcAQMAAAAALYAAY/c+Huwi3Fv4Ck10UrKNmtxRO6Njk2MgA=
Host: cloud.notify.windows.com
Content-Length: nnn

{
 "largePollingNotification": {
 "channelURL": "http://example.com/largePollingChannel/123",
 "channelExpiry": "2016-02-04T21:32:52Z"
}

Response:

HTTP/1.1 200 OK
X-WNS-STATUS: received
X-WNS-MSG-ID: 41C38906780D2A8C

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 112 (112)

 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-TEMPLATE-TS_RESTful_Network_API-20200101-I]

Content-Length: 0
Date: Thu, 04 Feb 2016 02:51:59 GMT

