o OMAQ Specllorks

RESTful Network API for Notification Channel
Candidate Version 1.0 — 19 Mar 2020

Open Mobile Alliance
OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 2 (112)

Use of this document is subject to all of the terms and conditions of the Use Agreement located at
https://www.omaspecworks.org/about/policies-and-terms-of-use/.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an
approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not
modify, edit or take out of context the information in this document in any manner. Information contained in this document
may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior
written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided
that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials
and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products
or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely
manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification.
However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available
to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at
https://www.omaspecworks.org/about/intellectual-property-rights/. The Open Mobile Alliance has not conducted an
independent IPR review of this document and the information contained herein, and makes no representations or warranties
regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain
inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined
terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN
MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF
THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE
ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT
SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT,
PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN
CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

THIS DOCUMENT IS PROVIDED ON AN "AS I1S" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms set forth above.

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 3 (112)

Contents
L SCOPE .t E R h Rt E R R R £ R £ R £ e R bR e AR e R e R £ e R e e R e bR e R e e Rt R e bt et e e h b b e reenes 8
2. REFERENCES...... .ottt bbbt h e h bbbt b £ b £ kb2 s e e b e bt Ab e S b £ e b £ e R b e s e e b e bt e b e eb e e Rt e Rt e e e b e be b e nb e ne e 9
2.1 NORMATIVE REFERENCES.......ctiittiitiaiteateesieestee bt asteaseaasesteesbee bt asbeasbesseeaseesheesbeeabeeabeaaseehseebeeabe e bt esbeasbesseesaeesbeesbeeneas 9
2.2 INFORMATIVE REFERENCESuttitttitietteesteesteateaseeateasteasteastessaesssestessbeesbeaaseanseasseaseasbee bt asbeebeaseeaseesbeesbeaabeenbeenbessee e 9
3. TERMINOLOGY AND CONVENTIONSottt sttt sttt sttt ettt e te st e sbesbesbeeseeneestesbesbesbeerennes 11
3.l CONVENTIONS ..ttt ettt ekttt sbe ettt e ettt b e bt bt bt e st e s e bt e h e b e b e e b2 E e 4R b e s b e AE e E €A H e SE £ e E e e h b e R b e b e bt eE e e b £ e b e eb b e s e e b et e nbenbeabeebeenes 11
3.2 DEFINITIONS ottt ittetteutette sttt et e st e st esb et b e s bt b e e b e e s e e s e e e e s bt e b e eb e e b e e h £ e E e e RE 2R b e AE e R e A E e 4h £ e E e eh b e R b e b e bt eb e eb £ e b e e b b e se e b e b e nbenbesbeebeenes 11
313 ABBREVIATIONS .. ttiutette ettt ettt ettt e bt e bt eh e e st e s e st e bt eb e b e e h e e s e e s b e s b e o8 e b e A E e 4E £ e E e e h b e s s e b e bt AR e e R £ e bt e bt e b e e b e bt nr e bbb e nes 11
4. INTRODUGCTION L.ttt bttt bbbkt b bt e h e e R b e e e b e A b e e b £ e b e e h b e s e e b e b e e Rt eb e e bt eb b e e et e beeb e et e nbeebeenes 13
4.1 A =1 3] (0] I O O TP O PSR TR 13
5. NOTIFICATION CHANNEL API DEFINITTIONottt 14
5.1 RESOURCES SUMMARYoittittittateaseeseeeentesteasesseaseaseessesessessessessessesssessessessesseasesseessessensessessessessesseesssnsensessessessessenses 17
5.2 AT A TYPES .ttt ittt t e e e e e bt e e bt e b s E e e R bt e R et e b e e AR e e AR e e R e e R e SRR e eR e AR e e R e e Rt e AR e e R e e e R e e e Re e eRe e nRe e reenrenne e 21
521 DA N =T L] - TS TSRS P P OUPOUPPTRRPN 21
522 SETUCTUIES ... ettt ettt ekttt he e Rt e e R e R e e s bt e s bt eR e e e R e e AR e e AR e e R e e AR e e Re e eh e e nR e e b e e b e e b e e nn e e neesreenneenis 21
5221 Type: NOtifiCatiONCHANNEILIST.........ceitiiiietiie bbbtttk et es 21
5222 Type: NOtIfiCAIONCNANNELcc.ciiiiiiiii et b et bbbt bbbt en s 21
5.2.2.3 TYPE: NOIFICATIONLISE ..otttk b bbb bbbt b bt b et b bbb s 23
5224 Type: LargePolNGNOTIFICALIONcivitiiiitiiiiciiee bbbttt bbbt en s 23
LT T /o T O g =TT g T | L OSSOSO 24
5.2.2.6 TyYPe: LONGPOIINGDALA.ciiiiiniiieiiieieiete ettt ettt e bbb et n e b e bt st e b et et e et et et e b e nnene e ene s 24
LI B N oL @ Y A U S o v OO RSPRTR 24
5.2.2.8 Type: LargeDataPOIIINGccoiiuiiieiiieiiieesiete sttt ettt sttt ettt ekt b et Rttt b et nn et s 25
5.2.2.9 Type: LONGPOIINGREGUESIPAIAMELETS. ciiieieiiteierietesieie ettt sttt sttt ettt et se st e s e st e b et ebe et et st e s e neeneneene s 25
5.2.2.10 TYPE: WEDSOCKEESDALAc.vvveteiiesete ettt ettt ettt bttt ettt n b et e e ket et e e st ene et et e e abe s ebe e nnene 26
52211 TYPE: CONMCNECK ...ttt bbbt b bbb e bbb s b btk b et b et b bt ne et b 26
5.2.2.12 TYPE: CONMACK ...ttt sttt et bt te s be b e st e e st e me e b e e bt e ke et et et es e e E e e bt eb e s b et et ens e s e e neebeabesbenbenbe s eneeneane 26
52213 TYPE: NALIVECNANNEIDALAveviiiiiieieeie ettt bbbt bbbt bbbt r e 27
52214 Type: NotificationChanNEILIfELIME.coviiiieec et 28
523 ENUMEIALIONS ...ttt bt e bbbttt e b s bt bt e bt eh £ e bt e m b et eb e eb e e bt eb e ebe et e nbesbesbesbeebeas 28
5.2.3.1 ENUMErAtion: ChanNEITYPE . ..otttk bbb bbbttt bt b et en s 28
5.2.3.2 Enumeration: NativEChaNNEISUDTYPEoiiiiiiiiieiieiiie ettt e 28
524 Values of the Link “Iel” attrTDULEeoiviiiiiiiiie ittt stb e e sbb e e s bae e sabe e sraeenbbeesraeessneens 29
53 SEQUENCE DIAGRAMS ..vtiiiiiiiiiiitiitt e et e e it ae e e e e e ettt bt e e e e e st it b eseeeeee s s bbb et eeeeessaa bbb ateaeeeesaab bbb beeeeeessasbbbbeaseessaasabbbaneeenas 30
53.1 Create Notification Channel (Long Polling Method)cccuoiiiiiiiiie e 30
5.3.2 Notifications delivered to application using Long POIHING.........ccceiiiiiiiiiic e 31
533 Long Polling reqUESt tIMEOUL FESPONSEciviuiitiriirietiiteiet sttt sb bbbttt b et eb b 32
534 Multiple notifications delivered to application in response to the Long Polling requestccccoevvineennenn. 33
535 Max number of notifications reached during the Long POIINGccooiriininiininie e 34
5.3.6 Max wait time or max number of notifications reached during the Long Pollingcccccoevvininiincneinenn 35
5.3.7 Create Notification Channel (OMA Push Method)..........cccvoiiiiiiiiiieie e 38
5.3.8 Notifications delivered to application using OMA PUSK..........ccoiiiiiiiii e 38
5.3.9 Create Notification Channel (OMA Push method with Large Data Polling enabled)..........c.ccccoooeiiiiniinnnnnn. 40
5.3.10 Notifications delivered to application using OMA Push while Large Data Polling is enabled.......................... 41
5.3.11 Create Notification Channel (WEDSOCKELS)couiiiiriieirieieiireeise e 43
5.3.12 Notifications delivered to application USing WEDSOCKELS...........ccoiriiriiiiriieisieeese e 44
5.3.13 Create Notification Channel (Native Channel Method)............ccviiiiriiiiiiir e 45
5.3.14 Notifications delivered to application using Native Channel while Large Data Polling is enabled................... 46
5.3.15 Refreshing a Notification Channel............cooi it 47
5.3.16 Client-initiated CONNCRECK/CONNACKoiuiiiiiiiieiiie ettt bbbt bbb s 49
5.3.17 Successful server-initiated CONNCHECK/CONNACKcoiitiiiiiiieieie et 50
5.3.18 Unsuccessful server-initiated CONNCHECK/CONNACKccuiiiiiiiiiieie et 51
5.3.19 Notifications delivered to application using LONg POHING........ccooiiiiriniiiiieeeee e 51
6. DETAILED SPECIFICATION OF THE RESOURCES...........oooiii ittt s 53

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 4 (112)

6.1 RESOURCE: NOTIFICATION CHANNELSeeittiittteiieesittesiteessteessseessseesssesssseessseessseesssesssseesssesssseesssesssseesnsesssessnsessnes 53
6.1.1 REQUEST URL VATIADIESovieieiiie ettt sttt st et e s beeaaese et e testestesteeneeneenseeeseestesneenens 53
6.1.2 Response Codes and Error HaNAIiNGcooeiiiiiiiiiiiies et 54
6.1.3 L1 T PO PR R U SPROPROPT 54

6.1.3.1 Example: Retrieve active Notification Channels (INfOrmative)cooveiviiiiiiieiccec e 54
OB 0t (<o 1= OSSPSR SPTRR 54
OB T (=TS o Lo TSSOSO SRR 54

6.1.4 O PO P STV PP PR PSP 55
6.1.5 L@ S TSRV OPTPPRPRTPRON 55

6.1.5.1 Example: Create Notification Channel (Long Polling method), using tel URI (Informative)cccocvevvviiieviciicineiennn, 55
OB 00 O (<o 1= ST P R SPURP 55
OB T (=TS oo TSSOSO SPURR 55

6.1.5.2 Example: Create Notification Channel (OMA Push method), using tel URI (Informative)cccoooviiienieicncneiennn 56
6.1.5.2.1 Request.............
6.1.5.2.2 Response

6.1.5.3 Example: Create Notification Channel (OMA Push method with largeDataPolling), using tel URI (Informative)......... 56
B.1.5.3.1 REQUESTcutiiteeie ittt ettt ettt b ettt h bbb e ke R e b e R e e ke oAb e SR £ e R e e R e oA e b £ oA e e R e oAb e R £ e Rt be e b e nh e e e b e e b nne e 56
5.1.5.3.2 RESPONSE. ... ittt ettt ekttt b bkt R bR e Rt R e b £ R e R e oAb AR £ e R £ e R e oA R e AR £ e R e e R e oAb e nh e e Rt be e b e ebe e e ebe e b nne e 57

6.1.5.4 Example: Create Notification Channel (OMA Push method with LargeDataPolling) not supported (Informative)........ 57
B.1.5.4. 1 REQUEST ... iteitiititee ettt ettt h et b bt h ekt b e bt R E e b e £ e R £ R e R £ AR e SR e b £ oA £ SR £ R £ R e AR e bR oAb e e e Rt ekt e Rt b e nee b e e e ereerea 57
B.1.5.4.2 RESPONSE. ...ttt ettt ekttt ettt h ekt h bt e s e stk e bt bt AR b e £ oA £ e R £ SR e R £ AR SR e b e £ oA £ eh £ R £ e R e AR e bR e b e e e R £ e bt Rt bt e et e enrereere 58

6.1.5.5 Example: Create Notification Channel (Long Polling method), using ACR (INformative)ccccccervcersenineinniennnene 58
B.1.5.5. 1 REQUEST ...tttk t bt bt h ekt b bR E e £ R £ R e R £ AR e SR b £ oA £ e R £ R £ R e AR e bR e b e e eRt e bt eh e b e R b e e e ebeere 58
B.1.5.5.2 RESPONSE. ...ttt ettt ekttt b ekt h bt h ke bt bR e bR £ e R SR e R £ AR AR e b £ oA £ e R £ R £ R e AR e bR e b e e e Rt e bt e Rt b e b b e e e ereerea 59

6.1.5.6 Example: Create Notification Channel (WebSockets method), using tel URI (Informative)cccooverviiincinciennnenn, 59
B.1.5.6.1 REQUESTcueiiteeiiitiete ettt ettt ettt b bbb e e bt b e e ke R e b e R e e Rt oAb AR £ R e e R e oAb AR £ e R e e Rt oAb e nh £ e ARt e b e nh e e e ebe e b nne e 59
B.1.5.6.2 RESPONSE ... ittt ettt ettt ettt h e bbbt R e bR £ e ke R £ e b £ R e e R e oAb AR £ R e e R e oAb e AR £ e R e e AR e oAb e e R e e et be e b e eh e e e b e e b nae e 59

6.1.5.7 Example: Attempt to create Notification Channel of unsupported type (INfOrmative)ccoceovvennieisinncinceenes 60
6.1.5.7.1 Request.............

6.1.5.7.2 Response
6.1.5.8 Example: Create Notification Channel (Native Channel method with largeDataPolling), using tel URI (Informative).. 61

B.1.5.8.1 REQUEST ... iteitiititeie etttk sttt b bt h ekt E bR b b £ R R e R £ R AR e b £ oA £ e R £ R £ e R e AR bR e b e e e Rt e bt e bRt e b e e e ereerea 61
B.1.5.8.2 RESPONSE. ...ttt etttk ettt bbb bbb h ekt E bR R bR £ R £ SR e R £ AR E b £ oA £ e R £ 4R £ R e AR e bR e b e e e R e eR e e bt e b e R bt et ereerea 61
6.1.6 [I I OO PR OU PR PPPOPRPI 62
6.2 RESOURCE: INDIVIDUAL NOTIFICATION CHANNELeeititiitiitisieeieeeer et sre st sse e s snesne s sse e e e snennesnesnesns 62
6.2.1 REQUEST URL VAITADIES ...t bbbttt 62
6.2.2 Response Codes and Error HANAIINGc.cooviiiiiiiiecie ettt et e raente e 62
6.2.3 L1 T T TP PP R U RO PR PR OPPTOPP 62
6.2.3.1 Example: Retrieve individual Notification Channel (INFOrmative)............ccovirieiiniiiiiieesee s 62
B.2.3.1.1 REQUEST ...ttt ittt ettt ettt b etk ke bt b e bt R e b £ R e ke oAb e SR £ e R e e R e oA e AR £ e R e e Re e b e Rt e ee bt e b e eb e e b b e e b nneeee 62
B.2.3.1.2 RESPONSE. ... ittt iteete ettt ettt ekttt h ekt h e bt h e bRt e bt E £ e R e R £ e b £ oA e e ke oAb e AR £ R e e R e oAb e R £ e R e e Ee oAbt eh e e et Rt e b e nh e e e ebe e b nne e 63
6.2.4 4 O T T PP P PR UP PP PPN 63
6.2.5 O S T T TP U PP PRV OPTPPRPRTPROPN 63
6.2.6 DE L ETE ettt bt bR bRt E ARt ARt R et R R e Re e Rt Rt e Rt R bt R b e nE e e bt e beenreene s 63
6.2.6.1 Example: Removing Notification Channel (INFOrMALIVE)ccoeiiriiiiiiiie s 63
B.2.6.1.1 REQUESTeueeitieie ittt ettt etttk b bkt h b e bt b ekt R e eb £ e R e e ke oAb e SR e R e e R e oA R e AR £ oA e AR e oAb e R e e Rt b e e b e nh e et ebe e b nne e 63
B.2.6.1.2 RESPONSE ... ittt ittt ettt ettt ettt ettt h et h e bt bt ke R e e bt E £ e ke R £ e b £ R e e ke oAb R £ eR e e R e oAb e AR £ e R e e ARt oAb e Rt e be e Re e b e nh e e e ebe e b nne e 63
6.3 RESOURCE: NOTIFICATION LIST ..itiitiitiiiieitiite ittt st sh e sb bbb bbb sr b en s 63
6.3.1 REQUESE URL VATIADIES ...ttt bbb s a e bbbttt et bt b e s bt eb e e s e et e be st e sbesbeeneas 64
6.3.2 Response Codes and Error HANAIINGc.ooiiiiiiiiee et st 64
6.3.3
6.3.4
6.3.5
6.3.5.1 Example 1: Single notification delivered in a NotificationList (INFOrmMative)...........ccccoviiiiiiniiincie e 64
B.3.5. 1.1 REOUEST ...ttt ettt ettt bbbkt h b e b e Rt R e e R £ e R R e R R e R £ e R e Ao AR £ e R e AR e e b e e R e e R e Re e b e eR e e e nbeenenne s
6.3.5.1.2 Response
6.3.5.2 Example 2: Multiple notifications delivered (INfOrMALIVE)cccooeiiiiiiiii e 65
B.3.5.2. 1 REOUEST ...ttt ettt ettt bt h bbbt h bt h e Rt R e R £ R R e AR e AR R R e R e AR e AR £ e R e e R e e R e e R e e R e R e e bt eR e e e ebe e nenne e
6.3.5.2.2 Response
6.3.5.3 Example 3: Server timeout (INFOrMALIVE)ceoiiiiiiiieeee bbbt 66
LIRS ST 50 R (<o U= OSSPSR P PRSPPI 66

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 5 (112)

8.3.5.3.2 RESPONSE. ... ettt etttk t etttk h ekt b R e b e R £ e Rt R e e AR £ R e e R e oAb e AR £ 2R e e AR £ oA R e AR £ e AR e AR e oA R e e R e e Rt eRe e bt eRe e e e ebeebenae e 66

6.3.5.4 Example 4: Single notification delivered outside a NotificationList (INformative)ccoceiiieieiiiiiiinee e 67

B.3.5.4. 1 REQUEST.....ueiiteete ettt ettt a e bbbtk e bt h e ekt R e b £ R e e R £ AR e AR £ SRR e R £ oA R e AR £ e R e e AR e oAb e e R e e Rt b e e bt eh e e e e ebe e b nne e 67

TR T B (=TS o To] £ -SSRSO 67

6.3.6 DELETE ..ottt ettt st b et e h bt et s b e bt s bt e b £ e £ e Rt e At eh e e Re ARt R £ e R e e R e et eR e ReeReeR e e st et et nbenbeeneeneas 67

6.4 RESOURCE: NOTIFICATION CHANNEL LIFETIMEooitiitiitiitirttatiateeeestestesiestestesseasseeense b ssesbesseeseeseenessesnenbessesseens 67

6.4.1 REQUESE URL VATIADIESovveieieiie ettt sttt e st et beeaa e s e et e te st e s besaeeneeneeneeteseestenneenens 67

6.4.2 Response Codes and Error HaNAIINGcovoieiiie ittt sttt sne e sneeneas 68

6.4.3 L] LT OSSP U RS U PO P PSP PR PRPRPRO 68

6.4.3.1 Example: Retrieve remaining Notification Channel lifetime (INformative)...........ccocooeiviiiiiiiiiisciccese e 68

B.4.3. 1.1 REOUEST ...ttt ittt ettt etk ekt a e bt e bt ekt h b e b e e b e E e eR b oAb £ SR e R e AR e SR £ SR £ e AR £ oA R e AR £ e AR e Ee oAb e e R e e ReeR e e bt ehe e b e ebe e b nne e 68

B.4.3.1.2 RESPONSE. ... ettt ete ettt ettt ekttt e bt h e e bt h e e bt e bt ekt ke e b e e E £ e Rt R £ e R £ SR e e R £ AR e SR £ SR e e R £ oA R e AR £ e AR e AR e oAbt nR e e Re R e e bt ehe e e e ebe e b nne e 68

6.4.4 O T TSP T TP ST PR U PO PP PVRURPRUPOS 68

6.4.4.1 Example: Update Notification Channel lifetime (INfOrMative)ccooviiiiiiiiii e 68

B.4.4. 1.1 REOUESTcueiiteete ittt ettt ettt ekttt h e e bt bt ekt ek e e b e e s e bt e R b e b€ 2R e e ke oA R e SR £ 2R £ e AR £ oA R e AR £ e AR e AR e e b e e R e e R e R e e bt ehe e e e ebe e b nne e 68

B.4.4.1.2 RESPONSE. ... ettt ete et ettt ettt ettt etk e e bt eheesb e e bt ekt eh e e b e e h e e b e eR b e R £ SR e e R £ oA R e SR £ eRE e AR £ oA R e AR £ e AR e AR £ oAb e eR e e Rt R e e bt ehe e e e ebe e b nne e 69

6.4.5 O 1 LT T TSP PP U RO PO PP PVRTURPRUPOS 69

6.4.6 DELETE ...ttt bkt h ettt bbbt b e b oAb e At eh e AR e AR e eh £ e R e SR b e b e Rt Rt Rt ek b e e e b e b b e nbenneene s 69

7. FAULT DEFINITIONS. ..ottt ee e sttt st et et es e saesbesbeateeseess e eess e beabeabeeseemeeseensenbesbeabeeseaneentesbesbearenreanes 70

7.1 SERVICE EXCEPTIONS ... eitteteeteate sttt st e steestee e es e st st sbeesbeesbeenee e st eas e eh s e eR e e b e e b e e s b e e s e e e Re e AE e e nE e e R e e neemneaneenbeenbeenneenbeenneas 70

711 SVC1012: Simultaneous channel requests NOt SUPPOITEMcviirieiiireiire et 70

7.2 POLICY EXCEPTIONSeiiitiitieitiitie sttt sttt st she e sh e s b sh e e e e bt e h e e b e e b e e s b e s b e nb e s b e e nreen e e neee e nne e 70

7.2.1 POL1023: Notification channel type NOt SUPPOITEM.........couiriiiririiinieiereese e 70

APPENDIX A. CHANGE HISTORY (INFORMATIVE) ..ottt st 71

Al APPROVED VERSION HISTORY ...oiiiiiiiiiiiieitieitteiee sttt sttt ettt st sbe e nb e ne e et eas e smeenb e e nbeenbeenbeeneasneannesreenneennis 71

A.2 DRAFT/CANDIDATE VERSION 1.0 HISTORY ..ottt sttt sttt ettt bbbt n e bbb 71

APPENDIX B. STATIC CONFORMANCE REQUIREMENTS (NORMATIVE) ..cc.coiiiiiiiiitseeeeee s 75

B.1 SCR FOR REST.NC SERVER.....c.eiitiiitiatiiiesiiesee st ste ettt sttt et ettt se s b e s be e sbe e s e e s e eme e abs e ab e e nbe e be e beasnessnesreesneennis 75

B.1.1 SCR fOr REST.NC.ChaNNEIS SEIVETocuiiiieieiieiee sttt sttt st e testeese s e e testestesneeneanes 75

B.1.2 SCR for REST.NC.INAiVIdUAICRANNET SEIVEFcueiiiieie ettt eneens 76

B.1.3 SCR for REST.NC.LONGPOHING SEIVEToiuiiiiiiieiiitite ettt 76

B.1.4 SCR fOr REST.NC.OMAPUSN SBIVETeiiiiitieiieieiesee ettt ettt ee et stestesneeseeseeneeeesaestesneaneenes 76

B.1.5 SCR fOr REST.NC.RETIESN SEIVEF ...ttt bbbttt bbb enes 76

B.1.6 SCR fOr REST.NC.WEDSOCKELS SEIVETc.eiiviiiiiiieieieeite et ettt bbb 76
APPENDIX C. APPLICATION/X-WWW-FORM-URLENCODED REQUEST FORMAT FOR POST

OPERATIONS (NORMATIVE) ..ot iieie ettt ettt sttt sttt et e te s teateese e st e eessensesae et e eseemeeseesseseesaeaseeseensentensenteasanseenes 77

C.1 CREATING A NOTIFICATION CHANNELoittitiittitieitetete sttt st sse s bbb ess e e e s e b aresbeabe b eseesrennearenbeabeeneenes 77

C.l1 Example 1: Create Notification Channel (Long Polling method), using tel URI (Informative)c.cccoo..... 78

CL Ll REQUESE. .ttt bbbtk b ke bR b b e R R R £ e R R AR R e e R AR R e R e R e R R et b e e b n e 78

G112 RESPONSE ...ttt ittt h et eh bbbt h bbbt h b ek R 4R e b £ R R 4R E e R e R AR R e R e oAb R e R e R e oAb R e e R R et h e e b n e 78

C.1.2 Example 2: Create Notification Channel (OMA Push method), using tel URI (Informative)ccccoevnnene. 79

G121 REQUESE. .ttt b e b s bk bR b £ bR R R oA R R RS R R AR R e R e h e R b bt e b e 79

G122 RESPONSE ...ttt itttk eh bbbt b bbb b h R4 R bR R R E R R AR SRR R AR oA e R e R £ e R e bt e e b n e 79

C.13 Example 3: Create Notification Channel, using ACR (INFOrMALIVE) ..o 79

[0 5 =T 11 S ST TP TP TP PO PUPUPPROP 79

C.1.3.2 RESPONSE ...ttt etttk ettt b ekt h e bbbtk e b £ e R e R e R e e R £ e R e R e AR e R £ oA R e R e AR e AR £ e AR e R e oA R e AR £ oA R e R e oA R nh e e e e Rt e b e bt e e be e nenne e 80

C.2 RETRIEVING NOTIFICATIONS FROM THE NOTIFICATION SERVERc.coititiiiiitiniiaiieienresresse st sne s sseens 80

Cz21 Example 1: Single notification delivered in a NotificationList ~ (Informative)ccccovvivvvniniiniiiinnn, 80

[o R =T 11 S ST TSP TP PP PP PTPPPTPROP 80

C.2.1.2 RESPONSE ...ttt ettt ekttt ettt h ekt a e h b e bt ekt e b e ek e Rt e R e e R £ e R £ e R e R £ e R £ oA R e R e AR e AR £ SRR e R £ 4R R e AR £ e AR e AR e oA R e nR £ e R e e R e e b e eh e e e e nbe e nenne e 81

C.22 Example 2: Single notification delivered outside a NotificationList ~ (Informative)cccocovriviininnnnn. 81

C.2.2. 1 REQUEST. ..tttk t bk bkt b ek e bRt b £ ek e e R e R £ e AR £ e R £ e R e AR e AR £ SRR e R £ 4R R e AR e oA R e R e oA R e nR e e R e Rt e b e Rt e e e beenenne e 81

C.2.2.2 RESPONSE ... ettt etttk ettt etttk a e b bkt h e b £ ek e b e R e e R e R e R e SR £ e R £ oA R e R e AR e AR £ e R R e R £ 4R R e AR £ e AR e R e oA R nR e e AR e R e e b eh e e e e b e e nenne e 81

APPENDIX D. JSON EXAMPLES (INFORMATIVE)ooiiiiit ettt e 83

D.1 RETRIEVE ACTIVE NOTIFICATION CHANNELS (SECTION 6.1.3.1) ...cuiiiiiiiieisierieisie e 83

D.2 CREATE NOTIFICATION CHANNEL (LONG POLLING METHOD), USING TEL URI (SECTION 6.1.5.1) ...c.occvvvrrnnnnen. 84

D.3 CREATE NOTIFICATION CHANNEL (OMA PUSH METHOD), USING TEL URI (SECTION 6.1.5.2)cccoovnieiiiiencnen. 85

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 6 (112)

D.4 CREATE NOTIFICATION CHANNEL (OMA PUSH METHOD WITH LARGEDATAPOLLING), USING TEL URI

ST T NI 0 0 T RSP RPS 85
D.5 CREATE NOTIFICATION CHANNEL (OMA PUSH METHOD WITH LARGEDATAPOLLING) NOT SUPPORTED
(SECTION B.1.5.4) ...ttt bbbtk b bbbk bbb b h b b h £ H e h bt b e e bt bbbt bbbt bbbttt 86
D.6 CREATE NOTIFICATION CHANNEL (LONG POLLING METHOD), USING ACR (SECTION 6.1.5.5)....ccccceceiiiiennn, 87
D.7 CREATE NOTIFICATION CHANNEL (WEBSOCKETS METHOD), USING TEL URI (SECTION 6.1.5.6)ccccvvevenennen. 88
D.8 EXAMPLE: ATTEMPT TO CREATE NOTIFICATION CHANNEL OF UNSUPPORTED TYPE (SECTION 6.1.5.7)c.c..... 89
D.9 CREATE NOTIFICATION CHANNEL (NATIVE CHANNEL METHOD WITH LARGEDATAPOLLING) NOT SUPPORTED
ST T NI 0 0 RSP RR 89
D.10 RETRIEVE INDIVIDUAL NOTIFICATION CHANNEL (SECTION 6.2.3.1)....civitiiriieiesreensree e 90
D.11 REMOVING NOTIFICATION CHANNEL (SECTION 6.2.6.1)....ccutitiieiiiieieiiienieie sttt 91
D.12 SINGLE NOTIFICATION DELIVERED IN A NOTIFICATIONLIST (SECTION6.3.5.1)..cuciiiiiiiiiiiieicie e 91
D.13 MULTIPLE NOTIFICATIONS DELIVERED (SECTION 6.3.5.2)eviiiiiiieiiiiiieisiesie e 92
D.14 SERVER TIMEOUT (SECTION 6.3.5.3) ...ttt ettt sttt ettt eb bbb nr et ab bbb e ene e 93
D.15 SINGLE NOTIFICATION DELIVERED IN A NOTIFICATIONLIST (SECTION 6.3.5.4) ...coviviiiiieinnce e 93
D.16 RETRIEVE REMAINING NOTIFICATION CHANNEL LIFETIME (SECTION 6.4.3.1) .occveiieiiiie e 94
D.17 UPDATE NOTIFICATION CHANNEL LIFETIME (SECTION 6.4.4.1) ...oiiiiiiiie ettt 94
APPENDIX E. OPERATIONS MAPPING TO A PRE-EXISTING BASELINE SPECIFICATION
(INFORMATIVE) .ottt ettt a a8 e bR e R e 0 s Rt e et R e e e e Rt n Rttt er e e eb e nn et enean e arennes 95
APPENDIX F. LIGHT-WEIGHT RESOURCES (INFORMATIVE) ..ot 96
APPENDIX G. AUTHORIZATION ASPECTS (NORMATIVE) ...ccoiiiiiriiitieseestre e 97
G.1 UsewITH OMA AUTHORIZATION FRAMEWORK FOR NETWORK APIS.......ccciiiiiiiiriineceee s 97
G.l1 SCOPE VAIUEBS. ...ttt ettt s et e e e et e e st e s te e be e st e e s be e s eesRe e s ee e sReeseeeneeeneeaaseate e teente e teeneeaneenneenneennn 97
L0000 R B 1 1T < F OSSPSR 97
L300 B o 11 Yoo o o [OOSR 97
G.1.1.3 Mapping With resources and MENOAS.coriiiieirieiee ettt sttt b ettt et e e re et s 98
G.1.2 O Vs o8- 1 4 1 RSO 100
APPENDIX H. NOTIFICATION SERVER - PUSH ENABLER INTERACTION (INFORMATIVE)cccoeee.. 101
APPENDIX I. NOTIFICATION DELIVERY USING WEBSOCKETS (NORMATIVE)cccoovniiniiininenns 105
1.1 DELIVERY MECHANISM.....c.cciittatteutiatte sttt siee it ettt asseaaeesbe e bt e bt e s beasseeheesbeeab e e bt e b e e ae e ea b e eb e e ab e e b e e nbeesbesseesbeesneenneenns 105
1.2 SUBPROTOCOL REGISTRATION ...c.uttiuttiuttittiattesteeteesteassesssesseesbeesbeaaseasseasseasseassesbeebeasbeasbesseeabeeabeesaeeabe e bt enreanrennee e 105
1.3 CONNECTION CHECKING AND KEEP-ALIVEc.utiitietiaitsiiesieesieesteesteeste s sssesssesbeesbeasbeasesseesseesbeesseesseannesnnesssesseenes 105
1.4 NOTIFICATION PAYLOAD EXAMPLES — XML FORMAT (INFORMATIVE)c.citiiiiiiitirieiestesieeeie sttt 106
1.4.1 Example: Single notification delivered in @ NOtIficationLiSt...........ccccoviiiiiiiiir e 106
1.4.2 Example: Multiple NOtifications AEIIVEIEcoiuiiiiiiii b e 106
1.4.3 Example: Single notification delivered outside a NOtIfiCatioNLiStcccoovviriinini e 107
1.5 NOTIFICATION PAYLOAD EXAMPLES —JSON (INFORMATIVE)vtiieiieiieesiee e esieeveseestae e estaesteeae e snaesnnesnaennas 108
1.5.1 Single notification delivered in a NOtIfiCAtIONLISt...........cccviiiiiiii e 108
1.5.2 Multiple Notifications AElIVEIEAccviiie it e e te e re e aeanaesneesneenas 108
1.5.3 Single notification delivered in a NOtIfiCatioNLISt...........ccoviiiiiiiic s 109
APPENDIX J. NOTIFICATION SERVER - DEVICE-SPECIFIC NATIVE NOTIFICATION SERVICE
INTERACTION (INFORMATIVE) ..ottt sttt nn b nn et n e nr e ab e nn e enenn e anenn e areanes 110
Figures
Figure 1 Resource structure defined by this SPeCITICAtiON...........ccciiiiiiiiici e 18
Figure 2 Create NOtification Channelc.ovoieiiiie ettt e e ae st e nresreeneene e 30
Figure 3 Notifications delivered t0 apPPCATIONooiiiiiiie bbbt bbb r e 31
FIGUIE 4 REGUESE TIMEOULooviieiieieite ettt etttk sttt et b et b e b e e bt e b e e bt e bt et e e be b e bt s be e e st e beneereabenbenenbns 32
Figure 5 Multiple notifications delivered to application iN FESPONSEcoiviiiriiiiieie et 33

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 7 (112)

Figure 6 Maximum number of notifications in the response to the Long Pollingccccovvvveiiiiiiivie s, 34
Figure 7 Max wait time or max number of notifications criterion used to respond to the Long Pollingc.cc..c....... 36
Figure 8 Create Notification Channel (OMA PUSh MEthod)ccooiiiiiiiiiee e 38
Figure 9 Notifications delivered to application USiNg OMA PUSKc.ccviiiiiicie et 39
Figure 10 Create Notification Channel (OMA Push method with Large Data Polling enabled)..........cc.cccooeniiiininnen, 40
Figure 11 Notifications delivered to application using OMA PUSHccoiiiiii i 41
Figure 12 Create Notification Channel (WEDSOCKETS)ccueiiriiieiiirse e sie ettt st re e e e et e aesresneene e 43
Figure 13 Notifications delivered to application using WebhSOCKELS.........c.ccoiiiiiiiiiiiire e 44
Figure 14 Create Notification Channel (Native Channel Method).........ccccoieiiiiiiiiiin e 45
Figure 15 Notifications delivered to application using Native Channel ..., 46
Figure 16 Notification Channel FEFIESI ...ttt b e e 48
Figure 17 Client-initiated ConnCheck/ConnAck for session KEep-aliVe..........cccocveiieiiiie i 49
Figure 18 Successful server-initiated ConnCheck/ConnAck for session Keep-alive ..., 50
Figure 19 Unsuccessful server-initiated ConnCheck/ConnAck for session Keep-alive.........ccccovvvviveivcvecc s 51
Tables

Table 1: Scope values for RESTful Notification Channel AP ..o 97
Table 2: Required scope values for: Management of Notification Channelcc.ccoovooioiiii i 99
Table 3: Required scope values for: Retrieval of notifications from Notification SErver..........cccoceevviviiiiicvcciec e 99

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 8 (112)

1. Scope

This specification defines a RESTful API for Notification Channel using HTTP protocol bindings.

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 9 (112)

2. References

2.1 Normative References

[OMA_PUSH]
[REST_NetAPI_ACR]
[REST_NetAPI_Common]
[REST_SUP_Notification
Channel]

[RFC2119]

[RFC3261]

[RFC3966]

[RFC3986]

[RFC6455]

[RFC7159]

[RFC7231]

[SCRRULES]
[W3C_URLENC]

[XMLSchemal]

[XMLSchema2]

“OMA Push 2.3” Open Mobile Alliance™. OMA-ERP-Push-V2_3
URL:http://www.openmobilealliance.org/

“RESTful Network API for Anonymous Customer Reference Management”, Open Mobile Alliance™,
OMA-TS-REST_NetAPI_ACR-V1_0, URL: http://www.openmobilealliance.org/

“Common definitions for RESTful Network APIs”, Open Mobile Alliance™, OMA-TS-
REST_NetAPI_Common-V1_0, URL:http://www.openmobilealliance.org/

“XML schema for the RESTful Network API for Notification Channel”, Open Mobile Alliance™,
OMA-SUP-XSD _rest_netapi_notificationchannel-V1_0, URL:http://www.openmobilealliance.org/

“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997,
URL:http://www.ietf.org/rfc/rfc2119.txt

“SIP: Session Initiation Protocol”, J. Rosenberg et al., June 2002,
URL:http://www.rfc-editor.org/rfc/rfc3261.txt

“The tel URI for Telephone Numbers”, H.Schulzrinne, December 2004,
URL:http://www.ietf.org/rfc/rfc3966.txt

“Uniform Resource Identifier (URI): Generic Syntax”, R. Fielding et. al, January 2005,
URL:http://www.ietf.org/rfc/rfc3986.txt

“The WebSocket Protocol”, I. Fette and A. Melnikov, December 2011,
URL:http://www.ietf.org/rfc/rfc6455.txt

“The JavaScript Object Notation (JSON) Data Interchange Format”, T. Bray, Ed., March 2014,
URL:http:// tools.ietf.org/html/rfc7159.txt

“Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content”, R. Fielding, Ed., J.Raschke, Ed.,
June 2014, URL:http://tools.ietf.org/html/rfc7231.txt

“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures,
URL:http://www.openmobilealliance.org/

HTML 4.01 Specification, Section 17.13.4 Form content types, The World Wide Web Consortium,
URL:http://mww.w3.0rg/TR/html401/interact/forms.html#h-17.13.4.1

W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures, W3C Recommendation 5 April
2012, URL: http://www.w3.0rg/TR/xmlschemall-1/

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes, W3C Recommendation 5 April
2012, URL: http://lwww.w3.0rg/TR/xmlschemall-2/

2.2 Informative References

[IANA]
[OMADICT]

[PushOTA]

[PushPAP]

[PushREST]

[REST_WP]

Protocol Assignments, Internet Assigned Numbers Authority, URL:http://www.iana.org

“Dictionary for OMA Specifications”, Version 2.9, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2_9, URL:http://www.openmobilealliance.org/

“Push Over-the-Air”, Open Mobile Alliance™. OMA-TS-PushOTA-V2_3,
URL:http://www.openmobilealliance.org/

“Push Access Protocol”, Open Mobile Alliance™. OMA-TS-PAP-V2_3,
URL:http://www.openmobilealliance.org/

“RESTful Network API for OMA Push”, Open Mobile Alliance™. OMA-TS-REST_NetAPI_Push-V1_0,
URL:http://www.openmobilealliance.org/

“Guidelines for RESTful Network APIs”, Open Mobile Alliance™, OMA-WP-
Guidelines_for_RESTful_Network_APIls, URL:http://www.openmobilealliance.org/

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 10 (112)

[RFC6202] “Known Issues and Best Practices for the Use of Long Polling and Streaming in Bidirectional HTTP”,
April 2011, URL:http://tools.ietf.org/rfc/rfc6202.txt
[W3C_WebSock] “The WebSocket API”, W3C Candidate Recommendation 20 September 2012, lan Hickson, ed.,

URL:http://www.w3.0rg/TR/websockets/

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 11 (112)

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be
informative.

3.2 Definitions

For the purpose of this TS, all definitions from the OMA Dictionary apply [OMADICT].

(N::)Itei?;[ézlt(ijgn An HTTP URL exposed by a client, on which it is capable of receiving notifications and that can be used by the
client when subscribing to notifications.

URL

Long Polling A variation of the traditional polling technique, where the server does not reply to a request unless a particular event,
status or timeout has occurred. Once the server has sent a response, it closes the connection, and typically the client
immediately sends a new request. This allows the emulation of an information push from a server to a client.

Notification A channel created on the request of the client and used to deliver notifications from a server to a client. The channel

Channel is represented as a resource and provides means for the server to post notifications and for the client to receive them
via specified delivery mechanisms.
For example in the case of Long Polling the channel resource is defined by a pair of URLs. One of the URLSs is used
by the client as a callback URL when subscribing for notifications. The other URL is used by the client to retrieve
notifications from the Notification Server.

2::\'/2?61“0” A server that is capable of creating and maintaining Notification Channels.

Server-side ificati hat i ifi ificati h | h

Notification An HTTP URL expo_sed by a Notification Server, that identifies a Notification Channel and that can be used by a
client when subscribing to notifications.

URL

3.3 Abbreviations

ACR Anonymous Customer Reference

API Application Programming Interface

HTTP HyperText Transfer Protocol

JSON JavaScript Object Notation

MIME Multipurpose Internet Mail Extensions

OMA Open Mobile Alliance

PAP Push Access Protocol

PPG Push Proxy Gateway

REST REpresentational State Transfer

SCR Static Conformance Requirements

SIP Session Initiation Protocol

TS Technical Specification

URI Uniform Resource Identifier

URL Uniform Resource Locator

WP White Paper

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 12 (112)

XML eXtensible Markup Language
XSD XML Schema Definition

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 13 (112)

4. Introduction

The Technical Specification for the RESTful Network API for Notification Channel contains HTTP protocol bindings for
Notification Channel, using the REST architectural style. The specification provides resource definitions, the HTTP verbs
applicable for each of these resources, and the element data structures, as well as support material including flow diagrams
and examples using the various supported message body formats (i.e. XML, JSON, and application/x-www-form-
urlencoded).

This specification defines Pull methods and Push methods to deliver the notifications to the client.

4.1 Version 1.0

Version 1.0 of this specification supports the following operations:
— Manage Notification Channel
— Retrieve asynchronous notifications from the Notification Server via Long Polling (a Pull method)
— Receive asynchronous notifications from the Notification Server via OMA Push (a Push method)
— Receive asynchronous notifications from the Notification Server via WebSockets (a Push method)
In addition, this specification provides:
— Support for scope values used with authorization framework defined in [Autho4API_10]
— Support for Anonymous Customer Reference (ACR) as an end user identifier

— Support for “acr:auth” as a reserved keyword in a resource URL variable that identifies an end user

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 14 (112)

5. Notification Channel API definition

This section is organized to support a comprehensive understanding of the Notification Channel API design. It specifies the
definition of all resources, definition of all data structures, and definitions of all operations permitted on the specified
resources.

This specification introduces methods for a client (e.g. a browser or a native application) to receive asynchronous
notifications from a Notification Server about the events the client has subscribed to with one or more Enabler servers. The
notification delivery methods specified in this document fall into two groups: Pull and Push methods. For Pull, the
notification delivery method specified is based on HTTP requests and often referred as “HTTP Long Polling” [RFC6202].
For Push, two notification delivery methods are defined: WebSockets [RFC6455] and OMA Push [PUSH_ARCH]. For OMA
Push delivery, this specification assumes the Notification Server, as a Push Initiator, knows how to interact with PPG using
Push Access Protocol (PAP) [OMA PUSH] and as such not in the scope of this document.

For all notification delivery methods, as notifications are conveyed through a Notification Channel, the channel must be
created first before any further interaction can be invoked, such as a Long Polling request invoked by the client, or an
asynchronous event-push initiated by the channel onto PPG for OMA Push.

A single Notification Channel may handle notifications from several Enabler servers. Note that the client subscriptions to
notifications are specific for each Enabler server and they are not in the scope of this specification.

The following applies selectively to the different types of notification channels.
1) Long Polling:

In response to a channel creation request containing channelType = LongPolling, the Notification Server will
provide two URLs: callback URL and channel URL. The client uses callback URL as the notification endpoint when
subscribing to notifications from the Enabler server(s). Thus, each Enabler server will send subsequent notifications
using this callback URL referring to the Notification Server. The channel URL is used to retrieve notifications from
the Notification Server using the HTTP Long Polling mechanism. When the Notification Server receives a
notification from an Enabler server, it possibly groups multiple notifications prior to delivery, and conveys the
notification(s) to the client with the response to the pending HTTP Long Polling request.

A Notification Channel has certain time-to-live and therefore in order to continue using it, the channel has to be
maintained (“refreshed”) by the client. For the Long Polling delivery method, the channel is refreshed implicitly:
With each Long Polling request, the Notification Server will reset the channel life time to its original value.

Clients SHOULD NOT establish more than one simultaneous connection to the channel URL, and servers SHOULD
NOT allow more than one simultaneous connection to the channel URL. If another Long Polling request arrives at
the Notification Server while a Long Polling request for the same channel URL is still open, the server SHOULD
terminate the first request with an appropriate error (e.g., SVC1012 Simultaneous channel requests not supported),
and pass notifications to the client in response to the newly arrived Long Polling request.

Clients SHOULD issue a new Long Polling request as quickly as possible after receiving a notification.
2) OMA Push:

In response to a channel creation request containing channelType = OMAPush, the Notification Server will only
provide a callback URL. That is, for the OMA Push notification delivery method, the notification server does not
provide a channel URL as the client application is expected to asynchronously receive notifications via the OMA
Push enabler [OMA_PUSH]. As explained earlier above, the client application would use the callback URL as
notification endpoint when subscribing to notifications from the Enabler server(s).

Additionally, the request for a channel creation of type OMA Push may contain a unique application Id (appld)
which is required by the OMA Push infrastructure [OMA_PUSH] to direct the asynchronous push messages to a
particular client application on the device. However, if the application Id is not present in the channel creation
request, it is assumed that the Notification Sever has other means of retrieving the application Id (e.g. through the
usage of the available OAuth token in the Notification Channel creation request).

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 15 (112)

When the Notification Server receives a notification from an Enabler server, it possibly groups multiple notifications
prior to delivery, and conveys the notification(s) to the client via the PPG.

If the client expects a high-traffic notifications behaviour from a given backend enabler, the client SHOULD enable
the “largeDataPolling” feature of the OMA Push channel (see LargeDataPolling Mechanism section below).

An OMA Push Notification Channel has certain time-to-live and therefore in order to continue using it, the channel
has to be maintained (“refreshed”) by the client. For this purpose, a resource is provided that the application can use
to explicitly refresh the channel (see section 6.4).

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 16 (112)

3)

4)

5)

WebSockets:

In response to a channel creation request containing channel Type = WebSockets, the Notification Server will
provide a callback URL and a channel URL. The client uses the callback URL as notification endpoint when
subscribing to notifications from the Enabler server(s). Thus, each Enabler server will send subsequent notifications
using this callback URL referring to the Notification Server. The channel URL is used to establish a WebSockets
connection to receive notifications from the Notification Server, whereas the transmission of a (set of) notification(s)
is initiated by the Notification Server.

When the Notification Server receives a notification from an Enabler server, it possibly groups multiple notifications
prior to delivery, and conveys the notification(s) to the client in the server-to-client leg of the bidirectional
WebSockets connection. The client-to-server leg of the connection is currently unused except for connectivity
checking and keep-alive.

A Notification Channel has certain time-to-live and therefore in order to continue using it, the channel has to be
maintained (“refreshed”) by the client. For this purpose, a resource is provided that the application can use to
explicitly refresh the channel (see section 6.4). Alternatively, the mechanism for connection checking and keep-alive
defined in this specification (Appendix 1.3) can be used for refresh.

NativeChannel:

In response to a channel creation request containing channel Type = NativeChannel, the Notification Server will
provide a callback URL.

The client uses the callback URL as notification endpoint when subscribing to notifications from the Enabler
server(s). Thus, each Enabler server will send subsequent notifications using this callback URL referring to the
Notification Server.

Additionally, the request for a channel creation of type NativeChannel MUST identify the device-specific native
notification service (e.g. Google GCM, Apple APNS, Windows WNS) as well as contain a “registrationToken”
which uniquely identifies the client application to the given device-specific notification service. The
“registrationToken” is obtained by the client as part of its registration process with a given native notification
service (e.g. GCM) and hence out of the scope of this document.

When the Notification Server receives a notification from an Enabler server, it possibly groups multiple notifications
prior to delivery, and conveys the notification(s) to the client via the requested native notification service (e.g.
GCM).

If the client expects a high-traffic notifications behaviour from a given backend enabler, the client SHOULD enable
the “largeDataPolling” feature of the NativeChannel (see LargeDataPolling Mechanism section below).

A NativeChannel Notification Channel has certain time-to-live and therefore in order to continue using it, the
channel has to be maintained (’refreshed”) by the client. For this purpose, a resource is provided that the application
can use to explicitly refresh the channel (see section 6.4).

LargeDataPolling Mechanism:

When the “largeDataPolling” mechanism is enabled (i.e. “largeDataPolling.pollingEnabled” = true) by the client,
any time the number of notifications is more than the channel’s specified “maxNotifications” or the notification size
is beyond the known limitation of the channel or certain server policy is met, the client is informed (by the server
using the channel) via an asynchronous event (i.e. “LargePollingNotification) which contains a dynamically created
“channelURL”.

The “channelURL” is to be used by the client to retrieve awaiting notifications from the Notification Server using a
HTTP Polling mechanism which is similar to the Long Polling explained above with the difference that once the
queued up notifications have all been fetched from the “channelURL”, the server marks the “notificationList” as
complete (by setting the “ncListComplete” parameter to true) and destroys the “channelURL” accordingly. At this
point the dynamically created “channelURL” is no longer valid (hence the client should stop polling it) while the
channel itself (e.g. OMA Push, NativeChannel) continues its normal life cycle.

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 17 (112)

Depending on the number of awaiting events in the channel and the requested “maxPollingNotifications”, the client
may repeat polling on “channelURL” multiple times in order to retrieve all the awaiting notifications.

It should be noted that in order not to disclose underlying network topology, the Notification Server usually sends to the
client a mapped version of the real callback URL. Later, when the Enabler server receives such mapped callback URL, it will
apply de-mapping of the URL before it can be used. How this mapping and de-mapping is performed on the server is out of
scope for this specification.

The remainder of this document is structured as follows:

Section 5 starts with a diagram representing the resources hierarchy, followed by a table listing all the resources (and their
URL) used by this API, along with the data structure and the supported HTTP verbs (section 5.1). What follows are the data
structures (section 5.2). A sample of typical use cases is included in section 5.3, described as high level flow diagrams.

Section 6 contains detailed specification for each of the resources. Each such subsection defines the resource, the request
URL variables that are common for all HTTP commands, the possible HTTP response codes, and the supported HTTP verbs.
For each supported HTTP verb, a description of the functionality is provided, along with an example of a request and an
example of a response. For each unsupported HTTP verb, the returned HTTP error status is specified, as well as what should
be returned in the Allow header.

All examples in section 6 use XML as the format for the message body. Application/x-www-form-urlencoded examples are
provided in Appendix C, while JSON examples are provided in Appendix D.

Section 7 contains fault definition details such as Service Exceptions and Policy Exceptions. Appendix B provides the Static
Conformance Requirements (SCR).

Appendix E provides the operations mapping to a pre-existing baseline specification, where applicable.
Appendix F provides a list of all light-weight resources, where applicable.
Appendix G defines authorization aspects to control access to the resources defined in this specification.

Note: Throughout this document client and application can be used interchangeably.

5.1 Resources Summary

This section summarizes all the resources used by the RESTful Notification Channel API.

The "apiVersion" URL variable SHALL have the value "v1" to indicate that the API corresponds to this version of the
specification. See [REST_NetAPI_Common] which specifies the semantics of this variable.

The figure below visualizes the resource structure defined by this specification. Note that those nodes in the resource tree
which have associated HTTP methods defined in this specification are depicted by solid boxes.

I{serverRoot}/notificationchannel/{apiVersion}

_

J{userld}

/channels @ ’

4[J{channelld} @]
—t /channellifetime @}

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 18 (112)

Figure 1 Resource structure defined by this specification

The following tables give a detailed overview of the resources defined in this specification, the data type of their
representation and the allowed HTTP methods.

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C

Page 19 (112)

Purpose: To allow the client to manage Notification Channels

Resource URL Data Structures HTTP verbs
Base URL:
http://{serverRoot}/notif GET PUT POST DELETE
icationchannel/{apiVers
ion}
Notification HKuserld}/channels NotificationChannelList Retrieves a list no Creates a new no
Channels (used for GET) of Notification Notification
Channels. Channel.
NotificationChannel
(used for POST)
Individual Huserld}/channels/{chann | NotificationChannel Retrieves an no no Removes an
Notification elld} (used for GET) individual individual
Channel Notification Notification
Channel. Channel.
Notification Huserld}/channels/{chann | NotificationChannelLifetime Retrieves the Updates no no
Channel lifetime elld}/channelLifetime lifetime of a (“refreshes”) the
Notification lifetime of a
Channel. Notification
Channel

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 20 (112)

Purpose: To allow the client to retrieve notifications from the Notification Server by using Long Polling

Resource URL: Data Structures HTTP verbs
<specified by the
server> GET PUT POST DELETE
Notification list < Resource URL is LongPollingRequestParamet | no no Retrieves no
received with ers pending
“channelURL" in (used for POST request) notifications
response from the server from the
When a Long P0|||ng NOtificationLiSt or notiﬁcation |dent|f|ed Long
Notification Channel is as defined by individual Polling
created> enabler specification (used in Notification
response to the Long Polling Channel.
POST request) At the same
time the channel
life time is reset
to its original
value.

Note: The URL of this resource is used by WebSockets-based notification channels to create the WebSockets connection through which the server can send
notifications to the client. When using WebSockets, this is however not a resource in the RESTful sense; therefore, WebSockets-based notification channels are not

mentioned in the table above.

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 21 (112)

5.2 Data Types
5.2.1 XML Namespaces

The XML namespace for the Notification Channel data types is:

urn:oma:xml:rest:netapi:notificationchannel:1

The 'xsd' namespace prefix is used in the present document to refer to the XML Schema data types defined in XML Schema
[XMLSchemal, XMLSchema2]. The 'common' namespace prefix is used in the present document to refer to the data types
defined in [REST_NetAPI_Common]. The use of namespace prefixes such as 'xsd' is not semantically significant.

The XML schema for the data structures defined in the section below is given in [REST_SUP_NotificationChannel].
5.2.2 Structures

The subsections of this section define the data structures used in the Notification Channel API.

Some of the structures can be instantiated as so-called root elements.

5.2.2.1 Type: NotificationChannelList

This type defines a list of Notification Channels.

Element Type Optional | Description

notificationChannel | NotificationChannel Yes May contain an array of Notification Channels.
[0..unbounded]

resourceURL xsd:anyURI No Self referring URL

A root element named notificationChannelList of type NotificationChannelList is allowed in response bodies.

5.2.2.2 Type: NotificationChannel

This type defines a single Notification Channel.

Element Type Optional | Description

clientCorrelator xsd:string Yes A correlator that the client can use to tag this particular
resource representation during a request to create a
resource on the server.

This element SHOULD be present. Note: this allows
the client to recover from communication failures
during resource creation and therefore avoids
duplicate channel creation in such situations.

In case the field is present, the server SHALL not alter
its value, and SHALL provide it as part of the
representation of this resource. In case the field is not
present, the server SHALL NOT generate it.

applicationTag xsd:string Yes A tag that the client MAY use to tag this particular
resource on the server. In case the field is present, the
server SHALL not alter its value, and SHALL provide it
as part of the representation of this resource. In case
the field is not present, the server SHALL NOT
generate it.

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C

Page 22 (112)

channelType

ChannelType

No

Specifies the type of Natification Channel to be used
and thereby defines the method that will be used to
receive new notifications on the channel.

channelData

ChannelData

Yes

Contains specific information for the Notification
Channel type specified in channelType.

The channelData MUST be included in the response
to the request for the creation of Notification Channel
for Long Polling, OMA Push or WebSockets.

Note that for Long Polling, the channel data is defined
in the type LongPollingData (see 5.2.2.6). For OMA
Push, the channel data is defined in the type
OMAPushData (see 5.2.2.7). For WebSockets, the
channel data is defined in the type WebSocketsData
(see 5.2.2.10). All these data types are derived from
ChannelData.

In XML implementation for channelData,
LongPollingData, OMAPushData or WebSocket Data,
the type is identified by the xsi:type attribute.

channelLifetime

xsd:int

Yes

Lifetime (duration) of Notification Channel in seconds.

Client can specify desired lifetime of Notification
Channel in POST request when creating Notification
Channel, however the server in the response to the
request may change the desired lifetime according to
its server policy.

If the element is not present in the POST request, a
default channel lifetime specified by server policy will

apply.

The server SHALL always include the channel lifetime
in the response.

callbackURL

xsd:anyURI

Yes

Specified by the server. Contains a callback URL used
when establishing subscriptions for notifications from
the respective Enabler server (not part of this
specification). The callbackURL SHALL NOT be
included in POST request to create the Notification
Channel resource. MUST be included in responses to
the channel creation and any HTTP method that
returns an entity body.

resourceURL

xsd:anyURI

Yes

Self referring URL. The resourceURL SHALL NOT be
included in POST requests by the client, but MUST be
included in POST requests representing notifications
by the server to the client, when a complete
representation of the resource is embedded in the
notification. The resourceURL MUST be also included
in responses to any HTTP method that returns an
entity body, and in PUT requests.

A root element named notificationChannel of type NotificationChannel is allowed in request and/or response bodies.

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C

Page 23 (112)

5.2.2.3

Type: NotificationList

This type defines a list of notifications that are being delivered to the client.

Element Type Optional | Description

<Element is <Type is defined by Yes Contains a list (array) of notifications. The notification

defined by respective enabler API> types are defined by the different OMA RESTful

respective Enabler | [0..unbounded] Network APIs. The list does not impose any further

server API> restriction on its content, i.e. notifications of a
particular type can occur O or more times in the list.

ncListComplete xsd:boolean Yes Specified by the server only for the OMA Push and

Native channel types, on the Polling channel and if the
client has set “largeDataPolling.pollingEnabled” to true
as part of the channel creation.

This parameter SHALL be set to true by the server
when the notificationList is complete (i.e. no more
notifications are left in the “channelURL”) and the
“channelURL” has accordingly been destroyed by the
server.

When this parameter is true, the client SHOULD stop
Polling the “channelURL” which was previously
reported to it through “LargePollingNotification”. See
section 5.2.2.4 and LargeDataPolling Mechanism in
section 5 for further information.

A root element named notificationList of type NotificationList is allowed in request and/or response bodies.

5224

This type represents a wakeup call notification.

Type: LargePollingNotification

Element Type Optional | Description

channelURL xsd:anyURI No Specified by the server. Contains the URL used to
retrieve the events from a dynamically created Polling
Channel.

channelExpiry xsd:dateTimeStamp No Specified by the server. The time at which the

channelURL will expire if the channel stays inactive
(i.e. if channelURL is not polled by the client before
expiry time).

Once, the client polls the channelURL, the
channelExpiry SHALL be extended appropriately by
the server until the client retrieves all the events in a
HTTP Polling fashion at which point the server reports
the end of the natificationList to the client (see section
5.2.2.3).

If the channelURL expires due to client’s inactivity (i.e.
client doesn’t perform repeated polling request to
retrieve the remaining events) the accumulated
notifications MAY be deleted based on Notification
server’s policy.

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 24 (112)

A root element named largePollingNotification of type LargePollingNotification is allowed in notification request bodies.

5.2.2.5 Type: ChannelData

This is an abstract data type that contains no elements. Data type that is used to define specific information for a particular
Notification Channel type (channelData in 5.2.2.2), SHALL be derived from this data type.

5.2.2.6 Type: LongPollingData

This type is derived from ChannelData and it defines specific data for the Long Polling mechanism that is used on the
Notification Channel. It is used inside the ‘channelData’ element when a channel is created, and it is identified by xsi:type
attribute. The xsi:type attribute SHALL be included in XML instances, and SHALL NOT be included in JSON instances.

Element Type Optional | Description

channelURL xsd:anyURI Yes Specified by the server. Contains the URL used to
retrieve new events. The channelURL SHALL NOT be
included in POST request to create the Notification
Channel resource, but MUST be included in the
response to the channel creation and any HTTP
method that returns an entity body.

maxNotifications xsd:int Yes Defines the maximum number of notifications that may
be delivered in a notification list.

If not specified, a default value specified by the server

policy will apply, and the server SHOULD include that

value in the response to the client.

maxWaitTime xsd:int Yes Defines the maximum wait time in seconds, the client
is willing to wait before it is notified of awaiting events
at the notification server. If there are awaiting events,
the server MUST notify the client of the awaiting
events if either the maxNotifications or maxWaitTime
criterion has been reached.

If not specified, the server default value SHALL take
effect. Setting the maxWaitTime to zero indicates the
client’s intent to get notifications (not to exceed
maxNotifications in a single response) as soon as
there is a notification at the notification server. See
section 5.3.6 for further information.

5.2.2.7 Type: OMAPushData

This type is derived from ChannelData and it defines specific data for the OMAPush mechanism that is used on the
Notification Channel. It is used inside the ‘channelData’ element when a channel is created, and it is identified by xsi:type
attribute. The xsi:type attribute SHALL be included in XML instances, and SHALL NOT be included in JSON instances.

Element Type Optional | Description

appld xsd:string Yes appld is a required data parameter by OMA Push
enabler for routing the Push Message to the
appropriate application on the target device/MSISDN.

maxNotifications xsd:int Yes Defines the maximum number of notifications that may
be delivered in a notification list. Note: the actual
deliverable natifications may be limited by the
capabilities of the Push-OTA bearer, e.g. upto a
particular total size of the notification data.

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 25 (112)

If not specified, a default value specified by the server
policy will apply, and the server SHOULD include that
value in the response to the client.

largeDataPolling LargeDataPolling Yes Used by the client if it wishes to enable the
LargeDataPolling mechanism which enables it to
retrieve large notifications in a HTTP Polling fashion
as opposed to receiving them over OMA Push
channel. See the OMA Push description in section 5
for further information.

5.2.2.8 Type: LargeDataPolling

This type defines parameters for LargeDataPolling.

Element Type Optional | Description

pollingEnabled xsd:boolean Yes If set to true and the number of notifications to be
delivered over the channel are more than the specified
maxNotifications or beyond the known limitation of
channel’'s delivery method or certain server policy is
met then the server SHALL dynamically create a
“channelURL” and inform the client via the
“LargePollingNaotification” asynchronous event (see
5.2.2.4). The client is then able to use the
“‘channelURL” and retrieve all the notifications in a
HTTP Polling manner.

If the element is not present or set to false, then the
events are only reported via the channel’s
asynchronous delivery method (i.e. the client is not
provided with the “LargePollingNotification”).

maxPollingNotificat | xsd:int Yes Defines the maximum number of notifications (in the
ions notificationList) that may be delivered over the
dynamically created “channelURL”.

If not specified, a default value specified by the server
policy will apply, and the server SHOULD include that
value in the response to the client.

5.2.29 Type: LongPollingRequestParameters

This type defines parameters for Long Polling request.

Element Type Optional | Description
(empty) In the current version of this specifications, this type is
empty

A root element named longPollingRequestParameters of type LongPollingRequestParameters is allowed in request bodies.

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 26 (112)

5.2.2.10 Type: WebSocketsData

This type is derived from ChannelData and it defines specific data for a WebSockets-based Notification Channel. It is used
inside the ‘channelData’ element when a channel is created, and it is identified by xsi:type attribute. The xsi:type attribute
SHALL be included in XML instances, and SHALL NOT be included in JSON instances.

Element Type Optional | Description

channelURL xsd:anyURI Yes Specified by the server. Contains the URL used to
open a WebSockets connection to receive event
notification.

The channelURL SHALL NOT be included in POST
request to create the Notification Channel resource,
but MUST be included in the response to the channel
creation and any HTTP method that returns an entity
body.

maxNotifications xsd:int Yes Defines the maximum number of notifications that may
be delivered in a notification list.

If not specified, a default value specified by the server

policy will apply, and the server SHOULD include that

value in the response to the client.

5.2.2.11 Type: ConnCheck

This type defines a message for WebSockets-based notification channels, see 1.3.

Element Type Optional | Description

checkinterval xsd:int Yes Time interval in seconds after which the sender of the
ConnCheck message intends to send the next
ConnCheck message.

newChannelLifetim | xsd:int Yes Offered new channel lifetime (duration) of Notification
e Channel in seconds.

This new channel lifetime starts once the connAck
message from the client corresponding to this
connCheck message arrives at the server.

MUST be instantiated by the server, and MUST NOT
be instantiated by the client.

A root element named connCheck of type ConnCheck is allowed in WebSockets messages.

5.2.2.12 Type: ConnAck

This type defines a message for WebSockets-based notification channels, see 1.3.

Element Type Optional | Description

channelLifetime xsd:int Yes Lifetime (duration) of Notification Channel in seconds.

MUST be instantiated by the server, and MUST NOT
be instantiated by the client.

A root element named connAck of type ConnAck is allowed in WebSockets messages.

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 27 (112)

5.2.2.13 Type: NativeChannelData

This type is derived from ChannelData and it defines specific data for the NativeChannel mechanism that is used on the
Notification Channel. It is used inside the ‘channelData’ element when a channel is created, and it is identified by xsi:type
attribute. The xsi:type attribute SHALL be included in XML instances, and SHALL NOT be included in JSON instances.

Element Type Optional | Description

channelSubType NativeChannelSubType | No SHALL be specified by the client in the request.

This element identifies the device-specific notification
service (e.g. GCM, APNS, WNS) which SHALL be
used by the Notification Channel to deliver events to
the client.

registrationToken xsd:string No SHALL be specified by the client in the request.

For a GCM channel, registrationToken SHALL contain
“RegistrationID”, for an APNs channel,
registrationToken SHALL contain “DeviceToken” and
for a WNS channel, registrationToken SHALL contain
“NotificationChannelURI”).

registrationToken enables the device-specific
notification service, as indicated by channelSubType,
to identify the client and deliver events accordingly

How the client obtains such a token is dependent
upon the channelSubType’s registration process and
hence out of the scope of this document.

channelSubTypeV | xsd:string Yes Identifies the specific version of channelSubType, the
ersion client has registered with (to receive asynchronous
events).

If this element is specified by the client in the request,
and this version of channelSubType is supported by
the Notification Channel, it SHALL be used by the
Notification Channel to appropriately interact with the
channelSubType. However, if the specified version of
channelSubType is not supported by the Notification
Channel, an appropriate error SHALL be provided to
the client in the POST response.

If this element is not present, the Notification Channel
SHALL use a default channelSubType version. The
default channelSubType SHALL be provided to the
client in the POST response.

maxNotifications xsd:int Yes Defines the maximum number of notifications that may
be delivered in a notification list. Note: the actual
deliverable notifications may be limited by the
capabilities of the Native Channel, e.g. up to a
particular total size of the notification data.

If not specified, a default value specified by the server
policy will apply, and the server SHOULD include that
value in the response to the client.

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 28 (112)

largeDataPolling LargeDataPolling

Yes Used by the client if it wishes to enable the
LargeDataPolling mechanism which enables it to
retrieve large notifications in a HTTP Polling fashion
as opposed to receiving them over NativeChannel.
See the Native Channel description in section 5 for
further information.

5.2.2.14

Type: NotificationChannelLifetime

This type defines the lifetime of a Notification Channel.

Element Type Optional | Description
channelLifetime xsd:int Yes Remaining lifetime (duration) of Notification Channel in
seconds.

The client can specify the desired lifetime of the
Notification Channel in PUT request when “refreshing”
a Notification Channel, however the server in the
response to the request may change the desired
lifetime according to its server policy.

If the element is not present in the request, a default
channel lifetime specified by server policy will apply.

The server SHALL always include the channel lifetime
in the response.

A root element named notificationChannelLifetime of type NotificationChannelLifetime is allowed in request and/or
response bodies.

523 Enumerations

The subsections of this section define the enumerations used in the Notification Channel API.

5.2.3.1 Enumeration: ChannelType

Enumeration Description

LongPolling Indicates that the HTTP Long Polling mechanism is to be used on the
Notification Channel to retrieve notifications from the Notification Server.

OMAPush Indicates that the OMA Push mechanism is to be used by the Notification
Server to asynchronously notify the client of events.

WebSockets Indicates that a WebSockets connection is to be used by the Notification
Server to asynchronously notify the client of events.

NativeChannel Indicates that some form of a device-specific Native notification service is to
be used by the Notification Channel to asynchronously notify the client of
events.

5.2.3.2 Enumeration: NativeChannelSubType

Enumeration

Description

GCM

Indicates that the Google Notification Messaging mechanism is to be used
by the Notification Channel to asynchronously push notifications to the

© 2020 Open M

obile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 29 (112)

client.

APNS Indicates that the Apple Push Notification Service mechanism is to be used
by the Notification Channel to asynchronously push notifications to the
client.

WNS Indicates that the Windows Natification Service mechanism is to be used by

the Notification Channel to asynchronously push notifications to the client.

5.2.4 Values of the Link “rel” attribute

The “rel” attribute of the Link element is a free string set by the server implementation, to indicate a relationship between the
current resource and an external resource. The following are possible strings (list is non-exhaustive, and can be extended):

e NotificationChannelList

e NotificationChannel

These values indicate the kind of resource that the link points to.

© 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 30 (112)

5.3 Sequence Diagrams

The following subsections describe the resources, methods and steps involved in typical scenarios.

Note that signalling sequences between the Notification Server and Enabler servers X (e.g. Presence server) and Y (e.g.
Messaging server), as well as the signalling sequences between the application and the Enabler servers X and Y (depicted in
grey colour) are not part of this specifications; those sequences in the flows are shown for completeness only.

Upon creation of a Notification Channel, the application is required to inform the Notification Server as to the desired
notification delivery mechanism. The following four notification delivery mechanisms are supported:

=

Long Polling

2. OMA Push

3. WebSockets

4. NativeChannel (GCM, APNS, WNS)

5.3.1 Create Notification Channel (Long Polling Method)

This figure below shows a scenario for creation of a Notification Channel by an application using the Long Polling
notification delivery mechanism.

The resources:

— To create Notification Channel:
http://{serverRoot}/notificationchannel/{apiVersion}/{userld}/channels

— To retrieve new notifications:
The resource to be used is provided in the response to the channel creation.

Server
(EnablerY)

Server
(Enabler X)

Server

Application (Notification)

1. POST Notification Channel
(channelType =LongPolling)

- — »| (Create Notification
Response with created channel infoincl. Channel [Subscriptions for
channel URL, callback URL notifications created

towards each

2. POST subscrjiption + callback URL enabler.
Response (NOTE: Not part of
this API)

3. POST subsciiption + callback URL

Response

}|Long Polling request J

4.POST channel URL

»
L

P I— } Sequencesinscope of this specification

- i } NOT in scope of this specification

Figure 2 Create Notification Channel

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 31 (112)

Outline of the flows:

1. Application creates a Notification Channel by sending a POST request to the Notification Server indicating the desire to
use the Long Polling notification delivery method by setting the channelType = LongPolling (the request may include a
limit to the number of notifications that the application can receive in the responses).

A successful response includes a body containing a unique channel URL which is to be used when issuing the Long
Polling request and callback URL which is to be used when subscribing for notifications to a particular Enabler server.

2. Application creates a subscription for notifications from Enabler X server. The included callback URL instructs the
Enabler X server to send notifications to the Notification Server (this operation is not part of this API).

The Enabler server returns a response (this operation is not part of this API).

3. Application creates a subscription for notifications from Enabler Y server. The included callback URL instructs the
Enabler server to send notifications to the Notification Server (this operation is not part of this API).

The Enabler Y server returns a response (this operation is not part of this API).

4. Application initiates a Long Polling request using the channel URL received in the response to POST in step 1 and
waits for a new event.

5.3.2 Notifications delivered to application using Long Polling

This figure below shows a scenario where two notifications are delivered to the application, generated by two different
servers.

The resource used by the application for the Long Polling requests is provided by the Notification Server (e.g. received in the
response to creation of the Notification Channel, see section 5.3.1).

Server
(Enabler Y)

Server
(Enabler X)

Server

Application (Notification)

1. POST channel URL

A\ 4

Long Polling request

Response incl. new message notification 2. POST Notification containing new message

R
3. POST channel URL s esponse .. >

Long Polling request

4.POST Notification containing
presence update

A\ 4

Response incl. presence update notification

R
5. POST channel URL e SRONSE] >

} Long Polling request

\ 4

e } Sequences in scope of this specification

jm——-- | } NOT in scope of this specification

Figure 3 Notifications delivered to application

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 32 (112)

Outline of the flows:

5.

Application initiates a Long Polling request using the channel URL received when the Notification Channel was created.

A new message is received, which triggers a notification being sent from the Enabler Y server to the Notification Server
using the callback URL provided when the Notification Channel was created (this operation is not part of this API).

A response to the Long Polling request in step 1 is delivered to the application including the new message.

A response to the notification received in step 2 is sent to Enabler Y server after the response is delivered to the
application (this operation is not part of this API).

Application immediately initiates a new Long Polling request.

A new event occurs; in this case a presence update notification is received in the Notification Server using the callback
URL provided when the Notification Channel was created (this operation is not part of this API).

A response to the Long Polling request in step 3 is delivered to the application including the presence update.

A response to the notification received in step 4 is sent to Enabler X server after the response is delivered to the
application (this operation is not part of this API).

Application immediately initiates a new Long Polling request and waits for a new event.

5.3.3 Long Polling request timeout response

This figure below shows a scenario where a Long Polling request times out and a new Long Polling request is sent.

Note that the timeout mentioned below is a value specific to the Long Polling implementation, and not the “channelLifetime”
as defined in section 5.2.2.2.

The resource used by the application for the Long Polling requests is provided by the Notification Server (e.g. received in the
response to creation of the Notification Channel, see section 5.3.1).

Server

Application (Notification)

1. POST channel URL

A 4

Long Polling request

Response sent due to connection timeout

2. POST channel URL

A 4

}Long Polling request

Figure 4 Request timeout

Outline of the flows:

1.

Application initiates a Long Polling request using the channel URL received when the Notification Channel was created.

No new event is received within a given time limit causing the request to timeout. An empty response is returned to the
application.

Application immediately initiates a new Long Polling request and waits for a new event.

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 33 (112)

5.3.4 Multiple notifications delivered to application in response to the
Long Polling request

This figure below shows a scenario where two notifications are delivered to the application in the same response.

The resource used by the application for the Long Polling requests is provided by the Notification Server (e.g. received in the
response to creation of the Notification Channel, see section 5.3.1).

Server
(Enabler Y)

Server Server

Application (Notification) (Enabler X)

1. POST Noatification containing new message

2. POST Notification containing
presence update

3. POST channel URL g -
Response incl. new message and presence | [-ong Polling request

update notification

Response (1)

R 2
4. POST channel URL e RESPONSEQ) >

}Long Polling request

\ 4

reeeeeessiirinnns F+ Sequences in scope of this specification

jm———- ! } NOT in scope of this specification

Figure 5 Multiple notifications delivered to application in response

Outline of the flows:

1. A new message is received but in this case there is no outstanding Long Polling request from the application so the
notification will be pending in the Notification Server (this operation is not part of this API).

2. A new event occurs; in this case a presence update notification is received. As there is no outstanding Long Polling
request from the application the notification will be pending in the Notification Server (this operation is not part of this
API).

3. Application initiates a Long Polling request using the channel URL received when the Notification Channel was created.

A response to the Long Polling request in step 3 is delivered to the application including the new message and the
presence update notification (assuming that the application allowed multiple notifications in the response when the
Notification Channel was created).

A response to the notification received in step 1 is sent to Enabler Y server after the response is delivered to the
application (this operation is not part of this API).

A response to the notification received in step 2 is sent to Enabler X server after the response is delivered to the
application (this operation is not part of this API).

4. Application immediately initiates a new Long Polling request and waits for a new event.

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 34 (112)

5.3.5 Max number of notifications reached during the Long Polling

This figure below shows a scenario where the limit for the number of notifications in the response to the application (in this
example, 3 notifications) has been reached, which triggered response back to the application.

The resource used by the application for the Long Polling requests is provided by the Notification Server (e.g. received in the
response to creation of the Notification Channel, see section 5.3.1).

1 1 1 1
I Server i Server | Server
Application (Notification) i (Enabler X) i i (Enabler Y) i
Lo J Lo J
1. POST channel URL)| |Long Polling request
»
2. POST Notification containing new message
Max number of 3. POST Notification containing
notifications reached presence update
4. POST Notification containing
Response incl. new message and presence presence update
update notification
Response (2)
Response (3)
Response (4)
5. POST channel URL
} Long Polling request
Legend
i } Sequences in scope of this specification

- ! } NOT in scope of this specification

Figure 6 Maximum number of notifications in the response to the Long Polling

Outline of the flows:

1. Application initiates a Long Polling request using the channel URL received when the Notification Channel was created.

2. A new message has been received and the Notification Server is notified (this operation is not part of this API). Since
the maxNotifications limit is not yet reached no response to the Long Polling request is sent back to the application.

3. A new event occurs; in this case a presence update notification is received at the Notification Server (this operation is
not part of this API). The maxNotifications limit is still not reached.

4. A new event occurs; in this case another presence update notification is received at the Notification Server (this
operation is not part of this API).

The maximum number of notifications allowed in the response has been reached and the response to the Long Polling
request in step 1 is sent to the application. The response includes the new message and the two presence update
notifications.

A response to the notification received in step 2 is sent to Enabler Y server after the response is delivered to the
application (this operation is not part of this API).

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 35 (112)

A response to the notification received in step 3 is sent to Enabler X server after the response is delivered to the
application (this operation is not part of this API).

A response to the notification received in step 4 is sent to Enabler X server after the response is delivered to the
application (this operation is not part of this API).

5. Application immediately initiates a new Long Polling request.

5.3.6 Max wait time or max number of notifications reached during the
Long Polling

This figure below shows a scenario where the limit for the maximum wait time or maximum number of notifications in the
response to the application has been reached, which triggers a response back to the application. In the example below the
following assumptions have been used:

o Client application at Long Polling Notification Channel creation has set maxWaitTime = 5 second and
maxNotifications = 3 events.

e Server’s Long Polling connection timeout = 45 seconds (i.e. Long Polling request to the server times out in 45
seconds if there is no event received within 45 seconds. The client needs to immediately send a new Long Polling
request upon receiving an empty response to a prior Long Polling request).

The resource used by the application for the Long Polling requests is provided by the Notification Server (e.g. received in the
response to creation of the Notification Channel, see section 5.3.1).

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 36 (112)

T T TTT 1 roTTTT T
N Server . Server ! . Server
1
Application (Notification) : (Enabler X) 1 : (Enabler Y)
1
F] e e e e e e - =
1.t=0: POST channel URL
ong Polling request >
P 2. t=45: Response (no notification)
4 Ferver timeout reached J
3. t=45: POST channel URL

A 4

4. 1=55: POST event A

5 t=56- POST event B

imaxNotifications reached J

6. 1=58 POST event C
7. Response t=58: Response (A,B, C)

A

Response (4)
Response (5)

Response (6)
8. 1= 58: POST channel URL

A 4

9.1t=70: POST event D
10. Response t=75: Response (D)

A

)maxWafrTfme reached J

11. t= 75: POST channel URL Response (9)

A 4

12.t=118: POST event E

13 Response t=120: Response (E)

A

Ferver timeout reached J

Response (12)
14. 1= 120: POST channel URL

P, } Sequences in scope of this specification

_——— } NOT in scope of this specification

Figure 7 Max wait time or max number of notifications criterion used to respond to the Long Polling

Outline of the flows (where t is time in seconds):

1. Application initiates a Long Polling request at t= 0 using the channel URL received when the Notification Channel was
created.

2. No new event is received within a given time limit (45 seconds in this example) causing the request to timeout. An
empty response is returned to the application at t=45.

3. Application immediately initiates a new Long Polling request at t= 45

4. At t=55 event “A” arrives at the Notification Server. Since the maxWaitTime (from the time this event has arrived) nor
maxNotifications has been reached, the server holds onto the event

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 37 (112)

10.
11.
12.

13.
14.

At t=56 event “B” arrives at the Notification Server. Since the maxWaitTime nor maxNotifications has been reached,
the server holds onto the event

At t=58 event “C” arrives at the Notification Server. The maximum number of notifications allowed (maxNotifications
=3 events) in the response has been reached

The response to the Long Polling request in step 3 is sent to the application at t=58. The response includes events “A”,
“B’? and K‘C‘)J.

Application immediately initiates a new Long Polling request at t= 58

At t=70 event “D” arrives at the Notification Server. Since the maxWaitTime (from the time this event has arrived) nor
maxNotifications has been reached, the server holds onto the event

Time passes by and at t=75, maxWaitTime = 5 seconds (from the time the first event arrived) limit is reached.
The response to the Long Polling request in step 8 is sent to the application at t=75. The response includes events “D”.
Application immediately initiates a new Long Polling request at t= 75

At t=118 event “E” arrives at the Notification Server. Since the maxWaitTime nor maxNotifications has been reached,
the server holds onto the event

Time passes by and at t=120, server’s connection timeout kicks in
The response to the Long Polling request in step 11 is sent to the application at t=120. The response includes events “E”.

Application immediately initiates a new Long Polling request at t= 120

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 38 (112)

5.3.7 Create Notification Channel (OMA Push Method)

This figure below shows a scenario for creation of a Notification Channel by an application using the OMA Push natification
delivery mechanism.

The resources:

— To create Notification Channel:
http://{serverRoot}/notificationchannel/{apiVersion}/{userld}/channels

Server
(Enabler)

Server Server

Application (Notification) i (Enabler X)

1. POST Notification Channel
(channelType =OMAPush)

- — »| [Create Notification
Response with created channel infoincl. Channel [Subscriptions for
callback URL notifications created

towards each
2. POST subscijiption + callback URL enabler.

(NOTE: Not part of
this API)

Response

3. POST subscijiption + callback URL

Response
Legend
o } Sequences inscope ofthis specification

————— I } NOT in scope of this specification

Figure 8 Create Notification Channel (OMA Push Method)

Outline of the flows:

1. Application creates a Notification Channel by sending a POST request to the Notification Server indicating the desire to
use the OMA Push notification delivery method by setting the channelType = OMAPush. The request may include a
limit to the number of notifications that the application can receive in the asynchronous notification list. Additionally,
the request may contain an appld which uniquely identify the application to the OMA Push Enabler.

A successful response includes a body containing a callback URL which is to be used when subscribing for
notifications to a particular Enabler server.

2. Application creates a subscription for notifications from Enabler X server. The included callback URL instructs the
Enabler X server to send notifications to the Notification Server (this operation is not part of this API).

The Enabler server returns a response (this operation is not part of this API).

3. Application creates a subscription for notifications from Enabler Y server. The included callback URL instructs the
Enabler server to send notifications to the Notification Server (this operation is not part of this API).

The Enabler Y server returns a response (this operation is not part of this API).
5.3.8 Notifications delivered to application using OMA Push

This figure below shows a scenario where two notifications generated by two different servers are delivered to the application

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 39 (112)

Server
(EnablerY)

Server
(Enabler X)

Server
(Notification)

Application Push Enableri
1
1

2 Push MESSAGE sent o 1. POST Notification ¢containing new message

Push MESSAGE sentto P target MSISDN & appld
target MSISDN & appld <
Response
P Response

A4

Response

3. POST Notification

4. Push MESSAGE sentto containing new message

Push MESSAGE sentto targetMSISDN &appld
target MSISDN & appld -
Response
Response o
i Response

Legend:
E—
P } sequences inscope ofthis spedification

Figure 9 Notifications delivered to application using OMA Push

Outline of the flows:

1. Anevent occurs which triggers a notification being sent from Enabler Y server to the Notification Server using the
callback URL provided when the Notification Channel was created (this operation is not part of this API).

2. The Notification Server maps the callback URL at which it received the event to the associated MSISDN and appld
which it had previously captured as part of the channel creation process. A Push MESSAGE containing the new event
is then sent from the Notification Server to the Push Enabler targeting the appropriate MSISDN and appld (this
operation is not part of this API. See Appendix H for further information regarding Notification Server and Push
Enabler interaction).

Note: In advance configuration of the Notification Server with the appropriate Push Enabler (e.g. PPG) address is
outside the scope of this document.

In turn, Push Enabler passes the Push MESSAGE containing the new event to the application on the device via the Push
client residing on the device (this operation is not part of this API).

If requested by the Notification Server, the Push client or application may provide a delivery confirmation, which is
forwarded to the Notification Server by the Push Enabler (this operation is not part of this API).

A response to the notification received in step 1 is sent to Enabler Y server after the response is delivered to the
application (this operation is not part of this API).

3. The same process as explain in step 1 above involving Enabler X.

4. The same process as explain in step 2 above involving Enabler X.

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 40 (112)

5.3.9 Create Notification Channel (OMA Push method with Large Data
Polling enabled)

This figure (below) shows a scenario for creation of a Notification Channel by an application using the OMA Push
notification delivery mechanism with “LargeDataPolling” feature enabled.

The resources:

— To create Notification Channel:

T T T T T T
N Server . Server ! . Server !
1 1
Appllcatlon (Notification) : (Enabler X) 1 : (Enabler Y) 1
e . e :
1. POST Notification Channel (channelType
= OMAPush, largeDataPolling) N
| |Create Notification <5 ; .
: N Channel ubscriptions for
‘Response with created channel info incl. callback URL hotifications created

-

fowards each
2 POST subscription + callback URL pnabler.

NOTE: Not part of

R
SSPonse this API)

3. POST subscrjption + callback URL

Resfonse
Legend:
PPN } Sequences in scope of this specification

- } MNOT in scope of this specification
1

Figure 10 Create Notification Channel (OMA Push method with Large Data Polling enabled)

Outline of the flows:

1. Application creates a Notification Channel by sending a POST request to the Notification Server indicating the desire to
use the OMA Push notification delivery method with the “largeDataPolling” feature enabled (i.e. channelType =
OMAPush and “largeDataPolling.pollingEnabled” = true). The request includes maxNotifications indicating the
number of notifications that the application can receive over the OMA Push delivery method and if the number of
messages exceed the maxNotifications limit (or notification size is beyond the known limitation), then the desire to
receive the events over a polling channel (i.e. LargeDataPolling channelURL). Additionally, the request may contain an
appld which uniquely identify the application to the OMA Push Enabler.

A successful response includes a body containing a callback URL which is to be used when subscribing for
notifications to a particular Enabler server.

2. Application creates a subscription for notifications from Enabler X server. The included callback URL instructs the
Enabler X server to send notifications to the Notification Server (this operation is not part of this API).

The Enabler server returns a response (this operation is not part of this API).

3. Application creates a subscription for notifications from Enabler Y server. The included callback URL instructs the
Enabler server to send notifications to the Notification Server (this operation is not part of this API).

The Enabler Y server returns a response (this operation is not part of this API).

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 41 (112)

5.3.10 Notifications delivered to application using OMA Push while Large
Data Polling is enabled

This figure (below) shows a scenario where notifications are delivered to the application over a dynamically generated Large
Data Polling channel URL when certain conditions are met (e.g. number of notifications are more than maxNotifications).

Pl 1 ST 1 il 1
1 1 1
! I S ! I ! I
S i erver 1 Server 1 Server
S :PUSh Enabler! (Nofification) ! (Enabler X) | ! (Enabler Y) |
Lo b [
Event within OMA 1. POST Nofification containing new message
Push msg size &
ImaxNotification limits
Push MESSAGE sent to 2. Push MESSAGE sent to
target MSISDN & appld p target MSISDN & appld
R
esponse Response
> Response
3. POST MNotification ¢ontaining new message
Wany
Events exceed 4. POST Notification simultaneous
imaxNotifications =1 containing new message pvents occur

5. Push MESSAGE
(LargePollingNotification) sent

6. Push MESSAGE ; |l target MSISDN & appid

(LargePollingNotification) sen
to target MSISDN & appld

7 POST channel URL
8. Response_incl. message notifications (3 & 4) karge Data Folling J

IChannel URL is
destroyed
Response (3)

Response (4)

\4

B } Sequences in scope of this specification

I——--a } NOT in scope of this specification
Figure 11 Notifications delivered to application using OMA Push

Outline of the flows:

1. Anevent occurs which triggers a notification being sent from Enabler Y server to the Notification Server using the
callback URL provided when the Notification Channel was created (this operation is not part of this API).

2. The Notification Server maps the callback URL at which it received the event to the associated MSISDN and appld
which it had previously captured as part of the channel creation process. Since, the notification size and the number of
notifications does not meet the conditions requiring a dynamic Channel URL generation (i.e. the event can be delivered
through OMA Push delivery method), a Push MESSAGE containing the new event (from Enabler Y) is then sent from
the Notification Server to the Push Enabler targeting the appropriate MSISDN and appld (this operation is not part of
this API. See Appendix H for further information regarding Notification Server and Push Enabler interaction).

Note: In advance configuration of the Notification Server with the appropriate Push Enabler (e.g. PPG) address is
outside the scope of this document.

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 42 (112)

In turn, Push Enabler passes the Push MESSAGE containing the new event to the application on the device via the Push
client residing on the device (this operation is not part of this API).

If requested by the Notification Server, the Push client or application may provide a delivery confirmation, which is
forwarded to the Notification Server by the Push Enabler (this operation is not part of this API).

A response to the notification received in step 1 is sent to Enabler Y server after the response is delivered to the
application (this operation is not part of this API).

3. After some time, an event occurs which triggers a notification being sent from Enabler Y server to the Notification
Server (as explain in step 1 above).

4. Concurrent to step 3, another event occurs in Enabler X which triggers a notification being sent to the Notification
Server (as explain in step 1 above).

The Notification Server realizes that, as per client’s request, it needs to inform the client that it should poll the awaiting
notifications (i.e. number of notifications arrived at the Notification Server is more than maxNotification =1).

5. The Notification Server, sends a Push MESSAGE (to the appropriate MSISDN and appld) containing a
“LargePollingNotification” which itself contains a dynamically created “channelURL” (this operation is not part of this
API. See Appendix H for further information regarding Notification Server and Push Enabler interaction).

6. Inturn, Push Enabler passes the Push MESSAGE containing the “LargePollingNotification” to the application on the
device via the Push client residing on the device (this operation is not part of this API).

7. The client invokes a POST onto the “channelURL” which it extracted from the “LargePollingNotification”.

8. The Notification server responds with a “NotificationList” containing events which it received from Enabler Y and X
(as shown step 3 & 4). The Server indicates the end of NotificationList to the client by setting “ncListComplete” = true.
The Notification server also destroys the dynamically created channel URL (which was reported through
LargePollingNotification in step 5).

A response to the notifications received in step 3 and 4 are sent to Enabler Y and X server after the notifications are delivered
to the application (this operation is not part of this API).

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 43 (112)

5.3.11 Create Notification Channel (WebSockets)

This figure below shows a scenario for creation of a Notification Channel by an application using WebSockets as the
delivery mechanism.

The resources:

— To create a Notification Channel:
http://{serverRoot}/notificationchannel/{apiVersion}/{userld}/channels

Application

(Notification) (Enabler X)

]
1

Server 1 Server
: (Enabler Y)
1
[}

]
1
i Server
1
1
[}

1. POST NotificationChannel
(channelType =WebSockets)

- — P [Create Notification
Response with created channel infoincl. Channel
L‘ channel URL, callback URL

2.0Open WebSockets connection on channelURL

Subscriptions for
notifications created

l towards each
3. POST subscfiption + callback URL enabler.
Response (NOTE: Not part of

this API)

4. POST subscliption + callback URL

Response
Legend:
< } Sequences in scope of this specification
Pl } NOT in scope of this specification
[— (]

Figure 12 Create Notification Channel (WebSockets)

Outline of the flows:

1. The application creates a Notification Channel by sending a POST request to the Notification Server indicating the
desire to use the WebSockets notification delivery method by setting channelType = WebSockets (the request may
include a limit to the number of notifications that the application can receive in one batch).

A successful response includes a body containing a unique channel URL which is to be used to open the WebSockets
connection, and a callback URL which is to be used when subscribing for notifications to a particular Enabler server.

2. The application opens a WebSockets connection on the channel URL received in the response to POST in step 1 and
waits for notifications arriving via this connection.

3. The application creates a subscription for notifications from Enabler X server. The included callback URL instructs the
Enabler X server to send notifications to the Notification Server (this operation is not part of this API).

The Enabler server returns a response (this operation is not part of this API).

4. The application creates a subscription for notifications from Enabler Y server. The included callback URL instructs the
Enabler server to send notifications to the Notification Server (this operation is not part of this API).

The Enabler Y server returns a response (this operation is not part of this API).

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 44 (112)

5.3.12 Notifications delivered to application using WebSockets

This figure below shows a scenario where two notifications generated by two different servers are delivered to the
application using WebSockets,

The resources:

— Thereis no HTTP resource involved in delivering the notifications, as these are received via the WebSockets

connection.
[b [b
. A . :
S Server i erver i erver
Application (Notification) ! (Enabler X) | ! (EnablerY) }
]]]]
leccacaomommee 4 lecccocecee a

e 1. POST Notification containing new message
2. New message notification via WebSockets

a

3.Response

4 POST Notification containing

. . presence update
5. Presence update notification via WebSockets

6. Response

Legend:

B N } sequences inscope of this speification

------ } NOT in scope of this specification

Figure 13 Notifications delivered to application using WebSockets

Outline of the flows:

1. A new message is received by the Enabler Y server, which triggers a notification being sent from the Enabler Y server
to the Notification Server (this operation is not part of this API).

2. A natification including the new message is delivered to the application via the WebSockets connection.

3. Arresponse to the notification received in step 1 is sent to Enabler Y server after the response has been delivered to the
application (this operation is not part of this API).

4. A new event occurs; in this case a presence update notification is received in the Notification Server from Enabler X
server (this operation is not part of this API).

5. A notification regarding the presence update is delivered to the application via the WebSockets connection.

6. A -response to the notification received in step 4 is sent to Enabler X server after the response has been delivered to the
application (this operation is not part of this API).

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 45 (112)

5.3.13 Create Notification Channel (Native Channel Method)

This figure below shows a scenario for creation of a Notification Channel by an application using the Native Channel
notification delivery mechanism.

The resources:

— To create Notification Channel:
http://{serverRoot}/notificationchannel/{apiVersion}/{userld}/channels

Application

——— e —m = a ——— e —m = a

(Notification) (Enabler X)

|
Server | Server
: (Enabler Y)

! 1
1

. Server |
! 1
! 1

1. POST Noftification Channel (channelType

= MNativeChannel, largeDataPolling) N
®| |Create Notification STF . .
: S Channel ubscriptions for
‘Response with created channel info incl. callback URL hotifications created

b towards each
2 POST subscrjption + calback URL prabler.

NOTE: Not part of
this API)

Response

3. POST subscrjption + callback URL

Resgonse
Legend:
PR } Sequences In scope of this specification

---- } NOT in scope of this specification

Figure 14 Create Notification Channel (Native Channel Method)

Outline of the flows:

1.

Application creates a Notification Channel by sending a POST request to the Notification Server indicating the desire to
use the Native Chanel notification delivery method and also the desire to have the “largeDataPolling” feature enabled
(i.e. channelType = NativeChannel and “largeDataPolling.pollingEnabled” = true). The client application in the request
identifies the GCM as OEM’s notification service it has registered with (e.g. nativeChannelSubType =GCM) and also
provides the “registrationToken” which it received as part of its registration with GCM which would allow the OEM’s
notification service uniquely identify the application and route the events accordingly (note: how the application client
obtains this registrationToken is outside the scope of this document). The request also includes a limit to the number of
notifications that the application can receive in the asynchronous notification list (e.g. maxNotifications = 1).

A successful response includes a body containing a callback URL which is to be used when subscribing for
notifications to a particular Enabler server.

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 46 (112)

2. Application creates a subscription for notifications from Enabler X server. The included callback URL instructs the
Enabler X server to send notifications to the Notification Server (this operation is not part of this API).

The Enabler server returns a response (this operation is not part of this API).

3. Application creates a subscription for notifications from Enabler Y server. The included callback URL instructs the
Enabler server to send notifications to the Notification Server (this operation is not part of this API).

The Enabler Y server returns a response.(this operation is not part of this API).

5.3.14 Notifications delivered to application using Native Channel while
Large Data Polling is enabled
This figure (below) shows a scenario where notifications are delivered to the application over Native Channel as well as a

dynamically generated Large Data Polling channel URL when certain conditions are met (e.g. number of notifications are
more than maxNotifications).

: OEM 1 : | : |
oot I ! Server Server ! Server !
' Notificat ! !
lEanen ! ounicetion (Notification) I (Enabler X) \ | (Enabler Y) '
L_ _Senice ! [, [,
[Event size is within
IOEM’s notification 1. POST Notification ¢ontaining new message
lservice msg size &
ImaxNotification
imit is not reached
Event sent to target . .
device/app 2. Event + RegistrationToken
Response
P Response
L= Response
3. POST Notification containing new message
Wamy
Events r—fufcegd 4. POST Notification isimultaneous
maxNotifications =1 containing new message pvents occur
5. Event
& Event (LargePollingNotification) +
(LargePollingNoftification) sent geglstratlonToken
to target devicefapp
7. POST channel URL N
< 8. Response._incl. messade_notifications (3 & 4) l[arge Data Polling
IChannel URL is
estroyed
Response (3)
Response (4)
Legend:
0P } Sequences in scope of this specification

--—- } NOT in scope of this specification

Figure 15 Notifications delivered to application using Native Channel

Outline of the flows:

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 47 (112)

1. Anevent occurs which triggers a notification being sent from Enabler Y server to the Notification Server using the
callback URL provided when the Notification Channel was created (this operation is not part of this API).

2. The Notification Server maps the callback URL at which it received the event to the associated Native Channel and the
“registrationToken” which it had previously captured as part of the channel creation process. Since, the notification size
and the number of notifications does not meet the conditions requiring a dynamic Channel URL generation, the new
event is pushed from the Notification Server to the OEM’s notification service (e.g. GCM) corresponding to the Native
channel. The “registrationToken” associated with the Native Channel accompanies the event (this operation is not part

of this API).

Note: In advance integration of the Notification Server with the OEM’s notification services (e.g. APNs, GCM, WNS)
is outside the scope of this document.

In turn, OEM’s notification services passes the event to the application on the device using the “registrationToken” (this
operation is not part of this API).

The OEM’s notification services confirms delivery of the event back to the Notification Server (this operation is not
part of this API).

A response to the notification received in step 1 is sent to Enabler Y server (this operation is not part of this API).

3. After some time, an event occurs which triggers a notification being sent from Enabler Y server to the Notification
Server.

4. Concurrent to step 3, another event occurs in Enabler X which triggers a notification being sent to the Notification
Server.

The Notification Server realizes that, as per client’s request, it needs to inform the client that it should poll the awaiting
notifications (i.e. number of notifications arrived at the Notification Server is more than maxNotification =1 and also
the overall size of the events in the notificationList is larger than the OEM’s notification service size limit).

5. The Notification Server, sends a “LargePollingNotification” which itself contains a dynamically created “channelURL”
to the OEM’s notification service

6. Inturn, OEM’s notification service passes the “LargePollingNotification” to the application on the device via its
internal means using the “registrationToken” (this operation is not part of this API).

7. The client invokes a POST onto the “channelURL” which it extracts from the “LargePollingNotification”.

8. The Notification server responds with a “NotificationList” containing events which it received from Enabler Y and X
(as shown step 3 & 4). The Server indicates the end of NotificationList to the client by setting “ncListComplete” = true.
The Notification server also destroys the dynamically created channel URL (which was reported through
LargePollingNotification in step 5).

A response to the notifications received in step 3 and 4 are sent to Enabler Y and X server after the notifications are
delivered to the application (this operation is not part of this API).

5.3.15 Refreshing a Notification Channel

This figure below shows how the application can refresh a Notification Channel.
The resources:

— Torefresh a Notification Channel:
http://{serverRoot}/notificationchannel/{apiVersion}/{userld}/channels/{channelld}/channelLifetime

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C

Page 48 (112)

Application

1. PUT channelLifetime

Server
(Notification)

2.Response

Figure 16 Notification Channel refresh

Outline of the flows:

1. To refresh a notification channel, the application uses the PUT method to set a new value of the resource representing

the channel lifetime.

2. The server returns a response confirming the update, possibly returning a different channel lifetime value than the one
in the request if that one was modified due to a policy.

© 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 49 (112)

5.3.16 Client-initiated ConnCheck/ConnAck

This figure below shows how the application can use ConnCheck/ConnAck for session keep-alive.

This flow is only relevant for Websockets-based notification channels.

Applicatian Server

1. connCheck i

—

I 2. connAck{newChannelLifetime]) |

reset channelLifetime to
newChannelLifetime value

Y

no answer arrives

:3.cnnnCheck

4. Close Websockets connection

]

I
&, Open Websockets connection !
_

set channellifetime to
default value

B 0K

[
| |

Applicatian Server

Figure 17 Client-initiated ConnCheck/ConnAck for session keep-alive

Outline of the flows:
1. The application sends a connCheck message to the server

2. The server responds with a connAck message, indicating the lifetime of the channel after sending the connAck. The
server resets the channel lifetime to the value indicated to the application.

3. After a certain time interval, the application sends another connCheck message to the server. No answer arrives during
a time interval in which an answer is expected (note that the server is usually responding to a connCheck immediately).

4. The application considers the Websockets connection defunct and closes it.

5. The application opens a new Websockets connection with the server. The server resets the channel lifetime to a default
value depending on operator policies.

6. The server confirms the successful creation of the Websockets connection.

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 50 (112)

5.3.17 Successful server-initiated ConnCheck/ConnAck

This figure below shows how the server can use ConnCheck/ConnAck for session keep-alive.

This flow is only relevant for Websockets-based notification channels.

Application Server

:J 1. connChecki{newChannelLifetime, checkinterval) |

12 connAck !

L.
F

set channelLifetime to
newChannelLifetime value

during checklnterval

_ 3. connCheck{newChannelLifetime, checkinteral)

next check arrives IT X

.
>

set channelLifetime to
newChannelLifetime value

arrive during checkInterval

next check does not j

5. Close Websockets connection

' 6. Open Websockets connection

¥

set channelLifetime to
default value

7. 0K

-
e

Application Server

Figure 18 Successful server-initiated ConnCheck/ConnAck for session keep-alive

Outline of the flows:

1.

The server sends to the application a connCheck message, indicating the lifetime of the channel it intends to use after it
will receive the connAck, and further indicating a time interval after which it intends to send the next check.

The application responds with a connAck message. Upon receiving this message, the server resets the channel lifetime
to the value indicated in the connCheck message.

Before the expiry of the time interval announced in the “checkInterval” parameter in the previous connCheck message,
the server sends another connCheck message to the application.

The application responds with a connAck message. Upon receiving this message, the server resets the channel lifetime
to the value indicated in the connCheck message.

The application expects to receive another connCheck message within the interval announced in the “chewcklInterval”
parameter of the previous connCheck message, however such message does not arrive. The application therefore
considers the Websockets connection defunct and closes it.

No answer arrives during a time interval in which an answer is expected (note that the server is usually responding to a
connCheck immediately).

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 51 (112)

7. The application considers the Websockets connection defunct and closes it.

8. The application opens a new Websockets connection with the server. The server resets the channel lifetime to a default
value depending on operator policies.

9. The server confirms the successful creation of the Websockets connection.
5.3.18 Unsuccessful server-initiated ConnCheck/ConnAck

This figure below shows a flow of an unsuccessful server-initiated session keep-alive, due to the client failing to respond.

This flow is only relevant for Websockets-based notification channels.

Application Server

:J 1. connCheck({newChannelLifetime, checkinterval) i

‘ client fails to respond Iﬁ

2. repeat: connCheck(newChannelLifetime, checkintemval)

‘ client fails to respond B]

during timeout

1

|

1

1

|

| .
1| no connAck arrives j
|

]

1

1

|

3. Close Wehsockets connection

<]

Application SErver

Figure 19 Unsuccessful server-initiated ConnCheck/ConnAck for session keep-alive

Outline of the flows:

1. The server sends to the application a connCheck message, indicating the lifetime of the channel it intends to use after it
will receive the connAck, and further indicating a time interval after which it intends to send the next check.

2. The application fails to respond. The server might send additional connCheck messages until an implementation-
specific timeout occurs.

3. After that timeout has occurred, the server closes the Websockets connection, since the application has failed to respond
to any of the previous connCheck messages.

5.3.19 Notifications delivered to application using Long Polling

This figure below shows a scenario where the Long Polling request suffers a connection failure causing the client to
reconnect. On receiving the request the server rejects the initial (failed) request and continues with the second.

The resource used by the application for the Long Polling requests is provided by the Notification Server (e.g. received in the
response to creation of the Notification Channel, see section 5.3.1).

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 52 (112)

Application Senver

Long Polling request
received on the server

|
V1. POST channel URL

For some reason
application decides to
repeat the request

2. POST channel LIRL

Second Log Polling request
received on the server

The server breaks the first Long Polling
request and starts handling the second

3. SWC1012 409 Conflict

(3 .

| request

' 4. Response including notifications RESPDHSPT to the second

s Long Palling request
Application Senver

Outline of the flows:

1. Application initiates a Long Polling request using the channel URL received when the Notification Channel was
created.

2. For some reason the application decides to re-initiate a Long Polling request using the same channel URL as (1).

3. Notification Server detects multiple Long Polling requests for the same channel URL. It rejects the first (i.e., the one
initiated in (1)), but establishes the second.

4. Notification Server responds to the second Long Polling request (i.e., the one initiated in (2)) with notifications
received.

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 53 (112)

6. Detailed specification of the resources

The following applies to all resources defined in this specification regardless of the representation format (i.e. XML, JSON,
application/x-www-form-urlencoded):

e Reserved characters in URL variables (parts of a URL denoted below by a name in curly brackets) MUST be
percent-encoded according to [RFC3986]. Note that this always applies, no matter whether the URL is used as a
Request URL or inside the representation of a resource (such as in “resourceURL” and “link” elements).

e Ifauser identifier (e.g. address, userld, etc) of type anyURI is in the form of an MSISDN, it MUST be defined as a
global number according to [RFC3966] (e.g. tel:+19585550100). The use of characters other than digits and the
leading “+” sign SHOULD be avoided in order to ensure uniqueness of the resource URL. This applies regardless of
whether the user identifier appears in a URL variable or in a parameter in the body of an HTTP message.

e Ifauser identifier (e.g. address, userld, etc) of type anyURI is in the form of a SIP URI, it MUST be defined
according to [RFC3261].

o Ifauser identifier (e.g. address, userld, etc) of type anyURI is in the form of an Anonymous Customer Reference
(ACR), it MUST be defined according to Appendix H of [REST_NetAPI_ACR].

o The ACR ‘auth’ is a supported reserved keyword, and MUST NOT be assigned as an ACR to any
particular end user. See G.1.2 for details regarding the use of this reserved keyword.

e For requests and responses that have a body, the following applies: in the requests received, the server SHALL
support JSON and XML encoding of the parameters in the body, and MAY support application/x-www-form-
urlencoded parameters in the body. The Server SHALL return either JSON or XML encoded parameters in the
response body, according to the result of the content type negotiation as specified in [REST_NetAPI_Common]. In
notifications to the Client, the server SHALL use either XML or JSON encoding, depending on which format the
client has specified in the related subscription. The generation and handling of the JSON representations SHALL
follow the rules for JSON encoding in HTTP Requests/Responses as specified in [REST_ NetAPI_Common].

6.1 Resource: Notification channels

The resource used is:
http://{serverRoot}/notificationchannel/{apiVersion}/{userld}/channels

This resource is used for create a new Notification Channel as well as to obtain a list of active Notification Channels for the
specified user.

6.1.1 Request URL variables

The following request URL variables are common for all HTTP commands:

Name Description
Server base url: hostname+port+base path. Port and base path are OPTIONAL.
serverRoot ;
Example: example.com/exampleAPI
. . Version of the API client wants to use. The value of this variable is defined in section
apiVersion 51
userld User identifier. Examples: tel:+19585550100, acr:pseudonym123

See section 6 for a statement on the escaping of reserved characters in URL variables.

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 54 (112)

6.1.2 Response Codes and Error Handling

For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Notification Channel, see section 7.

6.1.3 GET

This operation is used for retrieval of active Notification Channels.

6.1.3.1 Example: Retrieve active Notification Channels (Informative)
6.1.3.1.1 Request

GET /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels HTTP/1.1
Host: example.com
Accept: application/xml

6.1.3.1.2 Response

HTTP/1.1 200 OK

Content-Type: application/xml
Content-Length: nnnn

Date: Thu, 04 Jun 2009 02:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationChannelList xmins:nc="urn:oma:xml:rest:netapi:notificationchannel:1" xmins:xsi="http://www.w3.0rg/2001/XMLSchema-
instance">
<notificationChannel>
<clientCorrelator>123</clientCorrelator>
<applicationTag>myApp</applicationTag>
<channelType>LongPolling</channelType>
<channelData xsi:type="nc:LongPollingData">
<channelURL>http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch123/notifications
</channelURL>
<maxNotifications>1</maxNotifications>
</channelData>
<channelLifetime>7200</channelLifetime>
<callbackURL>http://example.com/callBackUrl/cbu111</callbackURL>
<resourceURL>http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch123</resourceURL>
</notificationChannel>
<notificationChannel>
<clientCorrelator>987</clientCorrelator>
<applicationTag>someOtherApp</applicationTag>
<channelType>OMAPush</channelType>
<channelData xsi:type="nc:OMAPushData">
<appld>x-wap-application:wml.ua</appld>
<maxNotifications>5</maxNotifications>
</channelData>
<channelLifetime>3600</channelLifetime>
<callbackURL>http://example.com/callBackUrl/cbu222</callbackURL>
<resourceURL>http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch987</resourceURL>
</notificationChannel>
<resourceURL>http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels</resourceURL>
</nc:notificationChannelList>

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 55 (112)

6.1.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET,
POST” field in the response as per sections 6.5.5 and 7.4.1 of [RFC7231].

6.1.5 POST

This operation is used for creation of a Notification Channel in order to receive notifications from an Enabler server to which
the client has subscribed for notifications.

6.1.5.1 Example: Create Notification Channel (Long Polling method), using tel URI
(Informative)

6.1.5.1.1 Request

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels HTTP/1.1
Host: example.com

Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationChannel xmins:nc="urn:oma:xml:rest:netapi:notificationchannel:1" xmins:xsi="http://www.w3.0rg/2001/XMLSchema-
instance">
<clientCorrelator>123</clientCorrelator>
<applicationTag>myApp</applicationTag>
<channelType>LongPolling</channelType>
<channelData xsi:type="nc:LongPollingData">
<maxNotifications>1</maxNotifications>
</channelData>
<channelLifetime>7200</channelLifetime>
</nc:notificationChannel>

6.1.5.1.2 Response

HTTP/1.1 201 Created

Location: http://fexample.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch123
Date: Thu, 04 Jun 2009 02:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationChannel xmIns:nc="urn:oma:xml:rest:netapi:notificationchannel:1" xmins:xsi="http://www.w3.0rg/2001/XMLSchema-
instance" >
<clientCorrelator>123</clientCorrelator>
<applicationTag>myApp</applicationTag>
<channelType>LongPolling</channelType>
<channelData xsi:type="nc:LongPollingData">
<channelURL> http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch123/notifications
</channelURL>
<maxNotifications>1</maxNotifications>
</channelData>
<channelLifetime>7200</channelLifetime>
<callbackURL>http://example.com/callBackUrl/cbu111</callbackURL>
<resourceURL>http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch123</resourceURL>
<Inc:notificationChannel>

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 56 (112)

6.1.5.2 Example: Create Notification Channel (OMA Push method), using tel URI
(Informative)

6.1.5.2.1 Request

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels HTTP/1.1
Host: example.com

Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationChannel xmins:nc="urn:oma:xml:rest:netapi:notificationchannel:1" xmins:xsi="http://www.w3.0rg/2001/XMLSchema-
instance">
<clientCorrelator>987</clientCorrelator>
<applicationTag>myApp</applicationTag>
<channelType>OMAPush</channelType>
<channelData xsi:type="nc:OMAPushData">
<appld>x-wap-application:wml.ua</appld>
<maxNotifications>1</maxNotifications>
</channelData>
<channelLifetime>7200</channelLifetime>
<Inc:notificationChannel>

6.1.5.2.2 Response

HTTP/1.1 201 Created

Location: http://fexample.com/exampleAPI/natificationchannel/v1/tel%3A%2B19585550100/channels/ch987
Date: Thu, 04 Jun 2009 02:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationChannel xmIns:nc="urn:oma:xml:rest:netapi:notificationchannel:1" xmins:xsi="http://www.w3.0rg/2001/XMLSchema-
instance" >
<clientCorrelator>987</clientCorrelator>
<applicationTag>myApp</applicationTag>
<channelType>OMAPush</channelType>
<channelData xsi:type="nc:OMAPushData">
<appld>x-wap-application:wml.ua</appld>
<maxNotifications>1</maxNotifications>
</channelData>
<channelLifetime>7200</channelLifetime>
<callbackURL>http://example.com/callBackUrl/cbu222</callbackURL>
<resourceURL>http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch987</resourceURL>
<Inc:notificationChannel>

6.1.5.3 Example: Create Notification Channel (OMA Push method with
largeDataPolling), using tel URI (Informative)

6.1.5.3.1 Request

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels HTTP/1.1
Host: example.com

Accept: application/xml

Content-Type: application/xml

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 57 (112)

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationChannel xmins:nc="urn:oma:xml:rest:netapi:notificationchannel:1" xmins:xsi="http://www.w3.0rg/2001/XMLSchema-
instance">
<clientCorrelator>987</clientCorrelator>
<applicationTag>myApp</applicationTag>
<channelType>OMAPush</channelType>
<channelData xsi:type="nc:OMAPushData">
<appld>x-wap-application:wml.ua</appld>
<maxNotifications>1</maxNotifications>
<largeDataPolling>
<pollingEnabled>true</pollingEnabled>
<maxPollingNotifications>10</maxPollingNotifications>
</largeDataPolling>
</channelData>
<channelLifetime>7200</channelLifetime>
</nc:notificationChannel>

6.1.5.3.2 Response

HTTP/1.1 201 Created

Location: http://fexample.com/exampleAPI/natificationchannel/v1/tel%3A%2B19585550100/channels/ch987
Date: Thu, 04 Jun 2015 02:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationChannel xmins:nc="urn:oma:xml:rest:netapi:notificationchannel:1" xmins:xsi="http://www.w3.0rg/2001/XMLSchema-
instance" >
<clientCorrelator>987</clientCorrelator>
<applicationTag>myApp</applicationTag>
<channelType>OMAPush</channelType>
<channelData xsi:type="nc:OMAPushData">
<appld>x-wap-application:wml.ua</appld>
<maxNotifications>1</maxNotifications>
<largeDataPolling>
<pollingEnabled>true</pollingEnabled>
<maxPollingNotifications>10</maxPollingNotifications>
</largeDataPolling>
</channelData>
<channelLifetime>7200</channelLifetime>
<callbackURL>http://example.com/callBackUrl/cbu222</callbackURL>
<resourceURL>http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch987</resourceURL>
</nc:notificationChannel>

6.1.5.4 Example: Create Notification Channel (OMA Push method with
LargeDataPolling) not supported (Informative)

6.1.5.4.1 Request

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels HTTP/1.1
Host: example.com

Accept: application/xml

Content-Type: application/xml

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 58 (112)

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationChannel xmins:nc="urn:oma:xml:rest:netapi:notificationchannel:1" xmins:xsi="http://www.w3.0rg/2001/XMLSchema-
instance">
<clientCorrelator>987</clientCorrelator>
<applicationTag>myApp</applicationTag>
<channelType>OMAPush</channelType>
<channelData xsi:type="nc:OMAPushData">
<appld>x-wap-application:wml.ua</appld>
<maxNotifications>1</maxNotifications>
<largeDataPolling>
<pollingEnabled>true</pollingEnabled>
<maxPollingNotifications>10</maxPollingNotifications>
</largeDataPolling>
</channelData>
<channelLifetime>7200</channelLifetime>
</nc:notificationChannel>

6.1.5.4.2 Response

HTTP/1.1 403 Forbidden

Date: Thu, 04 Jun 2015 02:51:59 GMT
Content-Type: application/xml
Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<common:requestError xmins:common="urn:oma:xml:rest:netapi:common:1">
<policyException>
<messageld>POL2006</messageld>
<text>Requested feature %1 is not available</text>
<variables>LargeDataPolling</variables>
</policyException>
</common:requestError>

6.1.5.5 Example: Create Notification Channel (Long Polling method), using ACR
(Informative)

6.1.5.5.1 Request

POST /exampleAPI/notificationchannel/v1/acr%3Apseudonym123/channels HTTP/1.1
Host: example.com

Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationChannel xmIns:nc="urn:oma:xml:rest:netapi:notificationchannel:1" xmins:xsi="http://www.w3.0rg/2001/XMLSchema-
instance">

<clientCorrelator>123</clientCorrelator>

<applicationTag>myApp</applicationTag>

<channelType>LongPolling</channelType>

<channelData xsi:type="nc:LongPollingData">

<maxNotifications>1</maxNotifications>
</channelData>

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 59 (112)

<channelLifetime>7200</channelLifetime>
</nc:notificationChannel>

6.1.5.5.2 Response

HTTP/1.1 201 Created

Location: http://fexample.com/exampleAPI/notificationchannel/iv1/acr%3Apseudonym123/channels/ch123
Date: Thu, 04 Jun 2009 02:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationChannel xmIns:nc="urn:oma:xml:rest:netapi:notificationchannel:1" xmins:xsi="http://www.w3.0rg/2001/XMLSchema-
instance" >
<clientCorrelator>123</clientCorrelator>
<applicationTag>myApp</applicationTag>
<channelType>LongPolling</channelType>
<channelData xsi:type="nc:LongPollingData">
<channelURL> http://example.com/exampleAPI/notificationchannel/v1/acr%3Apseudonym123/channels/ch123/nctifications
</channelURL>
<maxNotifications>1</maxNotifications>
</channelData>
<channelLifetime>7200</channelLifetime>
<callbackURL>http://example.com/callBackUrl/cbu111</callbackURL>
<resourceURL>http://example.com/exampleAPI/notificationchannel/vi/acr%3Apseudonym123/channels/ch123</resourceURL>
<Inc:notificationChannel>

6.1.5.6 Example: Create Notification Channel (WebSockets method), using tel URI
(Informative)

6.1.5.6.1 Request

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels HTTP/1.1
Host: example.com

Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationChannel xmins:nc="urn:oma:xml:rest:netapi:notificationchannel:1" xmins:xsi="http://www.w3.0rg/2001/XMLSchema-
instance">
<clientCorrelator>987</clientCorrelator>
<applicationTag>myApp</applicationTag>
<channelType>WebSockets</channelType>
<channelData xsi:type="nc:WebSocketsData">
<maxNotifications>5</maxNotifications>
</channelData>
<channelLifetime>7200</channelLifetime>
<Inc:notificationChannel>

6.1.5.6.2 Response

HTTP/1.1 201 Created
Location: http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch378
Date: Thu, 28 Jun 2013 02:51:59 GMT

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 60 (112)

Content-Type: application/xml
Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationChannel xmins:nc="urn:oma:xml:rest:netapi:notificationchannel:1" xmins:xsi="http://www.w3.0rg/2001/XMLSchema-
instance" >
<clientCorrelator>987</clientCorrelator>
<applicationTag>myApp</applicationTag>
<channelType>WebSockets</channelType>
<channelData xsi:type="nc:WebSocketsData">
<channelURL>ws://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch378/ws</channelURL>
<maxNotifications>5</maxNotifications>
</channelData>
<channelLifetime>3600</channelLifetime>
<callbackURL>http://example.com/callBackUrl/cbu112</callbackURL>
<resourceURL>http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch378</resourceURL>
<Inc:notificationChannel>

6.1.5.7 Example: Attempt to create Notification Channel of unsupported type
(Informative)

6.1.5.7.1 Request

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels HTTP/1.1
Host: example.com

Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationChannel xmIns:nc="urn:oma:xml:rest:netapi:notificationchannel:1" xmins:xsi="http://www.w3.0rg/2001/XMLSchema-
instance">
<clientCorrelator>123</clientCorrelator>
<applicationTag>myApp</applicationTag>
<channelType>LongPolling</channelType>
<channelData xsi:type="nc:LongPollingData">
<maxNotifications>1</maxNotifications>
</channelData>
<channelLifetime>7200</channelLifetime>
</nc:notificationChannel>

6.1.5.7.2 Response

HTTP/1.1 400 Bad Request

Date: Thu, 28 Jun 2013 02:51:59 GMT
Content-Type: application/xml
Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<common:requestError xmins:common="urn:oma:xml:rest:netapi:common:1">
<policyException>
<messageld>POL1023</messageld>
<text>Notification channel type %1 not supported. Supported types: %2.</text>
<variables>LongPolling</variables>
<variables>OMAPush, WebSockets</variables>

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 61 (112)

</policyException>
</common:requestError>

6.1.5.8 Example: Create Notification Channel (Native Channel method with
largeDataPolling), using tel URI (Informative)
6.1.5.8.1 Request

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels HTTP/1.1
Host: example.com

Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationChannel xmins:nc="urn:oma:xml:rest:netapi:notificationchannel:1" xmins:xsi="http://www.w3.0rg/2001/XMLSchema-
instance">
<clientCorrelator>987</clientCorrelator>
<applicationTag>myApp</applicationTag>
<channelType>NativeChannel</channelType>
<channelData xsi:type="nc:NativeChannelData">
<channelSubType>GCM</channelSubType>
<registrationToken>CI2k_HHwglpoDKCIZvwwDMExUdFQ3P1</registrationToken>
<channelSubTypeVersion>1.0</channelSubTypeVersion>
<maxNotifications>1</maxNotifications>
<largeDataPolling>
<pollingEnabled>true</pollingEnabled>
<maxPollingNotifications>10</maxPollingNotifications>
</largeDataPolling>
</channelData>
<channelLifetime>7200</channelLifetime>
</nc:notificationChannel>

6.1.5.8.2 Response

HTTP/1.1 201 Created

Location: http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch309
Date: Sat, 23 Apr 2016 06:55:50 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationChannel xmIns:nc="urn:oma:xml:rest:netapi:notificationchannel:1" xmins:xsi="http://www.w3.0rg/2001/XMLSchema-
instance" >
<clientCorrelator>987</clientCorrelator>
<applicationTag>myApp</applicationTag>
<channelType>NativeChannel</channelType>
<channelData xsi:type="nc:NativeChannelData">
<channelSubType>GCM</channelSubType>
<registrationToken>CI2k_HHwglpoDKCIZvwDMExUdFQ3P1</registrationToken>
<channelSubTypeVersion>1.0</channelSubTypeVersion>
<maxNotifications>1</maxNotifications>
<largeDataPolling>
<pollingEnabled>true</pollingEnabled>
<maxPollingNotifications>10</maxPollingNotifications>

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 62 (112)

</largeDataPolling>
</channelData>
<channelLifetime>7200</channelLifetime>
<callbackURL>http://example.com/callBackUrl/cbu899</callbackURL>
<resourceURL>http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch309</resourceURL>
</nc:notificationChannel>

6.1.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET,
POST’ field in the response as per sections 6.5.5 and 7.4.1 of [RFC7231].

6.2 Resource: Individual Notification Channel

The resource used is:
http://{serverRoot}/notificationchannel/{apiVersion}/{userld}/channels/{channelld}

This resource is used for management of an individual Notification Channel, operations such as: to retrieve information of the
Notification Channel or to remove (terminate) Notification Channel.

6.2.1 Request URL variables

The following request URL variables are common for all HTTP commands:

Name Description
Server base url: hostname+port+base path. Port and base path are OPTIONAL.
serverRoot ;
Example: example.com/exampleAPI
. . Version of the API client wants to use. The value of this variable is defined in section
apiVersion 51
userld User identifier. Examples: tel:+19585550100, acr:pseudonym123
channelld Channel identifier. Example: ch456

See section 6 for a statement on the escaping of reserved characters in URL variables.

6.2.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Notification Channel, see section 7.

6.2.3 GET

This operation is used for retrieval of an individual Notification Channel.
6.2.3.1 Example: Retrieve individual Notification Channel (Informative)
6.2.3.1.1 Request

GET /exampleAPI/natificationchannel/v1/tel%3A%2B19585550100/channels/ch456 HTTP/1.1
Host: example.com
Accept: application/xml

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 63 (112)

6.2.3.1.2 Response

HTTP/1.1 200 OK

Content-Type: application/xml
Content-Length: nnnn

Date: Thu, 04 Jun 2009 02:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationChannel xmins:nc="urn:oma:xml:rest:netapi:notificationchannel:1" xmins:xsi="http://www.w3.0rg/2001/XMLSchema-
instance">
<clientCorrelator>456</clientCorrelator>
<applicationTag>someOtherApp</applicationTag>
<channelType>LongPolling</channelType>
<channelData xsi:type="nc:LongPollingData">
<channelURL>http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch456/notifications
</channelURL>
<maxNotifications>5</maxNotifications>
</channelData>
<channelLifetime>7200</channelLifetime>
<callbackURL>http://example.com/callBackUrl/cbu333</callbackURL>
<resourceURL>http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch456</resourceURL>
<Inc:notificationChannel>

6.24 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET,
DELETE’ field in the response as per sections 6.5.5 and 7.4.1 of [RFC7231].

6.25 POST

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET,
DELETE’ field in the response as per sections 6.5.5 and 7.4.1 of [RFC7231].

6.2.6 DELETE

This operation is used for removing an individual Notification Channel. Any outstanding poll request will immediately be
responded with a 404 Not Found.

6.2.6.1 Example: Removing Notification Channel (Informative)
6.2.6.1.1 Request

DELETE /exampleAPI/notificationchannel/iv1/tel%3A%2B19585550100/channels/ch456 HTTP/1.1
Host: example.com

6.2.6.1.2 Response

HTTP/1.1 204 No Content
Date: Thu, 04 Jun 2009 02:51:59 GMT

6.3 Resource: Notification list

The resource URL is provided by the server (channel URL received when the Long Polling Notification Channel or
WebSockets Notification Channel is created) and therefore this specification does not make any assumption about the
structure of this URL.

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 64 (112)

For the Long Polling method, this resource is used for retrieval of new notifications from the Notification Server, for which
the application has subscribed from the respective Enabler server. At the same time, the server resets the channel lifetime to
its original value.

For the WebSockets method, this resource is used to create a WebSockets connection through which the server can send
notifications to the client, and which the client can check for connectivity using the ConnCheck and ConnAck messages. This
means it is not a resource used in a RESTful manner for WebSockets-based notification channels.

6.3.1 Request URL variables

Provided by the Notification Server in response to request for creation of a Long Polling Notification Channel, if any.

6.3.2 Response Codes and Error Handling

For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Notification Channel, see section 7.

6.3.3 GET

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow:
POST’ field in the response as per sections 6.5.5 and 7.4.1 of [RFC7231].

6.3.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow:
POST’ field in the response as per sections 6.5.5 and 7.4.1 of [RFC7231].

6.3.5 POST

This operation is used for retrieval of new notifications from the Notification Server if the Notification Channel involved is of
Long Polling type.

6.3.5.1 Example 1: Single notification delivered in a NotificationList (Informative)

In this example a presence update is delivered to the application.
6.3.5.1.1 Request

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch123/notifications HTTP/1.1
Host: example.com

Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nc:longPollingRequestParameters xmins:nc="urn:oma:xml:rest:netapi:notificationchannel:1"/>

6.3.5.1.2 Response

HTTP/1.1 200 OK

Date: Thu, 04 Jun 2009 02:51:59 GMT
Content-Type: application/xml
Connection: close

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C

Page 65 (112)

<nc:notificationList xmIns:nc="urn:oma:xml:rest:netapi:notificationchannel:1">
<pr:presenceNotification xmins:pr="urn:oma:xml:rest:netapi:presence:1">
<presentityUserld>tel:+19585550100</presentityUserld>
<callbackData>1234</callbackData>
<resourceStatus>Active</resourceStatus>
<presence>
<person>
<mood>
<moodValue>Happy</moodValue>
</mood>
</person>
</presence>
<link rel="PresenceSubscription"
href="http://example.com/exampleAPI/v1/presence/tel%3A%2B19585550101/subscriptions/presenceSubscriptions/
tel%3A%2B19585550100/sub001"/>
</pr:presenceNotification>
<Inc:notificationList>

6.3.5.2 Example 2: Multiple notifications delivered (Informative)

In this example a presence update and message notification are delivered to the application.
6.3.5.2.1 Request

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch123/natifications HTTP/1.1
Host: example.com

Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nc:longPollingRequestParameters xmins:nc="urn:oma:xml:rest:netapi:notificationchannel:1"/>

6.3.5.2.2 Response

HTTP/1.1 200 OK

Date: Thu, 04 Jun 2009 02:51:59 GMT
Content-Type: application/xml
Connection: close

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationList xmIns:nc="urn:oma:xml:rest:netapi:notificationchannel:1">
<pr:presenceNotification xmins:pr="urn:oma:xml:rest:netapi:presence: 1">
<presentityUserld>tel:+19585550100</presentityUserld>
<callbackData>1234</callbackData>
<resourceStatus>Active</resourceStatus>
<presence>
<person>
<mood>
<moodValue>Happy</moodValue>
</mood>
</person>
</presence>
<link rel="PresenceSubscription"
href="http://example.com/exampleAPI/v1/presence/tel%3A%2B19585550101/subscriptions/presenceSubscriptions/

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 66 (112)

tel%3A%2B19585550100/sub001"/>
</pr:presenceNotification>
<mms:inboundMessageNotification xmIns:mms="urn:oma:xml:rest:netapi:messaging:1">
<inboundMessage>
<destinationAddress>tel:+19585550100</destinationAddress>
<senderAddress>tel:+19585550101</senderAddress>
<resourceURL>http://example.com/exampleAPI/v1/messaging/inbound/registrations/reg123/messages/msg123
</resourceURL>
<link rel="Subscription" href="http://example.com/exampleAPI/v1/messaging/inbound/subscriptions/sub123"/>
<messageld>msg123</messageld>
<inboundMMSMessage>
<subject>Who is RESTing on the beach?</subject>
</inboundMMSMessage>
<finboundMessage>
</mms:inboundMessageNotification>
<mms:inboundMessageNotification xmins:mms="urn:oma:xml:rest:netapi:messaging:1">
<inboundMessage>
<destinationAddress>tel:+19585550100</destinationAddress>
<senderAddress>tel:+19585550102</senderAddress>
<resourceURL>http://example.com/exampleAPI/v1/messaging/inbound/registrations/reg123/messages/msg1234
<IresourceURL>
<link rel="Subscription" href="http://example.com/exampleAPI/v1/messaging/inbound/subscriptions/sub123"/>
<messageld>msg1234</messageld>
<inboundMMSMessage>
<subject>Who is still RESTing on the beach?</subject>
</inboundMMSMessage>
<f/inboundMessage>
</mms:inboundMessageNotification>
</nc:notificationList>

6.3.5.3 Example 3: Server timeout (Informative)

In this example a Long Polling request times out in the Notification Server before any new notifications from Enabler servers
have been received on the server. The server responds with an empty response.

6.3.5.3.1 Request

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch123/natifications HTTP/1.1
Host: example.com

Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nc:longPollingRequestParameters xmins:nc="urn:oma:xml:rest:netapi:notificationchannel:1"/>

6.3.5.3.2 Response

HTTP/1.1 200 OK

Date: Thu, 04 Jun 2009 02:51:59 GMT
Content-Type: application/xml
Connection: close

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationList xmIns:nc="urn:oma:xml:rest:netapi:notificationchannel:1"/>

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 67 (112)

6.3.5.4 Example 4: Single notification delivered outside a NotificationList
(Informative)

In this example a presence update is delivered to the application.
6.3.5.4.1 Request

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch123/notifications HTTP/1.1
Host: example.com

Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nc:longPollingRequestParameters xmins:nc="urn:oma:xml:rest:netapi:notificationchannel:1"/>

6.3.5.4.2 Response

HTTP/1.1 200 OK

Date: Thu, 04 Jun 2009 02:51:59 GMT
Content-Type: application/xml
Connection: close

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<pr:presenceNotification xmins:pr="urn:oma:xml:rest:netapi:presence:1">
<presentityUserld>tel:+19585550100</presentityUserld>
<callbackData>1234</callbackData>
<resourceStatus>Active</resourceStatus>
<presence>
<person>
<mood>
<moodValue>Happy</moodValue>
</mood>
</person>
</presence>
<link rel="PresenceSubscription"
href="http://example.com/exampleAPI/v1/presence/tel %3A%2B19585550101/subscriptions/presenceSubscriptions/
tel%3A%2B19585550100/sub001"/>
</pr:presenceNotification>

6.3.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow:
POST’ field in the response as per sections 6.5.5 and 7.4.1 of [RFC7231].

6.4 Resource: Notification Channel lifetime

The resource used is:
http://{serverRoot}/notificationchannel/{apiVersion}/{userld}/channels/{channelld}/channelLifetime

This resource is used to retrieve and update (“refresh”) the Notification Channel lifetime.

6.4.1 Request URL variables

The following request URL variables are common for all HTTP commands:

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 68 (112)

Name Description
Server base url: hostname+port+base path. Port and base path are OPTIONAL.
serverRoot i
Example: example.com/exampleAPI
. . Version of the API client wants to use. The value of this variable is defined in section
apiVersion 51
userld User identifier. Examples: tel:+19585550100, acr:pseudonym123
channelld Channel identifier. Example: ch456

See section 6 for a statement on the escaping of reserved characters in URL variables.

6.4.2 Response Codes and Error Handling

For HTTP response codes, see [REST_NetAP1_Common].

For Policy Exception and Service Exception fault codes applicable to Notification Channel, see section 7.

6.43 GET

This operation is used for retrieval of the remaining Notification Channel lifetime.

6.4.3.1 Example: Retrieve remaining Notification Channel lifetime (Informative)
6.4.3.1.1 Request

GET /exampleAPI/natificationchannel/v1/tel%3A%2B19585550100/channels/ch456/channelLifetime HTTP/1.1
Host: example.com
Accept: application/xml

6.4.3.1.2 Response

HTTP/1.1 200 OK

Content-Type: application/xml
Content-Length: nnnn

Date: Thu, 28 Jun 2013 02:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<nc:notificationChannelLifetime xmins:nc="urn:oma:xml:rest:netapi:notificationchannel:1">
<channelLifetime>1724</channelLifetime>

</nc:notificationChannelLifetime>

6.4.4 PUT

This operation is used for retrieval of the remaining Notification Channel lifetime, i.e. “refresh” the channel.
6.4.4.1 Example: Update Notification Channel lifetime (Informative)
6.44.1.1 Request

PUT /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch456/channelLifetime HTTP/1.1
Host: example.com

Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 69 (112)

<?xml version="1.0" encoding="UTF-8"?>

<nc:notificationChannelLifetime xmins:nc="urn:oma:xml:rest:netapi:notificationchannel:1">
<channelLifetime>7200</channelLifetime>

<Inc:notificationChannelLifetime>

6.4.4.1.2 Response

HTTP/1.1 200 OK

Content-Type: application/xml
Content-Length: nnnn

Date: Thu, 28 Jun 2013 02:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>
<nc:netificationChannelLifetime xmIns:nc="urn:oma:xml:rest:netapi:notificationchannel:1">

<channelLifetime>3600</channelLifetime>
</nc:notificationChannelLifetime>

6.45 POST

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET,
PUT’ field in the response as per sections 6.5.5 and 7.4.1 of [RFC7231].

6.4.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET,
PUT’ field in the response as per sections 6.5.5 and 7.4.1 of [RFC7231].

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 70 (112)

7. Fault definitions

7.1 Service Exceptions

For common Service Exceptions refer to [REST_NetAPI_Common].
The following additional Service Exception codes are defined for the Notification Channel API.

7.1.1 SVC1012: Simultaneous channel requests not supported

Name Description

MessagelD SVC1012

Text Simultaneous channel requests not supported
Variables None

HTTP status code(s) | 409 Conflict

7.2 Policy Exceptions

For common Policy Exceptions refer to [REST_NetAPI_Common].
The following additional Policy Exception codes are defined for the Notification Channel API.

7.2.1 POL1023: Notification channel type not supported

Name Description

MessagelD POL1023

Text Notification channel type %1 not supported. Supported types: %2.
Variables %1 — Type of the natification channel

%2 — List of supported channel types

HTTP status code(s) | 403 Forbidden

The variable %1 SHALL contain one of the types as defined in section 5.2.3.1, %2 a comma-separated list of one or more
types as defined in section 5.2.3.1.

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C

Page 71 (112)

Appendix A. Change History

A.1 Approved Version History

(Informative)

Reference

Date

Description

nfa

nla

No prior version

A.2 Draft/Candidate Version 1.0 History

Document Identifier

Date

Sections

Description

Draft Versions:
REST_NetAPI_NotificationChannel-V1_0

28 Apr 2011

Many

This is the first version of the document that is based on agreed
contribution OMA-ARC-RC-APIs-2011-0040R03-
INP_Proposal_for_Notification_Channel_TS. In addition, the
document title is updated to address the issues from ARC-2011-
A071.

25 May 2011

Many

Implemented CR, OMA-ARC-REST-NetAP1-2011-0008-
CR_TS_changes_for_NotificationChannel

02 Jul 2011

Many

Implemented CRs:
OMA-ARC-REST-NetAPI-2011-0092-CR
_TS_NotificationChannel_alignment_with_new_template
OMA-ARC-REST-NetAPI-2011-0096-CR
_TS_NotificationChannel_channelData_type

25Jul 2011

Many

Implemented CRs:
OMA-ARC-REST-NetAPI-2011-0135R01-CR
_TS_NC_duration_timer
OMA-ARC-REST-NetAPI-2011-0137-CR
_TS_NC_Additional_SCRs
OMA-ARC-REST-NetAPI-2011-0147R01-CR
_TS_NC_Appendix_C_and_D

08 Sep 2011

Many

Implemented CRs:
OMA-ARC-REST-NetAPI-2011-0210R01-
CR_NC_XML_examples_for_channel_duration
OMA-ARC-REST-NetAPI-2011-0224-
CR_NC_telURI_resourceURL_changes

21 Sep 2011

Many

Implemented CRs:
OMA-ARC-REST-NetAPI-2011-0241-CR _NC_TS_ACR_changes

OMA-ARC-REST-NetAPI1-2011-0253R02-CR_
NC_TS_clarifications_and_tidy ups

03 Nov 2011

Many

Implemented CR:

OMA-ARC-REST-NetAPI-2011-0330R02-
CR_NC_TS_CONRR_fixing_editorial_comments

20 Dec 2011

Many

Implemented CRs:

OMA-ARC-REST-NetAPI-2011-0451-
CR_NC_TS_CONRR_technical_comments_resolution

OMA-ARC-REST-NetAPI-2011-0454-CR_NC_TS_Appendix_G

Candidate Version:
REST_NetAPI_NotificationChannel-V1_0

17 Jan 2012

n/a

Status changed to Candidate by TP

TP Ref # OMA-TP-2012-0007-
INP_REST_NetAPI_NotificationChannel_1_0_ERP_and_ETR_for_
Candidate_Approval

Draft Versions:
REST_NetAPI_NotificationChannel-V1_0

24 Jul 2012

5,6.1.2,6.2.2,
6.3.2,7,
G.1.13

Incorporated CR:

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20120117-
C_changes_CR0162

Editorial changes

24 Aug 2012

5222,
Ci1

Incorporated CR:

OMA-ARC-REST-NetAPI-2012-0233-
CR_NC_TS _issue_20_clientCorrelator_resolution
Editorial changes

© 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C

Page 72 (112)

Document Identifier Date Sections Description
15 Oct 2012 2.1, Incorporated CR:
2.2,33,4.1,5, OMA-ARC-REST-NetAPI-2012-0254R01-
51,5222, CR_Notification_Channel_support_for_ OMA_Push
5.2.2.6,523.1, | Editorial changes
53,531,
5.3.5,5.3.6,
5.3.7,6.1.3.1.2,
6.1.5.1,
6.1.5.1.2,
6.1.5.2,6.1.5.3,
6.1.5.3.2,6.3,
6.3.1,6.35,
7.2,
B.1.1,B.14,
C.11,C12,
C.13,C.2,D.1,
D.2,D.3,D4,,
D.5,G.1.11,
G.1.1.2,
G.1.1.3
08 Nov 2012 2.2,32,51, Incorporated CR:
5.22,5231, OMA-ARC-REST-NetAPI-2012-0273R01-
573;1 68211 CR_NC_TS_NotificationList_fixing_element_description
B. 1 1 B 12 Editorial changes
B.1.3,B.14,
Cl1,C2,D9,F
19 Nov 2012 6.3.5.2.2,D.9 Incorporated CR:
OMA-ARC-REST-NetAPI-2012-0276-
CR_Notification_Channel_fixing_and_extending_examples
13 Dec 2012 4.1,6,B, Incorporated CR:
G.lll, OMA-ARC-REST-NetAPI-2012-0291-
G.1.13,G.1.2, | cR_NC_TS_implementing blueprint_for_authorization
Template changed to OMA-TEMPLATE-
TS_RESTful_Network_API-20120813-
Editorial changes
15 Apr 2013 2.1,2.2,5.3.7, Incorporated CR:
7.21,H OMA-ARC-REST-NetAPI-2013-0019R01-
CR_Notification_Server_Push_Enabler_interaction_info
Editorial changes
15 Jul 2013 H Incorporated CR:
OMA-ARC-REST-NetAPI-2013-0048-
CR_NotifChannel_fixing_xml_example_for_push_pap
Editorial changes
Candidate Version: 30 Jul 2013 n/a Status changed to Candidate by TP
REST_NetAPI_NotificationChannel-V1_0 TP Ref # OMA-TP-2013-0224-
INP_REST_NetAPI_NotificationChannel_V1_0_ERP_for_Candidat
e_re_approval
Draft Versions: 27 Sep 2013 2,4,5,51, Incorporated CR:
REST_NetAPI_NotificationChannel-V1_0 gggg gggg OMA-ARC-REST-2013-0052R01-CR_Notif WebSockets_TS
5:2:3:1: 5:2:4: ' | Editorial changes
5.3,5.3.1,
5.3.3,5.3.8,
5.3.9,5.3.10,
6.1.5.4,6.1.5.5,
6.3.1,6.4,
7.21,B.1.1,
B.1.4,B.15,C,
D.5,D.6, D.12,
D.13,G.1.1, 1

© 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C

Page 73 (112)

Document Identifier Date Sections Description
15 Jan 2014 52.2.8,5.2.2.9, | Incorporated CRs:
5.2.2.10, OMA-ARC-REST-NetAPI-2014-0001R01-
5.2211,63, CR_Single_Notification_delivery
gg:g:‘l" g_?’l-i-z' OMA-ARC-REST-NetAPI-2014-0003R01-
B.L3, é.l.G, ' CR_Long_Polling_Optionality_Bugfix_NotifChannel_TS
C21C22 OMA-ARC-REST-NetAPI-2014-0005-
D.9, D.10, CR_Notif_No_Headers_No_Compression
D.12, 1 OMA-ARC-REST-NetAPI-2014-0007R01-CR_Notif_Ping_Pong
Editorial changes
29 Jan 2014 G.1.1.3 Incorporated CR:
OMA-ARC-REST-NetAPI1-2014-0008-
CR_Notif_Protected_access_to_Channel_URL
Editorial changes
13 Feb 2014 721 Incorporated CR:
OMA-ARC-REST-NetAPI-2014-0016-
CR_Notif_section_7_HTTP_code_fix
18 Feb 2014 5.1 Incorporated CR:
OMA-ARC-REST-NetAPI1-2014-0022-
CR_Notif_Explaining_meaning_of_Notification_List_for_Websocke
ts
19 Mar 2014 5.2.25,5.2.2.6, | Incorporated CR:
%27-2-8, D.1- OMA-ARC-REST-NetAPI-2014-0033-CR_xsi_type_NotifChannel
08 May 2014 5,5.2.2.9, Incorporated CR:
5.2.2.10, OMA-ARC-REST-NetAPI-2014-0039R01-
5.3.11,53.12, | CR_Notif WS_Connection_Re_Establishment
5.313,13 Editorial changes
09 Jun 2014 5,5.3.14, Incorporated CRs:
6.1.55.2,7.1, OMA-ARC-REST-NetAPI-2014-0048R02-
D6, 1.1, 14,15 | cR_NC_Multiple_long_polls
OMA-ARC-REST-NetAPI-2014-0051-
CR_Notification_Channel_Examples_and_Fixes
14 Oct 2014 21,6 Incorporated CR:
OMA-ARC-REST-NetAPI1-2014-0076-
CR_ACR_reference_in_TS_NotifChnl
04 Mar 2015 2.1,6.14, Incorporated CR:
6.1.6,6.2.4, OMA-ARC-REST-NetAPI-2015-0021-
6.25,6.33, CR_NotifChnl_TS_updating_references
gig gig D, Editorial changes
G.1.2
11 Jun 2015 5,5.1,5.2.2.3, Incorporated CRs:
5.224,52217, OMA-ARC-REST-NetAPI-2015-0059R02-
5.2.2.8,53, CR_NotifChannel_Dynamic_Polling_channelURL
gg; gig 5 OMA-ARC-REST-NetAPI-2015-0062-
6154D4 ! CR_NotifChannel_Dynamic_Polling_XmlJson
D5 H OMA-ARC-REST-NetAPI-2015-0063-
CR_LargePollingNotification_Example
OMA-ARC-REST-NetAPI-2015-0064R01-
CR_NotifChannel_LargeDataPolling_SeqDiagrams
21 Oct 2015 5.2.2.6,5.3.6 Incorporated CR:
OMA-ARC-REST-NetAPI-2015-0071-
CR_Notification_Channel_maxWaitTime
Editorial changes
03 Dec 2015 6.3.5.1.2, Incorporated CR:
6.35.2.2, OMA-ARC-REST-NetAPI-2015-0095-
6.354.2, A2, | CR_ Notification_Channel fixing validation_errors
gg;g DL H. Editorial changes
1.4

© 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C

Page 74 (112)

REST_NetAPI_NotificationChannel-V1_0

Document Identifier Date Sections Description
Candidate Version: 22 Dec 2015 n/a Status changed to Candidate by TP
REST_NetAPI_NotificationChannel-V1_0 TP Ref # OMA-TP-2015-0220-
INP_REST_NetAPI_NotificationChannel_V1_0_ERP_for_Candidat
e_re_approval
Draft Versions: 27 Jan 2016 5,5.2.2.3, Incorporated CRs:
REST_NetAPI_NotificationChannel-V1_0 5.2.2.8, OMA-ARC-REST-NetAPI-2016-0001R01-
5.2.2.13, CR_Notification_Channel_NativeChannel
2-5-35'13: 5.32.3.2, OMA-ARC-REST-NetAPI-2016-0002R01-
5'3’14 S CR_Notification_Channel_NativeChannel_SeqDig
09 May 2016 6.1.5.8, D.4, Incorporated CR:
D.5,D.9 OMA-ARC-REST-NetAPI-2016-0006-
CR_Notification_Channel_NativeChannel_example
11 May 2016 J Incorporated CR:
OMA-ARC-REST-NetAPI-2016-0007-
CR_Notification_Channel_NativeChannel_Appendix
Candidate Version: 19 Mar 2020 nla Status changed to Candidate by ARC WG

ARC WG Ref # OMA-ARC-2020-0003-
INP_REST_NetAPI_NotificationChannel_V1_0_ERP_for_Candidat
e_Approval

© 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C

Appendix B.

The notation used in this appendix is specified in [SCRRULES].

B.1 SCR for REST.NC Server

Static Conformance Requirements

(Normative)

Item Function Reference Requirement
REST-NC-SUPPORT-S-001-M Support for the RESTful 5,6
Notification Channel API
REST-NC-SUPPORT-S-002-M Support for the XML request & | 6
response format
REST-NC-SUPPORT-S-003-M Support for the JSON request & | 6
response format
REST-NC-SUPPORT-S-004-O Support for the application/x- Appendix C
www-form-urlencoded format
B.1.1 SCR for REST.NC.Channels Server
Item Function Reference Requirement
REST-NC-CHANNELS-S-001-M Support for management of 6.1 REST-NC-
Notification Channels CHANNELS-S-
003-0
OR
REST-NC-
CHANNELS-S-
004-0
OR
REST-NC-
CHANNELS-S-
006-0
REST-NC-CHANNELS-S-002-O Retrieving a list of Notification 6.1.3
Channels - GET
REST-NC-CHANNELS-S-003-O Creating a Long Polling 6.1.5 REST-NC-
Notification Channel — POST LONGPOLL-S-
(XML or JSON) 001-O
REST-NC-CHANNELS-S-004-O Creating a OMA Push 6.1.5 REST-NC-
Notification Channel — POST OMAPUSH-S-
(XML or JSON) 001-O
AND
REST-NC-
REFRESH-S-001-
@)
REST-NC-CHANNELS-S-005-O Creating a Notification Channel | C.1
—POST
(application/x-www-form-
urlencoded)
REST-NC-CHANNELS-S-006-O Creating a WebSockets 6.1.5 REST-NC-

Notification Channel — POST
(XML or JSON)

REFRESH-S-001-
@)

AND

REST-NC-
WEBSOCK-S-
001-O

© 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

Page 75 (112)

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C

Page 76 (112)

B.1.2 SCR for REST.NC.IndividualChannel Server
Item Function Reference Requirement
REST-NC-INDCHANNEL-S-001- | Support for access to individual 6.2
M Notification Channel
REST-NC-INDCHANNEL-S-002- | Retrieving Notification Channel | 6.2.3
M information - GET
REST-NC-INDCHANNEL-S-003- | Terminating Notification 6.2.6

M

Channel - DELETE

B.1.3 SCR for REST.NC.LongPolling Server
Item Function Reference Requirement
REST-NC-LONGPOLL-S-001-O Support for access to 6.3 REST-NC-
notifications via long polling LONGPOLL-S-
002-0
REST-NC-LONGPOLL-S-002-0 Retrieving notifications fromthe | 6.3.5
server using Long Polling —
POST (XML or JSON)
REST-NC-LONGPOLL-S-003-0O Retrieving notifications from the | C.2
server using Long Polling —
POST
(application/x-www-form-
urlencoded)
B.1.4 SCR for REST.NC.OMAPush Server
Item Function Reference Requirement
REST-NC-OMAPUSH-S-001-O Acting as a Push Initiator by -
pushing notifications to OMA
Push Enabler
B.1.5 SCR for REST.NC.Refresh Server
Item Function Reference Requirement
REST-NC-REFRESH-S-001-O Support for Refresh of 6.4 REST-NC-
Notification Channel REFRESH-S-003-
@)
REST-NC-REFRESH-S-002-O Retrieving ChannelLifetime — 6.4.3
GET
REST-NC-REFRESH-S-003-O Updating ChannelLifetime — 6.4.4

PUT

B.1.6 SCR for REST.NC.WebSockets Server
Item Function Reference Requirement
REST-NC-WEBSOCK-S-001-O Allow opening a WebSockets 1.1 REST-NC-
connection, serve notifications WEBSOCK-S-
through this connection 002-0
REST-NC-WEBSOCK-S-002-O Support the connCheck/connAck | 1.3

mechanism

© 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 77 (112)

Appendix C. Application/x-www-form-urlencoded Request Format for
POST Operations (Normative)

This section defines a format for the RESTful Notification Channel REST API requests where the body of the request is
encoded using the application/x-www-form-urlencoded MIME type.

Note: only the request body is encoded as application/x-www-form-urlencoded, the response is still encoded as XML or
JSON depending on the preference of the client and the capabilities of the server. Names and values MUST follow the
application/x-www-form-urlencoded character escaping rules from [W3C_URLENC].

The encoding is defined below for the following Notification Channel REST operations which are based on POST requests:
e Create a Notification Channel
e Retrieve notifications from Notification Server

The application/ x-www-form-urlencoded request format is not supported for a WebSockets-based Notification Channel.

C.1 Creating a Notification Channel

This operation is used to create a Notification Channel, see section 6.1.5.

The request parameters are as follows:

Name Type/Values Optional | Description

clientCorrelator xsd:string Yes A correlator that the client can use to tag this particular
resource representation during a request to create a
resource on the server.

This element SHOULD be present. Note: this allows the
client to recover from communication failures during
resource creation and therefore avoids duplicate
channel creation in such situations.

In case the field is present, the server SHALL not alter
its value, and SHALL provide it as part of the
representation of this resource. In case the field is not
present, the server SHALL NOT generate it.

applicationTag xsd:string Yes A tag that the client MAY use to tag this particular
resource on the server. In case the field is present, the
server SHALL not alter its value, and SHALL provide it
as part of the representation of this resource. In case
the field is not present, the server SHALL NOT generate
it.

channelType xsd:string No Specifies the type of Notification Channel to be used
(method that will be used to receive new notifications on
the channel). Allowed string values are defined in
5.2.3.1.

maxNotifications xsd:int Yes Defines the maximum number of notifications that may
be delivered in a notification list.

If not specified, a default value specified by the server

policy will apply, and the server SHOULD include that

value in the response to the client.

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 78 (112)

channelLifetime xsd:int Yes Lifetime (duration) of Notification Channel in seconds.

Client can specify desired lifetime of Notification
Channel in POST request when creating Notification
Channel, however the server in the response to the
request may change the desired lifetime according to its
server policy.

If the element is not present in the POST request, a
default channel lifetime specified by server policy will

apply.

The server SHALL always include the channe lifetime in
the response either when it was modified compared to
what the client requested, or a default channel lifetime is
used.

C.1.1 Example 1: Create Notification Channel (Long Polling method),
using tel URI (Informative)

Cl11 Request

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels HTTP/1.1
Host: example.com

Content-Type: application/x-www-form-urlencoded

Content-Length: nnnn

Accept: application/xml

clientCorrelator=123&
applicationTag=myApp&
channelType=LongPolling&
maxNotifications=1&
channelLifetime=7200

Cl11.2 Response

HTTP/1.1 201 Created

Location: http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch123
Date: Thu, 04 Jun 2009 02:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationChannel xmIns:nc="urn:oma:xml:rest:netapi:notificationchannel:1" xmins:xsi="http://www.w3.0rg/2001/XMLSchema-
instance" >
<clientCorrelator>123</clientCorrelator>
<applicationTag>myApp</applicationTag>
<channelType>LongPolling</channelType>
<channelData xsi:type="nc:LongPollingData">
<channelURL>http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch123/netifications
</channelURL>
<maxNotifications>1</maxNotifications>
</channelData>
<channelLifetime>7200</channelLifetime>
<callbackURL>http://example.com/callBackUrl/cbu111</callbackURL>

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 79 (112)

<resourceURL>http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch123</resourceURL>
</nc:notificationChannel>

C.1.2 Example 2: Create Notification Channel (OMA Push method), using
tel URI (Informative)

Cc.1.21 Request

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels HTTP/1.1
Host: example.com

Content-Type: application/x-www-form-urlencoded

Content-Length: nnnn

Accept: application/xml

clientCorrelator=987&
applicationTag=myApp&
channelType=OMAPush&
appld=x-wap-application:wml.ua&
maxNotifications=1&
channelLifetime=7200

C.l122 Response

HTTP/1.1 201 Created

Location: http://fexample.com/exampleAPl/natificationchannel/v1/tel%3A%2B19585550100/channels/ch987
Date: Thu, 04 Jun 2009 02:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationChannel xmIns:nc="urn:oma:xml:rest:netapi:notificationchannel:1" xmins:xsi="http://www.w3.0rg/2001/XMLSchema-
instance" >
<clientCorrelator>987</clientCorrelator>
<applicationTag>myApp</applicationTag>
<channelType>OMAPush</channelType>
<channelData xsi:type="nc:OMAPushData">
<appld>x-wap-application:wml.ua</appld>
<maxNotifications>1</maxNotifications>
</channelData>
<channelLifetime>7200</channelLifetime>
<callbackURL>http://example.com/callBackUrl/cbu222</callbackURL>
<resourceURL>http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch987</resourceURL>
<Inc:notificationChannel>

C.1.3 Example 3: Create Notification Channel, using ACR
(Informative)

C.131 Request

POST /exampleAPI/notificationchannel/v1/acr%3Apseudonym123/channels HTTP/1.1
Host: example.com

Content-Type: application/x-www-form-urlencoded

Content-Length: nnnn

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 80 (112)

Accept: application/xml

clientCorrelator=123&
applicationTag=myApp&
channelType=LongPolling&
maxNotifications=1&
channelLifetime=7200

C.1.3.2 Response

HTTP/1.1 201 Created

Location: http://example.com/exampleAPI/notificationchannel/ivi/acr%3Apseudonym123/channels/ch123
Date: Thu, 04 Jun 2009 02:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationChannel xmins:nc="urn:oma:xml:rest:netapi:notificationchannel:1" xmins:xsi="http://www.w3.0rg/2001/XMLSchema-
instance" >
<clientCorrelator>123</clientCorrelator>
<applicationTag>myApp</applicationTag>
<channelType>LongPolling</channelType>
<channelData xsi:type="nc:LongPollingData">
<channelURL>http://example.com/exampleAPI/notificationchannel/v1/acr%3Apseudonym123/channels/ch123/notifications
</channelURL>
<maxNotifications>1</maxNotifications>
</channelData>
<channelLifetime>7200</channelLifetime>
<callbackURL>http://example.com/callBackUrl/cbu111</callbackURL>
<resourceURL>http://example.com/exampleAPI/notificationchannel/v1/acr%3Apseudonym123/channels/ch123</resourceURL>
<Inc:notificationChannel>

C.2 Retrieving notifications from the Notification Server

This operation is used to retrieve new notifications from the Notification Server if the Notification Channel involved is of
Long Polling type, see section 6.3.5.

The request parameters are as follows:

Name Type/Values Optional | Description

longPollingRequestParameters | (empty) No Provides the body of the request, which is an
empty string in this version of specification.

C.2.1 Example 1: Single notification delivered in a NotificationList
(Informative)

Cc211 Request

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch123/notifications HTTP/1.1
Host: example.com

Content-Type: application/x-www-form-urlencoded

Content-Length: nnnn

Accept: application/xml

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 81 (112)

longPollingRequestParmeters=

C.21.2 Response

HTTP/1.1 200 OK

Date: Thu, 04 Jun 2009 02:51:59 GMT
Content-Type: application/xml
Connection: close

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationList xmIns:nc="urn:oma:xml:rest:netapi:notificationchannel:1">
<pr:presenceNotification xmins:pr="urn:oma:xml:rest:netapi:presence:1">
<presentityUserld>tel:+19585550100</presentityUserld>
<callbackData>1234</callbackData>
<resourceStatus>Active</resourceStatus>
<presence>
<person>
<mood>
<moodValue>Happy</moodValue>
</mood>
</person>
</presence>
<link rel="PresenceSubscription"
href="http://example.com/exampleAPI/v1/presence/tel%3A%2B19585550101/subscriptions/presenceSubscriptions/
tel%3A%2B19585550100/sub001"/>
</pr:presenceNotification>
<Inc:notificationList>

C.2.2 Example 2: Single notification delivered outside a NotificationList
(Informative)

C221 Request

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch123/notifications HTTP/1.1
Host: example.com

Content-Type: application/x-www-form-urlencoded

Content-Length: nnnn

Accept: application/xml

longPollingRequestParmeters=

C.222 Response

HTTP/1.1 200 OK

Date: Thu, 04 Jun 2009 02:51:59 GMT
Content-Type: application/xml
Connection: close

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<pr:presenceNotification xmins:pr="urn:oma:xml:rest:netapi:presence: 1">
<presentityUserld>tel:+19585550100</presentityUserld>

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 82 (112)

<callbackData>1234</callbackData>
<resourceStatus>Active</resourceStatus>
<presence>
<person>
<mood>
<moodValue>Happy</moodValue>
</mood>
</person>
</presence>
<link rel="PresenceSubscription"
href="http://example.com/exampleAPI/v1/presence/tel%3A%2B19585550101/subscriptions/presenceSubscriptions/
tel%3A%2B19585550100/sub001"/>
</pr:presenceNotification>

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 83 (112)

Appendix D. JSON examples (Informative)

JSON (JavaScript Object Notation) is a lightweight, text-based, language-independent data interchange format. It provides a
simple means to represent basic name-value pairs, arrays and objects. JSON is relatively trivial to parse and evaluate using
standard JavaScript libraries, and hence is suited for REST invocations from browsers or other processors with JavaScript
engines. Further information on JSON can be found at [RFC7159].

The following examples show the request and response for various operations using the JSON data format. The examples
follow the XML to JSON serialization rules in [REST_NetAPI_Common]. A JSON response can be obtained by using the
content type negotiation mechanism specified in [REST_NetAPI_Common].

For full details on the operations themselves please refer to the section number indicated.

D.1 Retrieve active Notification Channels (section 6.1.3.1)
Request:

GET /exampleAPI/natificationchannel/v1/tel%3A%2B19585550100/channels HTTP/1.1
Host: example.com
Accept: application/json

Response:

HTTP/1.1 200 OK
Content-Type: application/json

Content-Length: nnnn
Date: Thu, 04 Jun 2009 02:51:59 GMT

{"notificationChannelList": {
"notificationChannel": [
{
"applicationTag": "myApp",
"callbackURL": "http://lexample.com/callBackUrl/cbu111",
"channelData": {
"channelURL": "http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch123/notifications

"maxNotifications": "1",
}1
"channelLifetime"; "7200",
"channelType": "LongPolling",
"clientCorrelator"; "123",
"resourceURL": "http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch 123"

"applicationTag": "someOtherApp",
"callbackURL": "http://lexample.com/callBackUrl/cbu222",
"channelData": {

"appld": "x-wap-application:wml.ua”, "maxNotifications": "5",
b
"channelLifetime": "3600",
"channelType": "OMAPush",
"clientCorrelator": "987",
"resourceURL": "http://example.com/exampleAPl/notificationchannel/v1/tel%3A%2B19585550100/channels/ch987"

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 84 (112)

]!
"resourceURL"; "http://example.com/exampleAPI/notificationchannel/iv1/tel%3A%2B19585550100/channels"
i

D.2 Create Notification Channel (Long Polling method), using tel
URI (section 6.1.5.1)

Request:

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels HTTP/1.1
Host: example.com

Content-Type: application/json

Content-Length: nnnn

Accept: application/json

{"notificationChannel": {
"applicationTag": "myApp",
"channelData"; {

"maxNotifications": "1",
}

g ’hanneILifetime": "7200",
"channelType": "LongPolling",
"clientCorrelator": "123"

i
Response:

HTTP/1.1 201 Created

Location: http://fexample.com/exampleAP|/notificationchannel/v1/tel%3A%2B19585550100/channels/ch123
Date: Thu, 04 Jun 2009 02:51:59 GMT

Content-Type: application/json

Content-Length: nnnn

{"notificationChannel": {
"applicationTag": "myApp",
"callbackURL": "http://example.com/callBackUrl/cbu111",
"channelData": {
"channelURL": "http://fexample.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch123/netifications”,
"maxNotifications": "1",

"channelLifetime": "7200",

"channelType": "LongPolling",

"clientCorrelator"; "123",

"resourceURL": "http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch 123"

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 85 (112)

D.3 Create Notification Channel (OMA Push method), using tel
URI (section 6.1.5.2)

Request:

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels HTTP/1.1
Host: example.com

Content-Type: application/json

Content-Length: nnnn

Accept: application/json

{"notificationChannel": {
"applicationTag": "myApp",
"channelData"; {

“appld”: “x-wap-application:wml.ua”,
"maxNotifications": "1",
%

"channelLifetime"; "7200",

"channelType": "OMAPush",

"clientCorrelator": "987"

b
Response:

HTTP/1.1 201 Created

Location: http://fexample.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch987
Date: Thu, 04 Jun 2009 02:51:59 GMT

Content-Type: application/json

Content-Length: nnnn

{"notificationChannel": {
"applicationTag": "myApp",
"callbackURL": "http://example.com/callBackUrl/cbu222",
"channelData": {
“appld”: “x-wap-application:wml.ua”,
"maxNotifications": "1",

"channelLifetime": "7200",

"channelType": "OMAPush",

"clientCorrelator": "987",

"resourceURL": "http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch987"

D.4 Create Notification Channel (OMA Push method with
largeDataPolling), using tel URI (section 6.1.5.3)

Request:

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels HTTP/1.1
Host: example.com

Accept: application/json

Content-Type: application/json

Content-Length: nnnn

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C

Page 86 (112)

{"notificationChannel": {
"applicationTag": "myApp",
"channelData": {

"appld": "x-wap-application:wml.ua",

"largeDataPolling": {
"maxPollingNotifications": "10",
"pollingEnabled": "true"

}

;naxNotifications": ""
}!

"channelLifetime": "7200",
"channelType": "OMAPush",
"clientCorrelator": "987"

Iy
Response:

HTTP/1.1 201 Created

Location: http://fexample.com/exampleAPl/natificationchannel/v1/tel%3A%2B19585550100/channels/ch987
Date: Thu, 04 Jun 2015 02:51:59 GMT

Content-Type: application/json

Content-Length: nnnn

{"notificationChannel": {
"applicationTag": "myApp",
"callbackURL": "http://example.com/callBackUrl/cbu222",
"channelData"; {
"appld": "x-wap-application:wml.ua",
"largeDataPolling": {
"maxPollingNotifications": "10",
"pollingEnabled": "true"

}

;naxNotifications": ""
}7

"channelLifetime": "7200",

"channelType": "OMAPush",

"clientCorrelator"; "987",

"resourceURL": "http://example.com/exampleAPI/notificationchannel/iv1/tel%3A%2B19585550100/channels/ch987"

D.5 Create Notification Channel (OMA Push method with
LargeDataPolling) not supported (section 6.1.5.4)

Request:

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels HTTP/1.1
Host: example.com

Accept: application/json

Content-Type: application/json

Content-Length: nnnn

{"notificationChannel": {
"applicationTag": "myApp",

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C

Page 87 (112)

"channelData"; {
"appld": "x-wap-application:wml.ua",
"largeDataPolling": {
"maxPollingNotifications": "10",
"pollingEnabled": "true"

}

hwaxNotifications": """
}7

"channelLifetime": "7200",
"channelType": "OMAPush",
"clientCorrelator": "987"

b
Response:

HTTP/1.1 403 Forbidden

Date: Thu, 04 Jun 2015 02:51:59 GMT
Content-Type: application/json
Content-Length: nnnn

{"requestError"; {"policyException"; {
"messageld"; "POL2006",
"text": "Requested feature %1 is not available”,
"variables": "LargeDataPolling"

i

D.6 Create Notification Channel (Long Polling method), using

ACR (section 6.1.5.5)

Request:

POST /exampleAPI/notificationchannel/v1/acr%3Apseudonym123/channels HTTP/1.1

Host: example.com:80
Content-Type: application/json
Content-Length: nnnn

Accept: application/json

{"notificationChannel": {
"applicationTag": "myApp",
"channelData": {

"maxNotifications": "1",

";:hanneILifetime": "7200",

"channelType": "LongPolling",
"clientCorrelator": "123"

i

Response:

HTTP/1.1 201 Created

Location; http://example.com/exampleAPI/notificationchannel/ivi/acr%3Apseudonym123/channels/ch123

Date: Thu, 04 Jun 2009 02:51:59 GMT
Content-Type: application/json
Content-Length: nnnn

© 2020 Open Mobile Alliance.

Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 88 (112)

{"notificationChannel": {
"applicationTag": "myApp",
"callbackURL": "http://example.com/callBackUrl/cbu111",
"channelData"; {
"channelURL": " http://example.com/exampleAPI/notificationchannel/v1/ acr%3Apseudonym123/channels/ch123/notifications ",
"maxNotifications": "1",
i
"channelLifetime": "7200",
"channelType": "LongPolling",
"clientCorrelator"; "123",
"resourceURL": "http://example.com/exampleAPI/notificationchannel/vi/acr%3Apseudonym123/channels/ch123"

D.7 Create Notification Channel (WebSockets method), using tel
URI (section 6.1.5.6)

Request:

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels HTTP/1.1
Host: example.com

Content-Type: application/json

Content-Length: nnnn

Accept: application/json

{"notificationChannel": {
"applicationTag": "myApp",
"channelData"; {

"maxNotifications": "5",
}

hannelLifetime": "7200",
"channelType": "WebSockets",
"clientCorrelator"; "987"

i
Response:

HTTP/1.1 201 Created

Location: http://fexample.com/exampleAPI/natificationchannel/v1/tel%3A%2B19585550100/channels/ch378
Date: Thu, 28 Jun 2013 02:51:59 GMT

Content-Type: application/json

Content-Length: nnnn

{"notificationChannel": {
"applicationTag": "myApp",
"callbackURL": "http://example.com/callBackUrl/cbu112",
"channelData": {
"channelURL": "ws://fexample.com/exampleAPl/notificationchannel/v1/tel%3A%2B19585550100/channels/ch378/ws",
"maxNotifications": "5",

%

"channelLifetime"; "3600",

"channelType": "WebSockets",

"clientCorrelator"; "987",

"resourceURL": "http://example.com/exampleAPI/notificationchannel/iv1/tel%3A%2B19585550100/channels/ch378"

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C

Page 89 (112)

D.8 Example: Attempt to create Notification Channel of
unsupported type (section 6.1.5.7)

Request:

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels HTTP/1.1
Host: example.com

Accept: application/json

Content-Type: application/json

Content-Length: nnnn

{"notificationChannel": {
"applicationTag": "myApp",
"channelData": {

"maxNotifications": "1",
}

" hannelLifetime": "7200",
"channelType": "LongPolling",
"clientCorrelator"; "123"

i
Response:

HTTP/1.1 400 Bad Request

Date: Thu, 28 Jun 2013 02:51:59 GMT
Content-Type: application/json
Content-Length: nnnn

{"requestError": {"policyException": {
"messageld": "POL1023",
"text": "Notification channel type %1 not supported. Supported types: %2.",
"variables": [
"LongPolling",
"OMAPush, WebSockets"
]
1

D.9 Create Notification Channel (Native Channel method with

LargeDataPolling) not supported (section 6.1.5.8)
Request:

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels HTTP/1.1
Host: example.com

Accept: application/json

Content-Type: application/json

Content-Length: nnnn

{"notificationChannel": {
"applicationTag": "myApp",
"channelData": {

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 90 (112)

"channelSubType": "GCM",
"registrationToken": "Cl2k_HHwglpoDKCIZvwvDMExUdFQ3P1",
"channelSubTypeVersion": "1.0",
"largeDataPolling": {
"maxPollingNotifications": "10",
"pollingEnabled": "true"

}

hwaxNotifications": ""
}!

"channelLifetime": "7200",
"channelType": "NativeChannel",
"clientCorrelator"; "987"

b
Response:

HTTP/1.1 201 Created

Location: http://fexample.com/exampleAPl/natificationchannel/v1/tel%3A%2B19585550100/channels/ch309
Date: Sat, 23 Apr 2016 06:55:50 GMT

Content-Type: application/json

Content-Length: nnnn

{"notificationChannel"; {
"applicationTag": "myApp",
"callbackURL": "http://fexample.com/callBackUrl/cbu899",
"channelData": {
"channelSubType": "GCM",
"registrationToken": "CI2k_HHwglpoDKCIZvwDMEXUdFQ3P1",
"channelSubTypeVersion": "1.0",
"largeDataPolling": {
"maxPollingNotifications": "10",
"pollingEnabled": "true"

}

;naxNotifications": """

}1
"channelLifetime": "7200",

"channelType": "NativeChannel",
"clientCorrelator": "987",
"resourceURL": "http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch309"

D.10 Retrieve individual Notification Channel (section 6.2.3.1)

Request:

GET /exampleAPI/nctificationchannel/v1/tel%3A%2B19585550100/channels/ch456 HTTP/1.1
Host: example.com
Accept: application/json

Response:

HTTP/1.1 200 OK
Content-Type: application/json

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 91 (112)

Content-Length: nnnn
Date: Thu, 04 Jun 2009 02:51:59 GMT

{"notificationChannel": {
"applicationTag"; "someOtherApp",
"callbackURL": "http://example.com/callBackUrl/cbu333",
"channelData": {
"channelURL": "http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch456/natifications”,
"maxNoatifications"; "5",
1)
"channelLifetime"; "7200",
"channelType": "LongPolling",
"clientCorrelator": "456",
"resourceURL": "http://example.com/exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch456"

D.11 Removing Notification Channel (section 6.2.6.1)

Request:

DELETE /exampleAPI/notificationchannel/iv1/tel%3A%2B19585550100/channels/ch456 HTTP/1.1
Host: example.com
Accept: application/json

Response:

HTTP/1.1 204 No Content
Date: Thu, 04 Jun 2009 02:51:59 GMT

D.12 Single notification delivered in a NotificationList (section
6.3.5.1)

Request:

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch123/nctifications HTTP/1.1
Host: example.com

Accept: application/json

Content-Type: application/json

Content-Length: nnnn

{"longPollingRequestParameters": null}

Response:

HTTP/1.1 200 OK

Content-Type: application/json
Content-Length: nnnn

Date: Thu, 04 Jun 2009 02:51:59 GMT

{"notificationList": {"presenceNotification": {
"callbackData": "1234",

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 92 (112)

"link"; {
"href"; "http://example.com/exampleAPI/v1/presence/tel%3A%2B19585550101/subscriptions/presenceSubscriptions/
tel%3A%2B19585550100/sub001",
"rel": "PresenceSubscription"
b
"presence"; {"person”: {"mood"; {"moodValue": "Happy"}}},
"presentityUserld": "tel:+19585550100",
"resourceStatus”: "Active"

i

D.13 Multiple notifications delivered (section 6.3.5.2)

Request:

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch123/natifications HTTP/1.1
Host: example.com

Accept: application/json

Content-Type: application/json

Content-Length: nnnn

{"longPollingRequestParameters": null}

Response:

HTTP/1.1 200 OK

Content-Type: application/json
Content-Length: nnnn

Date: Thu, 04 Jun 2009 02:51:59 GMT

{"notificationList": [
{ "inboundMessageNatification": {"inboundMessage": {
"destinationAddress": "tel:+19585550100",
"inboundMMSMessage": {"subject": "Who is RESTing on the beach?"},
"link": {
"href": "http://example.com/exampleAPI/v1/messaging/inbound/subscriptions/sub123",
"rel": "Subscription"

}

;nessageld": "msg123",
"resourceURL": "http://example.com/exampleAPI/v1/messaging/inbound/registrations/reg123/messages/msg123 ",
"senderAddress": "tel:+19585550101"
Hh
{"inboundMessageNotification": {"inboundMessage": {
"destinationAddress": "tel:+19585550100",
"inboundMMSMessage": {"subject": "Who is still RESTing on the beach?"},
"link"; {
"href": "http://example.com/exampleAPI/v1/messaging/inbound/subscriptions/sub123",
"rel": "Subscription"

}

messageld": "msg1234",
"resourceURL": "http://example.com/exampleAPI/v1/messaging/inbound/registrations/reg123/messages/msg1234",
"senderAddress": "tel:+19585550102"
Hh
{ "presenceNotification"; {
"callbackData": "1234",
"link"; {

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 93 (112)

"href"; "http://example.com/exampleAPI/v1/presence/tel%3A%2B19585550101/subscriptions/presenceSubscriptions/
tel%3A%2B19585550100/sub001",
"rel": "PresenceSubscription"

}7

"presence"; {"person”: {"mood": {"moodValue": "Happy"}}},
"presentityUserld": "tel:+19585550100",

"resourceStatus": "Active"

}
1

D.14 Server timeout (section 6.3.5.3)

Request:

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch123/natifications HTTP/1.1
Host: example.com

Accept: application/json

Content-Type: application/json

Content-Length: nnnn

{"longPollingRequestParameters": null}

Response:

HTTP/1.1 200 OK

Content-Type: application/json
Content-Length: nnnn

Date: Thu, 04 Jun 2009 02:51:59 GMT

{"notificationList": null}

D.15 Single notification delivered in a NotificationList (section
6.3.5.4)

Request:

POST /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch123/notifications HTTP/1.1
Host: example.com

Accept: application/json

Content-Type: application/json

Content-Length: nnnn

{"longPollingRequestParameters": null}

Response:

HTTP/1.1 200 OK

Content-Type: application/json
Content-Length: nnnn

Date: Thu, 04 Jun 2009 02:51:59 GMT

{"presenceNotification"; {
"callbackData": "1234",

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 94 (112)

"link"; {
"href"; "http://example.com/exampleAPI/v1/presence/tel%3A%2B19585550101/subscriptions/presenceSubscriptions/
tel%3A%2B19585550100/sub001",
"rel": "PresenceSubscription"

}!

"presence"; {"person”: {"mood"; {"moodValue": "Happy"}}},
"presentityUserld": "tel:+19585550100",

"resourceStatus": "Active"

D.16 Retrieve remaining Notification Channel lifetime (section
6.4.3.1)

Request:

GET /exampleAPI/notificationchannel/v1/tel%3A%2B19585550100/channels/ch456/channelLifetime HTTP/1.1
Host: example.com
Accept: application/json

Response:

HTTP/1.1 200 OK

Content-Type: application/json
Content-Length: nnnn

Date: Thu, 28 Jun 2013 02:51:59 GMT

{"notificationChannelLifetime": {"channelLifetime": "1724"}

D.17 Update Notification Channel lifetime (section 6.4.4.1)

Request:

PUT /exampleAPI/natificationchannel/v1/tel%3A%2B19585550100/channels/ch456/channelLifetime HTTP/1.1
Host: example.com

Accept: application/json

Content-Type: application/json

Content-Length: nnnn

{"notificationChannelLifetime": {"channelLifetime": "7200"}}

Response:

HTTP/1.1 200 OK

Content-Type: application/json
Content-Length: nnnn

Date: Thu, 28 Jun 2013 02:51:59 GMT

{"notificationChannelLifetime": {"channelLifetime": "3600"}

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 95 (112)

Appendix E. Operations mapping to a pre-existing baseline
specification (Informative)

As this specification does not have a baseline specification, this appendix is empty

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 96 (112)

Appendix F. Light-weight resources (Informative)

As this version of the specification does not define any Light-weight Resources, this appendix is empty.

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 97 (112)

Appendix G. Authorization aspects (Normative)

This appendix specifies how to use the RESTful Notification Channel API in combination with some authorization
frameworks.

G.1 Use with OMA Authorization Framework for Network APIs
The RESTful Notification Channel API MAY support the authorization framework defined in [Autho4AP1_10].
A RESTful Notification Channel API supporting [Autho4API1_10]:

e SHALL conform to section D.1 of [REST_NetAPI_Common];
e SHALL conform to this section G.1.

G.1.1 Scopevalues
G.1.1.1 Definitions

In compliance with [Autho4API_10], an authorization server serving clients requests for getting authorized access to the
resources exposed by the RESTful Notification Channel API:

e SHALL support the scope values defined in the table below;

e MAY support scope values not defined in this specification.

Scope value Description For one-time
access token

oma_rest_notificationchannel.all_{apiVersion} Provide access to all defined No
operations on the resources in this
version of the API. The {apiVersion}
part of this identifier SHALL have the
same value as the “apiVersion” URL
variable which is defined in section
5.1. This scope value is the union of
the other scope values listed in next
rows of this table.

oma_rest_notificationchannel.longpoll Provide access to all operations No
defined for using Long Polling on
Notification Channel.

oma_rest_notificationchannel.omapush Provide access to all operations No
defined for using OMA Push on
Notification Channel.

oma_rest_natificationchannel.websockets Provide access to all operations No
defined for using WebSockets on
Notification Channel.

Table 1: Scope values for RESTful Notification Channel API

G.11.2 Downscoping

In the case where the client requests authorization for “oma_rest notificationchannel.all_{apiVersion}” scope, the
authorization server and/or resource owner MAY restrict the granted scope to some of the following scope values:

e “oma rest notificationchannel.longpoll”

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 98 (112)

e “oma rest notificationchannel.omapush”
e “oma_rest_notificationchannel.websockets”
G.1.1.3 Mapping with resources and methods

Tables in this section specify how the scope values defined in section G.1.1.1 for the RESTful Notification Channel APl map
to the REST resources and methods of this API. In these tables, the root “oma_rest notificationchannel.” of scope values is
omitted for readability reasons.

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C

Page 99 (112)

URL
Resource Base URL: Section HTTP verbs
http://{serverRoot}/notificationchannel/{a | reference
piVersion} GET PUT POST DELETE
e all_{apiVersion} all_{apiVersi
,C\l:ﬁtellt‘llilaeﬁlson Huserld}/channels 6.1 or longpoll or n/a on} or n/a
omapush or longpoll or
websockets omapush or
websockets
Individual HKuserld}/channels/{channelld} 6.2 aII_{lap|Ver|s||on} n/a n/a all_{apiversi
Notification ortongpot or on} or
Channel omapush or longpoll or
websockets omapush or
websockets
. I all_{apiVersion} all_{apiVersi
Notification Huserld}/channels/{channelld}/channelLifeti 6.4 h n/a n/a
Channel lifetime me orormapush or on} or
websockets omapush or
websockets
Table 2: Required scope values for: Management of Notification Channel
S URL Section | HTTP verbs
<specified by the server> reference
GET PUT POST DELETE
Notification list <Resource URL is provided by the server 6.3 n/a n/a all_é?]p;(\)/rem n/a
when the Notification Channel is created> longpoll

Table 3: Required scope values for:

Retrieval of notifications from Notification Server

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 100 (112)

G.1.2 Use of ‘acr:auth’

This section specifies the use of ‘acr:auth’ in place of an end user identifier in a resource URL path.

An ‘acr’ URI of the form ‘acr:auth’, where ‘auth’ is a reserved keyword MAY be used to avoid exposing a real end user
identifier in the resource URL path.

A client MAY use ‘acr:auth’ in a resource URL in place of the{userld} resource URL variable in the resource URL path,
when the RESTful Notification Channel API is used in combination with [Autho4API1_10].

In the case the RESTful Notification Channel API supports [Autho4API_10], the server:
— SHALL accept ‘acr:auth’ as a valid value for the resource URL variable {userld}.

SHALL conform to [REST_NetAPI_Common] section 5.8.1.1 regarding the processing of ‘acr:auth’

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 101 (112)

Appendix H. Notification server - Push enabler interaction
(Informative)

This appendix provides further information on Notification Server Interaction with the Push Enabler for forwarding the event
to the targeted device and application on the device.

In delivering the Push MESSAGE, the Notification Server has several implementation options:

a) Delivery via a Push Proxy Gateway (PPG) as defined in [OMA_PUSH], using either the Push Access Protocol
[PushPAP] or the PushREST API [PushREST]. Depending upon the size of the notification and the intended
bearer(s), the Notification Server may deliver the notification content directly, or provide an indirect reference to the
notification content which the application may retrieve upon receiving the Push message. How the Notification
Server determines the supported notification content size is unspecified, but as a general rule any notification content
of less than 512 compressed/binary bytes or less than 2K uncompressed bytes should be deliverable via any OMA
Push-OTA bearer binding.

Push PAP Example: Delivering Indirect Reference to Notification Content Available from Enabler Server

POST /pap HTTP/1.1

Content-Length: 1041

Content-Type: multipart/related; boundary=PMasdfglkjhqwert; type="application/xml"
Host: ppg.example.com:9002

Connection: close

--PMasdfglkjhqwert
Content-Type: application/xml

<7xml version="1.0"?>
<IDOCTYPE pap PUBLIC "-//WAPFORUM//DTD PAP 1.0//EN" "http://www.wapforum.org/DTD/pap_1.0.dtd">
<pap product-name="0OMA-Notification-Server-1.0">
<push-message push-id="10790255011:mms_12.25.203.86_1223_1078969978_21:134:0:1"
source-reference="notserver.example.com">
<address address-value="WAPPUSH=+14255551212/TYPE=PLMN@example.com"/>
<quality-of-service bearer="SMS" bearer-required="false" delivery-method="unconfirmed" network="GSM"
network-required="false"/>
</push-message>
</pap>
--PMasdfglkjhqwert

Content-Length: 373
Content-Type: text/vnd.wap.si
X-Wap-Application-Id: myapp.com/f7adaea2-2bfe-1869-8314-1cc82b1aadb8

<?xml version="1.0" encoding="is0-8859-1"7>
<IDOCTYPE si PUBLIC "-//WAPFORUM//DTD SI 1.0//EN" "http://www.wapforum.org/DTD/SI.dtd">
<s|>
<indication href="http://mmsapi.example.com/notification/myapp.com/f7adaea2-2bfe-1869-8314-1cc82b1aa4b8"
si-id = "10790255011:mms_12.25.203.86_1223_1078969978_21:134:0:1"
>Your message was delivered.</indication>
<[si>

--PMasdfglkjhqwert—

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

http://www.wapforum.org/DTD/pap_1.0.dtd
http://www.wapforum.org/DTD/SI.dtd

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 102 (112)

Push PAP Example: Delivering a “largePollNotification”

POST /pap HTTP/1.1

Content-Length: 1041

Content-Type: multipart/related; boundary=PMasdfglkjhqwert; type="application/xml"
Host: ppg.example.com:9002

Connection: close

--PMasdfglkjhqwert
Content-Type: application/xml

<?xml version="1.0"?>
<IDOCTYPE pap PUBLIC "-//WAPFORUM//DTD PAP 1.0//EN" "http://www.wapforum.org/DTD/pap_1.0.dtd">
<pap product-name="OMA-Notification-Server-1.0">
<push-message push-id="10790255011:mms_12.25.203.86_1223_1078969978_21:134.0:1"
source-reference="notserver.example.com">
<address address-value="WAPPUSH=+14255551212/TYPE=PLMN@example.com"/>
<quality-of-service bearer="SMS" bearer-required="false" delivery-method="unconfirmed" network="GSM"
network-required="false"/>
</push-message>
</pap>
--PMasdfglkjhqwert

Content-Length: nnn
Content-Type: application/xml
X-Wap-Application-Id: myapp.com/f7adaea2-2bfe-1869-8314-1cc82b1aadb8

<?xml version="1.0" encoding="UTF-8"?>

<nc:largePollingNotification xmins:nc="urn:oma:xml:rest:netapi:notificationchannel:1">
<channelURL>http://example.com/largePollingChannel/123</channelURL>
<channelExpiry>2015-06-03T721:32:52Z</channelExpiry>

</nc:largePollingNotification>

--PMasdfglkjhqwert—

PushREST Example: Directly Delivering Notification Content

PUT /ExampleAPI/push/v1/pi1.example.com/pushMessages/id123 HTTP/1.1

Host: ppg.example.com:9002

Content-Type: multipart/related; boundary=qwertyuioplkjhgfdsazxcvbnm; type="application/json
Accept: application/json

Content-Length: 2794

Connection: close

--qwertyuioplkjhgfdsazxcvbnm
Content-Type: application/json

{"push-message": {
"address": [
{"address-value": "wappush=+14255551212/type=pImn@example.com "}

1

"deliver-before-timestamp": "2010-11-08T18:13:51.0Z",

"ppg-notify-requested-to": "http://notserver.example.com/Push/f7adaea2-2bfe-1869-8314-1cc82b1aadb8",
"progress-notes-requested": "true",

"quality-of-service": {"priority": "medium", "bearer": "SMS" "bearer-required": "false" "delivery-method":

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

http://www.wapforum.org/DTD/pap_1.0.dtd

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C

Page 103 (112)

"confirmed" "network": "GSM" "network-required"; "false"},
"source-reference": "notserver.example.com"

i

--qwertyuioplkjhgfdsazxcvbnm
Content-Type: application/xml
X-Wap-Application-ld: myapp.com/f7adaea2-2bfe-1869-8314-1cc82b1aadb8

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationList xmIns:nc="urn:oma:xml:rest:netapi:notificationchannel:1">
<pr:presenceNotification xmins:pr="urn:oma:xml:rest:netapi:presence:1">
<presentityUserld>tel:+19585550100</presentityUserld>
<callbackData>1234</callbackData>
<resourceStatus>Active</resourceStatus>
<presence>
<person>
<mood>
<moodValue>Happy</moodValue>
</mood>
</person>
</presence>
<link rel="PresenceSubscription"
href="http://example.com/exampleAPI/v1/presence/tel%3A%2B19585550101/subscriptions/presenceSubscriptions/
tel%3A%2B19585550100/sub001"/>
</pr:presenceNotification>
<mms:inboundMessageNotification xmIns:mms="urn:oma:xml:rest:netapi:messaging:1">
<inboundMessage>
<destinationAddress>tel:+19585550100</destinationAddress>
<senderAddress>tel:+19585550101</senderAddress>
<resourceURL>http://example.com/exampleAPI/v1/messaging/inbound/registrations/reg123/messages/msg123
<IresourceURL>
<link rel="Subscription" href="http://example.com/exampleAPI/v1/messaging/inbound/subscriptions/sub123"/>
<messageld>msg123</messageld>
<inboundMMSMessage>
<subject>Who is RESTing on the beach?</subject>
</inboundMMSMessage>
<f/inboundMessage>
</mms:inboundMessageNotification>
<mms:inboundMessageNotification xmIns:mms="urn:oma:xml:rest:netapi:messaging:1">
<inboundMessage>
<destinationAddress>tel:+19585550100</destinationAddress>
<senderAddress>tel:+19585550102</senderAddress>
<resourceURL>http://example.com/exampleAPI/v1/messaging/inbound/registrations/reg123/messages/msg1234
</resourceURL>
<link rel="Subscription" href="http://example.com/exampleAPI/v1/messaging/inbound/subscriptions/sub123"/>
<messageld>msg1234</messageld>
<inboundMMSMessage>
<subject>Who is still RESTing on the beach?</subject>
</inboundMMSMessage>
<f/inboundMessage>
</mms:inboundMessageNotification>
</nc:notificationList>
--qwertyuioplkjhgfdsazxcvbnm--

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 104 (112)

b) Direct delivery of an OMA Push message using a Push-OTA (Over the Air) binding supported by the target device.
How the Notification Server determines the supported Push-OTA bindings is unspecified. For details of Push-OTA
bearer bindings, see [PushOTA].

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 105 (112)

Appendix l. Notification delivery using WebSockets (Normative)

.1 Delivery mechanism

Subsequently to the creation of a NotificationChannel with channel Type=WebSockets, the server responds with a
NotificationChannel data structure that includes a “channelURL” element which provides a URI of scheme “ws:” or “wss”.
The application creates a WebSockets connection on that URL returned, and listens on it for event notifications. As part of
the WebSockets handshake, the application MUST use the subprotocol identifier defined in the next section.

When sending a single notification in the channel, the server MAY choose to encapsulate it in a NotificationList or send it
direct as a root element. When sending multiple notifications in the channel at once, the server MUST encapsulate them in a
NotificationList.

Occasionally, the server MAY choose to send an empty NotificationList through the connection. In contrast to the Long
Polling delivery method, receiving an empty NotificationList SHALL NOT be interpreted by the client as an attempt of the
server to close the connection.

.2 Subprotocol registration

Implementations compliant with this specification MUST use “notificationchannel-netapi-rest.openmobilealliance.org” in the
“Sec-WebSocket-Protocol” header [RFC6455].

The protocol identifier is registered with [IANA] with the following information:
Subprotocol Identifier: notificationchannel-netapi-rest.openmobilealliance.org
Subprotocol Common Name: OMA RESTful Network API for Notification Channel

Subprotocol Definition: OMA RESTful Network API for Notification Channel V 1.0, Open Mobile Alliance, OMA-TS-
REST_NetAPI_NotificationChannel-V1_0, available from http://www.openmobilealliance.org

Reference: OMNA - Open Mobile Naming Authority <OMA-OMNA@mail.openmobilealliance.org>

.3 Connection checking and keep-alive

The WebSockets protocol [RFC6455] defines a pair of messages called Ping and Pong which can be used to check whether a
connection is still functioning, and to keep alive the connection. However, the WebSockets APl [W3C_WebSock] does not
expose these messages. Therefore, web applications would have to rely on the underlying infrastructure for connection
checking and keep-alive purposes.

For web applications which want to deploy an application-layer mechanism for that, this specification defines the elements
“ConnCheck” and “ConnAck” (see sections 5.2.2.11 and 5.2.2.12).

Servers that support WebSockets-based Notification channels MUST support receiving the connCheck element, and MUST
return a connAck element as response. Additionally, the server MUST reset the channel lifetime upon successful delivery of
the connAck element, and MUST return the new channel lifetime in the connAck element.

Client support for receiving the connCheck element is RECOMMENDED for clients that support WebSockets-based
Notification channels. Clients that support the connCheck message MUST respond to a connCheck message with a connAck
message without the channelLifetime element instantiated. On receipt of such a connAck message, the server MUST reset the
channelLifetime to the value announced in the previous connCheck message.

If the server that has sent the connCheck message does not receive the connAck message before the next connCheck message
is due to be sent, it MAY send additional connCheck messages and SHOULD consider the current Websockets connection
faulty and close it if none of these messages is answered before an implementation-specific timeout occurs.

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

http://www.openmobilealliance.org/
mailto:OMA-OMNA@mail.openmobilealliance.org

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 106 (112)

If the server has announced in a previous connCheck message that it intends a new connCheck message at a certain time and
that message does not arrive within a sensible time interval, the client SHOULD consider the current Websockets connection
faulty, close it and open another one.

A server that receives a request to open a Websockets connection from a client even though there exists a connection with
that client SHOULD

assume that the client has no intention of using the existing connection any longer

refrain from sending any more notifications or connCheck messages over that connection

use only the new connection for sending any messages, apart from outstanding connAck messages

attempt to close the existing connection

Note: Clients and servers can also use the Ping-Pong mechanism that is defined by [RFC6455] to initiate connectivity
checking and keep-alive. However, this is outside the scope of this specification as this mechanism is not exposed to the
application layer.

.4 Notification Payload Examples — XML format (Informative)

1.4.1 Example: Single notification delivered in a NotificationList

In this example a presence update is delivered to the application.

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationList xmIns:nc="urn:oma:xml:rest:netapi:notificationchannel:1">
<pr:presenceNotification xmins:pr="urn:oma:xml:rest:netapi:presence:1">
<presentityUserld>tel:+19585550100</presentityUserld>
<callbackData>1234</callbackData>
<resourceStatus>Active</resourceStatus>
<presence>
<person>
<mood>
<moodValue>Happy</moodValue>
</mood>
</person>
</presence>
<link rel="PresenceSubscription"
href="http://example.com/exampleAPI/v1/presence/tel%3A%2B19585550101/subscriptions/presenceSubscriptions/
tel%3A%2B19585550100/sub001"/>
</pr:presenceNotification>
</nc:notificationList>

1.4.2 Example: Multiple notifications delivered

In this example a presence update and message notification are delivered to the application.

<?xml version="1.0" encoding="UTF-8"?>
<nc:notificationList xmIns:nc="urn:oma:xml:rest:netapi:notificationchannel:1">
<pr:presenceNoatification xmins:pr="urn:oma:xml:rest:netapi:presence:1">
<presentityUserld>tel:+19585550100</presentityUserld>
<callbackData>1234</callbackData>
<resourceStatus>Active</resourceStatus>
<presence>
<person>
<mood>

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 107 (112)

<moodValue>Happy</moodValue>
</mood>
</person>
</presence>
<link rel="PresenceSubscription"
href="http://example.com/exampleAPI/v1/presence/tel%3A%2B19585550101/subscriptions/presenceSubscriptions/
tel%3A%2B19585550100/sub001"/>
</pr:presenceNotification>
<mms:inboundMessageNotification xmins:mms="urn:oma:xml:rest:netapi:messaging:1">
<inboundMessage>
<destinationAddress>tel:+19585550100</destinationAddress>
<senderAddress>tel:+19585550101</senderAddress>
<resourceURL>http://example.com/exampleAPI/v1/messaging/inbound/registrations/reg123/messages/msg123
</resourceURL>
<link rel="Subscription" href="http://example.com/exampleAPI/v1/messaging/inbound/subscriptions/sub123"/>
<messageld>msg123</messageld>
<inboundMMSMessage>
<subject>Who is RESTing on the beach?</subject>
<finboundMMSMessage>
<finboundMessage>
</mms:inboundMessageNotification>
<mms:inboundMessageNotification xmIns:mms="urn:oma:xml:rest:netapi:messaging:1">
<inboundMessage>
<destinationAddress>tel:+19585550100</destinationAddress>
<senderAddress>tel:+19585550102</senderAddress>
<resourceURL>http://example.com/exampleAPI/v1/messaging/inbound/registrations/reg123/messages/msg1234
<IresourceURL>
<link rel="Subscription" href="http://example.com/exampleAPI/v1/messaging/inbound/subscriptions/sub123"/>
<messageld>msg1234</messageld>
<inboundMMSMessage>
<subject>Who is still RESTing on the beach?</subject>
</inboundMMSMessage>
</inboundMessage>
</mms:inboundMessageNotification>
</nc:notificationList>

1.4.3 Example: Single notification delivered outside a NotificationList

In this example a presence update is delivered to the application.

<?xml version="1.0" encoding="UTF-8"?>
<pr:presenceNotification xmins:pr="urn:oma:xml:rest:netapi:presence: 1">
<presentityUserld>tel:+19585550100</presentityUserld>
<callbackData>1234</callbackData>
<resourceStatus>Active</resourceStatus>
<presence>
<person>
<mood>
<moodValue>Happy</moodValue>
</mood>
</person>
</presence>
<link rel="PresenceSubscription"
href="http://example.com/exampleAPI/v1/presence/tel%3A%2B19585550101/subscriptions/presenceSubscriptions/
tel%3A%2B19585550100/sub001"/>

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 108 (112)

</pr:presenceNotification>

1.5 Notification Payload Examples — JSON (Informative)

1.5.1 Single notification delivered in a NotificationList

{"notificationList": {"presenceNotification": {
"callbackData"; "1234",
"link"; {
"href"; "http://example.com/exampleAPI/v1/presence/tel%3A%2B19585550101/subscriptions/presenceSubscriptions/
tel%3A%2B19585550100/sub001",
"rel": "PresenceSubscription"
i
"presence": {"person”: {"mood"; {"moodValue": "Happy"}}},
"presentityUserld": "tel:+19585550100",
"resourceStatus"; "Active"

i

1.5.2 Multiple notifications delivered

{"notificationList": [
{ "inboundMessageNotification”; {"inboundMessage": {
"destinationAddress": "tel:+19585550100",
"inboundMMSMessage": {"subject": "Who is RESTing on the beach?"},
"link"; {
"href"; "http://example.com/exampleAPI/v1/messaging/inbound/subscriptions/sub123",
"rel"; "Subscription”

}

messageld": "msg123",
"resourceURL": "http://example.com/exampleAPI/v1/messaging/inbound/registrations/reg123/messages/msg123 ",
"senderAddress": "tel:+19585550101"
Hh
{"inboundMessageNotification": {"inboundMessage": {
"destinationAddress": "tel:+19585550100",
"inboundMMSMessage": {"subject": "Who is still RESTing on the beach?"},
"link"; {
"href": "http://example.com/exampleAPI/v1/messaging/inbound/subscriptions/sub123",
"rel": "Subscription"

}

messageld": "msg1234",
"resourceURL": "http://example.com/exampleAPI/v1/messaging/inbound/registrations/reg123/messages/msg1234",
"senderAddress": "tel:+19585550102"

{ "presenceNotification": {
"callbackData": "1234",
"link"; {
"href": "http://example.com/exampleAPI/v1/presence/tel %3A%2B19585550101/subscriptions/presenceSubscriptions/
tel%3A%2B19585550100/sub001",
"rel"; "PresenceSubscription”
13
"presence": {"person": {"mood": {"moodValue": "Happy"}}},
"presentityUserld": "tel:+19585550100",
"resourceStatus"; "Active"

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 109 (112)

1

1.5.3 Single notification delivered in a NotificationList

{"presenceNotification": {
"callbackData"; "1234",
"link"; {
"href"; "http://example.com/exampleAPI/v1/presence/tel%3A%2B19585550101/subscriptions/presenceSubscriptions/
tel%3A%2B19585550100/sub001",
"rel"; "PresenceSubscription”
i
"presence": {"person": {"mood": {"moodValue": "Happy"}}},
"presentityUserld": "tel:+19585550100",
"resourceStatus"; "Active”

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 110 (112)

Appendix J. Notification server — Device-specific Native notification
service interaction (Informative)

This appendix provides further information on interaction between the Notification server and a device-specific native
notification service (e.g. Google GCM or Apple APNS or Microsoft WNS) for the purpose of forwarding events
asynchronously to the targeted device and application on the device.

There are cases where a client application does not have its own application server and wishes to use the device-specific
native notification service offered by its OEM (e.g. GCM or Apple APNS or Microsoft WNS) as the intermediary to have
network events forwarded to it asynchronously. Under such circumstances, the client application creates a Notification
channel of type NativeChannel and provides the necessary information (section 5.2.2.13) about the native notification service
as part of the channel creation process. As a result, the Notification server/channel pushes events to the device’s native
notification service which in turn forwards the events to the client application on the device.

Below, examples of such interaction between the Notification server and GCM, APNS and WNS native notification services
are shown respectively. Note that, in the examples below, it is assumed that, the number of events to be pushed is bigger than
what the client asked for (in its NativeChannel creation request). Hence, the pushed event (from the Notification server)
contains a URL which the application client would have to use in order to pull the awaiting events from the Notification
server (see “largeDataPolling” feature of the NativeChannel in section 5.

Note: Information in this Appendix is only for demonstration purposes and may become outdated as changes to GCM, APNS
and WNS are introduced.

GCM Example: Notification Server pushing events to GCM

Request:

POST /gecm/send HTTP/1.1

Content-Length: nnn

Content-Type:application/json
Authorization:key=AlzaSyZ-1u...0GBYzPu7Udno5aA

{
"to": "bk3RNwTe3H0:CI2k_HHwglpoDKCIZvwwDMEXUdFQ3P1...",
"data"; {
"largePollingNotification": {
"channelURL": "http://fexample.com/largePollingChannel/123",
"channelExpiry": "2016-02-04T21:32:522"
}
}
}
Response:

HTTP/1.1 200 OK

Content-Type: application/json
Content-Length: nnn

Date: Thu, 04 Feb 2016 02:51:59 GMT

{ "multicast_id"; 108,
"success": 1,
"failure": 0,
"canonical_ids": 0,
"results™: [
{"message_id": "1:08" }
]

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C

Page 111 (112)

}

APNS Example: Notification Server pushing events to APNS

Request:

HEADERS
- END_STREAM
+ END_HEADERS
:method = POST
:scheme = https
:path = /3/device/00fc13adff785122b4ad28809a3420982341241421348097878e577c991de8f0
host = api.development.push.apple.com
apns-id = eabeae54-14a8-11e5-b60b-1697f925ec7b
apns-expiration = 1454550296
apns-priority = 10
content-length = nnn
DATA
+ END_STREAM

"largePollingNotification": {
"channelURL": "http://example.com/largePollingChannel/123",
"channelExpiry": "2016-02-04T721:32:52Z"

}
Response:

HEADERS
+ END_STREAM
+ END_HEADERS
:status = 200

WNS Example: Notification Server pushing events to WNS

Request:

POST https://cloud.notify.windows.com/?token=AQE %bU%2fSjZOCvRjjplLow%3d%3d HTTP/1.1
Content-Type: application/octet-stream

X-WNS-Type: wns/raw

Authorization: Bearer EQACAQMAAAAALYAAY/c+Huwi3Fv4Ck10UrKNmtxRO6Njk2MgA=

Host: cloud.notify.windows.com

Content-Length: nnn

"largePollingNotification”: {
"channelURL": "http://fexample.com/largePollingChannel/123",
“channelExpiry": "2016-02-04T21:32:522"

}
Response:
HTTP/1.1 200 OK

X-WNS-STATUS: received
X-WNS-MSG-ID: 41C38906780D2A8C

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

OMA-TS-REST_NetAPI_NotificationChannel-V1_0-20200319-C Page 112 (112)

Content-Length: 0
Date: Thu, 04 Feb 2016 02:51:59 GMT

© 2020 Open Mobile Alliance.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document.

