
 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-SpecWAP-20040205]

Crypto Object for ECMA Script Mobile Profile
Candidate Version 1.1 – 22 Mar 2005

Open Mobile Alliance
OMA-WAP-ECMACR-V1_1-20050322-C

Continues the Technical Activities
Originated in the WAP Forum

OMA-WAP-ECMACR-V1_1-20050322-C Page 2 (33)

 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-SpecWAP-20040205]

Use of this document is subject to all of the terms and conditions of the Use Agreement located at
http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an
approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not
modify, edit or take out of context the information in this document in any manner. Information contained in this document
may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior
written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided
that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials
and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products
or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely
manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification.
However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available
to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at
http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of
this document and the information contained herein, and makes no representations or warranties regarding third party IPR,
including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you
must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in
the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN
MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF
THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE
ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT
SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT,
PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN
CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

http://www.openmobilealliance.org/ipr.html
http://www.openmobilealliance.org/UseAgreement.html

OMA-WAP-ECMACR-V1_1-20050322-C Page 3 (33)

 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-SpecWAP-20040205]

Contents
1. SCOPE..4
2. REFERENCES ..5

2.1 NORMATIVE REFERENCES..5
2.2 INFORMATIVE REFERENCES...6

3. TERMINOLOGY AND CONVENTIONS..7
3.1 CONVENTIONS ...7
3.2 DEFINITIONS..7
3.3 ABBREVIATIONS ..8
3.4 HOW TO READ THIS DOCUMENT ..8
3.5 ACKNOWLEDGEMENT ...9

4. INTRODUCTION ...10
5. CRYPTO OBJECT DEFINITION ..11

5.1 PROPERTIES ..11
5.2 METHODS ..11

5.2.1 signText()...11
5.2.2 KeyGen method ...16
5.2.3 genEnrollReq Method..20

APPENDIX A. STATIC CONFORMANCE REQUIREMENTS..28
APPENDIX B. MAPPING WMLSCRIPT CRYPTO LIBRARY FUNCTIONS TO ES-MP CRYPTO OBJECT
METHODS (INFORMATIVE) ..30
APPENDIX C. DIFFERENCES BETWEEN WMLSCRIPT CRYPTO LIBRARY AND ESMP CRYPTO OBJECT
(INFORMATIVE)31
APPENDIX D. DIFFERENCES BETWEEN ESMP CRYPTO OBJECT AND JAVASCRIPT CRYPTO
METHODS (INFORMATIVE) ..32
APPENDIX E. CHANGE HISTORY (INFORMATIVE)..33

E.1 APPROVED VERSION HISTORY ...33
E.2 DRAFT/CANDIDATE VERSION 1.1 HISTORY ...33

Figures
Figure 1 - Key Generation Data Flow ..17

Tables
Table 1 - signText Syntax..12

Table 2 - CMS SignedData Values for signText..15

Table 3 - keyGen Syntax ...19

Table 4 - WIM Encrypted Attributes Value..20

Table 5 - genEnrollReq Syntax...23

Table 6 - CMS SignedData Values for genEnrollReq...26

Table 7 - CMS AuthenticatedData Values for genEnrollReq ..26

OMA-WAP-ECMACR-V1_1-20050322-C Page 4 (33)

 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-SpecWAP-20040205]

1. Scope
Open Mobile Alliance (OMA) specifications are the result of continuous work to define industry-wide interoperable
mechanisms for developing applications and services that are deployed over wireless communication networks.

The OMA wireless markup scripting language known as ECMAScript – Mobile Profile [ESMP] is strongly based upon
ECMAScript Release 3 [ECMA262].

This document specifies an object for cryptographic functionality of the ECMAScript Mobile Profile [ESMP].

OMA-WAP-ECMACR-V1_1-20050322-C Page 5 (33)

 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-SpecWAP-20040205]

2. References
2.1 Normative References
[ASN1] ITU-T Recommendation X.680 (1997) | ISO/IEC 8824-1:1998, Information technology –

Abstract Syntax Notation One (ASN.1): Specification of basic notation.

[IOPPROC] “OMA Interoperability Policy and Process”, Version 1.1, Open Mobile Alliance™, OMA-IOP-
Process-V1_1, http://www.openmobilealliance.org/

[DER] ITU-T Recommendation X.690 (1997) | ISO/IEC 8825-1:1998, Information technology – ASN.1
encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER)
and Distinguished Encoding Rules (DER).

[Base64] "Privacy Enhancement for Internet Electronic Mail: Part I -- Message Encipherment and
Authentication Procedures" J. Linn, February 1993. http://www.ietf.org/rfc/rfc1421.txt

[PKCS1] “PKCS #1: RSA Encryption Standard”, version 1.5, RSA Laboratories, November 1993.

[PKCS15] “PKCS #15 v1.1: Cryptographic Token Information Syntax Standard”, RSA Laboratories, June
6, 2000. ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-15/pkcs-15v1_1.pdf

[PKCS9] “PKCS #9: Selected Attribute Types”, Version 2.0, RSA Laboratories, February 2000.

[RFC2045] “Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies",
N. Borenstein, N. Freed, November 1996. http://www.ietf.org/rfc/rfc2045.txt

[RFC1738] "Uniform Resource Locators (URL)", T. Berners-Lee, et al., December 1994.
http://www.ietf.org/rfc/rfc1738.txt

[RFC2119] "Key words for use in RFCs to Indicate Requirement Levels", S. Bradner, March 1997.
http://www.ietf.org/rfc/rfc2119.txt

[RFC2253] "Lightweight Directory Access Protocol (v3): UTF-8 String Representation of Distinguished
Names", M. Wahl, et al., December 1997. http://www.ietf.org/rfc/fc2253.txt

[RFC2585] “Internet X.509 Public Key Infrastructure, Operational Protocols: FTP and HTTP”, R. Housley,
et al., May 1999. http://www.ietf.org/rfc/rfc2585.txt

[RFC3852] "Cryptographic Message Syntax", R. Housley, July 2004. http://www.ietf.org/rfc/rfc3852.txt

[RFC2634] "Enhanced Security Services for S/MIME", RFC 2634, Hoffman, P., Editor, June 1999
http://www.ietf.org/rfc/rfc2634.txt

[TLS-EXT] “Transport Layer Security (TLS) Extensions”, S. Blake-Wilson et al., June 2003.
http://www.ietf.org/rfc/rfc3546.txt

[CertProf] “Certificate and CRL Profiles”, OMA-Security-CertProf-v1_1, Open Mobile Alliance™,
http://www.openmobilealliance.org

[WAPWIM] "Wireless Identity Module Part: Security", OMA-WAP-WIM-v1_2, Open Mobile Alliance.
http://www.openmobilealliance.org

[X9.62] “The Elliptic Curve Digital Signature Algorithm (ECDSA)”, ANSI X9.62 – 1998 (Approved
January 1999).

[PKCS#10] PKCS#10: Certification Request Syntax Standard, RSA Laboratories, May 26, 2000,
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-10/index.html

[HMAC] Keyed-Hashing for Message Authentication, H. Krawczyk, M. Bellare, R. Canetti, RFC2104,
http://www.ietf.org/rfc/rfc2104.txt

[3DES-CBC] 3DES encryption using CBC mode, NIST SP 800-38A 2001 ED

[M2] Definition of padding before encryption, ISO 9797

http://www.rsasecurity.com/rsalabs/pkcs/pkcs-10/index.html
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/
http://www.ietf.org/rfc/rfc3546.txt
http://www.ietf.org/rfc/rfc2634.txt
http://www.ietf.org/rfc/rfc3852.txt
http://www.ietf.org/rfc/rfc2585.txt
http://www.ietf.org/rfc/fc2253.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc1738.txt
http://www.ietf.org/rfc/rfc2045.txt
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-15/pkcs-15v1_1.pdf
http://www.ietf.org/rfc/rfc1421.txt
http://www.openmobilealliance.org/

OMA-WAP-ECMACR-V1_1-20050322-C Page 6 (33)

 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-SpecWAP-20040205]

2.2 Informative References
[JavaScriptSign] Signing Text from JavaScript.

http://developer.netscape.com/docs/manuals/security/sgntxt/index.htm

[RFC2246] "The TLS Protocol, Version 1.0", RFC2246, T. Dierks, C. Allen, January 1999.
http://www.ietf.org/rfc/rfc2246.txt

[TLSProfile] “TLS Profile and Tunneling Specification”, WAP-219-TLS, Open Mobile Alliance
http://www.openmobilealliance.org

[WAPWPKI] "Wireless Public Key Infrastructure Specification", WAP-217-WPKI, Open Mobile Alliance
http://www.openmobilealliance.org

[WAPWTLS] "Wireless Transport Layer Security", WAP-261-WTLS, Open Mobile Alliance URL:
http://www.openmobilealliance.org

[WMLScriptCrypto] “WMLScript Crypto Library Specification”, WAP-161-WMLScriptCrypto, Open Mobile
Alliance™, http://www.openmobilealliance.org

[ECMA262] Standard ECMA-262, “ECMAScript Language Specification – Edition 3”, December 1999.
ftp://ftp.ecma.ch/ecma-st/Ecma-262.pdf

[ESMP] "ECMAScript Mobile Profile", OMA-WAP-ESMP-v1_0, Open Mobile Alliance,
http://www.openmobilealliance.org

[X509] “Information Technology – Open Systems Interconnection – The Directory: Authentication
Framework.”, ITU-T Recommendation X.509 (1997) | ISO/IEC 9594-8:1998,

http://www.openmobilealliance.org/
ftp://ftp.ecma.ch/ecma-st/Ecma-262.pdf
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/
http://www.ietf.org/rfc/rfc2246.txt
http://developer.netscape.com/docs/manuals/security/sgntxt/index.htm

OMA-WAP-ECMACR-V1_1-20050322-C Page 7 (33)

 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-SpecWAP-20040205]

3. Terminology and Conventions
3.1 Conventions
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be
informative.

3.2 Definitions
Client A device (or application) that initiates a request for connection with a server.

Content Subject matter (data) stored or generated at an origin server. Content is typically displayed or interpreted by
a user agent in response to a user request.

Device A network entity that is capable of sending and receiving packets of information and has a unique device
address. A device can act as both a client and a server within a given context or across multiple contexts.
For example, a device can service a number of clients (as a server) while being a client to another server.

ECMAScript Mobile
Profile

A scripting language used to program the mobile device. ECMAScript – Mobile Profile is an extended
subset of the JavaScript scripting language.

JavaScript A de facto standard language that can be used to add dynamic behaviour to HTML documents. JavaScript
is one of the originating technologies of ECMAScript.

Origin Server The server on which a given resource resides or is to be created. Often referred to as a web server or an
HTTP server.

Resource A network data object or service that can be identified by a URL. Resources may be available in multiple
representations (e.g. multiple languages, data formats, size and resolutions) or vary in other ways.

Server A device (or application) that passively waits for connection requests from one or more clients. A server
may accept or reject a connection request from a client.

User Auser is a person who interacts with a user agent to view, hear or otherwise use a rendered content.

User Agent A user agent (or content interpreter) is any software or device that interprets markup language such as
XHTML, script language, such as ECMAScript or resources. This may include textual browsers, voice
browsers, search engines, etc.

Web Server A network host that acts as an HTTP server.

WML The Wireless Markup Language is a hypertext markup language used to represent information for delivery
to a narrowband device, e.g. a phone.

WMLScript A scripting language based on ECMAScript [ECMA262] that has been modified to better support low
bandwidth communication and thin clients.

Key Pair A set of mathematically related keys, a public key and a private key, that are used for asymmetric
cryptography and are generated in a way that makes it computationally infeasible to derive the private
key from knowledge of the public key.

Key Slot A place holder for a key pair that may or may not contain a key

X.509 An ITU-T Recommendation [X509] that defines a framework to provide and support data origin
authentication and peer entity authentication services, including formats for X.509 public-key certificates,
X.509 attribute certificates, and X.509 CRLs.

X.509v3 An abbreviation for an version 3 X.509 certificate

OMA-WAP-ECMACR-V1_1-20050322-C Page 8 (33)

 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-SpecWAP-20040205]

3.3 Abbreviations
CA Certification Authority

CMS Cryptographic Message Syntax

DER Distinguished Encoding Rules

DN Distinguished Name

ECMA European Computer Manufacturer Association

ESMP ECMAScript – Mobile Profile

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

MIME Multipurpose Internet Mail Extensions

OID Object Identifier

PKCS Public-Key Cryptography Standards

RFC Request For Comments

RSA Rivest Shamir Adleman public key algorithm

SHA Secure Hash Algorithm

TLS Transport Layer Security

UI User Interface

URL Uniform Resource Locator

UTF UCS Transformation Format

W3C World Wide Web Consortium

WAP Wireless Application Protocol

WIM WAP Identity Module

WTLS Wireless Transport Layer Security

XHTML-MP XHTML Mobile Profile

TLV Tag Length Value

AODF Authetication Object Directory File

PrKDF Private Key Directory File

PuKDF Public Key Directory File

APDU Application Protocol Data Unit

3.4 How to Read this Document
This section is informative.

This specification draws heavily upon a number of existing standards, and assumes familiarity with:

o The ECMAScript Language Specification [ECMA262]

o OMA ECMAScript Mobile Profile [ESMP]

o Basic cryptography concepts

This specification is not written as a tutorial, but examples may be given. The examples are not exhaustive, and are generally
informative only.

OMA-WAP-ECMACR-V1_1-20050322-C Page 9 (33)

 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-SpecWAP-20040205]

In all cases where there may be a question or ambiguity in the specification, source standards always take precedent, unless
explicitly noted otherwise.

3.5 Acknowledgement
The signText method is based on [JavaScriptSign].

OMA-WAP-ECMACR-V1_1-20050322-C Page 10 (33)

 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-SpecWAP-20040205]

4. Introduction
The OMA has recognized that convergence between the wired web and wireless devices, as targeted by the OMA, is an
important step toward bringing wireless devices into the mainstream. As a part of the convergence process, OMA has
redefined the scripting language that is to be used by wireless devices, the ECMAScript- Mobile Profile [ESMP].

The Crypto Object provides access to cryptographic features of the User Agent, such as digital signing. Application
developers may take advantage of this functionality in addition to the functionality provided by transport layer security
([RFC2246], [TLSProfile], [WAPWTLS]).

OMA ECMAScript Crypto Object is specified to be as much as possible compatible with [JavaScriptSign].

Specific differences between WMLScript crypto library [WMLScriptCrypto] and ECMAScript Crypto, and between
ECMAScript Crypto and [JavaScriptSign] are detailed in Appendix C and Appendix D.

OMA-WAP-ECMACR-V1_1-20050322-C Page 11 (33)

 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-SpecWAP-20040205]

5. Crypto Object Definition
The Crypto object provides cryptographic functionality.

5.1 Properties
No properties are defined.

5.2 Methods
5.2.1 signText()
5.2.1.1 Introduction

Many kinds of applications, e.g., electronic commerce, require the ability to provide persistent proof that someone has
authorised a transaction. Although transport layer security ([RFC2246], [TLSProfile], [WAPWTLS]) provides transient client
authentication for the duration of a connection, it does not provide persistent authentication for transactions that may occur
during that connection. One way to provide such authentication is to associate a digital signature with data generated as the
result of a transaction, such as a purchase order or other financial document.

To support this requirement, the User Agent provides the Crypto.signText method that asks the user to sign a string of text. A
call to the signText method displays the exact text to be signed and asks the user to confirm that. After the data has been
signed and both the signature and the data have been sent across the network, the server can extract the digital signature and
validate it, and possibly store it for accountability purposes.

The User Agent SHOULD use special signature keys that are distinct from authentication keys used for transport layer
security. A WIM [WAPWIM] MAY be used for private key storage and signature computation.

OMA-WAP-ECMACR-V1_1-20050322-C Page 12 (33)

 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-SpecWAP-20040205]

5.2.1.2 Syntax

Syntax: resultString = [window.]crypto.signText(stringToSign, options,
[caNameString1, [caNameString2, . . .]])

Argument List: stringToSign - The string that you want the user to sign. This will be presented to the
user, so it should be human-readable.

options – Contains several options, as described in 5.2.1.3

caNameString - A string that specifies the DN for a CA whose certificates you trust for
signing purposes. You should provide a caNameString parameter for each CA that you trust
for the transaction involved. The DN is formatted according to [RFC2253].

Description: returns the signature as a string value as described in 5.2.1.5.

Return Value
Type:

string

If the user approves the operation, the signText method returns a base-64-encoded CMS
[RFC3852] SignedData value (see Format of Result String).

Errors or
Exceptions:

Following error codes (as strings) may be returned:

• error:noMatchingCert - The user did not have a certificate issued by a CA
specified by one of the caNameString parameters.

• error:userCancel - The user cancelled the operation.

• error:internalError - An internal error such as an out-of-memory or decoding
error occurred.

Example(s): var foo = crypto.signText("Bill of Sale\n--------------------
\n3 Tires $300.00\n1 Axle $795.00\n2 Bumpers
$500.00\n--------------------\nTotal Price $1595.00", "ask");

Reference -

Table 1 - signText Syntax

5.2.1.3 Signing Options

The options parameter includes several options relevant for the signing process. Options are encoded as strings, separated
with a space character. The User Agent MUST ignore options it does not recognise.

The following options are defined in the current version of this specification:

CA option - One of two strings:

o "ask" indicates that you want the User Agent to display a dialog asking the user to select a certificate to use for
signing. The dialog lists the certificates signed by the CAs listed in the caNameString parameters. If no
caNameString parameters are provided, the dialog lists all certificates installed in the certificate database that
signText can use for signing. The User Agent is REQUIRED to support this option.

o "auto" indicates that you want the User Agent to select a signing certificate automatically from those available in the
certificate database. If one or more caNameString parameters are provided, the User Agent chooses a certificate
signed by one of the specified CAs. If no caNameString parameters are provided, the User Agent selects a certificate
from the entire set of available certificates that signText can use for signing. The User Agent MAY support this
option, or if not, treat it as if it was "ask". The signingCertificate signed attribute SHOULD NOT be
included if the certificate (or a certificate label) is not shown to the user.

Certificates option

OMA-WAP-ECMACR-V1_1-20050322-C Page 13 (33)

 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-SpecWAP-20040205]

o "nocert" indicates that the certificate(s) should not be included in the result. Supporting this option is OPTIONAL.
By default, certificates are included.

5.2.1.4 Description

This section is informative.

The signText method requests that a user digitally signs a text string. The calling script provides the text to sign
(stringToSign), a string indicating various signing options like the CA option indicating a preference for manually or
automatically selecting one of the certificates in the certificate database that can be used for signing, and (optionally) a list of
CA DNs (caNameString parameters). If the CA option is set to "auto", signText automatically selects a certificate
signed by a CA specified by one of the caNameString parameters. If the CA option is set to "ask", signText displays
all certificates in the certificate database that are signed by a CA identified by one of the caNameString parameters and
invites the user to select one of them. If the CA option is set to "ask" but no caNameString parameters are provided,
signText displays all the certificates in the certificate database that can be used for signing.

In all cases the user may choose either to cancel or approve the signing operation. If the user approves the operation, the User
Agent requests verification data for the signing key (like the WIM PIN). If the user provides the correct data, signText
signs the specified string and returns the signed string to the script.

OMA-WAP-ECMACR-V1_1-20050322-C Page 14 (33)

 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-SpecWAP-20040205]

5.2.1.5 Format of the Result String

The result string returned by signText is a base-64-encoded CMS [RFC3852] signedData value wrapped in a
contentInfo object with a contentType of signedData. The components of signedData have the following
values:

Component Value

version 1

digestAlgorithms sha-1

encapContentInfo.eContentType id-data

encapContentInfo.eContent Not present. The data signed is not included in the signedData
object.

certificates

User's signing certificate [CertProf] and any intermediate CAs
required to chain up to one of the trusted CAs listed in the
caNameString parameters (the trusted CA certificate may be
omitted), or not present (if the "nocert" option was set).

Crls Not present.

signerInfos.version 1 (or 3, see below)

signerInfos.sid
.issuerAndSerialNumber

The issuer and serial number for the certificate used to sign the
data. (If this information is not available in the User Agent,
subjectKeyIdentifier as a form of signer identifier may be
used as an alternative. In this case, according to [RFC3852],
version needs to be 3.)

signerInfos.digestAlgorithm sha-1

signerInfos.signedAttrs

Attributes that are REQUIRED or OPTIONAL:

• The content type attribute whose value is id-data.
This attribute is REQUIRED.

• The message digest attribute whose value is the message
digest of the content. This attribute is REQUIRED.

• The signing time attribute, whose value is the time that the
object was signed (RECOMMENDED), or random nonce
[PKCS9]. One of these attributes is REQUIRED.

• The signing certificate attribute [RFC2634] SHOULD be
present in case the signing certificate was indicated to the
user.

Other attributes MAY be present.

SignerInfos.signatureAlgorithm Algorithm used in the signature. Either RSA [PKCS1] or ECDSA
[X9.62] MUST be supported by the client. The verifying party

OMA-WAP-ECMACR-V1_1-20050322-C Page 15 (33)

 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-SpecWAP-20040205]

(server) is REQUIRED to support RSA and MAY support
ECDSA.1

SignerInfos.unsignedAttrs The certificate URL (section 5.2.1.6) attribute MAY be present.

Table 2 - CMS SignedData Values for signText

Several certificates (indicating different identities etc.) may be issued for a single key pair. The signature should protect the
integrity of user’s choice of signing certificate. This is why the user’s signing certificate SHOULD be included in
signedAttrs as specified in [RFC2634] to avoid replacement attacks. The signing certificate attribute should use the hash
of the certificate and OPTIONALLY the issuerSerial attribute (since this information is already available for the
verifier, duplicating it in signed attributes is not necessary; however, for interoperability reasons, servers are
RECOMMENDED to support this attribute).

5.2.1.6 Certificate URL Attribute

5.2.1.6.1 Introduction

The CMS SignedData structure [RFC3852] allows for the inclusion of certificates associated with the key used to sign the
message. When included these certificates are placed in the SignedData.certificates field. However, inclusion of
certificates in this manner assumes that the client creating the signature has access to the associated certificates. In some
environments it is desirable for clients to use references to certificates (i.e. certificate URLs) in place of certificates, so that
they do not need to locally store their certificates and can therefore save memory. This section describes an attribute that is
to be used to convey certificate URLs in CMS [RFC3852] messages.

The concept of certificate URLs are discussed further in [WAPWPKI] and [TLS-EXT]. These specifications allow for
certificate URLs to point to either a single DER [DER] encoded X.509v3 certificate or in some cases a certificate chain
defined in [TLS-EXT], Section 8, as a “PkiPath”. The definition of this attribute assumes that the client is only aware of the
URL or URL’s that reference their certificate and certificate path, but not the resource the URL(s) refer to.

5.2.1.6.2 OID

The OID for the attribute is as follows

wap OBJECT IDENTIFIER ::=
 {joint-iso-itu-t(2) identified-organizations(23) 43}
wap-at OBJECT IDENTIFIER ::=
 {wap 2} -- Attributes branch
wap-at-certificateURL OBJECT IDENTIFIER ::=
 {wap-at 1}

5.2.1.6.3 Usage in CMS

This attribute, if present, is included as an unsigned attribute in the CMS message [RFC3852].

5.2.1.6.4 Attribute ASN.1 Definition

This attribute is defined as follows in ASN.1 [ASN1]:

certificateURL ATTRIBUTE ::= {
 WITH SYNTAX URLs

1 Note that the server can report the fact that it does not support ECDSA in the XHTML page generated in response to the
processing of the XHTML data sent by the client.

OMA-WAP-ECMACR-V1_1-20050322-C Page 16 (33)

 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-SpecWAP-20040205]

ID wap-at-certificateURL
}
URLs ::= SEQUENCE OF URL
-- A list of one or more URL
URL ::= IA5String
 -- Contains the URL [RFC1738] value and can return either a single
 -- X.509v3 certificate or a chain of certificates represented by
 -- a PkiPath

Each URL refers to either a single DER-encoded X.509v3 certificate or a DER-encoded certificate chain, using the type
PkiPath described in [TLS-EXT], Section 8.

Note that when a list of URLs for X.509v3 certificates is used, the ordering of URLs is the same as that used in the TLS
Certificate message (see TLS [RFC2246], Section 7.4.2), but opposite to the order in which certificates are encoded in
PkiPath. In either case, the self-signed root certificate may be omitted from the chain, under the assumption that the server
must already possess it in order to validate it.

Servers receiving a certificate URL attribute and supporting this attribute SHALL attempt to retrieve the client's certificate
chain from the URLs, and then process the certificate chain as usual. Servers that support this attribute MUST support the
http: URL scheme for certificate URLs, and MAY support other schemes. If the server is unable to retrieve the required
certificates via the use of the URL attribute and thus not able to validate the signature on the result string, it will indicate this
error to the user in the XHTML page generated in response to the processing of the XHTML data sent by the client.

If the protocol used to retrieve certificates or certificate chains returns a MIME [RFC2045] formatted response (as HTTP
does), then the following MIME Content-Types SHALL be used: when a single X.509v3 certificate is returned, the Content-
Type is "application/pkix-cert" [RFC2585], and when a chain of X.509v3 certificates is returned, the Content-Type is
"application/pkix-pkipath" (see [TLS-EXT], Section 8).

If the signing certificate attribute with a certificate hash is present, then the server MUST check that the hash of the contents
of the object retrieved from the URL (after decoding any MIME Content-Transfer-Encoding) matches the given hash. If any
retrieved object does not have the correct hash, the server MUST abort certificate processing with an appropriate error.

5.2.1.7 Implementation Using the WIM

This chapter describes how to implement the signText function using the WIM [WAPWIM].

In accordance with the recommendation in section 5.2.1.1, a non-repudiation key SHOULD be used for signing. This implies
usage of an authentication object used for this key only, and that the verification requirement cannot be disabled. E.g., in case
of a PIN, the PIN must be entered separately for each signature operation.

The certificate issuer name hash (CredentialIdentifier.issuerNameHash) [PKCS15] can be used to find a
proper certificate. For this, the textual CA DN (signText argument) needs to be converted to a DER encoded format and
hashed.

To simplify the user experience, labels, contained in entries that describe private keys and certificates
(commonObjectAttributes.label) should be used to display options to use for signing.

For a smart card implementation, the procedure is described in [WAPWIM].

5.2.2 KeyGen method
5.2.2.1 Introduction

WIMs can either be manufactured with key pairs or, if equipped with the OBKG feature, can generate their own key pairs.
The following function applies to MEs supporting the second type of WIMs. The OBKG feature is acknowledged to be
useful due to the sensitivity of the non-repudiation key pairs, and for legal issues in some countries that impose it as a
mandatory feature for non-repudiation keys.

OMA-WAP-ECMACR-V1_1-20050322-C Page 17 (33)

 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-SpecWAP-20040205]

Since a WIM may be issued with non-initialized key pairs we call it a key slot in this specification. A key slot is a place
holder for a key pair and may be uninitialized (not ready to be used). A key slot space is allocated in WIM personalisation
process during manufacturing.

Some of the parameters that are sent with the KeyGen Script are used for searching for the relevant key pair to generate.
Other parameters set new values for some attributes of the key pair such as key label, PIN label for the PIN that protects
operation with the key pair, etc.

An authentication MAY be required to gain the right to generate the key pair. The authentication key SHOULD be different
for each WIM and and MAY be different for different key pairs in the same WIM. The use of an authentication key to control
the right to generate a key is at the discretion of the WIM issuer and is personalised during manufacturing.

This specification describes the ECMA Script that is used in order to trigger an on-board key generation in the WIM. In a
response to the Script invocation the “WIM serial number” and a challenge may be returned to the server. This will indicate
to the server that an authentication is needed. The remote server has to be able to generate a response to the challenge in order
to create a valid authorisation code. The remote server may use the serial number to derive the correct HMAC (or
asymmetric) key and then calculate the HMAC (or digital signature) on the challenge value. The HMAC (or digital signature)
of the challenge value then becomes the authorization code for the next key generation request for this WIM. The WIM serial
number that is returned is the hexadecimal representation of the serial number retrieved from the WIM.

The following example describes how key generation is triggered by the ME when an authentication code is needed, and the
Security Element is a WIM:

Genearet_Asymmetric_Key_
Pair

Public key hash

KeyGen (... , authentication data)

ERR AuthReq: WIM serial number || 20 bytes challenge

KeyGen (keyLabel, algName, keyLen, keyUsage)

ME Remote Server

Calculate
authentication data
(authCode) based on
the WIM serial number
and the 20 bytes
challenge

WIM

WIM serial number || 20
bytes challenge

Generate_Asymmetric_
Key_Pair

OK: Public key hash

Figure 1 - Key Generation Data Flow

OMA-WAP-ECMACR-V1_1-20050322-C Page 18 (33)

 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-SpecWAP-20040205]

5.2.2.2 Syntax

Syntax: resultString = [window.]crypto.keyGen (keyLabel, keyType,
keyLen, keyUsage, EncryptedAttributes, authCode, other)

Argument List: keyLabel = String

In the case of a WIM this corresponds to the commonObjectAttributes.label in [PKCS15]
PrKDF entry for the key to generate. If the value is “” then KeyLabel is unspecified.

keyType= Integer

0x1000 – Unspecified
0x0000 – RSA
0x0003 – ECC

keyLen = Integer

An integer indicating the bit length of the key. For RSA this is the length of the modulus.
If the value is 0x0000 then keyLen is unspecified.

keyUsage = Integer

Contains the key usage of the key (as in [PKCS15])

0x0000 – Unspecified
0x0004 – Authentication key. In the case of a WIM the [PKCS15] PrKDF entry for the
key has “keyUsageFlags” that include the “Authentication Key” flag
0x0100 - Non-repudiation Key

EncryptedAttributes = string

A string that contains some encrypted values to set in the WIM as described in the “WIM
Based Implementation” section below. The string may be empty.

authCode = String

Hexadecimal representation of authentication code that is calculated by the remote
server. The authentication code may be generated using an HMAC or asymmetric
technique. If the value is “” then authCode is not provided.

An authentication code MAY be required to gain the right to generate the key pair. In the
case of a WIM the authentication key SHOULD be different for each WIM and MAY be
different for different key pairs in the same WIM. The use of an authentication code to
control the right to generate a key is at the discretion of the WIM issuer and is
personalised during manufacturing. The function MUST convert the hexadecimal
representation of the string to a binary array (octet string) before sending it to the WIM.

In the case of a WIM the authCode is calculated over the Encrypted Attributes parameter
followed by a WIM challenge as described in the“WIM Based Implementation” section
below.

other = String

OMA-WAP-ECMACR-V1_1-20050322-C Page 19 (33)

 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-SpecWAP-20040205]

RFU - this parameter may be used to convey additional parameters for other public key
schemes. It should be set to “” (empty string) in this specification version.

Description: Provided authorization is granted, this function triggers the generation of a key pair in a key
slot matching one or more of the following attributes: key label, key usage flag, algorithm
and key length.

The function looks for a key slot that matches these attributes. At least one of these
parameters must be specified to form the search criteria for a key slot.
If more than one key slot match the search criteria it is up to the browser to select a key. It
may then display the list of key labels to the user and optionally additional attributes like
algorithm, key length etc.
If no key slot can be found with the provided criteria, the error code of the first improper
parameter shall be returned.

The parameter Encrypted Attributes MUST NOT be sent if authCode is not sent.

The function SHOULD NOT delete certificates in the WIM if the generated key replaces a
key that already had certificates.

KeyUsage flag MUST be specified if the key usage is not implicitly identified by other
parameters (e.g. keyLabel).

In the case of a WIM the function triggers the key generation in the WIM by using the WIM
GENERATE_ASYMMETRIC_KEY_PAIR command.

Return Value
Type:

String
• The hexadecimal representation of the public key hash of the newly generated key pair.

Public key hash is calculated as defined in WTLS specification [WTLS].

Errors or
Exceptions:

Following error codes (as strings) may be returned:

• If a key with a specified key Label cannot be found the function returns
error:noSuchKeyLabel

• If a key with the specified keyType cannot be found the function returns
error:noSuchAlg.

• If a key with the specified key length cannot be found the function returns
error:noSuchKeyLen.

• If a key with the specified key usage cannot be found the function returns
error:noSuchKeyUsage

• If no parameters are specified to select a key, the function returns error:noSuchKey

• If an authentication code is required and was not provided, or if the sent authentication
code was incorrect, the function returns
error:AuthReq:cardSerialNumber:Challenge.
In this response both cardSerialNumber and the Challenge are in hexadecimal format.

Example(s): var result = crypto.keyGen("", 0x0000, 1024, 0x0004, "", "",
"");

Reference

Table 3 - keyGen Syntax

5.2.2.3 WIM based implementation

The function shall use the WIM GENERATE_ASYMMETRIC_KEY_PAIR APDU command to implement key generation.

OMA-WAP-ECMACR-V1_1-20050322-C Page 20 (33)

 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-SpecWAP-20040205]

5.2.2.3.1 Encrypted Attributes parameter

The Encrypted Attributes parameter is the hexadecimal representation of the following data blob:

[C0 L encrypted New PIN value] [C1 L encrypted New PIN label] [C2 L encrypted new key label]2.

Each element in this data blob is encrypted using 3DES in CBC mode as described in section 15.2 of [3DES-CBC]. The
initial chaining value for CBC modes shall be zero and padding M2 [M2] shall apply. The encryption key SHOULD be
different from the authentication key used for gaining the right to generate the key pair.

Each element in this data blob is explained below:

C0 L encrypted New PIN value A TLV where tag=C0, L is the length of the following data and “encrypted
New PIN value” is a new encrypted PIN value that will be decrypted and set by
the WIM for the PIN that protects the newly generated key pair.

C1 L encrypted New PIN label A TLV where tag=C1, L is the length of the following data and “encrypted
New PIN label” is a new encrypted PIN label that will be set by the WIM for
the PIN that protects the newly generated key pair. The new PIN label MUST
NOT exceed 32 characters.

C2 L encrypted new key label A TLV where tag=C2, L is the length of the following data and “encrypted new
key label” is a new encrypted label that should be set for the newly generated
key pair. The new key label MUST NOT exceed 32 characters.

Table 4 - WIM Encrypted Attributes Value

The function MUST convert the hexadecimal representation of the “encryptedAttributes” string to a binary array (octet
string) before sending it to the WIM in the GENERATE_ASYMMETRIC_KEY_PAIR APDU command. The function
MUST verify the [PKCS15] AODF entry of the PIN that protects the key to be generated. If this AODF entry indicates that
the PIN is not initialised (PKCS15Authentication.TypeAttributes.pinFlags), and no “encrypted New PIN
value” is included in the parameter list, the function MUST ask the user to enter an initial value for that PIN and send it to the
WIM with the GENERATE_ASYMMETRIC_KEY_PAIR APDU command. Asking the user to enter an initial value for the
PIN MUST be done if and only if the above conditions are fulfilled.

5.2.2.3.2 AuthCode parameter

The AuthCode parameter is the HMAC or digital signature over Encrypted Attributes parameter followed by a WIM
challenge. A WIM challenge was previously obtained from the WIM by sending the
GENERATE_ASYMMETRIC_KEY_PAIR APDU command without an authentication code or with a wrong authentication
code.

The function MUST convert the hexadecimal representation of the “authCode” string to a binary array (octet string) before
sending it to the WIM in the GENERATE_ASYMMETRIC_KEY_PAIR APDU command.

5.2.3 genEnrollReq Method
5.2.3.1 Introduction

This function generates a certificate enrolment request for a key identified by the sent parameters. It may require an
authorization code before returning an enrolment request as expressed in the sent parameters.

The result is the [Based64] encoding of a [PKCS #10] enrolment request.

2 The data items between [and] are considered optional.

OMA-WAP-ECMACR-V1_1-20050322-C Page 21 (33)

 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-SpecWAP-20040205]

5.2.3.2 Syntax

Syntax: enrollRequest = [window.]crypto.genEnrollReq(nameInfo,
keyType, keyLen, KeyUsage, keyIDType, keyID, authCode, Other)

Argument List: nameInfo = String

This parameter may be used to specify the information included in the Name field in the
[PKCS #10] structure. The format of this string MUST conform to encoding rules of
RFC 2253 [RFC2253]. The browser SHOULD implement a configuration flag that will
allow the user to always view this parameter value in the case that it is specified (not an
empty string).

If the parameter is an empty string, the Name information MUST at least contain the card
serial number as a serial number attribute (e.g. SN = 12345678) . In the case of a WIM it
SHOULD also include the card manufacturer's name as an Organization attribute (e.g.
SN = 98765432, O = “Smart Card Manufacturer, Inc”). The SerialNumber is the serial
number of the device on which the key resides. In the case of a WIM it is retrieved from
the TokenInfo EF.

keyType = Integer

This parameter is used to indicate the public key algorithm for which an enrolment
request will be generated.

0x1000 – Unspecified

0x0000 – RSA
0x0003 – ECC

keyLen = Integer

An integer indicating the bit length of the key parameter. For RSA this is the length of
the modulus. If the value is 0x0000 then keyLen is unspecified.

keyUsage = Integer

Contains the key usage of the key for which an enrolment request must be generated.

0x0000 – Unspecified

0x0004 - Authentication Key. In the case of a WIM this means that the [PKCS15]PrKDF
entry for the key has “keyUsageFlags” that includes an “Authentication Key” flag.

0x0100 - Non-repudiation Key.

keyIDType = Integer

This parameter may be used to specify a specific key

0 - NONE: No key identifier is supplied.

1 - USER_KEY_HASH: A SHA-1 hash of the user public key is supplied in the next
parameter. The browser MUST use the signature key that corresponds to the GIVEN
public key hash. If the key is not available the browser MUST return error:noSuchKey.

2 - KEY_LABEL: If the key label is known, it may be used to identify the key for which
an enrolment request is required. The key label MUST corresponds to the
commonObjectAttributes.label in the [PKCS15] entry for the key. If the key is not
available the browser MUST return error:noSuchKey.

OMA-WAP-ECMACR-V1_1-20050322-C Page 22 (33)

 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-SpecWAP-20040205]

keyID = String

Identify the key based on the previous parameter. If the previous parameter is
USER_KEY_HASH the value is the hexadecimal representation of the public key hash.
Public key hash is calculated as defined in WTLS specification [WAPWTLS].

authCode = String

Hexadecimal representation of authentication code that is calculated by the remote
server. If the value is “” then authCode is not provided. The authentication code MAY be
required to obtain an enrolment request. The use of an authentication code to control
access to the GenEnrollReq function is at the discretion of the WIM issuer. The
authentication code may be generated using a symmetric or asymmetric technique. In the
case of a WIM the authentication key SHOULD be different for each WIM and MAY be
different for different key pairs in the same WIM. The function MUST convert the
hexadecimal representation of the string to a binary array (octet string) before sending it
to the WIM.

Other = String

RFU - this parameter may be used to convey additional parameters for other public key
schemes. It should be set to “” (empty string) in this specification version.

OMA-WAP-ECMACR-V1_1-20050322-C Page 23 (33)

 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-SpecWAP-20040205]

Description: This function generates an enrolment request for a key identified by the algName, keyLen,
keyUsage, keyIDType or keyID parameters. If the provided parameters do not identify a
unique key, it is up to the browser to select a key. The browser MAY prompt the user to
nominate a specific key.

The GenEnrollReq function may require an authorization code before returning an
enrolment request. If an authorization code is required but not supplied, the GenEnrollReq
will return the WIM serial number and a challenge. The invoker of the function must then
compute the HMAC or digital signature on the challenge for the specified device. The result
serves as the authorization code for the next invocation of the GenEnrollReq command.

In some scenarios authorization is required before using the corresponding private key to sign
the certification request. In these scenarios the browser MUST ensure the user has proper
authorization. Depending on the security element in use, the user may grant authorization by
entering the correct PIN.

The result is the [Based64] encoding of a [PKCS #10] enrolment request. The format of the
enrolment request is specified in section 3 of this document. The [Based64] encoding of the
result is returned as a String.

Return Value
Type:

String
The [Based64] encoding of the enrolment request.

Errors or
Exceptions:

Following error codes (as strings) may be returned:

• If the specified algorithm is not available in the WIM implementation, the function
returns error:noSuchAlg.

• If a key of the specified key length can not be found, the function returns
error:noSuchKeyLen.

• If a key of the specified usage can not be found the function returns
error:noSuchKeyUsage

• If a keyIDType was specified but a matching key could not be found for the keyID the
function returns error:noSuchKey.

• If an authentication code is required and was not supplied as part of the enrolment
request or was incorrectly specified, the function will return
error:AuthReq:cardSerialNumber:Challenge.
In this response both the cardSerialNumber and the Challenge is in a hexadecimal
format. The PKI portal MUST generate a response to the challenge in order to create a
valid authorisation code. The PKI portal may use the serial number to derive the correct
HMAC key and then calculate the HMAC on the challenge value. A digital signature
may be used instead of an HMAC. The result of the HMAC or signature calculation then
becomes the authorization code for the next enrolment request for this WIM.

Example(s): var dn = "CN = John Smith, O = Foo Co, C = US";

var request = crypto.genEnrollReq (dn, RSA, 1024, 0x0100, 0,
"", "", "");

Reference

Table 5 - genEnrollReq Syntax

OMA-WAP-ECMACR-V1_1-20050322-C Page 24 (33)

 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-SpecWAP-20040205]

5.2.3.3 Format of Enroll Result

5.2.3.3.1 Introduction

The GenEnrollReq command will return an error or a well-formed enrolment request. In this section the Enroll Request
message is defined. The Enroll Request will take the form of a PKCS #10 certificate request as defined in [PKCS #10].

In addition, this specification defines mechanisms to indicate to the PKI an assurance as to how the key was generated and
stored. This assurance may indicate that the key was generated on trusted hardware (such as a WIM). This assurance is
provided through the inclusion of an attribute in the attributes field of the CertificationRequestInfo structure. The assurance
information MUST be one of :

o Digital signature using a public key formatted as a CMS [RFC3852] message.

o An HMAC using a symmetric key formatted as a CMS [RFC3852] message.

The data on which the HMAC or digital signature is calculated should include the public key for which an assertion is
provided as well as an indication of the type of assertion that is made.

5.2.3.3.2 Enrolment Request Format

The enrolment request will follow the certificate enrolment format as defined in [PKCS#10]. We repeat some of that
information in this document for the sake of clarity.

A [PKCS #10] message consists of a top level CertificationRequest. The ASN.1 definition of the Certification
Request is shown below for reference.

CertificationRequest ::= SEQUENCE {
 certificationRequestInfo CertificationRequestInfo,
 signatureAlgorithm
 AlgorithmIdentifier{{SignatureAlgorithms}},
 signature BIT STRING
}

The CertificationRequest message contains the CertificationRequestInfo structure. The
CertificateRequestInfo structure is replicated for reference purposes.

CertificationRequestInfo ::= SEQUENCE {
version INTEGER { v1(0) } (v1,...),
subject Name,
subjectPKInfo SubjectPublicKeyInfo{{ PKInfoAlgorithms }},
attributes [0] Attributes{{ CRIAttributes }}

}

CertificationRequestInfo is the structure that is signed by the private key corresponding to the public key that is to
be enrolled. The assurance information is included in the CertificationRequestInfo structure as an Attribute.

The attribute has the following format:id-keygen-assertion OBJECT IDENTIFIER ::=
 {joint-iso-itu-t(2), identified-organizations(23) wap(43) attributes(2) 2}
-- Assigned OID from WAP OID tree

keyGenAssertion ATTRIBUTE ::= {
 WITH SYNTAX Assertion

OMA-WAP-ECMACR-V1_1-20050322-C Page 25 (33)

 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-SpecWAP-20040205]

ID id-keygen-assertion
 }

Assertion ::= CHOICE {
 signedData SignedData,
 authenticatedData [0] AuthenticatedData
 ... -- For future expansion
 }

The SignedData and AuthenticatedData types are defined in CMS [RFC3852]. The signature or MAC is computed on
the DER encoding of a value of type AssuranceInfo (see below). The ContentInfo included in the SignedData
and AuthenticatedData type must be of type data. The ContentInfo MUST be included in the SignedData (or
AuthenticatedData) structure. The fields of the signedData object have the following values:

Component Value

version 1

digestAlgorithms sha-1

encapContentInfo.eContentType id-data

encapContentInfo.eContent
Present (DER encoded AssuranceInfo structure). In the case of a
WIM it is returned by the Generate Key Assurance APDU
command.

certificates

Assurance signing certificate [CertProf]. Intermediate CAs required
to chain up to a trusted CA MAY be included. In the case of a WIM
a handle to the certificate (public key hash) is returned by the
Generate Key Assurance APDU command. The ME can then fetch
the certificate from the WIM.

crls Not present.

signerInfos.version 1 (or 3, see below)

signerInfos.sid
.issuerAndSerialNumber

The issuer and serial number for the assurance certificate used to
sign the data. If this information is not available in the User Agent
(for instance if the signer is only known through a certificate URL),
subjectKeyIdentifier as a form of signer identifier may be
used as an alternative. In this case, according to [RFC3852], the
version needs to be 3.)

signerInfos.digestAlgorithm sha-1

signerInfos.signedAttrs Not present

SignerInfos.signatureAlgorithm
Algorithm used in the signature. Either RSA [PKCS1] or ECDSA
[X9.62] MUST be supported by the client. The verifying party
(server) is REQUIRED to support RSA and MAY support ECDSA.

SignerInfos.unsignedAttrs

The certificate URL (section 5.1.2.1.6) attribute MAY be present.
In the case of a WIM a handle to the certificate (public key hash) is
returned by the Generate Key Assurance APDU command. The ME
can then fetch the certificate URL from the WIM.

OMA-WAP-ECMACR-V1_1-20050322-C Page 26 (33)

 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-SpecWAP-20040205]

Table 6 - CMS SignedData Values for genEnrollReq

For the AuthenticatedData, the SHA-1 hash algorithm MUST be used. The subject of managing the symmetric keys used by
the HMAC algorithm is beyond the scope of this document. The HMAC key MUST be at least 128-bits long. The fields of
the AuthenticatedData object have the following values:

Component Value

version 0

Mac algorithm
HMAC-SHA1 OBJECT IDENTIFIER ::= { iso(1)
identified-organization(3)dod(6) internet(1)
security(5) mechanisms(5) 8 1 2 }

encapContentInfo.eContentType id-data

encapContentInfo.eContent
Present (DER encoded AssuranceInfo structure). In the case of a
WIM it is returned by the Generate Key Assurance APDU
command.

AuthenticatedAttr Not present.

RecipientInfo.KEKRecipientInfo.ve
rsion 4

RecipientInfo.KEKRecipientInfo.ke
kid Set to 1.

RecipientInfo.KEKRecipientInfo.
keyEncryptionAlgorithm

des-ede3-cbc OBJECT IDENTIFIER ::= { iso(1) member-body(2)

us(840) rsadsi(113549) encryptionAlgorithm(3) 7 }

3DES in CBC mode as described in section 15.2 of [3DES-CBC] .
The initial chaining value for CBC mode shall be zero and padding
M2 [M2] shall apply.

RecipientInfo.KEKRecipientInfo.
encryptedKey

The HMAC key encrypted with the shared key. In the case of a
WIM it is returned by the Generate Key Assurance APDU
command.

Mac The calculated HMAC value. In the case of a WIM it is returned by
the Generate Key Assurance APDU command.

Table 7 - CMS AuthenticatedData Values for genEnrollReq

5.2.3.3.3 AssuranceInfo

The AssuranceInfo is the data that is signed or MACed. It is the data on which the assertion is made. The
AssuranceInfo has the following structure:

 AssuranceInfo::= SEQUENCE {
 deviceID UTF8String (SIZE (1..64)) OPTIONAL,
 subjectPKInfo SubjectPublicKeyInfo,
 keyAssertion KeyAssertion,
 ... -- For future use
 }

KeyAssertion ::= ENUMERATED {

OMA-WAP-ECMACR-V1_1-20050322-C Page 27 (33)

 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-SpecWAP-20040205]

injected-into-device (0),
 generated-on-device(1),
 -- Note: '(0)' and '(1)' are not needed but can be here for clarity
 ...
 }

The value of deviceID identifies the device where the key was generated as an UTF8String. If the WIM is implemented on a
smartcard or SIM, the deviceID MAY be set to the ICCID of the smartcard or SIM. The length of the deviceID value MUST
NOT exceed 64 characters.

The KeyAssertion field is used to indicate if the key was generated on the WIM or if the key was injected into the WIM.
The SubjectPublicKeyInfo MUST be the same as that included in the CertificationRequestInfo structure.
The structure MUST be DER encoded.

5.2.3.4 WIM based implementation

5.2.3.4.1 Creation of Assurance Assertion

The WIM must be capable of generating/providing the assurance signature on request. This is achieved through a single
"Generate Key Assurance" APDU command. This is the only command that can access or use the assurance key. The ME
MUST send the "Generate Key Assurance" APDU command to the WIM if it cannot find the public key in the [PKCS15]
PuKDF entry for the selected key. If the ME can find the public key in the [PKCS15] PuKDF entry for the selected key it
MAY choose to format a [PKCS #10] without the Key AssuranceInfo. The WIM is responsible for formatting the
AssuranceInfo, selecting the assurance key and generating the assurance. It is not possible to specify the data to be
signed (i.e. the AssuranceInfo) externally.

If the assurance key is an RSA key, the result returns a PKCS#1 signature and the AssuranceInfo. The ME is responsible
for formatting the KeyGenAssertion as specified in this document. In this case the KeyGenAssertion contains a
CMS [RFC3852] message. The "Generate Key Assurance" APDU command also returns the signer certificate, or certificate
URL, that is then used by the ME in formatting the KeyGenAssertion.

If the assurance key is symmetric, "Generate Key Assurance" APDU command returns an HMAC and the
AssuranceInfo. The ME will then format the KeyGenAssertion as defined in this document and include it in the
CertificationRequestInfo structure.

It may not be required to place the key assurance certificate or key assurance public key on the WIM. The public key may be
obtained from a certificate identified by a certificate URL.

5.2.3.4.2 Formatting of Enrolment Request

The ME is responsible for formatting the enrolment request. The WIM is responsible for performing the cryptographic
operations, including signature generation, assurance generation and PIN validations.

In the case of a WIM the ME obtains the assurance information from the WIM. Once it has the assurance information it
formats the assurance attribute KeyGenAssertion.

Once the ME has the assurance attribute, it proceeds to generate the CertificationRequestInfo. If no Name information was
provided as a function parameter, the ME may obtain information from the WIM (e.g. the serial number in the
EF(TokenInfo) file for WIMs) to complete the Name information in the CertificationRequestInfo. The ME then proceeds to
calculate the SHA-1 hash on the CertificationRequestInfo. The hash result is presented to the WIM for signature
generation. Before the signature is generated the relevant PIN for the specified key has to be presented to the WIM to confirm
usage of the private key (e.g. PIN-NR for NR key and PIN-G for an authentication key if PIN-G was not validated earlier in
the session).

After the ME obtained the signature, it proceeds to construct the CertificationRequest. The DER encoded
CertificationRequest is [Based64] encoded and returned as the function result. The function result may then be used
by the PKI to enroll a new user.

OMA-WAP-ECMACR-V1_1-20050322-C Page 28 (33)

 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-SpecWAP-20040205]

Appendix A. Static Conformance Requirements
This appendix is normative.

This static conformance requirement [IOPPROC] lists a minimum set of functions that can be implemented to help ensure
that implementations will be able to inter-operate. The “Status” column indicates if the function is mandatory (M) or optional
(O).

A.1 Client Conformance
Item Function Reference Status Requirement
ECMACR-C-001 signText 5.2.1 M
ECMACR-C-002 signText options 5.2.1.3 M
ECMACR-C-003 signText option "ask" 5.2.1.3 M
ECMACR-C-004 signText option "auto" processed 5.2.1.3 O
ECMACR-C-005 signText option "auto" recognized 5.2.1.3 M
ECMACR-C-006 signText option "nocert" 5.2.1.3 O
ECMACR-C-010 signText signed attributes 5.2.1.5 M ECMACR-C-011 OR

ECMACR-C-012
ECMACR-C-011 signText signed signing time attribute 5.2.1.5 O
ECMACR-C-012 signText signed random nonce attribute 5.2.1.5 O
ECMACR-C-013 signText signed signing certificate attribute 5.2.1.5 O
ECMACR-C-014 signText signed signing certificate attribute with

issuerSerial
5.2.1.5 O

ECMACR-C-015 signText unsigned certificate URL attribute 5.2.1.6 O
ECMACR-C-019 signText any other attribute 5.2.1.5 O
ECMACR-C-020 signText hash algorithm SHA-1 5.2.1.5 M
ECMACR-C-030 signText signing algorithm 5.2.1 M ECMACR-C-031 OR

ECMACR-C-032
ECMACR-C-031 signText signing algorithm RSA 5.2.1 O
ECMACR-C-032 signText signing algorithm ECDSA 5.2.1 O
ECMACR-C-040 signText use of signature keys that are distinct

from authentication keys
5.2.1.1 O

ECMACR-C-041 signText use of WIM 5.2.1.7 O
ECMACR-C-050 keyGen 5.1.2.2.2 M
ECMACR-C-051 KeyGen keyLabel parameter 5.1.2.2.2 O ECMACR-C-055
ECMACR-C-053 keyGen keyType parameter 5.1.2.2.2 O
ECMACR-C-054 keyGen keyLen parameter 5.1.2.2.2 O
ECMACR-C-055 keyGen keyUsage parameter 5.1.2.2.2 O
ECMACR-C-056 keyGen encryptedAttributes parameter 5.1.2.2.2 O ECMACR-C-057
ECMACR-C-057 keyGen authCode parameter 5.1.2.2.2 O
ECMACR-C-070 GenEnrollReq 5.1.2.3.2 M
ECMACR-C-071 GenEnrollReq nameInfo parameter 5.1.2.3.2 O
ECMACR-C-072 GenEnrollReq keyType parameter 5.1.2.3.2 O
ECMACR-C-073 GenEnrollReq keyLen parameter 5.1.2.3.2 O
ECMACR-C-074 GenEnrollReq keyUsage parameter 5.1.2.3.2 O
ECMACR-C-075 GenEnrollReq keyIDType parameter 5.1.2.3.2 O
ECMACR-C-076 GenEnrollReq keyID parameter 5.1.2.3.2 O
ECMACR-C-077 GenEnrollReq authCode parameter 5.1.2.3.2 O

OMA-WAP-ECMACR-V1_1-20050322-C Page 29 (33)

 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-SpecWAP-20040205]

A.2 Server Conformance

Item Function Reference Status Requirement
ECMACR-S-001 SignText 5.2.1 M
ECMACR-S-010 signText signed attributes 5.2.1.5 M
ECMACR-S-011 signText signed signing time attribute 5.2.1.5 M
ECMACR-S-012 signText signed random nonce attribute 5.2.1.5 M
ECMACR-S-013 signText signed signing certificate attribute 5.2.1.5 M
ECMACR-S-014 signText signed signing certificate attribute with

issuerSerial
5.2.1.5 O

ECMACR-S-015 signText unsigned certificate URL attribute 5.2.1.6 O ECMACR-S-040 AND
ECMACR-S-041 AND
ECMACR-S-042 AND
ECMACR-S-043 AND
ECMACR-S-044

ECMACR-S-019 signText any other attribute recognized 5.2.1.5 M
ECMACR-S-020 signText hash algorithm SHA-1 5.2.1.5 M
ECMACR-S-030 signText signing algorithm 5.2.1.5 M
ECMACR-S-031 signText signing algorithm RSA 5.2.1.5 M
ECMACR-S-032 signText signing algorithm ECDSA 5.2.1.5 O
ECMACR-S-040 signText, retrieve client certificate from the

URL
5.2.1.6.4 O

ECMACR-S-041 signText, HTTP scheme for certificate URL 5.2.1.6.4 O
ECMACR-S-042 signText, application/pkix-cert 5.2.1.6.4 O
ECMACR-S-043 signText, application/pkix-pkipath 5.2.1.6.4 O
ECMACR-S-044 signText, check certificate hash 5.2.1.6.4 O
ECMACR-S-050 KeyGen 5.1.2.2.2 M
ECMACR-S-051 KeyGen keyLabel parameter 5.1.2.2.2 O ECMACR-S-055
ECMACR-S-053 keyGen keyType parameter 5.1.2.2.2 O
ECMACR-S-054 keyGen keyLen parameter 5.1.2.2.2 O
ECMACR-S-055 keyGen keyUsage parameter 5.1.2.2.2 O
ECMACR-S-056 keyGen encryptedAttributes parameter 5.1.2.2.2 O ECMACR-S-057
ECMACR-S-057 keyGen authCode parameter 5.1.2.2.2 O
ECMACR-S-070 GenEnrollReq 5.1.2.3.2 M
ECMACR-S-071 GenEnrollReq NameInfo param 5.1.2.3.2 O
ECMACR-S-072 GenEnrollReq keyType param 5.1.2.3.2 O
ECMACR-S-073 GenEnrollReq keyLen parameter 5.1.2.3.2 O
ECMACR-S-074 GenEnrollReq keyUsage parameter 5.1.2.3.2 O
ECMACR-S-075 GenEnrollReq keyIDType parameter 5.1.2.3.2 O
ECMACR-S-076 GenEnrollReq keyID parameter 5.1.2.3.2 O
ECMACR-S-077 GenEnrollReq authCode parameter 5.1.2.3.2 O

OMA-WAP-ECMACR-V1_1-20050322-C Page 30 (33)

 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-SpecWAP-20040205]

Appendix B. Mapping WMLScript Crypto Library Functions to ES-MP
Crypto Object Methods (Informative)

This appendix is informative.

Library Call Object Method/Constant Comment

Crypto SignText Crypto signText()

OMA-WAP-ECMACR-V1_1-20050322-C Page 31 (33)

 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-SpecWAP-20040205]

Appendix C. Differences between WMLScript Crypto Library and
ESMP Crypto Object (Informative)

This appendix is informative.

In addition to basic differences in script languages [ESMP], Appendix D, following differences exist:

o In ESMP Crypto Object signText, trusted certificates are encoded as textual DN. Multiple authorities are indicated
as multiple parameters. In WMLScript signText, trusted certificates are encoded as key identifiers.

o In ESMP Crypto Object signText, signing options are encoded as a string. In WMLScript signText, they are
encoded as binary.

o In ESMP Crypto Object signText, signing certificate may be included as a signed attribute

o Using a key id to indicate signing key is supported in WMLScript signText but not supported in ESMP Crypto
Object signText

OMA-WAP-ECMACR-V1_1-20050322-C Page 32 (33)

 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-SpecWAP-20040205]

Appendix D. Differences between ESMP Crypto Object and JavaScript
Crypto Methods (Informative)

This appendix is informative.

ESMP Crypto Object signText method supports the following features which are additional to what is supported in
JavaScript Crypto

o Additional options may be indicated: "nocert"

o Additional signed attributes are defined

OMA-WAP-ECMACR-V1_1-20050322-C Page 33 (33)

 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-SpecWAP-20040205]

Appendix E. Change History (Informative)
E.1 Approved Version History

Reference Date Description

OMA-WAP-ECMACR-V1_0 15 June 2004 Approved in the OMA WPKI enabler release

E.2 Draft/Candidate Version 1.1 History
Document Identifier Date Sections Description

Candidate Version
OMA-WA-ECMACR-V1_1-20050322-C

22 March
2005

 TP ref: OMA-TP-2005-0091-OBKG-V1_0-for-Candidate-approval

Draft Version
OMA-WAP-ECMACR-V1_1

02 February
2005

Many Updates based on consistency review. See OMA-CONRR-OBKG-
V1_0-20041202-D

Draft Version
OMA-WAP-ECMACR-V1_1

20 August
2004

2.1, 2.2 Editorial corrections in the references, change of doc name

Draft Version
OMA-WAP-ECMACR-V1_1

26 March
2004

 Candidate version

Draft Version
OMA-WAP-ECMACR-v1_1

12 March
2004

5.1.2.2
5.1.2.3

Update the function descriptions to adhere to the description format of
the signText function

Draft Version
OMA-WAP-ECMACR-v1_1

11 December
2003

6, 7 Added two new functions: KeyGen and GenEnrollReq according to
CRs OMA-SEC-2003-0049R02-obkg-ecma-keygen and OMA-SEC-
2003-0050R02-obkg-ecma-enroll

Draft Version
OMA-WAP-ECMACR-v1_0

25 September
2003

 Draft version from WAP. Has passed the consistency review in WAP
Forum.

	1. Scope
	2. References
	2.1 Normative References
	2.2 Informative References

	3. Terminology and Conventions
	3.1 Conventions
	3.2 Definitions
	3.3 Abbreviations
	3.4 How to Read this Document
	3.5 Acknowledgement

	4. Introduction
	5. Crypto Object Definition
	5.1 Properties
	5.2 Methods
	5.2.1 signText()
	5.2.1.1 Introduction
	5.2.1.2 Syntax
	5.2.1.3 Signing Options
	5.2.1.4 Description
	5.2.1.5 Format of the Result String
	5.2.1.6 Certificate URL Attribute
	5.2.1.6.1 Introduction
	5.2.1.6.2 OID
	5.2.1.6.3 Usage in CMS
	5.2.1.6.4 Attribute ASN.1 Definition

	5.2.1.7 Implementation Using the WIM

	5.2.2 KeyGen method
	5.2.2.1 Introduction
	5.2.2.2 Syntax
	5.2.2.3 WIM based implementation
	5.2.2.3.1 Encrypted Attributes parameter
	5.2.2.3.2 AuthCode parameter

	5.2.3 genEnrollReq Method
	5.2.3.1 Introduction
	5.2.3.2 Syntax
	5.2.3.3 Format of Enroll Result
	5.2.3.3.1 Introduction
	5.2.3.3.2 Enrolment Request Format
	5.2.3.3.3 AssuranceInfo

	5.2.3.4 WIM based implementation
	5.2.3.4.1 Creation of Assurance Assertion
	5.2.3.4.2 Formatting of Enrolment Request

