
 2009 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20040205]

OMA Service Environment
Approved Version 1.0.5 – 08 Oct 2009

Open Mobile Alliance
OMA-AD-Service-Environment-V1_0_5-20091008-A

OMA-AD-Service-Environment-V1_0_5-20091008-A Page 2 (36)

Error! Reference source not found.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20040205]

Use of this document is subject to all of the terms and conditions of the Use Agreement located at
http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an
approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not
modify, edit or take out of context the information in this document in any manner. Information contained in this document
may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior
written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided
that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials
and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products
or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely
manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification.
However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available
to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at
http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of
this document and the information contained herein, and makes no representations or warranties regarding third party IPR,
including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you
must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in
the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN
MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF
THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE
ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT
SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT,
PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN
CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2009 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

http://www.openmobilealliance.org/ipr.html
http://www.openmobilealliance.org/UseAgreement.html

OMA-AD-Service-Environment-V1_0_5-20091008-A Page 3 (36)

Error! Reference source not found.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20040205]

Contents
1. SCOPE .. 5

2. REFERENCES .. 6
2.1 NORMATIVE REFERENCES .. 6
2.2 INFORMATIVE REFERENCES ... 6

3. TERMINOLOGY AND CONVENTIONS .. 7
3.1 CONVENTIONS ... 7
3.2 DEFINITIONS .. 7
3.3 ABBREVIATIONS .. 8

4. INTRODUCTION ... 9
4.1 GENERAL ... 9
4.2 TARGETED AUDIENCE AND DOCUMENT INTENTION ... 9
4.3 MOTIVATION ... 10

4.3.1 Existing service development and integration ... 10
4.3.2 End-user perception ... 10
4.3.3 OMA enablers and enabler reuse ... 10

4.4 OMA SILO ARCHITECTURES ... 11
5. THE OSE ARCHITECTURE .. 12

5.1 ARCHITECTURE REQUIREMENTS AND PRINCIPLES .. 12
5.1.1 Intrinsic functionality ... 12
5.1.2 Delegation and reuse of enablers ... 12
5.1.3 Protection of enablers and resources .. 12
5.1.4 Extensibility ... 12

5.2 ARCHITECTURAL MODEL ... 13
5.2.1 Enabler ... 14
5.2.2 Enabler implementation ... 14
5.2.3 Interfaces .. 15
5.2.4 Enabler interface bindings ... 15
5.2.5 Resources ... 15
5.2.6 Applications ... 15
5.2.7 Execution Environment ... 15
5.2.8 Policy Enforcer .. 17

5.3 INTERFACES OF THE OSE ... 17
5.4 APPLYING THE OSE ARCHITECTURE ... 18

5.4.1 Controlled exposure of enablers and resources .. 18
5.4.2 Using the exposed resources .. 20
5.4.3 Implications of policy management on enabler interfaces ... 20

5.4.3.1 Interfaces towards Third Parties.. 20
5.4.3.2 Interface I0 and I0+P .. 21

5.4.4 Deployment options ... 21
6. IMPLICATIONS ON ENABLER SPECIFICATION WRITERS (NORMATIVE) ... 23

7. SECURITY ... 24
7.1 SECURITY THREATS .. 24
7.2 SECURITY FUNCTIONS .. 24

7.2.1 Authentication .. 25
7.2.2 Data Integrity ... 25
7.2.3 Confidentiality ... 25
7.2.4 Key Management ... 25
7.2.5 Access Control/Authorization .. 25
7.2.6 Non-Repudiation .. 25

8. MIGRATION FROM OMA SILO ENABLER ARCHITECTURES TOWARDS THE OSE USING POLICY
ENFORCEMENT .. 27

OMA-AD-Service-Environment-V1_0_5-20091008-A Page 4 (36)

Error! Reference source not found.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20040205]

8.1 RELATIONSHIP BETWEEN EXPOSED INTERFACES AND POLICIES AT DEPLOYMENT .. 27
8.2 ENABLER IMPLEMENTATIONS AND DEPLOYMENTS ... 28
8.3 MIGRATION THROUGH THE USE OF PEEM .. 29

APPENDIX A. CHANGE HISTORY (INFORMATIVE) .. 31
A.1 APPROVED VERSION 1.0 HISTORY ... 31

APPENDIX B. DERIVING AN OMA SERVICE ENVIRONMENT ARCHITECTURE .. 32

APPENDIX C. REFERENCE POINTS VERSUS INTERFACES .. 35

Figures
Figure 1. OGSA View .. 11

Figure 2 – OSE architecture elements.. 14

Figure 3 – Classification of interfaces in OSE ... 17

Figure 4 - OSE Flows ... 19

Figure 5 - Third Party engagement steps... 20

Figure 6 - Target Policy Enforcer deployments (with flows) ... 22

Figure 7– Interfaces exposed in relationship to policies ... 27

Figure 8 - Examples of Policy Enforcer deployments (with flows) .. 29

Figure 9 - Schematic view of an interface .. 35

Figure 10 - Reference Point schematically ... 35

Figure 11 - Equivalency of interface point of view and reference point of view .. 36

Tables
Table 1: Interface Categories of the OSE Architecture ... 18

OMA-AD-Service-Environment-V1_0_5-20091008-A Page 5 (36)

Error! Reference source not found.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20040205]

1. Scope
This document describes the OMA Service Environment (OSE), which is a flexible and extensible architecture that offers
support to a diverse group of application developers and Service Providers.

The primary intention of the OSE is to promote common architectural principles, across the whole of OMA, for how OMA
Enablers are specified and how they interact with one another whilst ensuring architecture integrity, scalability and
interoperability, all of which strive to reduce Architecture silo design and hence reduce integration and deployment
complexities.

This document includes the following information:

• A high-level description of the OMA Service Environment including its concepts and entities;

• A migration path between existing and future enabler activities within the OMA;

• A description of how OMA enablers interact with one another, for example, to support the creation and delivery of
widely accessible coherent end-user services.

OMA-AD-Service-Environment-V1_0_5-20091008-A Page 6 (36)

Error! Reference source not found.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20040205]

2. References
2.1 Normative References

[RFC2119] “Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997,
URL:http://www.ietf.org/rfc/rfc2119.txt

2.2 Informative References
[ARCH-INVEN] “Inventory of Architectures and Services”, Inventory-of-Architectures-and-Services-V1_0,

Open Mobile Alliance™, URL: http://www.openmobilealliance.org/

[ARCH-REQ] “OMA Architecture Requirements, Open Mobile Alliance™, OMA-RD-Architecture-V1_0,
URL: http://www.openmobilealliance.org/

[GSM 01.04] “Abbreviations and acronyms”, European Telecommunications Standards Institute, Technical
Report GSM 01.04. URL: http://www.3gpp.org

[ITU-T I.112] “Vocabulary of terms for ISDNs”, International Telecommunication Union, ITU-T
Recommendation I.113, URL: http://www.itu.org/

[OMA-DICT] “Dictionary for OMA Specifications”, OMA-ORG-Dictionary-V2_5, Open Mobile Alliance™,
URL:http://www.openmobilealliance.org/

[RFC 2828] “Internet Security Glossary”, RFC 2828,

URL:http://www.ietf.org/rfc/rfc2828.txt

[TMF] "Product Lifecycle Management with NGOSS", TMFC2051 PLM Catalyst Overview-final,

URL:http://www.tmforum.org/

[X.800] “Security architecture for Open Systems Interconnection for CCITT applications”, ITU,
Recommendation X.800, URL: http://www.itu.int/rec/T-REC-X.800/en

http://www.itu.int/rec/T-REC-X.800/en
http://www.tmforum.org/
http://www.ietf.org/rfc/rfc2828.txt
http://www.openmobilealliance.org/
http://www.itu.org/
http://www.3gpp.org/
http://www.ietf.org/rfc/rfc2119.txt

OMA-AD-Service-Environment-V1_0_5-20091008-A Page 7 (36)

Error! Reference source not found.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20040205]

3. Terminology and Conventions
3.1 Conventions
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendices are informative, unless they are explicitly indicated to be normative.

All figures in this document are informative.

3.2 Definitions
For the purposes of this document, the terms and definitions given in [OMA-DICT] apply and the following also apply:

Application An implementation of a related set of functions that perform useful work, often enabling one or more
services. It may consist of software and/or hardware elements.

Authentication The process of verifying an identity claimed by or for a system entity. [RFC 2828]

Authorization,

Authorize

(1.) An "authorization" is a right or a permission that is granted to a system entity to access a system
resource. (2.) An "authorization process" is a procedure for granting such rights. (3.) To "authorize" means
to grant such a right or permission. [RFC 2828]

Delegate A delegate is a designated system or resource that performs specified tasks or functions on behalf of (one
or more) other systems. To delegate is to designate a system or resource that performs specified tasks or
functions on behalf of (one or more) other systems.

Interface The common boundary between two associated systems. [GSM 01.04, ITU-T I.112]

Intrinsic function Intrinsic functions are those functions that are essential in fulfilling the intended task of the specified
enabler

Logical Architecture Incorporates the detailed architecture diagram (with interfaces), elements and interface specifications. This
architecture is used to derive detailed architecture based upon which an implementation can be made.

OGSA View A representation of the external interfaces specified and exposed by a specific Enabler and/or its
components.

OMA Service
Environment A logical architecture that provides a common structure and rule set for specifying enablers.

Non-intrinsic function Non-intrinsic functions are those functions that are not essential in fulfilling the intended task of the
specified enabler

Parameter P Parameter P is the set of parameters that must be added to requests through the I0 interface of an enabler in
order to satisfy existing policies to be enforced when exposing this enabler.

Policy A policy is uniquely represented by a logical combination of conditions and actions.

Policy Enforcement The process of executing actions, which may be performed as a consequence of the output of the policy
evaluation process or during the policy evaluation process.

Policy Evaluation The process of evaluating the policy conditions and executing the associated policy actions up to the point
that the end of the policy is reached.

Policy Processing Policy evaluation or policy evaluation and enforcement

Request An articulation of the need to access a resource or to invoke a function. A request may include zero, one or
more facts.

Requestor Any entity that issues a request to a resource.

Resource Any component, enabler, function or application that can receive and process requests.

Risk An expectation of loss expressed as the probability that a particular threat will exploit a particular
vulnerability with a particularly harmful result.

OMA-AD-Service-Environment-V1_0_5-20091008-A Page 8 (36)

Error! Reference source not found.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20040205]

Service Enabler A technology intended for use in the development, deployment or operation of a Service; defined in a
specification, or group of specifications, published as a package by OMA.

Threat A potential for violation of security, which exists when there is a circumstance, capability, action, or event
that could breach security and cause harm.

3.3 Abbreviations
For the purposes of this document, the abbreviations given in [OMA-DICT] apply and the following also apply:

API Application Programming Interface

ETOM extended Telecommunications Operations Map

JCP Java Community Process

OASIS Organization for the Advancement of Structured Information Standards

OGSA OMA Global Service Architecture

OMA Open Mobile Alliance

OSE OMA Service Environment

PE Policy Enforcer

PEEM Policy Evaluation, Enforcement and Management

PoC Push to talk over Cellular

SID Shared Information/Data model

SNMP Simple Network Management Protocol

TMF TeleManagement Forum

OMA-AD-Service-Environment-V1_0_5-20091008-A Page 9 (36)

Error! Reference source not found.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20040205]

4. Introduction
4.1 General
The OMA specifies enablers, which provide standardized components to create an environment in which services may be
developed and deployed. The OMA enablers, the decomposition into these components and the interactions between them
comprise the OSE.

The primary intention of the OSE is to address the issues as described in Section 4.3 and to satisfy the OMA Architecture
requirements [ARCH-REQ] which focuses on:

• High-level functional and system requirements that describe the need for architecture integrity, scalability,
interoperability and the elimination of silo designs and hence the reduction of integration and deployment
complexities and the importance of security, usability and privacy;

• Overall system element requirements that describe general enabler and interface requirements.

In general, the OSE addresses the issues as described in Section 4.3 by simplifying:

• The controlled exposure of resources to internal and Third Party application developers, in order for them to create
and run compelling new services;

• The integration and management of resources;

• The evolution of OMA’s current silo-like conglomerate architecture to an integrated unified and well coordinated
OMA service enabler environment.

The use of the OSE will lead to:

• Rapid development and deployment of new and innovative applications;

• Reuse of OMA enablers and the reduction of silos;

• Opening up service creation to Third Parties while protecting the Service Providers assets;

• Enabling the use of varied business models for services;

• Broadening of the developer pool;

• Making automated management of business relationships possible;

• Development of an evolution path for an integrated and unified service enabler environment.

The remainder of this document will further elaborate on these topics.

4.2 Targeted audience and document intention
This document is targeted at OMA members, other specification-defining organizations, and companies who want to make
use of OMA-defined specifications.

The intention of the OSE is to:

• Provide guidance to specification writers when creating new or evolving existing OMA enablers;

• Assist in understanding the relations and interactions between OMA enablers as well as non-OMA resources,
specifically to encourage and simplify reuse.

OMA-AD-Service-Environment-V1_0_5-20091008-A Page 10 (36)

Error! Reference source not found.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20040205]

4.3 Motivation
4.3.1 Existing service development and integration
Service architectures specified today are created by standards bodies and are targeted at a particular service. When individual
enablers are defined without the benefit of an overall architecture, each enabler will be forced to define all functions required
to fulfil its requirements. This monolithic approach to enablers creates a number of issues for the Service Provider:

• Integration and deployment of services is complicated and expensive;

• High implementation efforts for applications wanting to use several capabilities;

• There is no common integration of the different services from the point of view of the end-user (e.g. no common
group management or user profile across multiple services).

The term silo has become popular in this context as it highlights the fact that the implementation of the service has been done
by integrating different components vertically and per-service. Implementation and integration work done for one service
cannot be reused in others due to the lack of standards.

The silo nature of both standards and products results in a number of problems that raise costs and slow down deployment for
new services. From a Service Provider's perspective:

• Integration with underlying network infrastructure must be repeated for each deployment, which results in
duplication of integration work;

• Many functions and their associated data are duplicated with the introduction of new services, e.g. each service
implementation tends to have its own subscriber database, or its own way of authenticating end-users or accounting
for service usage;

• Sharing of, for example, the preferred notification method (email, SMS or voice call) across services requires costly
integration activities.

Another problem of the silo architecture is that each service comes typically with its own management facilities, and the way
the service is actually deployed in the network is also different. In addition the silo architecture of services also requires
detailed knowledge about the network to integrate service implementation with the underlying network infrastructure, or with
end-user equipment, e.g. terminals. Some components, such as user profiles need to be developed again for each service and
cannot be reused for other services. The result is non-satisfactory time-to-market as well as high costs and inconsistent user
interfaces across multiple services.

4.3.2 End-user perception
From an end user perspective, the independent deployment of services leads to inconsistent user experience when using
different services offered by a single provider or even when using the same service across different environments (e.g. caused
whilst end-user is roaming). From the end-user perspective the inconsistency in user experience arises because of:

• Inconsistent reuse of user information, preferences, privacy settings, etc;

• Lack of service continuity caused by user mobility and service mobility;End-users inability to choose how services
are accessed and used;

• Limitations in the end-user's perception of their relationship and interaction with other actors (e.g. mobile operators
and enterprises), and the roles that each actor fulfils, within the user mobility and service mobility eco-system.

4.3.3 OMA enablers and enabler reuse
The main role of OMA is the specification of OMA enablers, which provide for a number of benefits:

OMA-AD-Service-Environment-V1_0_5-20091008-A Page 11 (36)

Error! Reference source not found.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20040205]

• Enablers provide interoperable components that enable the interaction between different components and
applications developed by different providers (e.g. device and network suppliers, information technology companies
and Content and Service Providers);

• The specification of enablers reduces deployment efforts and allows the same applications to operate across a wide
variety of environments in a consistent manner;

• The specification of enablers also allows for reuse, so that commonly used functions can be provided for by standard
components, instead of recreating those same functions in each application.

The latter point emphasises the need to identify potential areas of overlap, especially where OMA provides more than one
way of providing the same capability. This is true within a particular area (e.g. location or instant messaging) where there
previously existed more than one organization that targeted the same standardisation effort, but also across areas where often
the same capabilities are needed, but are provided in different ways.

An integral part in the development of the OSE is to promote the reuse of common functions that may be used by other OMA
enablers and non-OMA resources, and to create new OMA enablers that provide those common functions.

In addition, the OSE encourages the identification of gaps between existing standards by analysing different standards (see
[ARCH-INVEN]), and if a gap is detected and its associated function is identified as benefiting from standardization, then
this gap is a potential candidate for a new OMA enabler.

In order to facilitate reuse a simple intuitive diagram depicting OGSA View is required. OGSA View must describe and
provide a graphical overview of the components of the enabler and the I0 interfaces (see section 5.3), which expose
functionality to entities external to the enabler. The interfaces internal to the enabler are not shown in the OGSA View
diagram neither the reference points/interfaces specified by other resources and reused by this enabler.

Figure 1. OGSA View

4.4 OMA silo architectures
OMA produces open specifications to create building blocks to provide services to end-users or to maintain or enhance the
environment in which services are provided. As described in Section 4.3 these specifications have been developed, in most
cases, without a concern for how they interact with each other, nor do they seek to provide unified and consistent structure
by, for example, identifying potential areas of overlap and avoiding duplication. For a detailed architecture view of OMA silo
architectures, which must be avoided in future OMA enabler design and specification, refer to [ARCH-INVEN].

OMA-AD-Service-Environment-V1_0_5-20091008-A Page 12 (36)

Error! Reference source not found.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20040205]

5. The OSE Architecture
5.1 Architecture requirements and principles
The OSE architecture is developed to satisfy the OMA Architecture Requirements [ARCH-REQ]. The Architecture
requirements document [ARCH-REQ] describes both functional and system requirements that need to be satisfied by the
OSE. The Architecture requirements document [ARCH-REQ] also implies the need for a set of interfaces. These interfaces
and the associated OMA architecture requirements are described in Appendix B.

Additionally, the OSE focuses on several key concepts that address the issues as described in Section 4.3.

The OSE architecture can be realized using the specifications, as defined by, for example, Parlay OASIS, JCP and Liberty
Alliance. The key principles of the OSE are described in the following sections.

5.1.1 Intrinsic functionality
Intrinsic functions are those functions that are essential in fulfilling the intended task of the specified enabler. For example,
the Position Calculation function is Intrinsic to Secure User Plane Location; Authentication is intrinsic to Single Sign On;
Encryption is an intrinsic function of Digital Rights Management.

Non-Intrinsic functions are those functions that are not essential in fulfilling the intended task of the specified enabler. For
example, Authentication is a non-intrinsic function to Data Synchronisation; Encryption is a non-intrinsic function of Device
Management.Any requirements or features that are not intrinsic to an enabler should not be specified within the enabler's
specification. An enabler's specification should only specify the intrinsic functionality required to fulfil its actual function.

However, the classification of intrinsic and non-intrinsic functions is relative to its usage by another enabler (see previous
example for Encryption).

The classification of intrinsic and non-intrinsic is subjective and needs to be done on a per enabler basis.

5.1.2 Delegation and reuse of enablers
Enabler specifications should reuse existing specifications where possible. This approach includes the reuse of existing OMA
enabler specifications whenever possible (e.g. reuse of presence and group management enablers by the PoC enabler).
Enabler specifications must specify how to interface to (i.e. invoke) their functions.

As a result of enabler specifications reusing other enabler specifications, the vertical silo problem can be reduced. The
integration of new applications and enablers into an OSE domain can be simplified. Examples of OSE domain include: an SP
domain, a terminal domain, or an enterprise domain. Enabler implementations may reuse other enablers located in either the
same OSE domain or across different OSE domains.

An enabler implementation can invoke any standardized function, such as authentication or group management, that it needs
to satisfy its intrinsic functions defined in its specifications.

5.1.3 Protection of enablers and resources
In order to protect the underlying resources in an OSE domain from unauthorized requests and to manage the use of these
requests it is important that the OSE enables the exposure of OMA enablers, other functions, resources and applications to
each other in a controlled manner. It is also important that the OSE architecture manages the procedures applied to enablers
and applications that reside either in the same environment or across different environments.

5.1.4 Extensibility
In any OSE domain, implementations of the OMA enablers expose standard interfaces for application and enabler use. These
enabler implementations connect to the actual resources present in the OSE domain. Through this abstraction, it is possible to
add or modify the underlying resources without affecting the interface exposed by the enabler implementations (and therefore
without affecting the applications), something that is especially important when using multiple vendors, supporting different
network technologies or relying on different providers.

OMA-AD-Service-Environment-V1_0_5-20091008-A Page 13 (36)

Error! Reference source not found.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20040205]

New enablers can be introduced into any OSE domain by developing an enabler implementation that may connect to an
underlying resource in that domain.

The enabler’s interfaces are offered by the enabler implementations for use by applications or other enabler implementations.
The interfaces follow the OMA specifications and they are technology specific realizations of the specified interfaces (e.g.
web services, Java).

The enabler's interface(s) can be registered with the (proposed) discovery enabler to allow applications to dynamically bind
to the destination enabler.

One way of controlling access to enablers is to use policies. Policies can be loaded dynamically for policy evaluation and
enforcement to protect the enabler.

When required, Policy definitions may help in extensibility by using the delegation mechanism.

Life cycle management interfaces are expected to provide support for upgrade of enablers when new releases are installed
and deployed.

5.2 Architectural Model
Section 5 defines the OSE Architecture which is the set of architecture elements and the relationships between these
elements. The architecture elements are defined in the subsections of this section. The relationships are the interface
categories as defined in Section 5.3.

Figure 2 illustrates the architecture elements of both the Service Provider and terminal domains of the OSE. This view
focuses on identifying the different elements present in the OSE. The figure is not meant to be indicative of any particular
deployment model.

The OSE Architecture does not specify where architectural elements (e.g. applications, enablers, etc.) reside. For example,
the architectural elements may reside in a Mobile Operator’s network, or on mobile terminals.

Thus, throughout this document, the OSE architecture also applies to a user terminal.

NOTE to the Reader: Further details about the OSE and the terminal will be provided in future releases of the OSE.

The OSE Architecture does not mandate the deployment of a Policy Enforcer implementation or of any enabler
implementation in any domain. When an enabler or Policy Enforcer implementation is deployed, the OSE architecture does
not mandate a specific deployment model choice. This allows flexibility in how OMA enablers and the Policy Enforcer
function are implemented and deployed.

OMA-AD-Service-Environment-V1_0_5-20091008-A Page 14 (36)

Error! Reference source not found.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20040205]

SP portion of OSE Picture

Other bindingsOther bindingsWeb service bindingsWeb service bindings ……

Enabler
implementation

Enabler
implementation

Enabler
implementation

Policy Enforcer

Applications

……

Enabler
implementation

Service Provider or
Terminal Domain

To Resources in
Operators, terminals, Service Providers

Execution
Environment
(Software Life
Cycle Mgmt,

Load balancing,
caching, O&M,

etc.)

Applications

Figure 2 – OSE architecture elements.

Each architecture element is described in the subsequent sections.

5.2.1 Enabler
The enabler (or its long form Service Enabler) architecture element is pervasive in OMA because enablers are the primary
products of OMA (e.g. Enabler Releases and Enabler Packages). An enabler should specify one or more public interfaces.

Examples of OMA enablers include Location or Device Management.

The term enabler is formally defined in [OMA-DICT] but is copied here for the convenience of the reader:

Enabler - A technology intended for use in the development, deployment or operation of a Service; defined in a specification,
or group of specifications, published as a package by OMA.

5.2.2 Enabler implementation
Although specifications created by OMA are technology-agnostic regarding their implementation, the reality is that enablers
will be implemented in real deployments of service environments. Consequently, this document defines Enabler
Implementations as an element in the OSE and it literally represents an implementation of an enabler, e.g. either in a Service
Provider domain or in a terminal domain. An enabler implementation can be viewed as a template that represents an
implementation of any enabler (e.g. MMS) as defined by OMA. When an enabler specifies multiple entities (e.g. client and
server, multiple clients or multiple servers) and their interactions, each of these entities can be implemented as separate
enabler implementations (e.g. client enabler implementation and server enabler implementation).

The OSE makes no restrictions on how enabler specifications are implemented.

Enabler implementations provide standardized functions. The enabler implementation may amalgamate, abstract and/or
repackage a resource, and present its functions through an interface after binding to a particular syntax.

Enabler implementations expose life cycle management interfaces (e.g. start, stop, trace, etc) that allow the domain to use
infrastructure capabilities to manage the enabler's components.

OMA-AD-Service-Environment-V1_0_5-20091008-A Page 15 (36)

Error! Reference source not found.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20040205]

OMA defines many enablers such as location and device management. In addition, other functions (e.g. authentication,
access control, discovery and directories) may be provided either through enabler implementations, infrastructure features or
applications (e.g. Third Party management and transaction management) available in the environment.

Enabler implementations may be invoked by applications or other enabler implementations. OMA enablers may be defined
for usage in callable mode, proxy mode, both or in none of these modes. They are all represented in the OSE as enabler
implementations (see Figure 2). Depending on their role or deployment model they will present an interface and be used as
proxies or callable enablers.

The enabler implementations process the messages as defined by the enabler specification. The binding elements provide the
specific syntax to express these messages in the selected format such as web services, Java or .Net.

5.2.3 Interfaces
The term Interface is formally defined in [OMA-DICT] but is copied here for the convenience of the reader:

Interface: The common boundary between two associated systems (source: [GSM 01.04, ITU-T I.112]).

This document defines several generic interfaces for the OSE. See “Section 5.3” for more information about these interfaces.

Enabler specifications typically define interfaces to:

• Invoke the intrinsic functions of the enabler specification in an interoperable manner;

• Support interoperability between entities of an enabler;
• Allow the ability to provide life-cycle management of enablers.

However, as a fundamental principle of OMA, enabler specifications do not specify technology-specific Application Program
Interfaces (API). The OSE does not specify any APIs.

NOTE: The OSE does not specify any Reference Points (see [OMA-DICT] for a definition of Reference Point).

5.2.4 Enabler interface bindings
Interfaces must be specified in a language neutral manner. However, specifications may also define language specific
bindings for the interfaces. Enabler interface bindings provide the specific formats (i.e. syntax and protocols used to access
enablers using particular programming languages (e.g. Java or C) or network protocols (e.g. web services).

5.2.5 Resources
A Resource in this document is an architecture element that represents a capability in a Service Provider’s domain or terminal
domain. In the OSE, an enabler implementation may directly invoke or access a resource.

5.2.6 Applications
The term Application is formally defined in [OMA-DICT] but is copied here for the convenience of the reader:

Application: An implementation of a related set of functions that perform useful work, often enabling one or more services. It
may consist of software and/or hardware elements.

Applications are identified as an element in the OSE because they are a primary means for initiating and consuming an
enabler. For example an application may directly invoke an enabler implementation to deliver a service.

Applications may be located anywhere in a service environment including a mobile terminal.

5.2.7 Execution Environment
A full service lifecycle model for services has been defined by the TeleManagement Forum [TMF], and mapped to the eTOM
(extended Telecommunications Operations Map). This mapping is defined in an abstract way, which can be adapted to any

OMA-AD-Service-Environment-V1_0_5-20091008-A Page 16 (36)

Error! Reference source not found.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20040205]

deployment environment. As an example of an existing specification developed by another open standards group that may
meet OMA requirements, OMA should re-use this model.

NOTE: The following is a simplified model that forms a framework for the detailed description of the life-cycle model,
which is achieved by mapping the high-level model onto the eTOM [TMF].

The high-level model of the service life cycle contains the following operations/phases:

• Develop;

• Sell;

• Provide;

• Bill;

• Service;

• Report;

• Modify/Exit.

Within the scope of OSE, the Execution Environment provides support for software life-cycle management functions. Such
functions may be used during the service life-cycle phases defined by [TMF].

The Execution Environment is an element in the OSE. This execution environment or platform logically encompasses various
functions such as process monitoring, software life cycle management, system support (e.g. thread management, load
balancing and caching), operation, management and administration that allow the OSE domain to control enablers. The
functions within the Execution Environment may not be directly exposed to applications, however these functions may be
directly invoked by enabler implementations. In addition, resources can rely on these functions and may assume that the
functionality of the Execution Environment is available. Software life cycle management includes a set of functions of the
Service Provider Execution Environment and can be implemented as a separate enabler, or it may be distributed over several
enablers.

Then, in the OSE domain, certain software life-cycle management functions are needed to provide basic support to the
enabler implementations.

The software life-cycle management functions include but are not limited to:

• Creation;

• Software deployment;

• Software Management:

o Process Activation & deactivation (e.g. actuation);

o Dependency management;

o Upgrade;

o Removal;

o Fault management (e.g. logging and SNMP traps);

o Performance management (e.g. measuring).

For further information on TMF and mapping to the eTOM and the SID (Shared Information/Data model) of the TMF, see
[TMF].

OMA-AD-Service-Environment-V1_0_5-20091008-A Page 17 (36)

Error! Reference source not found.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20040205]

5.2.8 Policy Enforcer
The Policy Enforcer (PE) is an OSE architectural element that provides a policy-based management mechanism to protect
resources from unauthorized requests and to manage the use of these requests for instance through appropriate charging,
logging and evaluation and enforcement of user privacy or preferences. Please refer to Section 5.2 for the deployment aspect
of the OSE architecture.

The Policy Enforcer function allows the domain owner to extract and separate their policy rules from architectural elements.
The OSE architecture does not describe how the PE is realized. The PE may be realized in several ways, one of which is the
PEEM enabler.

The OSE architecture also manages the procedures applied between enablers and applications that reside either in the same
environment or across different environments.

5.3 Interfaces of the OSE
Figure 3 illustrates the interface categories of the OSE architecture.

Other bindingsOther bindingsWeb service bindingsWeb service bindings ……

Enabler
implementation

Enabler
implementation

Enabler
implementation

Applications

……

Enabler
implementation

I0

I0+P

I1

Policy Enforcer

To Resources in
Operators, terminals, Service Providers

I2

Execution
Environment
(Software Life
Cycle Mgmt,

Load balancing,
caching, O&M,

etc.)

Applications

I0+P
Service Provider or
Terminal Domain

Figure 3 – Classification of interfaces in OSE

Table 1 contains a list of the OSE interface categories including their definition and additional comments.

The interfaces defined in this section are abstract interface categories. For example, the I0 interface represents the categories
of interfaces that enabler specifications (e.g. the OMA Location enabler) define.

OMA-AD-Service-Environment-V1_0_5-20091008-A Page 18 (36)

Error! Reference source not found.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20040205]

Table 1: Interface Categories of the OSE Architecture

NOTE 1: A new interface can be specified by OMA or OMA can make reference to an existing interface.

NOTE 2: Further elaboration on I0 and I2 interfaces may be provided in future versions of the OSE.

NOTE 3: See Section 5.4 “Applying the OSE Architecture” for a detailed explanation of implications of Policy management
on enabler interfaces.

5.4 Applying the OSE architecture
5.4.1 Controlled exposure of enablers and resources
If required by the domain owner, a Policy Enforcer enabler implementation provides a consistent and possibly centralized
management mechanism to facilitate controlled access to enablers and resources exposed by the domain. The Policy Enforcer
provides a mechanism for domain owners to evaluate and enforce policies for, e.g. security, access control, privacy, or
charging, on any request to a domain’s resource (see Figure 4).

Interface
category

Definition Comments

I0 I0 is the category of interface to an enabler's intrinsic
functions.
I0 interfaces are exposed to applications and enablers
when the policies that are to be enforced do not require
any additional parameters or when no policy is associated
to the request to this enabler.
I0 interfaces are specified by OMA (see note 1).

I0 may encompass interfaces to what in some areas are
called “service building blocks” like location and
messaging, as well as to traditional “business support
functions” like subscriber management. The category of
I0 interfaces includes asynchronous events and methods
to register/subscribe listeners to these events.
(See note 2)

I0+P I0+P is the category of interfaces that combines I0 and P
as required to satisfy existing policies that are to be
enforced when exposing the I0 interface of the enabler.
(See the definition of Parameter P for more information.).
I0+P are exposed to applications and enablers when the
policies that are to be enforced require additional
parameters.

The Policy Enforcer may require additional parameters
(P) that must be provided along with the request to the
enabler’s interface (I0), based on policies specified by
any principal who is authorized to do so; i.e. typically the
owner or administrator of the OSE domain where the
enabler is located.
(See note 3)

I1 I1 is the category of interfaces between enablers and the
Execution Environment (e.g. software life cycle
management process and monitoring etc.).
The I1 interfaces may be specified by OMA (see note 1).

I2 I2 is the category of interfaces used by enablers to
describe how to invoke an underlying resource's function.
Such interfaces are not defined by OMA.

I2 may encompass interfaces to underlying networks (i.e.
mobile operator’s network) as well as to backend
resources (i.e. BSS, O&M)
(See note 2).

OMA-AD-Service-Environment-V1_0_5-20091008-A Page 19 (36)

Error! Reference source not found.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20040205]

Other bindingsWeb service bindings …

Enabler
implementation

Enabler
implementation

Enabler
implementation

…

Enabler
implementation

Policy
Enforcer

To Resources in
Operators, terminals, Service Providers

Policy Enforcer enforces
policies on request
(relying on available
enablers)

Applications

Third Party – Un-trusted Domain

Enabler
implementation

Enabler implementation
issues a request to another
enabler resource

Policy Enforcer enforces
policies on requests
between enabler
implementations

Appropriate request
reach target enabler

Application issues a
request to an enabler

Appropriate request
reach target enabler

Enabler implementation
issues a request to another
enabler resource

Service Provider or
Terminal Domain

Applications

Request invokes the
target resource of the
Enabler implementation

1a

1c

1d

2a

2c/3c
3a

2d/3d

4a

4d

4b
1b 2b/3b

Application issues a
request to an enabler

Policy Enforcer
enforces policies on

request
(relying on available
enablers)

4c

Figure 4 - OSE Flows

The Policy Enforcer architectural element supports evaluation and enforcement of policies that are able to invoke, for
example, authentication and authorization, when an enabler implementation is able to delegate (or reuse), for example,
authentication and authorization.

The Policy Enforcer may use enablers to evaluate and enforce the policies that have been specified for the domain and/or the
target enabler. The Policy Enforcer may also be used to compose enablers into higher-level functions. The interfaces to these
higher-level functions, although based on composition of defined OMA enablers, have not been defined in OMA and may or
may not be modelled as IO+P.

The policies evaluated and enforced by the Policy Enforcer determine the types of messages exchanged from and to the
requester and to and from the target and delegated enablers. Therefore, policies can be used to dictate the interface exposed to
requesters as well as modify the exposed bindings. An I0 interface may be differently exposed via domain owner policies, but
may or may not be be modelled as IO+P. Such complex transformations may include addition or subtraction of functionality,
but also more radical transformations such as bindings transformations.

The Policy Enforcer can be invoked by any other authorized (as determined by the policies associated to the Policy
Management) element of the OSE to evaluate and enforce policies.

The Policy Enforcer applies the same rigid procedures for enablers and applications that reside either in the same
environment or across different environments. This is achieved by having the Policy Enforcer process all requests to and
from the enabler implementations and evaluate and enforce the appropriate policies.The specific logic used to handle (e.g.
route or intercept) such requests is also part of the Policy Enforcer function, regardless of implementation.

The domain that provides a resource may set policies. These Policies may also be combined with other Policies derived from
preferences or rules set up by end-users or from the terms and conditions (Service Level Agreements) agreed for third parties
to use a resource. The domain may also evaluate and enforce additional policies on behalf of other parties.

The domain will only associate policies (and the resulting evaluation and possibly also the enforcement) to an enabler
implementation that is able to delegate functionality.

OMA-AD-Service-Environment-V1_0_5-20091008-A Page 20 (36)

Error! Reference source not found.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20040205]

Components providing the policy enforcer function are not required to be deployed in the OSE when deployments do not
need policies to be applied to exposed enabler implementations. When an enabler is able to delegate functions such as
authentication, the domain can supply policies evaluated and enforced by the Policy Enforcer to perform these functions.

A request originating from an application or an enabler implementation may arrive to the Policy Enforcer architectural
element through a variety of mechanisms and may be processed in a variety of ways.

5.4.2 Using the exposed resources
Figure 5 illustrates the steps of determining which interfaces are associated to a target enabler. Steps 1a/1b describe two
alternative steps at application development time. Step 1c is an alternative discovery process that can take place at execution.
After the establishment of a relationship, a third party can discover the resources exposed by the domain. This may be
achieved through the use of a discovery service or enabler. It is also possible that the interfaces of a resource are
communicated with other exchanges between the domain and the application developer when developing the application.

After the applications bind to the enabler interfaces the Policy Enforcer processes the exchanges to control third party access
to the enablers. As an architectural element, the Policy Enforcer controls any exchanges. However, there may be cases when
the policy to be applied may be a zero policy whereby the Policy Enforcer does not have to process the request. When a
domain owner chooses not to apply policies on requests, since the Policy Enforcer does not process any requests (e.g. all
policies are “zero” policies), hence the domain owner may choose not to deploy the Policy Enforcer.

Other bindingsOther bindingsWeb service bindingsWeb service bindings ……

Enabler
implementation

Enabler
implementation

Enabler
implementation

Applications

……

Discovery
enabler

implementation

Service Provider or
Terminal Domain

Possible discovery of
Interface by application
developer

Uses bindings

Possible interface
description provided through
another communication

Application
calls enabler

1b
2

4

1c
Possible discovery of
Interface by application
at execution

Application
Developer

1

Policy
Enforcer

Enforces policies

1a

To Resources in
Operators, terminals, Service Providers5

3

Figure 5 - Third Party engagement steps

5.4.3 Implications of policy management on enabler interfaces
5.4.3.1 Interfaces towards Third Parties

The Policy Enforcer provides controlled access to enablers and resources exposed by the domain. The enabler
implementations process messages as defined by the enabler specification. The binding elements provide the specific syntax
to express these messages in the selected format such as web services, Java or .Net.

OMA-AD-Service-Environment-V1_0_5-20091008-A Page 21 (36)

Error! Reference source not found.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20040205]

5.4.3.2 Interface I0 and I0+P

Appropriate design of the enabler specifications should allow the separation between the domain owner-defined parameters
(P) and the parameters core to the enabler interface (I0).

This distinction between interface I0 and I0+P allows the enabler developer to implement the enabler interface (I0)
specification, which requests only the parameters associated to the enabler core functionality.

However, in general, interface I0 and I0+P could be considered as being different interfaces. Therefore, if an enabler has
been designed to be reused by other enablers or applications, the enabler interface (I0) should only support the procedures
and parameters needed to invoke the enabler's core functions, for example, location parameters in the location enabler.

When the domain imposes policies, for example, when requiring authentication, authorization or charging, the request
towards the enabler must deliver the necessary information. However, considering that the enabler interface (I0) is only
capable of supporting the enabler's core procedures and parameters (e.g. location parameters) it is necessary for the Policy
Enforcer to utilise interface I0+P and process the authentication, authorization or charging parameters to ensure that the
domain's imposed policies are satisfied.

An enabler developer implements the enabler interface (I0) that requests only the parameters in interface (I0). Domains are
then able to request additional parameters (e.g. charging tokens, identity credentials), as needed by their policies, in order to
correctly access the resource. The I0 with these additional parameters constitutes I0+P. This however does not affect the
application developer and application portability.

5.4.4 Deployment options
Policy Enforcer is an architectural element of the OSE. The Policy Enforcer may be realised by the OMA PEEM enabler.

Deployment options for the Policy Enforcer functionality include, but are not limited to:

• A standalone enabler implementation that uses other standalone enabler implementations to evaluate and enforce
policies. Such an enabler implementation would be deployed as a separate component from other enabler
implementations (see Figure 6, Case 3a and 3b).

NOTE: The "interceptor" (Figure 6, Case 2c, 3b) is a functional component that intercepts a request, generates the
appropriate requests to a PEEM enabler implementation via the PEEM callable interface I0 and proceeds based on the
result by letting the request reach its target, blocking the request or returning an error message. The "interceptor"
function can be provided through a proprietary implementation, or through an implementation based on a future
specification (The "interceptor" function has not been specified by OMA).

• In the deployment as depicted in Figure 6, Case 2b and 2c.Policy Enforcer functionality forms an integral part of the
enabler implementation and is therefore not directly available to perform policy evaluation and enforcement for any
other enabler implementations. In this case, the Policy Enforcer implementation performs its functionality and then
passes execution control to the bundled enabler implementation. The Policy Enforcer implementation is not
designed to pass execution control back to the implementation that invoked it, or forward to any implementation
other than the one it is bundled with.

OMA-AD-Service-Environment-V1_0_5-20091008-A Page 22 (36)

Error! Reference source not found.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20040205]

PEEM
Enabler

implementation

Enabler
implementation

(Ed)
Enabler

implementation

2

1

3

Case 2b
PEEM

Enabler
implementation

Enabler
implementation

(Ed)
Enabler

implementation

1

3 2

Case 3a

Delegation flow as a result
of Policy evaluation and
Enforcement flow

Package boundaries

Service Delivery flow

Legend:

(Ed) Delegated non-intrinsic function

Enabler
implementation

1

2
Case 2c

interceptor
45

(Ed)
Enabler

implementation

3

PEEM
Enabler

implementation
Enabler

implementation

1
2

Case 3b
interceptor

45

(Ed)
Enabler

implementation

3

PEEM
Enabler

implementation

Figure 6 - Target Policy Enforcer deployments (with flows)

OMA-AD-Service-Environment-V1_0_5-20091008-A Page 23 (36)

Error! Reference source not found.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20040205]

6. Implications on enabler specification writers
(normative)

The OMA Architecture Requirements [ARCH-REQ] state that enabler specifications should reuse existing specifications
where possible. This approach includes reuse of existing OMA enabler specifications whenever possible (e.g. reuse of
presence and group management enablers by the PoC enabler).

• If applicable, an enabler MUST specify or reference one or more interfaces for its intrinsic functionality that
will be used to interface to (i.e. invoke) its functions.

• If an enabler depends on already defined OMA functions, it MUST identify which other enablers' intrinsic
functionality it will invoke to perform these already-defined OMA functions.

• An enabler MUST specify or reference only the functions, protocols and invocations that are essential (i.e.
core) to its purpose

• An enabler MUST add an OGSA View as described in section 4.3.3

Any requirements or features that are not intrinsic to an enabler should not be specified within the enabler's specification. An
enabler's specification should only specify the intrinsic functionality required to fulfil its actual function.

For example, some enablers require having an identifier for the requesting entity. The requirement to perform the enabler's
function is that there be a way to distinguish one requestor from another. It is not a requirement for the requestor's identity be
verified using any particular mechanism (e.g. password, certificate, biometrics). The need to authenticate the requestor is a
policy statement under the control of a domain. It is not required to perform the function of the enabler. Therefore, the
authentication process is outside the scope of the enabler specification, allowing it either to be implemented as an added
value by the enabler implementation or left to the policy enforcer implementation.

OMA-AD-Service-Environment-V1_0_5-20091008-A Page 24 (36)

Error! Reference source not found.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20040205]

7. Security
An OSE domain may be protected using security mechanisms designed to reduce the risks associated with security threats.
Which threats are important depend on application risk and security policy considerations.

The following security sections summarize the high level considerations that influence the use of the security mechanisms.
This includes the threats and their associated risks that must be considered to create a security policy. The security policy
defines which threats are likely and important, to what extent (the risks associated), which security requirements must be met,
and what system considerations must be addressed. Such a policy should address system wide requirements for privacy and
availability as well as deployment architecture considerations.

7.1 Security Threats

Security technologies are used to manage the risk and vulnerability associated with security threats (attacks taken on the
systems, the information and data, and the services). The costs associated with the risks and costs of handling the
vulnerabilities justify the cost of the security mechanisms. Security mechanisms are deployed to countermeasure the
vulnerability by reducing the risks of the threat (e.g. risks of known attacks). The following list describes common security
threats:

- Inappropriate content modification is a threat, either due to a malicious attack or due to an inadvertent mistake.
Although a checksum can detect a change, it cannot detect tampering since the checksum may also be modified.
Technologies such as digital signatures or Message Authentication Codes (MAC) (such as a keyed hash) may be
used to detect changes and support source authentication. Such technologies may be deployed to protect information
in transit (SSL/TLS), end-to-end at the application-messaging level (for instance, using WS-Security) or end-to-end
at the application content level (for instance, using XML Digital Signature).

- Denial of service is an attack to either disable or degrade the ability of a server to provide services to clients.
Overwhelming the server with requests that require excessive processing or that consume excessive resources, are
two examples. Denial of service is the condition when a service falls below the required committed level, including
unavailability of the services. Such denial of service may be cause by an intentional attack or by accidental
conditions. Availability is a condition in which there is no denial of service or degraded communication quality.

- Eavesdropping is where information is viewed that should not be, either by examining messages in-transit or by
examining content stored at a server. Using confidentiality features such as encryption of data or messages may
prevent this. Encrypting data in transit, such as by using SSL/TLS, does not protect it when stored at a server or
routed through application level intermediaries.

- A man-in-the-middle attack may be used to add, remove and change messages between two parties. Requiring
authentication of both end parties may be used to avoid this problem.

- A masquerade attack hides the actual entity and impersonates to be a different entity that may have the
authorization and privileges to access resources. This attack is usually used with reply and content modification. For
example, authentication information can be captured and replayed after a valid authentication sequence has taken
place.

- A replay attack is when someone captures and resends a message to obtain an anticipated result. Including some
freshness material with messages, such as a timestamp or a unique non-repeating value, and checking this material
before acting on a message at an endpoint can prevent this.

- Trojan Horse attacks have introduced quite significant impact in recent years. When introduced to the system, a
Trojan horse performs an unauthorized function within its authorized function. One of the examples is the virus and
worm attack.

7.2 Security Functions
The security functions described in this section describe the traditional security goals of reducing vulnerabilities of information,
assets and resources. Important security functions include confidentiality, integrity, authentication, authorization, access control,
non-repudiation, key management and security policy.

OMA-AD-Service-Environment-V1_0_5-20091008-A Page 25 (36)

Error! Reference source not found.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20040205]

7.2.1 Authentication
Authentication is used to verify that a party is whom they assert to be and may be used, for example, to identify the sender of a
message, a recipient, or the signer of some content.

Mutual authentication (the authentication of both parties in an exchange) is necessary to avoid man-in-the-middle attacks, and the
use of timely information such as challenge response should be used to avoid replay attacks.

One widely accepted mechanism to authenticate communicating parties is the use of X.509 certificates with SSL/TLS for server
authentication. SSL/TLS also allows the server to require client certificate-based authentication. This mechanism allows parties to
authenticate to each other, assuming certificate management is handled properly. Credentials associated with authentication may be
short or long-lived. If long-lived, then validation of credentials such as certificates is required of a recipient to ensure that revocation
has not occurred. This may be done using OCSP, XKMS or CRLs to give some examples.

SSL/TLS may also further protect HTTP basic or digest authentication as well as application username and password authentication
by providing integrity and confidentiality services.

7.2.2 Data Integrity
Integrity of information refers to the ability of a receiver to detect whether the content has been changed since creation, either
maliciously or by accident. A checksum is not enough, since it could be maliciously replaced to mislead. Instead, a much stronger
mechanism such as a digital signature or a MAC with the use of keying material can be used for the detection of any change in the
content.

7.2.3 Confidentiality
Confidentiality is the property that unauthorized parties cannot view information. Typically confidentiality is provided using
encryption technologies, such as symmetric and asymmetric encryption. The topic of confidentiality includes the choice and
specifications of encryption algorithms, packaging of encryption metadata with encrypted content, and the relationship to the
content and protocol model. Confidential communications are often necessary to preserve the privacy of information.

7.2.4 Key Management
The security and reliability of any communication process is directly dependent on the quality of key management and protection
afforded to the keys. The functions of key management are to provide secure key generation, storage, renewal, revocation, exchange
and use. The security of encrypted or authenticated data is strictly dependent upon the prevention of unauthorized disclosure,
substitution, deletion and use of keys. If keys are compromised, the security of the data can no longer be assured.

Key management includes establishing a security context for creating, registering, sharing and validating keys. Key sharing can be
performed differently depending on application requirements, including out of band communication. Scalable solutions may require
a back end infrastructure, such as a public key infrastructure (PKI) or a Kerberos system. Differences in the methods and
technologies result in different mechanisms, but the goals are the same, to reduce the risks of inappropriate key use and to provide a
uniform, scalable system for key management.

7.2.5 Access Control/Authorization
Access Control and Authorization are security mechanisms that provide the appropriate access to a system or application. They may
also be provided at different levels of the protocol stack. The network may make coarse-grained decisions about access to the
network, systems may provide services to manage access to their resources, or the resources themselves may restrict who is able to
use them. In some topologies, an authorization server may determine whether an authenticated party is allowed to access a resource
or perform some action.

7.2.6 Non-Repudiation
Repudiation is defined as the “Denial by one of the entities involved in a communication of having participated in all or part of the
communication” (Source: [X800]). Non-repudiation is the use of technology, business rules and legal mechanisms to reduce the
risk of repudiation to an acceptable level.

Discussion of non-repudiation in a pure technology sense is not meaningful since the issue is intrinsically linked to business and
legal issues. Non-repudiation technologies can be correctly considered to support dispute resolution and support for reduction of
repudiation risk.

OMA-AD-Service-Environment-V1_0_5-20091008-A Page 26 (36)

Error! Reference source not found.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20040205]

Endorsement using long-lived digital signatures may be used to provide evidence that the signing party has agreed to a contract,
approved an action, read some material or agreed to some other statement (verbal or written) when creating the signature. Non-
repudiation requires that only the signer have access to their signing material, that appropriate information is included with the
signature (such as a timestamp and the reason for signing) and that the signature be persistent. This means that signatures for non-
repudiation cannot be transitory signatures such as used in SSL/TLS, but must be long-lived signatures suitable for dispute
resolution.

OMA-AD-Service-Environment-V1_0_5-20091008-A Page 27 (36)

Error! Reference source not found.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20040205]

8. Migration from OMA silo enabler architectures towards
the OSE using Policy Enforcement

8.1 Relationship between exposed interfaces and policies at
deployment

When deployed, regardless of its realization, the Policy Enforcer has to support evaluation and enforcement of the domain
owner’s policies in a variety of scenarios.

Deployed entities in the OSE may interact with each other differently, depending on how the controlled exposure of an
enabler implementation is achieved (e.g. the existence of policies to be applied on requests, the content of the policies, the
existence of additional parameters (P) required to satisfy policies). Figure 7 illustrates how interfaces exposed depend on the
content of the domain policies for particular enabler implementations.

Legend:

Policy Enforcer
implementation

Enabler
implementation

Enabler
implementation

Enabler
implementation

Enabler
implementation

Requestor (E) Requestor (E)Requestor (E) Requestor (E)

Requestor (I) Requestor (I) Requestor (I) Requestor (I)

(a) (b) (c) (d)

I0+P I0 I0
(no policies)(I0+P=I0, P=“0”,

“zero” policies)

I0
(I0+P=I0, P=“0”)

I0 I0 I0

(I) Internal to the domain

SP or Terminal domain boundaries

Request flow
Requestor Application, enabler, other resource
(E) External to the domain

Deployed entity

Figure 7– Interfaces exposed in relationship to policies

Any combination of the represented scenarios (a) through d)) may occur separately, or simultaneously in a deployment:

a) Illustrates the case where a Policy Enforcer implementation protects an enabler implementation from
requests/responses, when P parameters are required to satisfy existing domain policies.

b) Illustrates the case where a Policy Enforcer implementation protects an enabler implementation from
requests/responses, when P parameters are not required to satisfy existing domain policies. In this case, the I0+P
exposed to the requestors by design is actually the same as the I0 of the target enabler implementation (P=”0”).

c) Illustrates the case where a Policy Enforcer implementation is intended to protect an enabler implementation from
requests/responses, but only “zero policies” are present for that enabler implementation (see explanation for “zero
policy” in section 5.4.2). In this case, the I0+P exposed to the requestors by design is actually the I0 of the target
enabler implementation (P=”0”). The dashed lines represent the fact that the Policy Enforcer does not process such
request/response.

d) Illustrates the case where a Policy Enforcer implementation is not needed (no policies exist for some enabler
implementations).

OMA-AD-Service-Environment-V1_0_5-20091008-A Page 28 (36)

Error! Reference source not found.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20040205]

8.2 Enabler implementations and deployments
NOTE to the Reader: This section contains information about OMAs proposed Policy Evaluation, Enforcement and
Management (PEEM) enabler. The information in these sections describes work in progress.

An enabler implementation can invoke any standardized function such as authentication, charging or Group Management,
which are required to satisfy the enabler specification (i.e. the principle of delegation and reuse). Some of these function
invocations may be triggered as a result of a policy decision. The enabler implementation can accomplish those policy
triggered function invocations (e.g. authorization) either by:

• Implementing the function (e.g. authentication) itself (Figure 8, Case 1);

• Performing the policy evaluation and enforcement itself by invoking a separate (modular) implementation that
performs the policy processing function. Figure 8, Case 2a makes use of a constrained policy evaluation and
enforcement mechanism where the vendor supplying the enabler implementation determines which operations (i.e.
policies) the enabler implementation can invoke (i.e. there is a built-in, non-changeable selection of policies to be
evaluated and enforced). Figure 8, Case 2b illustrates a full policy evaluation and enforcement mechanism that
allows the domain to determine which operations (i.e. policies) the enabler implementation invokes. In this case the
policy evaluation and enforcement mechanism is applied in proxy mode. Figure 8, case 2c illustrates a variant to
case 2b in the sense that it illustrates that the policy processing mechanism is applied in callable mode;

• Delegating the invocation to a policy processing entity that will invoke a separate (modular) implementation that
performs the required operation Figure 8, Case 3, where case 3a illustrates the case where the policy evaluation and
enforcement mechanism is applied in proxy mode and 3b illustrates the case where the policy processing mechanism
is applied in callable mode.

To summarize the distinctions between these choices:

• For Figure 8, case 1, the implementation of the operations is done in the enabler implementation;

• For Figure 8, case 2a, 2b and 2c, the implementation invokes other separate components to perform the operations,
which allow all enabler implementations in the deployment to use the same operation and enabler implementations
and reduce the silo effect;

• For Figure 8, case 3a and 3b, the implementation invokes a separate component to perform the policy processing,
which itself may invoke separate components to perform the operations.

Figure 8, Cases 1 and 2a are consistent with the OSE Policy Enforcer described earlier and correspond to the current silo
situation.

OMA-AD-Service-Environment-V1_0_5-20091008-A Page 29 (36)

Error! Reference source not found.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20040205]

Bundled
Policy Enforcer
implementation

Enabler
implementation

(Ed)
Enabler

implementation

2

1

3

Case 2a

Bundled Policy Enforcer
implementation

Enabler
implementation

(Ed)
Enabler

implementation

1

3 2

Case 1

PEEM
Enabler

implementation

Enabler
implementation

(Ed)
Enabler

implementation

2

1

3

Case 2b

PEEM
Enabler

implementation

Enabler
implementation

(Ed)
Enabler

implementation

1

3 2

Case 3a

Delegation flow as a result
of Policy evaluation and
Enforcement flow

Package boundaries

Service Delivery flow

Legend:

(Ed) Delegated non-intrinsic function

Enabler
implementation

1
2

Case 2c
interceptor

45

(Ed)
Enabler

implementation

3

PEEM
Enabler

implementation

Enabler
implementation

1
2

Case 3b
interceptor

45

(Ed)
Enabler

implementation

3

PEEM
Enabler

implementation

Figure 8 - Examples of Policy Enforcer deployments (with flows)

8.3 Migration through the use of PEEM
In addition to the Policy Enforcer deployments using OMA enablers as described in Figure 6, Cases 3 and 2b in Section
5.4.4, the current OMA silo architecture permits vendors to implement their own policy evaluation and enforcement
according to the following deployment options:

• A bundled Policy Enforcer implementation that uses other separate enabler implementations to evaluate and enforce
policies. The bundled Policy Enforcer enabler implementation is an integral part of another enabler implementation
and is not available to perform policy evaluation and enforcement for any other enabler implementations. The Policy
Enforcer implementation does not have the full generality of an PEEM enabler implementation, e.g. the choice of
policies to evaluate and enforce might be determined at implementation design time (see Figure 8 Case 2a);

• A bundled Policy Enforcer implementation that performs its own policy evaluation and enforcement without using
other enabler implementations to evaluate or enforce policies. The Policy Enforcer implementation does not have
the full generality of a PEEM enabler implementation, e.g. the choice of policies to evaluate and enforce might be
determined at implementation design time (see Figure 8, Case 1).

All four identified cases, as described in Figure 8, map into the OSE logical architecture and associated flows. Cases 1 and 2a
map into the OMA silo enabler architectures, where Cases 2b and 3 represent the OSE architecture and enablers.

As a result, PEEM is logically present across each reference point, as described in [ARCH-INVEN]. Specific Service
Provider deployments may not require any policies to be processed, in which case the domain may not deploy a PEEM
enabler implementation.

In some cases, specific domain deployments may require policies to be processed by PEEM only across some Reference
Points, in which case the domain may choose to deploy a PEEM enabler implementation only on those Reference Points.

Without requiring any changes to existing enabler specifications, domains can introduce an implementation of the PEEM to
perform policy processing operations that do not conflict with existing enabler implementations. For example, an enabler
may specify its own methodology for ensuring security, which means that conforming enabler implementations must

OMA-AD-Service-Environment-V1_0_5-20091008-A Page 30 (36)

Error! Reference source not found.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20040205]

implement the defined security methodology. However, PEEM could be used for functions not defined by the enabler and not
provided by the enabler implementation.

OMA-AD-Service-Environment-V1_0_5-20091008-A Page 31 (36)

Error! Reference source not found.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20040205]

Appendix A. Change History (Informative)
A.1 Approved Version 1.0 History

Reference Date Description
OMA-Service_Environemt-V1_0 07 Sep 2004 Initial document to address the basic starting point

 Ref TP Doc# OMA-TP-2004-0299-OSE-Approval
OMA-Service-Environment-V1_0_1 14 Jun 2005 Incorporates inputs:

� OMA-ARC-2005-0150R02-LATE0OSE-V1.0-clarifications-for-Policy-Enforcer
� OMA-ARC-2005-0152-OSE-v1-changes-from-0090-and-0118
� OMA-ARC-2005-0154R01-Conceptual Model and architecture (to clarify in which

sections the OSE architecture is described)
� OMA-ARC-2005-0164-revise OSE v1&2 section 5.4.4 (text deletion)
� OMA-ARC-2005-0165-CR-Apply-Doc147-to-OSE-v1 (adds text to section 5.2.2

(Enabler Implementation) that clarifies an enabler may be defined)
� OMA-ARC-2005-0173-CR-OSEv101-Definitions (correction of abbreviations PE

and PEEM in section 3.3)
� OMA-ARC-2005-0181-Update-to-changes-for-I0-and-I0+P (explanations update to

definition for Parameter Pand explanations for I0 and I0+P)
� OMA-ARC-2005-0186-OSE-Deployment-options (implementation options that

make use of the PEEM enabler in a proxy mode)
� OMA-ARC-2005-0187-Editorial-changes-over-181 (editorial changes to the

explanations of I0 and I0+P)
� OMA-ARC-2005-0190-OSE-deployment-relationship-of interfaces-to-policies

(new text and figure 6 to OSE V1.0, via a new section 7.1)
� OMA-ARC-2005-0166R03-Clarify-composed-interfaces (section of 5.4.1 of the

OSE AD enabler composition by the PE)
� OMA-ARC-2005-0189R01-CR-Align-Figure1-Caption.doc (changes to align two

Change Requests: docs 152 and 154R01)
 Ref TP Doc#OMA-TP-2005-0183-Notification-of-changes-OSE-V1_0_1.doc

OMA-Service-Environment-V1_0_2 26 Jul 2005 Minor update (some typos + additional wording to avoid misunderstandings)
 OMA-ARC-2005-0220R01-CR-OSEv101-section5
 OMA-ARC-2005-0265-typo-cleanup-OSE

03 Aug 2005 Minor update: fixed cross-references in Sections 4, 5 and 7.
OMA-AD-Service-Environment-V1_0_3 22 Jun 2006 Changed to AD document type + minor updates:

 OMA-ARC-2006-0070-Removal-of-reference
 OMA-ARC-2006-0206-OSEv1-apply-new-defs

OMA-AD-Service-Environment-V1_0_4 06 Dec 2006 Incorporates input:
- OMA-ARC-2006-0378R01-CR_OSE_copy_AD_V2_changes_to_V1

01 Feb 2007 2007 Copyright
Minor update:
 OMA-ARC-2007-0009-CR_OSE_AD_changes_to_address_CONR

OMA-AD-Service-Environment-V1_0_5 08 Oct 2009 2009 copyright
Incorporates input to committee:
 OMA-ARC-OGSA-2009-0084R01- CR_To_add_OGSA_View_to_OSE_AD
Notified to TP:
 OMA-TP-2009-0463R01-INP_OSE_V1_0_5_RRP_for_Notification

OMA-AD-Service-Environment-V1_0_5-20091008-A Page 32 (36)

Error! Reference source not found.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20040205]

Appendix B. Deriving an OMA Service Environment architecture
The OSE architecture contains a set of interfaces that are specified by OMA. The Architecture requirements document
[ARCH-REQ] implies the need for a set of interfaces. These interfaces could be implemented in various ways, e.g. as one
component (software module) for each interface, one single component implementing all interfaces, or a mixture of these two
options.

The following interfaces are derived from the Architecture requirements document [ARCH-REQ]. Each interface is cross-
referenced to one or several Architecture requirements.

Derived OMA Architecture Interface:

1. Interface for operations and management (Cross referenced with [ARCH-REQ] 6.3.3#1)

2. Interface for the discovery of service enablers (Cross referenced with [ARCH-REQ] 6.3.2#1; 6.3.2.1#3, #5;
6.1.3#11)

3. Interface for the registration of service enablers (Cross referenced with [ARCH-REQ] 6.3.2.1#4, #5)

4. Interface for the discovery of services (Cross referenced with [ARCH-REQ] 6.3.2.1#2)

5. Interface for the registration of services (Cross referenced with [ARCH-REQ] 6.3.2.1#1)

6. Interface for discovery of conditions for the use of service enablers (Cross referenced with [ARCH-REQ] 6.1.3#11)

7. Interface towards a policy management mechanism (Cross referenced with [ARCH-REQ] 6.1.3#12; 6.1.5#5)

8. Interface to provision services, service enablers and user parameters (Cross referenced with [ARCH-REQ] 6.1.5#4)

9. Interface for subscription management (Cross referenced with [ARCH-REQ] 6.1.3#13)

10. Identity management mechanism associating device identification with federated identity (Cross referenced with
[ARCH-REQ] 6.1.3#8, 9, 10; 6.1.1#11)

11. Interface to network exposing network characteristics (Cross referenced with [ARCH-REQ] 6.1.3#8)

12. Interface to charging (to gather accounting and charging information) (Cross referenced with [ARCH-REQ] 6.1.2#2)

13. Interface to authentication function (Cross referenced with [ARCH-REQ] 6.1.1#1)

14. Interface to authorization function (Cross referenced with [ARCH-REQ] 6.1.1#14)

15. Interface from authorization function to charging enabler (and the reverse) (Cross referenced with [ARCH-REQ]
6.1.1#14)

16. A method to connect between identity, authorization, and authentication components, e.g. cookies or other session
tokens (Cross referenced with [ARCH-REQ] 6.1.1#14)

Policy (constraints) in all interfaces (Cross referenced with [ARCH-REQ] 6.1#16)

Access to "back-end systems" (charging, accounting, payment, provisioning, Operations & Management, etc.) can be realised
by interfacing these through a component, and using the standard OMA interfaces between the enabler and the component.

Analysed OMA Architecture requirements:

• ([ARCH-REQ] 6.1# 16) When authorized, Principals MUST be able to set policies (e.g. charging policies and
privacy policies) on any request (including discovery)

• ([ARCH-REQ] 6.1.1#1) The OMA Service Environment MUST provide mechanisms for authentication of users,
applications and third-party Service Providers, and authorization for the use of service enablers across and within
Service Provider domains.

OMA-AD-Service-Environment-V1_0_5-20091008-A Page 33 (36)

Error! Reference source not found.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20040205]

• ([ARCH-REQ] 6.1.1#5) The OMA Service Environment MUST enable single sign-on and single log-out to span
enablers in a single domain or across multiple Service Provider domains. One-time authentication or a SSO MUST
remain valid throughout a continuous session

• ([ARCH-REQ] 6.1.1#11) The OMA Service Environment MUST support a mechanism to federate and de-federate
identity information across Service Provider domains.

• ([ARCH-REQ] 6.1.1#14) The OMA Service Environment MUST provide an interface between the authorization
function and the charging enabler.

• ([ARCH-REQ] 6.1.2#2) The OMA Service Environment MUST provide an interface where Accounting and
Charging information is to be gathered.

• ([ARCH-REQ] 6.1.3#3) The OMA Service Environment MUST enable the communication of service monitoring
data (e.g. performance measurements) between actors.

• ([ARCH-REQ] 6.1.3#5) The OMA Service Environment MUST provide the means to manage the activation,
registration, authentication, and authorization of users and service components.

• ([ARCH-REQ] 6.1.3#8) The OMA Service Environment MUST provide a mechanism by which device and network
information can be communicated to an authorized third-party (with respect to the information holder) in a
manageable way. This mechanism MUST allow for the automated discovery of new devices and new characteristics
in existing devices.

• ([ARCH-REQ] 6.1.3#9) The OMA Service Environment MUST provide a mechanism to enable Third-Parties to
obtain an identification for an end-user who uses a particular device to access authorized third-party applications.

• ([ARCH-REQ] 6.1.3#10) The OMA Service Environment MUST provide a mechanism to allow Third-Parties to
discover the device(s) currently used by an end-user, if registered on a network (e.g. where to send a notification to
the employee).

• ([ARCH-REQ] 6.1.3#11) The OMA Service Environment MUST provide a mechanism for an authorized third-party
to discover the conditions for using a service enabler exposed by a particular Service Provider in a dynamic manner.

• ([ARCH-REQ] 6.1.3#12) The OMA Service Environment MUST support a mechanism for Service Providers and
other authorized actors to enforce the conditions for use of a service enabler.

• ([ARCH-REQ] 6.1.3#13) The OMA Service Environment MUST have a single logical point that handles subscriber
and subscription information.

• ([ARCH-REQ] 6.1.5#4) The OMA Service Environment MUST provide a common mechanism for Provisioning of
services, service enablers and user parameters.

• ([ARCH-REQ] 6.1.5#5) The OMA Service Environment SHOULD provide a mechanism to manage and use
policies (e.g. access policies, charging polices, service level agreements, etc.).

• ([ARCH-REQ] 6.3.2#1) The OMA Service Environment MUST have a single logical access point (e.g. Common
Directory) to handle: 1) registration, 2) discovery and 3) functions and data that handle information relevant to more
than one single service enabler.

• ([ARCH-REQ] 6.3.2.1#1) The OMA Service Environment MUST support Service Registration for Services visible
to the end-user.

• ([ARCH-REQ] 6.3.2.1 #2) The OMA Service Environment MUST support Service Discovery for services visible to
the end user.

• ([ARCH-REQ] 6.3.2.1#3) The OMA Service Environment MUST support Discovery for an implementation of a
Service Enabler.

OMA-AD-Service-Environment-V1_0_5-20091008-A Page 34 (36)

Error! Reference source not found.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20040205]

• ([ARCH-REQ] 6.3.2.1#4) The OMA Service Environment MUST support Registration for any implementations of a
Service Enabler.

• ([ARCH-REQ] 6.3.2.1#5) Within the OMA Service Environment it MUST be possible to register, discover, and
retrieve information (e.g. a service enabler’s address) using a resource identifier (e.g. a user identifier).

• ([ARCH-REQ] 6.3.3#1) The OMA Service Environment MUST define a common interface for the operations and
management (O&M) of both common and service-specific enablers or applications (including service monitoring
and end-to-end service delivery).

OMA-AD-Service-Environment-V1_0_5-20091008-A Page 35 (36)

Error! Reference source not found.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20040205]

Appendix C. Reference Points versus Interfaces
It is possible to model interactions between architectural entities by means of:

Interfaces: Interfaces solely focus on how the resource can be interacted with, independently of what interacts with the
resource (see Figure 9).

Resource

Interface:
potentially “anybody”
can connect

Figure 9 - Schematic view of an interface

Reference Points: Reference points explicitly enumerate the end points that can interact with the resource. A Reference
Point is a conceptual point at the conjunction of two non-overlapping functional groups (source: [ITU-T I.112]). It consists of
none or any number of interfaces of any kind. This means a Reference Point can host more than one transport protocol or
payload. If a Reference Point is defined between two architectural entities, it does not necessarily require an interface
(transport protocol, payload, API, etc.) to be associated at all. This means the two architectural entities can communicate
using any protocol over any interface (it is not defined, but the communication relationship exists).

There is always only one or no Reference Points between the same two architectural entities, no matter how many interfaces,
protocols or APIs may exist between the two (see Figure 10).

Resource

Reference Point:
explicitly connects each
partner

Resource

Figure 10 - Reference Point schematically

Reference points are commonly used in communities that specify, design, implement or deploy network-level systems (e.g.
Telecommunications environments). Communities that specify, design, implement, or deploy software systems rather rely on
interface descriptions (e.g. IT environments).

However, the two approaches provide equivalent views of the system either through the interfaces that it exposes or through
reference points that typically explode each interface into multiple reference points; one per end point / architectural entity
that can interact with the system through that interface. References points (between two end points) that support multiple
transport protocols map to one interface with multiple interface realizations.

The relationship of interfaces to reference points is illustrated in Figure 11.

OMA-AD-Service-Environment-V1_0_5-20091008-A Page 36 (36)

Error! Reference source not found.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20040205]

System 1 System 2 System 3

Resource

RP1 RP2 RP1

Figure 11 - Equivalency of interface point of view and reference point of view

	1. Scope
	2. References
	2.1 Normative References
	2.2 Informative References

	3. Terminology and Conventions
	3.1 Conventions
	3.2 Definitions
	3.3 Abbreviations

	4. Introduction
	4.1 General
	4.2 Targeted audience and document intention
	4.3 Motivation
	4.3.1 Existing service development and integration
	4.3.2 End-user perception
	4.3.3 OMA enablers and enabler reuse

	4.4 OMA silo architectures

	5. The OSE Architecture
	5.1 Architecture requirements and principles
	5.1.1 Intrinsic functionality
	5.1.2 Delegation and reuse of enablers
	5.1.3 Protection of enablers and resources
	5.1.4 Extensibility

	5.2 Architectural Model
	5.2.1 Enabler
	5.2.2 Enabler implementation
	5.2.3 Interfaces
	5.2.4 Enabler interface bindings
	5.2.5 Resources
	5.2.6 Applications
	5.2.7 Execution Environment
	5.2.8 Policy Enforcer

	5.3 Interfaces of the OSE
	5.4 Applying the OSE architecture
	5.4.1 Controlled exposure of enablers and resources
	5.4.2 Using the exposed resources
	5.4.3 Implications of policy management on enabler interfaces
	5.4.3.1 Interfaces towards Third Parties
	5.4.3.2 Interface I0 and I0+P

	5.4.4 Deployment options

	Implications on enabler specification writers (normative)
	7. Security
	7.1 Security Threats
	7.2 Security Functions
	7.2.1 Authentication
	7.2.2 Data Integrity
	7.2.3 Confidentiality
	7.2.4 Key Management
	7.2.5 Access Control/Authorization
	7.2.6 Non-Repudiation

	8. Migration from OMA silo enabler architectures towards the OSE using Policy Enforcement
	8.1 Relationship between exposed interfaces and policies at deployment
	8.2 Enabler implementations and deployments
	8.3 Migration through the use of PEEM

