
 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

Open Connection Manager WebAPI
Candidate Version 1.1 – 17 Feb 2015

Open Mobile Alliance
OMA-TS-OpenCMAPI_Web_V1_1-20150217-C

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 2 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

Use of this document is subject to all of the terms and conditions of the Use Agreement located at
http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an
approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not
modify, edit or take out of context the information in this document in any manner. Information contained in this document
may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior
written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided
that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials
and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products
or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely
manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification.
However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available
to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at
http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of
this document and the information contained herein, and makes no representations or warranties regarding third party IPR,
including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you
must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in
the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN
MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF
THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE
ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT
SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT,
PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN
CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

http://www.openmobilealliance.org/UseAgreement.html
http://www.openmobilealliance.org/ipr.html

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 3 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

Contents
1. SCOPE .. 5
2. REFERENCES .. 6

2.1 NORMATIVE REFERENCES .. 6
2.2 INFORMATIVE REFERENCES ... 6

3. TERMINOLOGY AND CONVENTIONS .. 7
3.1 CONVENTIONS ... 7
3.2 DEFINITIONS .. 7
3.3 ABBREVIATIONS .. 7

4. INTRODUCTION ... 9
4.1 VERSION 1.1 .. 9

5. DETAILED API SPECIFICATION .. 10
5.1 DEVICE DISCOVERY .. 10
5.2 DATA STRUCTURES OF CMAPI INTERFACE MESSAGES .. 10

5.2.1 JSON Data Types and Naming Conventions ... 10
5.2.2 CMAPI-1 Messages ... 12
5.2.3 CMAPI-2 Messages ... 15
5.2.4 Binary Data Handling .. 17
5.2.5 Message Examples (Informative) .. 17

5.3 ERROR CODES ... 18
5.3.1 Error Codes .. 18
5.3.2 UICC Status Words.. 26
5.3.3 CMEE codes .. 27

5.4 WEBAPI TRANSPORT BINDINGS .. 32
5.4.1 WebSocket Transport Binding ... 32
5.4.2 HTTP Transport Binding ... 34

5.5 SECURITY CONSIDERATIONS .. 35
APPENDIX A. CHANGE HISTORY (INFORMATIVE) .. 36

A.1 APPROVED VERSION HISTORY ... 36
A.2 DRAFT/CANDIDATE VERSION 1.1 HISTORY ... 36

APPENDIX B. STATIC CONFORMANCE REQUIREMENTS (NORMATIVE) ... 38
B.1 SCR FOR MOBILE BROADBAND DEVICE .. 38
B.2 SCR FOR LAPTOP .. 38
B.3 SCR FOR WIRELESS ROUTER .. 39
B.4 SCR FOR M2M DEVICE .. 39

B.4.1 General M2M device ... 39
B.4.2 Basic M2M device ... 40

B.5 SCR FOR SMART PHONE... 41
B.6 SCR FOR TABLETS .. 42
B.7 SCR FOR CLOUD DEVICES ... 42

APPENDIX C. DESCRIPTION OF OPENCMAPI FUNCTIONS (INFORMATIVE) ... 44
C.1 CMAPI-1 FUNCTIONS... 44
C.2 CMAPI-2 FUNCTIONS... 50

APPENDIX D. WEB IDL DEFINITIONS (INFORMATIVE) .. 52
APPENDIX E. JAVASCRIPT LIBRARY OF WEBSOCKET API BINDING (INFORMATIVE) 53

Figures
No table of figures entries found.

Tables

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 4 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

Table 1: CMAPI-1 Request Message Data Structure ... 12

Table 2: CMAPI-1 Response Message Data Structure ... 14

Table 3: CMAPI-2 Callback Message Data Structure ... 16
Table 4: Return Values & Error Codes ... 26

Table 5: Status Words Codes .. 27

Table 6: CMEE Codes ... 31

Table 7: Steps of Handling a CMAPI-1 Function Call ... 33

Table 8: Steps of Handling a CMPI-1 Response Message .. 33

Table 9: Extra Step of Handling a Callback Registration .. 33
Table 10: Extra Step of Handling a Callback Unregistration .. 33

Table 11: Steps of Handling a Callback .. 34

Table 12: List CMAPI-1 Functions .. 50

Table 13: List CMAPI-2 Functions .. 51

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 5 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

1. Scope
This specification of the OpenCMAPI defines interfaces (derived from [OpenCMAPI-TS]), through which connection
management services are made available to Web applications.

The specification addresses the requirements enumerated in [OpenCMAPI-RD] and adheres to the architecture described in
[OpenCMAPI-AD].

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 6 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

2. References
2.1 Normative References

[JSON-RPC] “JSON RPC (Remote Procedure Call) Specification 2.0”,
URL: http://www.jsonrpc.org/specification

[OpenCMAPI-AD] “Open Connection Manager API Architecture”, Open Mobile Alliance™, OMA-AD-OpenCMAPI-
V1_1, URL: http://www.openmobilealliance.org/

[OpenCMAPI-RD] “Open CM API Requirements”, Open Mobile Alliance™, OMA-RD-OpenCMAPI-V1_1,
URL: http://www.openmobilealliance.org/

[OpenCMAPI-SUP-JSD] “JSON schema for the Open Connection Manager API”, Open Mobile Alliance™, OMA-SUP-JSD_
OpenCMAPI-V1_1, URL: http://www.openmobilealliance.org/

[OpenCMAPI-SUP-
WIDL]

“JSON schema for the Open Connection Manager API”, Open Mobile Alliance™, OMA-SUP-WIDL_
OpenCMAPI-V1_1, URL: http://www.openmobilealliance.org/

[OpenCMAPI-TS] “Open Connection Manager API”, Open Mobile Alliance™, OMA-TS-OpenCMAPI-V1_1,
URL: http://www.openmobilealliance.org/

[RFC1034] “DOMAIN NAMES - CONCEPTS AND FACILITIES”, P. Mockapetris, November 1987,
URL:http://tools.ietf.org/html/rfc1034

[RFC1035] “DOMAIN NAMES - IMPLEMENTATION AND SPECIFICATION”, P. Mockapetris, November
1987, URL:http://tools.ietf.org/html/rfc1035

[RFC2119] “Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997,
URL: http://www.ietf.org/rfc/rfc2119.txt

[RFC2616] “Hypertext Transfer Protocol -- HTTP/1.1”, R. Fielding et. al, January 1999,
URL: http://www.ietf.org/rfc/rfc2616.txt

[RFC6455] “The Web Socket Protocol”, I. Fette and A. Melnikov, December 2011,
URL: http://tools.ietf.org/html/rfc6455

[RFC7159] “The JavaScript Object Notation (JSON) Data Interchange Format“,T. Bray, Ed., March 2014,
URL:http://tools.ietf.org/html/rfc7159

[SCRRULES] “SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures,
URL: http://www.openmobilealliance.org/

[Wi-Fi Alliance HS2.0 TS] Hotspot 2.0 (Release 2) Technical Specification version 1.0.0, Wi-Fi Alliance Wi-Fi CERTIFIED
Passpoint™ (Release 2) program,
URL:https://www.wi-fi.org/Hotspot_2-0_(R2)_Technical_Specification_v1-0-0.pdf

2.2 Informative References
[JSON-Schema] “JSON Schema: core definitions and terminology”, Francis Galiegue, Kris Zyp, Gary Court,

URL:http://tools.ietf.org/html/draft-zyp-json-schema-04
Note: The referenced IETF draft is a work in progress, subject to change without notice.

[OMADICT] “Dictionary for OMA Specifications”, Version 2.9, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2_9, URL: http://www.openmobilealliance.org/

[RFC4122] “A Universally Unique IDentifier (UUID) URN Namespace”, P. Leach, M. Mealling, R. Salz, July 2005,
URL: http://www.ietf.org/rfc/rfc4122.txt

[RFC6202] “Known Issues and Best Practices for the Use of Long Polling and Streaming in Bidirectional HTTP”,
April 2011, URL:http://tools.ietf.org/rfc/rfc6202.txt

[W3C_WebSocket] “The WebSocket API”, W3C Candidate Recommendation 20 September 2012, Ian Hickson, ed.,
URL:http://www.w3.org/TR/websockets/

http://www.jsonrpc.org/specification
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/
http://tools.ietf.org/html/rfc1034
http://tools.ietf.org/html/rfc1035
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2616.txt
http://tools.ietf.org/html/rfc6455
http://tools.ietf.org/html/rfc7159
http://www.openmobilealliance.org/
https://www.wi-fi.org/Hotspot_2-0_(R2)_Technical_Specification_v1-0-0.pdf
http://tools.ietf.org/html/draft-zyp-json-schema-04
http://www.openmobilealliance.org/
http://www.ietf.org/rfc/rfc4122.txt
http://tools.ietf.org/rfc/rfc6202.txt
http://www.w3.org/TR/websockets/

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 7 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

3. Terminology and Conventions
3.1 Conventions
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be
informative.

3.2 Definitions
For the purpose of this TS, all definitions from the OMA Dictionary apply [OMADICT].

Hotspot 2.0 Hotspot 2.0 [Wi-Fi Alliance HS2.0 TS] (also known as Passpoint) is a set of specifications from the Wi-Fi
Alliance.

JSON The JSON refers to the definition of [RFC7159].

Long Polling A variation of the traditional polling technique, where the server does not reply immediatelly to a request
unless a particular event, status or timeout has occurred. Once the server has sent a response, it closes the
connection, and typically the client immediately sends a new request. This allows the emulation of a push
mechanism from a server to a client.

3.3 Abbreviations
ANDSF Access Network Discovery and Selection Function

API Application Programming Interface

CM Connection Manager

D2D Device to Device

DNS Domain Name System

GNSS Global Navigation Satellite System

HTTP HyperText Transfer Protocol

IoT Internet of Things

JSON JavaScript Object Notation

M2M Machine to Machine

MIME Multipurpose Internet Mail Extensions

OMA Open Mobile Alliance

OpenCMAPI Open Connection Manager (CM) Application Programming Interface (API)

PIN Personal Identification Number

ProSe Proximity Services (Also referred to as LTE D2D)

PUK Personal Unlocking Key also called UNBLOCK PIN.

RFC Request For Comments

RPC Remote Procedure Call

SCR Static Conformance Requirements

SMS Short Message Service

TLS Transport Layer Security

UICC Universal Integrated Circuit card

URI Uniform Resource Identifier

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 8 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

URL Uniform Resource Locator

USSD Unstructured Supplementary Service Data

WLAN Wireless Local Area Network

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 9 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

4. Introduction
With the multiplicity of networks available and the need for more connectivity, there is a market demand for a standardized
WebAPI to provide connection management functionalities which would facilitate development and integration of
Connection Manager Web Applications as well as to provide more status information about the connection to any Web
application using mobile data services.

The goal of the OMA OpenCM WebAPI is to facilitate the development of Connection Manager Web Applications to the
mobile environment and to provide additional services such as Information Status to Web applications relying on
connectivity to mobile networks.

In this context, the Technical Specification for the Open Connection Management WebAPI defines a WebAPI binding for the
[OpenCMAPI_TS] specification, i.e. it provides the CMAPI device discovery, a transport independent JSON-RPC payload
data structure, return values, error codes and two transport bindings (native HTTP and WebSockets).

In the context of this specification a WebIDL [OpenCMAPI-SUP-WIDL] and a JSON schema [OpenCMAPI-SUP-JSD] is
provided.

Appendix D. describes how a JavaScript Library implements the WebAPI based on WebSocket Transport binding.

4.1 Version 1.1
Version 1.1 is the first version which was produced of this document as WebAPI was not part of the scope of OpenCMAPI
Enabler 1.0.

This version of the specification addresses the following aspects:

◦ Security and concurrency control function, e.g. access control and authorization

◦ Device Discovery & Device Handling

◦ Device Services

◦ Cellular Network Connection Management

◦ PIN/PUK Management

◦ Interaction with the UICC

◦ WLAN connection management including extensions to support of Hotspot 2.0, ANDSF & user and operator
preferences

◦ Information Status handling

◦ Statistics handling

◦ GNSS handling

◦ SMS&USSD management

◦ Push Data service management

◦ Callbacks & Registration/Deregistration to receive callbacks

◦ Phone Book /Contacts management support

◦ Support of extended device services

◦ Support of P2P (or D2D or ProSe as known in 3GPP) Direct connection

◦ Router Management support

◦ Support of IP Multimedia Services functions

◦ Support of dedicated M2M/IoT functions

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 10 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

5. Detailed API specification
This section is organized to support a comprehensive understanding of the OpenCM WebAPI design. It specifies the device
discovery, message payload data structures, transport bindings and error handling.

5.1 Device Discovery
All devices implementing the Web Binding of OpenCMAPI v1.1 SHALL register the name “cmapi.device” on its local
network. Thus those devices SHALL be discovered by innate DNS ([RFC1034], [RFC1035]) resolution of “cmapi.device”.

5.2 Data Structures of CMAPI interface messages
This section defines the transport independent representation of CMAPI-1 and CMAPI-2 interfaces and explains how to
translate CMAPI functions into the JSON messages.

The request and response messages are based on JSON-RPC 2.0 [JSON-RPC]. JSON-RPC is a stateless, light-weight remote
procedure call based on JSON data format [RFC7158].

CMAPI functionality is implemented by using extended JSON-RPC data objects as the Application Data. A schema for each
message is provided in [OpenCMAPI-SUP-JSD] that is based on [JSON-Schema].

Each function of CMAPI-1 and CMAPI-2 defined in [OpenCMAPI-TS] can be directly translated into JSON schema. To
represent a function as JSON schema, the following steps are taken:

• Place the function name into appropriate places into the JSON schema
• Place the function’s input parameters into the JSON request schema using JSON data types
• Place the function’s output and return values into the JSON response schema using JSON data types
• Note: Hexdecimal values have to be translated into decimal values for JSON

All CMAPI JSON Schemas and CMAPI JSON examples are available in [OpenCMAPI-SUP].

5.2.1 JSON Data Types and Naming Conventions
This section defines the used data types and naming conventions used for CMAPI Messages in JSON schemas.

5.2.1.1 JSON Data Types
The JSON data types are:

• string
Used for all UTF8* parameters
{

 " parameter": {
 "type": "string",
 "description": "Some Description."
 }

}

• integer
Used for all byte, word, dword, and qword parameters
{

 " parameter": {
 "type": "integer",
 "description": "Some Description."
 }

}

• number
Used for all floating-point parameters, if any

{

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 11 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

 " parameter": {
 "type": "integer",
 "description": "Some Description."
 }

}

• boolean
Used for all boolean parameters
{

 " parameter": {
 "type": "boolean",
 "description": "Some Description."
 }

}

• array
Used for all non-string arrays
{

 "parameter": {
 "type": "array",
 "description": "Some Description.",
 "items": {
 "type": "object",
 "properties": {
 "property_1": {
 "type": "JSON_Data_Type",
 },
 "property_n": {
 "type": "JSON_Data_Type
 }
 },
 "required": ["property_1", "property_n "]
 }
 },

}

• object
Used for all data structure types

 {
"parameter": {

 "type": "object",
 "properties": {
 " property_1": {
 "type": " JSON_Data_Type ",
 "description": "Some Description."
 },
 "property_n": {
 "type": " JSON_Data_Type",
 "description": "Some Description."

 }
 },
 "required": ["property_1", "property_n "]
 }
 }

Note: There are no size restrictions on JSON data types.

5.2.1.2 Naming Conventions
This section describes the conventions used for the parameter names in the JSON schemas.

Names as defined in [OpenCMAPI-TS] are used with the additional considerations regarding case usage.

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 12 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

Two general cases are provided for, both using mixed case names; one with a leading capital letters, the other with a leading
lowercase letters.

Names will start with a letter and be mixed case, with the leading letter of each but the first word capitalized. The
conventions for the leading letter of the first differ depending on the context, as given below. Words will not be separated by
white space, underscore, hyphen or other non-letter character.

All names will have a leading lowercase letter except if the name starts with an abbreviation.

If a name starts with or includes an abbreviation, all characters of that abbreviation are capitalized, e.g. “CMAPIMessage”.

For names consisting of concatenated words, all subsequent words start with a capital, for example, “concatenatedWord”.

5.2.2 CMAPI-1 Messages
CMAPI-1 request messages are originated from the client, response messages are originated from the CMAPI
implementation.

5.2.2.1 CMAPI-1 Request Message
The CMAPI-1 request message conforms to the structure as defined in [JSON-RPC], extended by “cmapiversion”. The
details are as follows:

Member Type Optional Description

jsonrpc String No It SHALL be the exact value of “2.0”.

cmapiversion String No It SHALL be the exact value of “1.1”.

method String No The name of the method to be invoked. It SHALL be the name of a function call as
specified in [OpenCMAPI-TS], e.g. “CMAPI_Network_GetRFInfo”.

id String No An identifier established by the Client, which is used to match the response with the
request that it is replying to.

It SHALL be the globally unique identifier to distinguish each CMAPI-1 function
call originated by a Web application.

Note: How such a globally unique identifier is generated is out of scope of this
specification, however, it is pointed out that for example UUID [RFC4122] provides
a way to implement such a scheme.

The CMAPI-1 function call and corresponding response messages SHALL have the
same “id” value

Note: This specification does not use notifications as specified in [JSON-RPC], i.e.
the “id” property SHALL NOT be omitted (or Null).

params Object No Object, with member names that match the Server expected parameter names. It
SHALL be a structure of specific parameters of a CMAPI-1 function call. The set of
parameters is unique for each CMAPI-1 function call as specified in [OpenCMAPI-
TS].

Table 1: CMAPI-1 Request Message Data Structure

5.2.2.1.1 JSON Request Schema Definition
The following is a general definition of the CMAPI-1 JSON request schema. A specific example of a CMAPI-1 conversion
is shown in section 5.2.5.1.

The request schema contains dependent on the function requested a number of parameters 1..n each of which can contain
some number of properties 1..n. The parts shown in italics and red represent variables which change depending on the
CMAPI function.
{
 "title" : "CMAPI_FunctionName_Request_Schema",

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 13 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

 "description" : "LEGAL DISCLAIMER Use of this document and the content of…..",
 "properties" : {
 "cmapiversion" : { "enum" : ["1.1"], "type" : "string" },
 "id" : { "type" : "string" },
 "jsonrpc" : { "enum" : ["2.0"], "type" : "string" },
 "method" : { "enum" : ["CMAPI_FunctionName"], "type" : "string" },
 "params" : {
 "properties" : {
 "param_1": {
 "type": "array",
 "description": "Some Description.",
 "items": {
 "type": "object",
 "properties": {
 "property_1": {
 "type": "JSON_Data_Type",
 },
 "property_n": {
 "type": "JSON_Data_Type
 }
 },
 "required": ["property_1", "property_n "]
 }
 },
 "param_n": {
 "type": "object",
 "properties": {
 " property_1": {
 "type": "string",
 "description": "Some Description."
 },
 "property_n": {
 "type": "integer",
 "description": "Some Description."

 }
 },
 "required": ["property_1", "property_n "]
 }
 } },
 "required" : ["param_1", "param_n "],
 "type" : "object"
 }
 },
 "required" : ["jsonrpc", "cmapiversion", "method", "id", "params"]
}

5.2.2.2 CMAPI-1 Response Message
The CMAPI-1 response message conforms to the structure as defined in [JSON-RPC], extended by “cmapiversion”. The
details are as follows:

Member Type Optional Description

jsonrpc String No It SHALL be the exact value of “2.0”.

cmapiversion String No It SHALL be the exact value of “1.1”.

id String No It SHALL be the same value of “id” member in the prior request message of
corresponding function call.

Multiple sequential response messages are possible for the same prior CMAPI-1
function call. Their “id” SHALL be the same value.

If there was an error in detecting the id in the request object (e.g. parse error/invalid
request), it SHALL be Null.

error Object Yes In case of an error it SHALL be the error structure according to [JSON-RPC]
indicating the execution status of the corresponding CMAPI-1 function call. Please

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 14 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

refer to section 5.3 for CMAPI specific error codes.

On success this member SHALL be omitted.

The error structure SHALL include the members “code” and “message”. For “code”
the integer value of the error as listed in the table in section 5.3.1 SHALL be used. For
“message” the text in the description column in the table in section 5.3.1 SHALL be
used.
 The error structure MAY include the member “data”. It may be a used for additional
information about the error.

result Object Yes On success it SHALL be a structure of the information with regard to execution
outcome resulting from the function call as specified in [OpenCMAPI-TS]. In case of
an error this member SHALL be omitted.

Note: The structure of the response is unique for each CMAPI-1 function call

Table 2: CMAPI-1 Response Message Data Structure

5.2.2.2.1 JSON Response Schema Definition
The following is a general definition of the CMAPI-1 JSOIN response schema. A specific example of a CMAPI-1
conversion is shown in section 5.2.5.2.

The response schema contains dependent on the function requested zero or a number of parameters 0..n each of which can
contain some number of properties 1..n. The parts shown in italics and red represent variables which change depending on
the CMAPI function.

{
 "title" : "CMAPI_FunctionName_Response_Schema",
 "description" : "LEGAL DISCLAIMER Use of this document ….",
 "properties" : {
 "cmapiversion" : { "enum" : ["1.1"], "type" : "string" },
 "error" : {
 "properties" : {
 "code" : { "type" : "integer" },
 "data" : {},
 "message" : { "type" : "string" }
 },
 "required" : ["code", "message"],
 "type" : "object"
 },
 "id" : { "type" : "string" },
 "jsonrpc" : { "enum" : ["2.0"], "type" : "string" },
 "result" : {
 "properties" : {
 "param_1": {
 "type": "array",
 "description": "Some Description.",
 "items": {
 "type": "object",
 "properties": {
 "property_1": {
 "type": "JSON_Data_Type",
 },
 "property_n": {
 "type": "JSON_Data_Type
 }
 },
 "required": ["property_1", "property_n "]
 }
 },
 "param_n": {
 "type": "object",
 "properties": {
 " property_1": {

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 15 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

 "type": "string",
 "description": "Some Description."
 },
 "property_n": {
 "type": "integer",
 "description": "Some Description."

 }
 },
 "required": ["property_1", "property_n "]
 }
 } },
 "required" : ["param_1", "param_n "],
 "type" : "object"
 }
 },

 "required" : ["jsonrpc", "cmapiversion", "id"]
}

5.2.3 CMAPI-2 Messages
The CMAPI-2 interface is an asynchronous interface used to provide callbacks (i.e. notifications) and the
registration/deregistration mechanisms to receive these callbacks.

The CMAPI-2 callback message conforms to the structure defined in [JSON-RPC], extended by “cmapiversion” and
“callbackId”. The details are as follows:

Member Type Optional Description

jsonrpc String No It SHALL be the exact value of “2.0”.

cmapiversion String No It SHALL be the exact value of “1.1”.

id String No It SHALL be a globally unique identifier to distinguish each CMAPI-2 callback
function.

Note: How such a globally unique identifier is generated is out of scope of this
specification, however, it is pointed out that for example UUID [RFC4122] provides a
way to implement such a scheme.

Note: This specification does not use notifications as specified in [JSON-RPC], i.e. the
“id” property SHALL NOT be omitted (or null).

error Object Yes In case of an error it SHALL be the error structure according to [JSON-RPC]
indicating the execution status of a CMAPI-2 callback function. Please refer to section
5.3 for CMAPI specific error codes.

On success this member SHALL be omitted.

The error structure SHALL include the members “code” and “message”. For “code”
the integer value of the error as listed in the table in section 5.3.1 SHALL be used. For
“message” the text in the description column in the table in section 5.3.1 SHALL be
used.
 The error structure MAY include the member “data”. It may be a used for additional
information about the error.

result Object Yes On success it SHALL be a structure of the information that the application server
intends to inform the Web application as specified in [OpenCMAPI-TS].

Note: The structure of callback is unique for each CMAPI-2 callback function

In case of an error this member SHALL be omitted.

callbackId String No It SHALL be present if and only if it is a CMAPI-2 callback message, and indicate the
type of callback function as specified in [OpenCMAPI-TS].

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 16 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

Table 3: CMAPI-2 Callback Message Data Structure

5.2.3.1.1 JSON Callback Response Schema Definition
The following is a general definition of the CMAPI-2 JSON Callback response schema. A specific example of a CMAPI-2
conversion is shown in section 5.2.5.3.

The callback response schema contains dependent on the function requested zero or a number of parameters 0..n each of
which can contain some number of properties 1..n. The parts shown in italics and red represent variables which change
depending on the CMAPI callback function.

{
 "title" : "CMAPI_Callback_FunctionName_Response_Schema",
 "description" : "LEGAL DISCLAIMER Use of this ….",
 "properties" : {
 "callbackId" : { "enum" : ["CMAPI_Callback_FunctionName"], "type" : "string" },
 "cmapiversion" : { "enum" : ["1.1"], "type" : "string" },
 "error" : {
 "properties" : {
 "code" : { "type" : "integer" },
 "data" : {},
 "message" : { "type" : "string" }
 },
 "required" : ["code", "message"],
 "type" : "object"
 },
 "id" : { "type" : "string" },
 "jsonrpc" : { "enum" : ["2.0"], "type" : "string" },
 "result" : {
 "properties" : {
 "properties" : {
 "param_1": {
 "type": "array",
 "description": "Some Description.",
 "items": {
 "type": "object",
 "properties": {
 "property_1": {
 "type": "JSON_Data_Type",
 },
 "property_n": {
 "type": "JSON_Data_Type
 }
 },
 "required": ["property_1", "property_n "]
 }
 },
 "param_n": {
 "type": "object",
 "properties": {
 " property_1": {
 "type": "string",
 "description": "Some Description."
 },
 "property_n": {
 "type": "integer",
 "description": "Some Description."

 }
 },
 "required": ["property_1", "property_n "]
 }
 } },
 "required" : ["param_1", "param_n "],
 "type" : "object"
 }
 },

 "required" : ["jsonrpc", "cmapiversion", "id", "callbackId"]
}

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 17 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

5.2.4 Binary Data Handling
Occasionally, binary data may be passed as a parameter in a request message, or returned in a response message after the
function call is executed, or part of a callback message. BASE64 encoding SHALL be applied to binary data before it is
constructed into the data structure of a request message, or a response message, or a callback message.

5.2.5 Message Examples (Informative)
5.2.5.1 CMAPI-1 Request Message Example
An example of a request message of CMAPI-1 function call “CMAPI_Network_GetRFInfo()” is as follows:

 {

 "jsonrpc": "2.0",

 “cmapiversion”: “1.1”,

 "method": "CMAPI_Network_GetRFInfo",

 "id": "111",

 "params": {

 "deviceId": "1"

 }

 }

5.2.5.2 CMAPI-1 Response Message Examples
An example of a successful response message of CMAPI-1 function call “CMAPI_Network_GetRFInfo()” is as follows:

 {

 "jsonrpc": "2.0",

 “cmapiversion”: “1.1”,

 "id": "111",

 "result": {

 "RFInfoListElements": 1,

 "RFInfoList": [

 {

 "Radio": "WCDMA_UMTS",

 "maxDataRateUL": 1024,

 "maxDataRateDL": 1024,

 "frequencyBand": "1900 PCS",

 "channelNumberUL": "333,444",

 "channelNumberDL": "333,444"

 }

]

 }

 }

An example of a error response message of CMAPI-1 function call “CMAPI_Network_GetRFInfo()” is as follows:

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 18 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

{

 "jsonrpc": "2.0",

 “cmapiversion”: “1.1”,

 "id": "111",

 " error": {

 "code": 1,

 "message": “A fatal error has occurred.”

 }

 }

5.2.5.3 CMAPI-2 Callback Message Example
An example of a CMAPI-2 Callback Message “CMAPI_Callback_DeviceChanged()” is as follows:

 {

 "jsonrpc": "2.0",

 “cmapiversion”: “1.1”,

 "id": "511",

 "callbackId": "CMAPI_Callback_DeviceChanged",

 "result": {

 "deviceId": 1,

 "deviceState": 3,

 "radio": 64,

 "deviceCapability": 1,

 "connectionType": 32,

 "deviceType": 5,

 "description": "This is a wireless router",

 "uniqueIdentifier": "1234567890"

 }

 }

5.3 Error Codes
This section defines the CMAPI specific error codes and UICC Status Words.

For error handling specific to the transport please refer to the respective transport binding sections 5.4.1.4 and 5.4.2.6. For
error handling specific to JSON-RPC please refer to [JSON-RPC].

5.3.1 Error Codes
The error codes table is used to capture the warnings, error codes and information when the Open CMAPI is running. Some
additional warnings and output information can be defined depending on the implementation.

Error Codes

Integer Value Hex Value Description

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 19 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

General Error Codes

1 0X00000001 A fatal error has occurred.

2 0X00000002 Invalid Parameter

4 0X00000004 Invalid Operation

5 0X00000005 No service

6 0X00000006 The requested operation cannot currently be completed because another application is
currently performing the same operation.

7 0X00000007 This optional function is not supported by this implementation

16 0X00000010 The OpenCMAPI implementation cannot perform this operation since there is currently
a connection which prevents the request. NOTE: The OpenCMAPI implementation
may be able to apply the change in some conditions and may return success instead of
this return code in some connected conditions.

17 0X00000011 The type of data requested is not present

19 0X00000013 QoS unsupported

20 0X00000014 Not connected

Device Error Codes

256 0X00000100 The UniqueIdentifier is referencing a non-existing device

257 0X00000101 The deviceID references a non-existing device or a device which is not open

258 0X00000102 The device is already opened.

259 0X00000103 Maximum number of device that the API can handle per client is reached (can be 1),
close another open device handle.

260 0X00000104 The device does not contain hardware which supports this operation.

261 0X00000105 The radio references a radio which the device does not support

262 0X00000106 The radio references a radio which the device does not support (exception, this error is
not reported if the radio is set to 0xFF (all)).

263 0X00000107 System not supported by the device

264 0X00000108 The requested data is not meaningful for a 3GPP device.

265 0X00000109 The requested data is not meaningful for a 3GPP2 device.

272 0X00000110 The device cannot be activated while connected.

273 0X00000111 The device is not connected

274 0X00000112 The routerID references a non-existing router

288 0X00000120 Configuration not supported by the device

289 0X00000121 The device does not offer this capability

304 0X00000130 The device is not in a power state which allows this operation.

305 0X00000131 Requested power state is not supported by the device (ex power saving)

306 0X00000132 Radio off

307 0X00000133 The power state is invalid

308 0X00000134 The system ID is invalid

309 0X00000135 No IMSI available

320 0X00000140 The MACAddress references a non-existing Connected Device

336 0X00000150 The threshold value(s) is/are invalid

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 20 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

337 0X00000151 The location is invalid

352 0X00000160 The PDP context ID is invalid

353 0X00000161 The PDP Type is invalid

356 0X00000164 The back off time interval is invalid

528 0X00000210 Control Key not supported by this system (when an ID of a 3GPP2 only Control Key is
sent to a 3GPP system device or when an ID of a 3GPP only Control Key is sent to a
3GPP2 system device).

529 0X00000211 The control key value is invalid

UICC Error Codes

1281 0X00000501 There is no smart card support for this device

1282 0X00000502 Smart card not accessible

1361 0X00000551 ENVELOPE command was not sent to SIM/R-UIM/UICC as overlapping was detected.

1362 0X00000552 The envelope command is invalid

1363 0X00000553 The terminal profile is invalid

1364 0X00000554 The function succeeded except for the overlapping ToolKit functions with the device or
another or other Connection Manager Application(s)

1365 0X00000555 The terminal response is invalid

Profile Error Codes

8193 0X00002001 The Cellular profile name does not exist

8194 0X00002002 The Cellular profile name is not valid

8195 0X00002003 The Cellular profile name is already existing, only happen when creating a profile with
a existing name

8196 0X00002004 The Cellular profile can not be updated while currently in use (connected)

8197 0X00002005 A default profile has not been set for this device.

8449 0X00002101 The user name is not valid

8450 0X00002102 The password is not valid

8452 0X00002104 The APN is not valid

8453 0X00002105 The IP Address is not valid

8454 0X00002106 The primary DNS address is not valid

8455 0X00002107 The secondary DNS address is not valid

8456 0X00002108 The Auth type is not valid

8457 0X00002109 The IPAddrType is not valid

8458 0X0000210A The profile type is not valid

8459 0X0000210B The timeout is not valid

8706 0X00002202 The type of IP address is not available.

Network Connection Error Codes

12289 0X00003001 The requested bearer is not possible

12290 0X00003002 There is no connection to disconnect from

12292 0X00003004 There is no connecting session for cancellation

12293 0X00003005 The Connection is releasing

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 21 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

12294 0X00003006 Remote system not present

12295 0X00003007 The supplied index identifies a record which does not exist.

12296 0X00003008 Current APN cannot be retrieved because there is no connection.

12297 0X00003009 The requested connection type is not valid

12298 0X0000300A There is currently a connection which prevents this operation. It is necessary to
disconnect before the requested operation can be completed.

12545 0X00003101 The requested mode is not valid

12546 0X00003102 The requested PLMNID is not valid

12547 0X00003103 The requested bearer or combination of bearers is not valid.

12801 0X00003201 No Primary context activated

12802 0X00003202 The secondary context doesn’t exist

12803 0X00003203 The secondary context is already activated/created

12804 0X00003204 The secondary context activation is in progress

12805 0X00003205 The secondary context is already deactivated

12806 0X00003206 The secondary context deactivation is in progress

12807 0X00003207 The secondary context is already deactivating

CDMA 2000 Error Codes

16385 0X00004001 Unrecognized session identifier.

16386 0X00004002 The SPC is valid.

16387 0X00004003 The SPC is invalid.

16388 0X00004004 The requested activation code is invalid.

16389 0X00004005 Activation failed (other than invalid activation code).

16390 0X00004006 The index is invalid

16391 0X00004007 File does not exist at the given path.

16392 0X00004008 An invalid PRL file is entered.

16395 0X0000400B No record exists at the specified index.

16396 0X0000400C The ACCOLC is invalid.

16397 0X0000400D The requested ForceRev0 is invalid

16398 0X0000400E The CustomSCP is invalid

16399 0X0000400F The protocol is invalid

16400 0X00004010 The broadcast is invalid

16401 0X00004011 The application is invalid

16402 0X00004012 The roaming is invalid

16403 0X00004013 The SID is invalid

16404 0X00004014 The MDN is invalid

16405 0X00004015 The MIN is invalid

16406 0X00004016 The PRL is invalid

16407 0X00004017 The MNHA is invalid

16408 0X00004018 The MNAAA is invalid

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 22 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

16409 0X00004019 The session type is invalid

16410 0X0000401A The session state is invalid

16411 0X0000401B The failure reason is invalid

16412 0X0000401C The retry count is invalid

16413 0X0000401D The session pause is invalid

16414 0X0000401E The selection is invalid

16415 0X0000401F The session id is invalid

16416 0X00004020 The defer is invalid

16417 0X00004021 The feature state is invalid

16418 0X00004022 The update feature state is invalid.

16419 0X00004023 The firmware update feature state is invalid

16420 0X00004024 The reason is invalid

16421 0X00004025 The mode is invalid

16422 0X00004026 The enabled value is invalid

16423 0X00004027 The RevTunn value is invalid

16424 0X00004028 The NAI is invalid

16425 0X00004029 The HASPI is invalid

16426 0X0000402A The AAASPI is invalid

16427 0X0000402B The Address parameter was not formatted properly.

16428 0X0000402C The Primary Home Agent parameter was not formatted properly.

16429 0X0000402D The Secondary Home Agent parameter was not formatted properly.

16430 0X0000402E The retry limit is invalid

16431 0X0000402F The retry interval is invalid

16432 0X00004030 The Reregperiod is invalid

16433 0X00004031 The Reregtraffic is invalid

16434 0X00004032 The HAAuthenticator is invalid

16435 0X00004033 The HA2002bis is invalid

SMS Error Codes

20481 0X00005001 Failure of communication with device

20482 0X00005002 Timer expired without receiving response from device

20483 0X00005003 Response with error indication from device

20484 0X00005004 Operation NOT supported

20485 0X00005005 SMS message NOT found

20486 0X00005006 The SMS record is invalid

20487 0X00005007 The ifrom value is invalid

20488 0X00005008 The SMSC value is invalid

20489 0X00005009 The PSI value is invalid

20490 0X0000500A The delivery report switch is invalid

20491 0X0000500B The SMS Class is invalid

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 23 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

20492 0X0000500C The msgID is invalid

22785 0X00005901 The USSD Data is invalid

Contact Management Error Codes

21761 0X00005501 The contact record is invalid

21762 0X00005502 Memory capacity exceeded.

21763 0X00005503 The index is invalid

21764 0X00005504 The contact location value is invalid

Information Status Error Codes

24577 0X00006001 The type of data requested is not present

24578 0X00006002 The type is not valid

24579 0X00006003 Remote system not present

24580 0X00006004 The supplied index identifies a record which does not exist.

24581 0X00006005 Current APN cannot be retrieved because there is no connection.

24582 0X00006006 The type of IP address is not available.

24583 0X00006007 IP Address is not currently assigned (advisable to retry call)

24584 0X00006008 Authentication failure

GNSS Error Codes

28673 0X00007001 The GNSS state is invalid

28674 0X00007002 The operation is invalid

28675 0X00007003 The accuracy threshold is not supported

28676 0X00007004 The server address is invalid.

28677 0X00007005 The server port is invalid.

28678 0X00007006 The server FQDN is invalid.

28679 0X00007007 The tracking value is invalid

P2P Direct Management Error Codes

32769 0X00008001 The P2PTechnology is not supported

32770 0X00008002 The P2P Technology is invalid

32771 0X00008003 The Service Record is invalid

32772 0X00008004 The list of Remote Devices is invalid.

32773 0X00008005 The list of Service Identifiers is invalid.

32774 0X00008006 The ID of the Connection is invalid.

32775 0X00008007 The list of Device ID is invalid

32776 0X00008008 The ID of the group is invalid

32777 0X00008009 The ID of the Remote Device is invalid

32778 0X0000800A The Invitation ID is invalid

Router Management Error Codes

36865 0X00009001 The routerConfig value(s) are incorrect

36866 0X00009002 The policy value(s) are incorrect

36867 0X00009003 The restrict value(s) are incorrect

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 24 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

36868 0X00009004 The administrator password is incorrect

WLAN Error Codes

65537 0X00010001 No network exists at the specified index.

65538 0X00010002 Predefined networks are not able to be modified.

65540 0X00010004 The SSID is invalid

65541 0X00010005 The BSSID is invalid

65542 0X00010006 The Friendly Name is invalid

65543 0X00010007 The security parameter is invalid

65544 0X00010008 The mode parameter is invalid

65545 0X00010009 The hidden parameter is invalid

65546 0X0001000A The key is invalid

65547 0X0001000B The EAP authentication method is invalid

65548 0X0001000C The EAP configuration is invalid

65549 0X0001000D The WLAN Encryption Type is invalid

69633 0X00011001 There is no existing WLAN connection

69634 0X00011002 Security mode does not allow connectivity to unknown networks.

69637 0X00011005 Operation is prohibited by security policy.

69638 0X00011006 No pending operation.

69639 0X00011007 The pin for WPS was malformed or incorrect size

69640 0X00011008 The device is not connected

69641 0X00011009 Device (i.e.: WLAN only device that does not support NAA on UICC for authentication)
does not support the requested function.

73729 0X00012001 The SSID does not reference a valid known network.

73730 0X00012002 The BSSID does not reference a valid known network

73731 0X00012003 IP Address is not currently assigned (advisable to retry call)

73732 0X00012004 Authentication failure

77825 0X00013001 Invalid combination of AUTH and CIPHER

77826 0X00013002 Index NOT referring to a valid known network

77827 0X00013003 NO existing WLAN connection

77828 0X00013004 IP address NOT valid

77829 0X00013005 Subnet mask NOT valid

77830 0X00013006 Operation prohibited by security policy

77831 0X00013007 The specified index is to large and would leave a gap in the known networks list

77832 0X00013008 Index is not valid for user defined networks. Please try a higher index.

77833 0X00013009 The mode is invalid

77834 0X0001300A The address is invalid

77835 0X0001300B The subnet mask is invalid

77836 0X0001300C The http proxy is invalid

77837 0X0001300D The mac address is invalid

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 25 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

77838 0X0001300E The default gateway is invalid

81921 0X00014001 The Advertisement Protocol Element is invalid

81922 0X00014002 The Query List ANQP element is invalid

81923 0X00014003 The HS Query List is invalid

81953 0X00014021 HS 2.0 MO is not supported by the device

81954 0X00014022 ANDSF MO is not supported by the device

PIN/PUK management Error Codes

 SW1 and SW2 are the Status Words provided by the SIM/R-UIM/UICC (see next
chapter). If no Status Word is provided, SW1SW2 will be replaced by “0000”.

2684SW1SW2 0X1001SW1SW2 Wrong PIN.

2685SW1SW2 0X1002SW1SW2 PIN is blocked. PUK (UNBLOCK PIN) needed.

2686SW1SW2 0X1003SW1SW2 Wrong Old PIN.

2687SW1SW2 0X1004SW1SW2 Old PIN is blocked. PUK (UNBLOCK PIN) needed.

2688SW1SW2 0X1005SW1SW2 Wrong PUK.

2689SW1SW2 0X1006SW1SW2 PUK (UNBLOCK PIN) blocked.

2690SW1SW2 0X1007SW1SW2 Invalid parameter(s)

285212673 0X11000001 The NAA Name is invalid

285212674 0X11000002 The PIN Type is invalid

285212675 0X11000003 The PUK Type is invalid

Reserved for other use

805306368 to

1073741823

0X30000000 to

0X3FFFFFFF

Reserved for other purpose – do not use

M2M/IoT related Error Codes

107381XXXX 0X4001XXXX Operation cannot be done – Back off timer in place – time left is indicated by the 4 last
digits (in seconds)

XXXX is the time left in seconds – example: 0X40010360 in Hex or 1073810630 in
decimal mean 360 seconds are left

10748MMCME 0X401MMCME Error codes related to GSM Mobility Management where MM indicates the Mobility
Management Cause code and CME the code for Mobile Equipment error.

10759GMCME 0X402GMCME Error codes related to GPRS Mobility Management where GM indicates the GPRS
Mobility Management Cause code and CME the code for Mobile Equipment error.

10769SMCME 0X403SMCME Error codes related to Session Management where SM indicates the Session
Management Cause code and CME the code for Mobile Equipment error.

10780XXCMS 0X404XXCMS Error codes related to other reasons where XX indicates other Cause code and CMS
the code for Mobile Equipment specific error.

Security Errors

4026531841 0XF0000001 The security request supplied when the API was opened does not grant privilege to
access this functionality. You may close and reopen the API with updated credentials
to perform this operation.

4026531842 0XF0000002 The authentication failed

4026531843 0XF0000003 The authentication has been denied. Please seek proper credentials for your access
level.

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 26 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

4026531844 0XF0000004 The security request was malformed. Please consult vendor materials and/or output
log.

4026531845 0XF0000005 The requested access level is not supported

4026531846 0XF0000006 The WLAN Encryption Type used is not allowed. Please use proper Encryption type

Table 4: Return Values & Error Codes

5.3.2 UICC Status Words
The following table is listing possible Status Words (SW1 and SW2) provided by the SIM/R-UIM/UICC in accordance with
the [ETSI TS 102 221] Status Words list.

Status Words

 Status words
(SW1 SW2)

Description

144 00 90 00 Normal ending of the command

145 00 91 XX Normal ending of the command, with extra information from the proactive UICC
containing a command for the terminal. Length 'XX' of the response data

098 00 62 00 No information given, state of non volatile memory unchanged

099 CX 63 CX Command successful but after using an internal update retry routine 'X' times

Verification failed, 'X' retries remaining (For the VERIFY PIN command, SW1SW2
indicates that the command was successful but the PIN was not correct and there are
'X' retries left. For all other commands it indicates the number of internal retries
performed by the card to complete the command.)

100 00 64 00 No information given, state of non-volatile memory unchanged

101 00 65 00 No information given, state of non-volatile memory changed

101 81 65 81 Memory problem

103 XX 67 XX The interpretation of this status word is command dependent, except for SW2 = '00'
(Wrong length)

104 00 68 00 No information given

104 81 68 81 Logical channel not supported

104 82 68 82 Secure messaging not supported

105 00 69 00 No information given

105 83 69 83 Authentication/PIN method blocked

105 84 69 84 Referenced data invalidated

105 89 69 89 Command not allowed - secure channel - security not satisfied

106 81 6A 81 Function not supported

106 86 6A 86 Incorrect parameters P1 to P2

106 88 6A 88 Referenced data not found

107 00 6B 00 Wrong parameter(s) P1-P2

110 00 6E 00 Class not supported

111 XX 6F XX The interpretation of this status word is command dependent, except for SW2 = '00'
(Technical problem, no precise diagnosis)

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 27 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

Table 5: Status Words Codes

5.3.3 CMEE codes
The following tables are listing possible GSM Mobile Equipment error codes and GSM network error codes.

Causes Codes Related to GSM Mobility Management

MM

Code

CME

Code
Cause Reason Action proposed

2 IMSI unknown in
HLR

This cause is sent to the MS if the MS is
not known (registered) in the HLR. This
cause code does not affect operation of the
GPRS service, although it may be used by
a GMM procedure.

3 103 Illegal MS This cause is sent to the MS when the
network refuses service to the MS either
because an identity of the MS is not
acceptable to the network or because the
MS does not pass the authentication
check, i.e. the SRES received from the MS
is different from that generated by the
network.

4 IMSI unknown in
VLR

This cause is sent to the MS when the
given IMSI is not known at the VLR.

5 IMEI not accepted This cause is sent to the MS if the network
does not accept emergency call
establishment using an IMEI.

6 106 Illegal ME This cause is sent to the MS if the ME used
is not acceptable to the network, e.g.
blacklisted.

11 111 PLMN not allowed This cause is sent to the MS if it requests
location updating in a PLMN where the MS,
by subscription or due to operator
determined barring is not allowed to
operate.

12 112 Location Area not
allowed

This cause is sent to the MS if it requests
location updating in a location area where
the MS, by subscription, is not allowed to
operate.

13 113 Roaming not
allowed in this
location area

This cause is sent to an MS which requests
location updating in a location area of a
PLMN which restricts roaming to that MS in
that Location Area, by subscription.

17 615 Network failure This cause is sent to the MS if the MSC
cannot service an MS generated request
because of PLMN failures, e.g. problems in
MAP.

Additionally, retry retries may be
attempted, but no more
frequently than once every 60
seconds

22 42 Congestion This cause is sent if the service request
cannot be processed because of
congestion (e.g. no channel, facility
busy/congested etc.)

Additionally, retry retries may be
attempted, but no more
frequently than once every 60
seconds

32 132 Service Option Not This cause is sent when the MS requests a Additionally, device should not

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 28 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

Supported. service/facility in the CM SERVICE
REQUEST message which is not
supported by the PLMN.

retry the attempt on the same
PLMN unless prompted
externally to do so (i.e. modem
should not automatically retry).

33 133 Requested Service
Option Not
Subscribed

This cause is sent when the MS requests a
service option for which it has no
subscription.

Additionally, device should not
retry the attempt unless
prompted externally to do so
(i.e. modem should not
automatically retry).

34 134 Service option
temporarily out of
order

This cause is sent when the MSC cannot
service the request because of temporary
outage of one or more functions required
for supporting the service.

Additionally, retry retries may be
attempted, but no more
frequently than once every 60
seconds

38 Call Cannot be
identified

This cause is sent when the network
cannot identify the call associated with a
call re-establishment request.

Causes Codes Related to GPRS Mobility Management

GM

Code

CME

Code

Cause Reason Action proposed

7 107 GPRS Services Not
Allowed

This cause is sent to the MS if it requests
an IMSI attach for GPRS services, but is
not allowed to operate GPRS services.

8 GPRS services and
non-GPRS services
not allowed

This cause is sent to the MS if it requests a
combined IMSI attach for GPRS and non-
GPRS services, but is not allowed to
operate either of them.

9 MS identity cannot
be derived by the
network

This cause is sent to the MS when the
network cannot derive the MS's identity
from the P-TMSI in case of inter-SGSN
routing area update.

10 Implicitly detached This cause is sent to the MS either if the
network has implicitly detached the MS,
e.g. some while after the Mobile reachable
timer has expired, or if the GMM context
data related to the subscription does not
exist in the SGSN e.g. because of a SGSN
restart.

14 111 GPRS services not
allowed in this
PLMN

This cause is sent to the MS which
requests GPRS service in a PLMN which
does not offer roaming for GPRS services
to that MS.

16 MSC temporarily
not reachable

This cause is sent to the MS if it requests a
combined GPRS attach or routing are
updating in a PLMN where the MSC is
temporarily not reachable via the GPRS
part of the GSM network.

 148 unspecified GPRS
error

 Additionally, retry retries may be
attempted, but no more
frequently than once every 60
seconds

Causes Codes Related to Session Management

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 29 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

SM

Code

CME

Code

Cause Reason Action proposed

25 LLC or SNDCP
failure

This cause code is used by the MS indicate
that a PDP Context is deactivated because
of a LLC or SNDCP failure (e.g. if the SM
receives a SNSM-STATUS.request
message with cause "DM received " or "
invalid XID response)

Additionally, retry retries may be
attempted, but no more
frequently than once every 60
seconds

26 Insufficient
resources

This cause code is used by the MS or by
the network to indicate that a PDP Context
activation request or PDP Context
modification request cannot be accepted
due to insufficient resources.

Additionally, retry retries may be
attempted, but no more
frequently than once every 60
seconds

27 134 Unknown or missing
access point name

This cause code is used by the network to
indicate that the requested service was
rejected by the external packet data
network because the access point name
was not included although required or if the
access point name could not be resolved.

Additionally, do not retry with
same APN unless device is
power cycled.

28 Unknown PDP
address or PDP
type

This cause code is used by the network to
indicate that the requested service was
rejected by the external packet data
network because the PDP address or type
could not be recognised.

Additionally, do not retry with
same PDP address and/or type
unless device is power cycled.

29 149 User authentication
failed

This cause code is used by the network to
indicate that the requested service was
rejected by the external packet data
network due to a failed user authentication
(e.g. rejected by Radius)

Additionally, retry retries may be
attempted, but no more
frequently than once every 60
seconds

30 Activation rejected
by GGSN

This cause code is used by the network to
indicate that the requested service was
rejected by the GGSN.

Additionally, retry retries may be
attempted, but no more
frequently than once every 60
seconds

31 Activation rejected,
unspecified

This cause code is used by the network to
indicate that the requested service was
rejected due to unspecified reasons.

Additionally, retry retries may be
attempted, but no more
frequently than once every 60
seconds

32 132 Service option not
supported

This cause code is used by the network
when the MS requests a service which is
not supported by the PLMN.

Additionally, device should not
retry the attempt on the same
PLMN unless prompted
externally to do so (i.e. modem
should not automatically retry).

33 133 Requested service
option not
subscribed

This cause is sent when the MS requests a
service option for which it has no
subscription.

Additionally, device should not
retry the attempt on the same
PLMN unless prompted
externally to do so (i.e. modem
should not automatically retry).

34 134 Service option
temporarily out of
order

This cause is sent when the MSC cannot
service the request because of temporary
outage of one or more functions required
for supporting the service.

Additionally, retry retries may be
attempted, but no more
frequently than once every 60
seconds

35 NSAPI already used This cause code is used by the network to Device may choose to use a

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 30 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

indicate that the NSAPI requested by the
MS in the PDP Context activation is
already used by another active PDP
Context of this MS.

different NSAPI, or retry after
the context using the required
NSAPI has been deactivated.

36 Regular PDP
Context
deactivation

This cause code is used to indicate a
regular MS or network initiated PDP
Context deactivation.

37 QoS not accepted This cause code is used by the MS if the
new QoS cannot be accepted that were
indicated by the network in the PDP
Context Modification procedure.

N/A

38 615 Network Failure This cause code is used by the network to
indicate that the PDP Context deactivation
is caused by an error situation in the
network.

Additionally, retry retries may be
attempted, but no more
frequently than once every 60
seconds

39 Reactivation
requested

This cause code is used by the network to
request a PDP Context reactivation after a
GGSN restart.

Additionally, the device may re-
establish the PDP Context.

40 Feature not
supported

This cause code is used by the MS to
indicate that the PDP Context activation
initiated by the network is not supported by
the MS.

N/A

Causes Codes Related to other reasons

XX

Code

CMS

Code

Cause Reason Action proposed

 8 Operator
determined barring

This cause indicates that the device has
tried to send a mobile originating short
message when the device's network
operator or service provider has forbidden
such transactions.

SMS back-off, blocking
immediately any new SMS TX
request sent

 10 Call barred This cause indicates that the outgoing call
barred service applies to the short
message service for the called destination.

SMS back-off, blocking
immediately any new SMS TX
request sent

 21 Short message
transfer rejected

This cause indicates that the equipment
sending this cause does not wish to accept
this short message, although it could have
accepted the short message since the
equipment sending this cause is neither
busy nor incompatible.

SMS back-off, blocking
immediately any new SMS TX
request sent

 27 Destination out of
service

This cause indicates that the destination
indicated by the Device cannot be reached
because the interface to the destination is
not functioning correctly. The term "not
functioning correctly" indicates that a
signalling message was unable to be
delivered to the remote user; e.g., a
physical layer or data link layer failure at
the remote user, user equipment off-line,
etc.

SMS back-off, blocking
immediately any new SMS TX
request sent

 28 Unidentified
subscriber

This cause indicates that the subscriber is
not registered in the PLMN (i.e. IMSI not
known).

SMS back-off, blocking
immediately any new SMS TX
request sent

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 31 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

 29 Facility rejected This cause indicates that the facility
requested by the Device is not supported
by the PLMN.

SMS back-off, blocking
immediately any new SMS TX
request sent

 30 Unknown
subscriber

This cause indicates that the subscriber is
not registered in the HLR (i.e. IMSI or
directory number is not allocated to a
subscriber).

SMS back-off, blocking
immediately any new SMS TX
request sent

 38 Network out of
order

This cause indicates that the network is not
functioning correctly and that the condition
is likely to last a relatively long period of
time; e.g., immediately reattempting the
short message transfer is not likely to be
successful.

SMS back-off, blocking
immediately any new SMS TX
request sent

 41 Temporary failure This cause indicates that the network is not
functioning correctly and that the condition
is not likely to last a long period of time;
e.g., the Device may wish to try another
short message transfer attempt almost
immediately.

SMS back-off, blocking
immediately any new SMS TX
request sent

 42 Congestion This cause indicates that the short
message service cannot be serviced
because of high traffic.

SMS back-off, blocking
immediately any new SMS TX
request sent

 47 Resources
unavailable,
unspecified

This cause is used to report a resource
unavailable event only when no other
cause applies.

SMS back-off, blocking
immediately any new SMS TX
request sent

 50 Requested facility
not subscribed

This cause indicates that the requested
short message service could not be
provided by the network because the user
has not completed the necessary
administrative arrangements with its
supporting networks.

SMS back-off, blocking
immediately any new SMS TX
request sent

 69 Requested facility
not implemented

This cause indicates that the network is
unable to provide the requested short
message service.

SMS back-off, blocking
immediately any new SMS TX
request sent

 81 Invalid short
message transfer
reference value

This cause indicates that the equipment
sending this cause has received a
message with a short message reference
which is not currently in use on the MS-
network interface.

SMS back-off, blocking
immediately any new SMS TX
request sent

 148 Unspecified GPRS
error

17 Network failure This cause is sent to the MS if the MSC
cannot service an MS generated request
because of PLMN failures, e.g. Problems in
MAP.

SMS back-off, blocking
immediately any new SMS TX
request sent

21 Congestion This cause is sent if the service request
cannot be processed because of
congestion (e.g. no channel, facility
busy/congested, etc).

SMS back-off, blocking
immediately any new SMS TX
request sent

Table 6: CMEE Codes

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 32 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

5.4 WebAPI Transport Bindings
The specification defines two transport bindings for the CMAPI messages, first based on the WebSocket Protocol and
second is based on HTTP.

5.4.1 WebSocket Transport Binding
This section introduces a transport binding for the CMAPI messages defined in section 5.2 using the W3C WebSocket API
[W3C_WebSocket] and the underlying Web Socket Protocol [RFC6455] for both request/response and callbacks.

WebSocket provides Web applications with a full-duplex communication channel over a persistent connection. It enables a
stream of messages, which is a perfect fit for the message exchange of OpenCMAPI..

5.4.1.1 Design Principle
The nature of modern Web applications is asynchrony. The “WebSocket” interface designed in W3C Web Socket API
enables the asynchrony of a Web application over a full-duplex communication channel. Once a “WebSocket” connection
object is established with the application server:

- sending a message in a Web application: message from a Web application can be sent to the application server using
the “send(data)” method, which is non-blocking and immediately returns to the Web application

- receiving a message in a Web application: a Web application can use a “EventHandler onmessage” event handler to
receive and handle messages from the application server.

5.4.1.2 CMAPI-1 Transport Binding
CMAPI-1 defines normal function calls, which is normally synchronous in native API. The native application makes a
function call and waits until the function finishes the communication with the application server and returns the result.

However, in WebSocket API Binding, because of the asynchrony nature of WebSocket interface and the asynchronous way
for a Web application to handle sending a message and receiving a message, CMAPI-1 functions are all modelled as
asynchronous function calls. It means that all function calls are effectively the same as “_Async()” calls in semantics. The
binding details are as follows:

- All CMAPI-1 function signatures are defined in WebIDL in [OpenCMAPI-SUP-WIDL];

o An extra parameter “ResultCallback cb” is added to every function signature so that the Web application
can specify a callback function “cb” to receive and handle the response message of the function call from
the application server

o “ResultCallback” interface is defined in WebIDL for the callback function “cb” of an asynchronous
function call to receive and handle the response message formatted as a JSON-RPC data object
“CmapiResponse” defined in section 5.2.2.2 and WebIDL as well.

- When a CMAPI-1 function call is invoked by a Web application, the JavaScript Library that implements the
WebSocket API Binding follows the steps in the table below.

Step 1 Assign a globally unique transaction “id” for this CMAPI-1 function call (see section 5.2.2.1)

Step 2 Construct the JSON-RPC request object, whose format is defined in section 5.2.2.1, based on the transaction
“id”, the method and parameters of this CMAPI-1 function call.

Step 3 Set up the transaction “id” and callback function “cb” with the event handler of “onmessage” of the
“WebSocket” object so that the corresponding “CmapiResponse” data object can be routed to this callback
function “cb” according to matching the transaction “id” appropriately (see Section 5.2.2)

Step 4 Send the request message of this CMAPI-1 function call to the application server using “send(data)” method
of the “WebSocket” object

Step 5 Immediately return to the Web application without blocking on waiting for the response message from the
application server, which will be received and handled asynchronously.

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 33 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

Table 7: Steps of Handling a CMAPI-1 Function Call

- When a response message from the application server is received by the “WebSocket” object of the JavaScript
Library that implements the WebSocket API Binding, the event handler of “onmessage” of the “WebSocket” object
is invoked to:

Step 1 Construct the “CmapiResponse” JSON-RPC object according to the response message (see section
5.2.2.2).

Step 2 Match the transaction “id” of “CmapiResponse” with the list of transaction “id”s of prior request
messages.

Step 3 If there is a match of transaction “id”, invoke the corresponding callback function “cb” and pass
“CmapiResponse” as its parameter.

Step 4 If there is no match, handle it in the way defined in section 5.4.1.4.

Table 8: Steps of Handling a CMPI-1 Response Message

- It should be noted that there may be more than one response messages of a CMAPI-1 function call sequentially sent
from the application server. Those response messages are in sequence, and may indicate different stages of serving
the CMAPI-1 function call in the application server. For example, the stages of a function call request may include
“received”, “processing”, “completed” etc in the application server, Those multiple response messages SHALL have
the same transaction “id” as that of the original CMAPI-1 function call.

5.4.1.3 CMAPI-2 Transport Binding
CMAPI-2 defines callback functions, which are sent to the client device in the same way as delivering response messages of
CMAPI-1 function calls through the “WebSocket” object. In addition, there are two application-initiated function calls to
register and unregister callback functions:

- When a Web application registers a callback function, the JavaScript Library that implements the WebSocket API
Binding handles this function call in the same way as that of CMAPI-1 function calls. In addition, there is one more
step to follow:

Step 1 The JavaScript Library sets up the “callbackId” and the callback function “cb” with the event handler of
“onmessage” of the “WebSocket” object so that the corresponding “CmapiResponse” data object can be
routed to this callback function “cb” according to matching the “callbackId” appropriately (see Section 5.2.3).

Table 9: Extra Step of Handling a Callback Registration

- When a Web application unregisters a callback function, the JavaScript Library that implements the WebSocket API
Binding SHALL handle this function call in the same way as that of CMAPI-1 function calls. In addition, there is
one more step to follow:

Step 1 JavaScript library SHALL remove the prior setup of the “callbackId” and the callback function “cb” with the
event handler of “onmessage” of the “WebSocket” object.

Table 10: Extra Step of Handling a Callback Unregistration

When a “WebSocket” object of the JavaScript Library that implements the WebSocket API Binding receives a message from
the application server, the event handler of “onmessage” of the “WebSocket” object is invoked to:

Step 1 Construct the “CmapiResponse” JSON-RPC object according to the message (see Section 5.2.3).

Step 2 Match the transaction “id” of “CmapiResponse” with the list of transaction “id”s of prior CMAPI-1 request
messages.

Step 3 If there is a match of transaction “id”, handle it in the way defined in Section 5.4.1.2.
Step 4 If there is no match:

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 34 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

- If there is a “callbackId” member in “CmapiResponse” with a valid value, match it with the list of
registered “callbackIds”.

o If the “callbackId’ is in the list of registered “callbackIds”, invoke the corresponding
callback function “cb” and pass “CmapiResponse” as its parameter.

o If the “callbackId’ is not in the list of registered “callbackIds”, call general error handling
functions defined in Section 5.4.1.4.

- If there is not a “callbackId” member in “CmapiResponse”, or if the “callbackId” member is empty or
invalid value, call general error handling functions defined in Section 5.4.1.4.

Step 5 It should be noted that the same type of callback function may be initiated and sent from the server more than
once for the changed situation of the same characteristics. Those multiple messages of the same “callbackId”
SHALL NOT have the same transaction “id” in order to distinguish those changes.

Table 11: Steps of Handling a Callback

5.4.1.4 WebSocket Transport Error Handling
The error handling mechanism SHALL be able to handle those generic errors defined in [JSON-RPC] and CMAPI-specific
errors defined in section 5.3

In addition, the following general error conditions will be handled according to operators’ policy.

- In the message from application server, the transaction “id” doesn’t match any transaction “id” of prior CMAPI-1
request messages, and the “callbackId” is either absent or empty or invalid value.

- In the message from application server, the “callbackId” is not in the list of registered CMAPI-2 “callbackIds”.

5.4.2 HTTP Transport Binding
This section introduces the transport binding for the CMAPI messages defined in section 5.2 using HTTP for synchronous
request /response and HTTP Long Polling used for callbacks.

5.4.2.1 General
CMAPI SHALL support HTTP1.1 [RFC2616] for CMAPI-1 and CMAPI-2 interfaces.

5.4.2.2 Content Type
CMAPI SHALL support messages formatted as entity-bodies with the following content type:

• application/json media type. The application/ json media type is used when a single CMAPI-1 or CMAPI-2 interface
message is included in the HTTP request/response.

5.4.2.3 HTTP Method
CMAPI SHALL send all request messages on CMAPI-1 and CMAPI-2 interface as HTTP POST method requests.

5.4.2.4 CMAPI-1 HTTP Transport Binding
CMAPI-1 communication between Web applications and a CMAPI is carried out using HTTP POST requests and HTTP
responses, with the JSON objects (as specified in section 5.2.2) as data.

5.4.2.5 CMAPI-2 HTTP Transport Binding
The method for a Web application to receive asynchronous notifications via CMAPI-2 interface about the callbacks the Web
application has registered to is based on HTTP requests and often referred to as “HTTP Long Polling” [RFC6202].

When a callback fires a notification is sent to the Web application, i.e. a CMAPI-2 message included in the HTTP message
body within the HTTP response to the pending HTTP Long Polling request.

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 35 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

5.4.2.6 HTTP Transport Error Handling
The error handling mechanism SHALL be able to handle those generic errors defined in [JSON-RPC] and CMAPI-specific
errors defined in section 5.3.
When there is no CMAPI message to send in response to an request, CMAPI SHALL send a 204 No Content response.
Other allowed status codes, reflecting the outcome of the HTTP POST request, are defined in [RFC2616].

5.5 Security Considerations
Management of connections is a sensitive operation which can involve secrets and confidential data (e. g. password), so it is
required to perform CMAPI operations in a securely mutually authenticated , confidential and integrity protected context.
This CMAPI release does leave the security mechanisms required up to implementation.

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 36 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

Appendix A. Change History (Informative)
A.1 Approved Version History

Reference Date Description
n/a n/a No prior version

A.2 Draft/Candidate Version 1.1 History
Document Identifier Date Sections Description

Draft Versions
OMA-TS-OpenCMAPI_Web_V1_1

04 Jun 2013 All First baseline document
04 Sep 2013 All Incorporated the following CRs:

OMA-CD-OpenCMAPI-2013-0074R02-CR_TS_WebAPI
01 Jan 2014 All Incorporated the following CRs:

OMA-CD-OpenCMAPI-2013-0085-CR_JSON_API_Management
OMA-CD-OpenCMAPI-2013-0103-CR_JSON_Device_Discovery
OMA-CD-OpenCMAPI-2013-0104-
CR_JSON_Cellular_Network_Management
OMA-CD-OpenCMAPI-2013-0105-
CR_JSON_Connection_Management OMA-CD- OMA-CD-
OpenCMAPI-2013-0106-CR_JSON_Network_Management
OMA-CD-OpenCMAPI-2013-0107-CR_JSON_CDMA2000
OMA-CD-OpenCMAPI-2013-0108-CR_JSON_Device_Service
OMA-CD-OpenCMAPI-2013-0109-
CR_JSON__Device_Extended_Service
OMA-CD-OpenCMAPI-2013-0110-CR_JSON_PIN_PUK
OMA-CD-OpenCMAPI-2013-0111-CR_JSON_UICC
OMA-CD-OpenCMAPI-2013-0113-CR_JSON_Statistics
OMA-CD-OpenCMAPI-2013-0114-CR_JSON_Information_Status
OMA-CD-OpenCMAPI-2013-0115-CR_JSON_SMS
OMA-CD-OpenCMAPI-2013-0116-CR_JSON_USSD
OMA-CD-OpenCMAPI-2013-0117-CR_JSON_GNSS
OMA-CD-OpenCMAPI-2013-0118-CR_JSON_Data_Push_Service
OMA-CD-OpenCMAPI-2013-0119-CR_JSON_Contact_Management
OMA-CD-OpenCMAPI-2013-0120-CR_JSON_P2P
OMA-CD-OpenCMAPI-2013-0121-CR_JSON_Router_Management
OMA-CD-OpenCMAPI-2013-0162-CR_CR_JSON_Callback
OMA-CD-OpenCMAPI-2013-0163-
CR_CMAPI_WebBinding_Reference
OMA-CD-OpenCMAPI-2013-0166R01-
CR_CMAPI_WebBinding_Introduction
OMA-CD-OpenCMAPI-2013-0167-CR_WebBinding_WebSocket
OMA-CD-OpenCMAPI-2013-0168R01-CR_WebBinding_JSONRPC
OMA-CD-OpenCMAPI-2013-0169R01-CR_WebBinding_Appendix_D
OMA-CD-OpenCMAPI-2013-0171-CR_JSON_CB_Registration

30 Jan 2014 B Incorporated CR:
 OMA-CD-OpenCMAPI-2014-0010-CR_WebTS_SCR
Editorial changes

31 Jan 2014 All Editorial changes including changes in accordance with actions:
OpenCMAPI-2014-A001
OpenCMAPI-2014-A002
OpenCMAPI-2014-A003
OpenCMAPI-2014-A005

18 Feb 2014 All Changes according to CONRR comments resolution in OMA-CONRR-
OpenCMAPI-V1_1-20140221-D

01 Apr 2014 All Incorporated:
OMA-CD-OpenCMAPI-2014-0017-CR_WebTS_errorcodes
OMA-CD-OpenCMAPI-2014-0020-CR_WebTS_move_JSD_to_SUP
OMA-CD-OpenCMAPI-2014-0021-CR_WebTS_References_Section

22 Apr 2014 All Incorporated:
OMA-CD-OpenCMAPI-2014-0027R01-
CR_Resolution_for_some_CONR_comments_to_WebTS

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 37 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

Document Identifier Date Sections Description
5 May 2014 5.2, 5.3, Incorporated:

OMA-CD-OpenCMAPI-2014-0032R01-
CR_Next_WebTS_CONR_comments_resolutions

29 Sep 2014 All Incorporated:
OMA-CD-OpenCMAPI-2014-0077-
CR_Resolution_re_WebTS_Security
OMA-CD-OpenCMAPI-2014-0092-CR_WebTS_Editorial_Update

24 Nov 2014 5.2 Incorporated:
OMA-CD-OpenCMAPI-2014-0099-CR_WebTS_Schema_description

Candidate Version
OMA-TS-OpenCMAPI_Web_V1_1

17 Feb 2015 n/a Status changed to Candidate by TP
 TP Ref # OMA-TP-2015-0059-
INP_OpenCMAPI_V1_1_ERP_and_ETR_for_Candidate_approval

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 38 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

Appendix B. Static Conformance Requirements (Normative)
The notation used in this appendix is specified in [SCRRULES].

Every API function calls need to be supported by the implementation of the OpenCMAPI. It shall at least support the call of
the function and the dedicated generic return value.

But if one the functions is listed as mandatory in one of the following tables the full feature needs to be implemented in the
API for the targeted device type.

And if one the functions is listed as Optional in one of the following tables, when implemented then the full feature needs to
be implemented in the API for the targeted device type.

B.1 SCR for Mobile Broadband Device
Item Function Reference Requirement

OpenCMAPI-MBD-001-M Support API Management 7.2
OpenCMAPI-MBD-002-M Support Device Discovery APIs 7.3
OpenCMAPI-MBD-003-M Support Cellular Network Management APIs 7.4
OpenCMAPI-MBD-004-M Support Connection Management APIs 7.5
OpenCMAPI-MBD-005-M Support Network Management APIs 7.6
OpenCMAPI-MBD-006-O Support CDMA2000 APIs 7.7
OpenCMAPI-MBD-007-M Support Device Service APIs 7.8
OpenCMAPI-MBD-008-M Support PINs/PUKs Management APIs 7.10
OpenCMAPI-MBD-009-O Support UICC Management APIs 7.11
OpenCMAPI-MBD-010-O Support WLAN APIs 7.12
OpenCMAPI-MBD-011-M Support Statistics APIs 7.13
OpenCMAPI-MBD-012-M Support Information Status APIs 7.14
OpenCMAPI-MBD-013-M Support SMS Management APIs 7.15
OpenCMAPI-MBD-014-M Support USSD Management APIs 7.16
OpenCMAPI-MBD-015-O Support GNSS APIs 7.17
OpenCMAPI-MBD-016-O Support Data Push Service Management APIs 7.18
OpenCMAPI-MBD-017-M Support Callback APIs 8
OpenCMAPI-MBD-018-O Support Device Extended Service APIs 7.9
OpenCMAPI-MBD-019-M Support Contact Management APIs 7.19
OpenCMAPI-MBD-020-O Support P2P Direct Management APIs 7.20
OpenCMAPI-MBD-021-O Support Wireless Router APIs 7.21
OpenCMAPI-MBD-022-O Support IP Multimedia Services APIs 7.22
OpenCMAPI-MBD-023-O Support M2M/IoT APIs 7.23

B.2 SCR for laptop
Item Function Reference Requirement

OpenCMAPI-LAP-001-M Support API Management 7.2
OpenCMAPI-LAP-002-M Support Device Discovery APIs 7.3
OpenCMAPI-LAP-003-M Support Cellular Network Management APIs 7.4
OpenCMAPI-LAP-004-M Support Connection Management APIs 7.5
OpenCMAPI-LAP-005-M Support Network Management APIs 7.6
OpenCMAPI-LAP-006-O Support CDMA2000 APIs 7.7
OpenCMAPI-LAP-007-M Support Device Service APIs 7.8
OpenCMAPI-LAP-008-M Support PINs/PUKs Management APIs 7.10
OpenCMAPI-LAP-009-O Support UICC Management APIs 7.11

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 39 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

Item Function Reference Requirement
OpenCMAPI-LAP-010-M Support WLAN APIs 7.12
OpenCMAPI-LAP-011-M Support Statistics APIs 7.13
OpenCMAPI-LAP-012-M Support Information Status APIs 7.14
OpenCMAPI-LAP-013-M Support SMS Management APIs 7.15
OpenCMAPI-LAP-014-M Support USSD Management APIs 7.16
OpenCMAPI-LAP-015-O Support GNSS APIs 7.17
OpenCMAPI-LAP-016-O Support Data Push Service Management APIs 7.18
OpenCMAPI-LAP-017-M Support Callback APIs 8
OpenCMAPI-LAP-018-O Support Device Extended Service APIs 7.9
OpenCMAPI-LAP-019-M Support Contact Management APIs 7.19
OpenCMAPI-LAP-020-O Support P2P Direct Management APIs 7.20
OpenCMAPI-LAP-021-O Support Wireless Router APIs 7.21
OpenCMAPI-LAP-022-O Support IP Multimedia Services APIs 7.22
OpenCMAPI-LAP-023-O Support M2M/IoT APIs 7.23

B.3 SCR for wireless router
Item Function Reference Requirement

OpenCMAPI-WIR-001-M Support API Management 7.2
OpenCMAPI-WIR-002-M Support Device Discovery APIs 7.3
OpenCMAPI-WIR-003-M Support Cellular Network Management APIs 7.4
OpenCMAPI-WIR-004-M Support Connection Management APIs 7.5
OpenCMAPI-WIR-005-M Support Network Management APIs 7.6
OpenCMAPI-WIR-006-O Support CDMA2000 APIs 7.7
OpenCMAPI-WIR-007-M Support Device Service APIs 7.8
OpenCMAPI-WIR-008-M Support PINs/PUKs Management APIs 7.10
OpenCMAPI-WIR-009-O Support UICC Management APIs 7.11
OpenCMAPI-WIR-010-O Support WLAN APIs 7.12
OpenCMAPI-WIR-011-M Support Statistics APIs 7.13
OpenCMAPI-WIR-012-M Support Information Status APIs 7.14
OpenCMAPI-WIR-013-M Support SMS Management APIs 7.15
OpenCMAPI-WIR-014-O Support USSD Management APIs 7.16
OpenCMAPI-WIR-015-O Support GNSS APIs 7.17
OpenCMAPI-WIR-016-O Support Data Push Service Management APIs 7.18
OpenCMAPI-WIR-017-M Support Callback APIs 8
OpenCMAPI-WIR-018-O Support Device Extended Service APIs 7.9
OpenCMAPI-WIR-019-M Support Contact Management APIs 7.19
OpenCMAPI-WIR-020-O Support P2P Direct Management APIs 7.20
OpenCMAPI-WIR-021-M Support Wireless Router APIs 7.21
OpenCMAPI-WIR-022-O Support IP Multimedia Services APIs 7.22
OpenCMAPI-WIR-023-O Support M2M/IoT APIs 7.23

B.4 SCR for M2M device
B.4.1 General M2M device

Item Function Reference Requirement
OpenCMAPI-M2M-001-M Support API Management 7.2

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 40 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

Item Function Reference Requirement
OpenCMAPI-M2M-002-M Support Device Discovery APIs 7.3
OpenCMAPI-M2M-003-M Support Cellular Network Management APIs 7.4
OpenCMAPI-M2M-004-M Support Connection Management APIs 7.5
OpenCMAPI-M2M-005-M Support Network Management APIs 7.6
OpenCMAPI-M2M-006-O Support CDMA2000 APIs 7.7
OpenCMAPI-M2M-007-M Support Device Service APIs 7.8
OpenCMAPI-M2M-008-M Support PINs/PUKs Management APIs 7.10
OpenCMAPI-M2M-009-O Support UICC Management APIs 7.11
OpenCMAPI-M2M-010-O Support WLAN APIs 7.12
OpenCMAPI-M2M-011-M Support Statistics APIs 7.13
OpenCMAPI-M2M-012-M Support Information Status APIs 7.14
OpenCMAPI-M2M-013-M Support SMS Management APIs 7.15
OpenCMAPI-M2M-014-O Support USSD Management APIs 7.16
OpenCMAPI-M2M-015-O Support GNSS APIs 7.17
OpenCMAPI-M2M-016-O Support Data Push Service Management APIs 7.18
OpenCMAPI-M2M-017-M Support Callback APIs 8
OpenCMAPI-M2M-018-O Support Device Extended Service APIs 7.9
OpenCMAPI-M2M-019-O Support Contact Management APIs 7.19
OpenCMAPI-M2M-020-O Support P2P Direct Management APIs 7.20
OpenCMAPI-M2M-021-O Support Wireless Router APIs 7.21
OpenCMAPI-M2M-022-O Support IP Multimedia Services APIs 7.22
OpenCMAPI-M2M-023-O Support M2M/IoT APIs 7.23

B.4.2 Basic M2M device
Basic M2M device is a subset of M2M device representing devices that are able to perform only basic functions such as a
sensor or a meter. These basic M2M devices are also referred as IoT (Internet of Things) devices.

Therefore, for each group of requirements, only some functions will be supported by Basic M2M devices (only the
Mandatory functions are listed here – Any function not mentioned below is considered as Optional for Basic M2M).

Item Function Reference Requirement
OpenCMAPI-IoT-001-M CMAPI_API_Open() 7.2
OpenCMAPI-IoT-002-M CMAPI_API_Close() 7.2
OpenCMAPI-IoT-003-M CMAPI_API_GetOpenCMAPIVersion() 7.2
OpenCMAPI-IoT-004-M CMAPI_API_GetFunctionsSupported() 7.2
OpenCMAPI-IoT-005-M CMAPI_Discovery_OpenDevice() 7.3
OpenCMAPI-IoT-006-M CMAPI_Discovery_CloseDevice() 7.3
OpenCMAPI-IoT-007-M CMAPI_Network_GetRFInfo() 7.4
OpenCMAPI-IoT-008-M CMAPI_NetCon_GetConnectionStatus() 7.6
OpenCMAPI-IoT-009-M CMAPI_NetCon_SetAutoConnectMode() 7.6
OpenCMAPI-IoT-010-M CMAPI_NetCon_GetAutoConnectMode() 7.6
OpenCMAPI-IoT-011-M CMAPI_NetCon_SetPermittedBearers() 7.6
OpenCMAPI-IoT-012-M CMAPI_NetCon_GetPermittedBearers() 7.6
OpenCMAPI-IoT-013-M CMAPI_DevSrv_GetIMSI() 7.8
OpenCMAPI-IoT-014-M CMAPI_DevSrv_GetDeviceStatus() 7.8
OpenCMAPI-IoT-015-M CMAPI_DevSrv_GetFirmwareVersion() 7.8
OpenCMAPI-IoT-016-M CMAPI_DevSrv_GetRFSwitch() 7.8
OpenCMAPI-IoT-017-M CMAPI_DevSrv_SetRadioState() 7.8

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 41 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

Item Function Reference Requirement
OpenCMAPI-IoT-018-M CMAPI_Information_GetNetworkSelectionMode

()
7.14

OpenCMAPI-IoT-019-M CMAPI_Information_GetSignalStrength() 7.14
OpenCMAPI-IoT-020-M CMAPI_Information_GetRoamingStatus() 7.14
OpenCMAPI-IoT-021-M CMAPI_Information_GetRATType() 7.14
OpenCMAPI-IoT-022-M CMAPI_Information_GetRadioState() 7.14
OpenCMAPI-IoT-023-M CMAPI_Information_GetBatteryStatus() 7.14
OpenCMAPI-IoT-024-M CMAPI_SMS_Send() 7.15
OpenCMAPI-IoT-025-O CMAPI_IoT_IMSI_Attach() 7.23 Optional function but

recommended for this
type of device

OpenCMAPI-IoT-026-O CMAPI_IoT_GPRS_Register() 7.23 Optional function but
recommended for this
type of device

OpenCMAPI-IoT-027-O CMAPI_IoT_Set_PDPContext() 7.23 Optional function but
recommended for this
type of device

OpenCMAPI-IoT-028-O CMAPI_IoT_GetPDPContextList() 7.23 Optional function but
recommended for this
type of device

OpenCMAPI-IoT-029-O CMAPI_IoT_GetPDPContextIPaddress() 7.23 Optional function but
recommended for this
type of device

OpenCMAPI-IoT-030-O CMAPI_IoT_Activate_PDPContext() 7.23 Optional function but
recommended for this
type of device

OpenCMAPI-IoT-031-O CMAPI_IoT_SetNFM() 7.23 Optional function but
recommended for this
type of device

OpenCMAPI-IoT-032-O CMAPI_IoT_GetNFM() 7.23 Optional function but
recommended for this
type of device

OpenCMAPI-IoT-033-O CMAPI_IoT_SetBack-OffBaseInterval() 7.23 Optional function but
recommended for this
type of device

OpenCMAPI-IoT-034-O CMAPI_IoT_GetBack-OffTimer() 7.23 Optional function but
recommended for this
type of device

B.5 SCR for Smart Phone
Item Function Reference Requirement

OpenCMAPI-SMA-001-M Support API Management 7.2
OpenCMAPI-SMA-002-M Support Device Discovery APIs 7.3
OpenCMAPI-SMA-003-M Support Cellular Network Management APIs 7.4
OpenCMAPI-SMA-004-M Support Connection Management APIs 7.5
OpenCMAPI-SMA-005-M Support Network Management APIs 7.6
OpenCMAPI-SMA-006-O Support CDMA2000 APIs 7.7
OpenCMAPI-SMA-007-M Support Device Service APIs 7.8
OpenCMAPI-SMA-008-M Support PINs/PUKs Management APIs 7.10

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 42 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

Item Function Reference Requirement
OpenCMAPI-SMA-009-M Support UICC Management APIs 7.11
OpenCMAPI-SMA-010-M Support WLAN APIs 7.12
OpenCMAPI-SMA-011-M Support Statistics APIs 7.13
OpenCMAPI-SMA-012-M Support Information Status APIs 7.14
OpenCMAPI-SMA-013-M Support SMS Management APIs 7.15
OpenCMAPI-SMA-014-M Support USSD Management APIs 7.16
OpenCMAPI-SMA-015-O Support GNSS APIs 7.17
OpenCMAPI-SMA-016-M Support Data Push Service Management APIs 7.18
OpenCMAPI-SMA-017-M Support Callback APIs 8
OpenCMAPI-SMA-018-O Support Device Extended Service APIs 7.9
OpenCMAPI-SMA-019-M Support Contact Management APIs 7.19
OpenCMAPI-SMA-020-O Support P2P Direct Management APIs 7.20
OpenCMAPI-SMA-021-O Support Wireless Router APIs 7.21
OpenCMAPI-SMA-022-O Support IP Multimedia Services APIs 7.22
OpenCMAPI-SMA-023-O Support M2M/IoT APIs 7.23

B.6 SCR for Tablets
Item Function Reference Requirement

OpenCMAPI-TAB-001-M Support API Management 7.2
OpenCMAPI-TAB-002-M Support Device Discovery APIs 7.3
OpenCMAPI-TAB-003-M Support Cellular Network Management APIs 7.4
OpenCMAPI-TAB-004-M Support Connection Management APIs 7.5
OpenCMAPI-TAB-005-M Support Network Management APIs 7.6
OpenCMAPI-TAB-006-O Support CDMA2000 APIs 7.7
OpenCMAPI-TAB-007-M Support Device Service APIs 7.8
OpenCMAPI-TAB-008-M Support PINs/PUKs Management APIs 7.10
OpenCMAPI-TAB-009-M Support UICC Management APIs 7.11
OpenCMAPI-TAB-010-M Support WLAN APIs 7.12
OpenCMAPI-TAB-011-M Support Statistics APIs 7.13
OpenCMAPI-TAB-012-M Support Information Status APIs 7.14
OpenCMAPI-TAB-013-M Support SMS Management APIs 7.15
OpenCMAPI-TAB-014-M Support USSD Management APIs 7.16
OpenCMAPI-TAB-015-O Support GNSS APIs 7.17
OpenCMAPI-TAB-016-M Support Data Push Service Management APIs 7.18
OpenCMAPI-TAB-017-M Support Callback APIs 8
OpenCMAPI-TAB-018-O Support Device Extended Service APIs 7.9
OpenCMAPI-TAB-019-M Support Contact Management APIs 7.19
OpenCMAPI-TAB-020-O Support P2P Direct Management APIs 7.20
OpenCMAPI-TAB-021-O Support Wireless Router APIs 7.21
OpenCMAPI-TAB-022-O Support IP Multimedia Services APIs 7.22
OpenCMAPI-TAB-023-O Support M2M/IoT APIs 7.23

B.7 SCR for Cloud Devices
Item Function Reference Requirement

OpenCMAPI-CLD-001-M Support API Management 7.2
OpenCMAPI-CLD-002-M Support Device Discovery APIs 7.3

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 43 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

Item Function Reference Requirement
OpenCMAPI-CLD-003-M Support Cellular Network Management APIs 7.4
OpenCMAPI-CLD-004-M Support Connection Management APIs 7.5
OpenCMAPI-CLD-005-M Support Network Management APIs 7.6
OpenCMAPI-CLD-006-O Support CDMA2000 APIs 7.7
OpenCMAPI-CLD-007-M Support Device Service APIs 7.8
OpenCMAPI-CLD-008-M Support PINs/PUKs Management APIs 7.10
OpenCMAPI-CLD-009-M Support UICC Management APIs 7.11
OpenCMAPI-CLD-010-M Support WLAN APIs 7.12
OpenCMAPI-CLD-011-M Support Statistics APIs 7.13
OpenCMAPI-CLD-012-M Support Information Status APIs 7.14
OpenCMAPI-CLD-013-M Support SMS Management APIs 7.15
OpenCMAPI-CLD-014-M Support USSD Management APIs 7.16
OpenCMAPI-CLD-015-O Support GNSS APIs 7.17
OpenCMAPI-CLD-016-O Support Data Push Service Management APIs 7.18
OpenCMAPI-CLD-017-M Support Callback APIs 8
OpenCMAPI-CLD-018-O Support Device Extended Service APIs 7.9
OpenCMAPI-CLD-019-M Support Contact Management APIs 7.19
OpenCMAPI-CLD-020-O Support P2P Direct Management APIs 7.20
OpenCMAPI-CLD-021-O Support Wireless Router APIs 7.21
OpenCMAPI-CLD-022-O Support IP Multimedia Services APIs 7.22
OpenCMAPI-CLD-023-O Support M2M/IoT APIs 7.23

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 44 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

Appendix C. Description of OpenCMAPI functions (Informative)
This appendix provides a list of all OpenCMAPI Functions as well as a short description and in which version (from
[OpenCMAPI-TS]) they have been created.

C.1 CMAPI-1 Functions
CMAPI-1

Function Description Vers.

API MANAGEMENT

CMAPI_API_Open() initialize the OpenCMAPI 1.0

CMAPI_API_Close() deallocate any internal API structures including the security context 1.0

CMAPI_API_GetOpenCMAPIVersion() retrieve the version number of the OpenCMAPI used 1.0

CMAPI_API_GetFunctionsSupported() retrieve the OpenCMAPI groups of functions supported by the
enabler

1.1

DEVICE DISCOVERY APIs

CMAPI_Discovery_DetectDevices() search for devices 1.0

CMAPI_Discovery_GetDevice() discover information about the devices within the system 1.0

CMAPI_Discovery_OpenDevice() “open” a device within the system 1.0

CMAPI_Discovery_CloseDevice() “close” a device within the system 1.0

CELLULAR NETWORK MANAGEMENT APIs

CMAPI_Network_GetRFInfo() get information about RF (Radio access technology, band class, data
rate supported and channel)

1.0

CMAPI_Network_GetHomeInformation() get information about home network of the subscriber for a
dedicated System

1.0

CMAPI_Network_GetServingInformation() get information about serving network of the subscriber 1.0

CONNECTION MANAGEMENT APIs

CMAPI_NetConnectSrv_MgrCellularProfile() manage cellular profiles, including add/delete/update a profile
information

1.0

CMAPI_NetConnectSrv_GetCellularProfile() get the details of a specific Cellular Profile 1.0

CMAPI_NetConnectSrv_GetCellularProfileList() get a list of all Cellular Profile names 1.0

CMAPI_NetConnectSrv_SelectNetwork() select the current network mode and PLMN for a given System 1.0

CMAPI_NetConnectSrv_GetNetworkList_Sync() search and compile a list of available Networks 1.0

CMAPI_NetConnectSrv_GetNetworkList_Async() initiate the search of the Network list 1.0

CMAPI_NetConnectSrv_GetCurrentConnType() get the current connection type 1.0

CMAPI_NetConnectSrv_Connect_Async() connect to a network 1.0

CMAPI_NetConnectSrv_Disconnect_Async() disconnect from the network 1.0

CMAPI_NetConnectSrv_CancelConnect_Async() cancel of connect operation (as a result of a call to
CMAPI_NetConnectSrv_Connect_Async)

1.0

CMAPI_NetConnectSrv_SecondaryPDPContext_Connect_Async() connect to a network 1.0

CMAPI_NetConnectSrv_SecondaryPDPContext_Disconnect_Async() disconnect from the network 1.0

CMAPI_NetConnectSrv_SecondaryPDPContext_CancelConnect_Async
()

cancel of connect operation (as a result of a call to
CMAPI_NetConnectSrv_SecondaryPDPContext_Connect_Async)

1.0

NETWORK MANAGEMENT APIs

CMAPI_NetCon_GetConnectionStatus() obtain information about the connection status 1.0

CMAPI_NetCon_SetAutoConnectMode() set/disable “autoconnect” mode 1.0

CMAPI_NetCon_GetAutoConnectMode() return the current “autoconnect” mode 1.0

CMAPI_NetCon_SetDefaultProfile() identify the profile that shall be used when the device is in auto
connect mode

1.0

CMAPI_NetCon_SetPermittedBearers() restrict the permitted mobile bearer when connecting to the
selected network

1.0

CMAPI_NetCon_GetPermittedBearers() get the current permitted bearers 1.0

CMAPI_NetCon_SetNoDataProfile() set up (enable or disable) the nodataprofile 1.0

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 45 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

CMAPI_NetCon_GetNoDataProfile() return the current state of the nodata profile (enabled or disabled) 1.0

CDMA2000 APIs

CMAPI_CDMA2000_SetACCOLC() set the Access Overload Class (ACCOLC) for CDMA2000 devices 1.0

CMAPI_CDMA2000_GetACCOLC() retrieve the current value of the Access Overload Class (ACCOLC) for
CDMA2000 devices

1.0

CMAPI_CDMA2000_SetCDMANetworkParameters() set the values of certain CDMA2000-specific network parameters 1.0

CMAPI_CDMA2000_GetCDMANetworkParameters() retrieve the values of certain CDMA2000-specific network
parameters

1.0

CMAPI_CDMA2000_GetANAAAAAuthenticationStatus() retrieve the value of the most recent ANA AAA authentication
attempt status for CDMA2000 devices

1.0

CMAPI_CDMA2000_GetPRLVersion() retrieve the value of the Preferred Roaming List (PRL) version in use
for CDMA2000 devices

1.0

CMAPI_CDMA2000_GetERIFile() retrieve the contents of the Enhanced Roaming Indicator (ERI) file in
use for CDMA2000 devices

1.0

CMAPI_CDMA2000_ActivateAutomatic() command the device to perform automatic activation using a
specified activation code

1.0

CMAPI_CDMA2000_ActivateManual() command the device to perform manual activation using the
specified parameters

1.0

CMAPI_CDMA2000_ValidateSPC() command the device to validate a Service Programming Code (SPC) 1.0

CMAPI_OMADM_StartSession() start an OMA DM session to configure the values of various
CDMA2000 network information as specified by the session type in
its input parameter

1.0

CMAPI_OMADM_CancelSession() cancel an ongoing OMA DM session 1.0

CMAPI_OMADM_GetSessionInfo() return information about the currently active OMA DM session (or
the most recent session if none is active)

1.0

CMAPI_OMADM_GetPendingNIA() return information about a Network-Initiated Alert (NIA) that is
commanding the device to establish a DM session with a DM server
to perform the requested configuration operation

1.0

CMAPI_OMADM_SendSelection() return the response from the device to a Network-Initiated Alert
(NIA) that is commanding the device to establish a DM session

1.0

CMAPI_OMADM_GetFeatureSettings() return information about the settings of OMA DM features,
indicating for each one whether OMA DM can be currently used for
the specified configuration operation

1.0

CMAPI_OMADM_SetProvisioningFeature() enable and disable the OMA DM device service provisioning update
feature

1.0

CMAPI_OMADM_SetPRLUpdateFeature() enable and disable the OMA DM PRL update feature 1.0

CMAPI_OMADM_SetFirmwareUpdateFeature() (Optional) enable and disable the OMA DM Firmware update feature 1.0

CMAPI_OMADM_ResetToFactoryDefaults() reset the device to factory default 1.0

CMAPI_OMADM_InitiateOTASP() activate the device using OTA activation 1.0

CMAPI_OMADM_SetPRL() update PRL/PLMN by uploading a PRL file 1.0

CMAPI_MobileIP_SetState() set the current Mobile IP state of the device 1.0

CMAPI_MobileIP_GetState() retrieve the current Mobile IP state of the device 1.0

CMAPI_MobileIP_SetActiveProfile() set the index of the Mobile IP profile that the device will use 1.0

CMAPI_MobileIP_GetActiveProfile() retrieve the index of the Mobile IP profile that the device is
currently using

1.0

CMAPI_MobileIP_SetProfile() configure the contents of a Mobile IP profile on the device 1.0

CMAPI_MobileIP_GetProfile() retrieve the contents of a Mobile IP profile on the device 1.0

CMAPI_MobileIP_SetParameters() set various parameters that configure the behaviour of the device’s
Mobile IP client

1.0

CMAPI_MobileIP_GetParameters() retrieve the current values of the parameters that configure the
behaviour of the device’s Mobile IP client

1.0

CMAPI_MobileIP_GetLastError() retrieve the last Mobile IP error that occurred (refer to RFC3344 for
a list of error codes)

1.0

DEVICE SERVICE APIs

CMAPI_DevSrv_GetManufacturerName() retrieve the name of the manufacturer of the device 1.0

CMAPI_DevSrv_GetManufacturerModel() retrieve the product model ID of the device 1.0

CMAPI_DevSrv_GetDeviceName() retrieve the commercial name of the device 1.0

CMAPI_DevSrv_GetHardwareVersion() retrieve the hardware version of the device 1.0

CMAPI_DevSrv_GetProductType() retrieve the product type of the device 1.0

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 46 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

CMAPI_DevSrv_GetIMSI() retrieve the active IMSI(s) from SIM/R-UIM/NAA on UICC 1.0

CMAPI_DevSrv_GetMDN() retrieve the MDN (only applicable to 3GPP2 systems) 1.0

CMAPI_DevSrv_GetIMEI() retrieve the IMEI (only applicable to 3GPP systems) 1.0

CMAPI_DevSrv_GetESN() retrieve the ESN (only applicable to 3GPP2 systems) 1.0

CMAPI_DevSrv_GetMEID() retrieve the MEID (only applicable to 3GPP2 systems) 1.0

CMAPI_DevSrv_GetMSISDN() retrieve the MSISDN from the active NAA in the SIM/UICC (only
applicable to 3GPP systems)

1.0

CMAPI_DevSrv_GetDeviceStatus() retrieve the device status 1.0

CMAPI_DevSrv_GetFirmwareVersion() retrieve the firmware version of the device 1.0

CMAPI_DevSrv_GetRFSwitch() retrieve the radio switch status (Radio On / Off) 1.0

CMAPI_DevSrv_SetRadioState() set the radio power state of the device 1.0

CMAPI_DevSrv_SetRadioState_Async() set the power state of a radio within a device 1.0

CMAPI_DevSrv_GetControlKeyStatus() get the specified Mobile Equipment (device) de-personalization
control key status

1.0

CMAPI_DevSrv_DeactivateControlKey() deactivate the specified Mobile Equipment (device) de-
personalization control key

1.0

CMAPI_DevSrv_UnblockControlKey() (Optional) unblock the specified Mobile Equipment (device) de-personalization
control key

1.0

CMAPI_DevSrv_DevAttributes() provide to application information regarding device attributes (e.g.
screen, keypad, camera, microphone, loudspeaker)

1.1

DEVICE EXTENDED SERVICE APIs

CMAPI_ExtDevSrv_NFC() provide to application information regarding NFC functionalities
available in the device

1.1

CMAPI_ExtDevSrv_SE() provide to application information regarding SE (Secure Element)
functionalities and services available in the device

1.1

PINS/PUKS MANAGEMENT APIs

CMAPI_DevSrv_GetNAAavailable() get all the available NAAs and the corresponding Application labels 1.0

CMAPI_DevSrv_EnablePIN() enable PIN protection 1.0

CMAPI_DevSrv_DisablePIN() disable PIN protection 1.0

CMAPI_DevSrv_VerifyPIN() verify a PIN 1.0

CMAPI_DevSrv_UnblockPIN() unblock a PIN 1.0

CMAPI_DevSrv_ChangePIN() change a PIN 1.0

UICC MANAGEMENT APIs

CMAPI_UICC_GetTerminalProfile() get the last TERMINAL PROFILE sent by the device to the SIM/R-
UIM/UICC

1.0

CMAPI_UICC_SetTerminalProfile() transmit to the SIM/R-UIM/UICC via the device the ToolKit functions
(i.e.: the TERMINAL PROFILE) that are supported by the Connection
Manager Applications

1.0

CMAPI_UICC_SendToolKitEnvelopeCommand() transmit to the SIM/R-UIM/UICC via the device any ToolKit
ENVELOPE command that is supported by the Connection Manager
Application and for which no overlapping was identified

1.0

CMAPI_UICC_SendTerminalResponse() send a TERMINAL RESPONSE to the SIM/R-UIM/UICC via the device
answering to any ToolKit Proactive Command received via the
Callback CMAPI_UICC_ToolKitProactiveCommand()

1.0

WLAN APIs

CMAPI_WLAN_IsSupported() determine if WLAN functionality is supported 1.0

CMAPI_WLAN_AddKnownNetwork() add a network to the known network list 1.0

CMAPI_WLAN_UpdateKnownNetwork() update an existing known network record 1.0

CMAPI_WLAN_DeleteKnownNetwork() remove the entry from the known networks list at the specified
index

1.0

CMAPI_WLAN_GetKnownNetwork() retrieve the known network record information 1.0

CMAPI_WLAN_GetScanResults() retrieve the list of available WLAN networks 1.0

CMAPI_WLAN_Scan_Async() initiate a scan for WLAN networks 1.0

CMAPI_WLAN_Connect() connect to a WLAN network 1.0

CMAPI_WLAN_ConnectKnownNetwork() connect to a WLAN network in the known networks list 1.0

CMAPI_WLAN_Disconnect() disconnect any connected WLAN network 1.0

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 47 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

CMAPI_WLAN_GetConnectionMode() determine if connectivity is being actively sought by the enabler or if
manual connection requests are required

1.0

CMAPI_WLAN_SetConnectionMode() change the connectivity mode 1.0

CMAPI_WLAN_ResetDevice() reset the device 1.0

CMAPI_WLAN_GetConnectedParameters() retrieve values related to the associated network. 1.0

CMAPI_WLAN_SetConnectedParameters() set various attributes of an existing connection 1.0

CMAPI_WLAN_CancelOperation() cancel any pending operation like connect or scan 1.0

CMAPI_WLAN_ConnectWPS() initiate a connection with the WPS button push method. 1.0

CMAPI_WLAN_ConnectPinWPS() initiate a connection with the WPS pin method 1.0

CMAPI_WLAN_ConnectionState() determine if WLAN is connected 1.0

CMAPI_WLAN_SearchNetwork_Async() check the availability of a specific WLAN network 1.0

CMAPI_WLAN_EnableCapability() enable or disable the WLAN feature in the device 1.1

CMAPI_WLAN_AuthenticationSupported() determine if HS2.0 is supported by the device and what are the
authentications methods supported

1.1

CMAPI_WLAN_ManageKnownNetwork() add/delete or update a network to or in the known network list. 1.1

CMAPI_WLAN_Get_WSIDL() retrieve the user preferred list and operator preferred list of WLAN
specific identifier (WSID) from the SIM/R-UIM/NAA on UICC

1.1

CMAPI_WLAN_Get_HS2MOSubcription() retrieve the elements related to HS2.0 subscriptions 1.1

CMAPI_WLAN_Get_ANDSFMOSubcription() retrieve the elements related to ANDSF subscription 1.1

CMAPI_WLAN_GetANQP() get the ANQP information including HS2.0 ANQP 1.1

CMAPI_WLAN_Get_WLANSettings() retrieve the user and operator settings for WLAN. 1.1

CMAPI_WLAN_Set_WLANUserSettings() set the user settings for WLAN. 1.1

STATISTICS APIs

CMAPI_NetStatistic_GetConnectionStatistics() obtain network traffic statistics info 1.0

CMAPI_NetStatistic_GetAllConnectionRecords() retrieve all connection records. 1.1

CMAPI_NetStatistic_DeleteConnectionRecord() delete a connection record. 1.1

INFORMATION STATUS APIs

CMAPI_Information_GetPINStatus() return the status of the PINs and PUKs of all active SIM/R-UIM/NAA
on UICC for a dedicated device

1.0

CMAPI_Information_GetNetworkSelectionMode() determine the network selection mode 1.0

CMAPI_Information_GetSignalStrength() obtain the current signal strength value, the percentage of signal
present and the signal quality

1.0

CMAPI_Information_GetCSNetworkRegistration() determine if a circuit switched registration is present 1.0

CMAPI_Information_GetPSNetworkRegistration() determine if a packet switched attachment is present 1.0

CMAPI_Information_GetAPN() obtain the APN identifier 1.0

CMAPI_Information_GetIPAddress() retrieve the current IP address assigned to the device and the type
of the address assigned

1.0

CMAPI_Information_GetRoamingStatus() retrieve the current roaming status 1.0

CMAPI_Information_GetDriverVersion() retrieve the driver version 1.0

CMAPI_Information_GetRATType() retrieve the radio access technology 1.0

CMAPI_Information_GetQoS() retrieve the QoS parameters related to the network 1.0

CMAPI_Information_GetWLANConnection() retrieve identifying data of the currently connected network. 1.0

CMAPI_Information_GetRadioState() return the power state of a radio within a device 1.0

CMAPI_Information_GetICCID() get the ICCID 1.0

CMAPI_Information_GetBatteryStatus() retrieve the current status of the battery of device if applicable 1.1

CMAPI_Information_SetBatteryThreshold() set thresholds for the battery status 1.1

CMAPI_Information_GetMobilityState() retrieve the current mobility state of the device 1.1

CMAPI_Information_GetMobilitytoLocation() evaluate if the device is moving compared to a specific location (for
example, an Access Point). The result is reported in callback
CMAPI_Callback_ GetMobilitytoLocation_Complete()

1.1

SMS MANAGEMENT APIs

CMAPI_SMS_Send() send SMS 1.0

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 48 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

CMAPI_SMS_Get() retrieve the message 1.0

CMAPI_SMS_Delete() delete SMS 1.0

CMAPI_SMS_GetIDList() get the list of SMS stored on local device or SIM or the terminal
device like PC

1.0

CMAPI_SMS_Update() update the status of the SMS 1.0

CMAPI_SMS_GetSMSCAddress() get the address of SMSC 1.0

CMAPI_SMS_SetSMSCAddress() set the address of SMSC 1.0

CMAPI_SMS_GetValidityPeriod() get the validity period setting 1.0

CMAPI_SMS_SetValidityPeriod() set the period of validity of a SMS 1.0

CMAPI_SMS_GetDeliveryReport() get the delivery report setting 1.0

CMAPI_SMS_SetDeliveryReport() set the delivery report “On” or “Off” 1.0

CMAPI_SMS_GetRecordCount() retrieve the number of SMS segments 1.0

CMAPI_SMS_GetUnreadRecordCount() retrieve the number of unread SMS records 1.0

CMAPI_SMS_Create() create a draft SMS 1.1

USSD MANAGEMENT APIs

CMAPI_USSD_Request() build up a USSD request to the network 1.0

CMAPI_USSD_Release() release the USSD session 1.0

GNSS APIs

CMAPI_GNSS_SetState() set the state of the GNSS functionality on the device 1.0

CMAPI_GNSS_GetState() retrieve the state of the GNSS functionality on the device 1.0

CMAPI_GNSS_SetTrackingParameters() set the values of parameters that control the operation of GNSS
tracking on the device

1.0

CMAPI_GNSS_GetTrackingParameters() retrieve the values of parameters that control the operation of
GNSS tracking on the device

1.0

CMAPI_GNSS_SetAGPSConfig() configure the Assisted GPS (AGPS) server IP address, port number
and/or FQDN

1.0

CMAPI_GNSS_GetAGPSConfig() retrieve the values of the Assisted GPS (AGPS) server IP address,
port number and FQDN

1.0

CMAPI_GNSS_SetAutomaticTracking() enable and disable automatic GNSS tracking on the device 1.0

CMAPI_GNSS_GetAutomaticTracking() retrieve the state of automatic GNSS tracking on the device 1.0

CMAPI_GNSS_GetDevicePosition() retrieve the current position of the device 1.0

CMAPI_GNSS_SetSystemTime() set the value of the system time 1.0

DATA PUSH SERVICE MANAGEMENT APIs

CMAPI_Push_Enable() turn on PUSH option 1.0

CMAPI_Push_Disable() turn off PUSH option 1.0

CMAPI_Push_GetRadioType() get the current bearer type over which the PUSH session is
established for an application

1.0

CONTACT MANAGEMENT APIs

CMAPI_Contact_Create() create a contact 1.1

CMAPI_Contact_Get() retrieve the details of a contact 1.1

CMAPI_Contact_Delete() delete a contact 1.1

CMAPI_Contact_GetContactList() get the list of contacts stored on local device or SIM or the terminal
device like PC

1.1

CMAPI_Contact_Update() update an existing contact 1.1

CMAPI_Contact_Search() search for a specific contact name in the list of contacts 1.1

P2P DIRECT MANAGEMENT APIs

CMAPI_P2P_GetP2PInfo() detect which P2P direct connection technology(ies) is/are supported
if any

1.1

CMAPI_P2P_EnableDirectDiscovery() activate the P2P Direct Discovery Feature in a P2P Direct enabled
device

1.1

CMAPI_P2P_DisableDirectDiscovery() deactivate the P2P Direct Discovery feature in a P2P Direct enabled
device

1.1

CMAPI_P2P_EnableDirectConnection() activate the P2P Direct Connection feature in a P2P Direct enabled
device

1.1

CMAPI_P2P_DisableDirectConnection() deactivate the P2P Direct Connection feature in a P2P Direct 1.1

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 49 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

enabled device
CMAPI_P2P_DiscoveryResolve() resolve a ServiceRecord for metadata and/or connection info 1.1

CMAPI_P2P_DiscoveryMonitor() request discovery of Remote Device(s) and the services offered 1.1

CMAPI_P2P_DiscoveryAnnounce() announce its presence and P2P Direct services supported to Remote
Device(s)

1.1

CMAPI_P2P_EstablishConnection() request the Local Device to establish a connection to a Remote
Device

1.1

CMAPI_P2P_RejectConnection() reject an incoming connection request 1.1

CMAPI_P2P_AcceptConnection() accept an incoming connection request from a Remote Device 1.1

CMAPI_P2P_CloseConnection() request the Local Device to close an existing connection to a Remote
Device

1.1

CMAPI_P2P_GetConnectionStatus() retrieve the status of the P2P Direct connection 1.1

CMAPI_P2P_EnableRelay() request the Local Device to act as a relay to share its data
connection with Remote Device members of the group (i.e. enable
concurrent operations)

1.1

CMAPI_P2P_DisableRelay() request the Local Device to stop acting as a relay to share its data
connection with Remote Device members of the group

1.1

CMAPI_P2P_CreateGroup() create a new P2P Direct group with one or several Remote Device
(s)

1.1

CMAPI_P2P_RemoveGroup() remove a P2P group, previously created by the Local Device 1.1

CMAPI_P2P_EnableMembershipInSeveralGroups() enable a Local Device to be a member of several groups
simultaneously

1.1

CMAPI_P2P_DisableMembershipInSeveralGroups() disable a Local Device to be a member of several groups
simultaneously

1.1

CMAPI_P2P_RemoveDeviceFromGroup() remove a Remote Device from an existing group the Local Device
owns

1.1

CMAPI_P2P_AcceptInvitationToGroup() accept an group join invitation on the receiver side 1.1

CMAPI_P2P_JoinGroup() invite a Remote Device to join an existing group 1.1

CMAPI_P2P_RejectInvitationToGroup() reject an invitation to join an existing group 1.1

CMAPI_P2P_RejectJoiningGroup() reject a Remote Device from joining to an existing group 1.1

CMAPI_P2P_RequestToJoinGroup() send a request for joining an existing group to the group owner 1.1

CMAPI_P2P_RestrictFromGroup() instruct the Local Device to be restricted from an existing group
owned by a Remote Device

1.1

CMAPI_P2P_GetGroupInfo() retrieve from the Local Device which P2P Direct enabled device(s)
are in an existing group to which the Local Device is a member of

1.1

CMAPI_P2P_AllowSimultaneousConnection() allow the device to have a P2P connection simultaneously to a
normal data connection using the same radio technology.

1.1

CMAPI_P2P_DisallowSimultaneousConnection() disallow the device to have a P2P connection simultaneously to a
normal data connection using the same radio technology.

1.1

WIRELESS ROUTER APIs

CMAPI_Router_GetConfigurations() read the configuration values of a router (ssid, users, security, etc)
of all defined routers of a physical router device

1.1

CMAPI_Router_SetConfiguration() write the configuration values of a router (ssid, users, security, etc) 1.1

CMAPI_Router_DeleteConfiguration() delete a router and its configuration 1.1

CMAPI_Router_GetConnectedDevices() retrieve a list of Connected Devices connected to a router 1.1

CMAPI_Router_GetPolicies() retrieve a list of policies within a router 1.1

CMAPI_Router_SetPolicy() add or update a policy to a router’s policies 1.1

CMAPI_Router_DeletePolicy() delete a Connected Device policy from a router’s policies 1.1

CMAPI_Router_GetRestrictions() retrieve a list of Connected Device restrictions within a route 1.1

CMAPI_Router_SetRestriction() add or update a Connected Device restriction to a router 1.1

CMAPI_Router_DeleteRestriction() remove a Connected Device restriction 1.1

CMAPI_Router_SetAdminPassword() update a router administrator password 1.1

CMAPI_Router_VerifyAdminPassword() verify a router administrator password and to report the number of
failed access attempts

1.1

CMAPI_Router_ResetToDefaults() return a router to factory default settings 1.1

IP Multimedia Services APIs

CMAPI_IMS_GetISIMinfo() retrieve if there is an ISIM in the UICC for a specific radio system
(either 3GPP or 3GPP2) and provide the IMPU, IMPI & Home

1.1

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 50 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

Domain Name (relevant for IMS context) related.
CMAPI_IMS_GetIARIinfo() retrieve the IARI information from the ISIM for a dedicated radio

system (either 3GPP or 3GPP2) on the UICC.
1.1

M2M/IoT APIs

CMAPI_IoT_IMSI_Attach() request an IMSI attach or detach. 1.1

CMAPI_IoT_GPRS_Register() request an GPRS attach or detach. 1.1

CMAPI_IoT_Set_PDPContext() define a PDP context. 1.1

CMAPI_IoT_GetPDPContextList() get the list of currently defined PDP Contexts. 1.1

CMAPI_IoT_GetPDPContextIPaddress() retrieve the IP address of the PDP context concerned. 1.1

CMAPI_IoT_Activate_PDPContext() activate or deactivate a PDP context. 1.1

CMAPI_IoT_SetNFM() set up (enable or disable) the Network Friendly Mode of the modem
if supported

1.1

CMAPI_IoT_GetNFM() return the current state of the Network Friendly Mode of the
modem (enabled or disabled)

1.1

CMAPI_IoT_SetBack-OffBaseInterval() configure the Back-off Base Intervals of the modem (time between
re-attempts of whatever action previously failed)

1.1

CMAPI_IoT_GetBack-OffTimer() retrieve the time left of the back-off Timer. 1.1

Table 12: List CMAPI-1 Functions

C.2 CMAPI-2 Functions
CMAPI-2

Function Description Vers.

REGISTRATION APIs

CMAPI_Callback_Register() register for the callbacks which are expected to be received 1.0

CMAPI_Callback_Unregister() turn off all callbacks or just some 1.0

CALLBACK APIs

CMAPI_Callback_DetectDevicesComplete() communicate that a search and validation of the devices in the system is
complete

1.0

CMAPI_Callback_DeviceChanged() communicate whenever there is a change in a given device state in
particular indicate that a device has become present or been removed

1.0

CMAPI_Callback_GetNetworkList_Async_Complete() result of a previous call made to
CMAPI_NetConnectSrv_GetNetworkList_Async().

1.0

CMAPI_Callback_Connect_Async_Complete() result of a previous call to CMAPI_NetConnectSrv_Connect_Async() 1.0

CMAPI_Callback_Disconnect_Async_Complete() result of a previous call to CMAPI_NetConnectSrv_Disconnect() 1.0

CMAPI_Callback_CancelConnect_Async_Complete() result of a previous call to
CMAPI_NetConnectSrv_CancelConnect_Async()

1.0

CMAPI_Callback_SessionStateChange() communicate the session state change 1.0

CMAPI_Callback_BearerStatusChange() communicate a bearer status change 1.0

CMAPI_Callback_TrafficChannelDormancy() communicate the changes in the traffic level 1.0

CMAPI_Callback_CDMA2000ActivationState() communicate the changes in the CDMA 2000 Activation state 1.0

CMAPI_Callback_SearchWLANNetworkComplete() result of a previous call to CMAPI_WLAN_SearchNetwork_Async() 1.0

CMAPI_Callback_RadioState() communicate changes in the radio power state 1.0

CMAPI_Callback_SetRadioState_Async_Complete() result of a previous call to CMAPI_DevSrv_SetRadioState_Async() 1.0

CMAPI_Callback_Roaming() indicate changes in Roaming status 1.0

CMAPI_Callback_SignalStrength() return the current signal strength value, the percentage of signal present
and the signal quality

1.0

CMAPI_Callback_GNSS() indicate a change in the GNSS state 1.0

CMAPI_Callback_SMS() indicate that a new SMS message has been received and the number of
segments in the mailbox

1.0

CMAPI_Callback_SMS_Message() provide to application the new received message while not only a notice
that a new message is received

1.0

CMAPI_Callback_ByteCount indicate the current byte count 1.0

CMAPI_Callback_USSD() communicate a USSD message 1.0

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 51 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

CMAPI_Callback_QoSChange() communicate a change in QoS 1.0

CMAPI_Callback_RFInformationChange() communicate a change related to RF 1.0

CMAPI_Callback_PINPUKStatus() return the status of the PINs/PUKs for all active NAAs 1.0

CMAPI_Callback_ScanWLANComplete() notify that a scan for WLAN networks has been completed.

result of a previous call to CMAPI_WLAN_Scan_Async()

1.0

CMAPI_Callback_WLANNewAvailableNetwork() notify that a new network has been discovered 1.0

CMAPI_Callback_WLANConnectionStatus() receive WLAN connection Status 1.0

CMAPI_Callback_PUSHReceived() notify an application when a new PUSH message has been received 1.0

CMAPI_Callback_OMADMStatus() indicate any OMA-DM operation Progress or Status in-between 1.0

CMAPI_Callback_UICC_ToolKitProactiveCommand() receive the ToolKit Proactive Commands sent by the SIM/R-UIM/UICC 1.0

CMAPI_Callback_UICC_DeviceTerminalProfile() receive the TERMINAL PROFILE sent by the device to the SIM/R-
UIM/UICC

1.0

CMAPI_Callback_VerifyPIN() signal that a PIN should be collected from the user and supplied to the
API through the CMAPI_DevSrv_VerifyPIN() method

1.0

CMAPI_Callback_PermittedBearersChange() notify that a change occurred in the PermittedBearers for the device 1.0

CMAPI_Callback_NetConnectSrv_SecondaryPDPContext_Connect
_Async_Complete()

result of a previous call to
CMAPI_NetConnectSrv_SecondaryPDPContext_Connect_Async()

1.0

CMAPI_Callback_NetConnectSrv_SecondaryPDPContext_Disconn
ect_Async_Complete()

result of a previous call to
CMAPI_NetConnectSrv_SecondaryPDPContext_Disconnect_Async()

1.0

CMAPI_Callback_NetConnectSrv_SecondaryPDPContext_CancelC
onnect_Async_Complete()

result of a previous call to
CMAPI_NetConnectSrv_SecondaryPDPContext_CancelConnect_Async()

1.0

CMAPI_Callback_WLANSettingsChanged() notify that a WLAN operator setting has been changed. 1.1

CMAPI_Callback_WLANNewMO() notify that a new or an updated WLAN MO has been provided to the
Terminal.

1.1

CMAPI_Callback_Incoming_Voice_Call() provide to application information regarding a voice call state (incoming,
established...)

1.1

CMAPI_Callback_SEServicesChange() communicate changes regarding the availability of services 1.1

CMAPI_Callback_BatteryStatusChanged() communicate whenever there is a change in the battery status 1.1

CMAPI_Callback_BatteryThresholdReached() communicate whenever the battery level of the device is reaching a
threshold set by the function
CMAPI_Information_SetBatteryThreshold()

1.1

CMAPI_Callback_P2P_DiscoveryMatch() alert the Local Device of a DeviceID/ServiceID/ServiceRecord discovery
match as indicated in CMAPI_P2P_Monitor()

1.1

CMAPI_Callback_P2P_Connection() result of call made to CMAPI _P2P_EstablishConnection() 1.1

CMAPI_Callback_P2P_GroupNotification() result of a previous call to CMAPI_P2P_JoinGroup() 1.1

CMAPI_Callback_ GetMobilitytoLocation_Complete() result of a previous call to CMAPI_Information_GetMobilitytoLocation() 1.1

Table 13: List CMAPI-2 Functions

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 52 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

Appendix D. Web IDL Definitions (Informative)
For the definitions of the WebIDL for the CMAPI WebAPI please refer to [OpenCMAPI-SUP-WIDL].

OMA-TS-OpenCMAPI_Web_V1_1-20150217-C Page 53 (53)

 2015 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20150101-I]

Appendix E. JavaScript Library of WebSocket API Binding (Informative)
This appendix describes how the JavaScript Library implements the Web API Binding using the methods and event handlers
of corresponding Web API, and the details of the JSON-RPC data structure of request and response messages as the
Application Data within the underlying Web protocol.

A JavaScript Library implements the Web Socket API Binding using the following algorithm:

- Establishing one and only one persistent “WebSocket” object for a Web application

- Keep the Web Socket connection open unless error happens

- Maintain the list of registered CMAPI-2 “callbackIds” and corresponding callback function “cbs”

- Maintain the list of transaction “ids” and corresponding callback functions “cbs” for outstanding CMAPI-1 function
calls

o The validity period of an outstanding CMAPI-1 function call is defined according to operator’s policy in
order to handle the possible situation of multiple sequential response messages of the same CMAPI-1
function call. For example, 30 minutes. If it is expired, the transaction “id” and corresponding callback
function “cb” shall be removed from the list.

- Handle errors according to section 5.4.1.4.

	1. Scope
	2. References
	2.1 Normative References
	2.2 Informative References

	3. Terminology and Conventions
	3.1 Conventions
	3.2 Definitions
	3.3 Abbreviations

	4. Introduction
	4.1 Version 1.1

	5. Detailed API specification
	5.1 Device Discovery
	5.2 Data Structures of CMAPI interface messages
	5.2.1 JSON Data Types and Naming Conventions
	5.2.1.1 JSON Data Types
	5.2.1.2 Naming Conventions

	5.2.2 CMAPI-1 Messages
	5.2.2.1 CMAPI-1 Request Message
	5.2.2.1.1 JSON Request Schema Definition

	5.2.2.2 CMAPI-1 Response Message
	5.2.2.2.1 JSON Response Schema Definition

	5.2.3 CMAPI-2 Messages
	5.2.3.1.1 JSON Callback Response Schema Definition

	5.2.4 Binary Data Handling
	5.2.5 Message Examples (Informative)
	5.2.5.1 CMAPI-1 Request Message Example
	5.2.5.2 CMAPI-1 Response Message Examples
	5.2.5.3 CMAPI-2 Callback Message Example

	5.3 Error Codes
	5.3.1 Error Codes
	5.3.2 UICC Status Words
	5.3.3 CMEE codes

	5.4 WebAPI Transport Bindings
	5.4.1 WebSocket Transport Binding
	5.4.1.1 Design Principle
	5.4.1.2 CMAPI-1 Transport Binding
	5.4.1.3 CMAPI-2 Transport Binding
	5.4.1.4 WebSocket Transport Error Handling

	5.4.2 HTTP Transport Binding
	5.4.2.1 General
	5.4.2.2 Content Type
	5.4.2.3 HTTP Method
	5.4.2.4 CMAPI-1 HTTP Transport Binding
	5.4.2.5 CMAPI-2 HTTP Transport Binding
	5.4.2.6 HTTP Transport Error Handling

	5.5 Security Considerations

	Appendix A. Change History (Informative)
	A.1 Approved Version History
	A.2 Draft/Candidate Version 1.1 History

	Appendix B. Static Conformance Requirements (Normative)
	B.1 SCR for Mobile Broadband Device
	B.2 SCR for laptop
	B.3 SCR for wireless router
	B.4 SCR for M2M device
	B.4.1 General M2M device
	B.4.2 Basic M2M device

	B.5 SCR for Smart Phone
	B.6 SCR for Tablets
	B.7 SCR for Cloud Devices

	Appendix C. Description of OpenCMAPI functions (Informative)
	C.1 CMAPI-1 Functions
	C.2 CMAPI-2 Functions

	Appendix D. Web IDL Definitions (Informative)
	Appendix E. JavaScript Library of WebSocket API Binding (Informative)

