
 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

SCE Agent To Agent Transfer
Approved Version 1.0 – 05 Jul 2011

Open Mobile Alliance
OMA-TS-SCE_A2A-V1_0-20110705-A

OMA-TS-SCE_A2A-V1_0-20110705-A Page 2 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

Use of this document is subject to all of the terms and conditions of the Use Agreement located at
http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an
approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not
modify, edit or take out of context the information in this document in any manner. Information contained in this document
may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior
written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided
that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials
and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products
or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely
manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification.
However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available
to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at
http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of
this document and the information contained herein, and makes no representations or warranties regarding third party IPR,
including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you
must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in
the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN
MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF
THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE
ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT
SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT,
PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN
CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

OMA-TS-SCE_A2A-V1_0-20110705-A Page 3 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

Contents
1. SCOPE .. 7

1.1 CONTENT VS. RIGHTS ... 7

2. REFERENCES .. 8

2.1 NORMATIVE REFERENCES .. 8

2.2 INFORMATIVE REFERENCES ... 9

3. TERMINOLOGY AND CONVENTIONS .. 10

3.1 CONVENTIONS ... 10

3.2 DEFINITIONS .. 10

3.3 ABBREVIATIONS .. 12

3.4 SYNTAX DESCRIPTIONS ... 12

3.5 CONVENTIONS ... 13

4. INTRODUCTION (INFORMATIVE) .. 14

5. OVERVIEW ... 15

5.1 ARCHITECTURE ... 15

5.2 TRUST MODEL ... 15

5.2.1 Revocation Status Checking .. 15

5.3 PARTIAL RIGHTS ... 15

5.4 RENDER CLIENT .. 16

5.5 STATE INFORMATION CONSISTENCY ... 16

6. THE A2A PROTOCOL .. 17

6.1 MESSAGES, OPERATIONS AND TRANSACTIONS .. 17

6.2 MESSAGE SYNTAX ... 17

6.2.1 Request Syntax .. 17
6.2.2 Response Syntax .. 18
6.2.3 Message Types ... 19
6.2.4 Status .. 20
6.2.5 Extending a Message ... 21

6.3 ERROR RECOVERY .. 21

7. SECURE AUTHENTICATED CHANNEL .. 23

7.1 ENTITY AUTHENTICATION.. 23

7.2 MESSAGE INTEGRITY .. 23

7.3 REPLAY PROTECTION ... 23

7.4 CONFIDENTIALITY .. 24

8. COMMON DATA STRUCTURES .. 25

8.1 OCTET STRINGS .. 25

8.2 VERSION .. 25

8.3 HASH .. 25

8.4 TRUST ANCHOR ... 26

8.5 ENTITY ID ... 26

8.6 TRUST ANCHOR AND ENTITY ID PAIR LIST ... 26

8.7 HMAC ... 26

8.8 X.509 CERTIFICATES .. 27

8.9 ALGORITHM .. 27

8.10 ALGORITHM LIST .. 27

8.11 ENCRYPTED DATA ... 28

8.12 ENCRYPTED CEK .. 28

8.13 HASHED CEK .. 28

8.14 RANDOM NUMBER ... 29

8.15 RIGHTS OBJECT ID ... 29

8.16 STRING80 ... 29

8.17 X.509 CERTIFICATE REVOCATION LISTS (CRLS) ... 29

OMA-TS-SCE_A2A-V1_0-20110705-A Page 4 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

8.18 ASSET ID ... 30

8.19 CEK INFO .. 30

8.20 RIGHTS OBJECT CONTAINER ... 30

8.21 STATE INFORMATION .. 31

9. A2A OPERATIONS AND TRANSACTIONS .. 35

9.1 A2A HELLO OPERATION .. 35

9.1.1 A2AHelloRequest .. 35
9.1.2 A2AHelloResponse.. 36

9.2 MUTUAL AUTHENTICATION AND KEY EXCHANGE TRANSACTION ... 36

9.2.1 AuthenticationRequest ... 39
9.2.2 AuthenticationResponse .. 40
9.2.3 KeyExchangeRequest .. 41
9.2.4 KeyExchangeResponse .. 41

9.2.5 SAC Key Material.. 42
9.2.6 SAC Context .. 42
9.2.7 Data Encryption ... 43

9.3 CHANGE SAC OPERATION ... 43

9.3.1 ChangeSacRequest ... 44
9.3.2 ChangeSacResponse .. 44

9.4 CRL QUERY OPERATION ... 45

9.4.1 CrlQueryRequest.. 45
9.4.2 CrlQueryResponse ... 45

9.5 PUT CRL OPERATION ... 46

9.5.1 PutCrlRequest .. 46
9.5.2 PutCrlResponse .. 47

9.6 GET CRL OPERATION .. 47

9.6.1 GetCrlRequest .. 48
9.6.2 GetCrlResponse ... 48

9.7 MOVE RO TRANSACTION ... 48

9.7.1 MoveRoRequest ... 51
9.7.2 MoveRoResponse .. 53
9.7.3 MoveRekRequest ... 53
9.7.4 MoveRekResponse .. 54

9.8 COPY RO OPERATION .. 54

9.8.1 CopyRoRequest ... 56
9.8.2 CopyRoResponse ... 57

9.9 SHARE RO OPERATION .. 58

9.9.1 ShareRoRequest ... 59
9.9.2 ShareRoResponse .. 59

9.10 LEND RO OPERATION... 60

9.10.1 LendRoRequest .. 61
9.10.2 LendRoResponse ... 61

9.11 LEND RELEASE OPERATION ... 62

9.11.1 LendReleaseRequest .. 63
9.11.2 LendReleaseResponse .. 63
9.11.3 Lending Expiration .. 63

9.12 RENDER OPERATION ... 63

9.12.1 RenderRequest ... 64
9.12.2 RenderResponse ... 65

10. SOURCECERTIFICATECHAIN REVOCATION CHECKING ... 66

11. SECURITY CONSIDERATIONS (INFORMATIVE) ... 67

11.1 ENTITY COMPROMISE ... 67

11.1.1 DRM Requester Compromise .. 67

11.1.2 DRM Agent Compromise .. 67

11.1.3 Render Agent Compromise .. 67

11.2 DRM TIME .. 67

OMA-TS-SCE_A2A-V1_0-20110705-A Page 5 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

11.3 CRL DISTRIBUTION .. 67

APPENDIX A. CERTIFICATES AND CRLS .. 68

A.1 CERTIFICATE PROFILES AND REQUIREMENTS .. 68

A.2 CRL PROFILES AND REQUIREMENTS... 68

APPENDIX B. STATIC CONFORMANCE REQUIREMENTS (NORMATIVE) ... 69

B.1 SCR FOR DRM AGENT ... 69

B.2 SCR FOR DRM REQUESTER ... 69

B.3 SCR FOR RENDER AGENT .. 70

APPENDIX C. EXAMBLE A2A MESSAGE (INFORMATIVE) ... 71

APPENDIX D. CHANGE HISTORY (INFORMATIVE) .. 73

D.1 APPROVED VERSION HISTORY ... 73

Figures
Figure 1: SCE-7-A2AP .. 15

Figure 2: A2A Hello Operation .. 35

Figure 3, MAKE Transaction ... 37

Figure 4: Change SAC Operation .. 44

Figure 5: CRL Query Operation .. 45

Figure 6: Put CRL Operation ... 46

Figure 7: Get CRL Operation ... 47

Figure 8: Move RO Transaction ... 49

Figure 9: Copy RO Operation .. 55

Figure 10: Share RO Operation ... 58

Figure 11: Lend RO Operation .. 60

Figure 12: Lend Release Operation .. 62

Figure 13: Render Operation .. 64

Tables
Table 1: Message Types ... 19

Table 2: Status Values and Names ... 20

Table 3: Supported Algorithms .. 27

Table 4: A2AHelloResponse Status Values ... 36

Table 5: Operations Requiring MAKE .. 37

Table 6: AuthenticationResponse Status Values ... 40

Table 7: KeyExchangeResponse Status Values ... 41

Table 8: Default SAC Key Material ... 42

OMA-TS-SCE_A2A-V1_0-20110705-A Page 6 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

Table 9: Intial AES Counter Value .. 43

Table 10: ChangeSacResponse Status Values ... 44

Table 11: CrlQueryResponse Status Values .. 45

Table 12: PutCrlResponse Status Values... 47

Table 13: GetCrlResponse Status Values .. 48

Table 14: MoveRoResponse Status Values .. 53

Table 15: MoveRekResponse Status Values .. 54

Table 16: CopyRoResponse Status Values .. 57

Table 17: ShareRoResponse Status Values ... 59

Table 18: LendRoResponse Status Values... 61

Table 19: LendReleaseResponse Status Values ... 63

Table 20: RenderResponse Status Values .. 65

Table 21: DRM Agent Certificate Profile .. 68

Table 22: Render Agent Certificate Profile ... 68

OMA-TS-SCE_A2A-V1_0-20110705-A Page 7 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

1. Scope

Open Mobile Alliance (OMA) specifications are the result of continuous work to define industry-wide interoperable
mechanisms for developing applications and services that are deployed over wireless communication networks1.

The scope of OMA “Digital Rights Management” (DRM) is to enable the distribution and consumption of digital content in a
controlled manner. The content is distributed and consumed on authenticated devices per the usage rights expressed by the
content owners. OMA DRM work addresses the various technical aspects of this system by providing appropriate
specifications for content formats, protocols, and a rights expression language.

A number of DRM specifications have already been defined within the OMA. The latest accepted release of the OMA DRM
enabler ([DRM-v2.1], including [DRM-DRM-v2.1], [DRM-DCF-v2.1], [DRM-REL-v2.1]), is referred to within this
document as “OMA DRM 2.1”.

The scope of this specification is to define the mechanisms and protocols necessary to implement the moving and sharing of
content (via the appropriate rights), as required per [SCE-RD]. Specifically, this document specifies the interface SCE-7-
A2AP as defined in [SCE-AD] and thus limited to communications between a DRM Requester and a DRM Agent (that has
implemented this specification).

1.1 Content vs. Rights

The reader should be aware that the terms “content” and “rights” are sometimes used interchangeably. However, it should be
clarified that what is really being moved or shared is the rights which control the use of a particular content. In OMA DRM, a
particular content is encrypted in a file and can only be rendered if the corresponding rights object is available to the Device.
Since the content file is encrypted and hence protected, the movement or transfer of content files ([DRM-DCF-v2.1]) is
outside the scope of DRM.

1 Although many of the mechanisms can be applied to wired communication networks, including this specification.

OMA-TS-SCE_A2A-V1_0-20110705-A Page 8 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

2. References

2.1 Normative References
[AES-MODES] “Recommendation for Block Cipher Modes of Operation”, NIST Special Publication 800-38A, 2001.

URL:http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

[AES-WRAP] Advanced Encryption Standard (AES) Key Wrap Algorithm. RFC 3394, J. Schaad and R. Housley,
September 2002. URL:http://tools.ietf.org/html/rfc3394

[DRM-v2.1] The OMA DRM 2.1 enabler as described in “Enabler Release Definition for DRM V2.1,
Approved Version 2.1”, OMA-TS-DRM-DRM-V2_0-20060303-A, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

[DRM-DCF-v2.1] “DRM Content Format, Approved Version 2.1”,
OMA-TS-DRM-DCF-V2_0-20060303-A, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

[DRM-DRM-v2.1] “DRM Specification, Approved Version 2.1”,
OMA-TS-DRM-DRM-V2_0-20060303-A, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

[DRM-REL-v2.1] “DRM Rights Expression Language, Approved Version 2.1”,
OMA-TS-DRM-REL-V2_0-20060303-A, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

[ISO8601] “Data elements and interchange formats -- Information interchange -- Representation of dates and times”,
ISO 8601:2004, URL:http://www.iso.org

[RFC2104] “HMAC: Keyed-Hashing for Message Authentication”, H. Krawczyk, M. Bellare, and R. Canetti,
February 1997. URL:http://tools.ietf.org/html/rfc2104

[RFC2119] “Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997,
URL:http://tools.ietf.org/html/rfc2119

[RFC3280] “Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile”, R.
Housley, W. Polk, W. Ford, and D. Solo, April 2002, http://tools.ietf.org/html/rfc3280

[RFC3447] “Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version 2.1”, J.
Jonsson, B. Kaliski, February 2003, URL:http://tools.ietf.org/html/rfc3447

[SCE-AD] “Secure Content Exchange Architecture, Draft Version”, OMA-AD-SCE-Vx_y-D, Open Mobile
AllianceTM, URL:http://www.openmobilealliance.org/

[SCE-DOM] “SCE User Domains”, OMA-TS-SCE-DOM-Vx_y-D, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

[SCE-LRM] “Local Rights Manager for Secure Content Exchange”, OMA-TS-SCE-LRM-Vx_y-D, Open Mobile
AllianceTM, URL:http://www.openmobilealliance.org/

[SCE-RD] “Secure Content Exchange Requirements, Draft Version 1.0”,
OMA-RD-SCE-V1_0-20060908-D, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

[SCE-REL] “DRM Rights Expression Language – SCE Extensions”, OMA-TS-SCE-REL-Vx_y-D, Open Mobile
AllianceTM, URL:http://www.openmobilealliance.org/

[SCR-RULES] “SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures,
URL:http://www.openmobilealliance.org/

[SHA1] NIST FIPS 180-2: Secure Hash Standard. August 2002.
URL:http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf

[SRM-TS] “Secure Removable Media Specification, Candidate Version 1.0”, OMA-TS-SRM-V1_0-20080128-C,
Open Mobile AllianceTM, URL:http://www.openmobilealliance.org/

[XC14N] Exclusive XML Canonicalization: Version 1.0, John Boyer, Donald E. Eastlake 3rd and Joseph Reagle,
W3C Recommendation 18 July 2002. URL:http://www.w3.org/TR/xml-exc-c14n/

OMA-TS-SCE_A2A-V1_0-20110705-A Page 9 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

2.2 Informative References
[Bluetooth] A short-range wireless communications technology intended to replace the cables connecting portable

and/or fixed devices while maintaining high levels of security. For more information, see
URL:http://www.bluetooth.com/Bluetooth/Technology/

[Bonjour] A networking discovery protocol from Apple Computer. For more information, see
URL:http://developer.apple.com/networking/bonjour/

[ISO13818-1] “Information technology – Generic coding of moving pictures and associated audio information:
Systems”, ISO/IEC 13818-1, URL:http://www.iso.org

[UpnP] A set of networking protocols that include discovery from the UpnP Forum. For more information see
URL:http://www.upnp.org

OMA-TS-SCE_A2A-V1_0-20110705-A Page 10 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be
informative.

3.2 Definitions
Ad Hoc Sharing Sharing that is intended to allow a source Device to share specified Rights with a recipient

Device in spontaneous, unplanned situations (e.g. sharing a song with a new group of friends at
a party or playing a video on a hotel room TV while travelling).

Constraint A restriction on a Permission over DRM Content (DRM V2.1).

Consume To Play, Display, Print or Execute DRM Content on a Device or to render DRM Content on a
Render Client.

Content One or more Media Objects (DRM V2.1).

Copy To make Rights existing on a source Device available for use by a recipient Device, without
affecting availability on the source Device. Rights may be restricted on the recipient Device.
Note: this is different from the V2.1 definition.

Device A Device is the entity (hardware/software or combination thereof) within a user equipment that
implements a DRM Agent. The Device is also conformant to the OMA DRM specifications.
The Device may include a smart card module (e.g. a SIM) (DRM V2.1).

Device Rights Object A Rights Object that is initially targeted to a specific entity. Subsequently, the Rights Object
may be allowed to be targeted to other entities to be consumed, serially or in parallel,
independently of membership in a Domain or User Domain.

Domain A set of v2.x and/or SCE DRM Agents that can consume Domain Rights Objects.

Domain Rights
Object

A Rights Object that is targeted to a specific v2.x Domain. The Rights Object can be consumed
independently by each v2.x or SCE DRM Agent that is a member of the Domain.

DRM Agent The entity in the Device that manages Permissions for Media Objects on the Device (DRM
V2.1). In this document, the DRM Agent implements some or all the functionality defined in
this specification.

DRM/Render Agent An entity that is either a DRM Agent or a Render Agent.

DRM Content Media Objects that are consumed according to a set of Permissions in a Rights Object (DRM
V2.1).

DRM Requester An entity that uses the interface defined by this specification.

DRM Time A secure, non user-changeable time source. The DRM Time is measured in the UTC time scale
(DRM V2.1).

Lending The act of sharing such that the Shared Rights cannot be used on the source Device as long as
the recipient Device is able to render the shared Content associated with the Shared Rights.

lsb Least significant bit.

Media Object A digital work e.g. a ring tone, a screen saver, or a Java game (DRM V2.1).

OMA-TS-SCE_A2A-V1_0-20110705-A Page 11 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

Move To make Rights existing initially on a source Device fully or partially available for use by a
recipient Device, such that the Rights or parts thereof that become usable on the recipient
Device can no longer be used on the source Device.

Moving The act of performing a Move.

msb Most significant bit.

Partial Rights A subset of a set of Rights, such that the Partial Rights are equally or more restrictive than those
in the set.

Permission Actual usages or activities allowed (by the Rights Issuer) over DRM Content.

Render Agent The entity in a Render Client that manages the secure rendering of DRM Content on the Render Client.

Render Client The entity (hardware, software or combination thereof) within a user equipment that implements a Render
Agent. The Render Client is used to transiently render DRM Content.

Restore Transferring the DRM Content and/or Rights Objects from an external location back to the
Device from which they were backed up (DRM V2.1).

Rights The collection of permissions and constraints defining under which circumstances access is
granted to DRM Content.

Rights Issuer An entity that issues Rights Objects to OMA DRM conformant Devices (DRM V2.1).

Rights Object A collection of Permissions and other attributes that are linked to DRM Content. When used in
the context of a Rights Object transfer, it also includes the State Information (for stateful Rights
Objects) and other related meta data.

Shared Rights Rights that can be consumed on multiple Devices, where the allowed distribution and
consumption of the Rights among the Devices are specified by permissions in the Rights
themselves or in the Domain Policy of the Domain for which the Rights were obtained.

Sharing The act of providing Shared Rights from a source Device to a recipient Device, such that the
recipient Device is able to render the shared content associated with the Shared Rights.

State Information A set of values representing current state associated with Rights. It is managed by the DRM
Agent only when the Rights contain any of the stateful constraints (e.g. interval, count, timed-
count, accumulated, etc.).

User The human user of a Device. The User does not necessarily own the Device (DRM V2.1).

User Domain A set of v2.x and/or SCE DRM Agents that can consume User Domain Rights Objects.

User Domain Rights
Object

A Rights Object that is targeted to a specific User Domain. Besides requiring membership in
the User Domain, consumption may require being targeted to an SCE DRM Agent.

OMA-TS-SCE_A2A-V1_0-20110705-A Page 12 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

3.3 Abbreviations

3.4 Syntax Descriptions

The syntax descriptions used in this document are based on the method of syntax descriptions used in [ISO13818-1] and
follow the conventions defined in Appendix B of [SRM-TS].

A2A Agent to Agent
AES Advanced Encryption Standard
CD Compact Disc
CEK Content Encryption Key
CRL Certificate Revocation List
DCF DRM Content Format
DER Distinguished Encoding Rules
DRM Digital Rights Management
DVD “Digital Versatile Disc” or “Digital Video Disc”
HMAC Keyed-Hash Message Authentication Code
HTTP Hyper Text Transfer Protocol
IV Initialisation Vector
KDF Key Derivation Function
MAC Message Authentication Code
MAKE Mutual Authentication and Key Exchange
MK MAC Key
N/A Not applicable
OMA Open Mobile Alliance
OMNA Open Mobile Naming Authority
(P)DCF A DCF or a PDCF
REK Rights Object Encryption Key
REL Rights Expression Language
RFC Request For Comments
RFU Reserved for Future Use
RI Rights Issuer
RO Rights Object
ROID Rights Object Identifier
RSA Rivest-Shamir-Adelman public key algorithm
RSA-OAEP RSA encryption scheme - Optimal Asymmetric Encryption Padding
RSA-PSS RSA Probabilistic Signature Scheme
SAC Secure Authenticated Channel
SCE Secure Content Exchange
SCR Static Conformance Requirement
SHA1 Secure Hash Algorithm
SK Session Key
SRM Secure Removable Media
URI Uniform Resource Indicator
URL Uniform Resource Locator
USB Universal Serial Bus
WBXML Wireless Binary XML
WiFi Wireless Fidelity, also Wi-fi, Wifi, or wifi

OMA-TS-SCE_A2A-V1_0-20110705-A Page 13 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

3.5 Conventions

The following conventions are used in this document:

Syntax definitions are described in this font.

Status codes are listed in this font.

Messages, data structures and fields are italized, e.g. A2ARequest. Fields within other fields are indicated by separating the
names with a period (‘.’), e.g. A2ARequest.MessageID.

OMA-TS-SCE_A2A-V1_0-20110705-A Page 14 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

4. Introduction (Informative)

One of the goals of the Secure Content Exchange (SCE) Enabler is to extend OMA DRM V2.1 [DRM-v2.1] to enable the
moving of Rights Objects from one Device to another Device (without the involvement of any network entity) and the ad hoc
sharing of DRM Content with Devices the User encounters in unplanned or impromptu situations. Examples of when ad hoc
sharing may be applicable include Users who want to render their content on a television set at a friend’s house or in a hotel
room while the User is travelling, or a User who wants to borrow DRM Content for a period of time. The ad hoc sharing part
of the SCE Enabler enforces temporal and proximity-based restrictions that are defined by the Rights Issuer (RI), e.g. DRM
Content can only be shared with a Device that is in close proximity to the subscriber’s Device.

The SCE Enabler extends DRM V2.1 with the flexible sharing of DRM Content between Devices. Some of these
enhancements provide the following benefits to subscribers, content providers and operators:

• Subscribers benefit from increased flexibility to share and render their Content in ways that were previously not
possible. They perceive a level of convenience in their digital media service that rivals the user experience offered
by physical media such as CDs and DVDs, which can be played on any device available.

• Content providers benefit from an increase in content purchases, while enjoying the protection against content
piracy that DRM provides.

• The added appeal of flexible sharing to subscribers makes the operator’s mobile digital media service competitive
with wireline-based services and physical media, resulting in an increase in the number of service subscribers and
content purchases (and hence an increase in operator revenue).

This specification reuses as many common items from the Secure Removable Meda (SRM) specification [SRM-TS] as
possible. For Devices supporting both this specification and SRM, this will minimize the amount of software code needed to
implement both specifications. However, there are some differences and developers should be aware of those differences.

OMA-TS-SCE_A2A-V1_0-20110705-A Page 15 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

5. Overview

5.1 Architecture

This document only specifies the SCE-7-A2AP interface which is defined in [SCE-AD]. Other interfaces are defined in other
specifications of the SCE Enabler. The SCE-7-A2AP interface is illustrated in the figure below.

Figure 1: SCE-7-A2AP

A Render Agent is explained in section 5.4. For conciseness, the term “A2A” is used to refer to the SCE-7-A2AP interface
throughout the remainder of this document. From a logical design point of view, the DRM Requester can be any entity.
However, because of certain security requirements, a DRM Requester has to be a DRM Agent to fully participate in the
protocol.

5.2 Trust Model

This specification follows the approach taken by [DRM-v2.1] for trust models with the addition that the trust model MUST
make Certificate Revocation Lists (CRLs) available to DRM Agents. Therefore, other than providing CRLs, any trust model
used by [DRM-v2.1] can be used to support this specification.

Devices supporting this specification can belong to multiple trust models. However, this specification follows the approach
taken by [SRM-TS] where the exchange of Rights Objects is performed using credentials from the same trust model.

A trust model is identified by its root of trust, i.e. the certificate of the Root Certificate Authority for the trust model.

5.2.1 Revocation Status Checking

There is a requirement for the DRM Requester and the DRM/Render Agent to mutually authenticate themselves. Part of this
process is to check the revocation status of the other entity. For this specification, the revocation status checking is done via a
Certificate Revocation List (CRL). The trust model MUST provide one or more repositories where a DRM Requester, a
Render Agent (see section 5.4) or a DRM Agent can get a current CRL. How to access the CRL repositories is outside the
scope of this specification. DRM Requesters, Render Agents and DRM Agents MUST get a new CRL when the CRL they
have expires. If a DRM Reqeustor, Render Agent or DRM Agent has an expired CRL, it MUST NOT perform the mutual
authentication and key exchange process (see section 9.2).

This document provides a mechanism for the “viral” distribution of CRLs between a DRM Requester and a DRM Agent (see
sections 9.4, 9.5 and 9.6).

5.3 Partial Rights

The term Partial Rights applies only to Stateful Rights which have either the <count> or <timed-count> constraint elements.
In this case, if any count remains, then a portion of the remaining count can be Moved from a DRM Requester to a DRM
Agent.

Prior to this enabler, Devices did not have to manage Rights Objects with the same ROID. Because the A2A Interface allows
the Moving of Partial Rights, Devices can receive Partial Rights that have an ROID that is identical to the ROID of a Rights

OMA-TS-SCE_A2A-V1_0-20110705-A Page 16 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

Object that is currently installed in the Device. In this case, the received remaining count is added to the existing remaining
count (unless adding the received remaining count would exceed the original count in the Rights Object).

5.4 Render Client

A Render Client is a device that is somewhat similar to an OMA DRM Device, but has the following characteristics:

• It has no capability to handle (e.g. receive, parse, etc) Rights Objects.
• It has no capability to store Rights Objects.
• It can decrypt a (P)DCF when given the Content Encryption Key (CEK).
• After rendering the DRM Content once, it loses all knowledge of the CEK.
• It has a Render Agent (that supports DRM Time).

A DRM Agent and a Render Agent can be differentiated via their certificates.

Some trust models may not allow Render Clients.

5.5 State Information Consistency

A Stateful Rights Object (or portions of) may be Moved to another Device. The recipient Device MUST check that the
current StateInformation (see section 8.21) that is transferred is consistent with the actual Rights Object. This consistency
check means the following:

• For the <interval> constraint, the date-time field in the StateInformation structure MUST be all zeros or the specified
date MUST be less than or equal to the current DRM Time plus the <interval> value.

• For the <count> and <timed-count> constraint, the remainingCount field in the StateInformation structure MUST be
less than or equal to the corresponding <count> or <timed-count> value.

• For the <accumulated> constraint, the accumulatedTime field in the StateInformation structure MUST be less than the
<accumulated> value.

OMA-TS-SCE_A2A-V1_0-20110705-A Page 17 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

6. The A2A Protocol

The A2A interface uses a client-server communications model (similar to the Internet Web). This specification defines a
protocol using a set of requests and responses between a DRM Requester (the client) and a DRM Agent (the server). A DRM
Requester sends a request to the DRM Agent. The DRM Agent processes the request and sends a response to the DRM
Requester. Once a DRM Requester sends a request, it waits for a response from the DRM Agent before sending another
request.

All OMA Devices supporting the A2A Interface MUST implement both the DRM Agent and the DRM Requester
functionality. A Device is not required to function as both a DRM Agent and a DRM Requester simultaneously.

How the requests and responses are transported between the DRM Requester and the DRM Agent are outside the scope of
this specification. Potential transports include, but are not limited to, USB, Bluetooth, IrDA and WiFi.

Two Devices must discover each other before any A2A functionality can take place. It is during the discovery phase that the
roles of DRM Requester and DRM Agent are assigned. How the discovery is performed and how the roles are assigned are
outside the scope of this specification. Potential discovery mechanisms include, but are not limited to, [UPnP] and [Bonjour].

6.1 Messages, Operations and Transactions

A message is either a request or a response. The sequence of sending a request and getting the response is called an
operation. Certain A2A functionality requires two or more operations. This set of operations is called a transaction. Certain
implementations of a DRM Agent MAY require that transactions be performed as defined in this document, i.e. that the set of
operations be done in sequence. Other implementations MAY allow the interleaving of operations that are not part of a
transaction.

The operations and transactions are described in section 8. Whenever an operation or a transaction is not successfully
completed, the User MAY be informed. Error recovery is described in section 6.3.

6.2 Message Syntax

The syntax for all A2A messages is defined in the following sub-sections.

6.2.1 Request Syntax

All A2A requests follow one of two generic syntaxes:

• Plain request – this type of request does not require any integrity protection.
• Protected request – this type of request requires integrity protection.

The syntax for a plain request is defined as follows:

A2ARequest(){
 MessageType()
 Body()
 ExtensionsContainer()
}

The fields are defined as follows:

• MessageType – this field identifies the request type. The list of valid message types is described in section 6.2.3.
• Body – this field contains the body of the request. There is not just one definition of Body, but each request defined in

section 9 defines the data structure for this field. Some requests may have an empty Body field.
• ExtensionsContainer – this field allows for extending a request in future revisions of this specification. This field is

described in section 6.2.5.

The syntax for a protected request is defined as follows:

OMA-TS-SCE_A2A-V1_0-20110705-A Page 18 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

A2AProtectedRequest(){
 MessageType()
 replayCounter 32 uimsbf
 Body()
 Extensions()
 Hmac()
}

The fields are defined as follows:

• MessageType – this field contains the request type. The list of valid message types is described in section 6.2.3.
• replayCounter – this field constains a 32 bit unsigned integer that is used to provide replay protection. The use of this

field is described in section 7.3.
• Body – this field contains the body of the request. There is not just one definition of Body, but each request defined in

section 9 defines the data structure for this field. Some requests may have an empty Body field.A2ARequest – This
field contains a plain request as defined above.

• ExtensionsContainer – this field allows for extending a request in future revisions of this specification. This field is
described in section 6.2.5.

• Hmac – this field contains an HMAC value that provides integrity over the MessageType, replayCounter, Body and
the Extensions fields. This field is defined in section 8.5.

An A2AProtectedRequest MUST be sent using a Secure Authenticated Channel (see section 9.2).

Example requests are provided in Appendix C.

6.2.2 Response Syntax

All A2A responses follow one of two generic syntaxes:

• Plain response – this type of response does not require any integrity protection.
• Protected response – this type of response requires integrity protection.

The syntax for a plain response is defined as follows:

A2AResponse(){
 MessageType()
 Status()
 if(Status == 0){
 Body()
 }
 ExtensionsContainer()
}

The fields are defined as follows:

• MessageType – this field contains the response type. The list of valid message types is described in section 6.2.3.
• Status – this field contains the result of processing a request. The list of allowed values are described in section 6.2.4.
• Body – this field contains the body of the response. There is not just one definition of Body but each response defined

in section 9 defines the data structure for this field. This field will exist only if Status is set to Success (see section
6.2.4). Some responses may have an empty Body field.

• ExtensionsContainer – this field allows for extending a response in future revisions of this specification. This field is
defined in section 6.2.5.

The syntax for a protected response is defined as follows:

A2AProtectedResponse(){
 MessageType()
 replayCounter 32 uimsbf
 Status()
 if(Status == 0){

OMA-TS-SCE_A2A-V1_0-20110705-A Page 19 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

 Body()
 }
 Extensions()
 Hmac()
}

The fields are defined as follows:

• MessageType – this field contains the request type. The list of valid message types is described in section 6.2.3.
• replayCounter – this field constains a 32 bit unsigned integer that is used to provide replay protection. The use of this

field is described in section 7.3.
• Status – this field contains the result of processing a request. The list of allowed values is described in section 6.2.4.
• Body – this field contains the body of the response. There is not just one definition of Body but each response defined

in section 9 defines the data structure for this field. Some responses may have an empty Body field. This field will
exist only if Status is set to Success (see section 6.2.4).

• ExtensionsContainer – this field allows for extending a response in future revisions of this specification. This field is
defined in section 6.2.5.

• Hmac – this field contains an HMAC value that provides integrity over the MessageType, replayCounter, Status, Body
and Extensions fields. This field is defined in section 8.5.

An A2AProtectedResponse MUST be sent using a Secure Authenticated Channel (see section 9.2).

Example responses are provided in Appendix C.

6.2.3 Message Types

The type of each A2A message is determined via the MessageType field. This field is defined as follows:

MessageType(){
 messageType 8 uimsbf
}

The messageType field is an 8 bit, unsigned integer that contains the message type. The following table lists all the message
types defined in this version of this specification.

Table 1: Message Types

Value Description

0 A2A Agent Hello Request

1 A2A Agent Hello Response

2 Authentication Request

3 Authentication Response

4 Key Exchange Request

5 Key Exchange Response

6 Change SAC Request

7 Change SAC Response

8 CRL Query Request

9 CRL Query Response

10 Put CRL Request

11 Put CRL Response

12 Get CRL Request

13 Get CRL Response

14 Move RO Request

15 Move RO Response

OMA-TS-SCE_A2A-V1_0-20110705-A Page 20 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

16 Move REK Request

17 Move REK Response

18 Share RO Request

19 Share RO Response

20 Lend RO Request

21 Lend RO Response

22 Lend Release Request

23 Lend Release Response

24 Render Request

25 Render Response

26 Copy RO Request

27 Copy RO Response

28 – 255 RFU

By definition, a DRM/Render Agent only receives requests. If it receives a message with a response type or a type marked as
“RFU”, the DRM/Render Agent SHALL send an A2AResponse with Status set to RequestNotSupported (see section
6.2.4).

By definition, a DRM Requester only receives responses. If it receives a message with a request type or a type marked as
“RFU”, the DRM Requester SHALL treat the message as an error to the operation or transaction.

6.2.4 Status

The Status field of a response indicates the result of the DRM Agent processing a request. It is defined as follows:

Status(){
 status 8 uimsbf
}

The following table lists all the values that are valid for this version of this document.

Table 2: Status Values and Names

Value Name Description

0 Success The request was successfully processed.

1 TrustAnchorNotSupported The trust anchor is not supported.

2 CertificateChainVerificationFailed The verification of a certificate chain failed.

3 FieldDecryptionFailed The decryption of a field failed.

4 RandomNumberMismatched A random number did not match an expected value.

5 VersionMismatched A version did not match an expected value.

6 SACNotEstablished A SAC have not been established under the requested trust model.

7 OldCrl A newly received CRL is older than the current CRL.

8 CrlVerificationFailed The verification of a CRL failed.

11 CrlNotFound CRL Not Found

12 IntegrityVerificationFailed The integrity verification of the request failed.

13 NotEnoughSpace Not Enough Space

17 RequestNotSupported The DRM/Render Agent does not support the request.

18 RiCertificateChainNotFound RI Certificate Chain Not Found

21 InvalidField The request contains an invalid field.

22 UnexpectedRequest The request was not expected.

OMA-TS-SCE_A2A-V1_0-20110705-A Page 21 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

Value Name Description

23 NotADomainMember The Device is not a member of the User Domain for which the operation
was meant.

24 NoCommonTrustAnchor A common trust anchor was not found.

25 CrlExpired The DRM/Render Agent has an expired CRL.

26 DrmRequesterRevoked The DRM Requester is listed on a CRL.

27 InvalidRightsObject The DRM Agent considers the Rights Object to be invalid.

28 UnknownHandle The DRM Agent has no knowledge of the handle.

29 RequestNotSupported The DRM/Render Agent does not support the request type.

30 – 255 RFU Reserved For Future Use

6.2.5 Extending a Message

Future specifications MAY use the ExtensionsContainer field to extend messages defined in this document without changing
the definitions specified in this document. The ExtentionsContainer is defined as follows:

ExtensionsContainer(){
 nbrOfEntries 8 uimsbf
 for(i = 0; i < nbrOfEntries; i++){
 extensionType 8 uimsbf
 size 16 uimsbf
 Extension()
 }
}

The fields are defined as follows:

• nbrOfEntries – this field contains the number of extensions present in this container as an 8 bit unsigned integer.
• extensionType – this field identifies the extension. This value MUST be unique in the context of a message. There are

no extensions defined in this version of this specification.
• size – this field contains the size (or length) of the Extension field in a 16 bit unsigned integer.
• Extension – this field contains the actual extension. The content of this field will depend on the particular extension

(as identified by the particular message and extensionType) and will be defined in future versions of this specification.

If a DRM Requester or a DRM Agent conformant to this specification receives an ExtensionContainer with one or more
Extensions, the DRM Requester or DRM Agent SHALL ignore the Extensions.

Extensibility in Future Specifications (Informative)

When an extension is specified in a future specification, the extension can either be included in all messages independent of
the version of the DRM Requesters and DRM Agents involved or only included when communication between DRM
Requesters and DRM Agents of appropriate versions occurs. The decision on when and where a certain extension is to be
included will be taken when the new specification is written.

Extensions can be mandated in future specifications. This means DRM Requesters and DRM Agents conformant to those
specifications must include the extensions, even though older DRM Requesters and DRM Agents will ignore them. The
extensions have to be designed in such a way that this does not open an attack opportunity.

6.3 Error Recovery

Under normal circumstances, a DRM Requester sends a request to a DRM/Render Agent and a short time later receives a
response from the DRM/Render Agent. However, under certain circumstances, the DRM Requester may not receive a
response after sending a request. It is anticipated that a DRM Requester will time out if a response from the DRM/Render
Agent is not received within a certain wait period. Upon such time-out, the DRM Requester MAY terminate the

OMA-TS-SCE_A2A-V1_0-20110705-A Page 22 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

operation/transaction and inform the User, or it MAY try sending the request again. If the DRM Requester is going to retry
sending the request and the request is an A2AProtectedRequest, then the DRM Requester MUST increment the
replayCounter field (see section 7.3). This document does not specify the wait period or how many times the DRM Requester
re-sends a request. These are left as implementation choices or may be specified by a trust model.

OMA-TS-SCE_A2A-V1_0-20110705-A Page 23 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

7. Secure Authenticated Channel

Certain operations and transactions require integrity and confidentiality of the data being exchanged. For this to take place, a
secure logical channel, called a Secure Authenticated Channel (SAC), must be established between the DRM Requester and
the DRM Agent. A SAC provides the following characteristics:

• Entity authentication – an entity that does not represent itself with a valid credential cannot participate in the
communications.

• Message integrity – a message cannot be modified without detection.
• Replay protection – an attacker cannot capture a message and then replay it without detection.
• Confidentiality – an entity that did not establish the SAC cannot understand the portions of the message that are

encrypted.

The Mutual Authentication and Key Exchange (MAKE) transaction, described in section 9.2, is used to establish a SAC.
Once established, it is possible to exchange a protected message, i.e. either an A2AProtectedRequest or an
A2AProtectedResponse.

7.1 Entity Authentication

Both the DRM Requester and the DRM Agent MUST have their own X.509 certificate that is used to authenticate themselves
to each other as part of establishing the SAC.

7.2 Message Integrity

Once the SAC is established, when an A2AProtectedRequest or an A2AProtectedResponse is sent, it is integrity protected. If
the protected message is modified between the sender and the receiver, the receiver will detect that the message has been
modified.

7.3 Replay Protection

Replay protection prevents an attacker from recording protected message and then attempting to send them again at a later
time without detection. Replay protection is based on counters kept by both entities involved in the SAC. The counter is
maintained in the SAC context (see section 9.2.6). The value of a counter is sent in a protected message via the
replayCounter field (see sections 6.2.1 and 6.2.2).

The replay protection mechanism works as follows.

1. Sending an A2AProtectedRequest

• The DRM Requester copies its currentReplayCounterR to the A2AProtectedRequest.replayCounter field. After the
protected request is sent, the DRM Requester increments its currentReplayCounterRvalue by 1.

• When an A2AProtectedRequest is received, the DRM/Render Agent checks the A2AProtectedRequest.replayCounter
field against its currentReplayCounterA value. This check of the replay counter can be performed before the integrity
of the message is checked. But the integrity check MUST be performed before further processing, in particular, before
any decryption is performed. If replayCounter ≥ currentReplayCounterA, the DRM/Render Agent sets
currentReplayCounterA = A2AProtectedRequest.replayCounter + 1. Then the DRM/Render Agent proceeds with
processing the request. If replayCounter < currentReplayCounterA, the DRM/Render Agent SHALL return an
A2AProtectedResponse with Status set to IntegrityVerificationFailed.

2. Sending an A2AProtectedResponse

• The DRM/Render Agent copies its currentReplayCounterA to the A2AProtectedResponse.replayCounter field. After
the protected response is sent, the DRM/Render Agent increments its currentReplayCounterA value by 1.

• When an A2AProtectedResponse is received, the DRM Requester checks the A2AProtectedResponse.replayCounter
field against its currentReplayCounterR value. This check of the replay counter can be performed before the integrity
of the message is checked. But the integrity check MUST be performed before further processing, in particular, before
any decryption is performed. If replayCounter ≥ currentReplayCounterR, the DRM Requester sets

OMA-TS-SCE_A2A-V1_0-20110705-A Page 24 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

currentReplayCounterR = A2AProtectedResponse.replayCounter + 1. Then the DRM Requester proceeds with
processing the protected response. If replayCounter < currentReplayCounterR, the DRM Requester SHALL initiate a
new MAKE transaction in order to resync the replay counters.

Note that the counters will roll over to 0 after 4,294,967,295 messages are sent under a SAC. A trust model MAY require that
a new SAC be established when this happens.

7.4 Confidentiality

When a message (or a portion of a message) requires confidentiality, the data is encrypted using an encryption algorithm and
key established as part of the SAC (see section 9.2.5).

OMA-TS-SCE_A2A-V1_0-20110705-A Page 25 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

8. Common Data Structures

The messages defined in this specification have a number of common data structures. These are defined in the following sub-
sections.

8.1 Octet Strings

An octet string holds variable length binary data. There are two types, one for “short” octet strings and the other for “long”
octet strings. The short octet string is defined as follows:

OctetString8(){
 length 8 uimsbf
 for(i = 0; i < length; i++){
 octet 8 uimsbf
 }
}

The long octet string is defined as follows:

OctetString16(){
 length 16 uimsbf
 for(i = 0; i < length; i++){
 octet 8 uimsbf
 }
}

The fields are defined as follows:

• length – This field contains the number of octets in the octet string. For an OctetString8, the range is 0 – 255. For an
OctetString16, the range is 0 – 65535.

• octet – This field contains one octet (8 bits) of the octet string.

8.2 Version

Version is used to represent a version number. It is defined as follows:

Version(){
 major 4 uimsbf
 minor 4 uimsbf
}

The fields are defined as follows:

• major – This field contains the major portion of the version. The range is 1 – 15.
• minor – This field contains the minor portion of the version. The range is 0 – 15.

For this version of this specification, major = 1 and minor = 0.

8.3 Hash

Hash is used to hold a hash value. It is defined as follows:

Hash(){
 OctetString8()
}

The fields are defined as follows:

OMA-TS-SCE_A2A-V1_0-20110705-A Page 26 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

• OctetString8 – This field contains the hash value as an OctetString8 which is defined in section 8.1. The hash
algorithm is either specified in this document or it is negotiated between the DRM Requester and the DRM Agent.

8.4 Trust Anchor

TrustAnchor is used to represent the identification of a trust model. It is defined as follows:

TrustAnchor(){
 Hash()
}

 The fields are defined as follows:

• Hash – This field contains the SHA-1 hash of the DER-encoded subjectPublicKeyInfo component of the trust model’s
Root CA certificate. It is of type Hash which is defined in section 8.3.

8.5 Entity ID

EntityID is used to represent the identification of an entity. It is defined as follows:

EntityID(){
 Hash()
}

The fields are defined as follows:

• Hash – This field contains the SHA-1 hash of the DER-encoded subjectPublicKeyInfo component of the entity’s
certificate. This field is defined in section 8.3.

8.6 Trust Anchor and Entity ID Pair List

TrustAnchorAndEntityIdPairList is a list of TrustAnchor and EntityID pairs. It is defined as follows:

TrustAnchorAndEntityIdPairList(){
 nbrOfEntries 8 uimsbf
 for(i = 0; i < nbrOfEntries; i++){
 TrustAnchor()
 EntityID()
 }
}

The fields are defined as follows:

• nbrOfEntries – this field contains the number of TrustAnchor and EntityID pairs as an 8 bit unsigned integer. There
MUST be at least 1 pair; therefore the range is 1 – 255.

• TrustAnchor – this field identifies a trust model. This field is defined in section 8.4.
• EntityID – this field identifies the entity under the TrustAnchor. If an entity has more than one identifier under a

particular trust model, only one identifier is allowed in the list. This field is defined in section 8.5.

8.7 HMAC

Hmac is used to hold an HMAC value. Hmac is defined as follows:

Hmac(){
 OctetString8() //Defined in section 8.1
}

The fields are defined as follows:

OMA-TS-SCE_A2A-V1_0-20110705-A Page 27 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

• OctetString8 – This field contains the HMAC value as an OctetString8 which is defined in section 8.1. The HMAC
algorithm is either specified in this document or it is negotiated between the DRM Requester and the DRM Agent.

8.8 X.509 Certificates

CertificateChain is used to hold the certificate chain of an entity. It is defined as follows:

CertificateChain(){
 nbrOfEntries 8 uimsbf
 for(i = 0; i < nbrOfEntries; i++){
 Certificate()
 }
}

Certificate(){
 OctetString16()
}

The fields are defined as follows:

• nbrOfEntries – This field contains the number of certificates in the chain as an 8 bit unsigned integer.
• Certificate – This field contains one X.509 certificate as an OctetString16 which is defined in section 8.1.

The order of the certificates MUST be as follows: first certificate is the entity’s certificate. The first certificate is followed by
any intermediate CA certificates, in order of signing, up to but not including the root certificate.

8.9 Algorithm

Algorithm is used to identify a security related algorithm. It is defined as follows:

Algorithm(){
 algorithmId 8 uimsbf
}

The following table contains the list of algorithms defined in this specification.

Table 3: Supported Algorithms

Value Description Reference

0 SHA-1 – This is the default hash algorithm. [SHA1]

1 HMAC-SHA1 – This is the default HMAC algorithm. [RFC2104]

2 AES-128-CBC – Defined to be compatible with [SRM-TS]. It is not used in this specification. [AES-MODES]

3 RSA-OAEP – This is the default asymmetric key encryption algorithm. [RFC3447]

4 DRMV2-KDF – This is the default KDF algorithm, the KDF from OMA DRM v2.1. [DRM-DRM-v2.1]

5 AES-128-CTR – This is the default symmetric key algorithm. [AES-MODES]

8.10 Algorithm List

AlgorithmList contains a list of algorithms. It is defined as follows:

OMA-TS-SCE_A2A-V1_0-20110705-A Page 28 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

AlgorithmList(){
 nbrOfEntries 8 uimsbf
 for(i = 0; i < nbrOfEntries; i++){
 Algorithm()
 }
}

The fields are defined as follows:

• nbrOfEntries – This field contains the number of algorithms in the list as an 8 bit unsigned integer. If the number is 0,
then the default algorithm is used.

• Algorithm – This field contains one algorithm as defined in section 8.9.

8.11 Encrypted Data

EncryptedData is used to hold data that has been encrypted. The encryption algorithm is negotiated between the DRM
Requester and the DRM Agent. EncryptedData is defined as follows:

EncryptedData(){
 Iv()
 CipherText()
}

Iv(){
 OctetString8()
}

CipherText(){
 OctetString16()
}

The fields are defined as follows:

• Iv – This field contains the IV if required by the encryption algorithm as an OctetString8 that is defined in section 8.1.
If not required, the length is set to 0.

• CipherText – This field contains the actual encrypted data as an OctetString16 which is defined in section 8.1.

8.12 Encrypted CEK

EncryptedCek is used to send a CEK that is encrypted using an algorithm and key established during a MAKE transaction
(see section 9.2). It is defined as follows:

EncryptedCek(){
 EncryptedData()
}

8.13 Hashed CEK

HashedCek is used to send the SHA-1 hash over the CEK. It is defined as follows:

HashedCek(){
 Hash()
}

OMA-TS-SCE_A2A-V1_0-20110705-A Page 29 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

8.14 Random Number

RandomNumber contains a string of random octets. It is defined as follows:

RandomNumber(){
 OctetString8() //Defined in section 8.1
}

8.15 Rights Object ID

RoID contains an ROID. It is defined as follows:

RoID(){
 OctetString16() //Defined in section 8.1
}

8.16 String80

String80 contains a variable length string with a maximum length of 80 bytes. It is defined as follows:

String80(){
 OctetString8() //Defined in section 8.1
}

8.17 X.509 Certificate Revocation Lists (CRLs)

Crl is used to hold one X.509 CRL. It is defined as follows:

Crl(){
 OctetString16() //Defined in section 8.1
}

CrlList is used to hold a list of CRLs. It is defined as follows:

CrlList(){
 nbrOfEntries 8 uimsbf
 for(i = 0; i < nbrOfEntries; i++){
 Crl()
 }
}

The fields are defined as follows:

• nbrOfEntries – This field contains the number of CRLs in the list as an 8 bit unsigned integer.
• Crl – This field contains one X.509 CRL.

CrlIdList is used to hold a list of CRL identifiers. It is defined as follows:

CrlIdList(){
 nbrOfEntries 8 uimsbf
 for(i = 0; i < nbrOfEntries; i++){
 CrlIssuerID() //Defined below
 CrlNumber() //Defined below
 }
}

CrlIssuerID(){
 EntityID() //Defined in section 8.5

OMA-TS-SCE_A2A-V1_0-20110705-A Page 30 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

}

CrlNumber(){
 OctetString8() //Defined in section 8.1
}

The fields are defined as follows:

• nbrOfEntries – this field contains the number of CRL Issuer ID and Number pairs as an 8 bit unsigned integer.
• CrlIssuerID – this field identifies the issuer of the CRL. It is of type EntityID which is defined in section 8.5.
• CrlNumber – this field contains the number of the CRL per [RFC3280].

8.18 Asset ID

AssetID contains an identifier for a DRM Content. It is defined as follows:

AssetID(){
 OctetString16() //Defined in section 8.1
}

8.19 CEK Info

CekInfo is used to send for each asset either the CEK in an EncryptedCek field (see section 8.12), or the SHA-1 hash over the
CEK in an HashedCEK field. It has the following definition:

CekInfo() {
 noCEKs 16 uimsbf
 for(i=0; i<noAssets; i++) {
 AssetID()
 cekOrCekHash 1 bslbf
 rfu 7 bslbf
 if(cekOrCekHash == 0)
 EncryptedCek()
 else
 HashedCek()
 }
}

The fields are defined as follows:

• noCEKs - this field indicates the number of CEKs the CekInfo field describes.

For each CEK (or asset), there are the following fields:

• AssetID - this field contains the Asset ID from the Asset associated with the CEK.
• cekOrCekHash - if this bit has the value 0, an EncryptedCek field follows. If this bit has the value 1, a Hash field

follows.
• rfu – this field is reserved for future use. It MUST be set to all zeros.
• EncryptedCek - this field contains the encrypted CEK for this asset. See section 8.12 for more details.
• HashedCek - this field contains the hash over the CEK for this asset. See section 8.13 for more details.

8.20 Rights Object Container

A RightsObjectContainer holds a Rights Object that is being sent from a DRM Requester to a DRM Agent. Consistent with
the structure of a Rights Object, the Rights Object Container consists of the <rights> element and the <signature> element in
the ROPayload [DRM-v2.1]. Unlike the ROPayload, the RightsObjectContainer does not include an <encKey> element.
Unlike the ProtectedRO [DRM-v2.1], the RightsObjectContainer does not include a <mac> element (generated by the RI
over the ROPayload) that is checked as part of [DRM-v2.1] RO installation. Consequently, “install” as used in this Technical

OMA-TS-SCE_A2A-V1_0-20110705-A Page 31 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

Specification does not include such <mac> element verification. The contents of the <rights> element of the Rights Object
Container MUST be canonicalised as Exclusive Canonical XML format, as specified in [XC14N].

This field is defined as follows:

RightsObjectContainer(){
 OctetString16() //Defined in section 8.1
}

The fields are defined as follows:

• OctetString16 – this field (see section 8.1) contains an XML document of type oma-dd:RightsObjectContainer. It is
instantiated as a <oma-dd:roContainer> element and contains the <rights> element and the <signature> element from
the ROPayload as described above. The XML schema is as follows:

<!--Rights Object Container Definitions -->
<element name="roContainer" type="oma-dd:RightsObje ctContainer">
<complexType name=”RightsObjectContainer”>
 <sequence>
 <element name=”rights” type=”o-ex:rightsType” />
 <element name=”signature” type=”ds:SignatureT ype”/>
 </sequence>
</complexType>

8.21 State Information

StateInformation holds the state information of Rights to be Moved from a DRM Requester to a DRM Agent, i.e. the Rights
that become available to the DRM Agent after the Move. It may represent the current remaining Rights on the DRM
Requester (in case of a full Move), or it may be a subset of the remaining Rights (in case of a Partial Move). It is defined as
follows:

OMA-TS-SCE_A2A-V1_0-20110705-A Page 32 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

StateInformation(){
 // Length of StateInfo
 length 16 uimsbf
 StateInfo() //Defined below
}

StateInfo(){
 nbrOfAssetIDs 8 uimsbf
 for(i = 0; i < nbrOfAssetIDs; i++){ //<asset> elements
 AssetID() //Defined in section 8.18
 }
 nbrOfPermissions 8 uimsbf
 for(i = 0; i < nbrOfPermissions; i++){ //<per mission> elements
 PermissionState() //Defined below
 }
}

PermissionState() {
 constraintPresent 1 bslbf
 assetPresent 1 bslbf
 playPresent 1 bslbf
 displayPresent 1 bslbf
 executePresent 1 bslbf
 printPresent 1 bslbf
 exportPresent 1 bslbf
 movePresent 1 bslbf

copyPresent 1 bslbf

 // for future extension: all zeros now
 rfu 7 bslbf

 if(constraintPresent){
 ConstraintState() //Defined below
 }
 if(assetPresent){
 AssetID() //Defined in section 8.18
 }
 if(playPresent){
 ConstraintState() //Defined below
 }
 if(displayPresent){
 ConstraintState() //Defined below
 }
 if(executePresent){
 ConstraintState() //Defined below
 }
 if(printPresent){
 ConstraintState() //Defined below
 }
 if(exportPresent){
 ConstraintState() //Defined below
 }
 if(movePresent){

OMA-TS-SCE_A2A-V1_0-20110705-A Page 33 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

 ConstraintState() //Defined below
 }
}
 if(copyPresent){
 ConstraintState() //Defined below
 }

ConstraintState() {
 countPresent 1 bslbf
 timedCountPresent 1 bslbf
 intervalPresent 1 bslbf
 accumulatedPresent 1 bslbf

permissionLost 1 bslbf
 rfu 3 bslbf

 if(countPresent){ // For <count>
 remainingCount 32 uimsbf
 }
 if(timedCountPresent){ // For <timed-count>
 remainingCount 32 uimsbf
 }
 if(intervalPresent){ //For <interval>
 // YYYY-MM-DDThh:mm:ssZ [ISO8601]
 // All zeros if the asset has NOT been render ed
 for(i = 0; i < 20; i++) {
 char 8 uimsbf
 }
 }
 if(accumulatedPresent){ //For <accumulated>
 accumulatedTime 32 uimsbf //upto 2^32 seconds
 }
}

The fields are defined as follows:

• length – this field contains the length of the StateInfo structure in a 16 bit unsigned integer.
• nbrOfAssetIDs – this field contains the number of AssetIDs in an 8 bit unsigned integer.
• AssetID – this field contains one Asset ID and is defined in section 8.18.
• nbrOfPermissions – this field contains the number of PermissionStates in an 8 bit unsigned integer.
• constraintPresent – this is a boolean field, that if true, indicates that a ConstraintState field is present that is applicable

to all permissions in the Rights Object.
• assetPresent – this is a boolean field, that if true, indicates that an AssetID field is present.
• playPresent – this is a boolean field, that if true, indicates that a ConstraintState field is present that is applicable to

the <play> permission.
• displayPresent – this is a boolean field, that if true, indicates that a ConstraintState field is present that is applicable to

the <display> permission.
• executePresent – this is a boolean field, that if true, indicates that a ConstraintState field is present that is applicable to

the <execute> permission.
• printPresent – this is a boolean field, that if true, indicates that a ConstraintState field is present that is applicable to

the <print> permission.
• exportPresent – this is a boolean field, that if true, indicates that a ConstraintState field is present that is applicable to

the <export> permission.

OMA-TS-SCE_A2A-V1_0-20110705-A Page 34 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

• movePresent – this is a boolean field, that if true, indicates that a ConstraintState field is present that is applicable to
the <move> permission.

• copyPresent – this is a boolean field, that if true, indicates that a ConstraintState field is present that is applicable to
the <copy> permission.

• rfu – this field is reserved for future use. It MUST be set to all zeros.
• ConstraintState – this field contains constraint and state information. It is defined below.
• countPresent – this a boolean field, that if true, indicates that a remainingCount field is present that is applicable to

the <count> constraint.
• timedCountPresent – this a boolean field, that if true, indicates that a remainingCount field (a 20 byte string) is

present that is applicable to the <timed-count> constraint.
• intervalPresent – this a boolean field, that if true, indicates that a 20 character string is present that is applicable to the

<interval> constraint.
• accumulatedPresent – this a boolean field, that if true, indicates that a accumulatedTime field is present that is

applicable to the <accumulated> constraint.
• permissionLost – this boolean field, if true, indicates that the associated permission is lost and cannot be exercised.
• remainingCount – this field contains the remaining count value for a <count> constrain as a 32 bit unsigned integer.
• char – this field contains one ASCII character of a 20 character string that represents an end date after which the

permission SHALL NOT be granted. The format of the string is “YYYY-MM-DDThh:mm:ssZ” as specified in
[ISO8601].

• accumulatedTime – this field contains the accumulated time value, in seconds, for an <accumulated> constraint as a
32 bit unsigned integer.

OMA-TS-SCE_A2A-V1_0-20110705-A Page 35 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

9. A2A Operations and Transactions

The operations and transactions of the A2A interface are defined in the following sub-sections.

9.1 A2A Hello Operation

The A2A Hello operation allows the DRM Requester and the DRM/Render Agent to exchange information about each other.
This operation can be performed at any time. However, it will normally be performed immediately after the DRM Requester
discovers the DRM/Render Agent (note that discovery is outside the scope of this specification). Completion of the A2A
Hello operation is a prerequisite for performing the MAKE transaction. The following figure illustrates the A2A Hello
operation.

Figure 2: A2A Hello Operation

In order for this operation to take place, the following MUST be performed:

1. The DRM Requester generates an A2AHelloRequest using the highest interface version supported by the DRM
Requester and the trust anchors and IDs it has.

2. The DRM Requester sends the A2AHelloRequest to the DRM/Render Agent.
3. The DRM/Render Agent processes the request as follows:

a. It validates the fields of the A2AHelloRequest. If any field is invalid, it sets A2AHelloResponse.Status to
InvalidField and continues with step 4.

b. It checks if it has a TrustAnchor from the A2AHelloRequest.Body.TrustAnchorAndEntityIdPairList field in
common. If it does not have a common TrustAnchor, then it sets A2AHelloResponse.Status to
NoCommonTrustAnchor and continues with step 4.

c. It sets A2AHelloResponse.Body.SelectedVersion to the minimum of A2AHelloRequest.Body.Version and
highest interface version supported by the DRM/Render Agent. It also saves this value for use in a MAKE
transaction.

d. It fills out the A2AHelloResponse.Body.TrustAnchorAndEntityIdPairList field using the trust anchors and
IDs for itself.

e. It sets A2AHelloResponse.Status to Success.
4. The DRM/Render Agent sends the A2AHelloResponse to the DRM Requester.
5. The DRM Requester processes the response as follows:

a. If A2AHelloResponse.Status is InvalidField, then it may either restart the A2A Hello operation at step 1 or
terminate the operation.

b. If A2AHelloResponse.Status is NoCommonTrustAnchor, then no communications that require a SAC is
possible with the DRM/Render Agent.

c. At this point (A2AHelloResponse.Status is Success), the A2A Hello operation has successfully completed.

9.1.1 A2AHelloRequest

An A2AHelloRequest is sent as a plain request and its body is defined as follows:

OMA-TS-SCE_A2A-V1_0-20110705-A Page 36 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

Body(){
 Version()
 TrustAnchorAndEntityIdPairList()
}

The fields are defined as follows:

• Version – this field contains the largest version number of the A2A interface supported by the DRM Requester. This
field is defined in section 8.2. For this version of the A2A interface, Version SHALL be set to 0x10, indicating version
“1.0”.

• TrustAnchorAndEntityIdPairList – this field contains a list of TrustAnchor and EntityID pairs for the DRM Requester.
This field is defined in section 8.6.

9.1.2 A2AHelloResponse

An A2AHelloResponse is sent as a plain response. The following table lists the valid Status values for this response.

Table 4: A2AHelloResponse Status Values

Status Values

Success

InvalidField

NoCommonTrustAnchor

The body of an A2AHelloResponse is defined as follows:

Body(){
 Version()
 TrustAnchorAndEntityIdPairList()
}

The fields are defined as follows:

• Version – this field contains the interface version selected by the DRM Agent. This field is of type Version, which is
defined in section 8.2. The value MUST be minimum of the Version from the A2AHelloRequest and the highest
interface version supported by the DRM/Render Agent.

• TrustAnchorAndEntityIdPairList – this field contains a list of TrustAnchor and EntityID pairs for the DRM/Render
Agent. This field is defined in section 8.6.

9.2 Mutual Authentication and Key Exchange Transaction

The Mutual Authentication and Key Exchange (MAKE) transaction is used to establish a SAC between the DRM Requester
and the DRM/Render Agent. If a DRM Requester, Render Agent or DRM Agent has an expired CRL, it MUST NOT
perform a MAKE transaction. If a DRM Requester has previously performed a MAKE transaction with the DRM/Render
Agent and still has a valid SAC context, it can reuse the SAC Context and does not need to perform a new MAKE transaction
(the exact details are described in section 9.2.6). The following figure illustrates the MAKE transaction.

OMA-TS-SCE_A2A-V1_0-20110705-A Page 37 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

Figure 3, MAKE Transaction

The following table lists the operations that cannot be performed without a successful MAKE transaction.

Table 5: Operations Requiring MAKE

Operation

Move RO

Move REK

Share RO

Lend RO

Copy RO

Render

If the MAKE transaction is terminated for any reason, the User MAY be informed.

In order for this transaction to take place, the following MUST be performed:

1. The DRM Requester checks the validity dates of its current CRL. If the CRL has expired, it MUST NOT perform
this transaction. The DRM Requester could check if the DRM/Render Agent has a current CRL by performing a
CRL Query operation.

2. The DRM Requester generates an AuthenticationRequest using the following:
• A trust anchor from the A2AHelloResponse.Body.TrustAnchorAndEntityIdPairList received from the

DRM/Render Agent.
• Its certificate chain under the selected trust anchor (the root certificate is NOT included).
• The security algorithms it supports.

3. The DRM Requester sends the AuthenticationRequest to the DRM/Render Agent.
4. The DRM/Render Agent processes the request as follows:

a. It validates the fields of the AuthenticationRequest. If any field is invalid, it sets
AuthenticationResponse.Status to InvalidField and proceeds to step 5.

b. It checks that it supports the AuthenticationRequest.Body.TrustAnchor. If it does not, it sets
AuthenticationResponse.Status to TrustAnchorNotSupported and proceeds to step 5.

c. It verifies the AuthenticationRequest.Body.CertificateChain (the chain MUST end at the root certificate
identified by the AuthenticationRequest.Body.TrustAnchor). The verification includes the following:

i. The DRM Requester’s certificate MUST NOT be expired. If the certificate has expired, the
DRM/Render Agent sets AuthenticationResponse.Status to CertificateChainVerificationFailed
and proceeds to step 5.

OMA-TS-SCE_A2A-V1_0-20110705-A Page 38 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

ii. The DRM Requester’s certificate has an extKeyUsage extension with the oma-kp-
sceDrmAgent key purpose. If the certificate does not have the key purpose, the DRM/Render
Agent sets AuthenticationResponse.Status to CertificateChainVerificationFailed and proceeds to
step 5.

d. It checks the validity dates of its current CRL. If the CRL has expired, it sets
AuthenticationResponse.Status to CrlExpired and proceeds to step 5.

e. It checks if the DRM Requester is listed in its current CRL. If the DRM Requester is listed, the
DRM/Render Agent sets AuthenticationResponse.Status to DrmRequesterRevoked and proceeds to step
5.

f. It sets AuthenticationResponse.Status to Success.
g. It copies its certificate chain under the AuthenticationRequest.Body.TrustAnchor to

AuthenticationResponse.Body.CertificateChain.
h. It sets AuthenticationResponseData.RandomNumberS to a freshly generated 16-byte random number.
i. It sets AuthenticationResponseData.Version equal to A2AHelloRequest.Body.Version.
j. It sets AuthenticationResponseData.SelectedAlgorithms to the security algorithms it wants to use from

those sent in the AuthenticationRequest.Body.SupportedAlgorithms.
k. It sets AuthenticationResponseData.HashOfSupportedAlgorithms to the hash of the

AuthenticationRequest.Body.SupportedAlgorithms field. The algorithm is the selected hash algorithm from
AuthenticationResponseData.SelectedAlgorithms.

l. It sets AuthenticationResponse.Body.EncryptedData to the RSA-OAEP encryption of
AuthenticationResponseData. The encryption key is the DRM Requester’s public key from the
AuthenticationRequest.Body.CertificateChain.

5. The DRM/Render Agent sends the AuthenticationResponse to the DRM Requester.
6. The DRM Requester processes the response as follows:

a. If AuthenticationResponse.Status is not Success, then it determines if it can restart the MAKE transaction
at step 2. Otherwise, it terminates the MAKE transaction.

b. It verifies the AuthenticationResponse.Body.CertificateChain (the chain MUST end at the root certificate
identified by the AuthenticationRequest.Body.TrustAnchor). Verification includes checking that the entity’s
certificate has an extKeyUsage extension with either the oma-kp-sceDrmAgent or oma-kp-
sceRenderAgent key purpose. If the verification fails, it terminates the MAKE transaction.

c. It checks if the DRM/Render Agent is in its current CRL. If the DRM/Render Agent is on its current CRL,
the DRM Requester terminates the MAKE transaction. The User MAY be informed that the DRM/Render
Agent is revoked.

d. It decrypts AuthenticationResponse.Body.EncryptedData to get an AuthenticationResponseData. To
decrypt, it uses the private key that corresponds to the certificate it sent in the AuthenticationRequest. If the
decryption fails, it terminates the MAKE transaction.

e. It performs the following:
1. Checks that AuthenticationResponseData.Version matches what it sent in the

A2AHelloRequest.Body.Version. If not equal, it terminates the MAKE transaction.
2. Checks that AuthenticationResponseData.HashOfSupportedAlgorithms matches the hash of

AuthenticationRequest.Body.SupportedAlgorithms. If the hashes do not match, it terminates the
MAKE transaction.

3. Checks that AuthenticationResponseData.SelectedAlgorithms correspond to the algorithms in
AuthenticationRequest.Body.SupportedAlgorithms. If they do not, it terminates the MAKE
transaction.

f. It sets KeyExchangeData.RandomNumberR to a freshly generated 16-byte random number.
g. It sets KeyExchangeData.HashOfRandomNumberS to the hash of

AuthenticationResponseData.RandomNumberS, using the hash specified in
AuthenticationResponseData.SelectedAlgorithms.

h. It sets KeyExchangeData.SelectedVersion to a copy of AuthenticationResponseData.Version.
i. It encrypts KeyExchangeData with the public key of the DRM/Render Agent taken from the

AuthenticationResponse.CertificateChain. The encrypted KeyExchangeData is put into the
KeyExchangeRequest.Body.

7. The DRM Requester sends the KeyExchangeRequest to the DRM/Render Agent.
8. The DRM/Render Agent processes the request as follows:

a. It validates the fields of the KeyExchangeRequest. If any field is invalid, it sets
AuthenticationResponse.Status to InvalidField and proceeds to step 9.

OMA-TS-SCE_A2A-V1_0-20110705-A Page 39 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

b. It decrypts KeyExchangeRequest.Body with its private key to get KeyExchangeData. If there is an error
with the decryption, it sets KeyExchangeResponse.Status to FieldDecryptionFailed and continues with
step 9.

c. It checks that KeyExchangeData.HashOfRandomNumberS matches the hash, using the hash algorithm it
sent in the AuthenticationResponse, of the RandomNumberS it sent in the AuthenticationResponse. If it
does not match, it sets KeyExchangeResponse.Status to RandomNumberMismatched and continues with
step 9.

d. It checks that KeyExchangeData.SelectedVersion matches what it sent in the AuthenticationResponse. If it
does not match, it sets KeyExchangeResponse.Status to VersionMismatched and continues with step 9.

e. It sets KeyExchangeResponse.Status to Success.
f. It sets KeyExchangeResponse.Body.Hash to the hash, using the selected algorithm, of the concatenation of

KeyExchangeData.RandomNumberR and RandomNumberS that it sent in the AuthenticationResponse.
9. The DRM/Render Agent sends the KeyExchangeResponse to the DRM Requester. After sending the

KeyExchangeResponse, the DRM/Render Agent generates the keys for the SAC (see section 9.2.5) and sets up its
SAC context (see section 9.2.6).

10. The DRM Requester processes the response as follows:
a. If KeyExchangeResponse.Status is not Success, then, based on the error, it can either retry the MAKE

transaction (at either step 2 or step 6.e) or it can terminate the MAKE transation.
b. It verifies that KeyExchangeResponse.Body.Hash matches the hash it calculates over the concatenation of

RandomNumberR and RandomeNumberS. If the hashes do not match, it terminates the MAKE transaction.
c. It generates the keys for the SAC (see section 9.2.5) and sets up its SAC context (see section 9.2.6).
d. At this point, the MAKE transaction has successfully completed and a SAC is established.

9.2.1 AuthenticationRequest

An AuthenticationRequest is sent as a plain request and its body is defined as follows:

Body(){
 TrustAnchor()
 CertificateChain()
 SupportedAlgorithms()
}

SupportedAlgorithms(){
 // Hash algorithms
 AlgorithmList()
 // HMAC algorithms
 AlgorithmList()
 // Symmetric algorithms
 AlgorithmList()
 // Asymmetric algorithms
 AlgorithmList()
 // KDF algorithms
 AlgorithmList()
}

The fields are defined as follows:

• TrustAnchor – this field identifies the trust model under which the DRM Requester wants to establish the SAC. This
field is defined in section 8.4.

• CertificateChain – this field contains the DRM Requester’s certificate chain under the trust model in the previous
field. This field is defined in section 8.8.

• SupportedAlgorithms – this field contains the security algorithms (hash algorithms, HMAC algorithms, symmetric
encryption algorithms, asymmetric encryption algorithms and key derivation functions) that are supported by the
DRM Requester.

• AlgorithmList – this field is a list of algorithms and is defined in section 8.10.

OMA-TS-SCE_A2A-V1_0-20110705-A Page 40 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

9.2.2 AuthenticationResponse

An AuthenticationResponse is sent as a plain response. The following table lists the valid Status values for this response.

Table 6: AuthenticationResponse Status Values

Status Values

Success

InvalidField

TrustAnchorNotSupported

CertificateChainVerificationFailed

CrlExpired

DrmRequesterRevoked

The body of an AuthenticationResponse is defined as follows:

Body(){
 CertificateChain()
 EncryptedData() //Contains an encrypted Authen ticationResponseData
}

AuthenticationResponseData(){
 RandomNumberS()
 Version()
 SelectedAlgorithms()
 HashOfSupportedAlgorithms()
}

RandomNumberS(){
 RandomNumber()
}

SelectedAlgorithms(){
 // Hash algorithm
 Algorithm()
 // HMAC algorithms
 Algorithm()
 // Symmetric algorithms
 Algorithm()
 // Asymmetric algorithms
 Algorithm()
 // KDF algorithms
 Algorithm()
}

HashOfSupportedAlgorithms() {
 Hash()
}

The fields are defined as follows:

• CertificateChain – this field contains the DRM/Render Agent’s certificate chain under the trust model identified by
the AuthenticationRequest.Body.TrustAnchor. This field is defined in section 8.8.

• EncryptedData – this field contains an AuthenticationResponseData data structure that is encrypted by the DRM
Requester’s public key (from the DRM Requester’s certificate). This field is defined in section 8.11.

OMA-TS-SCE_A2A-V1_0-20110705-A Page 41 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

• RandomNumberS – this field contains a 16-byte random number generated by the DRM/Render Agent. This field is of
type RandomNumber which is defined in section 8.12.

• Version – this field contains a copy of the Version field of the A2AHelloRequest.
• SelectedAlgorithms – this field contains the security algorithms selected by the DRM/Render Agent from the

SupportedAlgorithms sent in the AuthenticationRequest.
• Algorithm – this field contains one security algorithm and is defined in section 8.10.
• HashOfSupportedAlgorithms – this field contains the hash, using the selected hash algorithm, of the

SupportedAlgorithms field in the AuthenticationRequest. This field is of type Hash, which is defined in section 8.3.

9.2.3 KeyExchangeRequest

A KeyExchangeRequest is sent as a plain request and its body is defined as follows:

Body(){
 EncryptedData() //Contains an encrypted KeyExc hangeData
}

KeyExchangeData(){
 RandomNumberR()
 HashOfRandomNumberS()
 SelectedVersion()
}

RandomNumberR(){
 RandomNumber()
}

HashOfRandomNumberS(){
 Hash()
}

SelectedVersion(){
 Version()
}

The fields are defined as follows:

• EncryptedData – this field contains a KeyExchangeData data structure that is encrypted by the DRM/Render Agent’s
public key (from the DRM Agent’s certificate). This field is of type EncryptedData, which is defined in section 8.11.

• RandomNumberR – this field contains a 16 byte random number generated by the DRM Requester. This field is of
type RandomNumber, which is defined in section 8.12.

• HashOfRandomNumberS – this field contains the hash, using the selected hash algorithm, of the RandomNumberS
field in the AuthenticationResponse. This field is of type Hash, which is defined in section 8.3.

• SelectedVersion – this field is a copy of the SelectedVersion sent in the A2AHelloResponse. This field is of type
Version, which is defined in section 8.2.

9.2.4 KeyExchangeResponse

A KeyExchangeResponse is sent as a plain response. The following table lists the valid Status values for this response.

Table 7: KeyExchangeResponse Status Values

Status Values

Success

InvalidField

FieldDecryptionFailed

OMA-TS-SCE_A2A-V1_0-20110705-A Page 42 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

Status Values

RandomNumberMismatched

VersionMismatched

Unexpected Request

The body of a KeyExchangeResponse is defined as follows:

Body(){
 Hash()
}

The fields are defined as follows:

• Hash – this field contains the hash, using the selected hash algorithm, of the concatenation of the random numbers
RandomNumberR and RandomNumberS exchanged in this transaction. This field is defined in section 8.3.

9.2.5 SAC Key Material

As part of steps 9 and 10 of the MAKE transaction, both the DRM Requester and the DRM/Render Agent have mutually
authenticated each other and have exchanged secret random numbers. By using a Key Derivation Function (KDF), key
material that is required for the SAC (i.e. MAC Key, Session Key and CtrCounter) is derived from the secret random
numbers.

The default KDF is the KDF specified in section 7.1.2 of [DRM-v2.1]. When using this KDF, set Z = RandomNumberR |
RandomNumberS, set otherInfo = SupportedAlgorithms | SelectedAlgorithms and set kLen = 48 bytes (the total size of the
key material in Table 8).

The SAC provides message integrity by using an HMAC algorithm. The default HMAC algorithm is HMAC-SHA1 with a
20-byte (160 bits) key. This key is referred to as the MAC Key (MK) and is equal to the 20 most significant bytes of the KDF
output T (i.e. byte 0 to byte 19).

When encrypting portions of a message under the SAC, the negotiated symmetric encryption algorithm is used. The default
symmetric encryption algorithm is AES-128-CTR. The encryption key is referred to as the Session Key (SK) and is equal to
the next 16 bytes of T (i.e. byte 20 to byte 35). The initial value of the counter for the AES-128-CTR is equal to the next 12
bytes of T (i.e. byte 36 to byte 47).

The following table summarizes the key material derived from the exchanged secret random numbers for the default
algorithms.

Table 8: Default SAC Key Material

Name Description Size Abbreviation

MAC Key The HMAC-SHA1 key used to provide message integrity (20 most significant
bytes of T).

160 bits MK

Session
Key

The key used to encrypt portions of a message using AES in counter mode (next 16
bytes of T).

128 bits SK

CtrCounter The high order bits of the counter used in AES counter mode (next 12 bytes of T). 96 bits CtrA

If different algorithms are defined in the future, the key material table has to be defined for the new algorithms.

9.2.6 SAC Context

Once a SAC has been established, a logical SAC context will exist. At a minimum, the context consists of the following
information:

• Trust Anchor – this contains the trust anchor under which the SAC was established. Used when multiple SACs are
available and the DRM Requester wants to switch to a different SAC as specified in section 9.3.

• Entity ID – for the DRM Requester, this contains the DRM/Render Agent’s ID (under the trust anchor); for the
DRM/Render Agent, this contains the DRM Requester’s ID (under the trust anchor).

OMA-TS-SCE_A2A-V1_0-20110705-A Page 43 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

• Selected Algorithms – this contains the algorithms that were negotiated during the MAKE transaction.
• MAC Key (MK) – this contains the derived key for the negotiated HMAC algorithm.
• Session Key (SK) – this contains the derived key for the negotiated symmetric encryption algorithm.
• CtrCounter – this contains the current message counter when a symmetric algorithm in counter mode has been

negotiated.
• currentReplayCounterR – this contains the current replay counter when acting as a DRM Requester. Its use is

described in section 7.3. This counter is set to 0 when the SAC context is established.
• currentReplayCounterA – This contains the current replay counter when acting as a DRM/Render Agent. Its use is

described in section 7.3. This counter is set to 0 when the SAC context is established.

The SAC context exists until a new SAC with the same DRM Requester and DRM/Render Agent, and under the same trust
model, is established. By using the A2A Hello operation, a DRM Requester can determine if it is communicating with the
same DRM/Render Agent. If it is communicating with the same DRM/Render Agent, the DRM Requester can reuse the SAC
context. If the DRM Requester reuses the SAC context, sends a protected request and gets back an
IntegrityVerificationFailed error, this probably indicates that the SAC context is no longer valid. In this case, the DRM
Requester SHOULD establish a new SAC.

9.2.7 Data Encryption

Any portion of a protected message that needs confidentiality must be encrypted using the symmetric key algorithm that was
negotiated during the MAKE transaction. The key used to encrypt is the key derived using the KDF per section 9.2.5.

The default encryption algorithm is AES in counter mode. The initial value of the AES counter is shown in the following
table.

Table 9: Intial AES Counter Value

Counter Portion Bits Description

CtrCounter 80 The msb’s of the counter. Taken from the KDF.

CtrR 32 A copy of the replayCounter of the message being sent.

CtrB 16 The lsb’s of the counter. Initially set to 0 and then incremented for each block.

Because the least significant bits of the counter are used for the blocks, the maximum field size that can be encrypted is
1048576 bytes, although EncryptedData only allows for a maximum field size of 65535 (see section 8.11).

9.3 Change SAC Operation

The Change SAC operation is used by the DRM Requester to change to a different SAC with the DRM/Render Agent. The
following figure illustrates the Change SAC operation.

OMA-TS-SCE_A2A-V1_0-20110705-A Page 44 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

Figure 4: Change SAC Operation

In order for this operation to take place, the following MUST be performed:

1. The DRM Requester generates a ChangeSacRequest using the trust anchor that was used to establish the SAC.
2. The DRM Requester sends the ChangeSacRequest to the DRM/Render Agent.
3. The DRM/Render Agent processes the request as follows:

a. It validates the fields of the ChangeSacRequest. If any field is invalid, it sets ChangeSacResponse.Status to
InvalidField and proceeds to step 4.

b. It checks if it has a SAC context that corresponds to ChangeSacRequest.Body.TrustAnchor. If it does not, it
sets ChangeSacResponse.Status to SACNotEstablished and proceeds to step 4.

c. It sets ChangeSacResponse.Status to Success and changes to the SAC context.
4. The DRM/Render Agent sends the ChangeSacResponse to the DRM Requester.
5. The DRM Requester processes the response as follows:

a. If ChangeSacResponse.Status is not Success, it determines if it can restart the Change SAC operation at
step 1. If it does not restart, it terminates the Change SAC operation.

b. It changes to the SAC context, identified by the trust anchor sent in the ChangeSacRequest.
c. At this point, the Change SAC operation has successfully completed.

9.3.1 ChangeSacRequest

A ChangeSacRequest is sent as a plain request and its body is defined as follows:

Body(){
 TrustAnchor()
}

The fields are defined as follows:

• TrustAnchor – this field identifies the trust model of the SAC to change to. This field is defined in section 8.4.

9.3.2 ChangeSacResponse

A ChangeSacResponse is sent as a plain response. The following table lists the valid Status values for this response.

Table 10: ChangeSacResponse Status Values

Status Values

Success

InvalidField

SACNotEstablished

The body of a ChangeSacResponse is empty and is defined as follows:

OMA-TS-SCE_A2A-V1_0-20110705-A Page 45 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

Body(){
}

9.4 CRL Query Operation

The CRL Query operation is used by the DRM Requester to query what CRLs the DRM/Render Agent has. The following
figure illustrates the CRL Query operation.

Figure 5: CRL Query Operation

In order for this operation to take place, the following MUST be performed:

1. The DRM Requester sends the CrlQueryRequest to the DRM/Render Agent.
2. The DRM/Render Agent processes the request as follows:

a. It sets CrlQueryResponse.Body.CrlIdList with the list of CRLs it has.
b. It sets CrlQueryResponse.Status to Success.

3. The DRM/Render Agent sends the CrlQueryResponse to the DRM Requester.
4. The DRM Requester processes the response as follows:

a. It checks the CRLs it has against the CRLs the DRM/Render Agent has. If the DRM Requester has CRLs
that are more recent than the CRLs the DRM/Render Agent has, then it SHOULD send the most recent
CRLs to the DRM/Render Agent via the Put CRL operation. If the DRM/Render Agent has more recent
CRLs, the DRM Requester SHOULD request those CRLs via the Get CRL Operation (see section 9.6).

b. At this point, the CRL Query operation has successfully completed.

9.4.1 CrlQueryRequest

A CrlQueryRequest is sent as a plain request. It has an empty body that is defined as follows:

Body(){
}

9.4.2 CrlQueryResponse

A CrlQueryResponse is sent as a plain response. The following table lists the valid Status values for this response.

Table 11: CrlQueryResponse Status Values

Status Values

Success

The body of a CrlQueryResponse is defined as follows:

Body(){
 CrlIdList()

OMA-TS-SCE_A2A-V1_0-20110705-A Page 46 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

}

The fields are defined as follows:

• CrlIdList – this field contains a list CRLs that the DRM Requester is requesting from the DRM/Render Agent. It is
defined in section 8.17.

9.5 Put CRL Operation

The Put CRL operation is used by the DRM Requester to send one or more CRLs to the DRM/Render Agent. The following
figure illustrates the Put CRL operation.

Figure 6: Put CRL Operation

In order for this operation to take place, the following MUST be performed:

1. The DRM Requester sets PutCrlRequest.Body.CrlList with the CRLs it wants to send to the DRM/Render Agent.
Usually, the CRLs are chosen as part of performing a CRL Query Operation (see section 9.4).

2. The DRM Requester sends the PutCrlRequest to the DRM/Render Agent.
3. The DRM/Render Agent processes the request as follows:

a. It validates the fields of the PutCrlRequest. If any field is invalid, it sets PutCrlResponse.Status to
InvalidField and proceeds to step 4.

b. It sets PutCrlResponse.Status to Success.
c. For each CRL received, it does the following:

1. It verifies the CRL. If the verification fails, it sets PutCrlResponse.Status to CrlVerificationFailed
and does not save the CRL. If there’s another CRL, it continues at step 3.c.1 with the next CRL.

2. It checks if the CRL is a more recent CRL for the same CRL issuer. If it is more recent, it
overwrites the older CRL.

4. The DRM/Render Agent sends the PutCrlResponse to the DRM Requester.
5. The DRM Requester processes the response as follows:

a. If PutCrlResponse.Status is not Success, it determines if it can restart the Put CRL operation at step 1. If it
does not restart, it terminates the Put CRL operation.

b. At this point, the Put CRL operation has successfully completed.

9.5.1 PutCrlRequest

A PutCrlRequest is sent as a plain request and its body is defined as follows:

OMA-TS-SCE_A2A-V1_0-20110705-A Page 47 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

Body(){
 CrlList()
}

The fields are defined as follows:

• CrlList – this field contains a list of CRLs being sent to the DRM/Render Agent. It is defined in section 8.17.

9.5.2 PutCrlResponse

A PutCrlResponse is sent as a plain response. The following table lists the valid Status values for this response.

Table 12: PutCrlResponse Status Values

Status Values

Success

InvalidField

CrlVerificationFailed

The body of a PutCrlResponse is empty and is defined as follows:

Body(){
}

9.6 Get CRL Operation

The Get CRL operation is used by the DRM Requester to get one or more CRLs from the DRM/Render Agent. The following
figure illustrates the Get CRL operation.

Figure 7: Get CRL Operation

In order for this operation to take place, the following MUST be performed:

1. The DRM Requester sets GetCrlRequest.Body.CrlIdList with the CRL IDs it wants from the DRM/Render Agent.
Usually, the CRLs are chosen as part of performing a CRL Query Operation (see section 9.4).

2. The DRM Requester sends the GetCrlRequest to the DRM/Render Agent.
3. The DRM/Render Agent processes the request as follows:

a. It validates the fields of the GetCrlRequest. If any field is invalid, it sets GetCrlResponse.Status to
InvalidField and proceeds to step 4.

b. It checks if it has all the requested CRLs. If it does not, it sets GetCrlResponse.Status to CrlNotFound and
proceeds to step 4.

c. It sets GetCrlResponse.Status to Success.
d. It sets GetCrlResponse.Body.CrlList with the requested CRLs.

4. The DRM/Render Agent sends the GetCrlResponse to the DRM Requester.
5. The DRM Requester processes the response as follows:

OMA-TS-SCE_A2A-V1_0-20110705-A Page 48 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

a. If GetCrlResponse.Status is not Success, it determines if it can restart the Get CRL operation at step 1. If
it does not restart, it terminates the Get CRL operation.

b. For each CRL in GetCrlResponse.Body.CrlList, it does the following:
1. It verifies the CRL. If the CRL does not verify and there is another CRL, continue with step 5.b.1

with the next CRL.
2. It checks if the CRL is more recent than the CRL it has. If it is more recent, overwrite the older

CRL with the more recent CRL.
c. At this point the Get CRL operation has successfully completed.

9.6.1 GetCrlRequest

A GetCrlRequest is sent as a plain request and its body is defined as follows:

Body(){
 CrlIdList()
}

The fields are defined as follows:

• CrlIdList – this field contains a list of CRLs that the DRM Requester is requesting from the DRM/Render Agent. It is
defined in section 8.17.

9.6.2 GetCrlResponse

A GetCrlResponse is sent as a plain response. The following table lists the valid Status values for this response.

Table 13: GetCrlResponse Status Values

Status Values

Success

InvalidField

CrlNotFound

The body of a GetCrlReponse is defined as follows:

Body(){
 CrlList()
}

The fields are defined as follows:

• CrlList – This field contains the requested CRLs. It is defined in section 8.17.

9.7 Move RO Transaction

The Move RO transaction is used by the DRM Requester to Move a Rights Object (RO) with a <move> permission to a
DRM Agent. This transaction MUST take place using a SAC. This transaction MUST NOT be performed if the DRM
Requester’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set or the
DRM Agent’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set (see
section A.1). The DRM Agent MUST reject the RO if the <signature> element over the <rights> element has been generated
by an entity other than an RI or an LRM. The following figure illustrates the Move RO transaction.

OMA-TS-SCE_A2A-V1_0-20110705-A Page 49 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

Figure 8: Move RO Transaction

In order for this transaction to take place, the following MUST be performed:

1. The DRM Requester performs the following:
a. It checks if the RO has the <move> permission. The “allowPartial” attribute MUST be “true” if a Partial

Move is to be performed. If the <move> permission is not present, the Move RO transaction is terminated.
Otherwise, the following is performed:

i. If there is a <system> constraint, then it checks the <context> child element(s) of the <system>
constraint. If no <context> child element identifies the (A2A) Move RO transaction, then the
Move RO transaction is terminated.

ii. If there is a <count> constraint, then it checks the current count value in the state information of
the RO. If the current move count is 0, then the Move RO transaction is terminated. Otherwise, the
DRM Requester decrements the current move count value in the state information of the RO.

b. It checks the entity type that created the RO. If the RO was created by an RI, the DRM Requester proceeds
to step 1.c. Otherwise, the following is performed:

i. If the LRM’s certificate does not have the localRightsManagerDevice extended key purpose (see
[SCE-LRM]), then the RO MUST have a <userDomain> constraint. If the constraint is not
present, the Move RO transaction is terminated.

ii. If the LRM’s certificate has the localRightsManagerDevice extended key purpose, the RO MUST
be a Device RO. If it is not a Device RO, the Move RO transaction is terminated.

c. It checks if the RO has a <userDomain> constraint. If the constraint is present, the DRM Requester checks
its own User Domain Authorization (see [SCE-DOM]). If the User Domain Authorization is expired, the
Move RO transaction is terminated.

d. It marks the RO being Moved as unusable. If the RO is stateful and just a portion of the RO is being Moved
(Partial Rights, see section 5.3), then that portion being Moved is marked as unusable.

e. It generates a random moveHandle and creates a Move context with the moveHandle, the REK of the RO
being Moved, and the DRM Agent ID.

2. The DRM Requester generates a MoveRoRequest with the information for the RO (or portion) being Moved to the
DRM Agent and moveHandle (from step 1.e). If the RO has a <copy> permission, but the <copy> permission was
lost (see also section 9.8, point 4.q), the DRM Requester MUST signalise this to the DRM Agent by including a
ConstraintState() field for the <copy> permission in the MoveRoRequest, with the permissionLost field set to true.

3. The DRM Requester sends the MoveRoRequest to the DRM Agent, applying the replay protection mechanism
described in section 7.3.

4. The DRM Agent processes the request as follows:
a. It processes the request for replay as described in section 7.3.

OMA-TS-SCE_A2A-V1_0-20110705-A Page 50 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

b. It verifies the integrity of the request. If the integrity check fails, it sets MoveRoResponse.Status to
IntegrityVerificationFailed and proceeds to step 5.

c. It validates the fields of the MoveRoRequest. If any field is invalid, it sets MoveRoResponse.Status to
InvalidField and proceeds to step 5.

d. It verifies the signature on the RO, including the SourceCertificateChain field. If any of the verifications
fails, it sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.

e. It checks that the RO has the <move> permission. If it does not, it sets MoveRoResponse.Status to
InvalidRightsObject and proceeds to step 5.

f. If the RO is stateful, it validates that the StateInformation is consistent with the original state in the RO (see
section 5.5). If any state is invalid, it sets MoveRoResponse.Status to InvalidRightsObject and proceeds to
step 5.

g. It checks the entity that created the RO. If the RO was created by an RI, the DRM Requester proceeds to
step 4.i.

h. If the LRM’s certificate does not have the localRightsManagerDevice extended key purpose (see [SCE-
LRM]), then the RO MUST have a <userDomain> constraint. If the constraint is not present, the DRM
Agent sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.

i. It checks whether the RO has a <userDomain> constraint. If not, the DRM Agent proceeds to step 4.j.
Otherwise, the DRM Agent performs the following checks:

i. It checks whether the RO has a <copy> permission. If not, the DRM Agent proceeds to step 4.i.iii.
ii. It checks if it has a current record (whether installed or waiting to be installed) of an RO with the

same ROID. If the duplicate RO exists, the DRM Agent sets MoveRoResponse.Status to
DuplicateRightsObject and proceeds to step 5.

iii. It checks if an LRM created the RO. If an LRM created the RO, the DRM Agent checks if the
LRM’s certificate has the localRightsManagerDomain extended key purpose. If the certificate
does not, the DRM Agent sets MoveRoResponse.Status to InvalidRightsObject and proceeds to
step 5.

iv. It validates the UserDomainAuthorization for the DRM Requester. If the validation fails, the DRM
Agent sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5. Validation
MUST include the following:

a. Verifying the signature
b. User Domain Authorization is not expired
c. Entity ID of User Domain Authorization matches ID of DRM Requester

v. It checks that the User Domain Authorization of the <party> element of the RO corresponds to the
RI/LRM that signed the <rights> element, and verifies the DEA’s signature on the User Domain
Authorization. If the correspondence check or DEA signature verification fails, the DRM Agent
sets MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.

vi. It checks that the User Domain baseID of the <userDomainID> element within the User Domain
Authorization in the <party> element of the RO is the same as the User Domain baseID of the
<userDomainID> element within the UserDomainAuthorization field. If not, the DRM Agent sets
MoveRoResponse.Status to InvalidRightsObject and proceeds to step 5.

vii. It checks that the User Domain generation of the UserDomainAuthorization field is greater than or
equal to the User Domain generation of the User Domain Authorization in the <party> element of
the RO. If not, the DRM Agent sets MoveRoResponse.Status to InvalidRightsObject and
proceeds to step 5.

viii. If the DRM Agent is already a member of the User Domain, it checks that the User Domain
generation of the UserDomainAuthorization field is greater than or equal to the User Domain
generation of the DRM Agent’s User Domain Authorization. If not, the DRM Agent sets
MoveRoResponse.Status to LowUserDomainGeneration and proceeds to step 5.

j. It checks if it has enough room to install the RO. If it does not, it sets MoveRoResponse.Status to
NotEnoughSpace and proceeds to step 5.

k. It saves moveHandle and associates moveHandle with the RO (which cannot be installed yet).
l. It sets MoveRoResponse.Status to Success.

5. The DRM Agent sends the MoveRoResponse to the DRM Requester, applying the replay protection mechanism
described in section 7.3.

6. The DRM Requester processes the response as follows:
a. It processes the response for replay as described in section 7.3.

OMA-TS-SCE_A2A-V1_0-20110705-A Page 51 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

b. If the integrity verification of the response fails or MoveRoResponse.Status is not Success, it determines if
it can restart the Move RO transaction at step 2. If it does not restart the transaction, the DRM Requester
performs the following:

i. It marks the RO (or portion) as usable.
ii. If the <move> permission had a <count> constraint, it increments the current move counter of the

state information.
iii. It terminates the Move RO transaction.

c. It deletes the RO (or portion) that was Moved (but still keeps the corresponding Move context). Note: if the
RO being Moved has been backed up, the Backed Up RO MUST NOT be restored.

7. The DRM Requester generates a MoveRekRequest with the data from the Move context.
8. The DRM Requester sends the MoveRekRequest to the DRM Agent, applying the replay protection mechanism

described in section 7.3.
9. The DRM Agent processes the request as follows:

a. It processes the request for replay as described in section 7.3.
b. It validates the fields of the MoveRekRequest. If any field is invalid, it sets MoveRoResponse.Status to

InvalidField and proceeds to step 10.
c. It verifies the integrity of the request. If the integrity check fails, it sets MoveRekResponse.Status to

IntegrityVerificationFailed and proceeds to step 10.
d. It checks if it has an RO that corresponds to the moveHandle. If it does not have a corresponding RO, it sets

MoveRekResponse.Status to UnknownHandle and continues with step 10.
It decrypts MoveRekRequest.Body.EncryptedRek. Note: if the RO is a User Domain RO with a
<userDomain> constraint, and the DRM Agent is not yet a member of the User Domain (i.e. it does not
have the UDK), the DRM Agent MUST join the User Domain to receive a copy of the UDK in order to
fully decrypt the REK.

e. If the User Domain Context ([SCE-DOM]) has expired (as indicated by the User Domain Context Expiry
Time) the DRM Agent MUST NOT install the RO.

f. It checks whether the RO has a <contextRequired> constraint element. If not, it proceeds to step 9.h.
g. It tags the RO that corresponds to the moveHandle as ‘pending RI/LRM Context verification’ removes the

moveHandle from the RO, and proceeds to step 9.i.
h. It marks the RO that corresponds to the moveHandle as usable, and removes the moveHandle from the RO.
i. It sets MoveRekResponse.Status to Success.

10. The DRM Agent sends the MoveRekResponse to the DRM Requester, applying the replay protection mechanism
described in section 7.3.

11. If the RO has been tagged as ‘pending RI/LRM Context verification’, upon successful verification of an
active/current Context with the RI or LRM that generated the <signature> element of the RO, the DRM Agent
removes the tag and marks the RO as usable. If the RO has a ‘pending RI/LRM Context verification’ tag, the DRM
Agent MUST NOT grant any permissions other than <move>.

12. The DRM Requester processes the response as follows:
a. It processes the response for replay as described in section 7.3.
b. It verifies the integrity of the response. If the integrity check failed, the DRM Requester determines if it can

restart the Move RO transaction at step 7. If it does not restart the transaction, the DRM Requester MUST
leave the RO marked as unusable and terminate the Move RO transaction.

c. If MoveRekResponse.Status is not Success, it determines if it can restart the Move RO transaction at step
7. If it does not restart the transaction, the DRM Requester performs the following:

i. It marks the RO (or portion) as usable.
ii. If the <move> permission had a <count> constraint, it increments the current move counter of the

state information.
iii. It terminates the Move RO transaction.

d. It removes the cached corresponding Move context.
e. At this point the Move RO transaction has successfully completed.

9.7.1 MoveRoRequest

A MoveRoRequest is sent as a protected request and its body is defined as follows:

OMA-TS-SCE_A2A-V1_0-20110705-A Page 52 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

Body(){
 timeStampPresent 1 bslbf
 stateInfoPresent 1 bslbf
 udaPresent 1 bslbf
 rfu 5 bslbf
 moveHandle 64 uimsbf
 RoAlias()
 SourceAlias()
 SourceID()
 if(timeStampPresent){
 SourceTimeStamp()
 }
 RightsObjectContainer()
 if(stateInfoPresent){
 StateInformation()
 }
 CertificateChain()
 if(udaPresent){
 UserDomainAuthorization()
 }
}

RoAlias(){
 String80()
}

DomainAlias(){
 String80()
}

SourceAlias(){
 String80()
}

SourceID(){
 EntityID()
}

TimeStamp(){
 year 14 uimsbf
 month 4 uimsbf
 day 5 uimsbf
 hour 5 uimsbf
 minute 6 uimsbf
 second 6 uimsbf
}

UserDomainAuthorization(){
 OctetString16()
}

The fields are defined as follows:

OMA-TS-SCE_A2A-V1_0-20110705-A Page 53 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

• timeStampPresent – this is a boolean field, that if true, indicates that the source (RI or LRM) TimeStamp field is
present.

• stateInfoPresent – this is a boolean field, that if true, indicates that the StateInformation field is present.
• rfu – this is a 5 bit field that is reserved for future use. When sending the request, this field MUST be set to 0. When

processing this field, its value MUST be ignored.
• moveHandle – this field contains a random 64 bit unsigned integer that is used to correlate the MoveRoRequest with

the MoveRekRequest.
• RoAlias – this field contains an optional alias for the RO. It is of type String80 which is defined in section 8.16.
• DomainAlias – this field contains an optional alias for the domain if the RO is a domain RO. It is of type String80

which is defined in section 8.16.
• SourceAlias – this field contains an optional alias for the Rights Issuer or LRM that created the RO. It is of type

String80 which is defined in section 8.16.
• SourceID – this field contains the identity of the Rights Issuer or LRM that created the RO. It is of type EntityID

which is defined in section 8.5.
• RightsObjectContainer – this field contains a RO as defined in section 8.19.
• StateInformation – this field, if present, contains the state information for the Rights being Moved. This field is

defined in section 8.21. This field MUST be present if the RO is stateful.
• year – this field contains the year – 2000 of the timestamp. Range is 0 – 16383, corresponding to the years 2000 –

18,383.
• month – this field contains the month of the timestamp, with 0 representing January. Range is 0 – 11.
• day – this field contains the day – 1 of the month of the timestamp. Range is 0 – 30.
• hour – this field contains the hour of the timestamp. Range is 0 – 23.
• minute – this field contains the minute of the timestamp. Range is 0 – 59.
• second – this field contains the seconds of the timestamp. Range is 0 – 59.
• CertificateChain – this field contains the certificate chain for the Rights Issuer or LRM that created the RO. This field

is defined in section 8.8.
• UserDomainAuthorization – this field, if present, contains the User Domain Authorization for the DRM Requester.

This field MUST be present if the RO being Moved has a <userDomain> constraint.

9.7.2 MoveRoResponse

A MoveRoResponse is sent as a protected response. The following table lists the valid Status values for this response.

Table 14: MoveRoResponse Status Values

Status Values

Success

InvalidField

InvalidRightsObject
NotEnoughSpace

NotADomainMember

The body of a MoveRoResponse is empty and is defined as follows:

Body(){
}

9.7.3 MoveRekRequest

A MoveRekRequest is sent as a protected request and its body is defined as follows:

Body(){
 moveHandle 64 uimsbf
 EncryptedRek()
}

OMA-TS-SCE_A2A-V1_0-20110705-A Page 54 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

EncryptedRek (){
 EncryptedData() //Contains an encrypted REK
}

Rek(){
 for(i = 0; i < 16; i++){
 byte 8 uimsbf
 }
}

The fields are defined as follows:

• moveHandle – this field contains a random 64 bit unsigned integer that is used to correlate the MoveRoRequest with
the MoveRekRequest.

• EncryptedRek – this field contains an encrypted REK. If the RO has a <userDomain> constraint, the REK is first
encrypted with the (current generation of the) UDK (for the User Domain) using [AES-WRAP] and then the wrapped
REK is encrypted with the SK using the negotiated algorithm. If the RO does not have a <userDomain> constraint, the
REK is encrypted by the SK using the negotiated algorithm. The field is of type EncryptedData which is defined in
section 8.11.

• Rek – this field contains an REK.

9.7.4 MoveRekResponse

A MoveRekResponse is sent as a protected response. The following table lists the valid Status values for this response.

Table 15: MoveRekResponse Status Values

Status Values

Success

InvalidField

UnknownHandle
IntegrityVerificationFailed

The MoveRekResponse is empty and is defined as follows:

Body(){
}

9.8 Copy RO Operation

The Copy RO operation is only used by a DRM Requester to Copy a <userDomain>-constrained Rights Object (RO) with a
<copy> permission to a DRM Agent. This operation MUST take place using a SAC. This operation MUST NOT be
performed if the DRM Requester’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent
key purpose set or the DRM Agent’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent
key purpose set (see section A.1). The DRM Agent MUST reject the RO if the <signature> element over the <rights>
element has been generated by an entity other than an RI or an LRM. The following figure illustrates the Copy RO operation.

OMA-TS-SCE_A2A-V1_0-20110705-A Page 55 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

Figure 9: Copy RO Operation

In order for this operation to take place, the following MUST be performed:

1. The DRM Requester performs the following:
a. It checks if the RO has the <copy> permission, and that the <copy> permission was not lost. If the <copy>

permission is not present or the <copy> permission was lost, the Copy RO operation is terminated.
Otherwise, the following is performed:

i. If there is a <system> constraint, the DRM Requester checks the <context> child element(s) of the
<system> constraint. If no <context> child element identifies the (A2A) Copy RO operation, the
Copy RO operation is terminated.

ii. If there is a <count> constraint, then it checks the current count value in the state information of
the RO. If the current copy count is 0, the DRM Requester terminates the Copy RO operation.
Otherwise, it decrements the current copy count value in the state information of the RO.

b. It checks the entity type that created the RO. If an RI created the RO, the DRM Requester proceeds to step
1.d.

c. If the LRM’s certificate does not have the localRightsManagerDomain extended key purpose (see [SCE-
LRM]), the Copy RO operation is terminated.

d. It checks its User Domain Authorization ([SCE-DOM]). If the User Domain Authorization is expired, the
Copy RO operation is terminated.

e. It checks if the RO contains a <userDomain> constraint. If there is no <userDomain> constraint, it
terminates the Copy RO operation.

2. The DRM Requester generates a CopyRoRequest with the information for the RO being Copied to the DRM Agent.
3. The DRM Requester sends the CopyRoRequest to the DRM Agent, applying the replay protection mechanism

described in section 7.3.
4. The DRM Agent processes the request as follows:

a. It processes the request for replay as described in section 7.3.
b. It verifies the integrity of the request. If the integrity check fails, the DRM Agent sets

CopyRoResponse.Status to IntegrityVerificationFailed and proceeds to step 5.
c. It validates the fields of the CopyRoRequest. If any field is invalid, the DRM Agent sets

CopyRoResponse.Status to InvalidField and proceeds to step 5.
d. It verifies the signature on the RO, including the SourceCertificateChain field. If any of the verifications

fails, the DRM Agent sets CopyRoResponse.Status to InvalidRightsObject and proceeds to step 5.
e. It checks if it has a current record (whether installed or waiting to be installed) of an RO with the same

ROID. If the duplicate RO exists, the DRM Agent sets CopyRoResponse.Status to DuplicateRightsObject
and proceeds to step 5.

f. It checks that the RO has the <copy> permission. If it does not, the DRM Agent sets
CopyRoResponse.Status to InvalidRightsObject and proceeds to step 5.

g. It checks the entity that created the RO. If the RO was created by an RI, the DRM Requester proceeds to
step 4.h.

h. If the LRM’s certificate does not have the localRightsManagerDomain extended key purpose (see [SCE-
LRM]), the DRM Agent sets CopyRoResponse.Status to InvalidRightsObject and proceeds to step 5.

i. It checks if the RO has a <userDomain> constraint. If the constraint is not present, the DRM Agent sets
CopyROResponse.Status to InvalidRightsObject and proceeds to step 5.

OMA-TS-SCE_A2A-V1_0-20110705-A Page 56 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

j. It validates the UserDomainAuthorization for the DRM Requester. If the validation fails, the DRM Agent
sets CopyRoResponse.Status to InvalidRightsObject and proceeds to step 5. Validation MUST include the
following:

a. Verifying the signature
b. User Domain Authorization is not expired
c. Entity ID of User Domain Authorization matches ID of DRM Requester

k. It checks that the User Domain Authorization of the <party> element of the RO corresponds to the RI/LRM
that signed the <rights> element, and verifies the DEA’s signature on the User Domain Authorization. If
the correspondence check or DEA signature verification fails, the DRM Agent sets CopyRoResponse.Status
to InvalidRightsObject and proceeds to step 5.

l. It checks that the User Domain baseID of the <userDomainID> element within the User Domain
Authorization in the <party> element of the RO is the same as the User Domain baseID of the
<userDomainID> element within the UserDomainAuthorization field. If not, the DRM Agent sets
CopyRoResponse.Status to InvalidRightsObject and proceeds to step 5.

m. It checks that the User Domain generation of the UserDomainAuthorization field is greater or equal to the
User Domain generation of the User Domain Authorization in the <party> element of the RO. If not, the
DRM Agent sets CopyRoResponse.Status to InvalidRightsObject and proceeds to step 5.

n. If the DRM Agent is already a member of the User Domain, it checks that the User Domain generation of
the UserDomainAuthorization field is greater than or equal to the User Domain generation of the User
Domain Authorization in the <party> element of the RO. If not, the DRM Agent sets
CopyRoResponse.Status to LowUserDomainGeneration and proceeds to step 5.

o. It checks if it has enough room to install the RO. If it does not, it sets CopyRoResponse.Status to
NotEnoughSpace and proceeds to step 5.

p. It decrypts CopyRoRequest.Body.EncryptedRek.
q. Note 1: If the DRM Agent is already a member of the User Domain, it installs the RO per [DRM-v2.1]

except that the replay cache is not considered. When installed, this RO loses the <copy> permission, i.e. the
DRM Agent, acting as a DRM Requester, SHALL NOT Copy the RO to another DRM Agent. Note: if the
DRM Agent is not a member of the User Domain, it will not be able to fully decrypt the REK and install
the RO until it joins the User Domain and receives a copy of the UDK. If the User Domain Context ([SCE-
DOM]) has expired (as indicated by the User Domain Context Expiry Time) the DRM Agent MUST NOT
install the RO.
Note 2: if the RO is afterwards moved to another Device, the <copy> permission remains lost. The
information that the <copy> permission is lost is included in the State Information (via the permissionLost
field associated with the <copy> permission) that is transmitted via a Move RO transaction as described in
Section 9.7. This ensures that once an RO loses the <copy> permission, that permission remains lost, even
if the RO is transmitted via one or multiple Move RO transaction(s).

r. It sets CopyRoResponse.Status to Success.
5. The DRM Agent sends the CopyRoResponse to the DRM Requester, applying the replay protection mechanism

described in section 7.3.
6. The DRM Requester processes the response as follows:

a. It processes the response for replay as described in section 7.3.
b. It verifies the integrity of the response. If the integrity check failed, the DRM Requester MUST NOT

increment the copy counter, if any, of the state information, and MUST terminate the Copy RO operation.
c. If CopyRoResponse.Status is not Success, it determines if it can restart the Copy RO operation at step 2. If

it does not restart the operation, the DRM Requester performs the following:
i. If the <copy> permission had a <count> constraint, it increments the current copy counter of the

state information.
ii. It terminates the Copy RO operation.

d. At this point the Copy RO operation has successfully completed.

9.8.1 CopyRoRequest

A CopyRoRequest is sent as a protected request and its body is defined as follows:

Body(){
 timeStampPresent 1 bslbf
 rfu 7 bslbf

OMA-TS-SCE_A2A-V1_0-20110705-A Page 57 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

 RoAlias()
 SourceAlias()
 SourceID()
 if(timeStampPresent){
 TimeStamp()
 }
 RightsObjectContainer()
 EncryptedRek()
 CertificateChain()
 UserDomainAuthorization()
}

EncryptedRek(){
 EncryptedData() //Contains an encrypted REK
}

The fields are defined as follows:

• timeStampPresent – this is a boolean field, that if true, indicates that the source (RI or LRM) TimeStamp field is
present.

• rfu – this is a 7 bit field that is reserved for future use. When sending the request, MUST be set to 0. When processing
this field, its value MUST be ignored.

• RoAlias – this field contains an optional alias for the RO. It is defined in section 9.7.1.
• DomainAlias – this field contains an optional alias for the domain if the RO is a domain RO. It is defined in section

9.7.1.
• SourceAlias – this field contains an optional alias for the Rights Issuer or LRM that created the RO. It is defined in

section 9.7.1.
• SourceID – this field contains the identity of the Rights Issuer or LRM that created the RO. It is defined in section

9.7.1.
• RightsObjectContainer – this field contains an RO as defined in section 8.19.
• EncryptedRek – this field contains an REK that has been encrypted twice. The REK is first encrypted with the UDK

(for the User Domain) using [AES-WRAP] and then the wrapped REK is encrypted with the SK using the negotiated
algorithm. The field is of type EncryptedData which is defined in section 8.11. A Rek field is defined in section 9.7.1.

• TimeStamp – this field constains the timestamp of the Rights Issuer or LRM that created the RO. It is defined in
section 9.7.1.

• CertificateChain – this field contains the certificate chain for the Rights Issuer or LRM that created the RO. This field
is defined in section 8.8.

• UserDomainAuthorization – this field contains the User Domain Authorization for the DRM Requester.

9.8.2 CopyRoResponse

A CopyRoResponse is sent as a protected response. The following table lists the valid Status values for this response.

Table 16: CopyRoResponse Status Values

Status Values

Success

InvalidField

InvalidRightsObject
DuplicateRightsObject
NotEnoughSpace

IntegrityVerificationFailed

The body of a CopyRoResponse is empty and is defined as follows:

OMA-TS-SCE_A2A-V1_0-20110705-A Page 58 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

Body(){
}

9.9 Share RO Operation

The Share RO operation is used by the DRM Requester to do Ad Hoc Sharing of a RO. This operation MUST take place
using a SAC. This operation MUST NOT be performed if the DRM Requester’s certificate does not have an extKeyUsage
extension with oma-kp-sceDrmAgent key purpose set or the DRM Agent’s certificate does not have an extKeyUsage
extension with oma-kp-sceDrmAgent key purpose set (see section A.1). The DRM Agent MUST reject the RO if the
<signature> element over the <rights> element has been generated by an entity other than an RI or an LRM. The following
figure illustrates the Share RO operation.

Figure 10: Share RO Operation

In order for this operation to take place, the following MUST be performed:

1. The DRM Requester checks if the RO has the <adhoc-share> permission and any constraints. If the RO cannot be
Ad Hoc Shared, the Share RO operation is terminated. In particular, the DRM Requester MUST check the
following:

a. If the <banning-interval> constraint is present, then it ensures that the banning interval timer for this DRM
Agent has elapsed. If the banning interval timer has elapsed, then the DRM Requester starts the banning
interval timer for this DRM Agent with the value of the <banning-interval> constraint.

b. If the <max-concurrent> constraint is present, then it ensures that the number of DRM Agents it is currently
performing Adhoc Sharing with is less than the <max-concurrent> value. If the number of DRM Agents is
less, then the DRM Requester increments the concurrent counter of DRM Agents for this RO.

2. The DRM Requester generates a ShareRoRequest.
3. The DRM Requester sends the ShareRoRequest to the DRM Agent, applying the replay protection mechanism

described in section 7.3.
4. The DRM Agent processes the request as follows:

a. It processes the request for replay as described in section 7.3.
b. It validates the fields of the ShareRoRequest. If any field is invalid, it sets ShareRoResponse.Status to

InvalidField and proceeds to step 5.
c. It verifies the integrity of the request. If the integrity check fails, it sets ShareRoResponse.Status to

IntegrityVerificationFailed and proceeds to step 5.
d. It verifies the signature on the RO, including the SourceCertificateChain field. If any of the verifications

fails, it sets ShareRoResponse.Status to InvalidRightsObject and proceeds to step 5.
e. It checks that the RO has the <adhoc-share> permission. If it does not, it sets ShareRoResponse.Status to

InvalidRightsObject and proceeds to step 5.
f. It checks that the RO contains a <cekHash> element in the <context> element in the <party> element. If it

doesn't, the DRM Agent sets ShareROResponse.Status to InvalidRightsObject and proceeds to step 5.
g. It calculates, using the CEKs and CEK hashes, the CEKhash as defined in [SCE-REL]. If the value is

different from the value in the <cekHash> element, the DRM Agent sets ShareROResponse.Status to
InvalidRightsObject and proceeds to step 5.

OMA-TS-SCE_A2A-V1_0-20110705-A Page 59 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

h. It checks if it has enough room to install the RO. If it does not, it sets ShareRoResponse.Status to
NotEnoughSpace and proceeds to step 5.

i. It installs the RO per [DRM-DRM-V2.1] except that the replay cache is not considered. It marks the RO as
“shared”, meaning that only the permissions under the <adhoc-share> permission can be granted.

j. It sets ShareRoResponse.Status to Success.
5. The DRM Agent sends the ShareRoResponse to the DRM Requester, applying the replay protection mechanism

described in section 7.3.
6. The DRM Requester processes the response as follows:

a. It processes the response for replay as described in section 7.3.
b. If ShareRoResponse.Status is not Success, it determines if it can restart the Share RO operation at step 2.

If it does not restart the operation, it performs the following:
i. If the RO contains the <banning-interval> constraint, it causes the banning interval timer for this

DRM Agent to elapse.
ii. If the RO contains the <max-concurrent> constraint, it decrements the concurrent counter of DRM

Agents.
iii. It terminates the Share RO operation.

c. At this point the Share RO operation has successfully completed.

9.9.1 ShareRoRequest

A ShareRoRequest is sent as a protected request and its body is defined as follows:

Body(){
 RightsObjectContainer()
 CertificateChain()
 CekInfo()
}

The fields are defined as follows:

• RightsObjectContainer – this field contains a RO as defined in section 8.19.
• CertificateChain – this field contains the certificate chain for the Rights Issuer or LRM that created the original RO.

This field is defined in section 8.8
• CekInfo – this field contains, per asset, the Content Encryption Key (CEK) , encrypted with the SK, or the SHA-1

hash over the CEK. The field is defined in section 8.19. Note that the encrypted CEKs are only delivered for those
assets that are Ad Hoc Shared.

9.9.2 ShareRoResponse

A ShareRoResponse is sent as a protected response. The following table lists the valid Status values for this response.

Table 17: ShareRoResponse Status Values

Status Values

Success

InvalidField

NotEnoughSpace
IntegrityVerificationFailed

InvalidRightsObject

The body of a ShareRoResponse is empty and is defined as follows:

OMA-TS-SCE_A2A-V1_0-20110705-A Page 60 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

Body(){
}

9.10 Lend RO Operation

The Lend RO operation is used by the DRM Requester to do Lending of a RO. This operation MUST take place using a
SAC. This operation MUST NOT be performed if the DRM Requester’s certificate does not have an extKeyUsage
extension with oma-kp-sceDrmAgent key purpose set or the DRM Agent’s certificate does not have an extKeyUsage
extension with oma-kp-sceDrmAgent key purpose set (see section A.1). The DRM Agent MUST reject the RO if the
<signature> element over the <rights> element has been generated by an entity other than an RI or an LRM. The following
figure illustrates the Lend RO operation.

Figure 11: Lend RO Operation

In order for this operation to take place, the following MUST be performed:

1. The DRM Requester does the following:
a. It checks if the RO has the <lend> permission and any constraints. If the RO contains stateful constraints

for consumption by the DRM Requester or if the RO cannot be Lent, the Lend RO operation is terminated.
b. It marks the RO as unusable.
c. It creates a Lending context for this RO that includes the ROID, the lendingHandle, the DRM Agent’s ID

and a lending interval timer.
d. It generates a random lendingHandle and copies it to the Lending context and the LendRoRequest.

2. It starts the lending interval timer in the Lending context using the value of the <lending-interval> constraint. Note
that once this lending interval timer expires, the DRM Requester marks the RO as usable again.

3. The DRM Requester generates a LendRoRequest.
4. The DRM Requester sends the LendRoRequest to the DRM Agent, applying the replay protection mechanism

described in section 7.3.
5. The DRM Agent processes the request as follows:

a. It processes the request for replay as described in section 7.3.
b. It validates the fields of the LendRoRequest. If any field is invalid, it sets LendRoResponse.Status to

InvalidField and proceeds to step 6.
c. It verifies the integrity of the request. If the integrity check fails, it sets LendRoResponse.Status to

IntegrityVerificationFailed and proceeds to step 6.
d. It verifies the signature on the RO, including the SourceCertificateChain field. If any of the verifications

fails, it sets LendRoResponse.Status to InvalidRightsObject and proceeds to step 6.
e. It checks that the RO has the <lend> permission. If it does not, it sets LendRoResponse.Status to

InvalidRightsObject and proceeds to step 6.
f. It checks that the RO does not contain stateful constraints for consumption by the DRM Requester. If it

does, it sets LendRoResponse.Status to InvalidRightsObject and proceeds to step 6.
g. It checks that the RO contains a <cekHash> element in the <context> element in the <party> element. If it

doesn't, the DRM Agent sets LendROResponse.Status to InvalidRightsObject and proceeds to step 6.

OMA-TS-SCE_A2A-V1_0-20110705-A Page 61 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

h. It calculates, using the CEKs and CEK hashes, the CEKhash as defined in [SCE-REL]. If the value is
different from the value in the <cekHash> element, the DRM Agent sets LendROResponse.Status to
InvalidRightsObject and proceeds to step 6.

i. It checks that the <lend> permission has an <lending-interval> constraint. If it does not, it sets
LendRoResponse.Status to InvalidRightsObject and proceeds to step 6.

j. It checks if it has enough room to install the RO. If it does not, it sets LendRoResponse.Status to
NotEnoughSpace and proceeds to step 6.

k. It installs the RO per [DRM-DRM-V2.1] except that the replay cache is not considered. It marks the RO as
“lent”.

l. It creates a Lent context for this RO that includes the ROID, the lendingHandle, the DRM Requester’s ID
and a lending timer.

m. It starts the lending timer in the Lent context with the value of the <lending-interval> constraint of the
<lend> permission.

n. It sets LendRoResponse.Status to Success.
6. The DRM Agent sends the LendRoResponse to the DRM Requester, applying the replay protection mechanism

described in section 7.3.
7. The DRM Requester processes the response as follows:

a. It processes the response for replay as described in section 7.3.
b. If LendRoResponse.Status is not Success, it determines if it can restart the Lend RO operation at step 2. If

it does not restart the operation, the DRM Requester performs the following:
i. It marks the RO as usable.
ii. It removes the Lending context, stopping the lending interval timer.

iii. It terminates the Lend RO operation.
c. At this point the Lend RO operation has successfully completed.

After the successful execution of the Lend RO operation, the DRM Agent MAY grant the following permissions (if present
and subject to any constraints): <play>, <display> and <execute>. Other permissions that are present MUST NOT be granted.

9.10.1 LendRoRequest

A LendRoRequest is sent as a protected request and its body is defined as follows:

Body(){
 lendingHandle 32 uimsbf
 RightsObjectContainer()
 CertificateChain()
 CekInfo()
}

The fields are defined as follows:

• lendingHandle – this field contains a 32 bit unsigned integer assigned by the DRM Requester to identify the RO being
Lent. The DRM Requester can use this value in the Lend Release operation (see section 9.11) to release the RO.

• RightsObjectContainer – this field contains a RO as defined in section 8.19.
• CertificateChain – this field contains the certificate chain for the Rights Issuer or LRM that created the original RO.

This field is defined in section 8.8
• CekInfo – this field contains, per asset, the Content Encryption Key (CEK), encrypted with the SK, or the SHA-1 hash

over the CEK. The field is defined in section 8.19. Note that the encrypted CEKs are only delivered for those assets
that are Lent.

9.10.2 LendRoResponse

A LendRoResponse is sent as a protected response. The following table lists the valid Status values for this response.

Table 18: LendRoResponse Status Values

Status Values

Success

OMA-TS-SCE_A2A-V1_0-20110705-A Page 62 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

Status Values

InvalidField

IntegrityVerificationFailed

InvalidRightsObject
NotEnoughSpace

The body of a LendRoResponse is empty and is defined as follows:

Body(){
}

9.11 Lend Release Operation

The Lend Release operation is used by the DRM Requester to release a RO it had previously received via a Lend operation
(see section 9.10). This operation MUST take place using a SAC. This operation MUST NOT be performed if the DRM
Requester’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set or the
DRM Agent’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set (see
section A.1). Note that for this operation to succeed, the DRM Requester (for this operation) MUST be the DRM Agent that
received the Lent RO and the DRM Agent (for this operation) MUST be the DRM Requester that Lent the RO. The following
figure illustrates the Lend Release operation.

Figure 12: Lend Release Operation

In order for this operation to take place, the following MUST be performed:

1. The DRM Requester generates a LendReleaseRequest using the data from the Lent context for the RO.
2. The DRM Requester sends the LendReleaseRequest to the DRM Agent, applying the replay protection mechanism

described in section 7.3.
3. The DRM Agent processes the request as follows:

a. It processes the request for replay as described in section 7.3.
b. It validates the fields of the LendReleaseRequest. If any field is invalid, it sets LendReleaseResponse.Status

to InvalidField and proceeds to step 4.
c. It verifies the integrity of the request. If the integrity check fails, it sets LendReleaseResponse.Status to

IntegrityVerificationFailed and proceeds to step 4.
d. It checks if it has a Lending context for the lendingHandle and DRM Requester ID. If it does not have a

Lending context, it sets LendReleaseResponse.Status to UnknownHandle and proceeds to step 4.
e. It marks the RO corresponding to the lendingHandle as usable and removes the Lending context.
f. It sets LendReleaseResponse.Status to Success.

4. The DRM Agent sends the LendReleaseResponse to the DRM Requester, applying the replay protection mechanism
described in section 7.3.

5. The DRM Requester processes the response as follows:
a. It processes the response for replay as described in section 7.3.

OMA-TS-SCE_A2A-V1_0-20110705-A Page 63 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

b. If LendReleaseResponse.Status is not Success, it determines if it can restart the Lend Release RO
operation at step 1. If it does not restart the operation, it terminates the Lend Release operation.

c. It deletes the Lent RO it just released and removes the Lent context.
d. At this point the Lend Release operation has successfully completed.

9.11.1 LendReleaseRequest

A LendReleaseRequest is sent as a protected request and its body is defined as follows:

Body(){
 lendingHandle 32 uimsbf
}

The fields are defined as follows:

• lendingHandle – this field contains a 32 bit unsigned integer that was previously assigned by the DRM Requester (that
Lent the RO) to identify the RO being released.

9.11.2 LendReleaseResponse

A LendReleaseResponse is sent as a protected response. The following table lists the valid Status values for this response.

Table 19: LendReleaseResponse Status Values

Status Values

Success

InvalidField

IntegrityVerificationFailed

UnknownHandle

The body of a LendReleaseResponse is empty and is defined as follows:

Body(){
}

9.11.3 Lending Expiration

If the DRM Requester does not release the Lent RO and the lending timer of the corresponding Lent context expires, it
MUST perform the following:

1. Delete the Lent RO.

2. Remove the Lent context.

9.12 Render Operation

The Render operation is used by the DRM Requester to securely deliver the CEK for the DRM Content to the Render Agent
so that the DRM Content can be rendered remotely. The DRM Content is identified by its Asset ID (see section 8.18). This
operation MUST take place using a SAC. All ROs are implicitly allowed to be rendered remotely. Although not within the
scope of this specification, it is assumed that the Render Agent will lose knowledge of the CEK after the rendering of the
DRM Content is complete. In addition, the DRM Requester MUST ensure that the rendering application on the Render Client
is trustworthy and securely communicates the rendering status to the DRM Requester.

This operation MUST NOT be performed if the DRM Requester’s certificate does not have an extKeyUsage extension
with oma-kp-sceRenderSource key purpose set or the Render Agent’s certificate does not have an extKeyUsage
extension with oma-kp-sceRenderAgent key purpose set (see section A.1). The following figure illustrates the Render
operation.

OMA-TS-SCE_A2A-V1_0-20110705-A Page 64 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

Figure 13: Render Operation

In order for this operation to take place, the following MUST be performed:

1. The DRM Requester generates a RenderRequest.
2. The DRM Requester sends the RenderRequest to the Render Agent, applying the replay protection mechanism

described in section 7.3.
3. The Render Agent processes the request as follows:

a. It processes the request for replay as described in section 7.3.
b. It validates the fields of the RenderRequest. If any field is invalid, it sets RenderResponse.Status to

InvalidField and proceeds to step 4.
c. It verifies the integrity of the request. If the integrity check fails, it sets RenderResponse.Status to

IntegrityVerificationFailed and proceeds to step 4.
d. It decrypts the CEK.
e. It creates a Render context with the renderHandle, AssetId, CEK and the DRM Requester ID.
f. It sets RenderResponse.Status to Success.

4. The Render Agent sends the RenderResponse to the DRM Requester, applying the replay protection mechanism
described in section 7.3.

5. The DRM Requester processes the response as follows:
a. It processes the response for replay as described in section 7.3.
b. If RenderResponse.Status is not Success, it determines if it can restart the Render operation at step 1. If it

does not restart the operation, it terminates the Render operation.
c. It creates a Render context, associating the renderHandle, AssetID and Render Agent ID.
d. At this point the Render operation has successfully completed.

9.12.1 RenderRequest

A RenderRequest is sent as a protected request and its body is defined as follows:

Body(){
 renderHandle 32 uimsbf
 AssetID()
 EncryptedCek()
}

The fields are defined as follows:

• renderHandle – this field contains a 32 bit unsigned integer assigned by the DRM Requester to identify the rendering
of the DRM Content. AssetID – this field contains the identification of the DRM Content that the Render Agent
should render. It is defined in section 8.18.

• EncryptedCek – this field contains the Content Encryption Key (CEK) , encrypted with the SK, for decrypting the
DRM Content. It is defined in section 8.12.

OMA-TS-SCE_A2A-V1_0-20110705-A Page 65 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

9.12.2 RenderResponse

A RenderResponse is sent as a protected response. The following table lists the valid Status values for this response.

Table 20: RenderResponse Status Values

Status Values

Success

InvalidField

IntegrityVerificationFailed

The body of a RenderResponse is empty and is defined as follows:

Body(){
}

OMA-TS-SCE_A2A-V1_0-20110705-A Page 66 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

10. SourceCertificateChain Revocation Checking

When receiving an RO via an instance of a Move RO transaction, Copy RO operation, Share RO operation, or Lend RO
operation, the DRM Agent MAY refuse to install the RO or consume the RO for the first time if, based on available CRL or
OCSP information the (RI or LRM) entity that generated the <signature> element over the <rights> element has been
revoked. The decision to implement this functionality is left to the Trust Authority.

Such CRL MAY be acquired by the Device by using the Get CRL operation (see section 9.6) or by other means. Such OCSP
response MAY be acquired during registration of the Device with the specific entity. Such OCSP response MAY be acquired
through unspecified communication of the Device with another Device or other entity. This checking of the revocation status
of the source entity identified by the SourceCertificateChain field is in addition to verification of the signature on the RO,
including the SourceCertificateChain field as specified within the processing of the transaction or operation (see section 9).

Note that to be sure that the DRM Requester does not inadvertently lose access to the content received via one of the named
transactions or operations, a fresh exchange between the DRM Requester and DRM Agent of the latest revocation
information MAY be performed prior to completing the transaction or operation.

OMA-TS-SCE_A2A-V1_0-20110705-A Page 67 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

11. Security Considerations (Informative)

In addition to the Security Considerations of [DRM-DRM-v2.1], several additional factors have to be considered when
allowing the features of this specification, as described below. This list is not claimed to be exhaustive.

11.1 Entity Compromise

11.1.1 DRM Requester Compromise

A compromised DRM Requester may result in any of the following:

• Duplication of ROs – the DRM Requester does not remove Moved ROs or allows the restoration of ROs that have
been Moved. This may not require actual restoration of the RO, i.e. only resetting of state, in the case of Partial
Rights Moves.

• Move of Duplicated ROs – Rights duplicated as above are Moved by an unknown-compromised DRM Requester.
Because of the allowance of Partial Rights Move, multiple Moves (even to the same DRM Agent) may not be
considered suspicious.

11.1.2 DRM Agent Compromise

A compromised DRM Agent may result in any of the following:

• Duplication of ROs – the DRM Agent does not remove Shared or Lent ROs after the Sharing or Lending time has
expired.

11.1.3 Render Agent Compromise

A compromised Render Agent may result in any of the following:

• Disclosure of the CEK.

• Disclosure of Protected Content – the Render Agent releases the plaintext DRM Content to a compromised rendering
application on the Render Client.

11.2 DRM Time

Although Devices implementing this specification are required to support DRM Time, there is no explicit checking of DRM
Time between a DRM Requester and a DRM Agent. Since Devices are not trusted sources of time, it is possible that the
DRM Requester’s DRM Time and the DRM/Render Agent’s DRM Time will be different when A2A functionality is
performed.

11.3 CRL Distribution

Revocation status checking depends on the timely distribution of CRLs. Without such distribution, Devices and Render
Clients may not be aware that an entity has been revoked. Note that an entity may have a valid and current CRL but not be
aware that a new CRL is available.

OMA-TS-SCE_A2A-V1_0-20110705-A Page 68 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

Appendix A. Certificates and CRLs

A.1 Certificate Profiles and Requirements
The profile for DRM/Render Agent certificates used in this specification follows the profile of the DRM Agent Certificates in
[DRM-DRM-v2.1] with the exceptions and additions as described below.

Table 21: DRM Agent Certificate Profile

Fields Values

Extensions, extKeyUsage The extKeyUsage extension SHALL be present and MUST contain the oma-
kp-drmAgent key purpose object identifier as stated in [DRM-DRM-v2.1]. In
addition, the following key purpose object identifier MUST be present:

oma-kp-sceDrmAgent OBJECT IDENTIFIER ::= {oma-kp 4}

If the DRM Agent is allowed to remotely render via a Render Agent, the following
key purpose object identifier MUST be present:

oma- kp - sceRenderSource OBJECT IDENTIFIER ::= {oma - kp 5}
Extensions, cRLDistributionPoints The cRLDistributionPoints extension SHALL be present. It MUST have at

least one DistributionPoint that in turn MUST have a
distributionPoint with a URL of where to obtain a CRL.

Table 22: Render Agent Certificate Profile

Fields Values

Extensions, extKeyUsage The extKeyUsage extension SHALL be present and the following key purpose
object identifier MUST be present:

oma-kp-sceRenderAgent OBJECT IDENTIFIER ::= {oma-kp 6}

Extensions, cRLDistributionPoints The cRLDistributionPoints extension SHALL be present. It MUST have at
least one DistributionPoint that in turn MUST have a
distributionPoint with a URL of where to obtain a CRL.

If allowed by the trust model, a Device MAY contain both a DRM Agent and a Render Agent. In that case, the certificate
MUST contain the oma-kp-sceDrmAgent, the oma-kp-drmAgent and the oma-kp-sceRenderAgent key purpose.

A.2 CRL Profiles and Requirements
The profile for CRLs SHALL follow the CRL profile as stated in [SRM-TS].

OMA-TS-SCE_A2A-V1_0-20110705-A Page 69 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

Appendix B. Static Conformance Requirements (Normative)

The notation used in this appendix is specified in [SCR-RULES].

B.1 SCR for DRM Agent
Item Function Reference Status Requirement

A2A-DA-001 Support CRLs 5.2.1 M

A2A-DA-002 Support replay protection. 7.3 M

A2A-DA-003 Support the A2A Hello
operation

9.1 M

A2A-DA-004 Support the MAKE
transaction

9.2 M A2A-DA-001

A2A-DA-005 Support AEA encryption 9.2.7 M A2A-DA-004

A2A-DA-006 Support the Change SAC
operation

9.3 O

A2A-DA-007 Support the CRL Query
operation

9.4 M A2A-DA-001

A2A-DA-008 Support the Put CRL
operation

9.5 M A2A-DA-001

A2A-DA-009 Support the Get CRL
operation

9.6 M A2A-DA-001

A2A-DA-010 Support the Move RO
operation

9.7 M A2A-DA-004

A2A-DA-011 Support checking the oma-
kp-sceDrmAgent key
purpose of the DRM
Requester

9.7, 9.8, 9.9,
9.10

M

A2A-DA-012 Support the Share RO
operation

9.8 M A2A-DA-004

A2A-DA-013 Support the Lend RO
operation

9.9 M A2A-DA-004

A2A-DA-014 Support the Lend Release
operation

9.10 M A2A-DA-004

B.2 SCR for DRM Requester
Item Function Reference Status Requirement

A2A-DR-001 Support CRLs 5.2.1 M

A2A-DR-002 Support replay protection. 7.3 M

A2A-DR-003 Support the A2A Hello
operation

9.1 M

A2A-DR-004 Support the MAKE
transaction

9.2 M A2A-DR-001

A2A-DR-005 Support AEA encryption 9.2.7 M A2A-DR-004

A2A-DR-006 Support the Change SAC
operation

9.3 O

A2A-DR-007 Support the CRL Query
operation

9.4 M A2A-DR-001

OMA-TS-SCE_A2A-V1_0-20110705-A Page 70 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

Item Function Reference Status Requirement

A2A-DR-008 Support the Put CRL
operation

9.5 M A2A-DR-001

A2A-DR-009 Support the Get CRL
operation

9.6 M A2A-DR-001

A2A-DR-010 Support the Move RO
operation

9.7 M A2A-DR-004

A2A-DR-011 Support checking the oma-
kp-sceDrmAgent key
purpose of the DRM Agent

9.7, 9.8, 9.9,
9.10

M

A2A-DR-012 Support the Share RO
operation

9.8 M A2A-DR-004

A2A-DR-013 Support the Lend RO
operation

9.9 M A2A-DR-004

A2A-DR-014 Support the Lend Release
operation

9.10 M A2A-DR-004

A2A-DR-015 Support the Render operation 9.11 O A2A-DR-004

A2A-DR-016 Support checking the oma-
kp-sceRenderAgent key
purpose of the Render Agent

 O

B.3 SCR for Render Agent
Item Function Reference Status Requirement

A2A-RA-001 Support CRLs 5.2.1 M

A2A-RA-002 Support replay protection. 7.3 M

A2A-RA-003 Support the A2A Hello
operation

9.1 M

A2A-RA -004 Support the MAKE
transaction

9.2 M A2A-RA-001

A2A-RA -005 Support AEA encryption 9.2.7 M A2A-RA-004

A2A-RA -006 Support the Change SAC
operation

9.3 O A2A-RA-001

A2A-RA -007 Support the CRL Query
operation

9.4 M A2A-RA-001

A2A-RA -008 Support the Put CRL
operation

9.5 M A2A-RA-001

A2A-RA -009 Support the Get CRL
operation

9.6 M A2A-RA-001

A2A-RA -010 Support the Render operation 9.11 M A2A-RA-004

A2A-RA -011 Support checking the oma-
kp-sceRenderSource
key purpose of the DRM
Requester

9.11, 9.12 M

OMA-TS-SCE_A2A-V1_0-20110705-A Page 71 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

Appendix C. Examble A2A Message (Informative)

Below are some sample A2A Messages. The last row contains the values (in hex). The second to the last row contains the
offset (in decimal) from the beginning of the message.

The following is an example A2AHelloRequest:

A2ARequest

MessageId Body ExtensionsContainer

Version TrustAnchorAndEntityIdPairList nbrOfEntries

nbrOfEntries TrustAnchor EntityId

length octets length octets

0 1 2 3 4 – 23 24 25 – 44 45

0x00 0x10 0x01 0x14 hash 0x14 hash 0x00

The following is an example CrlQueryRequest:

A2ARequest

MessageId ExtensionsContainer

nbrOfEntries

0 5

0x08 0x00

The following is an example LendReleaseRequest:

A2AProtectedRequest

MessageId replayCounter Body ExtensionsContainer Hmac

lendingHandle nbrOfEntries

0 1 – 4 5 – 8 9 10 – 29

0x14 0x12345678 0x98765432 0x00 hmac

The following is an example CrlQueryResponse with Status = Success:

A2AResponse

MessageId Status Body ExtensionsContainer

CrlIdList

nbrOfEntries CrlIssuerId CrlNumber

length octets nbrOfEntries

0 1 2 3 – 22 23 24 – 25 26

0x09 0x00 0x01 hash 0x02 0x1234 0x00

The following is an example PutCrlResponse with Status = Success:

OMA-TS-SCE_A2A-V1_0-20110705-A Page 72 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

A2AResponse

MessageId Status ExtensionsContainer

nbrOfEntries

0 1 2

0x0B 0x00 0x00

The following is an example A2AHelloResponse with Status = InvalidField:

A2AResponse

MessageId Status ExtensionsContainer

nbrOfEntries

0 1 5

0x01 0x15 0x00

The following is an example LendReleaseResponse with Status = Success:

A2AProtectedResponse

MessageId replayCounter Status ExtensionsContainer Hmac

nbrOfEntries

0 1 – 4 5 6 7 – 26

0x0B 0x23455432 0x00 0x00 hmac

The following is an example PutRoResponse with Status = InvalidField:

A2AProtectedResponse

MessageId replayCounter Status ExtensionsContainer Hmac

nbrOfEntries

0 1 – 4 5 6 7 – 26

0x15 0x34566543 0x15 0x00 hmac

OMA-TS-SCE_A2A-V1_0-20110705-A Page 73 (73)

 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

Appendix D. Change History (Informative)

D.1 Approved Version History
Reference Date Description

OMA-TS-SCE_A2A-V1_0-20110705-A 05 Jul 2011 Status changed to Approved by TP:

 OMA-TP-2011-0233-INP_SCE_V1_0_ERP_for_Final_Approval

