

 RESTful Network API for <Functional Area>
Draft Version x.y – dd Mmm 2015

Specification Provider
PROVIDER-TS-REST_NetAPI_<FuncArea>-Vx_x-2015mmdd-D

Use Terms

This specification template (“template”) is provided free of charge by the Open Mobile Alliance
for your use and modification under the following conditions:

You will not publish nor use the text in this template other than for your use in development of
your own API Technical specification document (“document”).

You are not allowed to use the Open Mobile Alliance's name nor any of the Open Mobile Alliance's
service marks, certification marks or trademarks, unless you have received the written
permission of the Open Mobile Alliance prior to any such use.

THIS TEMPLATE IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS"
BASIS.

The Open Mobile Alliance has not conducted an independent intellectual property rights ("IPR")
review of this template and the information contained herein, and makes no representations or
warranties regarding third party IPR, including without limitation patents, copyrights or trade
secret rights. This template may contain inventions for which you must obtain licenses from
third parties before making, using or selling the inventions.

The Use Terms set forth in this section may be removed in the final version of your document.

Delete this comment. >>

 Page 2 (36)

<< In the flow text in this template, yellow marks are used for placeholders that need to be
replaced by real-world text, and cyan marks are used for explanations that need to be deleted in
the final document.

This is a template, intended to be used only for RESTful Network application programming
interface (API) specifications.

Note regarding the font style to be used for Technical Specifications:

- for main body text use Times New Roman font size 10,,
- in tables, generally Arial font size 10 should be used, however if necessary to minimize wrapping
other fonts of the Arial family such as Arial Narrow font size 10 or Arial font size 9 can be
considered also.
- for XML/JSON examples use ‘listing’ paragraph style

Note regarding the references used in Technical specifications:

- references to external documents SHOULD NOT be in hyperlink style,
- for internal references to particular sections, cross-references SHOULD be used.

Delete this comment. >>

 Page 3 (36)

Contents
1. SCOPE .. 5

2. REFERENCES .. 6
2.1 NORMATIVE REFERENCES .. 6
2.2 INFORMATIVE REFERENCES ... 6

3. TERMINOLOGY AND CONVENTIONS .. 7
3.1 CONVENTIONS ... 7
3.2 DEFINITIONS .. 7
3.3 ABBREVIATIONS .. 7

4. INTRODUCTION ... 9
4.1 VERSION 1.0 .. 9

5. [FUNCTIONAL AREA] API DEFINITION ... 10
5.1 RESOURCES SUMMARY ... 10
5.2 DATA TYPES .. 14

5.2.1 XML Namespaces .. 14
5.2.2 Structures ... 14

5.2.2.1 Type: [Type Name (without Light-weight Resources)] .. 15
5.2.2.2 Type: [Type Name (with Light-weight Resources)] ... 16

5.2.3 Enumerations ... 16
5.2.3.1 Enumeration: [Enumeration Name] .. 16

5.2.4 Values of the Link “rel” attribute ... 17
5.3 SEQUENCE DIAGRAMS .. 17

5.3.1 [Title of flow scenario] .. 17
6. DETAILED SPECIFICATION OF THE RESOURCES ... 20

6.1 RESOURCE: [DESCRIPTION OF THE RESOURCE]... 20
6.1.1 Request URL variables .. 21

6.1.1.1 Light-weight Resource relative paths ... 21
6.1.2 Response Codes and Error Handling ... 21
6.1.3 GET .. 22

6.1.3.1 Example 1: [Example title] (Informative) ... 22
6.1.3.1.1 Request ... 23
6.1.3.1.2 Response... 23

6.1.3.2 Example 2: [Example title] (Informative) ... 23
6.1.3.2.1 Request ... 23
6.1.3.2.2 Response... 23

6.1.4 PUT .. 24
6.1.4.1 Example 1: [Example title] (Informative) ... 24

6.1.4.1.1 Request ... 24
6.1.4.1.2 Response... 24

6.1.4.2 Example 2: [Example title] (Informative) ... 24
6.1.4.2.1 Request ... 24
6.1.4.2.2 Response... 24

6.1.5 POST .. 24
6.1.5.1 Example 1: [Example title] (Informative) ... 25

6.1.5.1.1 Request ... 25
6.1.5.1.2 Response... 25

6.1.5.2 Example 2: [Example title] (Informative) ... 25
6.1.5.2.1 Request ... 25
6.1.5.2.2 Response... 25

6.1.6 DELETE .. 25
6.1.6.1 Example 1: [Example title] (Informative) ... 26

6.1.6.1.1 Request ... 26
6.1.6.1.2 Response... 26

6.1.6.2 Example 2: [Example title] (Informative) ... 26
6.1.6.2.1 Request ... 26
6.1.6.2.2 Response... 26

 Page 4 (36)

7. FAULT DEFINITIONS .. 27
7.1 SERVICE EXCEPTIONS ... 27

7.1.1 SVC[code number]: [Text for exception header] ... 27
7.2 POLICY EXCEPTIONS .. 27

7.2.1 POL[code number]: [Text for exception header] ... 28
7.2.1 POL1003: Refund exceeds original charge amount ... 28

APPENDIX A. CHANGE HISTORY (INFORMATIVE) .. 29
A.1 VERSION 1.0 HISTORY .. 29

APPENDIX B. JSON EXAMPLES (INFORMATIVE) .. 30
B.1 [EXAMPLE TITLE] (SECTION [SECTION NUMBER CROSS REFERENCE]) ... 30

APPENDIX C. [BASELINE SPECIFICATION] OPERATIONS MAPPING (INFORMATIVE) 31

APPENDIX D. LIGHT-WEIGHT RESOURCES (INFORMATIVE) .. 32

APPENDIX E. AUTHORIZATION ASPECTS (NORMATIVE) ... 33
E.1 USE WITH OMA AUTHORIZATION FRAMEWORK FOR NETWORK APIS ... 33

E.1.1 Scope values .. 33
E.1.1.1 Definitions .. 33
E.1.1.2 Downscoping ... 34
E.1.1.3 Mapping with resources and methods .. 34

E.1.2 Use of ‘acr:auth’ .. 36

Figures
Figure 1 Resource structure defined by this specification.. 11

Figure 2 [Caption of this flow] .. 18

Figure 3 [Caption of this flow] .. 19

Tables
Table 1 [Baseline specification] operations mapping .. 31

 Page 5 (36)

1. Scope
<< Alternative 1: This is a suggestion for the introduction if there is a baseline specification. Use
either alternative 1 or alternative 2.>>

This specification defines a RESTful API for [Functional Area] using HTTP protocol bindings, based on [the baseline spec].

<< Alternative 2: This is a suggestion for the introduction if there is no baseline specification. Use
either alternative 1 or alternative 2.>>

This specification defines a RESTful API for [Functional Area] using HTTP protocol bindings.

 Page 6 (36)

2. References

2.1 Normative References
[BASELINE_REF] Baseline specification, if applicable, otherwise delete this reference.

[Autho4API_10] “Authorization Framework for Network APIs”, Open Mobile Alliance™, OMA-ER-Autho4API-V1_0,
URL: http://www.openmobilealliance.org/

[REST_NetAPI_ACR] “RESTful Network API for Anonymous Customer Reference Management ”, Open Mobile
Alliance™, OMA-TS-REST_NetAPI_ACR-V1_0, URL: http://www.openmobilealliance.org/

[REST_NetAPI_Common] “Common definitions for RESTful Network APIs”, Open Mobile Alliance™, OMA-TS-
REST_NetAPI_Common-V1_0, URL: http://www.openmobilealliance.org/

[REST_NetAPI_Notificatio
nChannel]

Include if the use of Notification Channel is supported, otherwise delete this reference. “RESTful
Network API for Notification Channel”, Open Mobile Alliance™, OMA-TS-
REST_NetAPI_NotificationChannel-V1_0, URL: http://www.openmobilealliance.org/

[REST_SUP_FUNCAREA] “XML schema for the RESTful Network API for [Functional Area]”, Open Mobile Alliance™, OMA-
SUP-XSD_rest_netapi_funcarea-V1_0, URL: http://www.openmobilealliance.org/

[RFC2119] “Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997,
URL:http://www.ietf.org/rfc/rfc2119.txt

[RFC2616] “Hypertext Transfer Protocol -- HTTP/1.1”, R. Fielding et. al, January 1999,
URL:http://www.ietf.org/rfc/rfc2616.txt

[RFC3966] “The tel URI for Telephone Numbers”, H.Schulzrinne, December 2004, URL:
http://www.ietf.org/rfc/rfc3966.txt

[RFC3986] “Uniform Resource Identifier (URI): Generic Syntax”, R. Fielding et. al, January 2005,
URL:http://www.ietf.org/rfc/rfc3986.txt

[RFC7159] “The JavaScript Object Notation (JSON) Data Interchange Format”, T. Bray, Ed., March 2014, URL
http://tools.ietf.org/rfc/rfc7159.txt

[XMLSchema1] W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures, URL:
http://www.w3.org/TR/xmlschema11-1/

[XMLSchema2] W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes, URL:
http://www.w3.org/TR/xmlschema11-2/

<< Add/Remove reference rows to this table as needed - DELETE This Row >>

2.2 Informative References
[OMADICT] “Dictionary for OMA Specifications”, Version 2.9, Open Mobile Alliance™,

OMA-ORG-Dictionary-V2_9, URL:http://www.openmobilealliance.org/

[REST_WP] “Guidelines for RESTful Network APIs”, Open Mobile Alliance™, OMA-WP-
Guidelines_for_RESTful_Network_APIs, URL:http://www.openmobilealliance.org/

<< Add/Remove reference rows to this table as needed - DELETE This Row >>

http://www.openmobilealliance.org/
http://www.openmobilealliance.org/
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/

 Page 7 (36)

3. Terminology and Conventions

3.1 Conventions
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be
informative.

3.2 Definitions
For the purpose of this TS, all definitions from the OMA Dictionary apply [OMADICT]. If the use of Notification Channel
and/or Light-weight Resources are supported, include also the definitions below, otherwise delete those that are not
applicable.

Client-side
Notification
URL

An HTTP URL exposed by a client, on which it is capable of receiving notifications and that can be used by the
client when subscribing to notifications.

Heavy-weight
Resource

A resource which is identified by a resource URL which is then used by HTTP methods to operate on the entire data
structure representing the resource. Include this definition if Light-weight Resources are supported, otherwise delete
it..

Light-weight
Resource

A subordinate resource of a Heavy-weight Resource which is identified by its own resource URL which is then used
by HTTP methods to operate on a part of the data structure representing the Heavy-weight Resource. The Light-
weight Resource URL can be seen as an extension of the Heavy-weight Resource URL.
There could be several levels of Light-weight Resources below the ancestor Heavy-weight Resource, depending on
the data structure. Include this definition if Light-weight Resources are supported, otherwise delete it.

Long Polling A variation of the traditional polling technique, where the server does not reply to a request unless a particular event,
status or timeout has occurred. Once the server has sent a response, it closes the connection, and typically the client
immediately sends a new request. This allows the emulation of an information push from a server to a client.

Notification
Channel

A channel created on the request of the client and used to deliver notifications from a server to a client. The channel
is represented as a resource and provides means for the server to post notifications and for the client to receive them
via specified delivery mechanisms.

For example in the case of Long Polling the channel resource is defined by a pair of URLs. One of the URLs is used
by the client as a call-back URL when subscribing for notifications. The other URL is used by the client to retrieve
notifications from the Notification Server.

Notification
Server A server that is capable of creating and maintaining Notification Channels.

Server-side
Notification
URL

An HTTP URL exposed by a Notification Server, that identifies a Notification Channel and that can be used by a
client when subscribing to notifications.

3.3 Abbreviations
ACR Anonymous Customer Reference

API Application Programming Interface

HTTP HyperText Transfer Protocol

JSON JavaScript Object Notation

MIME Multipurpose Internet Mail Extensions

OMA Open Mobile Alliance

REST REpresentational State Transfer

 Page 8 (36)

SCR Static Conformance Requirements

SIP Session Initiation Protocol

TS Technical Specification

URI Uniform Resource Identifier

URL Uniform Resource Locator

WP White Paper

XML eXtensible Markup Language

XSD XML Schema Definition

<< Add/Remove abbreviation rows to this table as needed - DELETE This Row>>

 Page 9 (36)

4. Introduction
<< Alternative 1: This is a suggestion for the introduction if there is a baseline specification. Use
either alternative 1 or alternative 2. >>

The Technical Specification of the RESTful Network API for [Functional Area] contains HTTP protocol bindings for the
[Baseline specification] [BASELINE_REF] specification, using the REST architectural style. The specification provides
resource definitions, the HTTP verbs applicable for each of these resources, and the element data structures, as well as
support material including flow diagrams and examples using the various supported message body formats (i.e. XML, JSON,
and application/x-www-form-urlencoded).

<< Alternative 2: This is a suggestion for the introduction if there is no baseline specification. Use
either alternative 1 or alternative 2. >>

The Technical Specification of the RESTful Network API for [Functional Area] contains HTTP protocol bindings for
[Functionality], using the REST architectural style. The specification provides resource definitions, the HTTP verbs
applicable for each of these resources, and the element data structures, as well as support material including flow diagrams
and examples using the various supported message body formats (i.e. XML, JSON, and application/x-www-form-
urlencoded)..

4.1 Version 1.0
Version 1.0 of this specification supports the following operations:

- One

- Two

<< Include a list of supported operations >>

In addition this specification provides:

- Support for scope values used with authorization framework defined in [Autho4API_10]

- Support for Anonymous Customer Reference (ACR) as an end user identifier

- Support for “acr:auth” as a reserved keyword in an ACR

 Page 10 (36)

5. [Functional Area] API definition
This section is organized to support a comprehensive understanding of the [Functional Area] API design. It specifies the
definition of all resources, definition of all data structures, and definitions of all operations permitted on the specified
resources.

<< Include a description that is specific for this Functional Area TS >>

Common data types, naming conventions, fault definitions and namespaces are defined in [REST_NetAPI_Common].

The remainder of this document is structured as follows:

Section 5 starts with a diagram representing the resources hierarchy followed by a table listing all the resources (and their
URL) used by this API, along with the data structure and the supported HTTP verbs (section 5.1). What follows are the data
structures (section 5.2). A sample of typical use cases is included in section 5.3, described as high level flow diagrams.

Section 6 contains detailed specification for each of the resources. Each such subsection defines the resource, the request
URL variables that are common for all HTTP methods, and the supported HTTP verbs. For each supported HTTP verb, a
description of the functionality is provided, along with an example of a request and an example of a response. For each
unsupported HTTP verb, the returned HTTP error status is specified, as well as what should be returned in the Allow header.

All examples in section 6 use XML as the format for the message body. JSON examples are provided in Appendix B.

Section 7 contains fault definition details such as Service Exceptions and Policy Exceptions.

Appendix E lists the [Baseline specification] equivalent operation for each supported REST resource and method
combination, where applicable. The wording if there is no baseline spec is as follows:

“Appendix E provides the operations mapping to a pre-existing baseline specification, where applicable.”.

Appendix F provides a list of all Light-weight Resources, where applicable.

Appendix G defines authorization aspects to control access to the resources defined in this specification.

Note: Throughout this document client and application can be used interchangeably.

5.1 Resources Summary
This section summarizes all the resources used by the RESTful Network API for [Functional Area].

The "apiVersion" URL variable SHALL have the value [insert value, such as "v1"] to indicate that the API corresponds to
this version of the specification. See [REST_NetAPI_Common] which specifies the semantics of this variable.

<< Include a resource structure diagram

Use curly brackets around a path component if the text represents a placeholder that will be
substituted by an actual value in a URL instance.

Do not use curly brackets around a path component if the text will appear verbatim in a URL
instance.

Use text without mark-up for parts of the resource tree that do not have associated HTTP
methods.

Use a box with a document icon for resources that do have associated HTTP methods.

 Page 11 (36)

Use a diamond-shaped box with a document icon as a placeholder for one or more Light-weight
Resources

Editable PPT versions of the figures are provided below, as editing the embedded figure is
problematic

 >>

<< Alternative 1: Resource structure diagram without Light-weight Resources. Use either alternative
1 or alternative 2. >>

<< Alternative 2: Resource structure diagram with Light-weight Resources. Use either alternative 1
or alternative 2. >>

Figure 1 Resource structure defined by this specification

The following tables give a detailed overview of the resources defined in this specification, the data type of their
representation and the allowed HTTP methods.

 Page 12 (36)

Note: this part of the TS uses a landscape layout, started and terminated by a section break.

<<Naming conventions for resources

Names will start with a letter and be mixed case, with the leading letter of each but the first word capitalized. Words will not be
separated by white space, underscore, hyphen or other non-letter character.

For names consisting of concatenated words, all subsequent words start with a capital. For example, “concatenatedWord”. If a
lowercase name starts with an abbreviation, all characters of the abbreviation are de-capitalized, e.g. “smsService”.

Path components of resource names are mixed case, with the leading letter lowercase. The leading path component which identifies
the API (e.g. thirdpartycall) is all lowercase, and is aligned with the namespace name of the related XML schema.

Note that deviations from this the naming convention SHOULD be the exception and thoroughly justified, e.g. in case of re-use of
existing resource structures.>>

Purpose: [Description of the purpose of this (set of) resource(s)]

Resource URL
Base URL:
http://{serverRoot}/Fun
ctional
Area/{apiVersion}

Data Structures HTTP verbs

GET PUT POST DELETE

[Description of the
resource.
Will be repeated in
the headlines in
section 6.x]

[URL for the resource]

[Data structure(s)]

The above is used if there is
only one applicable data
structure for all HTTP
methods. In case there are
different data structures
applicable, use the following
schema instead. If
applicable, also mention
ResourceReference.

Data structure
(used for METHOD)

common:ResourceReference
(OPTIONAL alternative for

[Description of
the operation or
“no”]

[Description of
the operation or
“no”]

[Description of
the operation or
“no”]

[Description of
the operation or
“no”]

 Page 13 (36)

Resource URL
Base URL:
http://{serverRoot}/Fun
ctional
Area/{apiVersion}

Data Structures HTTP verbs

GET PUT POST DELETE

POST response)

<< Example below - DELETE this and following Row>>

All Participants of a
Call Session

callSessions/{callSession
Id}/participants

CallParticipantList
(used for GET)

CallParticipantInformation
(used for POST)

common:ResourceReference
(OPTIONAL alternative for
POST response)

Get a list of
participants of a
call session

no Add participant
to call session

no

<< Add/Remove rows to this table as needed - DELETE This Row>>

<< Include separate tables for each purpose>>

 Page 14 (36)

5.2 Data Types

5.2.1 XML Namespaces
The XML namespace for the [Functional Area] data types is:

 urn: [specificationProvider]:xml:rest:[funcarea]:1

The 'xsd' namespace prefix is used in the present document to refer to the XML Schema data types defined in XML Schema
[XMLSchema1, XMLSchema2]. The 'common' namespace prefix is used in the present document to refer to the data types
defined in [REST_NetAPI_Common] (delete if not used). The use of namespace prefixes such as 'xsd' is not semantically
significant.

The XML schema for the data structures defined in the section below is given in [REST_SUP_FUNCAREA].

5.2.2 Structures

<<Naming conventions for structures

Names will start with a letter and be mixed case, with the leading letter of each but the first word
capitalized. The conventions for the leading letter of the first differ depending on the context:

- Type names start with an uppercase letter

- Element and attribute names in types start with a lowercase letter

Words will not be separated by white space, underscore, hyphen or other non-letter character. For
names consisting of concatenated words, all subsequent words start with a capital. For example,
“concatenatedWord”. If a lowercase name starts with an abbreviation, all characters of the
abbreviation are de-capitalized, e.g. “smsService”.

In all RESTful API TSs, sections 5.2.x where it is an optional element in a data structure:

resourceURL xsd:anyURI
Ye
s

Self referring URL. The
resourceURL SHALL NOT
be included in POST
requests by the client, but
MUST be included in POST
requests representing
notifications by the server
to the client, when a
complete representation of
the resource is embedded in
the notification. The
resourceURL MUST also be
included in responses to any
HTTP method that returns
an entity body, and in PUT
requests.

 Page 15 (36)

Note that deviations from this the naming convention SHOULD be the exception and thoroughly
justified, e.g. in case of re-use of existing data types.>>

<< Intro in case the document does not use the concept of Light-weight Resources. Pick one
alternative and DELETE this comment >>

The subsections of this section define the data structures used in the [Functional Area] API.

Some of the structures can be instantiated as so-called root elements.

For structures that contain elements which describe a user identifier, the statements in section 6 regarding 'tel', 'sip' and 'acr'
URI schemes apply.

<< Intro in case the document does use the concept of Light-weight Resources. Pick one alternative
and DELETE this comment >>

The subsections of this section define the data structures used in the [Functional Area] API.

Some of the structures can be instantiated as so-called root elements, i.e. they define the type of a representation of a so-
called Heavy-weight Resource.

The column [ResourceRelPath] in the tables below, if used, includes relative resource paths for Light-weight Resource URLs
that are used to access individual elements in the data structure (so-called Light-weight Resources). A string from this
column needs to be appended to the corresponding Heavy-weight Resource URL in order to create Light-weight Resource
URL for that particular element in the data structure. “Not applicable” means that individual access to that element is not
supported. The root element and data type of the resource associated with the [ResourceRelPath] are defined by the Element
and Type columns in the row that defines the [ResourceRelPath].

5.2.2.1 Type: [Type Name (without Light-weight Resources)]

<< This defines the format of the subsections in case the type does not use the concept of Light-
weight Resources.

In case the type includes attribute definition(s), then the name of the first column in the table
below should reflect “Element/Attribute”. In addition, in the “Description” column for an attribute
it should be stated that it is defined in XML as an attribute. DELETE this comment >>

[Brief description of the type]

Element Type Optional Description

[Element Name]

[Type] [Yes/No/
Choice]

[Description of the Element]

<< Add/Remove rows to this table as needed - DELETE This Row>>

<< In case of a root element, include the following text below the table:

A root element named [typeName] of type [TypeName] is allowed in request and/or response bodies.

Or

A root element named [typeName] of type [TypeName] is allowed in notification request bodies.

 Page 16 (36)

5.2.2.2 Type: [Type Name (with Light-weight Resources)]

<< This defines the format of the subsections in case the type does use the concept of Light-
weight Resources.

In case the type includes attribute definition(s), then the name of the first column in the table
below should reflect “Element/Attribute”. In addition, in the “Description” column for an attribute
it should be stated that it is defined in XML as an attribute. DELETE this comment >>

[Brief description of the type]
Element Type Optional [ResourceRelPath] Description

[Element Name] [Type] [Yes/No/
Choice]

[relative path of Light-
weight Resource or
“Not applicable”]

[Description of the Element]

<< Add/Remove rows to this table as needed - DELETE This Row>>

<< In case of a root element, include the following text below the table:

A root element named [typeName] of type [TypeName] is allowed in request and/or response bodies. If the element is used
only in response bodies then the statement should reflect “allowed in response bodies”

Or

A root element named [typeName] of type [TypeName] is allowed in notification request bodies.

Please refer to section 5.2.2 for an explanation of the column [ResourceRelPath].

5.2.3 Enumerations

<<Naming conventions for enumerations

Names will start with a letter and be mixed case, with the leading letter of each but the first word
capitalized. The conventions for the leading letter of the first differ depending on the context:

- Enumeration type names start with an uppercase letter

- Enumeration value names in types start with an uppercase letter

Words will not be separated by white space, underscore, hyphen or other non-letter character. For
names consisting of concatenated words, all subsequent words start with a capital. For example,
“ConcatenatedWord”. If an uppercase name includes an abbreviation, all characters of the
abbreviation are capitalized, e.g. “SMSService”, “VoiceXML”.

Note that deviations from this the naming convention SHOULD be the exception and thoroughly
justified, e.g. in case of re-use of existing data types.>>

The subsections of this section define the enumerations used in the [Functional Area] API.

5.2.3.1 Enumeration: [Enumeration Name]

Enumeration Description

 Page 17 (36)

[Enumeration Value Name] [Description of the enumeration value]

<< Add/Remove rows to this table as needed - DELETE This Row>>

5.2.4 Values of the Link “rel” attribute
The “rel” attribute of the Link element is a free string set by the server implementation, to indicate a relationship between the
current resource and an external resource. The following are possible strings (list is non-exhaustive, and can be extended):

• One

• Two

<< Include a bullet list with possible “rel” string values >>

These values indicate the kind of resource that the link points to.

5.3 Sequence Diagrams
The following subsections describe the resources, methods and steps involved in typical scenarios.

If the flows include notifications to the client that could be delivered either by POST or through the use of Notification
Channel then include this paragraph, otherwise delete it.

In a sequence diagram, a step which involves delivering a notification is labeled with “POST or NOTIFY”, where “POST”
refers to delivery via the HTTP POST method, and “NOTIFY” refers to delivery using the Notification Channel
[REST_NetAPI_NotificationChannel].

5.3.1 [Title of flow scenario]
This figure below shows a scenario for [description of scenario].

 If the flow includes a subscription for notifications step, and if the use of Notification Channel is supported, include/adapt
this paragraph, otherwise delete it. If there are more scenarios for subscriptions for notifications, in order to avoid repetition
this paragraph can be placed one level above (under 5.3) instead.The notification URL passed by the client during the
subscription step can be a Client-side Notification URL, or a Server-side Notification URL. Refer to
[REST_NetAPI_NotificationChannel] for sequence flows illustrating the creation of a Notification Channel and obtaining a
Server-side Notification URL on the server-side, and its use by the client via Long Polling.

The resources:

- To [description of operation], [create/read/update/delete] resource under [resource URL]

- To [description of operation], [create/read/update/delete] resource under [resource URL]

<< Include a flow diagram, and add a figure caption

Use solid lines for requests

Use dotted lines for responses

Use numbers if you want to reference in the text

 Page 18 (36)

If multiple servers are involved, name them (e.g. Foo Server, Bar Server), otherwise do not name
the server

An editable PPT versions of the figure is provided below, as editing the embedded figure is
problematic

example-flow.zip >>

<< Example 1: Signalling flow which includes neither a subscription for notifications nor notifications
to the application. Delete this comment.>>

3. Remove a call participant (including
resourceURL with participantId) from the session

Application Server

1. POST CallSessionInformation

Response with created call session
resource incl. callSessionId

2. POST CallParticipantInformation to
resourceURL of new call session

Response with information about added call
Participant incl. resourceURL with participantId

Create a new call
session

Add participant to
session

4. GET participant list for callSessionId

Response with information about each
participant incl. their status

Fetch participants

5. Terminate the call session

Response or error message
Terminate call

session

Request removal
of participant

Response whether removal was successful
Delete participant

from session

Figure 2 [Caption of this flow]

Outline of the flows:

1. [High-level description of 1 or more steps in the flow diagram]

a) Alternative 1

b) Alternative 2

2. [High-level description of 1 or more steps in the flow diagram]

 Page 19 (36)

3. [High-level description of 1 or more steps in the flow diagram]

<< Example 2: Signalling flow which includes a subscription for notifications and notifications to the
application. The notifications to the application can be delivered either by POST or through the use
of Notification Channel, which is indicated by “POST or NOTIFY”. Delete this comment. >>

2. POST or NOTIFY
Call Event Notification

ApplicationApplication ServerServer

1. POST Call Notification Subscription

Response with created resource

Response

3. DELETE Call Notification Subscription

Response

Later, the
application
cancels the
subscription

At some time
later, a call event
occurs to trigger
the notification

2. POST or NOTIFY
Call Event Notification

ApplicationApplication ServerServer

1. POST Call Notification Subscription

Response with created resource

Response

3. DELETE Call Notification Subscription

Response

Later, the
application
cancels the
subscription

At some time
later, a call event
occurs to trigger
the notification

Figure 3 [Caption of this flow]

Outline of the flows:

1. [High-level description of 1 or more steps in the flow diagram]

a) Alternative 1

b) Alternative 2

2. [High-level description of 1 or more steps in the flow diagram]. If the step relates to a notification to the application
either with POST or NOTIFY, after the high-level description of the action with POST include/adapt the following
sentence; otherwise, if POST is supported only, delet it. Alternatively, the application obtains the notifications using a
Notification Channel [REST_NetAPI_NotificationChannel].

3. [High-level description of 1 or more steps in the flow diagram]

 Page 20 (36)

6. Detailed specification of the resources
The following applies to all resources defined in this specification regardless of the representation format (i.e. XML, JSON,
application/x-www-form-urlencoded):

• Reserved characters in URL variables (parts of a URL denoted below by a name in curly brackets) MUST be
percent-encoded according to [RFC3986]. Note that this always applies, no matter whether the URL is used as a
Request URL or inside the representation of a resource (such as in “resourceURL” and “link” elements).

• If a user identifier (e.g. address, participantAddress, etc.) of type anyURI is in the form of an MSISDN, it MUST be
defined as a global number according to [RFC3966] (e.g. tel:+19585550100). The use of characters other than digits
and the leading “+” sign SHOULD be avoided in order to ensure uniqueness of the resource URL. This applies
regardless of whether the user identifier appears in a URL variable or in a parameter in the body of an HTTP
message.

• If an equipment identifier of type anyURI is in the form of a SIP URI, it MUST be defined according to [RFC3261].

• If a user identifier (e.g. address, userId, etc) of type anyURI is in the form of an Anonymous Customer Reference
(ACR), it MUST be defined according to [REST_NetAPI_ACR], i.e. it MUST include the protocol prefix 'acr:'
followed by the ACR.

o The ACR ‘auth’ is a supported reserved keyword, and MUST NOT be assigned as an ACR to any
particular end user. See E.1.2 for details regarding the use of this reserved keyword.

• For requests and responses that have a body, the following applies: in the requests received, the server SHALL
support JSON and XML encoding of the parameters in the body, and MAY support application/x-www-form-
urlencoded parameters in the body. The Server SHALL return either JSON or XML encoded parameters in the
response body, according to the result of the content type negotiation as specified in [REST_NetAPI_Common]. In
notifications to the Client, the server SHALL use either XML or JSON encoding, depending on which format the
client has specified in the related subscription. The generation and handling of the JSON representations SHALL
follow the rules for JSON encoding in HTTP Requests/Responses as specified in [REST_NetAPI_Common].

6.1 Resource: [Description of the resource]

<< Description of the resource in the title heading should match the description of the resource
from the first column of the purpose table in section 5.1 >>

The resource used is:

[resource URL]

[without Light-weight Resources usually http://{serverRoot}/funcarea/{apiVersion}/...]

[with Light-weight Resources usually http://{serverRoot}/funcarea/{apiVersion}/.../[ResourceRelPath]]

This resource is used for [descriptive explanation of the resource].

If the resource is on the server side and supports creating a subscription for notifications, and if the use of Notification
Channel is supported, include/adapt this paragraph, otherwise delete it. This resource can be used in conjunction with a
Client-side Notification URL, or in conjunction with a Server-side Notification URL. In this latter case, the application
MUST first create a Notification Channel (see [REST_NetAPI_NotificationChannel]) before creating a subscription.

Alternatively, if the resource is a notification resource to which the server provides notifications based on a previously
created subscription, and if the use of Notification Channel is supported, include/adapt this paragraph and the following
Note, otherwise delete them. This resource is a callback URL provided by the client for notification about FOO. The
RESTful [Functional Area] API does not make any assumption about the structure of this URL. If this URL is a Client-side
Notification URL, the server will POST notifications directly to it. If this URL is a Server-side Notification URL, the server

 Page 21 (36)

uses it to determine the address of the Notification Server to which the notifications will subsequently be POSTed. The way
the server determines the address of the Notification Server is out of scope of this specification.

Note: In the case when the client has set up a Notification Channel in order to use Long Polling to obtain the notifications, in
order to retrieve the notifications, the client needs to use the Long Polling mechanism described in
[REST_NetAPI_NotificationChannel], instead of the mechanism described below in section 6.x.y. 6.x.y to be replaced by the
reference to the section that describes the actual POST method on THIS resource (e.g. in this case 6.1.5)

6.1.1 Request URL variables
The following request URL variables are common for all HTTP methods:

Name Description

serverRoot Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

apiVersion Version of the API client wants to use. The value of this variable is defined in section 5.1

[ResourceRelPath]

Relative resource path for a Light-weight Resource, consisting of a relative path down to
an element in the data structure. For more information about the applicable values
(strings) for this variable see [section number entitled “Light-weight relative resource paths”
applicable for the current resource]. [This row is only present in case the resource has
Light-weight child resources]

<< Add/Remove rows to this table as needed - DELETE This Row>>

See section 6 for a statement on the escaping of reserved characters in URL variables.

<< Light-weight Resource relative paths. This subsection is only applicable if the resource allows
accessing individual sub-trees in the data structure using the Light-weight Resource mechanism (i.e.
[ResourceRelPath is part of the resourceURL]>>

6.1.1.1 Light-weight Resource relative paths
The following table describes the types of Light-weight Resources that can be accessed by using this resource, applicable
methods, and links to data structures that contain values (strings) for those relative resource paths.

Light-weight Resource type Method supported Description

[Description of the type]

[list of HTTP methods,
POST not allowed]

[Description and reference to the allowed values]

<< Example - DELETE This and the following Row >>

Person attributes GET, PUT, DELETE

Enables access to a single presence attribute related
to a person.

See data structure 5.2.2.4 for possible values for the
Light-weight relative resource path.

6.1.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to [Functional Area], see section 7.

 Page 22 (36)

6.1.3 GET

<< This is a blueprint for GET in case it is not a valid operation>>

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow:
[PUT/POST/DELETE]’ field in the response as per section 14.7 of [RFC 2616].

<< This is a blueprint for GET in case it is a valid operation>>

This operation is used for [description of operation].

<< The following table is optional and is used only if query parameters are supported in request URL
for GET, otherwise it needs to be deleted >>

Supported parameters in the query string of the Request URL are:

When using query parameters the following conventions apply: >>

• Query parameters are appended to the resource URL starting with a question mark “?”
character and then followed by query parameter name – value pairs.

• Multiple query parameter name-value pairs are separated by an ampersand "&" character.
Example: ?par1=par1Val&par2=par2Val&..

• Multiple values for the same query parameters are specified as a list of name-value pairs
using the same name, separated by an ampersand “&” character. Example:
?par1=par1Val1&par1=par1Val2&...

6.1.3.1 Example 1: [Example title] (Informative)

<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove the sequence number from the title heading >>

<< Prior to final emission of the specification with XML examples it is suggested to perform an
XML validation of the example.

The examples must use real-world values.

The following conventions apply:

• {serverRoot} http://example.com/exampleAPI also to be updated in the tables where
{serverRoot} is defined in section 6.x.

• {version} In our case this is v1 matching the TS version.

Name Type/Values Optional Description

[Parameter
name]

[Type/Values] [Yes/No] [Parameter description]

<< Add/Remove rows to this table as needed - DELETE This Row>>

 Page 23 (36)

• {userId} E-mail names: mailto:alice@example.com mailto:bob@example.com or phone
numbers: tel:+1-555-555-0100 to tel:+1-555-555-0199. In fact, only 555-0100 through
555-0199 are now specifically reserved for fictional use, with the other numbers having
been released for actual assignment.

• {deviceAddress}, {senderAddress} Typically a phone number

• {equipmentId} Typically a manufacturer type name or serial number

• {memberListId} Typically a group name, “friend”, “list123”

• {contactId} Typically a person’s name, “bob”

• {memberId} Typically a phone number or e-mail address or SIP URI

• {subscriptionId} Typically a number or a sequence of digits and letters, “sub123”

• {messageId} Typically a number or a sequence of digits and letters, “msg123”

• {interactionId} Typically a number or a sequence of digits and letters, “int123”

• {registrationId} Typically a number or a sequence of digits and letters, “reg123”

• {requestId} Typically a number or a sequence of digits and letters, “req123”

• {ruleId} Typically a number or a sequence of digits and letters, “rule123”>>

6.1.3.1.1 Request

[HTTP headers]

[XML request (if applicable), starting with <?xml]

6.1.3.1.2 Response

[HTTP headers]

[XML response (if applicable), starting with <?xml]

6.1.3.2 Example 2: [Example title] (Informative)

<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove this section >>

6.1.3.2.1 Request

[HTTP headers]

[XML request (if applicable), starting with <?xml]

6.1.3.2.2 Response

[HTTP headers]

 Page 24 (36)

[XML response (if applicable), starting with <?xml]

6.1.4 PUT

<< This is a blueprint for PUT in case it is not a valid operation>>

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow:
[GET/POST/DELETE]’ field in the response as per section 14.7 of [RFC 2616].

<< This is a blueprint for PUT in case it is a valid operation>>

This operation is used for [description of operation].

6.1.4.1 Example 1: [Example title] (Informative)

<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove the sequence number from the title heading >>

6.1.4.1.1 Request

[HTTP headers]

[XML request (if applicable), starting with <?xml]

6.1.4.1.2 Response

[HTTP headers]

[XML response (if applicable), starting with <?xml]

6.1.4.2 Example 2: [Example title] (Informative)

<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove this section >>

6.1.4.2.1 Request

[HTTP headers]

[XML request (if applicable), starting with <?xml]

6.1.4.2.2 Response

[HTTP headers]

[XML response (if applicable), starting with <?xml]

6.1.5 POST

<< This is a blueprint for POST in case it is not a valid operation>>

 Page 25 (36)

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow:
[GET/PUT/DELETE]’ field in the response as per section 14.7 of [RFC 2616].

<< This is a blueprint for POST in case it is a valid operation>>

This operation is used for [description of operation].

If the resource is on the server side and it supports creating a subscription for notifications, and if the use of Notification
Channel is supported, include/adapt this paragraph, otherwise delete it. The notifyURL in the callbackReference either
contains the Client-side Notification URL (as defined by the client) or the Server-side Notification URL (as obtained during
the creation of the Notification Channel [REST_NetAPI_NotificationChannel]).

6.1.5.1 Example 1: [Example title] (Informative)

<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove the sequence number from the title heading >>

6.1.5.1.1 Request

[HTTP headers]

[XML request (if applicable, starting with <?xml]

6.1.5.1.2 Response

[HTTP headers]

[XML response (if applicable, starting with <?xml]

6.1.5.2 Example 2: [Example title] (Informative)

<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove this section >>

6.1.5.2.1 Request

[HTTP headers]

[XML request (if applicable, starting with
<?xml]

6.1.5.2.2 Response

[HTTP headers]

[XML response (if applicable, starting with <?xml]

6.1.6 DELETE

<< This is a blueprint for DELETE in case it is not a valid operation>>

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow:
[GET/PUT/POST]’ field in the response as per section 14.7 of [RFC 2616].

 Page 26 (36)

<< This is a blueprint for DELETE in case it is a valid operation>>

This operation is used for [description of operation].

6.1.6.1 Example 1: [Example title] (Informative)

<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove the sequence number from the title heading >>

6.1.6.1.1 Request

[HTTP headers]

[XML request (if applicable, starting with <?xml]

6.1.6.1.2 Response

[HTTP headers]

[XML response (if applicable, starting with <?xml]

6.1.6.2 Example 2: [Example title] (Informative)

<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove this section >>

6.1.6.2.1 Request

[HTTP headers]

[XML request (if applicable, starting with <?xml]

6.1.6.2.2 Response

[HTTP headers]

[XML response (if applicable, starting with <?xml]

 Page 27 (36)

7. Fault definitions

7.1 Service Exceptions

<< This section provides details about Service Exception type of faults specific for that particular
API. Some APIs do have specific Service Exception fault definitions, some don’t have. Pick the right
text block. Delete this comment. >>

<< If API has no specific Service Exception codes defined either in that particular API version, or
in the baseline version, use the following text. Delete this comment. >>

For common Service Exceptions refer to [REST_NetAPI_Common]. There are no additional Service Exception codes
defined for the RESTful [Functional Area] API.

<< If API has specific Service Exception codes defined either in that particular version, or in the
baseline version, use the following text and include the codes in the table(s).

Service Exception codes consists of a prefix “SVC” followed by 4 digit code number.
The original Service Exception codes from the baseline product (if any) are included unchanged.
For a new Service Exception code, 4 digit code number The API provider may double check the
current used OMA OMNA reserved code in order to avoid overlap.Delete this comment >>

For common Service Exceptions refer to [REST_NetAPI_Common]. The following additional Service Exception codes are
defined for the RESTful [Functional Area] API.

7.1.1 SVC[code number]: [Text for exception header]

Name Description

MessageID SVC[code number]

Text [Text describing the fault with optional replacement variables marked with %n, where n
is an index into the list of <Variables> elements, starting at 1]

Variables [%n variables to substitute into the string, or “None”]

HTTP status code(s) [HTTP status code(s) where that particular Service Exception code can be used with]

7.2 Policy Exceptions

<< This section provides details about Policy Exception type of faults specific for that particular
API. Some APIs do have specific Policy Exception fault definitions, some don’t have. Pick the right
text block. Delete this comment. >>

<< If API has no specific Policy Exception codes defined either in that particular API version, or in
the baseline version, use the following text. Delete this comment. >>

For common Policy Exceptions refer to [REST_NetAPI_Common]. There are no additional Policy Exception codes defined
for the RESTful [Functional Area] API.

 Page 28 (36)

<< If API has specific Policy Exception codes defined either in that particular version, or in the
baseline version, use the following text and include the codes in the table(s).

Policy Exception code consists of a prefix “POL” followed by 4 digit code number.
The original Policy Exception codes from the baseline product (if any) are included unchanged.
For a new Policy Exception code, 4 digit code number The API provider may double check the
current used OMA OMNA reserved code in order to avoid overlap Delete this comment. >>

For common Policy Exceptions refer to [REST_NetAPI_Common]. The following additional Policy Exception codes are
defined for the RESTful [Functional Area] API.

7.2.1 POL[code number]: [Text for exception header]

Name Description

MessageID POL[code number]

Text [Text describing the fault with optional replacement variables marked with %n, where n
is an index into the list of <variables> elements, starting at 1]

Variables [%n variables to substitute into the string, or “None”]

HTTP status code(s) [HTTP status code(s) where that particular Policy Exception code can be used with]

 << Example - DELETE this row and the following table. >>

7.2.1 POL1003: Refund exceeds original charge amount
Name Description

MessageID POL1003

Text The refund amount exceeds the original amount charged %1

Variables %1 – the original amount charged

HTTP status code(s) 403 Forbidden

 Page 29 (36)

Appendix A. Change History (Informative)
A.1 Version 1.0 History

Document Identifier Date Sections Description
Version:
REST_NetAPI _[FuncArea]-V1_0

[dd mmm
yyyy]

[sections] [List of all modifications]

 Page 30 (36)

Appendix B. JSON examples (Informative)
JSON (JavaScript Object Notation) is a Light-weight, text-based, language-independent data interchange format. It provides
a simple means to represent basic name-value pairs, arrays and objects. JSON is relatively trivial to parse and evaluate using
standard JavaScript libraries, and hence is suited for REST invocations from browsers or other processors with JavaScript
engines. Further information on JSON can be found at [RFC7159].

The following examples show the request and response for various operations using the JSON data format. The examples
follow the XML to JSON serialization rules in [REST_NetAPI_Common]. A JSON response can be obtained by using the
content type negotiation mechanism specified in [REST_NetAPI_Common].

For full details on the operations themselves please refer to the section number indicated.

B.1 [Example Title] (section [section number cross reference])
<< Example title should be copied from title heading of the section with the corresponding XML
example. And that section number should be added in brackets to the end of the example title >>

Request:

[HTTP headers copied from referenced example, type specific signalling updated for JSON]

[JSON example may be generated automatically from the equivalent XML example by using XML to JSON conversion tools]

Response:

[HTTP headers copied from referenced example, type specific signalling updated for JSON]

[JSON example may be generated automatically from the equivalent XML example by using XML to JSON conversion tools]

 Page 31 (36)

Appendix C. [Baseline specification] operations mapping(Informative)
<< This appendix is only needed for specifications which define REST bindings for an existing
interface / API

.

In case there is no baseline, the headline is “Operations mapping to a pre-existing baseline
specification (Informative)”

Delete this comment.>>

<<If there is no baseline, use the following wording. Delete this comment. >>

As this specification does not have a baseline specification, this appendix is empty.

<<If there is a baseline, use the following wording. Delete this comment. >>

The table below illustrates the mapping between REST resources/methods defined in this specification and [Baseline
specification] [[BASELINE_REF]] equivalent operations.
REST Resource REST

Method
REST
Section
reference

[Baseline specification]
equivalent operation

[Resource description from first
column in one of the tables in section
5.1]

[GET/PUT/
POST/DEL
ETE]

[section cross-
reference]

[Operation name from
Baseline specification]

<< Add/Remove rows to this table as needed - DELETE This Row>>

Table 1 [Baseline specification] operations mapping

 Page 32 (36)

Appendix D. Light-weight Resources (Informative)
<< This appendix lists Light-weight Resources defined in this specification. Delete this comment>>

<<If there are no Light-weight Resource in the spec, the following wording is used. Delete this
comment.>>

As this version of the specification does not define any Light-weight Resources, this appendix is empty.

<<If there are no Light-weight Resource in the spec, the following wording is used. Delete this
comment.>>

The following table lists all [FuncArea] data structure elements that can be accessed individually as Light-weight Resources.

For each Light-weight Resource, the following information is provided: corresponding root element name, root element type
and [ResourceRelPath] string.
Type of Light-

weight
Resources

(and
references to

data
structures)

Element/attribute
that can be

accessed as Light-
weight Resource

Root element name
for the Light-weight

Resource

Root element type
for the Light-weight

Resource

[ResourceRelPath] string that
needs to be appended to the
corresponding Heavy-weight

Resource URL

[Resource
Type]

([section ref])

[child element
name]

[root element
name]

[root element type] [ResourceRelPath]

[child element
name]

[root element
name]

[root element type] [ResourceRelPath]

<< Example below - DELETE this Row and the following table>>

Presence
data

(5.2.3)

person person PersonAttributes person

service service ServiceAttributes service/{serviceId}/{version}

device device DeviceAttributes device/{deviceId}

<<If [ResourceRelPath] strings in the above table include variables in curly brackets “{}” then the
following paragraph shall be included also; otherwise it should be deleted. Delete this comment >>

Note: When appending [ResourceRelPath] string to its Heavy-weight Resource URL, all variables within curly brackets “{}”
such as: [list of variable names from ResourceRelPath strings] have to be replaced by their real values.

 Page 33 (36)

Appendix E. Authorization aspects (Normative)
<< This appendix lists authorization aspects specific of the particular API, such as OAuth scope
values. It is mandatory but may be empty. Delete this comment. >>

<< If there are no Authorization aspects specified for the specs, the following wording is used.
Delete this comment. >>

None specified in this version of the specification.

<< If there are Authorization aspects specified for the specs, the following wording is used. Delete
this comment. >>

This appendix specifies how to use the RESTful [Func Area] API in combination with some authorization frameworks.

E.1 Use with OMA Authorization Framework for Network APIs
The RESTful [FuncArea] API MAY support the authorization framework defined in [Autho4API_10].

A RESTful [FuncArea] API supporting [Autho4API_10]:

• SHALL conform to section D.1 of [REST_NetAPI_Common];

• SHALL conform to this section G.1.

E.1.1 Scope values
E.1.1.1 Definitions
In compliance with [Autho4API_10], an authorization server serving clients requests for getting authorized access to the
resources exposed by the RESTful [FuncArea] API:

• SHALL support the scope values defined in the table below;

• MAY support scope values not defined in this specification.

Scope value Description For one-time

access token
[Scope value] [Scope value description] [No/Yes]
[Scope value] [Scope value description] [No/Yes]

<< Example - DELETE this and next two Rows>>

oma_rest_messaging.all_{apiVersion} Provide access to all defined
operations on the resources in this
version of the API. The {apiVersion}
part of this identifier SHALL have the
same value as the “apiVersion” URL
variable which is defined in section
5.1. This scope value is the union of
the other scope values listed in next
rows of this table.

No

oma_rest_messaging.in_regist Provide access to all defined
operations on inbound messages
using registration

No

 Page 34 (36)

Table 2: Scope values for RESTful [FuncArea] API

E.1.1.2 Downscoping
In the case where the client requests authorization for “oma_rest_funcarea.all_{apiVersion}” scope, the authorization server
and/or resource owner MAY restrict the granted scope to some of the following scope values:

• [list of scope values]

E.1.1.3 Mapping with resources and methods
Tables in this section specify how the scope values defined in section G.1.1.1 for the RESTful [FuncArea] API map to the
REST resources and methods of this API. In these tables, the root “oma_rest_funcarea.” of scope values is omitted for
readability reasons.

 Page 35 (36)

<< Note: this part of the TS uses a landscape layout, started and terminated by a section break. Delete this comment. >>

Resource

URL
Base URL:
http://{serverRoot}/Functional
Area/{apiVersion}

Section
reference

HTTP verbs

GET PUT POST DELETE

[Description of the
resource]

[URL for the resource] [Section
refrerence]

[supported scope
value(s)]

[supported scope
value(s)]

[supported scope
value(s)]

[supported scope
value(s)]

<< Example below - DELETE this and the following Row>>

Inbound messages
for a given
registration

/inbound/registrations/{registrationId}/me
ssages

6.1 all_{apiVersion}
or

in_regist

n/a n/a n/a

Table 3: Required scope values for: [text describing function(s) associated with that particular scope values]

 Page 36 (36)

E.1.2 Use of ‘acr:auth’
<< Some APIs do have user identifiers in resource URL that could be a subject for ‘acr: auth’, some
don’t have. Pick the right text block. Delete this comment. >>

<<If there are no user identifiers candidate for ‘acr: auth’, the following wording is used. Delete this
comment. >>

As this version of the specification does not define any parameter that could be a candidate for ‘acr: auth’, this appendix is
empty

<< The text below is a blueprint of Appendix E.1.2 if there are user identifiers candidate for ‘acr:
auth’. Delete this comment. >>

This section specifies the use of ‘acr:auth’ in place of an end user identifier in a resource URL path.
An ‘acr’ URI of the form ‘acr: auth’, where ‘auth’ is a reserved keyword MAY be used to avoid exposing a real end user
identifier in the resource URL path.

A client MAY use ‘acr: auth’ in a resource URL in place of a {senderAddress} replace/adapt “senderAddress” with a variable
name of end user identifier which is a candidate for acr:auth. If multiple identifiers are candidate they shall be separated by
comma. when the the RESTful [FuncArea] API is used in combination with [Autho4API_10].
In the case the RESTful [FuncArea] API supports [Autho4API_10], the server:
- SHALL accept ‘acr:auth’ as a valid value for the resource URL variable {senderAddress} replace/adapt “senderAddress”

with a name of end user identifier which is a candidate for acr:Authorization. If multiple identifiers are candidate they
shall be separated by comma.

- SHALL conform to [REST_Common_TS] section 5.8.1.1 regarding the processing of ‘acr:auth’.

	1. Scope
	2. References
	2.1 Normative References
	2.2 Informative References

	3. Terminology and Conventions
	3.1 Conventions
	3.2 Definitions
	3.3 Abbreviations

	4. Introduction
	4.1 Version 1.0

	5. [Functional Area] API definition
	5.1 Resources Summary
	5.2 Data Types
	5.2.1 XML Namespaces
	5.2.2 Structures
	5.2.2.1 Type: [Type Name (without Light-weight Resources)]
	5.2.2.2 Type: [Type Name (with Light-weight Resources)]

	5.2.3 Enumerations
	5.2.3.1 Enumeration: [Enumeration Name]

	5.2.4 Values of the Link “rel” attribute

	5.3 Sequence Diagrams
	5.3.1 [Title of flow scenario]

	6. Detailed specification of the resources
	6.1 Resource: [Description of the resource]
	6.1.1 Request URL variables
	6.1.1.1 Light-weight Resource relative paths

	6.1.2 Response Codes and Error Handling
	6.1.3 GET
	6.1.3.1 Example 1: [Example title] (Informative)
	6.1.3.1.1 Request
	6.1.3.1.2 Response

	6.1.3.2 Example 2: [Example title] (Informative)
	6.1.3.2.1 Request
	6.1.3.2.2 Response

	6.1.4 PUT
	6.1.4.1 Example 1: [Example title] (Informative)
	6.1.4.1.1 Request
	6.1.4.1.2 Response

	6.1.4.2 Example 2: [Example title] (Informative)
	6.1.4.2.1 Request
	6.1.4.2.2 Response

	6.1.5 POST
	6.1.5.1 Example 1: [Example title] (Informative)
	6.1.5.1.1 Request
	6.1.5.1.2 Response

	6.1.5.2 Example 2: [Example title] (Informative)
	6.1.5.2.1 Request
	6.1.5.2.2 Response

	6.1.6 DELETE
	6.1.6.1 Example 1: [Example title] (Informative)
	6.1.6.1.1 Request
	6.1.6.1.2 Response

	6.1.6.2 Example 2: [Example title] (Informative)
	6.1.6.2.1 Request
	6.1.6.2.2 Response

	7. Fault definitions
	7.1 Service Exceptions
	7.1.1 SVC[code number]: [Text for exception header]

	7.2 Policy Exceptions
	7.2.1 POL[code number]: [Text for exception header]
	7.2.1 POL1003: Refund exceeds original charge amount

	Appendix A. Change History (Informative)
	A.1 Version 1.0 History

	Appendix B. JSON examples (Informative)
	B.1 [Example Title] (section [section number cross reference])

	Appendix C. [Baseline specification] operations mapping (Informative)
	Appendix D. Light-weight Resources (Informative)
	Appendix E. Authorization aspects (Normative)
	E.1 Use with OMA Authorization Framework for Network APIs
	E.1.1 Scope values
	E.1.1.1 Definitions
	E.1.1.2 Downscoping
	E.1.1.3 Mapping with resources and methods

	E.1.2 Use of ‘acr:auth’

