
 2012 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

Web Runtime API (WRAPI) –
Push

Candidate Version 1.0 – 08 May 2012

Open Mobile Alliance
OMA-TS-WRAPI_Push-V1_0-20120508-C

OMA-TS-WRAPI_Push-V1_0-20120508-C Page 2 (33)

 2012 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

Use of this document is subject to all of the terms and conditions of the Use Agreement located at
http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an
approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not
modify, edit or take out of context the information in this document in any manner. Information contained in this document
may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior
written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided
that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials
and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products
or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely
manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification.
However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available
to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at
http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of
this document and the information contained herein, and makes no representations or warranties regarding third party IPR,
including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you
must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in
the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN
MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF
THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE
ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT
SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT,
PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN
CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2012 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

OMA-TS-WRAPI_Push-V1_0-20120508-C Page 3 (33)

 2012 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

Contents
CONTENTS ... 3

TABLES ... 3

FIGURES ... 3

1. SCOPE .. 5

2. REFERENCES .. 6

2.1 NORMATIVE REFERENCES .. 6

2.2 INFORMATIVE REFERENCES ... 6

3. TERMINOLOGY AND CONVENTIONS .. 7

3.1 CONVENTIONS ... 7

3.2 DEFINITIONS .. 7

3.3 ABBREVIATIONS .. 7

4. INTRODUCTION ... 9

4.1 VERSION 1.0 .. 9

5. OVERVIEW OF THE PUSH API IN THE OMA PUSH ARCHITECTURE ... 10

6. DESIGN BASIS IN W3C APIS .. 12

7. THE PUSH INTERFACE ... 13

7.1 ESTABLISHING A NEW EVENTSOURCE FOR PUSH ... 13

7.1.1 Processing a New Push API EventSource Request .. 14

7.2 APPLYING FILTERS ON PUSH EVENTS .. 26

7.3 MAPPING OF EVENTS TO THE TEXT/EVENT-STREAM MIME TYPE .. 27

7.4 TERMINATING AN EVENTSOURCE FOR PUSH ... 28

8. SECURITY CONSIDERATIONS ... 29

8.1 RESTRICTING ACCESS TO LOCAL PUSH API SERVICE .. 29

8.2 PUSH API AND THE SAME-ORIGIN POLICY.. 29

8.3 PRIVACY CONSIDERATIONS FOR IMPLEMENTORS OF THE PUSH API .. 29

8.4 APPLICATION SECURITY ... 30

APPENDIX A. CHANGE HISTORY (INFORMATIVE) .. 31

A.1 APPROVED VERSION HISTORY ... 31

A.2 DRAFT/CANDIDATE VERSION 1.0 HISTORY ... 31

APPENDIX B. STATIC CONFORMANCE REQUIREMENTS (NORMATIVE) .. 32

B.1 SCR FOR USER AGENT ... 32

B.2 SCR FOR PUSH CLIENT... 32

B.3 SCR FOR PUSH GATEWAY .. 32

APPENDIX C. PUSH API USAGE ... 33

Tables
Table 1 Javascript example for establishing a new event source for SMS events .. 15

Table 2 Javascript example for establishing a new event source for OMA Push and processing received events 20

Figures
Figure 1 Relationship of Push API in the OMA Push Architecture .. 10

Figure 2 Switching from Connection-Based EventSource to SMS EventSource ... 16

Figure 3 Switching from Connection-Based EventSource to SMS EventSource via Push Client 18

Figure 4 Switching from Connection-Based EventSource to OMA Push EventSource .. 21

Figure 5 Switching from Connection-Based EventSource to OMA Push EventSource via Push Client.......................... 23

OMA-TS-WRAPI_Push-V1_0-20120508-C Page 4 (33)

 2012 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

Figure 6 Seamless Switching from Connection-Based EventSource to OMA Push + SMS EventSource via Push Client
 ... 25

Figure 7 Push API Usage... 33

OMA-TS-WRAPI_Push-V1_0-20120508-C Page 5 (33)

 2012 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

1. Scope
This specification defines an API exposing the enabler services provided by OMA Push to applications executing in Web
Runtime environments.

OMA-TS-WRAPI_Push-V1_0-20120508-C Page 6 (33)

 2012 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

2. References

2.1 Normative References
[GSM-SMS] “3GPP TS 23.040 V9.3.0 (2010-09): 3rd Generation Partnership Project; Technical Specification Group

Core Network and Terminals; Technical realization of the Short Message Service (SMS) (Release 9)”,
Sept 2010, 3GPP. URL: http://www.3gpp.org/ftp/Specs/html-info/23040.htm

[Push-CAI] “Push Client - Application Interface”, Open Mobile Alliance™, OMA-TS-PushCAI-V1_1,
URL:http://www.openmobilealliance.org/

[Push-OTA] “Push Over The Air”, , Open Mobile Alliance™, OMA-TS-PushOTA-V2_3,
URL:http://www.openmobilealliance.org/

[RFC2045] “Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies”, N. Freed
et al., November 1996. URL: http://www.ietf.org/rfc/rfc2045.txt

[RFC2119] “Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997,
URL:http://www.ietf.org/rfc/rfc2119.txt

[RFC2616] “Hypertext Transfer Protocol -- HTTP/1.1”, R. Fielding et. al, January 1999,
URL:http://www.ietf.org/rfc/rfc2616.txt

[RFC3428] “Session Initiation Protocol (SIP) Extension for Instant Messaging”, B. Campbell et al., December 2002.
URL: http://www.ietf.org/rfc/rfc3428.txt

[RFC3986] “Uniform Resource Identifier (URI): Generic Syntax”, T. Berners-Lee et al. January 2005. URL:
http://tools.ietf.org/html/rfc3986

[RFC4627] “The application/json Media Type for JavaScript Object Notation (JSON)”, D. Crockford, July 2006,
URL:http://www.ietf.org/rfc/rfc4627.txt

[RFC5724] “URI Scheme for Global System for Mobile Communications (GSM) Short Message Service (SMS)”, E.
Wilde et. al, January 2010, http://tools.ietf.org/rfc/rfc5724.txt

[SCRRULES] “SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures,
URL:http://www.openmobilealliance.org/

[WAC-2.0-Security] “WAC 2.0 – Widget Security and Privacy”, Wholesale Application Community, 2011. URL:
http://specs.wacapps.net/2.0/jun2011/

[W3C-CORS] “Cross-Origin Resource Sharing”,W3C, URL: http://www.w3.org/TR/cors/

[W3C-EventSource] “Server-Sent Events”, W3C, URL: http://www.w3.org/TR/EventSource/

[W3C-FileAPI] “File API”, W3C, URL: http://www.w3.org/TR/FileAPI/

[W3C-URLENC] W3C HTML 2.0 Specification, form-urlencoded Media Type,
URL: http://www.w3.org/MarkUp/html-spec/html-spec_8.html#SEC8.2.1

[W3C-WARP] “Widget Access Request Policy”, W3C, URI: http://www.w3.org/TR/widgets-access/

[WRAPI-API-Patterns] “Web Runtime API (WRAPI) – Design Patterns”, Open Mobile Alliance™, OMA-TS-
WRAPI_Design_Patterns-V1_0, URL:http://www.openmobilealliance.org/

[XMLSchema1] W3C Recommendation, XML Schema Part 1: Structures Second Edition, URL:
http://www.w3.org/TR/xmlschema-1/

[XMLSchema2] W3C Recommendation, XML Schema Part 2: Datatypes Second Edition, URL:
http://www.w3.org/TR/xmlschema-2/

2.2 Informative References
 [OMADICT] “Dictionary for OMA Specifications”, Version 2.7, Open Mobile Alliance™,

OMA-ORG-Dictionary-V2_7, URL:http://www.openmobilealliance.org/

[OMNA] "OMA Naming Authority". Open Mobile Alliance.
URL: http://www.openmobilealliance.org/OMNA.aspx

OMA-TS-WRAPI_Push-V1_0-20120508-C Page 7 (33)

 2012 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

3. Terminology and Conventions

3.1 Conventions
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be
informative.

3.2 Definitions
API Patterns Design guidelines and requirements for definition of APIs

ECMAScript Use definition from [OMADICT].

JavaScript Use definition from [OMADICT].

Push API Server Software which implements and exposes the Push API.

Push Client Device based software which optionally implements the Push API.

Push Gateway Network based software which optionally implements the Push API.

User Agent Use definition from [OMADICT].

Web The World Wide Web, a content and application framework based upon hypertext and related
technologies, e.g. XML, JavaScript/ECMAScript, CSS, etc.

Web Application An application designed using Web technologies.

Web IDL An IDL language for Web application APIs

Web Runtime Client software that supports the execution of Web Applications

Uniform Resource
Identifier

Use definition from [OMADICT].

3.3 Abbreviations
API Application Programming Interface

EventSource The EventSource API

HTTP HyperText Transfer Protocol

IDL Interface Definition Language

JSON JavaScript Object Notation

MIME Multipurpose Internet Mail Extensions

OMA Open Mobile Alliance

REST REpresentational State Transfer

SCR Static Conformance Requirements

SMS Short Message Service

TS Technical Specification

UA User Agent

UE User Equipment

URI Uniform Resource Identifier

URL Uniform Resource Locator

WAC Wholesale Applications Community

OMA-TS-WRAPI_Push-V1_0-20120508-C Page 8 (33)

 2012 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

Webapp Web Application

W3C World Wide Web Consortium

WRAPI The OMA Web Runtime API enabler

XML eXtensible Markup Language

XSD XML Schema Definition

OMA-TS-WRAPI_Push-V1_0-20120508-C Page 9 (33)

 2012 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

4. Introduction
This specification defines an API exposing the event notification enabler services provided by OMA Push, GSM SMS, SIP
MESSAGE, and other such text messaging services to applications executing in Web Runtime environments. This API is
referred to in this document as the Push API. Software that exposes the Push API is referred to in this document as a Push
API Server.

4.1 Version 1.0
Version 1.0 of the Push API specification addresses the following aspects:

• Basis of the Push API design in the W3C API “Server-Sent Events” [W3C-EventSource]

• Support for a subset of the features of the OMA “Push Client - Application Interface” specification [Push-CAI]:

◦ Push-OTA bearer binding, at minimum supporting SMS-based connectionless Push

◦ To reduce the complexity of the Push API for this release, the ability to select specific OMA Push bearers to
activate is deferred to a future release.

This limited scope of supported OMA Push features enables the API to use the existing W3C-EventSource API definition,
while opening up (at minimum) the most widely deployed OMA Push bearer (SMS) to a new class of client applications. If
the underlying platform supports other Push-OTA bearers (e.g. OTA-HTTP, OTA-SIP, etc), SMS, and SIP MESSAGE,
events from these sources can also be delivered through the Push API.

OMA-TS-WRAPI_Push-V1_0-20120508-C Page 10 (33)

 2012 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

5. Overview of the Push API in the OMA Push Archite cture
Web applications can support both online and offline use cases with access to the OMA Push enabler, and can use the OMA-
standardized content types or application-specific content.

OMA Push enables the direct delivery of content in network contexts (point-to-point IP, SMS, SIP/IMS, and
broadcast/multicast) and via methods (e.g. connectionless Push) that are typically unsupported by W3C-standard
implementations. OMA Push can complement HTML5 Web APIs such as Server-Sent Events [W3C-EventSource] and Web
Sockets, with these additional capabilities that are unsupported by the HTML5 APIs.

The Push API provides a bridge between Web applications executing in Web browsers or widget runtime environments
(WRT), and the enabler services provided by OMA Push or SMS text messaging. The relationship of the Push API to the
overall architectural elements in devices and the OMA Push architecture is illustrated below.

Figure 1 Relationship of Push API in the OMA Push Architecture

\

Three options are shown in the figure above for deployment of the Push API:

• As functionality of the Web User Agent (e.g. browser or Widget runtime): in this case the User Agent may be
configured to locally serve EventSource connections to specific URLs, and take the necessary actions to deliver the
requested events through the virtual EventSource connection.

OMA-TS-WRAPI_Push-V1_0-20120508-C Page 11 (33)

 2012 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

• As functionality of an OMA Push Client in the device: in this case the Push Client acts as an EventSource server and
provides the Push API extensions to the EventSource API, bridging the supported OMA Push protocols and text
messaging enablers (e.g. GSM SMS and SIP MESSAGE) to an EventSource connection established between the
User Agent and the Push Client.

• As functionality of a remote (network-based) Push Gateway: in this case the Push Gateway acts as an EventSource
server and provides the Push API extensions to the EventSource API, bridging the supported OMA Push protocols
and optionally SMS to an EventSource connection established between the User Agent and the Push Gateway. The
Push Gateway may be implemented as functionality of an OMA Push Proxy Gateway, exposing OMA Push Access
Protocol (PAP) or PushREST APIs to Application Servers, and optionally additional unspecified interfaces for plain
text message delivery.

For definition of their requirements in support of the Push API, these implementation are referred to in the following sections
as the Push API Server.

OMA-TS-WRAPI_Push-V1_0-20120508-C Page 12 (33)

 2012 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

6. Design Basis in W3C APIs
The Push API design is based upon the EventSource interface as defined in the W3C API “Server-Sent Events” [W3C-
EventSource]. This approach is intended to serve the key objectives:

• Simply developer adoption of the Push API by aligning the API design pattern with the conventions already
established by W3C for EventSource

• Promote development of the Push API within open-source projects contributing to the mainstream Web browsers,
e.g. Webkit and Mozilla

• Promote convergence of OMA Push with W3C Web APIs, e.g. through the inclusion of Push API extensions in
W3C specifications

The EventSource interface provides the basic functionality of the Push API, which includes:

• Ability to create a new EventSource, which establishes a connection with a source for server-sent events

• Ability to receive events related to the overall status of an EventSource, including

o Notification of successful opening of an EventSource connection

o Notification of a new message from an EventSource

o Notification of errors in an EventSource connection

As defined by W3C Server-Sent Events, the EventSource constructor takes a URL parameter expected to use the http URI
scheme. The Push API uses the same design, while extending the use of the URL parameter to enable OMA Push features
such as filtering events by source, application type, and content type.

The Push API adapts data from these new event sources to the text/event-stream MIME-type processing model defined for
EventSource.

OMA-TS-WRAPI_Push-V1_0-20120508-C Page 13 (33)

 2012 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

7. The Push Interface
The Push API is based upon the EventSource interface defined in [W3C-EventSource]. EventSource is used by Web
applications (Webapps) to setup a persistent HTTP connection to an EventSource server, enabling asynchronous delivery of
server-initiated events.

In addition to the Push API specific functions described in this document, Push API Servers MUST support operation as a
server for EventSource connections as defined in [W3C-EventSource].

User Agents which support operation as a virtual Push API Server MUST be configurable to associate specific origins
(domain and port of URLs) with the Push API virtual EventSource service.

Push Clients which support operation as a Push API Server MUST listen on TCP port 4035 for incoming EventSource
connection requests, when Push API service is enabled. Note: the conditions under which Push API service is enabled in a
device are unspecified, e.g. they may be related to user settings for OMA Push or notification services in general.

Push API Servers MUST support multiple EventSource connections.

Typically, the origin of the Webapp will be different from the origin of the Push API Server. For example, the Push API
origin of a Push Client acting as Push API Server will be localhost: 4035 (4035 being the registered TCP port for OMA
WAP2 Push). Similarly, a Push Gateway acting as a Push API Server will likely not have the same origin as the Webapp.
Thus in order for the Push API to be accessed by the Webapp, Cross-Origin Resource Sharing [W3C-CORS] is used to
authorize the User Agent to establish the cross-origin connection.

The URL of Push API Servers are expected to be discovered by the Webapp through unspecified application-specific
procedures.

In addition to the specific requirements given in the following sections, User Agents MUST support all aspects of the
EventSource interface for the new event sources made available through the Push API, with the following exception:

• When operating as a virtual Push API Server for connectionless bearers as event sources, the “reconnection time”
and reconnection processing requirements of [W3C-EventSource] are not applicable.

7.1 Establishing a New EventSource for Push
The EventSource API defines a single parameter for new EventSource objects: a URL representing the source from which
event reception should be initiated.

For the Push API, the URL parameter is used to select an EventSource API server which can forward received events to the
application, via the EventSource API, with the following options for push event filtering:

• by event source, using the “push-accept-source” parameter of the EventSource URL to select a comma-separated
list of acceptable event sources, optionally including

o one or more SMS source addresses in the format “sms:sms-recipient” where sms-recipient is as
defined by [RFC5724], which indicates a request for delivery of events from specific SMS addresses

o one or more SIP source addresses in the format “sip:user@domain”, which indicates a request for
delivery of events from specific SIP addresses

o the OMNA-registered URN “urn:oma:xml:push”, which indicates a request for delivery of any OMA
Push message received from the supported OMA Push bearers

o other arbitrary source address values, enabling the extension of the Push API to other eventing or
messaging systems or application-specific source addressing

• by OMA Push Application ID , using the “push-accept-application-id” parameter of the EventSource URL, to select
a comma-separated list of acceptable push application ids

• by content (MIME) type , using the “push-accept-content-type” parameter of the EventSource URL, to select a
comma-separated list of acceptable push content types

Applications can create multiple EventSource objects for delivery of Push events. This allows the application to choose
which types of Push sources should be activated, in any desired combination.

OMA-TS-WRAPI_Push-V1_0-20120508-C Page 14 (33)

 2012 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

The application can use these options to apply specific event handlers for the different event sources. For example, the
application may expect SMS from specific source addresses to have a specific format for processing. OMA Push messages
may also have specific processing and validation requirements, e.g. for filtering by the application based upon the Push
Application Id, and to parse or validate the message data for different Push content types.

7.1.1 Processing a New Push API EventSource Request
As described in [W3C-EventSource], the EventSource(url) constructor takes one argument, url, which specifies the resource
to which to connect.

User Agents which support operation as a virtual Push API Server MUST process new EventSource requests (creation of new
EventSource objects via JavaScript) for the Push API, if the url parameter matches a pre-configured origin associated with
the Push API virtual EventSource service.

When the EventSource() constructor is invoked, the User Agent supporting the Push API Server capability MUST run these
steps:

1. If the url parameter is recognized by the User Agent as an EventSource URL at which it is configured to serve Push
API requests, run these steps

a. If the url parameter contains a “push-accept-source” parameter, run these steps

i. throw a SYNTAX_ERR exception if the “push-accept-source” parameter contains anything other
than a comma-separated list of values formatted as one or more of: “sms-recipient” fields per
[RFC5724], the value “urn:oma:xml:push”, or the value “*”

ii. set the push accept source filter to the value of the “push-accept-source” parameter, otherwise set
the push accept source filter to null

b. If the url parameter contains a “push-accept-application-id” parameter, set the push accept application id
filter to the value of the “push-accept-application-id” parameter, otherwise set the push accept application
id filter to null

c. If the url parameter contains a “push-accept- content-type” parameter, set the push accept content type filter
to the value of the “push-accept- content-type” parameter, otherwise set the push accept content type filter
to null

d. If the push accept source filter contains the value “*” or values formatted as “sms-recipient” fields as
defined by [RFC2754], activate SMS event delivery to the EventSource connection

e. If the push accept source filter contains the value “*” or the value “urn:oma:xml:push”, activate OMA Push
event delivery to the EventSource connection

2. If the url parameter is not recognized by the User Agent as an EventSource URL at which it is configured to serve
Push API requests, establish a new EventSource as described in [W3C-EventSource].

Push Clients or Push Gateways which support operation as a Push API Server MUST run these steps upon reception of a
GET request for a URL at which Push API service is provided

1. If the request url contains a “push-accept-source” parameter, run these steps

a. Return a 403 FORBIDDEN response and abort these steps if the “push-accept-source” parameter contains
any unsupported source types, e.g. for a Push Gateway that does not support SMS message delivery

b. if the “push-accept-source” parameter is present, set the push accept source filter to the value of the “push-
accept-source” parameter, otherwise set the push accept source filter to the value “urn:oma:xml:push”

2. If the request url contains a “push-accept-application-id” parameter, set the push accept application id filter to the
value of the “push-accept-application-id” parameter, otherwise set the push accept application id filter to “*”

3. If the request url contains a “push-accept-content-type” parameter, set the push accept content type filter to the value
of the “push-accept-content-type” parameter, otherwise set the push accept content type filter to “*”

4. Return a successful response to the User Agent as described in [W3C-EventSource], including an “Access-Control-
Allow-Origin” header with the value of the “Origin:” header received in the GET request.

OMA-TS-WRAPI_Push-V1_0-20120508-C Page 15 (33)

 2012 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

7.1.1.1 Establishing a New EventSource for SMS Even ts
Below is an example of how an application can create a new EventSource for SMS events using the Push API.

Table 1 Javascript example for establishing a new event source for SMS events

try {
 var es = new EventSource("http://localhost:4035/?push-accept-source=sms:+14255551212");

 // Expect Push API events from SMS source +14255551212

 es.onmessage = function (event) { // Event handler

 // Handle then new event: the example below just shows presentation of the content

 ediv = document.getElementById('esdata'); // get HTML element where new content is to be displayed

 ediv.innerHTML = event.data; // Display the new content

 };

 }

catch(e) {

 // Handle EventSource setup exception

 }

}

OMA-TS-WRAPI_Push-V1_0-20120508-C Page 16 (33)

 2012 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

The example below shows an EventSource connection that is setup and used by an app for some time, then switched to
a Push API connection when the app no longer needs or can maintain the data connection. The Push API is served
directly by the User Agent (browser or Widget runtime), which provides the bridge to SMS event sources, and delivers
the events to the application-defined EventSource event handler. The User Agent is pre-configured to recognize URLs
with the origin localhost:4035 (WAP Push OTA-HTTP port) as a virtual Push API service address.

Figure 2 Switching from Connection-Based EventSource to SMS EventSource

1. Client App invokes the EventSource API with a URL meeting same-origin requirements.
2. The User Agent opens an EventSource connection to the server at the requested URL.
3. The App Server acks the opening of the EventSource connection.
4. The App Server delivers an event stream.
5. The User Agent calls the onmessage function defined for the EventSource object with the event stream.
6. Sometime later, the Client App decides to switch to connectionless event delivery via SMS. Coordination of

the key parameters (e.g. SMS destination address and SMS source address to be used), and the trigger for
switching to connectionless delivery (e.g. upon closure of the eventsource connection over HTTP), are
assumed to occur at the application layer. The Client App initiates this coordination (in this example) by

OMA-TS-WRAPI_Push-V1_0-20120508-C Page 17 (33)

 2012 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

requesting switch to connectionless delivery, and as needed providing SMS address information so the App
Server knows where to send events.

7. The App Server confirms preparation of the switch to connectionless delivery, and provides its SMS source
address so that the Client App can setup event source filtering.

8. The Client App calls the close() method on the eventsource object.
9. The User Agent closes the EventSource connection to the App Server.
10. Client App invokes the EventSource API with the URL for the local Push API server and includes a source

filter parameter for the SMS address from which events should be received (http://localhost:4035/?push-
accept-source=sms:+14255551212). Recognizing the EventSource URL origin localhost:4035 (WAP Push
OTA-HTTP port) as a pre-configured virtual Push API service address, the User Agent activates SMS
reception per the URL parameters.

11. The App Server has an event to be delivered, and notes that no EventSource connection is active to the Client
App. The App Server delivers the event stream in an SMS message, either directly to the SMSC, or via an
SMS API service.

12. The SMSC delivers the SMS message to the user's device.
13. The User Agent delivers the SMS message as an event stream, via the onmessage function defined for the

EventSource object.

OMA-TS-WRAPI_Push-V1_0-20120508-C Page 18 (33)

 2012 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

The example below shows an EventSource connection that is setup and used by an app for some time, then switched to
a Push API connection when the app no longer needs or can maintain the data connection. The Push API is served
directly by the User Agent (browser or Widget runtime), which provides the bridge to SMS event sources, and delivers
the events to the application-defined EventSource event handler. The User Agent is pre-configured to recognize URLs
with the origin localhost:4035 (WAP Push OTA-HTTP port) as a virtual Push API service address.

Figure 3 Switching from Connection-Based EventSource to SMS EventSource via Push Client

1. Application invokes the EventSource API with a URL meeting same-origin requirements.

2. The User Agent opens an EventSource connection to the server at the requested URL.

3. The App Server acks the opening of the EventSource connection.

4. The App Server delivers an event stream.

5. The User Agent calls the onmessage function defined for the EventSource object with the event stream.

OMA-TS-WRAPI_Push-V1_0-20120508-C Page 19 (33)

 2012 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

6. Sometime later, the Client App decides to switch to connectionless event delivery via SMS. Coordination of the
key parameters (e.g. SMS destination address and SMS source address to be used), and the trigger for switching to
connectionless delivery (e.g. upon closure of the EventSource connection over HTTP), are assumed to occur at the
application layer. The Client App initiates this coordination (in this example) by requesting switch to
connectionless delivery, and providing its SMS destination address (so the App Server knows where to send
events).

7. The App Server confirms preparation of the switch to connectionless delivery, and provides its SMS source
address so that the Client App can establish the event source.

8. The Client App calls the close() method on the EventSource object.

9. The User Agent closes the EventSource connection to the App Server.

10. The Client App invokes the EventSource API with the URL for the local Push API server and includes a source
filter parameter for the SMS address from which events should be received (http://localhost:4035/?push-accept-
source=sms:+14255551212).

11. The User Agent establishes an EventSource connection to the Push Client at the URL.

12. The Push Client acks the EventSource connection setup, and establishes SMS reception if not already active.

13. The App Server has an event to be delivered, and notes that no EventSource connection is active to the Client App.
The App Server delivers the event stream in an SMS message, either directly to the SMSC, or via an SMS API
service.

14. The SMSC delivers the SMS message to the user's device.

15. The Push Client delivers the text of the SMS message via the EventSource connection.

16. The User Agent calls the onmessage function defined for the EventSource object with the event stream.

7.1.1.2 Establishing a New EventSource for OMA Push Events

The OMA Push Client functionality is assumed to be pre-configured in the device to establish connections over the supported
bearers (e.g. OTA-WSP/SMS, OTA-WSP/IP, OTA-HTTP, OTA-SIP, etc) either through OMA Device Management or
device-specific configuration mechanisms.

Below is an example of how an application can create a new EventSource for OMA Push events using the Push API. In this
example, the application requests delivery of Service Indication messages only, and uses application logic to ignore all
message except those from the expected source Push Initiator, using the X-Wap-Initiator-URI header.

OMA-TS-WRAPI_Push-V1_0-20120508-C Page 20 (33)

 2012 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

Table 2 Javascript example for establishing a new event source for OMA Push and processing received events

try {

 var es = new EventSource('http://localhost:4035/?push-accept-source=urn:oma:xml:push&push-accept-

application-id=myapp.com/feed&push-accept-content-type=text/vnd.wap.si');
 // Expect Push API events from OMA Push sources

 es.onmessage = function (event) { // Event handler

 // Handle the new event

 if (event.data.search(/X\-Wap\-Initiator\-URI: myapp.com/i)) {

 // Only accept from myapp.com

 var data = event.data.substring(event.data.indexOf('\n\n')+2); // Data follows the first blank line

 parseSi(data); // Parse the SI content

 ediv = document.getElementById('esdata'); // Get the output element

 ediv.innerHTML = pushText + "
Click Here!"; // Output the content

 }

 };

 }
catch(e) {

 // Handle EventSource setup exception

 }

}

var pushXml; // Variable to hold XML DOM document created from the Push content

var pushUrl; // Variable to hold the SI URL

var pushText; // Variable to hold the SI text

function parseSi(data) { // Parse SI content

 if (data.length > 0) { // Ignore empty content (not expected)

 try { // Internet Explorer method
 pushXml=new ActiveXObject("Microsoft.XMLDOM");

 pushXml.async="false";

 pushXml.loadXML(data);

 }

 catch(e) { // Internet Explorer method failed

 try { // Try Mozilla etc (W3C) method

 var parser = new DOMParser();

 pushXml = parser.parseFromString(data, "text/xml");

 }

 catch(e1) {

 alert('Unable to parse content from EventSource server'); // Error in content

 return(false);

 }
 }

 var el = pushXml.getElementsByTagName("indication"); // Find <indication> element

 pushUrl = el[0].attributes["href"].value; // Get SI URL (href attribute)

 pushText = el[0].textContent; // Get SI text

 return(true);

 }

 else {

 alert('No content from EventSource server');

 return(false);

 }

}

OMA-TS-WRAPI_Push-V1_0-20120508-C Page 21 (33)

 2012 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

The example below shows an EventSource connection that is setup and used by an app for some time, then switched to
a Push API connection when the app no longer needs or can maintain the data connection. The Push API is served by
an OMA Push Client on the device. The Push Client provides the bridge to OMA Push event sources, and delivers the
events via a local EventSource connection with the User Agent (browser or widget runtime). The Push Client is
listening on the localhost address at port 4035 (WAP Push OTA-HTTP port).

Figure 4 Switching from Connection-Based EventSource to OMA Push EventSource

1. Client App invokes the EventSource API with a URL meeting same-origin requirements.
2. The User Agent opens an EventSource connection to the server at the requested URL.
3. The App Server acks the opening of the EventSource connection.
4. The App Server delivers an event stream.
5. The User Agent calls the onmessage function defined for the EventSource object with the event stream.
6. Sometime later, the Client App decides to switch to event delivery via OMA Push. Coordination of the key

parameters (e.g. OMA Push address, Push AppId, etc), and the trigger for switching to connectionless delivery
(e.g. upon closure of the eventsource connection over HTTP), are assumed to occur at the application layer.

OMA-TS-WRAPI_Push-V1_0-20120508-C Page 22 (33)

 2012 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

The Client App initiates this coordination (in this example) by requesting switch to OMA Push delivery, and
providing its OMA Push address and AppId (so the App Server knows where to send events, and what AppId
to use).

7. The App Server provides info that the Client App needs to complete the switch to OMA Push delivery,
including a Push Service Registration address (where e.g. as described in [Push-OTA], the Client App and
Push Server can coordinate establishment of Push service)

8. The Client App invokes the Push Service Registration procedure as described in [Push-OTA], providing an
XML document requesting the configuration of Push service.

9. The Push Server confirms the Push service registration, and provides info needed by the Client App for client-
side configuration, e.g. the Push API Server address URL and parameters.

10. The Client App calls the close() method on the eventsource object.
11. The User Agent closes the EventSource connection to the App Server.
12. The Client App invokes the EventSource API with a URL (http://localhost:4035/?push-accept-

source=urn:oma:xml:push&push-accept-application-id=myapp.com/feed&push-accept-content-
type=text/vnd.wap.si) for the local Push API server, including a source filter parameter for OMA Push
events, a filter parameter for its application id, and a filter parameter for the expected content type.
Recognizing the EventSource URL origin localhost: 4035 (WAP Push OTA-HTTP port) as a pre-configured
virtual Push API service address, the User Agent activates OMA Push event reception per the URL
parameters.

13. The App Server has an event to be delivered, and notes that no EventSource connection is active to the Client
App. The App Server delivers the event stream in an OMA Push message, either using OMA Push PAP,
PushREST, or via some other OMA Push API service.

14. The Push Server delivers the Push message message to the user's device.
15. The User Agent de-tokenizes the Push message (if required), and delivers the message headers and body as an

event stream to the onmessage function defined for the EventSource object.

OMA-TS-WRAPI_Push-V1_0-20120508-C Page 23 (33)

 2012 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

The example below shows an EventSource connection that is setup and used by an app for some time, then switched to a
Push API connection when the app no longer needs or can maintain the data connection. The Push API is served by an OMA
Push Client on the device. The Push Client provides the bridge to OMA Push event sources, and delivers the events via a
local EventSource connection with the User Agent (browser or widget runtime). The Push Client is listening on the localhost
address at port 4035 (WAP Push OTA-HTTP port).

Figure 5 Switching from Connection-Based EventSource to OMA Push EventSource via Push Client

1. Client App invokes the EventSource API with a URL meeting same-origin requirements.

2. The User Agent opens an EventSource connection to the server at the requested URL.

3. The App Server acks the opening of the EventSource connection.

4. The App Server delivers an event stream.

5. The User Agent calls the onmessage function defined for the EventSource object with the event stream.

6. Sometime later, the Client App decides to switch to event delivery via OMA Push. Coordination of the key
parameters (e.g. OMA Push address, Push AppId, etc), and the trigger for switching to connectionless delivery
(e.g. upon closure of the EventSource connection over HTTP), are assumed to occur at the application layer. The

OMA-TS-WRAPI_Push-V1_0-20120508-C Page 24 (33)

 2012 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

Client App initiates this coordination (in this example) by requesting switch to OMA Push delivery, and providing
any initial information needed by the App Server (e.g. its OMA Push target address and AppId, so the App Server
knows where to send events, and what AppId to use).

7. The App Server provides info that the Client App needs to complete the switch to OMA Push delivery, including a
Push Service Registration address (where e.g. as described in OMA Push 2.3 Push-OTA, the Client App and Push
Server can coordinate establishment of Push service)

8. The Client App invokes the Push Service Registration procedure as described in OMA Push 2.3 Push-OTA,
providing an XML document requesting the configuration of Push service.

9. The Push Server confirms the Push service registration, and provides info needed by the Client App for client-side
configuration, e.g. the Push API Server address URL and parameters.

10. The Client App calls the close() method on the EventSource object.

11. The User Agent closes the EventSource connection to the App Server.

12. The Client App invokes the EventSource API with a URL (http://localhost:4035/?push-accept-
source=urn:oma:xml:push&push-accept-application-id=myapp.com/feed&push-accept-content-
type=text/vnd.wap.si) for the local Push API server, including a source filter parameter for OMA Push events, a
filter parameter for its application id, and a filter parameter for the expected content type.

13. The User Agent opens an EventSource connection to the Push Client at the requested URL. The User Agent
includes the Origin header as this is a cross-origin resource request.

14. The Push Client acks the EventSource connection setup, including the Access-Control-Allow-Origin header
authorizing the User Agent to use the cross-origin resource, and activates OMA Push reception event if not already
active.

15. The App Server has an event to be delivered, and notes that no EventSource connection is active to the Client App.
The App Server delivers the event stream in an OMA Push message, either using OMA Push PAP, PushREST, or
via some other OMA Push API service.

16. The Push Server delivers the Push message to the Push Client on the user's device.

17. The Push Client de-tokenizes the Push message (if required), and delivers the message headers and body via the
EventSource connection.

18. The User Agent calls the onmessage function defined for the EventSource object with the event stream.

OMA-TS-WRAPI_Push-V1_0-20120508-C Page 25 (33)

 2012 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

The example below shows an EventSource connection that is setup and used by an app through a Push Client acting as
a local Push API Server. At some point determined by the Push Client or App Server, a switch is made to use of OMA
Push and SMS as event delivery bearers. The switch occurs transparently to the Client App. In this case in addition to
acting as a bridge to OMA Push and SMS event sources, the Push Client acts as a local proxy for remote EventSource
connections, and delivers received events via a local EventSource connection with the User Agent (browser or widget
runtime). The Push Client is listening on the localhost address at port 4035 (WAP Push OTA-HTTP port).

Figure 6 Seamless Switching from Connection-Based EventSource to OMA Push + SMS EventSource via Push Client

1. The Client App invokes the EventSource API with the URL for the local Push API server and includes a filter
parameter for its application id, and source filter parameters for OMA Push events, SMS events, and an encoded

OMA-TS-WRAPI_Push-V1_0-20120508-C Page 26 (33)

 2012 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

URI representing a request for a proxy EventSource connection. In this example, the ability to proxy EventSource
connections as part of the Push API is an implementation extension.

2. The User Agent opens an EventSource connection to the Push Client at the requested URL. The User Agent includes
the Origin header as this is a cross-origin resource request.

3. The Push Client recognizes the encoded URI in the accept source parameter as a request for proxy EventSource
connection, and opens an EventSource connection to the App Server

4. The App Server acks the opening of the EventSource connection.
5. The Push Client acks the EventSource connection setup, including the Access-Control-Allow-Origin header

authorizing the User Agent to use the cross-origin resource, and activates OMA Push reception event if not already
active.

6. The App Server delivers an event stream.
7. The Push Client delivers the event stream.
8. The User Agent calls the onmessage function defined for the EventSource object with the event stream.
9. Sometime later, the Push Client decides to switch to drop the EventSource connection and continue reception via

OMA Push and SMS. The conditions under which this switch occurs (and possible coordination with the App
Server) are assumed to be implementation-specific. The Push Client initiates this coordination (in this example) by
requesting switch to OMA Push and SMS delivery, and providing any initial information needed by the App Server
(e.g. its OMA Push target address and AppId, so the App Server knows where to send events, and what AppId to
use).

10. The App Server provides info that the Push Client needs to complete the switch to OMA Push delivery, including a
Push Service Registration address (where e.g. as described in [Push-OTA], the Push Client and Push Server can
coordinate establishment of Push service)

11. The Push Client invokes the Push Service Registration procedure as described in [Push-OTA], providing an XML
document requesting the configuration of Push service.

12. The Push Server confirms the Push service registration, and provides info needed by the Push Client for client-side
configuration, e.g. the Push API Server address URL and parameters.

13. The Push Client closes the EventSource connection to the App Server.
14. The App Server has an event to be delivered, and notes that no EventSource connection is active. The App Server

delivers the event stream in an OMA Push message, either using OMA Push PAP, PushREST, or via some other
OMA Push API service.

15. The Push Server delivers the Push message message to the Push Client on the user's device.
16. The Push Client de-tokenizes the Push message (if required), and delivers the message headers and body via the

EventSource connection.
17. The User Agent calls the onmessage function defined for the EventSource object with the event stream.

7.2 Applying Filters on Push Events
The Push API provides for three types of event filters, which are referred to above as the push accept source filter, push
accept application id filter, and the push accept content type filter. Each of these filters can be specified by the Webapp in the
EventSource URL, as a comma-separated list of values.

The Push API Server MUST deliver only events that match the push accept source filter, push accept application id filter, and
push accept content type filter.

When applying the filters, the Push API Server MUST run these steps:

1. If the event is an OMA Push event, run these steps
a. If the push accept application id filter does not contain the value “urn:oma:xml:push”, abort these steps and

do not deliver the event via the EventSource connection.
b. If the push accept application id filter has the value “*” or the received “X-WAP-Application-ID:” header

is a match for any value in the push accept application id filter, skip to step 1d.
c. Abort these steps and do not deliver the event via the EventSource connection.
d. If the push accept content type filter has the value “*” or the received “Content-Type:” header, minus any

MIME type parameter field [RFC2045], is a match for any value in the push accept content type filter, skip
to step 1f.

e. Abort these steps and do not deliver the event via the EventSource connection.
f. Deliver the event via the EventSource connection.

OMA-TS-WRAPI_Push-V1_0-20120508-C Page 27 (33)

 2012 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

2. If the event is from the SMS bearer, received in a SIP MESSAGE, or received from some other plain text message
facility, run these steps

a. If the event was received from a GSM SMS bearer, set the source address to the value of the
TP-Originating-Address field of the SMS message [GSM-SMS].

b. If the event was received from a SIP bearer in a SIP MESSAGE, set the source address to the value of the
SIP URI in the “From:” header of the SIP MESSAGE [RFC3428].

c. If the event was received from another (unspecified) text messaging facility, set the source address to the
relevant value.

d. If the source address matches any value in the push accept source filter, skip to step 2f
e. Abort these steps and do not deliver the event via the EventSource connection
f. Deliver the event via the EventSource connection

7.3 Mapping of Events to the text/event-stream MIME type
EventSource is designed for delivery of a particular message format in event streams, per the text/event-stream MIME type
processing model defined in [W3C-EventSource]. To enable developers to use a consistent approach to accessing event data,
the typical structure of OMA Push-OTA events (headers+body) is mapped to the EventSource event-stream format.

For received OMA Push messages with a Content-Type header with value “text/event-stream”, Push API Servers MUST
interpret and deliver the received message body as an event stream, as described in [W3C-EventSource] section 7
“Interpreting an event stream”.

For received OMA Push messages with Content-Type header set to values other than “text/event-stream”, Push API Servers
MUST deliver a single EventSource event for each set of entity-headers or entity-body in the message body:

• The entity-headers, if any

• The entity-body, if any

Push API Servers MUST dispatch the individual events in the order that the event data occurred in the Push message.

For entity-headers, Push API Servers must deliver each set of entity-headers as an EventSource event, as follows:

• Setting the event field to the string “headers”

• Setting the data field to a text string concatenating all Push message headers, using the following processing model:

o if a Content-Type header for a OMA-defined compressed MIME type (e.g. application/vnd.oma.sic) is
included in the entity-headers, set the Content-Type header to the equivalent uncompressed MIME type
(e.g. application/vnd.oma.si).

o For each message header, add the message header followed by a U+000A LINE FEED (LF) character to
the data buffer

• Output the event and data field, followed by a blank line, to the EventSource connection.

For entity-bodies, Push API Servers must deliver each entity-body as an EventSource event, as follows:

• Setting the event field to the string “message”

• Setting the data field to a text string containing the Push message content, using the following processing model:

o if the message body has a OMA-defined compressed MIME type (e.g. application/vnd.oma.sic),
decompress the message headers and body

o For each line of the message body, add the line followed by a single U+000A LINE FEED (LF) character
to the data buffer

• Output the event and data field, followed by a blank line, to the EventSource connection.

For received messages from sources other than OMA Push, Push API Servers MUST deliver a single EventSource event, as
follows:

• Setting the event stream "event" field to a string identifying the source type. In particular:

OMA-TS-WRAPI_Push-V1_0-20120508-C Page 28 (33)

 2012 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

o set the event field to the string “SMS”in case the event was received from a GSM SMS bearer,

o set the event field to the string “SIP” in case the event was received from a SIP bearer in a SIP MESSAGE,

o set the event field to another string based on other implementation-specific source type.

• Setting the data field to the event text content.

• Output the event and data field, followed by a blank line, to the EventSource connection.

Note: to prevent EventSource event delivery errors, messages delivered through EventSource connections cannot contain
blank lines, as per the EventSource text/event-stream processing model, that will cause an event to be dispatched with an
incomplete data buffer.

7.4 Terminating an EventSource for Push
When the close() method is invoked on an EventSource object, User Agents which support operation as a virtual Push API
Server MUST terminate delivery of SMS and WAP Push message events to the EventSource object if applicable.

Push Clients or Push Gateways which support operation as a Push API Server MUST terminate delivery of SMS and WAP
Push message events to the EventSource connection when a request to close the EventSource connection is received.

OMA-TS-WRAPI_Push-V1_0-20120508-C Page 29 (33)

 2012 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

8. Security Considerations
The API defined in this specification can be used to access incoming SMS messages and OMA Push events. This may result
in the disclosure of information related to a user's contacts, other applications that use SMS or OMA Push, and other
personally identifying information carried by these event sources. The distribution of this information could potentially
compromise the user's privacy, or the user's contacts' privacy. A conforming implementation of this specification must
provide a mechanism that protects the user's privacy and this mechanism should ensure that no SMS or OMA Push event data
is accessible without the user's express permission.

Other than the capabilities described in the following sections, the host device may have additional security-enhancing
capabilities such as support for the OMA Push Whitelist feature, or other SMS filtering, spam control, or content filtering
capabilities. Regardless, developers need to use caution in processing events from potentially unknown sources.

8.1 Restricting Access to Local Push API Service
Because Push Clients that implement a local Push API service listen on TCP port 4035 for incoming EventSource
connections, to protect the device from intrusion attacks, only local requests may be served.

Push Clients MUST only accept incoming EventSource connections originated in the same device, i.e. for which the source
address is the device’s own IP address.

8.2 Push API and the Same-Origin Policy
As defined by [W3C-EventSource], security of the EventSource interface for HTTP-based resources is based upon the
standard “same-origin policy” security design of the Web. The same-origin policy is applicable to browser context
applications, for which a specific origin server can be determined, so EventSource data from the same origin can also be
trusted under the same-origin policy. The user thus implicitly chooses to trust the application by browsing to it at the origin
server resource address (Web page that starts the application).

Prearranged trust relationships, or explicit user consent may apply in other contexts. For widget context applications, the
ablity to access network resources including via EventSource is based upon declaration of the network domains that the
application intends to access, in the widget configuration document as described by [W3C-WARP] for HTTP-based
resources, and by additional security framework capabilities for non-HTTP-based resources (e.g. inclusion of API feature
URIs in the widget configuration document per [WAC-2.0-Security]). For widgets, during widget installation the user is
typically informed which APIs and resources the widget has declared a need to access. The user is able to provide consent at
that time, or later e.g. if an applicable security policy requires a user prompt for each application session or API use.

For the Push API, the cross-origin request processing of EventSource provides the necessary security protection for the user.
Since the origin of the Webapp is expected to be different from the origin of the Push API Server as described in section 7, in
order for the Push API to be accessed by the Webapp, Cross-Origin Resource Sharing [W3C-CORS] is used to authorize the
User Agent to establish a the cross-origin connection to the Push API server. Mechanisms for managing trust of specific
origins for access to Push API services provided by Push Clients or User Agents directly are unspecified, but MAY include
user prompts or pre-arranged trust relationships.

User Agents that support Push API service access via a Push Client or Push Gateway MUST support the establishment of
cross-origin EventSource connections.

If a Push Client or Push Gateway acting as a Push API Server accepts the cross-origin connection for a Push API request, it
MUST indicate acceptance the request through the “Access-Control-Allow-Origin:” header as described in section 7. Note
that if a User Agent acting as a virtual Push API Server accepts the cross-origin connection for a Push API request, its
response is implicit in the successful return of a new EventSource object.

8.3 Privacy considerations for implementors of the Push API
Push Clients and User Agents MUST NOT provide Push API event source access to Webapps without the express
permission of the user. Push Clients and User Agents MUST acquire consent for permission through a user interface, unless
a prearranged trust relationship applies. Such user interfaces may be implemented in various ways, e.g. through a popup
dialog which is presented by the Push Client or User Agent when a Webapp requests Push API access, through a system
setting related to Push API services, or other general privacy-related system settings.

OMA-TS-WRAPI_Push-V1_0-20120508-C Page 30 (33)

 2012 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

The user interface for consent MUST include the Webapp’s origin. Those permissions that are acquired through the user
interface and that are preserved beyond the current browsing session (i.e. beyond the time when the browsing context is
navigated to another URL outside the Webapp, or the local EventSource connection is closed) MUST be revocable and, the
Push Client or User Agent MUST respect revoked permissions.

Obtaining the user's express permission to access one Push API source does not imply the user has granted permission for the
same application to access other sources provided by the Push API, as part of the same permission context. If a user has
expressed permission for an implementation to, e.g. access incoming SMS events from a particular SMS source address, the
implementation MUST seek the user's express permission if and when any additional event sources are accessed via the Push
API.

Since they do not have the opportunity to present an authorization dialog to the user during Push API access establishment,
Push Gateways SHOULD provide some alternate means for user pre-authorization of Webapp access to Push API services.
For example, the Push Gateway can use a Push Service Indication to deliver an authorization message and confirmation link
to the user’s browser, which when selected confirms that the user authorizes the specific Webapp to access Push services.

User Agents, Push Clients, or Push Gateways MAY support prearranged trust relationships that do not require such user
interfaces or per-request confirmation processes.

8.4 Application Security
For SMS, SIP, and other text message event sources, application security is provided by explicit authorization of event
sources. It is assumed that the application has gained the necessary degree of trust in the content provided by an event source,
prior to initiating event reception from that source.

For OMA Push event sources, applications generally can depend upon the security of the OMA Push enabler as typically
deployed. However defensive programming measures should always be applied by the developer, to ensure that the XML-
based content and other content provided through OMA Push is safely processable.

OMA-TS-WRAPI_Push-V1_0-20120508-C Page 31 (33)

 2012 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

Appendix A. Change History (Informative)

A.1 Approved Version History
Reference Date Description

n/a n/a No prior version –or- No previous version within OMA

A.2 Draft/Candidate Version 1.0 History
Document Identifier Date Sections Description

Draft Versions:
OMA-TS-WRAPI_Push-V1_0-20120228-
D

28 Jun 2011 All Baseline TS

15 Jul, 2011 All Incorporates agreed CR:
OMA-CD-WRAPI-2011-0003R06-INP_Push_API_TS_Baseline.

31 Aug, 2011 5, 7, 7.1,
7.3,

Incorporates agreed CR:
OMA-CD-WRAPI-2011-0009-CR_Push_API_TS_Edits.

28 Feb, 2012 All Incorporates agreed CR:
OMA-CD-WRAPI-2012-0001R02-CR_Push_API_TS_Edits.

26 Apr, 2012 All Incorporates agreed CR:
OMA-CD-WRAPI-2012-0005R01-CR_Event_Processing;
OMA-CD-WRAPI-2012-0006R01-CR_PushAPI_TS_edits;
OMA-CD-WRAPI-2012-0007R01-CR_Push_API_Usage.

Candidate Version:
OMA-TS-WRAPI_Push-V1_0

08 May 2012 All Status changed to Candidate by TP:
OMA-TP-2012-0194-INP_WRAPI_V1_0_ERP_for_Candidate_Approval

OMA-TS-WRAPI_Push-V1_0-20120508-C Page 32 (33)

 2012 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

Appendix B. Static Conformance Requirements (Normat ive)
The notation used in this appendix is specified in [SCRRULES].

B.1 SCR for User Agent
Item Function Reference Requirement

WRAPI-PUSH-UA-001-
M

Support all applicable EventSource
functions

7

WRAPI- PUSH-UA-002-
O

Support configuration and operation as
virtual Push API Server

7

WRAPI- PUSH-UA-003-
M

Support multiple EventSource objects 7

WRAPI- PUSH-UA-004-
M

Processing a new EventSource request 7.1.1

WRAPI- PUSH-UA-005-
M

Applying event filters 7.2

WRAPI- PUSH-UA-006-
M

Mapping of events to the text/event-
stream MIME type

7.3

WRAPI- PUSH-UA-007-
M

Cross-origin EventSource connections 8.1

WRAPI- PUSH-UA-008-
M

Privacy considerations 8.3

B.2 SCR for Push Client
Item Function Reference Requirement

WRAPI-PUSH-C-001-M Support all applicable EventSource
functions

7

WRAPI-PUSH-C-002-M Serve EventSource connections on
localhost:4035

7

WRAPI-PUSH-C-003-M Support multiple EventSource objects 7

WRAPI-PUSH-C-004-M Processing a new EventSource request 7.1.1
WRAPI-PUSH-C-005-M Applying event filters 7.2
WRAPI-PUSH-C-006-M Mapping of events to the text/event-

stream MIME type
7.3

WRAPI-PUSH-C-007-M Resticting access to local Push API
service

8.1

WRAPI-PUSH-C-008-M Cross-origin EventSource connections 8.1
WRAPI-PUSH-C-009-M Privacy considerations 8.3

B.3 SCR for Push Gateway
Item Function Reference Requirement

WRAPI-PUSH-S-001-M Support all applicable EventSource
functions

7

WRAPI-PUSH-S-003-M Support multiple EventSource objects 7
WRAPI-PUSH-S-004-M Processing a new EventSource request 7.1.1
WRAPI-PUSH-S-005-M Applying event filters 7.2
WRAPI-PUSH-S-006-M Mapping of events to the text/event-

stream MIME type
7.3

WRAPI-PUSH-S-007-M Cross-origin EventSource connections 8.1
WRAPI-PUSH-S-008-M Privacy considerations 8.3

OMA-TS-WRAPI_Push-V1_0-20120508-C Page 33 (33)

 2012 Open Mobile Alliance Ltd. All Rights Reserve d.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20110101-I]

Appendix C. Push API Usage

Figure 7 Push API Usage

Step 1: Web Application gets the web page from App Server. And it allows user to subscribe the push event.

Step 2: Push Client is triggered to get the web site identifier, and web site URL, from web application.

Step 3: Push Client sends registration request to Push Server. The registration request includes web site identifier and device
identifier.

Step 4: Push Server receives the registration request, and generates receiver identifier, and stores the web site identifier,
device identifier and receiver identifier. Then the Push Client receives registration response from Push Server, including
receiver identifier.

Note that the main intention of identifier conversion is to protect user’s privacy. This is implementation functionality for the
Push Server, and it is out of scope of WRAPI 1.0 enabler.

Step 5: Push Client sends receiver identifier to web site, to register notification messages.

Step 6: If there are notification messages, App Server sends notification messages to Push Server, including receiver
identifier.

Step 7: Push Server sends notification to push client on the user’s device.

Step 8: Push Client sends push event notification to the Web Application.

App Server Push Server Push Client User Agent Client App

1. Get Web Page

2. Push event subscribe request triggering

3. Push event registration request

4. Push event registration response

5. Push event notification registration

6. Push event notification

7. Push event notification

8. Push event notification

