

Copyright © 2002 Mobile Games Interoperability Forum. All rights reserved.
1

Mobile Games Interoperability Forum

MGIF Platform Specification

Version 1.0

MGIF Platform Specification Version 1.0

Copyright © 2002 Mobile Games Interoperability Forum. All rights reserved.
1

Important Notice

Copyright © 2002 Mobile Games Interoperability Forum. All Rights Reserved.

Implementation of all or part of any Specification may require licenses under third party
intellectual property rights, including without limitation, patent rights (such a third party
may or may not be a Supporter). The Sponsors of the Specification are not responsible and
shall not be held responsible in any manner for identifying or failing to identify any or all
such third party intellectual property rights.

THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN ARE
PROVIDED ON AN "AS IS" BASIS WITHOUT WARRANTY OF ANY KIND AND
THE ENTITIES COMPRISING THE SPONSORS AND SUPPORTERS OF THE
MOBILE GAMES INTEROPERABILITY FORUM DISCLAIM ALL WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY
THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL THE ENTITIES
COMPRISING THE SPONSORS AND SUPPORTERS OF THE MOBILE GAMES
INTEROPERABILITY FORUM BE LIABLE TO ANY PARTY FOR ANY LOSS OF
PROFITS, LOSS OF BUSINESS, LOSS OF USE OF DATA, INTERRUPTION OF
BUSINESS, OR FOR DIRECT, INDIRECT, SPECIAL OR EXEMPLARY,
INCIDENTAL, PUNITIVE OR CONSEQUENTIAL DAMAGES OF NY KIND IN
CONNECTION WITH THIS DOCUMENT OR THE INFORMATION CONTAINED
HEREIN, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE.
The above notice and this paragraph must be included on all copies of this document that
are made.

Intellectual Property Rights have been asserted or conveyed in some manner toward these
Mobile Games Interoperability Forum specifications. The intellectual property rights
guidelines of the Mobile Games Interoperability Forum are defined in Section 5.1 of the
Mobile Games Interoperability Forum Specification Supporter Agreement. The Mobile
Games Interoperability Forum takes no position regarding the validity or scope of any
intellectual property right or other rights that might be claimed to pertain to the
implementation or use of the technology, or the extent to which any license under such
rights might or might not be available. A public listing of all claims against the Mobile
Games Interoperability Forum specifications, as well as an excerpt of Section 5.1 of the
Mobile Games Interoperability Forum Specification Supporter Agreement, can be found
at:

http://www.mgif.org/ipr.html

MGIF Platform Specification Version 1.0

Copyright © 2002 Mobile Games Interoperability Forum. All rights reserved.
2

Contents

1. Introduction.. 3

2. Session Management ... 5
2.1 Description .. 5
2.2 Events List... 9
2.3 Action Listeners List ... 10

3. Connectivity... 13
3.1 Description .. 13
3.2 Content .. 13
3.2 Async Package .. 15
3.3 15

4. Metering... 19
4.1 Description .. 19
4.2 Traffic Based Events ... 19
4.3 Game Specific Events ... 19

5. Score and Competition Management... 21
5.1 Description .. 21
5.2 Content .. 22

6. Timers .. 24
6.1 Description .. 24
6.2 Programmatic Timers.. 24
6.3 Declarative Timers .. 25

7. Logging.. 26
7.1 Description .. 26

8. Future API Expansion.. 27

Appendix A JavaDocs .. 28

Appendix B Sample Code .. 29

MGIF Platform Specification Version 1.0

Copyright © 2002 Mobile Games Interoperability Forum. All rights reserved.
3

1. Introduction

This document specifies the requirements of an MGIF certified platform. The primary
audience of this document is developers of mobile gaming platform. However, game
developers will also find this document useful in determining the scope of functionality
that is addressed by the current MGIF release.

The MGIF specifications address the issues of portability and interoperability in the
mobile games space. The MGIF specifications will allow game developers to produce
and deploy mobile games that can be more easily ported between multiple MGIF
platforms and wireless networks, and played over different mobile devices. While the
MGIF will not specify functionality for mobile devices, it will work with and provide
input to appropriate standards bodies and forums to enable an open end-to-end games
environment. The MGIF will define API specifications, it will not produce a mobile
game platform.

The potential scope of a gaming platform is enormous. A pragmatic standpoint has,
therefore, been taken, where initial efforts have been concentrated in those areas that
are deemed to reap most benefit for the game developer. Specifically, in the first release
of the API, the following areas are addressed:

• Session management: provides the identifiers that bind the user interactions into
single concept of a game, provides access to the other APIs and provides the
interface through which the lifecycle of game entities can be managed.
Rationale: the core framework upon which all other API access is built.

• Connectivity: provides the communication layers, protecting the developer from
the low-level implementation details of the transport mechanism.
Rationale: network access is widely reported to cause significant rework on the
part of the game developer.

• Metering: provides a standard API through which the game can inform the
MGIF platform of game specific billable events.
Rationale: relates fundamentally to how the game is paid for and so of high
importance.

• Scores and Competition Management: provides the mechanisms by which the
game can report and retrieve scores from the MGIF platform, so allowing
competitions to be run in a unified manner.
Rationale: the basis upon which online communities can be built in the mobile
gaming arena.

• Logging: provides a standard reporting mechanism by which a game informs
the MGIF platform of its status. This insulates against specific formatting
requirements and through the implementation of variable logging levels, assists
in the troubleshooting process.
Rationale: by standardizing logging troubleshooting is simplified and thus
operational costs reduced.

MGIF Platform Specification Version 1.0

Copyright © 2002 Mobile Games Interoperability Forum. All rights reserved.
4

• Timers: provides the mechanism by which a game schedules and delays
activities.
Rationale: provides unified access to time based event triggers for the game
developer.

Underlying the design of the APIs discussed in this document lays an event-based
mechanism. The Session API defines the core of the event model. Although not
necessary, a familiarity of event based programming will significantly help in the
interpretation of this document.

The MGIF framework of APIs offers no guarantees on the re-entrancy of the event
handlers. Specific game platform vendors may offer tools and reentrance conditions on
top of the MGIF APIs, but at this moment in time this is an implementation specific
area.

This document is intended for readers familiar with the Java programming language.

In order to achieve compliance with 1.0 MGIF specification, platform support for each
of the APIs listed within this document is mandatory.

MGIF Platform Specification Version 1.0

Copyright © 2002 Mobile Games Interoperability Forum. All rights reserved.
5

2. Session Management
2.1 Description

The Session Management APIs describe a framework and high level structure for the
applications executing within the MGIF platform. This framework controls the
application’s lifecycle. It also facilitates managing the Actors, meaning the End-User
representation within the specific Application, and provides the Application Developer
with access to all other interfaces and APIs necessary to create the application. These
include, the Connectivity, Logging, Scoring, etc.

MGIF APIs are event based. Each event handling is a separate transaction. There are
numerous types of events: user input events, timer events, etc. The full list of possible
events is found below. To connect between the game logic and the MGIF platform
event handling mechanism the game logic source classes must implement one or more
of supplied event listener interfaces. Those game logic classes should be registered in
MGIF platform by the deployment process.

Game board lifecycle in MGIF platform is based on session entities. A session is
defined as a series of interactions encompassing the Actor’s lifetime within the specific
Application Instance. ActorSession represents the single player role in a game
board. In the real world, games may contain several players, and one single person can
play several roles in different games or events in a single game board (person plays
chess with himself), therefore the relation between ActorSession and User (which
represents a user) is many to one. The relation between ActorSession and
ApplicationInstance (which represents a single game board) may similarly be
many to one. The Application session entity is used to represent a single type of
game, registered in the MGIF platform, and defines shared functionality between all
ApplicationInstances of the same kind. Actor is shared functionality between
all ActorSessions of same User in the same Application. More information
about functionally provided in each session interface is provided in the detailed
documentation in JavaDoc Appendix A.

The MGIF platform must maintain persistent relations among all session objects for all
existing game boards. Session objects and the relations among them may be changed
automatically by an MGIF platform as a result of some event, e.g. user input can create
new ActorSession, or as a result of game logic execution, e.g. as result of
ActorSession.delete()call.

When an event arrives at the system, the transaction opens and a transaction context is
created. Among other things context contains the target of the handling event. There are
two kinds of event, the first targets ApplicationInstance session entity, while
the second targets ActorSession session entity. The MGIF platform must create
the correct context for every arriving event.

MGIF Platform Specification Version 1.0

Copyright © 2002 Mobile Games Interoperability Forum. All rights reserved.
6

1

0..*

1 0..*

1

0..*

10..1

0..1

1

1

0..*

interface
Actor

actorId:long
userId:long

interface
ActorSession

+createMeteringEvent(meteringEventTypeId:i
+createTimer(expirationTime:Data,params:Ha
+delete():void
+joinToApplicationInstance(targetApplicationI

 actor:org.mgif.Actor
applicationInstance:org.mgif.ApplicationInsta

interface
Application

 applicationId:long
 masterApplicationInstanceId:long

interface
ApplicationInstance

+createNewAppInstance(applicationId:l
+createTimer(expirationTime:Data,para
+end():void
+enumerateActorSession():Iterator
+getActorSession(actorSesionID:long):
+sendInterAppMessage(targetApplicati

 application:org.mgif.Application
 applicationInstanceId:long

interface
MasterApplicationInsta

interface
User

 userId:long

Figure 1. Relations between main session entities

MGIF Platform Specification Version 1.0

Copyright © 2002 Mobile Games Interoperability Forum. All rights reserved.
7

2.1.1 Interfaces
2.1.1.1 Actor

Actor represents shared information between all ActorSessions in same
Application. It contains only an ActorID that is used to access this shared
information. This state is created when a user starts to use Application for first
time, and exists forever.

2.1.1.2 ActorSession
An ActorSession object represents a specific user in the context of a particular
ApplicationInstance. Each user can be present in multiple applications at the
same time, and thus be associated with several ActorSession objects. There is a
one-to-many relationship between the Actor and ActorSession.

An ActorSession is created by the MGIF platform and joined to the appropriate
ApplicationInstance. ActorSession interface contains ActorSessionID
which combined with ApplicationInstanceID and ApplicationID can be
used to access ActorSession persistent state.

The corresponding ActorSession object in the game handles inputs received from a
specific user.

An ActorSession is the actual representation of a user session in a game.

2.1.1.3 Application
An Application is the installed code or logic of a game. The Application is
used for creating specific running instances: game boards. Application defines
shared information for all ApplicationInstances. It also contains
ApplicationID that is used to manage this information.

2.1.1.4 ApplicationInstance
The ApplicationInstance is the actual game played. It is the running instance of
the Application object. For a game to be created there must be a new
ApplicationInstance created to manage the actual game and the
ActorSessions in it. In this way, multiple instances of an application can be run
simultaneously, each controlling a different game and its users. A specific Tic-Tac-Toe
board is an example of an ApplicationInstance.

Every ApplicationInstance contains an ApplicationInstanceID which
may be used to access the persistent information.

ApplicationInstance is target for Application events and implements
listeners for those events.

An ActorSession is the actual representation of a user session in a game.

MGIF Platform Specification Version 1.0

Copyright © 2002 Mobile Games Interoperability Forum. All rights reserved.
8

2.1.1.5 ApplicationInstance - ActorSession Relations
Optional for version 1.0 of MGIF platform:

An ApplicationInstance may manage several actors simultaneously.

A user may be represented simultaneously in several ApplicationInstances. A
user may simultaneously play in all those game boards.

Note: The decision as to whether a user may play simultaneously in several instances of
the same game is a commercial production decision of the operator. The application
cannot make any assumptions to that effect.

2.1.1.6 MasterApplicationInstance
MasterApplicationInstance defines one special application instance, which is
used to manage events and information shared for regular application instances. This
instance is the target for special management events, e.g. declarative timers.

2.1.1.7 User
Users are subscribers who have cellular accounts and may access the MGIF platform.
The term “user” represents a specific person connecting to the system via a cellular
phone or another communication device. The user is an object that exists independently
of any game. The user places requests to the system to play a particular game.
Normally a user is identified with a SIM (Subscriber Identity Module) or User Name
and Password. Each user has an internal unique UserID on the platform.

When the user is connected to an Application, an instance of the ActorSession
class is created, by the MGIF platform, for the user, and joined to that Application
in the form of an ActorSession object. It is possible for multiple ActorSession
objects to exist simultaneously for a particular user when each ActorSession object
is attached to an ApplicationInstance but controlled by the same user.

MGIF Platform Specification Version 1.0

Copyright © 2002 Mobile Games Interoperability Forum. All rights reserved.
9

Events List

interface
ActorSessionTimerEv

interface
DeleteEven

interface
ApplicationInstanceTimerE

interface
CreateEven

interface
TimerEvent

 expirationTime:Da
 params:Map
 timerId:long

interface
ActorSessionEve

interface
Event

interface
ApplicationInstanceEv

interface
StartEvent

params:Ma

interface
InterAppMessageEve

 params:Map

interface
FirstInputEve

interface
InputEven

interface
JoinEvent

params:Ma

interface
EndEvent

2.2.1 Events
2.2.1.1 Actor Session

Base interface for all events that have actor as a target

2.2.1.2 Actor Session Timer
Indicates timer event for Actor object

2.2.1.3 Application Instance
Base interface for all events that have application instance object as target.

2.2.1.4 Application Instance Timer
Indicates timer event for Application Instance object

2.2.1.5 Create
Indicates start of lifecycle of Actor Session object.

MGIF Platform Specification Version 1.0

Copyright © 2002 Mobile Games Interoperability Forum. All rights reserved.
10

2.2.1.6 Delete
indicates end of lifecycle of Actor Session object.

2.2.1.7 Delivery
Base interface for delivery reports.

2.2.1.8 ActorSessionDelivery
Event created as a result of delivery report to ActorSession object.

2.2.1.9 ApplicationInstanceDelivery
Event created as a result of delivery report to ApplicationInstance object.

2.2.1.10 End
Indicates end of lifecycle of Application Instance object.

2.2.1.11 Event
Base interface for all possible events

2.2.1.12 Input
Base class for all input events.

2.2.1.13 AsyncInputEvent
Event created as a result of input to ActorSession object

2.2.1.14 SyncInputEvent
Event created as a result of request/response input to ActorSession object

2.2.1.15 Inter App Message
Indictes message sent to Application Instance object by some other Application
Instance object.

2.2.1.16 Join
Indicates request for join of user from some Actor Session object to another freshly
created Actor Session object. This event immediately follows CreateEvent.

2.2.1.17 Start
2.2.1.18 Timer

Base class for al timer events.

2.3 Action Listeners List
2.3.1.1 OnActorSessionDelivery

This interface declares that implementing ActorSession class is ready to listen for
incoming delivery reports.

MGIF Platform Specification Version 1.0

Copyright © 2002 Mobile Games Interoperability Forum. All rights reserved.
11

2.3.1.2 OnActorSessionJoin
This interface declares that implementing ActorSession class is ready to listen for
JoinEvent from some other ApplicationInstance and implements a hook to deal with
transferred event.

2.3.1.3 OnActorSessionTimer
This interface declares that implementing ActorSession class is ready to listen for
TimerEvents implements a hook to deal with transferred event. To create TimerEvent
use ActorSession.createTimer() call.

2.3.1.4 OnApplicationInstanceDelivery
This interface declares that implementing ApplicationInstance class is ready to listen
for incoming delivery reports.

2.3.1.5 OnApplicationInstanceTimer
This interface declares that implementing ApplicationInstance class is ready to listen
for TimerEvents implements a hook to deal with transferred event. To create
TimerEvent use ApplicationInstance.createTimer() call.

2.3.1.6 OnAsyncInput
This interface declares that implementing ActorSession class is ready to listen for
asynchronous input event and implements a hook to deal with transferred event.

2.3.1.7 OnCreate
This interface declares that implementing ActorSession class is ready to listen for
CreateEvent and implements a hook to deal with transferred event. This event is
automatically created when ActorSession created, and this is first event that should be
handled by ActorSession.

2.3.1.8 OnDelete
This interface declares that implementing ActorSession class is ready to listen for
CreateEvent and implements a hook to deal with transferred event. This event is
automatically created when ActorSession created, and this is first event that should be
handled by ActorSession.

2.3.1.9 OnEnd
This interface declares that implementing ApplicationInstance class is ready to listen
for EndEvent and implements a hook to deal with transferred event. This event is
automatically created when ApplicationInstance deleted, and this is last event that
should be handled by ApplicationInstance.

2.3.1.10 OnFirstAsyncInput
This interface declares that implementing ActorSession class is ready to listen for first
asynchronous input event and implements a hook to deal with transferred event.

MGIF Platform Specification Version 1.0

Copyright © 2002 Mobile Games Interoperability Forum. All rights reserved.
12

2.3.1.11 OnFirstSyncInput
This interface declares that implementing ActorSession class is ready to listen for first
synchronous input event and implements a hook to deal with transferred event.

2.3.1.12 OnInterAppMessage
This interface declares that implementing ApplicationInstance class is ready to listen
for InterAppMessageEvent and implements a hook to deal with transferred event.

2.3.1.13 OnStart
This interface declares that implementing ApplicationInstance class is ready to listen
for StartEvent and implements a hook to deal with transferred event. This event is
automatically created when ApplicationInstance created, and this is first event that
should be handled by ApplicationInstance.

2.3.1.14 OnSyncInput
This interface declares that implementing ActorSession class is ready to listen for
synchronous input event and implements a hook to deal with transferred event.

MGIF Platform Specification Version 1.0

Copyright © 2002 Mobile Games Interoperability Forum. All rights reserved.
13

3. Connectivity
3.1 Description

The purpose of the connectivity APIs is to enable communication between the
application and the clients. The connectivity APIs specify how the requests from clients
are exposed to the applications, and how applications generate responses to the clients.

The communication models required by different application types can be categorized
into four modes:

• client pull

• client push

• application pull

• application push

This version of the connectivity APIs only addresses messaging and browser clients.
Subsequent versions will include executable clients.

3.2 Content
This section illustrates the components that collectively comprise the Connectivity
APIs. This API comprises of three parts:

• synchronous communication

• asynchronous communication

• transfer, dealing with functionality common to each of the above types of
communications

The Session APIs provide listener hooks for both synchronous and asynchronous
communication. An application serving requests from both communication types can
simply provide implementation for the both onSynchInput() and
onAsynchInput() methods. The protocol used by the client determines which
method the platform calls whenever a new request is received from a client. The
routing of requests to the correct application instance is implementation specific.

MGIF Platform Specification Version 1.0

Copyright © 2002 Mobile Games Interoperability Forum. All rights reserved.
14

connectivity

sync

Request

Response

async

Message

TextMessage

MMMessage

MessageFactory MessageException

BinaryMessage

ServiceIndicationMessage

transfer

DatagramAttributes

Figure 2. Connectivity package

MGIF Platform Specification Version 1.0

Copyright © 2002 Mobile Games Interoperability Forum. All rights reserved.
15

3.3 Async Package
The async package manages the asynchronous communication.

async

MessageException

MessageFactory
+newBinaryMessage() : BinaryMessage
+newMMMessage() : MMMessage
+newServiceIndicationMessage() : ServiceIndicationMessage
+newTextMessage() : TextMessage

Message
+getDeliveryNotification() : boolean
+getExpiration() : long
+getMessageID() : String
+getTimestamp() : long
+numberOfSegments() : int
+send() : void
+setDeliveryNotification(request : boolean) : void
+setExpiration(expiration : long) : void

TextMessage
+getReplyMessage() : TextMessage
+getText() : String
+setText(text : String) : void

BinaryMessage
+getData() : byte[]
+getReplyMessage() : BinaryMessage
+setData(data : byte[]) : void

MMMessage
+addItem(item : MMItem) : void
+getItems() : Enumeration

MMItem
+getData() : byte[]
+getLength() : int
+getMimeType() : String
+setData(data : byte[]) : void
+setMimeType(type : String) : String

ServiceIndicationMessage
+getAction() : ServiceIndicationAction
+getHref() : String
+getMessage() : String
+setAction(action : ServiceIndicationAction) : void
+setHref(href : String) : void
+setMessage(message : String) : void

ServiceIndicationAction
-ServiceIndicationAction(name : String)
+toString() : String

Figure 3. Async package

The asynchronous communication uses messages. The base interface for all messages
is org.mgif.connectivity.async.Message. The interface provides basic
common methods for handling messages.

3.3.1 Mobile originated messages
Incoming messages are delivered to the application via the OnFirstAsyncInput
and OnAsyncInput listeners.

3.3.2 Mobile terminated messages
Message interfaces contain a getReplyMessage() method that provides an easy
way to generate a response to an MO message. The MessageFactory is used for
pushing an MT message to a user. The MessageFactory is obtained from the
ActorSession.

MGIF Platform Specification Version 1.0

Copyright © 2002 Mobile Games Interoperability Forum. All rights reserved.
16

Sample code snippet in Java (receiving and responding to an asynchronous client
request):

import org.mgif.connectivity.async.*;

...
public void onAsyncInput(AsyncInputEvent event)
{

TextMessage textMessage = (TextMessage)
event.getMessage();

if (textMessage.getText().equals("Hello MGIF!"))
{

TextMessage replyMessage
= textMessage.getReplyMessage();

replyMessage.setText("Hello!");
replyMessage.send();

}
}

The basic message interface is inherited to produce service specific message types.

• org.mgif.connectivity.async.TextMessage is an interface for
handling messages containing only textual data.

• org.mgif.connectivity.async.BinaryMessage is an interface for
handling messages containing binary data, e.g. operator logos.

• org.mgif.connectivity.async.ServiceIndicationMessage is
an interface for handling WAP push.

• org.mgif.connectivity.async.MMMessage is an interface for
handling Multimedia messages

 For details please refer to the Javadoc of the corresponding interfaces.

MGIF Platform Specification Version 1.0

Copyright © 2002 Mobile Games Interoperability Forum. All rights reserved.
17

3.3.3 Sync package
The sync package handles the synchronous communication.

sync
Request

+getCharacterEncoding() : String
+getContentLength() : int
+getContentType() : String
+getInputStream() : InputStream
+getReader() : BufferedReader
+setCharacterEncoding(encoding : String)

Response

+getBufferSize() : int
+getCharacterEncoding() : String
+getLocale() : Locale
+getOutputStream() : OutputStream
+getWriter() : PrintWriter
+setBufferSize(size : int)
+setContentLength(length : int)
+setContentType(type : String)
+setLocale(locale : Locale)

Figure 4. Sync package

Synchronous communication uses the request/reply paradigm. This is realized by using
the org.mgif.connectivity.sync.Request and
org.mgif.connectivity.sync.Response interfaces. Both interfaces contain
methods for getting and setting attributes, as well as other methods for dealing with the
actual content of the request or response.

Sample code snippet in Java (receiving and responding to an synchronous client
request):

import org.mgif.connectivity.sync.*;

...

public void onSyncInput(SyncInputEvent event)
{

Request request = event.getRequest();
if (request.getContentType().equals("text/html"))
{

Response response = event.getResponse();
response.getWriter().println("<html>");
response.getWriter().println("<h1>Hello</h1>");
response.getWriter().println("</html>");

}
}

MGIF Platform Specification Version 1.0

Copyright © 2002 Mobile Games Interoperability Forum. All rights reserved.
18

3.3.4 Transfer package
The transfer package contains the interfaces extended by both the async and sync
packages.

transfer

Attributes

+getAttribute(key : String) : Object
+getAttributeNames() : Enumeration
+getAttributes() : Map
+isAttribute(key : String) : boolean
+removeAttribute(key : String)
+setAttribute(key : String, val : Object)

Datagram

+getLocale() : Locale
+getLocales() : Enumeration
+getProtocol() : String
+getScheme() : String
+getTerminalId() : String

Figure 5. Transfer package

MGIF Platform Specification Version 1.0

Copyright © 2002 Mobile Games Interoperability Forum. All rights reserved.
19

4. Metering
4.1 Description

An MGIF platform may produce metering events for potential use in different billing
scenarios. Some metering events are traffic related, e.g. game session duration, MT
SMS message, and some are application specific, e.g. moving to the next level in a
game.

An MGIF platform may use metering events for post-paid, pre-paid and subscription
scenarios.

The scope of these APIs is to address the generation of game specific metering events.

4.2 Traffic Based Events
An MGIF platform may implement advanced, flexible metering services. A platform
may provide metering of:

• Session duration

• Data transfer

• MT and MO message

• Subscription/Pre-Paid Billing authorization
The application developer is not responsible for adding code for metering of traffic
related events. Such metering is handled transparently by the MGIF platform.

4.3 Game Specific Events
The MGIF Metering APIs are used to programmatically commit metering events. Each
metering event is created using a metering event type ID. All metering event types
must be configured prior to use. Processes or tools for configuration are undefined. An
MGIF Platform vendor may choose the mechanism for configuring these events. Each
metering event type must have an integer ID. Metering events are created in the scope
of an ActorSession.

Sample code snippet in Java (metering event creation):

import org.mgif.*;
import org.mgif.metering.*;

...

// Create a metering event for moving to the next level
// (ID=17)
// An event type with ID=17 must have been configured

MGIF Platform Specification Version 1.0

Copyright © 2002 Mobile Games Interoperability Forum. All rights reserved.
20

MeteringEvent event =
ActorSession.createMeteringEvent(17);
event.raise();

MGIF Platform Specification Version 1.0

Copyright © 2002 Mobile Games Interoperability Forum. All rights reserved.
21

5. Score and Competition Management
5.1 Description

These APIs provide the mechanisms for recording and retrieving scores. This allows
various forms of competition to be provided by either the platform or the individual
game application.

5.1.1 Scoring
The MGIF platform must support the following scoring models for applications. An
application must state the scoring model it will use for each of the scores it records,
and must reliably record these scores for each player for each session following the
stated model.

Each model may be further configured according to scoring information, e.g. May more
than one score be stored for a particular user? Or are scores “better” when higher or
lower?

5.1.1.1 No Scoring
No scores are recorded and no score table information is available. No further
configuration required. This is often used in games in which there is no simple score
available. Such games need to implement their own internal competition mechanisms
as they will not be able to assume support from the platform.

5.1.1.2 Simple Numeric Scores
The game service records a simple numeric score for each user. This model must be
configured according to scoring information:

• Is “better” higher or lower?

• The number of scores that may be recorded per user.

• The total number of scores that are to be recorded.
The game application must record a score at least once for each player in each game
session.

5.1.1.3 Cumulative Numeric Scores
The user builds up a score over a number of sessions. This scoring model must be
configured according to scoring information:

• Is “better” higher or lower?

• The total number of scores that are to be recorded.
In this case the game application first retrieves the user’s current score, alters it based
on the outcome of the session and then records the updated score.

MGIF Platform Specification Version 1.0

Copyright © 2002 Mobile Games Interoperability Forum. All rights reserved.
22

5.1.1.4 Rank
This scoring model is provided to support services that maintain their own score table
internally by some mechanism not supported within the MGIF specification. The game
service simply calls setScore with the players new rank as the value – all lower ranked
positions are moved down to make room. This scoring model must be configured
according to scoring information:

• The total number of scores that are to be recorded.

5.1.1.5 Combined
An application can specify any number of score tables, each using one of the model
described above.

5.1.2 Competitions
Competition management is normally a feature of the game server and not the
individual game, consequently there is no specific API provided to support
competitions. For a games service to be useable for competitions it must record a score
for every user in every game session. Such scores must always be reliably comparable.

For every such games service the game platform may provide facilities for
competitions running over various time periods with the winner selected in a variety of
ways – in part depending on the nature of the scoring used in the game service in
question.

If a game service wishes to implement a service specific competition system it may do
so using a combination of the Score Management API and Scheduling API. This is
discouraged as it is likely to duplicate platform functionality.

5.2 Content
5.2.1 Scores

All scores returned from the various interfaces defined below return objects
implementing the org.mgif.score.Score interface. This is a simple bean style
interface allowing access to the score value, the rank it represents from where the score
was retrieved, if applicable, when the score was achieved and who achieved it.

Score values are always represented by the int type. If a game requires fractional
scores it should scale these to produce an integer representation with an appropriate
number of significant digits.

5.2.2 Multiple Score Tables
An application can specify any number of score tables within reason. These are referred
to via a table number. All of the APIs in this chapter are provided in two forms. The
first form does not specify a table number and operates on the first or only table. The
second form allows the table number to be specified.

MGIF Platform Specification Version 1.0

Copyright © 2002 Mobile Games Interoperability Forum. All rights reserved.
23

5.2.3 Recording Scores
All score recording is done via an object implementing the
org.mgif.score.ScoreManager interface that can be retrieved from the
ActorSession.

The setScore method allows a score value to be set for the session. Normally it is
assumed the score was achieved at the time the setScore() method was called.
Optionally the time/date it was achieved may be provided explicitly.

The getScore() method retrieves the last score set for this session, or from a
previous session if the cumulative model is in use.

5.2.4 Retrieving Past Scores
All score retrieval is done via an object implementing the
org.mgif.score.ScoreTableManager interface which can be retrieved from
the ApplicationInstance.

The simplest method is getScoreAt() which retrieves a single score from a
particular rank. This will return null if no score is available at that rank.

The other methods all return an array of Score objects that may vary in size between
0 and the requested number of scores if the scores requested are available or are not in
the table in question.

The top scores in the table can be retrieved by using the getTopScores() method.

The scores around a particular rank, or the rank of the highest score of some specific
Actor, may be retrieved by using the getScoresAround() method.

MGIF Platform Specification Version 1.0

Copyright © 2002 Mobile Games Interoperability Forum. All rights reserved.
24

6. Timers
6.1 Description

Applications that need to delay or schedule activities for a later time should use the
timer service provided by the MGIF platform. The Timer service provides scheduling
and notification of timers. An MGIF platform may provide additional unspecified
services, e.g. load balancing and persistence of timers.

Timers can be created either programmatically, i.e. by calling a method on an interface,
or declaratively, i.e. via some implementation specific mechanism for configuring
timers.

6.2 Programmatic Timers
There are two types of programmatic timers, ActorSession timers and
ApplicationInstance timers.

ActorSession timers are created and notified in the scope of an ActorSession.
The createTimer()method on the ActorSession interface is used for creating
these timers. When such a timer expires the method onActorSessionTimer()on
the OnActorSessionTimer interface is invoked.

ApplicationInstance timers are created and notified in the scope of an
ApplicationInstance. The createTimer()method on the
ApplicationInstance interface is used for creating these timers. When such a
timer expires the method onApplicationInstanceTimer()on the
OnApplicationInstanceTimer interface is invoked.

Sample code snippet in Java (create timer)

import org.mgif.*;

...
// Create a timer in ActorSession scope
Hashtable params = new Hashtable();
params.put(“myParam”, “myValue”);
myActorSession.createTimer(new Date((new
Date()).getTime() + 60*60*1000), params);

...

Sample code snippet in Java (timer notification)

import org.mgif.*;
import org.mgif.listener*;

public class MyTask implements OnActorSessionTimer {

MGIF Platform Specification Version 1.0

Copyright © 2002 Mobile Games Interoperability Forum. All rights reserved.
25

public void onActorSessionTimer(ActorSessionTimer
event) {

// This method is called when the timer expires
Map params = event.getParams();

}
}

6.3 Declarative Timers
Declarative timers are created via an implementation specific mechanism, e.g. a
configuration file or administration tool. . When such a timer expires the method
onApplicationInstanceTimer()on the OnApplicationInstanceTimer
interface is invoked. All declarative timers are notified for the
MasterApplicationInstance entity.

MGIF Platform Specification Version 1.0

Copyright © 2002 Mobile Games Interoperability Forum. All rights reserved.
26

7. Logging
7.1 Description

An MGIF platform may provide logging of events of all client requests and MT SMS
messages, timer events, etc. For debugging, troubleshooting, monitoring and other
purposes it can be important for the application developer to be able to write
information to an application log. The logging APIs of the MGIF platform specification
is designed for these purposes.

7.1.1 Logger Interface
The Logger interface from MGIF logging APIs, can be used to add information to the
log. The ActorSession and ApplicationInstance interfaces can be used to
retrieve a Logger.

Sample code snippet in Java

import org.mgif.util.logging.*;

...

Logger logger = myActorSession.getLogger();
logger.fine(“Moving to the next level.”);
// Move to the next level
...
if (successful) {

Log.info(“The move to the next level was
successful.”);
} else {

Log.warning(“The move to the next level was
unsuccessful.”);

MGIF Platform Specification Version 1.0

Copyright © 2002 Mobile Games Interoperability Forum. All rights reserved.
27

8. Future API Expansion
The MGIF is committed to the improvement of the implementation of games in the
mobile environment. To this end further APIs may be added to the specification as and
when they are required. Two areas that have been identified for immediate attention:

• Game Administration – Tools for game deployment configuration and
administration.

• Executable client applications – which although not a specific API as such,
entails the broadening of scope of MGIF to encompass games where some of
the game logic does not reside on the server.

MGIF Platform Specification Version 1.0

Copyright © 2002 Mobile Games Interoperability Forum. All rights reserved.
28

Appendix A JavaDocs

The related JavaDocs for the MGIF Platform Specification are freely available at:

http://www.mgif.org/docs/MGIF_JavaDocs_v1.0.zip

MGIF Platform Specification Version 1.0

Copyright © 2002 Mobile Games Interoperability Forum. All rights reserved.
29

Appendix B Sample Code
package org.mgif.examples.RPS;

import org.mgif.listener.OnFirstAsyncInput;
import org.mgif.listener.OnAsyncInput;
import org.mgif.listener.OnActorSessionTimer;
import org.mgif.listener.OnDelete;
import org.mgif.event.AsyncInputEvent;
import org.mgif.event.DeleteEvent;
import org.mgif.event.ActorSessionTimerEvent;
import org.mgif.ActorSession;
import org.mgif.util.logging.Logger;
import org.mgif.score.Score;
import org.mgif.score.ScoreManager;
import org.mgif.connectivity.async.MessageFactory;
import org.mgif.connectivity.async.TextMessage;
import org.mgif.connectivity.async.Message;

import java.util.Map;
import java.util.Date;
import java.util.HashMap;

/**
* A very simple Rock-Paper-Scissors text message game written to the MGIF v1 API
* The game automatically ends after 24 hours.
*/
public class RockPaperScissors implements OnFirstAsyncInput, OnAsyncInput,
OnActorSessionTimer, OnDelete
{

/**
* Number of milliseconds on 24 hours!
*/
private static final int ONE_DAY = 1000*60*60*24;

/**
* The three possible values to play!
*/
private static final int ROCK = 0;
private static final int PAPER = 1;
private static final int SCISSORS = 2;

/**
* Handle a first input in a session.
*/
public void onFirstAsyncInput(AsyncInputEvent event)
{

Message mo = event.getMessage();
ActorSession actorSession = event.getActorSession();
Logger logger = actorSession.getLogger();

// Create an MT message to send back out.
TextMessage mt;
if (mo instanceof TextMessage) {

logger.info("RPS: Session started for "+mo.getOriginator()+" by a text
message.");

mt = ((TextMessage)mo).getReplyMessage();
} else {

logger.info("RPS: Session started for "+mo.getOriginator()+" by a non-text
message.");

mt = actorSession.getMessageFactory().newTextMessage();
}

// Fill in the MT and send it.
mt.setText("Welcome to rock paper scissors - take your pick of r,p, or s");
mt.send();

// Create the timer which will end the game.
Date oneDayInTheFuture = new Date((new Date()).getTime() + ONE_DAY);
Map args = new HashMap();
actorSession.createTimer(oneDayInTheFuture, args);

MGIF Platform Specification Version 1.0

Copyright © 2002 Mobile Games Interoperability Forum. All rights reserved.
30

}

/**
* Handle all subsequent inputs in a session.
*/
public void onAsyncInput(AsyncInputEvent event)
{

Message message = event.getMessage();
ActorSession actorSession = event.getActorSession();

if (message instanceof TextMessage) {

TextMessage mo = (TextMessage)message;

// Try to act on the content of the MO.
Result result = null;
if (mo.getText().equalsIgnoreCase("r")) {

result = takeTurn(ROCK);
} else if (mo.getText().equalsIgnoreCase("p")) {

result = takeTurn(PAPER);
} else if (mo.getText().equalsIgnoreCase("s")) {

result = takeTurn(SCISSORS);
}

TextMessage mt = mo.getReplyMessage();
if (result!=null) {

// We have a result so send out an appropriate MT.

if (result.isUserWin()) {
// If the user won then update their score.
ScoreManager scoreManager = actorSession.getScoreManager();
Score currentScore = scoreManager.getScore();
scoreManager.setScore(currentScore.getValue()+1);

}

mt.setText(result.getDescription());

} else {
// We didn't understand the MO so send an error as out MT.
mt.setText("I don't understand. Please choose one of r, p or s!");

}
mt.send();

} else {
// If the MO wasn't a text message push out an error.
TextMessage mt = actorSession.getMessageFactory().newTextMessage();
mt.setText("Rock-Paper-Scissors can only respond to plain text messages -

sorry!");
mt.send();

}
}

/**
* Handle timer events.
*/
public void onActorSessionTimer(ActorSessionTimerEvent event)
{

ActorSession actorSession = event.getActorSession();
MessageFactory messageFactory = actorSession.getMessageFactory();

// Let the user know the time has run out!
TextMessage mt = messageFactory.newTextMessage();
mt.setText("Your game time has run out!");
mt.send();

// Close the session.
actorSession.delete();

}

/**
* Handle session end.
*/
public void onDelete(DeleteEvent event)
{

ActorSession actorSession = event.getActorSession();

MGIF Platform Specification Version 1.0

Copyright © 2002 Mobile Games Interoperability Forum. All rights reserved.
31

ScoreManager scoreManager = actorSession.getScoreManager();
MessageFactory messageFactory = actorSession.getMessageFactory();
Logger logger = actorSession.getLogger();

// Send the user a summary of the session.
TextMessage mt = messageFactory.newTextMessage();
mt.setText("Your final score was "+scoreManager.getScore());
mt.send();

logger.info("RPS: Session finished for "+mt.getDestination());
}

/**
* Table of results against user and cpu choices.
*/
private static Result results[] = {

new Result(false, "Rock draws with rock."),
new Result(false, "Paper wraps rock - you lose."),
new Result(true, "Rock blunts scissors - you win!"),
new Result(true, "Paper wraps rock - you win!"),
new Result(false, "Paper draws with paper."),
new Result(false, "Scissors cut paper - you lose."),
new Result(false, "Rock blunts scissors - you lose."),
new Result(true, "Scissors cut paper - you win!"),
new Result(false, "Scissors draws with scissors.")

};

/**
* The actual game "logic" - table driven.
*/
private Result takeTurn(int userChoice)
{

int cpuChoice = (int)(Math.random()*3);
boolean userWin = false;
String description = null;

Result result = results[userChoice*3+cpuChoice];

return result;
}

/**
* Simple bean representing the result of a round.
*/
private static class Result
{

private boolean userWin;
private String description;

public Result(boolean userWin, String description)
{

this.userWin = userWin;
this.description = description;

}

public boolean isUserWin()
{

return userWin;
}

public String getDescription()
{

return description;
}

}
}

