

 SyncML Sync Protocol 1 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

SyncML Sync Protocol, version 1.0.1

Abstract
This specification defines synchronization protocol between a SyncML client and server in form of message
sequence charts. It specifies how to use the SyncML Representation protocol so that interoperating SyncML
client and server solutions are accomplished.

 SyncML Sync Protocol 2 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

Consortium
The following companies are sponsors in the SyncML initiative:
Ericsson
IBM
Lotus
Motorola
Nokia
Palm, Inc.
Matsushita Communications Industrial Co., Ltd.
Psion
Starfish Software

Revision History

Revision Date Comments

0.9 2000-05-31 0.9 release

1.0a 2000-08-31 Authentication procedures added, busy signaling
generalized, multiple message per package functionality
specified, Update command renamed to Replace, Alert codes
modified, editorial changes.

1.0b 2000-11-07 Sync Anchors chapter updated, error cases fixed, slow sync
chapter fixed, the sync alert chapter updated, examples
updated

1.0 2000-12-07 The candidate version for the final release. The
authentication example fixed. The device capabilities and the
requirement for Get operation changed. Binary example
updated. Examples updated to match with changes in the
DevInf and MetInf specifications

1.0.1 2001-05-28 Incorporated Erratas

1.0.1 2001-05-03 Fixed copyright dates.

 SyncML Sync Protocol 3 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

Copyright Notice
Copyright (c) Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,
Motorola, Nokia, Palm, Inc., Psion, Starfish Software (2000, 2001).

All Rights Reserved.

Implementation of all or part of any Specification may require licenses under third party
intellectual property rights, including without limitation, patent rights (such a third party may
or may not be a Supporter). The Sponsors of the Specification are not responsible and shall
not be held responsible in any manner for identifying or failing to identify any or all such
third party intellectual property rights.

THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN ARE PROVIDED ON
AN "AS IS" BASIS WITHOUT WARRANTY OF ANY KIND AND ERICSSON, IBM, LOTUS,
MATSUSHITA COMMUNICATION INDUSTRIAL CO. LTD, MOTOROLA, NOKIA, PALM
INC., PSION, STARFISH SOFTWARE AND ALL OTHER SYNCML SPONSORS
DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT
INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL ERICSSON, IBM,
LOTUS, MATSUSHITA COMMUNICATION INDUSTRIAL CO., LTD, MOTOROLA, NOKIA,
PALM INC., PSION, STARFISH SOFTWARE OR ANY OTHER SYNCML SPONSOR BE
LIABLE TO ANY PARTY FOR ANY LOSS OF PROFITS, LOSS OF BUSINESS, LOSS OF
USE OF DATA, INTERRUPTION OF BUSINESS, OR FOR DIRECT, INDIRECT, SPECIAL
OR EXEMPLARY, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL DAMAGES OF ANY
KIND IN CONNECTION WITH THIS DOCUMENT OR THE INFORMATION CONTAINED
HEREIN, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE.

The above notice and this paragraph must be included on all copies of this document that
are made.

 SyncML Sync Protocol 4 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

Table of Contents

1 Introduction... 7
1.1 SyncML Framework.. 7
1.2 Device Roles... 7
1.3 Sync Types ... 8
1.4 Symbols and conventions ... 9

1.4.1 MSC Notation... 9

2 Protocol Fundamentals .. 10
2.1 Change Log Information ... 10

2.1.1 Multiple devices.. 10
2.2 Usage of Sync Anchors .. 10

2.2.1 Sync Anchors for Databases.. 10
2.2.2 Sync Anchors for Data Items.. 12

2.3 ID Mapping of Data Items ... 12
2.3.1 Caching of Map Operations.. 13

2.4 Conflict Resolution.. 13
2.5 Security... 14
2.6 Addressing.. 14

2.6.1 Device and Service Addressing 14
2.6.2 Database Addressing... 14
2.6.3 Addressing of Data Items... 15

2.7 Exchange of Device Capabilities .. 15
2.8 Device Memory Management ... 15
2.9 Multiple Messages in Package ... 16
2.10 Sync without Separate Initialization .. 17

2.10.1 Robustness and Security Considerations 17
2.11 Busy Signaling .. 18

2.11.1 Busy Status from Server .. 18
2.11.2 Result Alert from Client .. 19

3 Authentication... 21
3.1 Authentication Challenge .. 21
3.2 Authorization... 21
3.3 Server Layer Authentication.. 22
3.4 Authentication of Database Layer... 22
3.5 Authentication Examples .. 22

3.5.1 Basic authentication with a challenge 22
3.5.2 MD5 digest access authentication with a challenge 24

4 Sync Initialization.. 26

 SyncML Sync Protocol 5 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

4.1 Initialization Requirements for Client .. 27
4.1.1 Example of Sync Initialization Package from Client 28

4.2 Initialization Requirements for Server 29
4.2.1 Example of Sync Initialization Package from Server 31

4.3 Error Case Behaviors.. 33
4.3.1 No Packages from Server .. 33
4.3.2 No Initialization Completion from Client 33
4.3.3 Initialization Failure .. 33

5 Two-Way Sync... 34
5.1 Client Modifications to Server ... 34

5.1.1 Example of Sending Modifications to Server................ 36
5.2 Server Modifications to Client ... 37

5.2.1 Example of Sending Modifications to Client 38
5.3 Data Update Status from Client .. 39

5.3.1 Example of Data Update Status to Server 40
5.4 Map Acknowledgement from Server... 41

5.4.1 Example of Map Acknowledge..................................... 41
5.5 Slow Sync ... 42
5.6 Error Case Behaviors.. 42

5.6.1 No Packages from Server after Initialization 42
5.6.2 No Data Update Status from Client 43
5.6.3 No Data Map Acknowledge from Server 43
5.6.4 Errors with Defined Error Codes 43

6 One-Way Sync from Client Only.. 44
6.1 Client Modifications to Server ... 44
6.2 Status from Server .. 44
6.3 Refresh Sync from Client Only.. 45
6.4 Error Cases Behavior.. 45

6.4.1 No Packages from Server after Initialization 45
6.4.2 Errors with Defined Error Codes 45

7 One-Way Sync from Server only ... 46
7.1 Sync Alert to Server .. 46
7.2 Server Modifications to Client ... 47
7.3 Data Update Status from Client .. 47
7.4 Map Acknowledge from Server... 47
7.5 Refresh Sync from Server Only .. 47
7.6 Error Cases... 47

7.6.1 No Packages from Server .. 47
7.6.2 No Data Update Status from Client 47
7.6.3 No Map Ack from Server.. 47

 SyncML Sync Protocol 6 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

7.6.4 Errors with Defined Error Codes 48

8 Server Alerted Sync.. 49
8.1 Sync Alert ... 49
8.2 Error Cases Behavior.. 50

8.2.1 No Packages from Client ... 50
8.2.2 Errors with Defined Error Codes 50

9 Terminology .. 51
9.1 Definitions ... 51
9.2 Abbreviations .. 51

10 References... 53

11 Appendices.. 54
11.1 Protocol Values... 54
11.2 Alert Codes ... 54
11.3 Conformance Requirements ... 55

11.3.1 Conformance Requirements for SyncML Server.......... 55
11.3.2 Conformance Requirements for SyncML Client 55

11.4 Examples .. 56
11.4.1 WBXML Example ... 56
11.4.2 Example of Sync without Separate Initialization........... 59

 SyncML Sync Protocol 7 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

1 Introduction
The purpose of this specification is to define a synchronization protocol using the SyncML
Representation protocol [1]. This protocol is called the SyncML Sync Protocol. This specification
defines the protocol for different sync procedures, which can occur between a SyncML client and a
SyncML server, in the form of message sequence charts (MSC's). The specification covers the most
useful and common synchronization cases (Chapters 4-8).

1.1 SyncML Framework
This specification can be implemented by using the SyncML interface from the SyncML Framework
(See Figure 1). Not all the features of the SyncML Interface are required to comply with this
specification.

Figure 1 SyncML Framework

The application "A" depicts a networked service that provides data synchronization service for other
applications, in this case application "B", on some networked device. The service and device are
connected over some common network transport, such as HTTP.

In the figure above, the 'Sync Engine' functionality is completely placed onto the SyncML server side
even if some SyncML client implementations may in practice provide some sync engine
functionality, too. The 'Sync Server Agent' and the 'Sync Client Agent' use the protocol defined in
this specification and the representation protocol [1] offered by the SyncML interface ('SyncML I/F')
[2] to communicate with each other.

1.2 Device Roles
Figure 2 depicts a synchronization example in which a mobile phone acts as a SyncML client and a
server acts as a SyncML server. The SyncML client sends SyncML message including the data
modifications made in the client to the SyncML server. The server synchronizes the data (including

 SyncML Sync Protocol 8 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

possible additions, replaces, and deletions) within the SyncML messages with data stored in the
server. After that, the SyncML server returns its modifications back to the SyncML client.

SyncML message, client modifications

SyncML client SyncML server

SyncML message, server modifications

Figure 2 Synchronization Example with Mobile Phone and Server

The example presented the figure above is very simple. However, this example describes the roles
of the devices in this specification. That is:

SyncML Client – This is the device that contains a sync client agent and that sends first its
modifications to the server. The client must also be able to receive responses from the SyncML
server. Although the SyncML client has always the role to send its modifications first, in some cases
the server may have a role to initiate synchronization. The SyncML client is typically a mobile
phone, PC, or PDA device.

SyncML Server – This is the device, which contains a sync server agent and sync engine, and
which usually waits that the SyncML client starts synchronization and sends the clients modification
to the server. The server is responsible for processing the sync analysis when it has received the
client modifications. In addition, it may be able to initiate synchronization if unsolicited commands
from the server to the client are supported on the transport protocol level. Typically, the SyncML
server is a server device or PC.

1.3 Sync Types
This specification defines seven different sync types. These are introduced in Table 1.

Table 1 SyncML Sync Types

Sync Scenario Description Reference

Two-way sync A normal sync type in which the client and the server exchange
information about modified data in these devices. The client sends
the modifications first.

Chapter 5

Slow sync A form of two-way sync in which all items are compared with each
other on a field-by-field basis. In practise, this means that the client
sends all its data from a database to the server and the server does
the sync analysis (field-by-field) for this data and the data in the
server.

Chapter 5.5

One-way sync
from client only

A sync type in which the client sends its modifications to the server
but the server does not send its modifications back to the client.

Chapter 6

 SyncML Sync Protocol 9 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

Refresh sync
from client only

A sync type in which the client sends all its data from a database to
the server (i.e., exports). The server is expected to replace all data in
the target database with the data sent by the client.

Chapter 6.3

One-way sync
from server only

A sync type in which the client gets all modifications from the server
but the client does not send its modifications to the server.

Chapter 7

Refresh sync
from server only

A sync type in which the server sends all its data from a database to
the client. The client is expected to replace all data in the target
database with the data sent by the server.

Chapter 7.5

Server Alerted
Sync

A sync type in which the server to alerts the client to perform sync.
That is, the server informs the client to starts a specific type of sync
with the server.

Chapter 8

1.4 Symbols and conventions
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY" and "OPTIONAL" in this
document are to be interoperated as described in [RFC 2119].

Any reference to components of the Device Information DTD or XML snipets are specified in this
type face.

1.4.1 MSC Notation
Notation used in the message sequence charts:

Box – Indicates the start of a procedure or an internal process in a device

Hexagon – Indicates a condition that is needed to start the transaction below this hexagon

Arrow – Represents a message, or transaction

 SyncML Sync Protocol 10 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

2 Protocol Fundamentals
In this chapter, the common features and requirements for all sync types are defined.

2.1 Change Log Information
This protocol requires that devices (the client and server) are able to keep track, of changes that
have happened between synchronizations. I.e., they are responsible for maintaining the change log
information about the modifications associated with data items of a database. The types of the
modifications can be e.g., replace, addition, and deletion. This protocol does not specify in which
format this change log information is maintained inside devices. However, when synchronization is
started, the devices MUST be able to specify, which data items have changed. To specify the
changed data items, the unique identifiers are used (See also Chapter 2.3). To indicate the type of a
modification, the different operations (e.g., Replace) are used.

2.1.1 Multiple devices
If a device synchronizes with multiple devices, the change log information MUST be able to indicate
all modifications related to a previous synchronization with each device.

2.2 Usage of Sync Anchors
2.2.1 Sync Anchors for Databases
To enable sanity checks of synchronization, this protocol uses sync anchors (See Definitions)
associated with databases (e.g., a calendar database). There are two sync anchors, Last and Next
(See Meta Information DTD [3]), which are always sent at the initialization of sync. The Last sync
anchor describes the last event (e.g., time) when the database was synchronized from the point of
sending device and the Next sync anchor describes the current event of sync from the point of
sending device. Thus, both the client and the server send their own anchors to each other. The sync
anchors are sent within the Meta information of an Alert operation by using the Meta Information
DTD as defined by the SyncML Initiative. The receiving device MUST echo the Next sync anchor
back to the transmitting device in the Status for the Alert command (Data of the Item element inside
Status).

The utilization of sync anchors is implementation specific but in order to enable the utilization, the
Next sync anchor of another device needs to be stored until the next synchronization. The SyncML
server MUST store the Next sync anchor sent by the client to enable this utilization.

If the device stores the Next sync anchor, it is able to compare during the next synchronization
whether the sync anchor is the same as the Last sync anchor sent by another device. If they are
matching, the device is able to conclude that no failures have happened since last sync. If they are
not matching, the device can request a special action from another device (e.g., slow sync).

The stored sync anchors must not be updated before the synchronization session is finished.

The synchronization session is finished after a device is not going to send and is not expecting to
receive any SyncML messages from other device, and the synchronization was successfull on the
Sync command level (i.e. no other than 200-class statuses has been returned for Sync commands).
Also the transport level (directly under SyncML level) communication has to be properly ended
before synchronization can be seen as finished. If the communication between synchronizing

 SyncML Sync Protocol 11 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

devices is not ended properly according to transport level specification, devices MUST NOT update
their sync anchors.

2.2.1.1 Example of Database Sync Anchor Usage
In this example, a sync client and server synchronize twice (sync sessions #1 and #2) with each
other. After the sync session #1, the persistent memory of the sync client is reset. Because of that,
the database anchors do not match at the sync session #2, the sync server notifies this, and it
initiates the slow sync with the client.

The sync session #1 is started at 10:10:10 AM on the 10th of October 2001. The previous
synchronization (before the sync session #1) was started at 09:09:09 AM on the 9th of October
2001. At this synchronization session, the slow sync is not initiated because the sync anchors
match. I.e., the sync server has the sync event (09:09:09 AM on the 9th of October, 2001).

The sync session #2 is started at 11:11:11 AM on the 11th of October 2001. Because the memory of
the sync client was reset after the sync session #2, the sync server initiates the slow sync.

In the figure below, both the sync sessions are depicted. Only the initialization phases and the client
sync anchors are shown in the figure.

SyncML Client SyncML Server

Pkg #1: Last (20010909T090909Z), Next(20011010T101010Z)

Pkg #2: OK

Sync Session #1

The Sync Server
has stored the client
sync event
(09:09:09 AM,
9/9/2001).

…

Sync Session #1 completed, the sync server updates the sync anchor.

The Sync Server
has stored the client
sync event
(10:10:10 AM,
10/10/2001).

The persistent storage of the client is reset.

Sync Session #2

Pkg #1: Last ('Empty'), Next(20011111T111111Z)

Pkg #2: Refresh required ('508')

…

The sent and the
stored anchors
do not match.

Figure 3 Example of Sync Anchor Usage

 SyncML Sync Protocol 12 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

2.2.2 Sync Anchors for Data Items
This protocol does not specify the functionality to transfer the sync anchors associated with
individual data items. If this functionality is desired, it MUST be provided inside the data items if it is
included. An example is the Sequence Number property of vCalendar, the electronic calendaring
and scheduling exchange format [5].

2.3 ID Mapping of Data Items
This protocol is based on the principle that the client and the server can have their own ID's for data
items in their databases. These ID's MAY or MAY NOT match with each other. Because the ID's
can be different, the server MUST maintain the ID mapping table for items. That is, the server
knows which client ID (LUID) and which server ID (GUID) points to the same data item.

Figure 4 shows an example of an ID mapping table after synchronization. In this example the
mapping table in the server is depicted as a separate from the actual database.

 Client Device

 Client Database:

LUID Data
11 Car
22 Bike
33 Truck
44 Shoes

Server Device

Server Database:

GUID Data
1010101 Car
2121212 Bike
3232323 Truck
4343434 Shoes

Server Mapping Table:

GUID LUID
1010101 11
2121212 22
3232323 33
4343434 44

Figure 4 Example: ID Mapping of Data Items

The LUID's are always assigned by the client device. This means that even if the server adds an
item to the client device, the client assigns a LUID for this item. In this case, the client returns the
LUID of the new item to the server. The Map operation is used for this. After the Map operation is
sent by the client, the server is able to update its mapping table with the client LUID.

When a server is adding a new item to a client, it must not send its actual GUID if the size of the
actual GUID is exceeding the maximum size of the temporary GUID defined by the client. If size of
the actual GUID’s exceeds the maximum size, the server MUST use a smaller temporary GUID
when adding an item to the client. The maximum size of the temporary GUID is defined in the
device information document of the client.

If the server has modified an existing item (i.e., an item which is on both the devices), the server
MUST identify the item by using the client LUID for this item, when the modification (e.g., replace or
deletion) is synchronized with the client. In the case of the client modifications, items are also

 SyncML Sync Protocol 13 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

identified with LUID's, when the modifications are sent to the server. The server can map a LUID to
its own GUID by utilizing the mapping table.

2.3.1 Caching of Map Operations
After a SyncML server has requested one or more additions to be done by the SyncML client, and
the client has completed these additions to its database and allocated LUID's for them, the client
has a possibility to cache the Map operations associated with these LUID's. The client MAY cache
the Map operations, if the server has explicitly indicated that it does not require a response to its
sync message. However, the client is always allowed to send the Map operations back to the server
immediately after adding the items to the client database. This is the case even if the server has
indicated that it does not require a response.

If the map items are cached, the Map operations are sent back to the server at the beginning of a
subsequent synchronization session (in Pkg #3 from the client to the server). That is, the server
MUST receive the Map operations before it is able to process any client updates related to the items
with which the Map operations are associated.

If the SyncML server has the control of a transport protocol (e.g., acting as a OBEX client), it MUST
always request a response to the Sync command, which it has sent to the client. Thus, the server
MUST NOT disconnect before it has got a response to the Sync command from the client.

2.4 Conflict Resolution
Conflicts, which happen because of modifications on the same items on the server and the client
databases, are in general resolved by a sync engine SW on the server device. This protocol with
the SyncML Representation protocol provides the functionality to notify the SyncML client about the
resolved conflicts.

Although the SyncML server is in general assumed to include the sync engine functionality, the
possibility that the client would also provide some sync engine functionality is not excluded. In this
case, the client MAY also resolve conflicts. Then, the server only returns back to the client a
notification that a conflict or conflicts have happened and the client can resolve the conflicts.

There are multiple policies to resolve the conflicts and the SyncML Representation protocol
provides the status codes (See Chapter 13 in [1]) for some common policies. Thus, if the sync
engine of the server resolves a conflict, it can send information about the conflict and how the
conflict was resolved. This notification happens by using the Status elements. The example below
depicts a case that the server sends a status to the client.
<Status>

<CmdID>1</CmdID>
<MsgRef>1</MsgRef>
<CmdRef>2</CmdRef>
<Cmd>Replace</Cmd>
<SourceRef>1212</SourceRef>
<Data>208</Data> <!-- Conflict, originator wins -->

</Status>

The administration, and how the conflict resolution policy is configured, is out of the scope of this
protocol and the SyncML Representation protocol.

 SyncML Sync Protocol 14 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

2.5 Security
This protocol requires the support for the basic authentication and the MD5 digest access
authentication on the server layer (i.e., in SyncHdr). Both the sync client and the server can
challenge for the authentication and the device receiving the authentication challenge must be able
to send the authorization credentials back.

The authentication procedure used by this protocol is defined in Chapter 3.

2.6 Addressing
2.6.1 Device and Service Addressing
The device or service addressing within the SyncML SyncHdr element is done by using the URI
scheme defined in the SyncML representation specification. Devices connected to the Internet
constantly, MAY refer to the URI-based addressing. E.g., the source would be:

<Source>
<LocURI>http://www.syncml.org/sync-server</LocURI>

</Source>

Devices, which are, for example, connected temporarily, MAY prefer to identify themselves with an
own identification mechanism. E.g., the Source element of a mobile phone device could be:

<Source>
<LocURI>IMEI:493005100592800</LocURI>

</Source>

The addressing scheme on the transport level (e.g., HTTP) does not match with the device or server
address, if this type of scheme is used.

2.6.1.1 Usage of RespURI and Re-direction Status Codes
This protocol requires that the devices support receiving the RespURI element as specified in the
SyncML Representation Protocol specification, but the support of the re-direction status codes
(3XX) is not required.

2.6.2 Database Addressing
The database addressing within the SyncML operations is done by using the URI scheme defined in
the SyncML Representation protocol. Absolute or relative URI's can be used for the server and
client databases. E.g., the source elements for a server database in these two cases can look like:
<Sync>...

<Target>
<LocURI>./calendar/james_bond</LocURI>

</Target>
...</Sync>

<Sync>
<Target>

<LocURI>http://www.syncml.org/sync-server/calendar/james_bond</LocURI>
</Target>

...</Sync>

 SyncML Sync Protocol 15 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

2.6.3 Addressing of Data Items
The addressing of data items within the SyncML Item elements is done by using the URI-based
scheme defined in the SyncML representation specification. Relative URI's can be used. E.g., the
source element for one item can look like:
<Item>...

<Source>
<LocURI>101</LocURI>

</Source>
...</Item>

2.7 Exchange of Device Capabilities
This protocol provides the functionality exchange the device capabilities during the initialization (See
Chapter 4). The exchange can be requested by the sync client or the sync server.

The sync client MUST send its device information to the server when the first synchronization is
done with a server or when the static device information has been updated in the client. The client
MUST also be able to transmit its device information if it is asked by the server. The client SHOULD
also support the receiving of the server device information.

The sync server MUST be able to send its device information if requested by the client. The server
MUST support the functionality of receiving and processing the client device information when sent
by the client or requested by the server itself.

Implementation consideration. The exchange of the device information can require that a quite large
amount of data is transferred over the air. Thus, the devices should avoid requesting the exchange
at every times when sync is initialized. In addition, the devices should consider whether they need
to send all device specific data if it is clear that another device cannot utilize it. E.g., if the client
indicates that it does not support the vCard3.0 content format, the server SHOULD NOT send the
supported properties of vCard3.0 if it supports it.

2.8 Device Memory Management
This protocol with the Meta Information DTD provides possibility to specify the dynamic memory
capabilities for databases of a device or for persistent storage on a device. The capabilities specify
how much memory there is left for usage. The dynamic capabilities can be specified every time
when the synchronization is done. The static memory capabilities are exchanged when the sync
initialization is done (See Chapter 2.7 and Chapter 4).

Although the sending of persistent memory capabilities is optional for both the sync clients and
servers, the sync clients SHOULD send those and the sync servers MAY.

The usage of different types of memory capabilities is dependent on the persistent storage model
on a device. Below there is an example how the dynamic memory capabilities of a calendar
database on a device are represented, when the Sync command is sent.
<Sync>

<CmdID>1</CmdID>
<Target><LocURI>./calendar/james_bond</LocURI></Target>
<Source><LocURI>./dev-calendar</LocURI></Source>
<Meta>

<Mem xmlns='syncml:metinf'>
<FreeMem>8100</FreeMem>
<!--Free memory (bytes) in Calendar database on a device -->
<FreeId>81</FreeId>

 SyncML Sync Protocol 16 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

<!--Number of free records in Calendar database-->
</Mem>

</Meta>
<Replace>

...
</Replace>

...
</Sync>

The database-specific memory elements in the Meta element of the Sync command MUST be
associated with the source database specified in the Source element of the Sync command. Thus,
the database is specified inside the Meta element anymore.

2.9 Multiple Messages in Package
This protocol provides the functionality to transfer one SyncML package in multiple SyncML
messages. This may be necessary if one SyncML package is too large to be transferred in one
SyncML message. This limitation may be caused e.g., by the transport protocol or by the limitations
of a small footprint device.

If a SyncML package is transferred in multiple SyncML messages, the last message in the package
MUST include the Final element (See SyncML Representation protocol.). Other messages
belonging to the package MUST NOT include the Final element. The Final element must only be
included when all necessary commands belonging to a specific package have been sent. The final
element must not be included if the other end has not closed the preceding package. E.g., if the
server is still sending the package #4 to the client, the client must not close the package #5 prior to
receiving the last message belonging to the package #4. The exclusion of the Final element must
not be used to indicate that a logical phase is not completed if an error occurs.

If a device receives a message in which the Final flag is missing and a Sync element for a database
is included, the device MUST be able to handle the case that in the next message, there is another
Sync element for the same database.

The device, which receives the SyncML package containing multiple messages, MUST be able to
ask more messages. This happens by sending an Alert command with a specific alert code, 222
back to the originator of the package, or if there are other SyncML commands to be sent as a
response, the Alert command with the 222 alert code can be omitted. After receiving the message
containing the Final element, the Alert command MUST NOT be used anymore.

More messages may not be desired if errors, which prevent the continuation of synchronization,
have occurred.

The receiver of a package may start to send its next package at the same time when asking more
messages from the originator if this makes sense. Thus, in Chapters 3-7, it is specified which
commands or elements are allowed to be sent before receiving the final message belonging to a
package.

Below, there is depicted an example that the sync client is sending Package #3 in multiple
messages (2 messages) and the server also sends Package #4 in multiple messages (2
messages).

 SyncML Sync Protocol 17 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

SyncML Client SyncML Server

Pkg #3, Msg #1: Status for Init, Some of client modifications

Pkg #4, Msg #1: Status for client mod's, Alert for next msg

Pkg #3, Msg #2: Rest of client mod's, Alert for next msg, Final

Pkg #4, Msg #2: Status for client mod's, Server mod's, Final

Pkg #5, Msg #1: Status for server mod's, (Map operation)

…

…

Figure 5 Example of Sending Multiple Messages in a Package

2.10 Sync without Separate Initialization
Synchronization can be started without a separate initialization (See the initialization in Chapter 4).
This means that the initialization is done simultaneously with sync. This can be done to decrease
the number of SyncML messages to be sent over the air.

If the sync is done without the initialization, the Alert command(s) (from the client) in Packet #1 is
sent within Packet #3, in which the Sync command(s) are also placed. Also, the Alert command(s)
(from Server) in Packet #2 is sent within Packet #4, in which the Sync command(s) are also placed.

The sync server MUST be able to handle both the cases; sync with a separate initialization or sync
without a separate initialization.

See the example of this in Appendices.

2.10.1 Robustness and Security Considerations
If the client implementation decides to use sync without a separate initialization, the following
considerations should be taken into account:

- The client sends its modifications to the server before the server gets the sync anchors from
the client. Because of this, the client may need to send all data again if the server has a
need to request a slow sync.

- Server sync anchor are not received before sending the client modifications. Thus, if the
client needs to request a slow sync, earlier data, which was sent in Package #3 to the
server, was unnecessarily sent and all data needs to be sent to server.

- The client sends its modifications to the server before there is any possibility for the server to
send its credentials (if required) to the client. I.e., the client cannot be sure whether it is
communicating with the correct server.

 SyncML Sync Protocol 18 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

2.11 Busy Signaling
If the server is able to receive the data from the client but it is not able to process the request(s) at a
reasonable time1 after receiving the modifications from the client, the server MUST send information
about that to the client. This happens by sending the Busy Status package back to the client.

After the client has received a busy signal from the server, the client MAY ask for the sync results
later or start the synchronization from the beginning. If the client starts the synchronization from the
beginning its 'Last' sync anchor MUST not be updated.

If the server has sent the busy status to the client and it does not get a request from the client (i.e.,
Retry Alert), the server MUST assume that the client has stopped the synchronization and start he
synchronization from the beginning. The server MUST NOT update its 'Last' sync anchor. The
server MUST NOT either update the client Next sync anchor.

2.11.1 Busy Status from Server
Informing the client that the server is busy happens by sending the Busy Status package to the
client. This can be sent before any package is completely received. The Busy Status package
MUST NOT be used to return status information related any individual data items or command
which are in SyncBody of the client request.

The requirements for the elements within the Busy Status package are:

1. Requirements for the elements within the SyncHdr element.

• The value of the VerDTD element MUST be '1.0'.

• The value of the VerProto element MUST be 'SyncML/1.0'.

• Session ID MUST be included to indicate the ID of a sync session.

• MsgID MUST be used to unambiguously identify the message belonging a sync session
and traveling from the server to the client.

• The Target element MUST be used to identify the target device.

• The Source element MUST be used to identify the source device and service.
2. The Status element for the SyncHdr MUST be included in SyncBody.

• The status code (101, in progress) MUST be returned within the Status for the command
sent by the client. The status is returned for the SyncHdr command.

3. The Final element MUST NOT be used for the message.

2.11.1.1 Example of Busy Status

<SyncML>
<SyncHdr>

<VerDTD>1.0</VerDTD>
<VerProto>SyncML/1.0</VerProto>
<SessionID>1</SessionID>
<MsgID>2</MsgID>
<Target><LocURI>IMEI:493005100592800</LocURI></Target>

1 This time is dependent e.g. on the transport protocol transferring SyncML messages.

 SyncML Sync Protocol 19 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

<Source><LocURI>http://www.syncml.org/sync-server</LocURI></Source>
</SyncHdr>
<SyncBody>

<Status>
<CmdID>1</CmdID>
<MsgRef>2</MsgRef><CmdRef>0</CmdRef><Cmd>SyncHdr</Cmd>
<TargetRef>http://www.syncml.org/sync-server</TargetRef>
<SourceRef>IMEI:493005100592800</SourceRef>
<Data>101</Data> <!--Statuscode for Busy-->

</Status>
</SyncBody>

</SyncML>

2.11.2 Result Alert from Client
The result alert is sent to ask results to the last message which was sent to the server. This is done
by sending a Result Alert package from the client to the server. A message within this package has
the following requirements.

1. Requirements for the elements within the SyncHdr element.

• The value of the VerDTD element MUST be '1.0'.

• The value of the VerProto element MUST be 'SyncML/1.0'.

• Session ID MUST be included to indicate the ID of a sync session.

• MsgID MUST be used to unambiguously identify the message belonging a sync session
and traveling from the client to the server.

• The Target element MUST be used to identify the target device and service.

• The Source element MUST be used to identify the source device.
2. The Alert element MUST be included in SyncBody. There are the following requirements for this

Alert element.

• CmdID is required.

• The Item element is used to specify the server and the client device.

• The Data element is used to include the Alert code. The alert code is '221' (See Alert
Codes).

3. The Final element MUST NOT be used for the message.
If the server is still busy, when it receives this Result Alert from the client, it MUST again return the
Busy Status with the '101' status code back to client. The status code is associated with the
SyncHdr and the Alert command sent by the client.

2.11.2.1 Example of Result Alert

<SyncML>
<SyncHdr>

<VerDTD>1.0</VerDTD>
<VerProto>SyncML/1.0</VerProto>
<SessionID>1</SessionID>
<MsgID>3</MsgID>
<Target><LocURI>http://www.syncml.org/sync-server</LocURI></Target>
<Source><LocURI>IMEI:493005100592800</LocURI></Source>

</SyncHdr>
<SyncBody>

 SyncML Sync Protocol 20 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

<Alert>
<CmdID>1</CmdID>
<Data>221</Data>
<Item>

<Target><LocURI>http://www.syncml.org/sync-server</LocURI></Target>
<Source><LocURI>IMEI:493005100592800</LocURI></Source>

</Item>
</Alert>

</SyncBody>
</SyncML>

 SyncML Sync Protocol 21 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

3 Authentication
In this chapter, the authentication procedures are defined for the basic and MD5 digest access
authentication. Both of them MUST be supported by the devices conforming to this specification.

3.1 Authentication Challenge
If the response code to a request (message or command) is 401 ('Unauthorized') or 407
(Authentication required), the request requires authentication. In this case, the Status command to
the request MUST include a Chal element (See Representation protocol spec). The Chal contains a
challenge applicable to the requested resource. The device MAY repeat the request with a suitable
Cred element (See Representation protocol). If the request already included the Cred element, then
the 401 response indicates that authorization has been refused for those credentials.

Both, the sync client and the sync server can challenge for authentication.

If the 401 response (i.e., Status) contains the same challenge as the prior response, and the user
agent has already attempted authentication at least once, then the user SHOULD be presented the
entity that was given in the response, since that entity might include relevant diagnostic information.

If the response code to a request is 212 ('Authentication accepted'), no further authentication is
needed for the remainder of the synchronization session. In the case of the MD5 digest access
authentication, the Chal element can however be returned. Then, the next nonce in Chal MUST
used for the digest when the next sync session is started.

If a request includes security credentials and the response code to the request is 200, the same
credentials MUST be sent within the next request. If the Chal element is included and the MD5
digest access authentication is required, a new digest must be created by using the next nonce. In
the case of the MD5 digest access authentication, the Chal element can however be returned. The
next nonce in Chal MUST used when the next request is sent.

Once authentication has occurred, the authentication type for a security layer MUST be kept same
for the whole session.

In case of authentication failure (either the userid and/or password was wrong or authentication was
required) requirements are:

• The response message indicating the authentication failure on server layer (see chapter 3.3)
must contain only Status commands (i.e. Put, Get etc. commands MUST NOT be specified
in the response)

• In case the session is continued, the next message containing the proper credentials MUST
contain a Status for the SyncHdr, MUST have the same SessionID than the previous
messages and the message MUST be sent to the RespURI, if it was specified in the
response indicating the authentication failure.

3.2 Authorization
The Cred element MUST be included in requests (message or command), which are sent after
receiving the 401 or 407 response if the request is repeated. In addition, it can be sent in the first
request from a device if the authentication is pre-configured to be required. The content of the Cred
element is specified in [1]. The authentication type is dependent on the challenge (See the previous
chapter) or the pre-configuration.

 SyncML Sync Protocol 22 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

3.3 Server Layer Authentication
When the authentication is considered, this protocol mandates only the support for the
authentication on the server layer (in the SyncHdr element). I.e., the authentication of the server
layer MUST be supported by the device complying with this specification.

The authentication on the server layer is accomplished by using the Cred element in SyncHdr and
the Status command associated with SyncHdr. Within the Status command, the challenge for the
authentication is carried as defined earlier. The authentication can happen both directions, i.e., the
sync client can authenticate itself to the sync server and the sync server can authenticate itself to
the client.

3.4 Authentication of Database Layer
The authentication of the database layer SHOULD be supported by the device complying with this
specification. The authentication on the database layer is accomplished by using the Cred element
in the Alert and Sync commands (See the Representation Protocol.) and the Status command
associated with these commands. Within the Status command, the challenge for the authentication
is carried as defined earlier. The authentication can happen both directions, i.e., the sync client can
authenticate itself to the sync server and the sync server can authenticate itself to the client (Alert
and Sync command are sent both directions).

3.5 Authentication Examples
3.5.1 Basic authentication with a challenge
At this example, the client tries to initiate sync with the server without any credentials (Pkg #1). The
server challenges the client (Pkg #2) for the server layer authentication. The client must send Pkg
#1 again with the credentials. The server accepts the credentials and the session is authenticated
(Pkg #2). In the example, commands in SyncBody are not shown although in practise, they would
be there.

Pkg #1 from Client
<SyncML>

<SyncHdr>
<VerDTD>1.0</VerDTD>
<VerProto>SyncML/1.0</VerProto>
<SessionID>1</SessionID>
<MsgID>1</MsgID>
<Target><LocURI>http://www.syncml.org/sync-server</LocURI></Target>
<Source><LocURI>IMEI:493005100592800</LocURI></Source>

</SyncHdr>
<SyncBody>

...
</SyncBody>

</SyncML>

Pkg #2 from Server
<SyncML>

<SyncHdr>
<VerDTD>1.0</VerDTD>
<VerProto>SyncML/1.0</VerProto>
<SessionID>1</SessionID>
<MsgID>1</MsgID>
<Target><LocURI>IMEI:493005100592800</LocURI></Target>
<Source><LocURI>http://www.syncml.org/sync-server</LocURI></Source>

</SyncHdr>
<SyncBody>

 SyncML Sync Protocol 23 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

<Status>
<CmdID>1</CmdID>
<MsgRef>1</MsgRef><CmdRef>0</CmdRef><Cmd>SyncHdr</Cmd>
<TargetRef>http://www.syncml.org/sync-server</TargetRef>
<SourceRef>IMEI:493005100592800</SourceRef>
<Chal>

<Meta>
<Type xmlns='syncml:metinf'>syncml:auth-basic</Type>
<Format xmlns='syncml:metinf'>b64</Format>

</Meta>
</Chal>
<Data>407</Data> <!--Credentials missing-->

</Status>
...

</SyncBody>
</SyncML>

Pkg #1 (with credentials) from Client
<SyncML>

<SyncHdr>
<VerDTD>1.0</VerDTD>
<VerProto>SyncML/1.0</VerProto>
<SessionID>1</SessionID>
<MsgID>2</MsgID>
<Target><LocURI>http://www.syncml.org/sync-server</LocURI></Target>
<Source><LocURI>IMEI:493005100592800</LocURI></Source>
<Cred>

<Meta><Type xmlns='syncml:metinf'>syncml:auth-basic</Type></Meta>
<Data>QnJ1Y2UyOk9oQmVoYXZl</Data> <!—base64 formatting of "userid:password"-->

</Cred>
</SyncHdr>
<SyncBody>

...
</SyncBody>

</SyncML>

Pkg #2 from Server
<SyncML>

<SyncHdr>
<VerDTD>1.0</VerDTD>
<VerProto>SyncML/1.0</VerProto>
<SessionID>1</SessionID>
<MsgID>2</MsgID>
<Target><LocURI>IMEI:493005100592800</LocURI></Target>
<Source><LocURI>http://www.syncml.org/sync-server</LocURI></Source>

</SyncHdr>
<SyncBody>

<Status>
<CmdID>1</CmdID>
<MsgRef>1</MsgRef><CmdRef>0</CmdRef><Cmd>SyncHdr</Cmd>
<TargetRef>http://www.syncml.org/sync-server</TargetRef>
<SourceRef>IMEI:493005100592800</SourceRef>
<Data>212</Data> <!--Authenticated for session-->

</Status>
...

</SyncBody>
</SyncML>

 SyncML Sync Protocol 24 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

3.5.2 MD5 digest access authentication with a challenge
At this example, the client tries to initiate sync with the server without any credentials (Pkg #1). The
server challenges the client (Pkg #2) for the server layer authentication. The authentication type I is
now the MD5 digest access authentication. The client must send Pkg #1 again with the credentials.
The server accepts the credentials and the session is authenticated (Pkg #2). Also, the server
sends the next nonce to the client, which the client must use when the next sync session is started.
In the example, commands in SyncBody are not shown although in practise, they would be there.

Pkg #1 from Client
<SyncML>

<SyncHdr>
<VerDTD>1.0</VerDTD>
<VerProto>SyncML/1.0</VerProto>
<SessionID>1</SessionID>
<MsgID>1</MsgID>
<Target><LocURI>http://www.syncml.org/sync-server</LocURI></Target>
<Source>

<LocURI>IMEI:493005100592800</LocURI>
<LocName>Bruce2</LocName> <!-- userId -->

</Source>
</SyncHdr>
<SyncBody>

...
</SyncBody>

</SyncML>

Pkg #2 from Server
<SyncML>

<SyncHdr>
<VerDTD>1.0</VerDTD>
<VerProto>SyncML/1.0</VerProto>
<SessionID>1</SessionID>
<MsgID>1</MsgID>
<Target><LocURI>IMEI:493005100592800</LocURI></Target>
<Source><LocURI>http://www.syncml.org/sync-server</LocURI></Source>

</SyncHdr>
<SyncBody>

<Status>
<CmdID>1</CmdID>
<MsgRef>1</MsgRef><CmdRef>0</CmdRef><Cmd>SyncHdr</Cmd>
<TargetRef>http://www.syncml.org/sync-server</TargetRef>
<SourceRef>IMEI:493005100592800</SourceRef>
<Chal>

<Meta>
<Type xmlns=’syncml:metinf’>syncml:auth-md5</Type>
<Format xmlns=’syncml:metinf’>b64</Format>
<NextNonce xmlns=’syncml:metinf’>Tm9uY2U=</NextNonce>

</Meta>
</Chal>
<Data>407</Data> <!--Credentials missing-->

</Status>
...

</SyncBody>
</SyncML>

Pkg #1 (with credentials) from Client
<SyncML>

<SyncHdr>
<VerDTD>1.0</VerDTD>

 SyncML Sync Protocol 25 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

<VerProto>SyncML/1.0</VerProto>
<SessionID>1</SessionID>
<MsgID>2</MsgID>
<Target><LocURI>http://www.syncml.org/sync-server</LocURI></Target>
<Source><LocURI>IMEI:493005100592800</LocURI></Source>
<Cred>

<Meta><Type xmlns='syncml:metinf'>syncml:auth-md5</Type></Meta>
<Data>NTI2OTJhMDAwNjYxODkwYmQ3NWUxN2RhN2ZmYmJlMzk=</Data>
<!— Base64 coded MD5 digest of "Bruce2:OhBehave:Nonce" -->

</Cred>
</SyncHdr>
<SyncBody>

...
</SyncBody>

</SyncML>

Pkg #2 from Server
<SyncML>

<SyncHdr>
<VerDTD>1.0</VerDTD>
<VerProto>SyncML/1.0</VerProto>
<SessionID>1</SessionID>
<MsgID>2</MsgID>
<Target><LocURI>IMEI:493005100592800</LocURI></Target>
<Source><LocURI>http://www.syncml.org/sync-server</LocURI></Source>

</SyncHdr>
<SyncBody>

<Status>
<CmdID>1</CmdID>
<MsgRef>1</MsgRef><CmdRef>0</CmdRef><Cmd>SyncHdr</Cmd>
<TargetRef>http://www.syncml.org/sync-server</TargetRef>
<SourceRef>IMEI:493005100592800</SourceRef>
<Chal>

<Meta>
<Type xmlns=’syncml:metinf’>syncml:auth-md5</Type>
<Format xmlns=’syncml:metinf’>b64</Format>
<NextNonce xmlns=’syncml:metinf’>LG3iZQhhdmKNHg==</NextNonce>
<!—This nonce is used at the next session.-->

</Meta>
</Chal>
<Data>212</Data> <!—Authenticated for session-->

</Status>
...

</SyncBody>
</SyncML>

 SyncML Sync Protocol 26 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

4 Sync Initialization
The sync initialization is required that the actual synchronization (See Chapters 5-7), i.e., the sync
commands, can also be transmitted and processed. Prior to the sync initialization, the SyncML
server may alert the client to trigger synchronization with it (See Chapter 8) but this does not
remove the need for the initialization. The sync initialization has the following purposes:

• To process the authentication between the client and the server on the SyncML level.

• To indicate which databases are desired to be synchronized and which protocol type is
used.

• To enable the exchange of service and device capabilities.
The two first ones are done by using the Alert command of the SyncML Representation protocol.
These must be supported by the client and the server.

The exchange of service capabilities is done by utilizing the Put and Get commands of the SyncML
Representation protocol and the Device Information DTD (See also Chapter 2.7).

The initialization procedure is depicted in the figure below. Some parts of the procedure (some
responses) can be included in the actual synchronization messages if it is necessary.

SyncML Client SyncML Server

Client and server configured properly to enable communication with each other

User

Sync order

Pkg #1: Client Initialization package to server

Pkg #2: Server Initialization package to client

Sync will continue according for the sync type(s) defined in the Alert commands.

Pkg #3: Sync package including the completition of the Sync
initialization.

Figure 6 MSC of Synchronization Initialization

The arrows in all figures in this document represent SyncML packages, which can include one or
more messages. The package flow presented above is one SyncML session that means that all
messages have the same SyncML session ID.

The purpose and the requirements for each of the packages in the figure above are considered in
the next sections.

 SyncML Sync Protocol 27 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

4.1 Initialization Requirements for Client
As described in the previous chapter, the client needs to inform the server which databases it wants
to synchronize and which type synchronization is desired. Optionally, the client can also include the
authentication information and the service capabilities information into this initialization.

The databases, which are desired to be synchronized, are indicated in the separate Alert
commands. I.e., for each database, a separate Alert command MUST be included in the SyncBody.
In addition, the Alert command is used to exchange the sync anchors.

The synchronization type is indicated in the Alert command. See the alert codes in Alert Codes.

The authentication information, if it is included, MUST be placed inside the Cred element in the
SyncHdr. Either the Basic or the MD5 Digest credential type can be used.

The service capabilities can be sent by using the Put command in the SyncBody element. The client
MUST include service and device information, which is applicable from the Device Information DTD,
in the data to be sent to the server. The client can also ask the service capabilities of the server.
The Get command is used for this operation.

The detailed requirements for the sync initialization package (Pkg #1 in Figure 6) from the client to
the server are:

4. Requirements for the elements within the SyncHdr element.

• The value of the VerDTD element MUST be '1.0'.

• The VerProto element MUST be included to specify the sync protocol and the version of
the protocol. The value MUST be 'SyncML/1.0' when complying with this specification.

• Session ID MUST be included to indicate the ID of a sync session.

• MsgID MUST be used to unambiguously identify the message belonging a sync session
and traveling from the client to the server.

• The Target element MUST be used to identify the target device and service.

• The Source element MUST be used to identify the source device.

• The Cred element MUST be included if the authentication is needed.
5. The Alert element(s) for each database to be synchronized MUST be included in SyncBody and

the following requirements exist.

• CmdID is required.

• The response SHOULD be required for the Alert command.

• The Data element is used to include the Alert code. The alert code is one of the codes
used at the initialization. See the alert codes in Alert Codes.

• Target in the Item element is used to specify the target database.

• Source in the Item element is used to specify the source database.

• The sync anchors of the client MUST be included to specify the previous and current (Last
and Next) sync anchors (See also Chapter 2.2.1). The sync anchors are carried inside the
Meta element in the Item element.

6. If the service capabilities are sent from the client to the server, the following requirements for the
Put command in the SyncBody exist.

 SyncML Sync Protocol 28 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

• CmdID is required.

• The Type element of the MetaInf DTD MUST be included in the Meta element of the Put
command to indicate that the type of the data is the type of the Device Information DTD.

• The Source element in the Item element MUST have a value './devinf10'.

• The Data element is used to carry the device and service information data.
7. If the service capabilities are requested from the server, the following requirements for the Get

command in the SyncBody exist.

• CmdID is required.

• The Type element of the MetaInf DTD MUST be included in the Meta element of the Get
command to indicate that the type of the data is the type of the Device Information DTD.

• The Target element in the Item element MUST have a value './devinf10'.
8. The Final element MUST be used for the message, which is the last in this package.

4.1.1 Example of Sync Initialization Package from Client

<SyncML>
<SyncHdr>

<VerDTD>1.0</VerDTD>
<VerProto>SyncML/1.0</VerProto>
<SessionID>1</SessionID>
<MsgID>1</MsgID>
<Target><LocURI>http://www.syncml.org/sync-server</LocURI></Target>
<Source><LocURI>IMEI:493005100592800</LocURI></Source>
<Cred> <!--The authentication is optional.-->

<Meta><Type xmlns='syncml:metinf'>syncml:auth-basic</Type></Meta>
<Data>QnJ1Y2UyOk9oQmVoYXZl</Data> <!--base64 formatting of "userid:password"-->

</Cred>
<Meta> <!--The Meta is now used to indicate the maximum SyncML message size, which

client can receive.-->
<MaxMsgSize xmlns='syncml:metinf'>5000</MaxMsgSize>

</Meta>
</SyncHdr>
<SyncBody>

<Alert>
<CmdID>1</CmdID>
<Data>200</Data> <!-- 200 = TWO_WAY_ALERT -->
<Item>

<Target><LocURI>./contacts/james_bond</LocURI></Target>
<Source><LocURI>./dev-contacts</LocURI></Source>
<Meta>

<Anchor xmlns='syncml:metinf'>
<Last>234</Last>
<Next>276</Next>

</Anchor>
</Meta>

</Item>
</Alert>
<Put>

<CmdID>2</CmdID>
<Meta><Type xmlns='syncml:metinf'>application/vnd.syncml-devinf+xml</Type></Meta>
<Item>

<Source><LocURI>./devinf10</LocURI></Source>
<Data>

<DevInf xmlns='syncml:devinf'>
<Man>Big Factory, Ltd.</Man>

 SyncML Sync Protocol 29 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

<Mod>4119</Mod>
<OEM>Jane's phones</OEM>
<FwV>2.0e</FwV>
<SwV>2.0</SwV>
<HwV>1.22I</HwV>
<DevId>1218182THD000001-2</DevId>
<DevTyp>phone</DevTyp>
<DataStore>

<SourceRef>./contacts</SourceRef>
<DisplayName>Phonebook</DisplayName>
<MaxGUIDSize>32</MaxGUIDSize>
<Rx-Pref>

<CTType>text/x-vcard </CTType>
<VerCT>2.1</VerCT>

</Rx-Pref>
<Tx-Pref>

<CTType>text/x-vcard</CTType>
<VerCT>2.1</VerCT>

</Tx-Pref>
</DataStore>
<CTCap>

<CTType>text/x-vcard</CTType>
<PropName>BEGIN</PropName>

<ValEnum>VCARD</ValEnum>
<PropName>END</PropName>

<ValEnum>VCARD</ValEnum>
<PropName>VERSION</PropName>

<ValEnum>2.1</ValEnum>
<PropName>N</PropName>
<PropName>TEL</PropName>

<ParamName>VOICE</ParamName>
<ParamName>CELL</ParamName>

</CTCap>
<SyncCap>

<SyncType>01</SyncType>
<SyncType>02</SyncType>

</SyncCap>
</DevInf>

</Data>
</Item>

</Put>
<Get>

<CmdID>3</CmdID>
<Meta><Type xmlns='syncml:metinf'>application/vnd.syncml-devinf+xml</Type></Meta>
<Item>

<Target><LocURI>./devinf10</LocURI></Target>
</Item>

</Get>
<Final/>

</SyncBody>
</SyncML>

4.2 Initialization Requirements for Server
When the server has received the Initialization package from the client, it completes the initialization
phase by responding to the client from the server perspective. To complete the initialization, the
server sends its authentication information, sync anchors, and device information back to the client.
Also, the server MUST accept the sync type.

The detailed requirements for the sync initialization package (Pkg #2 in Figure 4) from the server to
the client are:

1. Requirements for the elements within the SyncHdr element.

 SyncML Sync Protocol 30 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

• The value of the VerDTD element MUST be '1.0'.

• The VerProto element MUST be included to specify the sync protocol and the version of
the protocol. The value MUST be 'SyncML/1.0' when complying with this specification.

• Session ID MUST be included to indicate the ID of a sync session.

• MsgID MUST be used to unambiguously identify the message belonging a sync session
and traveling from the client to the server.

• The Target element MUST be used to identify the target device and service.

• The Source element MUST be used to identify the source device.

• The Cred element MUST be included if the authentication is needed.
2. The Status MUST be returned for the Alert command sent by the client if the client requested the

response. This can be sent before Package #1 is completely received (See Chapter 2.9).

• If the client is not authenticated to use the service, the sync type is wrong (e.g., slow sync
needed), or some other error occurs, the server MUST return an error for that.

• The next sync anchor of the client MUST be included in the Data element of Item (See
2.2.1).

3. If the client sent the device information to the server, the server MUST be able to retrieve them
and the Status MUST be returned for that command. This can be sent before Package #1 is
completely received.

4. If the client requested the device information of the server, the Results element MUST be
returned. This can be sent before Package #1 is completely received.

• The Type element of the MetaInf DTD MUST be included in the Meta element in the
Results element to indicate that the type of the data is the type of the Device Information
DTD.

• The Source element in the Item element MUST have a value './devinf10'.

• The Data element is used to carry the device and service information of the server.
5. The Alert element(s) for each database to be synchronized MUST be included in SyncBody and

the following requirements exist.

• CmdID is required.

• The response SHOULD be required for the Sync command.

• The Data element is used to include the alert code. If this is different that the alert code
sent by the client, the client SHOULD follow this when synchronization is continued.

• Target is used to specify the target database.

• Source is used to specify the source database.

• The sync anchors of the server MUST be included to specify the previous and current
(Last and Next) sync anchors of the server (See also Chapter 2.2.1).

6. If the service capabilities were not asked by the client, the server MAY send them to the client by
using the Put command. The following requirements for the Put command in the SyncBody
exist.

• CmdID is required.

• The Type element of the MetaInf DTD MUST be included in the Meta element of the Put
command to indicate that the type of the data is the type of the Device Information DTD.

 SyncML Sync Protocol 31 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

• The Source element in the Item element MUST have a value './devinf10'.

• The Data element is used to carry the device and service information data of the server.
7. If the client did not send its service capabilities and the server needs to receive them, the server

can request those by using the Get command. The following requirements for the Get command
in the SyncBody exist.

• CmdID is required.

• The Type element of the MetaInf DTD MUST be included in the Meta element of the Get
command to indicate that the type of the data is the type of the Device Information DTD.

• The Target element in the Item element MUST have a value './devinf10'.
8. The Final element MUST be used for the message, which is the last in this package.
To complete the sync initialization from the client side, the client MUST respond to the commands
(Alert, possible Put and Get) sent by the server. The Status elements and the Result element
associated with the commands can be returned in the first package occurring in actual
synchronization (Refer Package #3 in Two-way synchronization and One-way synchronizations.

4.2.1 Example of Sync Initialization Package from Server
<SyncML>

<SyncHdr>
<VerDTD>1.0</VerDTD>
<VerProto>SyncML/1.0</VerProto>
<SessionID>1</SessionID>
<MsgID>1</MsgID>
<Target><LocURI>IMEI:493005100592800</LocURI></Target>
<Source><LocURI>http://www.syncml.org/sync-server</LocURI></Source>
<Cred> <!--The authentication is optional.-->

<Meta><Type xmlns='syncml:metinf'>syncml:auth-basic</Type></Meta>
<Data>QnJ1Y2UyOk9oQmVoYXZl</Data> <!--base64 formatting of "userid:password"-->

</Cred>
</SyncHdr>
<SyncBody>

<Status>
<CmdID>1</CmdID>
<MsgRef>1</MsgRef><CmdRef>0</CmdRef><Cmd>SyncHdr</Cmd>
<TargetRef>http://www.syncml.org/sync-server</TargetRef>
<SourceRef>IMEI:493005100592800</SourceRef>
<Data>212</Data> <!--Statuscode for OK, authenticated for session-->

</Status>
<Status>

<CmdID>2</CmdID>
<MsgRef>1</MsgRef><CmdRef>1</CmdRef><Cmd>Alert</Cmd>
<TargetRef>./contacts/james_bond</TargetRef>
<SourceRef>./dev-contacts</SourceRef>
<Data>200</Data> <!--Statuscode for OK-->
<Item>

<Data><Anchor xmlns='syncml:metinf'><Next>276</Next></Anchor></Data>
</Item>

</Status>
<Status>

<CmdID>3</CmdID>
<MsgRef>1</MsgRef><CmdRef>2</CmdRef><Cmd>Put</Cmd>
<SourceRef>./devinf10</SourceRef>
<Data>200</Data> <!--Statuscode for OK-->

</Status>
<Results>

<CmdID>4</CmdID>
<MsgRef>1</MsgRef><CmdRef>3</CmdRef>
<Meta><Type xmlns='syncml:metinf'>application/vnd.syncml-devinf+xml</Type></Meta>

 SyncML Sync Protocol 32 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

<Item>
<Source><LocURI>devinf10</LocURI></Source>
<Data>

<DevInf xmlns='syncml:devinf'>
<Man>Small Factory, Ltd.</Man>
<Mod>Tiny Server</Mod>
<OEM>Tiny Shop</OEM>
<DevId>485749KR</DevId>
<DevTyp>Server</DevTyp>
<DataStore>

<SourceRef>./contacts</SourceRef>
<DisplayName>Addressbook</DisplayName>
<Rx-Pref>

<CTType>text/x-vcard </CTType>
<VerCT>2.1</VerCT>

</Rx-Pref>
<Rx>

<CTType>text/vcard </CTType>
<VerCT>3.0</VerCT>

</Rx>
<Tx-Pref>

<CTType>text/x-vcard</CTType>
<VerCT>2.1</VerCT>

</Tx-Pref>
<Tx>

<CTType>text/vcard</CTType>
<VerCT>3.0</VerCT>

</Tx>
</DataStore>
<CTCap>

<CTType>text/x-vcard</CTType>
<PropName>BEGIN</PropName>

<ValEnum>VCARD</ValEnum>
<PropName>END</PropName>

<ValEnum>VCARD</ValEnum>
<PropName>VERSION</PropName>

<ValEnum>2.1</ValEnum>
<PropName>N</PropName>
<PropName>TEL</PropName>

<ParamName>VOICE</ParamName>
<ParamName>CELL</ParamName>

<CTType>text/vcard</CTType>
<PropName>BEGIN</PropName>

<ValEnum>VCARD</ValEnum>
<PropName>END</PropName>

<ValEnum>VCARD</ValEnum>
<PropName>VERSION</PropName>

<ValEnum>3.0</ValEnum>
<PropName>N</PropName>
<PropName>TEL</PropName>

<ParamName>VOICE</ParamName>
<ParamName>FAX</ParamName>
<ParamName>CELL</ParamName>

<CTType>text/vcard</CTType>
<PropName>BEGIN</PropName>

<ValEnum>VCARD</ValEnum>
<PropName>END</PropName>

<ValEnum>VCARD</ValEnum>
<PropName>VERSION</PropName>

<ValEnum>3.0</ValEnum>
<PropName>N</PropName>
<PropName>TEL</PropName>

<ParamName>VOICE</ParamName>
<ParamName>FAX</ParamName>
<ParamName>CELL</ParamName>

</CTCap>
<SyncCap>

 SyncML Sync Protocol 33 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

<SyncType>01</SyncType>
<SyncType>02</SyncType>
<SyncType>07</SyncType>

</SyncCap>
</DevInf>

</Data>
</Item>

</Results>
<Alert>

<CmdID>5</CmdID>
<Data>201</Data> <!-- 201 = TWO_WAY_ALERT -->
<Item>

<Target><LocURI>./dev-contacts</LocURI></Target>
<Source><LocURI>./contacts/james_bond</LocURI></Source>
<Meta>

<Anchor xmlns='syncml:metinf'>
<Last>200005021T081812Z </Last>
<Next>200005022T093223Z </Next>

</Anchor>
</Meta>

</Item>
</Alert>
<Final/>

</SyncBody>
</SyncML>

4.3 Error Case Behaviors
In this chapter, the recommended behaviors are defined in the cases of different error types, which
can occur during the sync initialization.

4.3.1 No Packages from Server
If the client has sent its sync initialization package to the server and it does not get any complete
response to it, the client MUST assume that the server has not received the sync initialization
package of the client. The client MUST send its sync initialization package again later.

4.3.2 No Initialization Completion from Client
If the server has sent its sync initialization package to the client and it does not get any complete
response to it (Refer Pkg #3), the server MUST assume that the client has not received the sync
initialization package of the server. The server can drop the session and the sync initialization
MUST be started from the beginning when synchronization is started at the next time.

4.3.3 Initialization Failure
If the initialization fails and a defined error code [1] is sent, the devices MUST act according that
error type.

 SyncML Sync Protocol 34 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

5 Two-Way Sync
Two-way sync is a normal synchronization type in which the client and the server are required to
exchange information about the modified data in these devices. The client is always the device
which first sends the modifications. According to the information from the client, the server
processes the synchronization request and the data from the client is compared and unified with the
data in the server. After that, the server sends its modified data to the client device, which is then
able to update its database with the data from the server.

In Figure 7, there is depicted the MSC of the client initiated two-way sync scenario.

SyncML Client SyncML Server

Client and server have processed the sync initialization for two-way sync.

User

Client device prepares the data needed to be sent to the server.

Pkg #3: Sync package from client to server

Server processes sync analysis.

Pkg #4: Status and Sync package

Sync result

Client makes data update for its databases.

Pkg #5: Data Update Status package to server

Pkg #6: Map Acknowledgement to client

Figure 7 MSC of Two-Way Sync

The arrows in all figures in this document represent SyncML packages, which can include one or
more messages. The package flow presented above is one SyncML session that means that all
messages have the same SyncML session ID. The Session ID is same as used at the initialization.

The purpose and the requirements for each of the packages in the figure above are considered in
the next sections.

Note. If the sync is done without a separate initialization (See Chapter 2.10), the number of a
package in the figure may not describe the actual atomic number of a package in a synchronization
session.

5.1 Client Modifications to Server
To enable sync, the client needs to inform the server about all client data modifications, which have
happened since the previous sync package with modifications has been sent from the client to the

 SyncML Sync Protocol 35 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

server2 (Refer to the sync package, Pkg #3 in Figure 7). Any client modification, which is done after
sending this package, MUST be reported to the server during the next sync session. It is not
allowed to put them inside subsequent packages from the client to the server. The requirements for
the sync package from the client to the server are following.

1. Requirements for the elements within the SyncHdr element.

• The value of the VerDTD element MUST be '1.0'.

• The VerProto element MUST be included to specify the sync protocol and the version of
the protocol. The value MUST be 'SyncML/1.0' when complying with this specification.

• Session ID MUST be included to indicate the ID of a sync session.

• MsgID MUST be used to unambiguously identify the message belonging a sync session
and traveling from the client to the server.

• The Target element MUST be used to identify the target device and service.

• The Source element MUST be used to identify the source device.
2. The Status MUST be returned for the Alert command sent by the client if requested by the

server. This can be sent before Package #2 is completely received.

• If the server is not authenticated to use the service, the sync type is wrong (e.g., slow sync
needed), or some other error occurs, the client MUST return an error for that.

• The next sync anchor of the server MUST be included in the Data element of Item (See
2.2.1).

3. If the server sent the device information to the client, the client SHOULD process the transmitted
device information and the Status MUST be returned for that command if requested by the
server. This can be sent before Package #2 is completely received.

4. If the server requested the device information of the client, the Results element MUST be
returned. This can be sent before Package #2 is completely received.

• The Type element of the MetaInf DTD MUST be included in the Meta element in the
Results element to indicate that the type of the data is the type of the Device Information
DTD.

• The Source element in the Results element MUST have a value './devinf10'.

• The Data element MUST be used to carry the device and service information of the client.
5. The Sync element MUST be included in SyncBody and the following requirements exist.

• CmdID is required.

• The response SHOULD be required for the Sync command.

• Target is used to specify the target database.

• Source is used to specify the source database.

• The free memory SHOULD be specified inside the Meta element. The free memory can be
either the free memory amount in the source database or the free memory amount on the
client device (See Chapter 2.7). This information can only be sent at the first message
belonging this package.

2 These modifications include also modifications which have happened during the previous sync session after
the client has sent its modifications to the server.

 SyncML Sync Protocol 36 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

6. If there are modifications in the client, there are following requirements for the operational
elements (e.g., Replace, Delete, and Add3) within the Sync element.

• CmdID is required.

• The response SHOULD be required for all these operations.

• The Source element MUST be included to indicate the LUID (See Definitions) of the data
item within the Item element.

• The Type element of the MetaInf DTD MUST be included in the Meta element to indicate
the type of the data item (E.g., MIME type). The Meta element inside an operation or
inside an item can be used.

• Data element MUST be used to carry data itself if the operation is not a deletion.
7. The Final element MUST be used for the message, which is the last in this package. After the

server has received the final message of the package, it can complete the sync analysis and
send its modifications back to client.

5.1.1 Example of Sending Modifications to Server

<SyncML>
<SyncHdr>

<VerDTD>1.0</VerDTD>
<VerProto>SyncML/1.0</VerProto>
<SessionID>1</SessionID>
<MsgID>2</MsgID>
<Target><LocURI>http://www.syncml.org/sync-server</LocURI></Target>
<Source><LocURI>IMEI:493005100592800</LocURI></Source>

</SyncHdr>
<SyncBody>

<Status>
<CmdID>1</CmdID>
<MsgRef>1</MsgRef><CmdRef>0</CmdRef><Cmd>SyncHdr</Cmd>
<TargetRef>IMEI:493005100592800</TargetRef>
<SourceRef> http://www.syncml.org/sync-server </SourceRef>
<Data>212</Data> <!--Statuscode for OK, authenticated for session-->

</Status>
<Status>

<CmdID>2</CmdID>
<MsgRef>1</MsgRef><CmdRef>5</CmdRef><Cmd>Alert</Cmd>
<TargetRef>./dev-contacts</TargetRef>
<SourceRef>./contacts/james_bond</SourceRef>
<Data>200</Data> <!--Statuscode for Success-->
<Item>

<Data>
<Anchor xmlns='syncml:metinf'><Next>200005022T093223Z </Next></Anchor>

</Data>
</Item>

</Status>
<Sync>

<CmdID>3</CmdID>
<Target><LocURI>./contacts/james_bond</LocURI></Target>
<Source><LocURI>./dev-contacts</LocURI></Source>
<Meta>

<Mem xmlns='syncml:metinf'>
<FreeMem>8100</FreeMem>

3 It is not required that the SyncML clients support the Add operation when sending modifications. They may
use the Replace operation for additions and then, the receiving device must make addition if the UID of an
object does not exist.

 SyncML Sync Protocol 37 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

<!--Free memory (bytes) in Calendar database on a device -->
<FreeId>81</FreeId>
<!--Number of free records in Calendar database-->

</Mem>
</Meta>
<Replace>

<CmdID>4</CmdID>
<Meta><Type xmlns='syncml:metinf'>text/x-vcard</Type></Meta>

<Item>
<Source><LocURI>1012</LocURI></Source>
<Data><!--The vCard data would be placed here.--></Data>

</Item>
</Replace>

</Sync>
<Final/>

</SyncBody>
</SyncML>

5.2 Server Modifications to Client
The sync package (Refer Pkg #4 in Figure 7) to the client has the following purposes:

• To inform the client about the results of sync analysis.

• To inform about all data modifications, which have happened in the server since the
previous time when the server has sent the modifications to the client.

Any server modifications, which are done after sending this package, MUST be reported to the
client during the next sync session. It is not allowed to put them inside subsequent packages from
the server to the client.

The requirements for messages within this sync package are following.

1. Requirements for the elements within the SyncHdr element.

• The value of the VerDTD element MUST be '1.0'.

• The value of the VerProto element MUST be 'SyncML/1.0'.

• Session ID MUST be included to indicate the ID of a sync session.

• MsgID MUST be used to unambiguously identify the message belonging a sync session
and traveling from the server to the client.

• The Target element MUST be used to identify the target device.

• The Source element MUST be used to identify the source device and service.
2. The Status element MUST be included in SyncBody if requested by the client. It is now used to

indicate the general status of the sync analysis and the status information related to data items
sent by the client (e.g., a conflict has happened.). Status information for data items can be sent
before Package #3 is completely received.

3. The Sync element MUST be included in SyncBody, if earlier there were no occurred errors,
which could prevent the server to process the sync analysis and to send its modifications back
to the client. For the Sync element, there are the following requirements.

• CmdID is required.

• The response can be required for the Sync command. (See the Caching of Map Item,
Chapter 2.3.1)

 SyncML Sync Protocol 38 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

• Target is used to specify the target database.

• Source is used to specify the source database.
4. If there is any modification in the server after the previous sync, there are following requirements

for the operational elements (e.g., Replace, Delete, and Add4) within the Sync element.

• CmdID is required.

• The response can be required for these operations.

• Source MUST be used to define the temporary GUID (See Definitions) of the data item in
the server if the operation is an addition. If the operation is not an addition, Source MUST
NOT be included.

• Target MUST be used to define the LUID (See Definitions) of the data item if the operation
is not an addition. If the operation is an addition, Target MUST NOT be included.

• The Data element inside Item is used to include the data itself if the operation is not a
deletion.

• The Type element of the MetaInf DTD MUST be included in the Meta element to indicate
the type of the data item (E.g., MIME type). The Meta element inside an operation or
inside an item can be used.

5. The Final element MUST be used for the message, which is the last in this package.

5.2.1 Example of Sending Modifications to Client
<SyncML>

<SyncHdr>
<VerDTD>1.0</VerDTD>
<VerProto>SyncML/1.0</VerProto>
<SessionID>1</SessionID>
<MsgID>2</MsgID>
<Target><LocURI>IMEI:493005100592800</LocURI></Target>
<Source><LocURI>http://www.syncml.org/sync-server</LocURI></Source>

</SyncHdr>
<SyncBody>

<Status>
<CmdID>1</CmdID>
<MsgRef>2</MsgRef><CmdRef>0</CmdRef><Cmd>SyncHdr</Cmd>
<TargetRef>http://www.syncml.org/sync-server</TargetRef>
<SourceRef>IMEI:493005100592800</SourceRef>
<Data>200</Data>

</Status>
<Status><!--This is a status for the client modifications to the server.-->
<CmdID>2</CmdID>

<MsgRef>2</MsgRef><CmdRef>3</CmdRef><Cmd>Sync</Cmd>
<TargetRef>./contacts/james_bond</TargetRef>
<SourceRef>./dev-contacts</SourceRef>
<Data>200</Data> <!--Statuscode for Success-->

</Status>
<Status>

<CmdID>3</CmdID>
<MsgRef>2</MsgRef><CmdRef>4</CmdRef><Cmd>Replace</Cmd>
<SourceRef>1012</SourceRef>
<Data>200</Data> <!--Statuscode for Success-->

</Status>
<Sync>

4 It is not required that the devices support the Add operation. They may use the Replace operation for
additions and then, the receiving device must make addition if the UID of an object does not exist.

 SyncML Sync Protocol 39 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

<CmdID>4</CmdID>
<Target><LocURI>./dev-contacts</LocURI></Target>
<Source><LocURI>./contacts/james_bond</LocURI></Source>
<Replace>

<CmdID>5</CmdID>
<Meta><Type xmlns='syncml:metinf'>text/x-vcard</type></Meta>
<Item>

<Target><LocURI>1023</LocURI></Target>
<Data><!--The vCard data would be placed here.--></Data>

</Item>
</Replace>
<Add>

<CmdID>6</CmdID>
<Meta><Type xmlns='syncml:metinf'>text/x-vcard</type></Meta>
<Item>

<Source><LocURI>10536681</LocURI></Source>
<Data><!--The vCard data would be placed here.--></Data>

</Item>
</Add>

</Sync>
<Final/>

</SyncBody>
</SyncML>

5.3 Data Update Status from Client
The data update status package from the client to the server is needed to transport the information
about the result of the data update on the client side. In addition, it is used to indicate the LUID's of
the new data items, which have been added in the client, i.e., the Map operation for mapping LUID's
and temporary GUID's is sent to the server.

Note. This package MAY NOT be sent if the server has indicated that it does not require a response
to its last package to the client. If the client decides that it does not send this message, it MUST be
able to cache the Map operations until the next synchronization will happen, when these Map
operations can be sent to the server (See also Chapter 2.3.1). However, the client is always allowed
to send this Data Update Status package to the server, even if the server has not requested a
response.

The messages in this package have the following requirements.

1. Requirements for the elements within the SyncHdr element.

• The value of the VerDTD element MUST be '1.0'.

• The value of the VerProto element MUST be 'SyncML/1.0'.

• Session ID MUST be included to indicate the ID of a sync session.

• MsgID MUST be used to unambiguously identify the message belonging a sync session
and traveling from the client to the server.

• The Target element MUST be used to identify the target device and service.

• The Source element MUST be used to identify the source device.
2. The Status element MUST be in SyncBody if requested by the server. It is used to indicate the

results of data update in the client. Also, the status information related to the individual data
items is transferred to the server. The status information for data items can be sent before
Package #4 is completely received.

 SyncML Sync Protocol 40 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

3. The Map element MUST be included in the SyncBody element if the client has processed any
server additions to its database. For each database being synchronized, a separate Map
operation or operations MUST be sent if any additions to a database is carried out. This
command can be sent before Package #4 is completely received.

• CmdID is required.

• The Source and Target elements are required in the Map element.

• The response is required to the Map operation.

• The client has to return the client side IDs, i.e., LUID's and the server side IDs (temporary
GUID's) for the data items within MapItem elements.

4. The Final element MUST be used for the message, which is the last in this package.

5.3.1 Example of Data Update Status to Server
<SyncML>

<SyncHdr>
<VerDTD>1.0</VerDTD>
<VerProto>SyncML/1.0</VerProto>
<SessionID>1</SessionID>
<MsgID>3</MsgID>
<Target><LocURI>http://www.syncml.org/sync-server</LocURI></Target>
<Source><LocURI>IMEI:493005100592800</LocURI></Source>

</SyncHdr>
<SyncBody>

<Status>
<CmdID>1</CmdID>
<MsgRef>2</MsgRef><CmdRef>0</CmdRef><Cmd>SyncHdr</Cmd>
<TargetRef>IMEI:493005100592800</TargetRef>
<SourceRef> http://www.syncml.org/sync-server </SourceRef>
<Data>200</Data>

</Status>
<Status>

<CmdID>2</CmdID>
<MsgRef>2</MsgRef><CmdRef>4</CmdRef><Cmd>Sync</Cmd>
<TargetRef>./dev-contacts</TargetRef>
<SourceRef>./contacts/james_bond</SourceRef>
<Data>200</Data>

</Status>
<Status>

<CmdID>3</CmdID>
<MsgRef>2</MsgRef><CmdRef>5</CmdRef><Cmd>Replace</Cmd>
<TargetRef>1023</TargetRef>
<Data>200</Data>

</Status>
<Status>

<CmdID>4</CmdID>
<MsgRef>2</MsgRef><CmdRef>6</CmdRef><Cmd>Add</Cmd>
<SourceRef>10536681</SourceRef>
<Data>200</Data>

</Status>
<Map>

<CmdID>5</CmdID>
<Target><LocURI>./contacts/james_bond</LocURI></Target>
<Source><LocURI>./dev-contacts</LocURI></Source>
<MapItem>

<Target><LocURI>10536681</LocURI></Target>
<Source><LocURI>1024</LocURI></Source>

</MapItem>
</Map>
<Final/>

 SyncML Sync Protocol 41 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

</SyncBody>
</SyncML>

5.4 Map Acknowledgement from Server
The Map Acknowledgement from the server to the client is needed to inform the client that the
server has received the mapping information of the data items. This acknowledgement is sent back
to the client even if there were no Map operations in last package from the client to the server.

The messages in this package have the following requirements.

1. Requirements for the elements within the SyncHdr element.

• The value of the VerDTD element MUST be '1.0'.

• The value of the VerProto element MUST be 'SyncML/1.0'.

• Session ID MUST be included to indicate the ID of a sync session.

• MsgID MUST be used to unambiguously identify the message belonging a sync session
and traveling from the server to the client.

• The Target element MUST be used to identify the target device.

• The Source element MUST be used to identify the source device and service.

• The response MUST NOT be required for this message.
2. The Status element(s) MUST be included in SyncBody. It is now used to indicate the status of

the Map operation(s). This or these can be sent before Package #5 is completely received.
3. The Final element MUST be used for the message, which is the last in this package.

5.4.1 Example of Map Acknowledge
<SyncML>

<SyncHdr>
<VerDTD>1.0</VerDTD>
<VerProto>SyncML/1.0</VerProto>
<SessionID>1</SessionID>
<MsgID>3</MsgID>
<Target><LocURI>IMEI:493005100592800</LocURI></Target>
<Source><LocURI>http://www.syncml.org/sync-server</LocURI></Source>

</SyncHdr>
<SyncBody>

<Status>
<CmdID>1</CmdID>
<MsgRef>3</MsgRef><CmdRef>0</CmdRef><Cmd>SyncHdr</Cmd>
<TargetRef>http://www.syncml.org/sync-server</TargetRef>
<SourceRef>IMEI:493005100592800</SourceRef>
<Data>200</Data>

</Status>
<Status>

<CmdID>1</CmdID>
<MsgRef>3</MsgRef><CmdRef>5</CmdRef><Cmd>Map</Cmd>
<TargetRef>./contacts/james_bond </TargetRef>
<SourceRef>./dev-contacts</SourceRef>
<Data>200</Data>

</Status>
<Final/>

</SyncBody>

 SyncML Sync Protocol 42 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

</SyncML>

5.5 Slow Sync
The slow sync can be desired for many reasons, e.g., the client or the server has lost its change log
information, the LUID's have wrapped around in the client, or the sync anchors mismatch. The slow
sync is a form of the two-way synchronization in which all items in one or more databases are
compared with each other on a field-by-field basis. In practise, the slow sync means that the client
sends all its data in a database to the server and the server does the sync analysis (field-by-field)
for this data and the data in the server. After the sync analysis, the server returns all needed
modifications back to the client. Also, the client returns the Map items for all data items, which were
added by the server.

Because of many reasons to process the slow sync, it can be either the client or the server, which
indicates a need for this. If the client does this, it specifies in the Alert command that the sync type
is the slow sync. The Alert command MAY be the same as at the sync initialization or the similar
Alert command MAY be included when Package #3 is sent. The value of the Alert code is 201.

If there is a need for the server to initiate the slow sync, it happens by including the Alert operation
with the 201 alert code. This alert operation MUST be the Alert operation at the Sync Initialization
(Refer Package #2). After the client has received the status and the Alert operation for the slow
sync, sync can be thought to start as if the client were initiating the slow sync in Package #3.
However, the client MUST NOT include the Alert command anymore if it was the server, which
alerted the slow sync.

If the client or the server needs to initiate the slow sync after receiving the alert for the normal
synchronization, they need to send back an error status for that Alert in addition the slow sync alert.
The error code, which is used in this case, MUST be 508 (Refresh required). If the client has not
used a separate synchronization initialization, as specified in Chapter 2.10, it MUST send all
updates in the next message to the server after receiving the error status and the Alert for a slow
sync.

After the server has sent the Sync Alert, and if the client does not agree with the sync anchor in that
Alert, then the Client MUST start a slow sync. This is done by sending back a Status on that Alert
with Refresh Required (508). In this same message, the client should start the slow sync. In this
case, the client MUST NOT send another Alert to start the slow sync. Note that it is not necessary
for the client to compare the sync anchor from the server.

If the devices are synchronizing with each other at the first time, the slow sync MUST be initiated.

5.6 Error Case Behaviors
In this chapter, the recommended behaviors are defined in the cases of different error types.

5.6.1 No Packages from Server after Initialization
If the client has sent its modifications to the server and it does not get the status associated with
those modifications, the client MUST assume that the server has not received those client
modifications. At the next time when synchronization is started, the modifications, to which the
status was not received, MUST be sent to the server again.

 SyncML Sync Protocol 43 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

5.6.2 No Data Update Status from Client
If the server has sent its modifications to the client and it does not get the status associated with
those server modifications, the server MUST assume that the client has not received those server
modifications. Thus, at the next time when synchronization is started, the server modifications in
addition to new ones MUST be sent to the client.

5.6.3 No Data Map Acknowledge from Server
If the client has sent the Map operation(s) and it does not get any complete response to it, the client
SHOULD assume that the server has not received the Map operation(s). Thus, the client SHOULD
try to send the Map operation(s) again or at the next time when synchronization is started.

5.6.4 Errors with Defined Error Codes
If the device receives a defined error code [1], it MUST act according that error type.

 SyncML Sync Protocol 44 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

6 One-Way Sync from Client Only
The one-way sync from the client only is the sync type in which the client sends all modifications to
the server but the server does not send its modifications back to the client. Thus, after this type of
sync, the server includes all modified data from the client but the client does not know about
modifications in the server. In Figure 8, there is depicted the MSC for this scenario.

SyncML Client SyncML Server

Client and server have processed the sync initialization for one-way sync from client.

User

Client device prepares the data needed to be sent to the server.

Pkg #3: Sync package from client to server

Server processes sync analysis.

Pkg #4: Status package
Sync result

Figure 8 MSC of One-Way Sync from Client only

The package flow presented above is one SyncML session that means that all messages have the
same SyncML session ID. The Session ID is same as used at the initialization.

The purpose and the requirements for each of package in the figure above are considered in the
next sections.

Note. If the sync is done without a separate initialization (See Chapter 2.10), the number of a
package in the figure may not describe the actual atomic number of a package in a synchronization
session.

6.1 Client Modifications to Server
To initiate the sync, the client needs to inform the server about all client data modifications, which
have happened since the previous sync5 (Refer to the sync package, Pkg #3 in Figure 8). Any client
modification, which is done after sending this package, MUST be reported to the server during the
next sync session. It is not allowed to put them inside subsequent packages from the client to the
server. The requirements for the sync package from the client to the server are the same as in
Chapter 5.1.

6.2 Status from Server
The Status package (Refer Pkg #4) has a purpose of informing the client about the results of sync
analysis. The requirements for the status package are following.

5 These modifications include also modifications which have happened during the previous sync session after
the client has sent its modifications to the server.

 SyncML Sync Protocol 45 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

1. Requirements for the elements within the SyncHdr element.

• The value of the VerDTD element MUST be '1.0'.

• The value of the VerProto element MUST be 'SyncML/1.0'.

• Session ID MUST be included to indicate the ID of a sync session.

• MsgID MUST be used to unambiguously identify the message belonging a sync session
and traveling from the server to the client.

• Final MUST be used for the message, which is the last in this package.

• The Target element MUST be used to identify the target device.

• The Source element MUST be used to identify the source device and service.
2. The Status element MUST be included in SyncBody if requested by the client. It is now used to

indicate the general status of the sync analysis and the status information related to data items
sent by the client if this is necessary (e.g., a conflict has happened.). The status information for
data items can be sent before Package #1 is completely received.

6.3 Refresh Sync from Client Only
The 'refresh sync from client only' is a synchronization type in which the client sends all its data from
a database to the server (i.e., exports). The server is expected to replace all data in the target
database with the data sent by the client. I.e., this means that the client overwrites all data in the
server database.

This refresh sync is treated as a special case of the 'one-way sync from client only'. The only
differences between this case and the normal 'one-way sync from client only' are:

1. At the initialization, the sync type (Alert code) MUST be used to indicate that the 'one-way refresh
sync from client only' is required. The Alert code is 203.

2. In Package #3, the Sync element (Pkg #3) from the client to the server is required to include all
data from the source database (client database).

6.4 Error Cases Behavior
In this chapter, the recommended behaviors of devices are defined in the cases of different error
types.

6.4.1 No Packages from Server after Initialization
See Chapter 5.6.1.

6.4.2 Errors with Defined Error Codes
See Chapter 5.6.4.

 SyncML Sync Protocol 46 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

7 One-Way Sync from Server only
This sync type is the case in which the client gets all modifications from the server but the client
does not send its modifications to the server. Thus, after this type of sync, the client includes all
modified data from the server but the server does not know about modifications in the client. In
Figure 9, there is depicted the MSC for this scenario.

SyncML Client SyncML Server

Client and server have processed the sync initialization for one-way sync from server.

User

Pkg #3: Sync Alert from client to server

Server processes sync analysis.

Pkg #4: Sync package

Sync result

Client makes data update for its databases.

Pkg #5: Data Update Status package to server

Pkg #6: Map Acknowledge to client

Figure 9 MSC of Sync from Server Only

The package flow presented above is one SyncML session that means that all messages have the
same SyncML session ID. The Session ID is same as used at the initialization.

The purpose and the requirements for each of package in the figure above are considered in the
next sections.

Note. If the sync is done without a separate initialization (See Chapter 2.10), the number of a
package in the figure may not describe the actual atomic number of a package in a synchronization
session.

7.1 Sync Alert to Server
The sync package (Pkg #3 in Figure 9) is very much similar to the package #3 in the two-way sync
but any client modifications are not ever sent to server and the server is only asked to send its
modifications to the client. The only difference from the requirements defined in Chapter 5.1 is:

1. Any client modifications are not included into the Sync element. It must be empty.

 SyncML Sync Protocol 47 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

7.2 Server Modifications to Client
See Chapter 5.2.

7.3 Data Update Status from Client
See Chapter 5.3.

7.4 Map Acknowledge from Server
See Chapter 5.4.

7.5 Refresh Sync from Server Only
The 'refresh sync from server only' is a synchronization type in which the server sends all its data
from a database to the client. The client is expected to replace all data in the target database with
the data sent by the server. I.e., this means that the server overwrites all data in the client database.

This refresh sync is treated as a special case of the 'one-way sync from server only'. The
differences between this case and the normal 'one-way sync from server only' are:

1. At the Sync Initialization (See Chapter 7.1), the value for the Alert code is 205.
2. In the Server Modifications package to the client (See Chapter 7.2), the Sync element is required

to include all data from the source database.
3. The client MUST store all data items to its database (i.e., overwrites old data) and the client

MUST return the map items for all stored data items back to the server.

7.6 Error Cases
In this chapter, the recommended behaviors of devices are defined in the cases of different error
types.

7.6.1 No Packages from Server
If the client has sent the empty sync command to the server, it does not get any complete response
to it (new modifications), the client SHOULD drop the SyncML session and try to get the
modifications later by starting the sync from the beginning.

7.6.2 No Data Update Status from Client
See Chapter 5.6.2.

7.6.3 No Map Ack from Server
See Chapter 5.6.3

 SyncML Sync Protocol 48 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

7.6.4 Errors with Defined Error Codes
See Chapter 5.6.4

 SyncML Sync Protocol 49 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

8 Server Alerted Sync
This sync case is intended to provide a possibility for the server to alert the client to perform sync.
That is, the server informs the client to starts sync with the server. When the server alerts the client,
it also tells it which type of sync is initiated. Figure 10 shows the MSC, how sync is alerted by the
server.

SyncML Client SyncML Server

Client and server configured properly to enable communication with each other

User

Sync order

Pkg #0: Sync Alert to Client

User

Sync will continue according the sync type which is indicated by the Alert message.

Synchronization is completed.

Sync result

. . .

Figure 10 MSC of Server Alerted Sync

In the server alerted sync, the sent packages are the same as in any sync types except the alert
message, which is sent from the server to client.

The package flow presented above is one SyncML session that means that all messages have the
same SyncML session ID. The same Session ID used here MUST also be used at the
synchronization initialization.

8.1 Sync Alert
The sync alert is sent from the server when the server wants the client to start synchronization. This
message MUST indicate which type of sync the server wants. The requirements for the elements
within this sync alert package are:

1. Requirements for the elements within the SyncHdr element.

• The value of the VerDTD element MUST be '1.0'.

• The value of the VerProto element MUST be 'SyncML/1.0'.

• Session ID MUST be included to indicate the ID of a sync session.

• MsgID MUST be used to unambiguously identify the message belonging a sync session
and traveling from the server to the client.

 SyncML Sync Protocol 50 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

• The Target element MUST be used to identify the target device.

• The Source element MUST be used to identify the source device.

• The Cred element MUST be included if the authentication is needed.
2. The Alert element MUST be included in SyncBody.

• CmdID is required.

• The response SHOULD be required for the Alert command.

• The Item element SHOULD include the target database. Note, if this is the alert for the first
time sync, the target database may not be included but the sync client determines it
according the meta information sent within the alert.

• The Item element MUST BE used to specify the source database.

• Within the Item element, the Type element of the MetaInf DTD MUST be included in the
Meta element to indicate the type of the data (e.g., MIME type) to be synchronized.

• The Data element is used to include the Alert code. The alert code is one of the alert
codes used by the server (Values 206-210.). See the alert codes in Alert Codes.

3. Final MUST be used for the message, which is the last in this package.
When the client receives this message, it continues according to the sync type indicated by the Alert
element. The status element is also included in the first package from the client to the server. If the
error occurs, the error status is returned and the defined error codes are used.

8.2 Error Cases Behavior
In this chapter, the recommended behaviors of devices are defined in the cases of different error
types.

8.2.1 No Packages from Client
If the server has sent an alert to the client and it does not get any complete response to, the server
MUST try to alert the client later.

8.2.2 Errors with Defined Error Codes
See Chapter 5.6.4

 SyncML Sync Protocol 51 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

9 Terminology

9.1 Definitions
Client Modification – A modification of an item, which occurs in a client database before the
modification is synchronized to the server database.

GUID (Global Unique Identifier) – A number assigned to an object in a database. GUID values are
never reused. Note that in practice, numbers do not have to be unique forever, they MUST only be
unique as long as they exist in some mapping table (also see LUID).

LUID (Locally Unique Identifier) – A number assigned to an object in a database. LUID values are
only unique locally, i.e., to a particular SyncML client database, but MAY be present on other
SyncML client databases. In this protocol, the SyncML client device assigns to each object a locally
unique, non-reusable identifier, or LUID. They are unique per device and per application.

Request – A message or a command sent from a device to another.

Server Modification – A modification of an item, which occurs in the server database before the
modification is synchronized to the client database.

Slow Synchronization – When a data set is synchronized for the first time, or state relating to the
synchronization has been lost, the whole data set MUST be copied from one device to the other.
Since this can be a time-consuming operation, this is known as slow synchronization.

Synchronization Anchor – A string representing a synchronization event. The format of the string
will typically be either a sequence number or an ISO 8601-formatted extended representation, basic
format date/time stamp.

Synchronization Engine – The portion of a SyncML server that can analyze a data set and
modifications to that data set made by both SyncML server and SyncML client. The synchronization
engine will implement policies to enable the detection and resolution of conflicting changes.

Temporary GUID – A temporary number assigned by the server to an object in a database (See
also GUID.). Temporary GUID values are valid till the map operation for the items, with which the
temporary GUIDs are associated, has been received from the client. After that the temporary GUID
can be erased.

9.2 Abbreviations
DTD Document Type Definition
GUID Global Unique IDentifier
HTTP HyperText Transfer Protocol
IMEI International Mobile Equipment Identifier
LUID Local Unique Identifier
MSC Message Sequence Chart
MSG Message
OBEX OBject Exchange protocol

 SyncML Sync Protocol 52 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

WSP Wireless Session Protocol
XML Extensible Markup Language

 SyncML Sync Protocol 53 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

10 References

[1] SyncML Representation Protocol Specification v1.0.1
[2] SyncML Reference Toolkit Manual
[3] Meta Information Specification and DTD v1.0.1
[4] Device Information Specification and DTD v1.0.1
[5] The Internet Mail Consortium, vCalendar - The Electronic Calendaring and Scheduling

Exchange Format, Version 1.0, September 1996.

 SyncML Sync Protocol 54 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

11 Appendices

11.1 Protocol Values
Here are listed all protocol values (string values), which can be used in the VerProto element. The
protocol version 1.0 is used by the implementations complying with this specification

VerProto Codes Description

SyncML/1.0 Indicates that this SyncML message uses the sync
protocol defined by the SyncML Initiative.

11.2 Alert Codes
Here are listed all Alert codes and values, which are used in the Type element of Meta when the
Alert command is sent.

Alert Code Value Name Description

Alert Codes used for user alerts

100 DISPLAY Show. The Data element type contains content
information that should be processed and displayed
through the user agent.

101-150 - Reserved for future SyncML usage.

Alert Codes used at the synchronization initialization

200 TWO-WAY Specifies a client-initiated, two-way sync.

201 SLOW SYNC Specifies a client-initiated, two-way slow-sync.

202 ONE-WAY FROM
CLIENT

Specifies the client-initiated, one-way only sync from the
client to the server.

203 REFRESH FROM
CLIENT

Specifies the client-initiated, refresh operation for the one-
way only sync from the client to the server.

204 ONE-WAY FROM
SERVER

Specifies the client-initiated, one-way only sync from the
server to the client.

205 REFRESH FROM
SERVER

Specifies the client-initiated, refresh operation of the one-
way only sync from the server to the client.

Alert Codes used by the server when alerting the sync.

206 TWO-WAY BY SERVER Specifies a server-initiated, two-way sync.

207 ONE-WAY FROM
CLIENT BY SERVER

Specifies the server-initiated, one-way only sync from the
client to the server.

208 REFRESH FROM
CLIENT BY SERVER

Specifies the server-initiated, refresh operation for the
one-way only sync from the client to the server.

209 ONE-WAY FROM
SERVER BY SERVER

Specifies the server-initiated, one-way only sync from the
server to the client.

 SyncML Sync Protocol 55 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

210 REFRESH FROM
SERVER BY SERVER

Specifies the server-initiated, refresh operation of the one-
way only sync from the server to the client.

211-220 - Reserved for future SyncML usage.

Special Alert Codes

221 RESULT ALERT Specifies a request for sync results.

222 NEXT MESSAGE Specifies a request for the next message in the package.

223-250 - Reserved for future SyncML usage.

11.3 Conformance Requirements
This section defines static conformance requirements for SyncML servers and client conforming to
this specification. Also, the requirements for supporting SyncML commands are defined.

11.3.1 Conformance Requirements for SyncML Server
Table 2 Sync type conformance requirements for devices acting as SyncML server

Sync Type Reference Status

Support of 'two-way sync' Chapter 4 MUST

Support of 'slow two-way sync' Chapter 5.5 MUST

Support of 'one-way sync from client only' Chapter 6 MAY

Support of 'refresh sync from client only' Chapter 6.3 MAY

Support of 'one-way sync from server only' Chapter 7 MAY

Support of 'refresh sync from server only' Chapter 7.5 MAY

Support of 'sync alert' Chapter 8 MAY

11.3.2 Conformance Requirements for SyncML Client
Table 3 Sync type conformance requirements for devices acting as SyncML client

Sync Type Reference Status

Support of 'two-way sync' Chapter 4 MUST

Support of 'slow two-way sync' Chapter 5.5 MUST

Support of 'one-way sync from client only' Chapter 6 MAY

Support of 'refresh sync from client only' Chapter 6.3 MAY

Support of 'one-way sync from server only' Chapter 7 MAY

Support of 'refresh sync from server only' Chapter 7.5 MAY

Support of 'sync alert' Chapter 8 MAY

 SyncML Sync Protocol 56 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

11.4 Examples
11.4.1 WBXML Example
Here is an example of Package #3 (as defined in) in tokenized form (numbers in hexadecimal). This
example uses opaque data and inline strings. The example also assumes that the character
encoding is UTF-8.
02 00 00 6A 1D ”-” ”/” ”/” ”S” ”Y” ”N” ”C” ”M” ”L” ”/” ”/” ”D” ”T” ”D” ” ” ”S” ”y” ”n” ”c”
”M” ”L” ” “ ”1” ”.” ”0” ”/” ”/” ”E” ”N” 6D 6C 71 C3 03 "1" "." "0" 01 72 C3 0A "S" "y" "n"
"c" "M" "L" "/" "1" "." "0" 01 65 C3 01 "1" 01 5B C3 01 "2" 01 6E 57 C3 20 "h" "t" "t" "p"
":" "/" "/" "s" "d" "a" "1" "." "d" "a" "t" "a" "s" "y" "n" "c" "." "o" "r" "g" "/" "s"
"e" "r" "v" "l" "e" "t" 01 01 67 57 C3 12 "I" "M" "E" "I" ":" "1" "5" "6" "4" "4" "6" "9"
"2" "1" "0" "9" "4" "8" 01 01 01 6B 69 4B C3 01 "1" 01 5C C3 01 "1" 01 4C C3 01 "0" 01 4A
C3 07 "S" "y" "n" "c" "H" "d" "r" 01 6F C3 12 "I" "M" "E" "I" ":" "1" "5" "6" "4" "4" "6"
"9" "2" "1" "0" "9" "4" "8" 01 68 C3 20 "h" "t" "t" "p" ":" "/" "/" "s" "d" "a" "1" "."
"d" "a" "t" "a" "s" "y" "n" "c" "." "o" "r" "g" "/" "s" "e" "r" "v" "l" "e" "t" 01 4F C3 3
"2" "0" "0" 01 01 69 4B C3 01 "2" 01 5C C3 01 "1" 01 4C C3 01 "1" 01 4A C3 05 "A" "l" "e"
"r" "t" 01 6F C3 0E "." "\" "d" "e" "v" "-" "c" "a" "l" "e" "n" "d" "a" "r" 01 68 C3 0A
"." "/" "c" "a" "l" "e" "n" "d" "a" "r" 01 4F C3 03 "2" "0" "0" 01 54 4F 00 02 4A C3 11
"2" "0" "0" "0" "0" "5" "0" "2" "2" "T" "0" "9" "3" "2" "2" "3" "Z" 01 00 00 01 01 01 6A
4B C3 01 "3" 01 6E 57 C3 0A "." "/" "c" "a" "l" "e" "n" "d" "a" "r" 01 01 67 57 C3 0E "."
"\" "d" "e" "v" "-" "c" "a" "l" "e" "n" "d" "a" "r" 01 01 60 4B C3 01 "4" 01 5A 00 02 4D
03 "t" "e" "x" "t" "/" "x" "-" "v" "c" "a" "l" "e" "n" "d" "a" "r" 00 01 00 00 01 54 67 57
C3 02 "2" "6" 01 01 4F C3 02 04 "C" "A" "L" "1" 01 01 01 01 12 01 01 01

In an expanded and annotated form:

Token Stream Description
02 Version number – WBXML v1.2
00 FPI for DTD in string table
00 index into string table for

the identifier
6A Charset is UTF-8
1D String table length
”-” ”/” ”/” ”S” ”Y” ”N” ”C” ”M” ”L” ”/” ”/” ”D” ”T” ”D”
” ” ”S” ”y” ”n” ”c” ”M” ”L” ” “ ”1” ”.” ”0” ”/” ”/” ”E”
”N”

-//SYNCML//DTD SyncML 1.0//EN

6D <SyncML>
6C <SyncHdr>
71 <VerDTD>
C3 Opaque data follows
03 Length of opaque data
"1" "." "0" String '1.0'
01 </VerDTD>
72 <VerProto>
C3 Opaque data follows
0A Length of opaque data
"S" "y" "n" "c" "M" "L" "/" "1" "." "0" String 'SyncML/1.0'
01 </VerProto>
65 <SessionID>
C3 Opaque data follows
01 Length of opaque data
"1" String '1'
01 </SessionID>
5B <MsgID>
C3 Opaque data follows
01 Length of opaque data
"2" String '2'
01 </MsgID>
6E <Target>

 SyncML Sync Protocol 57 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

57 <LocURI>
C3 Opaque data follows
20 Length of opaque data
"h" "t" "t" "p" ":" "/" "/" "s" "d" "a" "1" "." "d" "a"
"t" "a" "s" "y" "n" "c" "." "o" "r" "g" "/" "s" "e" "r"
"v" "l" "e" "t"

String
'http://www.datasync.org/servl
et''

01 </LocURI>
01 </Target>
67 <Source>
57 <LocURI>
C3 Opaque data follows
12 Length of opaque data
"I" "M" "E" "I" ":" "1" "5" "6" "4" "4" "6" "9" "2" "1"
"0" "9" "4" "8"

String 'IMEI:1564469210948'

01 </LocURI>
01 </Source>
01 </SyncHdr>
6B <SyncBody>
69 <Status>
4B <CmdID>
C3 Opaque data follows
01 Length of opaque data
"1" String '1'
01 </CmdID>
5C <MsgRef>
C3 Opaque data follows
01 Length of opaque data
"1" String '1'
01 </MsgRef>
4C <CmdRef>
C3 Opaque data follows
01 Length of opaque data
"0" String '0'
01 </CmdRef>
4A <Cmd>
C3 Opaque data follows
07 Length of opaque data
"S" "y" "n" "c" "H" "d" "r" String 'SyncHdr'
01 </Cmd>
6F <TargetRef>
C3 Opaque data follows
12 Length of opaque data
"I" "M" "E" "I" ":" "1" "5" "6" "4" "4" "6" "9" "2" "1"
"0" "9" "4" "8"

String 'IMEI:1564469210948'

01 </TargetRef>
68 <SourceRef>
C3 Opaque data follows
20 Length of opaque data
"h" "t" "t" "p" ":" "/" "/" "s" "d" "a" "1" "." "d" "a"
"t" "a" "s" "y" "n" "c" "." "o" "r" "g" "/" "s" "e" "r"
"v" "l" "e" "t"

String
'http://www.datasync.org/servl
et''

01 </LocURI>
4F <Data>
C3 Opaque data follows
3 Length of opaque data
"2" "0" "0" String '200'
01 </Data>
01 </Status>
69 <Status>
4B <CmdID>
C3 Opaque data follows
01 Length of opaque data
"2" String '2'
01 </CmdID>

 SyncML Sync Protocol 58 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

5C <MsgRef>
C3 Opaque data follows
01 Length of opaque data
"1" String '1'
01 </MsgRef>
4C <CmdRef>
C3 Opaque data follows
01 Length of opaque data
"1" String '0'
01 </CmdRef>
4A <Cmd>
C3 Opaque data follows
05 Length of opaque data
"A" "l" "e" "r" "t" String 'Alert'
01 </Cmd>
6F <TargetRef>
C3 Opaque data follows
0E Length of opaque data
"." "\" "d" "e" "v" "-" "c" "a" "l" "e" "n" "d" "a" "r" String '.\dev-calendar'
01 </TargetRef>
68 <SourceRef>
C3 Opaque data follows
0A Length of opaque data
"." "/" "c" "a" "l" "e" "n" "d" "a" "r" String './calendar'
01 </LocURI>
4F <Data>
C3 Opaque data follows
03 Length of opaque data
"2" "0" "0" String '200'
01 </Data>
54 <Item>
4F <Data>
00 Switch codepage
01 Codepage 01 (MetInf)
4A <Next>
C3 Opaque data follows
11 Length of opaque data
"2" "0" "0" "0" "0" "5" "0" "2" "2" "T" "0" "9" "3" "2"
"2" "3" "Z"

String '200005022T093223Z '

01 </Next>
00 Switch codepage
00 Codepage 00
01 </Data>
01 </Item>
01 </Status>
6A <Sync>
4B <CmdID>
C3 Opaque data follows
01 Length of opaque data
"3" String '3'
01 </CmdID>
6E <Target>
57 <LocURI>
C3 Opaque data follows
0A Length of opaque data
"." "/" "c" "a" "l" "e" "n" "d" "a" "r" String './calendar'
01 </LocURI>
01 </Target>
67 <Source>
57 <LocURI>
C3 Opaque data follows
0E Length of opaque data
"." "\" "d" "e" "v" "-" "c" "a" "l" "e" "n" "d" "a" "r" String '.\dev-calendar'

 SyncML Sync Protocol 59 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

01 </LocURI>
01 </Source>
60 <Replace>
4B <CmdID>
C3 Opaque data follows
01 Length of opaque data
"4" String '4'
01 </CmdID>
5A <Meta>
00 Codepage switch
01 Codepage 01 (MetInf)
4D <Type>
03 Inline string follows
"t" "e" "x" "t" "/" "x" "-" "v" "c" "a" "l" "e" "n" "d"
"a" "r" 00

String 'text/x-vcalendar'

01 </Type>
00 Codepage switch
00 Codepage 00
01 </Meta>
54 <Item>
67 <Source>
57 <LocURI>
C3 Opaque data follows
02 Length of opaque data
"2" "6" String '26'
01 </LocURI>
01 </Source>
4F <Data>
C3 Opaque data follows
02 Length of opaque data
04 Legnth of string table
"C" "A" "L" "1" Actual data
01 </Data>
01 </Item>
01 </Replace>
01 </Sync>
12 <Final>
01 </Final>
01 </SyncBody>
01 </SyncML>

11.4.2 Example of Sync without Separate Initialization
Here is shown an example, how the client starts sync without a separate sync initialization. Only two
packets are shown here (combination of Packages #1 and #3 and the combination of Packages #2
and #4). Package #5 and #6 can follow as defined in the specification.

Combination of Package #1 and #3
<SyncML>

<SyncHdr>
<VerDTD>1.0</VerDTD>
<VerProto>SyncML/1.0</VerProto>
<SessionID>1</SessionID>
<MsgID>1</MsgID>
<Target><LocURI>http://www.syncml.org/sync-server</LocURI></Target>
<Source><LocURI>IMEI:493005100592800</LocURI></Source>
<Cred> <!--The authentication is optional.-->

<Meta><Type xmlns='syncml:metinf'>syncml:auth-basic</Type></Meta>
<Data>QnJ1Y2UyOk9oQmVoYXZl</Data> <!--base64 formatting of "userid:password"-->

</Cred>
</SyncHdr>

 SyncML Sync Protocol 60 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

<SyncBody>
<Alert>

<CmdID>1</CmdID>
<Data>20</Data> <!-- 200 = TWO_WAY_ALERT -->
<Item>

<Target><LocURI>./contacts/james_bond</LocURI></Target>
<Source><LocURI>./dev-contacts</LocURI></Source>
<Meta>

<Anchor xmlns='syncml:metinf'>
<Last>234</Last>
<Next>276</Next>

</Anchor>
</Meta>

</Item>
</Alert>
<Sync>

<CmdID>2</CmdID>
<Target><LocURI>./contacts/james_bond</LocURI></Target>
<Source><LocURI>./dev-contacts</LocURI></Source>
<Meta>

<Mem xmlns='syncml:metinf'>
<FreeMem>8100</FreeMem>
<!--Free memory (bytes) in Calendar database on a device -->
<FreeId>81</FreeId>
<!--Number of free records in Calendar database-->

</Mem>
</Meta>
<Replace>

<CmdID>3</CmdID>
<Meta><Type xmlns='syncml:metinf'>text/x-vcard</Type></Meta>

<Item>
<Source><LocURI>1012</LocURI></Source>
<Data><!--The vCard data would be placed here.--></Data>

</Item>
</Replace>

</Sync>
<Final/>

</SyncBody>
</SyncML>

Combination of Package #2 and #4
<SyncML>

<SyncHdr>
<VerDTD>1.0</VerDTD>
<VerProto>SyncML/1.0</VerProto>
<SessionID>1</SessionID>
<MsgID>1</MsgID>
<Target><LocURI>IMEI:493005100592800</LocURI></Target>
<Source><LocURI>http://www.syncml.org/sync-server</LocURI></Source>

</SyncHdr>
<SyncBody>

<Status>
<CmdID>1</CmdID>
<MsgRef>1</MsgRef><CmdRef>0</CmdRef><Cmd>SyncHdr</Cmd>
<TargetRef>http://www.syncml.org/sync-server</TargetRef>
<SourceRef>IMEI:493005100592800</SourceRef>
<Data>212</Data> <!--Statuscode for OK, authenticated for session-->

</Status>
<Status>

<CmdID>2</CmdID>
<MsgRef>1</MsgRef><CmdRef>1</CmdRef><Cmd>Alert</Cmd>
<TargetRef>./contacts/james_bond</TargetRef>
<SourceRef>./dev-contacts</SourceRef>
<Data>200</Data> <!--Statuscode for OK-->

 SyncML Sync Protocol 61 of 61 Pages

 http://www.syncml.org/docs/syncml_protocol_v101_20010615.pdf Version 1.0.1

 2001-06-15

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999 - 2001) All Rights Reserved.

<Item>
<Data><Anchor xmlns='syncml:metinf'><Next>276</Next></Anchor></Data>

</Item>
</Status>
<Status>

<CmdID>3</CmdID>
<MsgRef>1</MsgRef><CmdRef>2</CmdRef><Cmd>Sync</Cmd>
<TargetRef>./contacts/james_bond</TargetRef>
<SourceRef>./dev-contacts</SourceRef>
<Data>200</Data> <!--Statuscode for Success-->

</Status>
<Status>

<CmdID>4</CmdID>
<MsgRef>1</MsgRef><CmdRef>3</CmdRef><Cmd>Replace</Cmd>
<SourceRef>1012</SourceRef>
<Data>200</Data> <!--Statuscode for Success-->

</Status>
<Alert>

<CmdID>5</CmdID>
<Data>200</Data> <!-- 200 = TWO_WAY_ALERT -->
<Item>

<Target><LocURI>./dev-contacts</LocURI></Target>
<Source><LocURI>./contacts/james_bond</LocURI></Source>
<Meta>

<Anchor xmlns='syncml:metinf'>
<Last>200005021T081812Z </Last>
<Next>200005022T093223Z </Next>

</Anchor>
</Meta>

</Item>
</Alert>
<Sync>

<CmdID>6</CmdID>
<Target><LocURI>./dev-contacts</LocURI></Target>
<Source><LocURI>./contacts/james_bond</LocURI></Source>
<Replace>

<CmdID>7</CmdID>
<Meta><Type xmlns='syncml:metinf'>text/x-vcard</Type></Meta>
<Item>

<Target><LocURI>1023</LocURI></Target>
<Data><!--The vCard data would be placed here.--></Data>

</Item>
</Replace>
<Add>

<CmdID>8</CmdID>
<Meta><Type xmlns='syncml:metinf'>text/x-vcard</Type></Meta>
<Item>

<Source><LocURI>10536681</LocURI></Source>
<Data><!--The vCard data would be placed here.--></Data>

</Item>
</Add>

</Sync>
<Final/>

</SyncBody>
</SyncML>

	Consortium
	Revision History
	Copyright Notice
	Table of Contents
	Introduction
	SyncML Framework
	Device Roles
	Sync Types
	Symbols and conventions
	MSC Notation

	Protocol Fundamentals
	Change Log Information
	Multiple devices

	Usage of Sync Anchors
	Sync Anchors for Databases
	Example of Database Sync Anchor Usage

	Sync Anchors for Data Items

	ID Mapping of Data Items
	Caching of Map Operations

	Conflict Resolution
	Security
	Addressing
	Device and Service Addressing
	Usage of RespURI and Re-direction Status Codes

	Database Addressing
	Addressing of Data Items

	Exchange of Device Capabilities
	Device Memory Management
	Multiple Messages in Package
	Sync without Separate Initialization
	Robustness and Security Considerations

	Busy Signaling
	Busy Status from Server
	Example of Busy Status

	Result Alert from Client
	Example of Result Alert

	Authentication
	Authentication Challenge
	Authorization
	Server Layer Authentication
	Authentication of Database Layer
	Authentication Examples
	Basic authentication with a challenge
	MD5 digest access authentication with a challenge

	Sync Initialization
	Initialization Requirements for Client
	Example of Sync Initialization Package from Client

	Initialization Requirements for Server
	Example of Sync Initialization Package from Server

	Error Case Behaviors
	No Packages from Server
	No Initialization Completion from Client
	Initialization Failure

	Two-Way Sync
	Client Modifications to Server
	Example of Sending Modifications to Server

	Server Modifications to Client
	Example of Sending Modifications to Client

	Data Update Status from Client
	Example of Data Update Status to Server

	Map Acknowledgement from Server
	Example of Map Acknowledge

	Slow Sync
	Error Case Behaviors
	No Packages from Server after Initialization
	No Data Update Status from Client
	No Data Map Acknowledge from Server
	Errors with Defined Error Codes

	One-Way Sync from Client Only
	Client Modifications to Server
	Status from Server
	Refresh Sync from Client Only
	Error Cases Behavior
	No Packages from Server after Initialization
	Errors with Defined Error Codes

	One-Way Sync from Server only
	Sync Alert to Server
	Server Modifications to Client
	Data Update Status from Client
	Map Acknowledge from Server
	Refresh Sync from Server Only
	Error Cases
	No Packages from Server
	No Data Update Status from Client
	No Map Ack from Server
	Errors with Defined Error Codes

	Server Alerted Sync
	Sync Alert
	Error Cases Behavior
	No Packages from Client
	Errors with Defined Error Codes

	Terminology
	Definitions
	Abbreviations

	References
	Appendices
	Protocol Values
	Alert Codes
	Conformance Requirements
	Conformance Requirements for SyncML Server
	Conformance Requirements for SyncML Client

	Examples
	WBXML Example
	Example of Sync without Separate Initialization

