
SyncML HTTP Binding 1 of 1 Pages

http://www.syncml.org/docs/syncml_http_v101_20010530.pdf Version 1.0.1

2001-05-30

Copyright © Ericsson, IBM, Lotus, Matsushita Communications Industrial Co., LTD,

SyncML HTTP Binding, version 1.0.1

Abstract
This document describes how to use the SyncML over HTTP. The document uses the
primitives and methods defined in the HTTP specification V1.1 as defined in [1].

SyncML HTTP Binding 2 of 2 Pages

http://www.syncml.org/docs/syncml_http_v101_20010530.pdf Version 1.0.1

2001-05-30

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,

SyncML Initiative
The following companies are Sponsors of the SyncML initiative:

Ericsson
IBM
Lotus
Matsushita Communications Industrial Co.
Motorola
Nokia
Palm, Inc.
Psion
Starfish Software

Revision History

Revision Date Comments

V0.9 2000-05-31 Version 0.9.

V1.0
Alpha

2000-08-29 Reformatted for v1.0 Alpha release. No technical changes.

V1.0 Beta 2000-11-10 Revised headers for v1.0 Beta release. No technical
changes.

V1.0 2000-12-07 The candidate version for the final release.

V1.0.1 2001-05-29 Updated copyrights, fixed media type definitions.

SyncML HTTP Binding 3 of 3 Pages

http://www.syncml.org/docs/syncml_http_v101_20010530.pdf Version 1.0.1

2001-05-30

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,

Copyright Notice
Copyright (c) Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,
Motorola, Nokia, Palm, Inc., Psion, Starfish Software (2000,2001).

All Rights Reserved.

Implementation of all or part of any Specification may require licenses under third party
intellectual property rights, including without limitation, patent rights (such a third party may
or may not be a Supporter). The Sponsors of the Specification are not responsible and shall
not be held responsible in any manner for identifying or failing to identify any or all such
third party intellectual property rights.

THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN ARE PROVIDED ON
AN "AS IS" BASIS WITHOUT WARRANTY OF ANY KIND AND ERICSSON, IBM, LOTUS,
MATSUSHITA COMMUNICATION INDUSTRIAL CO. LTD, MOTOROLA, NOKIA, PALM
INC., PSION, STARFISH SOFTWARE AND ALL OTHER SYNCML SPONSORS
DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT
INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL ERICSSON, IBM,
LOTUS, MATSUSHITA COMMUNICATION INDUSTRIAL CO., LTD, MOTOROLA, NOKIA,
PALM INC., PSION, STARFISH SOFTWARE OR ANY OTHER SYNCML SPONSOR BE
LIABLE TO ANY PARTY FOR ANY LOSS OF PROFITS, LOSS OF BUSINESS, LOSS OF
USE OF DATA, INTERRUPTION OF BUSINESS, OR FOR DIRECT, INDIRECT, SPECIAL
OR EXEMPLARY, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL DAMAGES OF ANY
KIND IN CONNECTION WITH THIS DOCUMENT OR THE INFORMATION CONTAINED
HEREIN, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE.

The above notice and this paragraph must be included on all copies of this document that
are made.

SyncML HTTP Binding 4 of 4 Pages

http://www.syncml.org/docs/syncml_http_v101_20010530.pdf Version 1.0.1

2001-05-30

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,

Table of Contents

1 Introduction..5

2 Formatting Conventions...5

3 Terminology...5

4 HTTP Introduction ..8

5 SyncML Binding to HTTP...8
5.1 TCP Transport Service...8

5.1.1 Connection...8
5.1.2 Connection Options..8
5.1.3 Disconnection..9
5.1.4 Abort ...9
5.1.5 Timeouts ..9

5.2 Exchanging SyncML Messages..9
5.2.1 Single Message Per Package ... 10
5.2.2 Multiple Messages Per Package... 10

5.3 Transport Commands.. 11
5.3.1 Methods .. 11
5.3.2 General Headers ... 11
5.3.3 Request Headers... 12
5.3.4 Response Headers.. 14

5.4 Security.. 16

6 Examples ... 16

7 References .. 19

SyncML HTTP Binding 5 of 5 Pages

http://www.syncml.org/docs/syncml_http_v101_20010530.pdf Version 1.0.1

2001-05-30

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,

1 Introduction

This document defines the binding requirements for communicating SyncML over the
Hypertext Transfer Protocol (HTTP) as defined by [1]. HTTP is an application-level protocol
for distributing information between two Internet based applications. HTTP can be an ideal
protocol for building wide area, distributed systems, such as the collaborative framework of
the World-Wide Web (Web) environment. HTTP is expected to be the primary wireline
protocol used by SyncML clients and servers to communicate with each other. In addition,
as wireless networks increase in bandwidth (e.g., deployment of GPRS networks) and are
adapted to support the IP protocol, HTTP will become the preferred application protocol for
connecting wireless SyncML clients and servers.

The HTTP protocol defines a request/response form of communication between two
network computers supporting HTTP applications. Normally, the originator of the request is
called the HTTP client. And normally, the recipient of the request is called the HTTP server.

There are emerging Internet standards for notification or "push" technologies that will allow
HTTP servers to also originate HTTP requests. However, this technology is not currently
included in this version of the specification.

HTTP is an ideal protocol for connecting a SyncML client to a SyncML server; and vice a
versa. SyncML is intended to be registered as a MIME media type. This makes it adapted
for transfer over HTTP. HTTP is widely supported across the Internet. There are numerous
examples of common implementations of both client and server HTTP applications. HTTP
servers can be adapted to support new HTTP-based application in a straightforward
manner. SyncML messages can be transferred across the Internet and pass through
"firewalls", at the perimeter of individual intranets with relative ease.

2 Formatting Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY" and "OPTIONAL"
in this document are to be interoperated as described in [3].

Any reference to components of the Device Information DTD or XML [5] snipets are
specified in this type face.

3 Terminology

See [6] and [7] for definitions of SyncML terms used within this specification. The following
terms are copied from [1].

Cache

A program's local store of response messages and the subsystem that controls its
message storage, retrieval, and deletion. A cache stores cacheable responses in order
to reduce the response time and network bandwidth consumption on future, equivalent
requests. Any client or server may include a cache, though a cache cannot be used by a
server that is acting as a tunnel.

SyncML HTTP Binding 6 of 6 Pages

http://www.syncml.org/docs/syncml_http_v101_20010530.pdf Version 1.0.1

2001-05-30

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,

Cacheable

A response is cacheable if a cache is allowed to store a copy of the response message
for use in answering subsequent requests. The rules for determining the cacheability of
HTTP responses are defined in section 13 of [1]. Even if a resource is cacheable, there
may be additional constraints on whether a cache can use the cached copy for a
particular request.

Connection

A transport layer virtual circuit established between two programs for the purpose of
communication.

Content Negotiation

The mechanism for selecting the appropriate representation when servicing a request,
as described in section 12. The representation of entities in any response can be
negotiated (including error responses).

Entity

The information transferred as the payload of a HTTP request or HTTP response. An
entity consists of meta-information in the form of entity-header fields and content in the
form of an entity-body, as described in section 7 of [1].

HTTP Client

A program that establishes connections for the purpose of sending HTTP requests.

NOTE: In this document, when the term "client" appears alone, it refers to a HTTP
client, not a SyncML client.

HTTP Gateway

A HTTP server which acts as an intermediary for some other server. Unlike a proxy, a
gateway receives requests as if it were the origin server for the requested resource; the
requesting client may not be aware that it is communicating with a gateway.

HTTP Message

The basic unit of HTTP communication, consisting of a structured sequence of octets
matching the syntax defined in section 4 of [1] and transmitted via the connection.

HTTP Proxy

An intermediary program which acts as both a server and a client for the purpose of
making requests on behalf of other clients. Requests are serviced internally or by
passing them on, with possible translation, to other servers. A proxy MUST implement
both the client and server requirements of this specification. A "transparent proxy" is a
proxy that does not modify the request or response beyond what is required for proxy
authentication and identification. A "non-transparent proxy" is a proxy that modifies the
request or response in order to provide some added service to the user agent, such as
group annotation services, media type transformation, protocol reduction, or anonymity
filtering. Except where either transparent or non-transparent behavior is explicitly stated,
the HTTP proxy requirements apply to both types of proxies.

HTTP Request

An HTTP request message, as defined in section 5 of [1].
HTTP Response

SyncML HTTP Binding 7 of 7 Pages

http://www.syncml.org/docs/syncml_http_v101_20010530.pdf Version 1.0.1

2001-05-30

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,

An HTTP response message, as defined in section 6 of [1].
HTTP Server

An application program that accepts connections in order to service HTTP requests by
sending back responses. Any given program may be capable of being both an HTTP
client and a server; our use of these terms refers only to the role being performed by the
program for a particular connection, rather than to the program's capabilities in general.
Likewise, any server may act as an HTTP origin server, proxy, gateway, or tunnel,
switching behavior based on the nature of each request.

NOTE: In this document, when the term "server" appears alone, it refers to a HTTP
server, not a SyncML server.

Inbound/Outbound

Inbound and outbound refer to the request and response paths for messages: "inbound"
means "traveling toward the origin server", and "outbound" means "traveling toward the
user agent"

Representation

An entity included with a response that is subject to content negotiation, as described in
section 12 of [1]. There may exist multiple representations associated with a particular
response status.

Resource

A network data object or service that can be identified by a URI, as defined in section
3.2 of [1]. Resources may be available in multiple representations (e.g. multiple
languages, data formats, size, and resolutions) or vary in other ways.

User Agent

The client which initiates a request. These are often browsers, editors, spiders (web-
traversing robots), or other end user tools.

Origin Server

The HTTP server on which a given resource resides or is to be created.
Tunnel

An intermediary program which is acting as a blind relay between two connections.
Once active, a tunnel is not considered a party to the HTTP communication, though the
tunnel may have been initiated by an HTTP request. The tunnel ceases to exist when
both ends of the relayed connections are closed.

Variant

A resource may have one, or more than one, representation(s) associated with it at any
given instant. Each of these representations is termed a "varriant". Use of the term
"variant" does not necessarily imply that the resource is subject to content negotiation.

Upstream/Downstream

Upstream and downstream describe the flow of a message: all messages flow from
upstream to downstream.

SyncML HTTP Binding 8 of 8 Pages

http://www.syncml.org/docs/syncml_http_v101_20010530.pdf Version 1.0.1

2001-05-30

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,

4 HTTP Introduction

HTTP communication usually takes place over a TCP/IP connection. The default TCP port
for HTTP is port 80, but other unregistered ports can also be used. HTTP can also be
implemented on top of any other reliable transport service.

HTTP is a request/response protocol. An HTTP client sends a request message to the
HTTP server. The request message consists of start line containing a request method,
target URI, and protocol version; followed by a MIME-like request header lines containing
meta-information about the request; followed by a blank line; followed by a possible MIME
entity body content. The server responds with a status line, including the message's
protocol version and a response code; followed by MIME-like response header lines
containing server information and entity meta-information; followed by a blank line; followed
by a optional MIME entity body content.

Further, detailed information on HTTP can be found in [1].

5 SyncML Binding to HTTP

The following sections define the requirements for the binding of SyncML to HTTP.

5.1 TCP Transport Service
HTTP communication usually takes place over a TCP connection. This binding does not
require, but does assume such a connection. If the HTTP communication takes place over
another transport service, then requirements similar to those defined here for TCP need to
be followed. The following sections describe requirements for connection, disconnection
and abort of the TCP connection.

5.1.1 Connection

Prior to an HTTP client connecting to an HTTP server, the SyncML client makes a TCP
connection using the TCP open operation between the client machine and the server
machine. The client can use the Internet address resolution for the HTTP connection URL.
The default port is 80. However, another port can be used. The choice of the appropriate
port can be a requirement of the provisioning of the HTTP client to the HTTP server. After
creating a successful TCP connection between the client and server machines, the HTTP
connection between the client and server machines can be established by the SyncML
client. It can not be assumed that the TCP connection is kept open between each HTTP
request and response sequence (i.e., HTTP version 1.1 or higher protocol is being used).
Even though HTTP version 1.1 presumes persistent connections, there may have occurred
an anomoly such as a timeout condition or "denial of service" counter-measures on the
origin server. Hence, the SyncML client SHOULD be prepared to reconnection between
HTTP requests.

5.1.2 Connection Options

The default port is 80. However, the provisioning of the HTTP client to the HTTP server can
require use of another port.

SyncML HTTP Binding 9 of 9 Pages

http://www.syncml.org/docs/syncml_http_v101_20010530.pdf Version 1.0.1

2001-05-30

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,

Persistent connections are supported by this specification and presumed by HTTP version
1.1, but are not required by implementations conforming to this specification.

5.1.3 Disconnection

The SyncML client is responsible for terminating the connection with a TCP close operation,
when the connection is no longer needed.

If a persistent connection exists between HTTP requests, the HTTP connection is closed by
the HTTP client after receipt of the HTTP response corresponding to the last SyncML
request in the synchronization session (i.e., the SyncML request in the last SyncML
package containing a Final element type specified at the end of the SyncBody).

5.1.4 Abort

Sometimes abnormal conditions arise which requires an application to break the TCP
connection. In these cases, the TCP reset operation is initiated to terminate the TCP
connection.

5.1.5 Timeouts

In the case of a server timeout, the SyncML client SHOULD establish a new HTTP session
with the HTTP server and attempt to resend the current SyncML package, beginning with
the first SyncML command for which the SyncML client has not received an
acknowledgement. In the event that the SyncML client requested that no responses be
sent, the SyncML client SHOULD begin retransmitting with the first SyncML command in
the SyncML package.

In the case of a client timeout during a SyncML client-initiated data synchronization, the
SyncML server SHOULD clean up the TCP connection and do no further processing of the
SyncML request.

When using the SyncML Reference Toolkit, the TCP cleanup and drop of the physical
connection can be requested by setting a parameter in the xptCloseCommunication()
function.

5.2 Exchanging SyncML Messages
Once an HTTP connection has been established, one or more SyncML Message are
transferred over the connection, by the SyncML client, in the entity body of HTTP requests
or received from the server in the entity body of HTTP responses.

The POST method is used to transfer the SyncML message in an HTTP request.

The body of the HTTP request MUST always include a SyncML message. The content-type
for the body MUST be the appropriate SyncML Message content type.

Generally, the Request-URI, in the start line, is the URI "path" component of the intended
recipient resource for the request. The URI of the origin server is specified by the value in
the Host request header.

SyncML HTTP Binding 10 of 10 Pages

http://www.syncml.org/docs/syncml_http_v101_20010530.pdf Version 1.0.1

2001-05-30

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,

The Request-URI can also be "*" to indicate that the request is intended for the origin
server indicated by the absolute URI specified in the Host request header. In this case, the
origin server would be the SyncML server. However, in general, the SyncML server will be
a resource (e.g., servlet) under the origin server.

The HTTP response will always include the transport response status code. The body of
the HTTP Response MUST always include a SyncML Message. The content-type for the
body should be the appropriate SyncML message content type

5.2.1 Single Message Per Package

The following is a snippet of the minimal HTTP start line and request headers for a simple
HTTP request where the body of the request is the clear-text, XML [5] SyncML message
media type.

POST ./servlet/syncit HTTP/1.1
Host: www.datasync.org
Content-Type: application/vnd.syncml-xml; charset="utf-8"
Content-Length: 1023
Accept: application/vnd.syncml-xml

Were the body, the binary, WBXML [4] SyncML message media type, then no content
encoding is necessary. HTTP does not support the Content-Transfer-Encoding of MIME, in
any case.

The following is a snippet of the minimal HTTP for an example for a simple HTTP response
where the body in the response is the clear-text, XML [5] SyncML message media type, as
specified in the Accept request header in the HTTP request.

HTTP/1.1 200 OK
Content-Type: application/vnd.syncml-wbxml; charset="utf-8"
Content-Length: 1023

-- HTTP body, represented in a format consistent with the SyncML content
type follows --

5.2.2 Multiple Messages Per Package

Each SyncML message MUST be transferred as a SyncML MIME media type within the
body of a HTTP request or response. When there are multiple SyncML messages per
SyncML package, each message is transferred in a separate HTTP request or response;
depending on whether it is a SyncML request or response.

The recipient of a SyncML package can determine if there are more SyncML messages in
the package by the absence of the Final element in the body of the last received SyncML
message. When the recipient receives a SyncML message with the Final element, it is the
final message within that SyncML package.

This version of the specification does NOT support transferring SyncML messages across
HTTP using a "multipart” MIME media type.

SyncML HTTP Binding 11 of 11 Pages

http://www.syncml.org/docs/syncml_http_v101_20010530.pdf Version 1.0.1

2001-05-30

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,

5.3 Transport Commands
HTTP uses a number of types of commands. The following sections specify static
conformance requirements for use of these commands in the SyncML HTTP binding.

5.3.1 Methods

The following table summarizes the support for the HTTP methods in the SyncML binding.

Method Client Server

OPTIONS MAY MAY

GET MAY MAY

HEAD MAY MAY

POST MUST MUST

PUT MAY MAY

DELETE MAY MAY

TRACE MAY MAY

CONNECT MAY MAY

The SyncML client MUST use the POST or MAY use the CONNECT method (if supported) to
send SyncML requests to the SyncML server. The CONNECT method is used to initiate a
SSL session to authenticate the HTTP client to the HTTP server. A typical HTTP request
start line would look like the following:

POST ./servlet/syncit HTTP/1.1
Host: http://www.syncml.host.com

In this example, the HTTP client is specifying a "./servlet/syncit" path component for the
Request-URI, which is a particular SyncML resource on the HTTP server. The "Host" HTTP
header field is needed to specify the absolute URI for the HTTP server.

The other HTTP methods MAY be supported by implementations conforming to this
specification. However, they are not used at this time by the SyncML client.

5.3.2 General Headers

The following table summarizes the support for the HTTP general headers in the SyncML
binding.

General Header Client Server

Cache-Control MUST MUST

Connection MAY MAY

Date MAY MAY

Pragma MAY MAY

Trailer MAY MAY

SyncML HTTP Binding 12 of 12 Pages

http://www.syncml.org/docs/syncml_http_v101_20010530.pdf Version 1.0.1

2001-05-30

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,

Transfer-
Encoding

MUST MUST

Upgrade MAY MAY

Via MAY MAY

Warning MAY MAY

The Cache-Control general header is used to force control over the caching
mechanisms in the request/response chain between the HTTP client and the HTTP server.
Implementations conforming to this specification MUST support this header. Use of this
header with the no-store parameter will assure that SyncML messages sent by the
SyncML client and SyncML server are not stored in cache storage. This will greatly assure
that SyncML server and SyncML client are processing the messages sent by the SyncML
clients and SyncML servers, respectively. The following is an example of the typical
specification for this header:

Cache-Control: no-store

In addition, implementations conforming to this specification MUST support the private
Cache-Control option to assure that responses do not get cached and possibly used by
agents other than the SyncML client agent or the SyncML server agent.

Cache-Control: private

The Transfer-Encoding general header is used to indicate what (if any) type of
transformation has been applied to the message body in order to safely transfer it between
the sender and the recipient. Implementations conforming to this specification MUST
support the chunked Transfer-Encoding option.

Transfer-Encoding: chunked

The other general headers MAY be supported by implementations conforming to this
specification.

5.3.3 Request Headers

The following table summarizes the support for the HTTP request headers in the SyncML
binding.

Request Header Client Server

Accept MUST MUST

Accept-Charset MUST MUST

Accept-Encoding MAY MAY

Accept-Language MAY MAY

Authorization MUST MUST

Expect MAY MAY

From MAY MAY

SyncML HTTP Binding 13 of 13 Pages

http://www.syncml.org/docs/syncml_http_v101_20010530.pdf Version 1.0.1

2001-05-30

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,

Host MAY MAY

If-Match MAY MAY

If-Modified-Since MAY MAY

If-None-Match MAY MAY

If-Range MAY MAY

If-Unmodified-
Since

MAY MAY

Max-Forwards MAY MAY

Proxy-
Authorization

MUST if
a proxy
client

MUST if
a proxy
server

Range MAY MAY

Referer MAY MAY

TE MAY MAY

User-Agent MUST MUST

The Accept request header is used to specify which media types are acceptable in the
response. Client implementations conforming to this specification MUST support this
header with either the "application/vnd.syncml+xml" or
"application/vnd.syncml+wbxml" media type values. Server implementations
conforming to this specification MUST support both "application/vnd.syncml+xml"
and "application/vnd.syncml+wbxml" media type values, as requested by the
SyncML Client. The following is an example of how this header is specified to indicate that
the client expects responses formatted according to the clear-text, XML [5] representation
of SyncML:

Accept: application/vnd.syncml+xml

The following is an example of how this header is specified to indicate that the client
expects responses formatted according to the binary, WBXML [4] representation of
SyncML:

Accept: application/vnd.syncml+wbxml

The Accept-Charset request header is used to specify which character sets are
acceptable in the response. Implementations conforming to this specification MUST support
this header with the "UTF-8" character set value. Implementations MAY support additional,
IANA registered character set values. The following is an example of how this header is
specified to indicate that the client expects responses formated into the UTF-8 character
set:

Accept-Charset: UTF-8

The Authorization request header is used by an HTTP client to authenticate itself to the
HTTP server. Implementations conforming to this specification MUST support this header
with the authorization values for "Basic" and "Digest Access Authentication" authentication

SyncML HTTP Binding 14 of 14 Pages

http://www.syncml.org/docs/syncml_http_v101_20010530.pdf Version 1.0.1

2001-05-30

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,

schemes, as specified in [2]. The following is an example of how this header is specified to
allow the HTTP client to authenticate itself with a Base64 character encoding of a userid of
Aladdin and password of open sesame.

Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

The Proxy-Authorization request header is similar to the Authorization header
except that it is specified by the HTTP client and used only by the next proxy in the
connection chain. Implementations conforming to this specification MUST support this
header and with the authorization values for "Basic" and "Digest Access Authentication"
authentication schemes, as specified in [2]. The following is an example of how this header
is specified to allow the HTTP client to authenticate itself with a userid of Aladdin and
password of open sesame.

Proxy-Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

The User-Agent request header identifies the type of user agent originating the request.
This information is useful for the HTTP server to provide automated recognition of user
agents for the sake of tailoring responses to avoid particular limitations or to take advantage
of special features in the HTTP client. Implementations conforming to this specification
MUST support this header and provide it in all HTTP requests. The following is an example
of the usage of this header.

User-Agent: Foo Bar Sync Products v3.4

The other request headers MAY be supported by implementations conforming to this
specification.

5.3.4 Response Headers

The following table summarizes the support for the HTTP response headers in the SyncML
binding.

Response
Header

Client Server

Accept-Ranges MAY MAY

Age MAY MAY

Allow MAY MAY

Authentication-
Info

MUST MUST

ETag MAY MAY

Location MAY MAY

Proxy-
Authenticate

MUST if
proxy
client

MUST if
proxy
server

Retry-After MAY MAY

Server MAY MAY

SyncML HTTP Binding 15 of 15 Pages

http://www.syncml.org/docs/syncml_http_v101_20010530.pdf Version 1.0.1

2001-05-30

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,

Vary MAY MAY

WWW-
Authenticate

MUST MUST

The Authentication-Info response header is defined by [2]. The header is used by an
HTTP proxy or server to provide information back to the HTTP client about a successful
HTTP client authentication. Implementations conforming to this specification MUST support
this header with the Authentication-Information directives "nextnonce" and "rspauth".
The former directive is used to specify the nonce to be used by the client for a future
authentication. The nonce value SHOULD be a Base64 formatted string. The latter directive
is used by the HTTP proxy or server to authenticate itself to the HTTP client. The following
example shows how an HTTP server might use this response header to provide
authentication credentials to an HTTP client that has successfully authenticated itself with
the HTTP server.

Authentication-Info: nextnonce="Bruce"
rspauth="edd30630e82fabdc1e895d1d3a4c0450"

The Proxy-Authenticate response header is used by an HTTP proxy to challenge the
authority of the HTTP client issuing it an HTTP request. Implementations conforming to this
specification MUST support this header with the challenge values for "Basic" and "Digest
Access Authentication" authentication schemes and the "Realm", "Domain", "Nonce",
"Stale" and "Algorithm" authentication parameters, as specified in [2]. The nonce value
SHOULD be a Base64 formatted string. The "MD5" algorithm MUST be supported by
implementations that conform to this specification. Other algorithms can also be supported.
The following is an example of this header being used by an HTTP proxy to challenge a
HTTP client with the Digest authentication scheme for the
http://www.syncml.host.com realm.

Proxy-Authenticate: Digest Domain="http://www.datasync.org/servlet/syncit"

The WWW-Authenticate response header is used by the HTTP server to challenge the
authority of the HTTP client issuing it an HTTP request. Implementations conforming to this
specification MUST support this header with the challenge values for "Basic" and "Digest
Access Authentication" authentication schemes and the "Realm", "Domain", "Nonce",
"Stale" and "Algorithm" authentication parameters, as specified in [2]. The nonce value
SHOULD be a Base64 formatted string. The "MD5" algorithm MUST be supported by
implementations that conform to this specification. Other algorithms can also be supported.
The following is an example of this header being used by an HTTP server to challenge an
HTTP client with the Basic authentication scheme for the
WallyWord@syncml.host.com realm.

WWW-Authenticate: Basic Realm="WallyWorld@syncml.host.com"

The other response headers MAY be supported by implementations conforming to this
specification.

SyncML HTTP Binding 16 of 16 Pages

http://www.syncml.org/docs/syncml_http_v101_20010530.pdf Version 1.0.1

2001-05-30

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,

5.4 Security
HTTP client and HTTP server authentication is based on the mechanism defined in [2].
Implementations conforming to this implementation MUST support this mechanism for
"Basic" and "Digest Access Authentication". Only the Base64 character encoded "Basic"
and "MD5" algorithm of the "Digest Access Authentication" authentication schemes MUST
be supported. The HTTP headers and parameters that MUST be supported are described
in the previous sections for request and response headers.

The Content-MD5 header field can be used to provide a message integrity check of the
SyncML Message in the body. Use of this header is a good idea for detecting accidental
modification of the entity-body in transit, but is not proof against malicious attack.

HTTP proxy and HTTP server implementations conforming to this specification MUST
support both the ability to challenge unauthenticated requests and also accept
authentication request headers in a request; which will not require subsequent challenge
responses unless some part of the credential is incorrect. The latter requirement is required
to address the need for minimal request/response traffic for mobile networks.

The authentication mechanisms defined by [2] address protecting the authentication
credentials. However, the remainder of the HTTP request and response messages are
available to the eavesdropper. For more robust security for the HTTP connection, SSL or
HTTPS SHOULD be used. These mechanisms are not mandated for implementations
conforming to this specification.

6 Examples

The XML [5] in these examples are generally formatted one element type per line for
readability purposes, but need not be formatted as such in actual usage.

The following is a more complex example of an HTTP request with an actual clear-text,
XML SyncML message in the body.

POST ./servlet/syncit HTTP/1.1

Host: http://www.syncml.host.com
Accept: application/vnd.syncml-xml
Accept-Charset: utf-8
Accept-Encodings: chunked
Accept-Language: en-US
Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==
Content-Type: application/vnd.syncml-xml; charset="utf-8"
User-Agent: Foo Bar Sync Products v3.4
Cache-Control: no-store
Transfer-Encoding: chunked

BD
<SyncML>
<SyncHdr>
<VerDTD>1.0a</VerDTD>
<VerProto>SyncML/1.0a</VerProto>
<SessionID>1</SessionID>
<MsgID>1</MsgID>

SyncML HTTP Binding 17 of 17 Pages

http://www.syncml.org/docs/syncml_http_v101_20010530.pdf Version 1.0.1

2001-05-30

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,

<Target>
<LocURI>http://www.datasync.org/servlet/syncit</LocURI>
</Target>
B6
<Source>
<LocURI>IMEI:001004FF1234567</LocURI>
<LocName>Bruce1's Device</LocName>
</Source>
<Cred>
<Data>QWxhZGRpbjpvcGVuIHNlc2FtZQ==</Data>
</Cred>
</SyncHdr>
<SyncBody>
<Sync>
D2
<CmdID>1</CmdID>
<Target>
<LocURI>./mail/bruce1</LocURI>
</Target>
<Source>
<LocURI>./calendar</LocURI>
</Source>
<Meta><Type xmlns="syncml:metinf">text/x-vcalendar</Type></Meta>
<Update>
<CmdID>2</CmdID>
B3
<Item>
<Source>
<LocURILocURI>./1012</LocURILocURI>
</Source>
<Data>BEGIN:VCALENDAR
VERSION:1.0
BEGIN:VEVENT
DTSTART:20000522T133000Z
DTEND:20000522T143000Z
SUMMARY:Project Review
7A
CLASS:CONFIDENTIAL
CATEGORIES:APPOINTMENT
END:VEVENT
END:VCALENDAR
</Data>
</Item>
</Update>
</Sync>
<Final/>
</SyncBody>
</SyncML>

The following is a more complex example of an HTTP response with an actual clear-text,
XML SyncML message in the body.

HTTP/1.1 200 OK
Authentication-Info: nextnonce="Bruce"
 rspauth="edd30630e82fabdc1e895d1d3a4c0450"
Content-Type: application/vnd.syncml-wbxml; charset="utf-8"
Content-Length: 1023

SyncML HTTP Binding 18 of 18 Pages

http://www.syncml.org/docs/syncml_http_v101_20010530.pdf Version 1.0.1

2001-05-30

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,

<SyncML>
<SyncHdr>
<VerDTD>1.0a</VerDTD>
<VerProto>SyncML/1.0a</VerProto>
<SessionID>1</SessionID>
<MsgID>2</MsgID>
<Target>
<LocURI>IMEI:001004FF1234567</LocURI>
</Target>
<Source>
<LocURI>http://www.datasync.org/servlet/syncit</LocURI>
</Source>
<Cred>
<Data>QWxhZGRpbjpvcGVuIHNlc2FtZQ==</Data>
</Cred>
</SyncHdr>
<SyncBody>
<Status>
<MsgRef>1</MsgRef> >
<CmdRef>1</CmdRef>
<Cmd>Sync</Cmd>
<TargetRef>./mail/bruce1</TargetRef>
<SourceRef>./calendar</SourceRef>
<StatusItem>
<Data>200</Data>
</StatusItem>
</Status>
<Sync>
<CmdID>1</CmdID>
<Target>
<LocURI>./calendar</LocURI>
</Target>
<Source>
<LocURI>./mail/bruce1</LocURI></Source>
<Meta><Type xmlns="syncml:metinf">text/x-vcalendar</Type></Meta>
<Update>
<CmdID>2</CmdID>
<Item>
<Source>
<LocURI>./50442009</LocURI>
</Source>
<Data>BEGIN:VCALENDAR
VERSION:1.0
BEGIN:VEVENT
DTSTART:20000519T210000Z
DTEND:20000519T230000Z
SUMMARY:Debug Fest
CLASS:CONFIDENTIAL
CATEGORIES:APPOINTMENT
END:VEVENT
END:VCALENDAR
</Data>
</Item>
</Update>
</Sync>
<Final/>
</SyncBody>
</SyncML>

SyncML HTTP Binding 19 of 19 Pages

http://www.syncml.org/docs/syncml_http_v101_20010530.pdf Version 1.0.1

2001-05-30

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,

7 References

[1] Hypertext Transfer Protocol -- HTTP/1.1, RFC 2616, IETF.

[2] HTTP Authentication: Basic and Digest Access Authentication, RFC 2617, IETF.

[3] Key words for use in RFCs to Indicate Requirement Levels, IETF.

[4] WAP Binary XML Content Format Specification, WAP Forum.

[5] Extensible Markup Language (XML) 1.0, W3C.

[6] SyncML Representation Protocol, SyncML.

[7] SyncML Synchronization Protocol, SyncML.

