
SyncML OBEX Binding 1 of 1 Pages

http://www.syncml.org/docs/syncml_obex_v101_20010530.pdf Version 1.0.1

2001-05-30

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,

SyncML OBEX Binding

Abstract
This document describes how to use SyncML over OBEX. The document uses the
primitives and methods defined in the OBEX specification V1.2 as defined in [1].

The document assumes a scenario consisting of a data synchronization client (e.g., a
mobile phone) and a data synchronization server where the master for the data resides.
Within local area networks, the data synchronization server could be a PIM application
running on a PC.

SyncML OBEX Binding 2 of 2 Pages

http://www.syncml.org/docs/syncml_obex_v101_20010530.pdf Version 1.0.1

2001-05-30

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,

Consortium
The following companies are sponsors in the SyncML initiative:
Ericsson
IBM
Lotus
Motorola
Nokia
Palm, Inc.
Matsushita Communications Industrial Co.
Psion
Starfish Software

Revision History

Revision Date Comments

1.0a 2000-08-29 SyncML Header Type Mime included. Minor editorial
changes.

1.0b 2000-11-10 Minor changes to description text.

1.0 2000-12-07 The candidate version for the final release. Bluetooth UUID
details included.

1.0.1a 2001-05-23 Errata rolled in.

1.0.1 2001-05-30 Cleaned up header

SyncML OBEX Binding 3 of 3 Pages

http://www.syncml.org/docs/syncml_obex_v101_20010530.pdf Version 1.0.1

2001-05-30

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,

Copyright Notice
Copyright (c) Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,
Motorola, Nokia, Palm, Inc., Psion, Starfish Software (2000 - 2001).

All Rights Reserved.

Implementation of all or part of any Specification may require licenses under third party
intellectual property rights, including without limitation, patent rights (such a third party may
or may not be a Supporter). The Sponsors of the Specification are not responsible and shall
not be held responsible in any manner for identifying or failing to identify any or all such
third party intellectual property rights.

THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN ARE PROVIDED ON
AN "AS IS" BASIS WITHOUT WARRANTY OF ANY KIND AND ERICSSON, IBM, LOTUS,
MATSUSHITA COMMUNICATION INDUSTRIAL CO. LTD, MOTOROLA, NOKIA, PALM
INC., PSION, STARFISH SOFTWARE AND ALL OTHER SYNCML SPONSORS
DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT
INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL ERICSSON, IBM,
LOTUS, MATSUSHITA COMMUNICATION INDUSTRIAL CO., LTD, MOTOROLA, NOKIA,
PALM INC., PSION, STARFISH SOFTWARE OR ANY OTHER SYNCML SPONSOR BE
LIABLE TO ANY PARTY FOR ANY LOSS OF PROFITS, LOSS OF BUSINESS, LOSS OF
USE OF DATA, INTERRUPTION OF BUSINESS, OR FOR DIRECT, INDIRECT, SPECIAL
OR EXEMPLARY, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL DAMAGES OF ANY
KIND IN CONNECTION WITH THIS DOCUMENT OR THE INFORMATION CONTAINED
HEREIN, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE.

The above notice and this paragraph must be included on all copies of this document that
are made.

SyncML OBEX Binding 4 of 4 Pages

http://www.syncml.org/docs/syncml_obex_v101_20010530.pdf Version 1.0.1

2001-05-30

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,

Table of Contents

1 Introduction..5

2 Formatting Conventions...5

3 OBEX Introduction ...5
3.1 OBEX Over IrDA ...6
3.2 OBEX Over Bluetooth...7

3.2.1 Bluetooth Service Discovery...8
3.2.2 Other Bluetooth Protocol Requirements 10

4 OBEX Mapping to SyncML.. 11
4.1 OBEX Operations ... 11
4.2 OBEX Connection Overview.. 12

4.2.1 Multiple Messages Per Package... 12
4.2.2 MIME header type requirement... 13

4.3 OBEX Connection Establishment.. 13
4.4 Exchanging SyncML Data over the OBEX Connection................... 15
4.5 OBEX Disconnection ... 17
4.6 OBEX ABORT... 18

5 References .. 19

SyncML OBEX Binding 5 of 5 Pages

http://www.syncml.org/docs/syncml_obex_v101_20010530.pdf Version 1.0.1

2001-05-30

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,

1 Introduction

This document describes how to use the SyncML over OBEX. The document uses the
primitives and methods defined in the OBEX specification V1.2 [1].

The document assumes a scenario consisting of a SyncML client (e.g. a mobile phone) and
a server holding data. The OBEX transport was originally used over short-range links like
infrared. With short-range links, the SyncML server could be a local PC. With wide area
networks, the SyncML server could be a remote WEB server.

2 Formatting Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY" and "OPTIONAL"
in this document are to be interpreted as described in [2].

The letter M is used in the tables to indicate MUST, and O to indicate OPTIONAL.

3 OBEX Introduction

OBEX [1] is a protocol for exchanging objects. It was initially designed for infrared, but it
has been adopted by Bluetooth, and is also used over RS232, USB and WAP.

OBEX is a session-oriented protocol, which allows multiple request/response exchanges in
one session. An OBEX session is initiated by an OBEX CONNECT request, and is
established when the other device returns a success response. The connection is
terminated by sending a DISCONNECT request.

In this specification, the SyncML client can work either as an OBEX client or as an OBEX
server at the OBEX protocol layer. In consequence, the SyncML server can work either as
an OBEX client or as an OBEX server. The OBEX role depends on the fact which one, the
SyncML client or the SyncML server, initiates sync. Thus the SyncML Client is not
necessarily the OBEX Client.

When a session has been established, the data is transferred using the PUT request. The
remote device acknowledges the data, by sending a response with a status code.

SyncML requires that an OBEX connection is established. Connectionless OBEX cannot
be used with SyncML.

SyncML OBEX Binding 6 of 6 Pages

http://www.syncml.org/docs/syncml_obex_v101_20010530.pdf Version 1.0.1

2001-05-30

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,

3.1 OBEX Over IrDA
The diagram below demonstrates the position of OBEX within the IrDA stack.

IrDA Hardware IrDA Hardware

IrLAPIrLAP

IrLMP IrLMP

Tiny
TP

IASTiny
TP

IAS

OBEX OBEX

SyncML
Client

SyncML
Server

e.g. Phone e.g. PC

IrLAP is the link level protocol.
IrLMP is a multiplexing layer.
Tiny TP provides flow control.
IAS is the Information Access Service.
OBEX includes both a session level protocol and an application framework.

SyncML OBEX Binding 7 of 7 Pages

http://www.syncml.org/docs/syncml_obex_v101_20010530.pdf Version 1.0.1

2001-05-30

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,

3.2 OBEX Over Bluetooth
The Bluetooth section is specified so that the SyncML client MUST be able to function as
either an OBEX client, or an OBEX server, or both. The SyncML server MUST be able to
function as both the OBEX server and client.

The figure below shows the protocols when SyncML and OBEX are run over the Bluetooth
protocol stack.

Baseband

LMP L2CAP

RFCOMM

SyncML

Client

SDP

Client side Server side

OBEX

Baseband

LMP L2CAP

RFCOMM

SyncML

Server

SDP

OBEX

Figure 1 OBEX over Bluetooth

The Baseband, LMP, and L2CAP are the OSI layer 1 and 2 Bluetooth protocols. RFCOMM
is the Bluetooth adaptation of GSM TS 07.10. SDP is the Bluetooth Service Discovery
Protocol [3].

The SyncML Client layer shown in Figure 1 is the entity providing the sync client agent
functionality. The SyncML Server is the SW providing the sync engine functionality.

In this specification, the SyncML client can work either as an OBEX client or as an OBEX
server at the OBEX protocol layer. In consequence, the SyncML server can work either as
an OBEX client or as an OBEX server. The OBEX role depends on the fact which one, the
SyncML client or the SyncML server, initiates sync.

SyncML OBEX Binding 8 of 8 Pages

http://www.syncml.org/docs/syncml_obex_v101_20010530.pdf Version 1.0.1

2001-05-30

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,

3.2.1 Bluetooth Service Discovery

To enable the OBEX connection over the Bluetooth protocol stack, the SyncML server
MUST advertise and the SyncML client SHOULD advertise service records, which can be
retrieved by a connecting device using the Bluetooth SDP [3].

In the case of the SyncML server, the following information, i.e., service records MUST be
put into the SDDB (Service Discovery DataBase).

Item Definition: Type/
Size:

Value: AttrID: Status: Default
Value:

Service Class ID
List

N/A 0x0001** MUST

Service Class #0 SyncMLServer UUID * N/A MUST

Protocol Descriptor
list

N/A 0x0004** MUST

Protocol ID #0 L2CAP UUID 0x0100** N/A MUST

Protocol ID #1 RFCOMM UUID 0x0003** N/A MUST

Param #0 CHANNEL Uint8 Varies N/A MUST

Protocol ID #2 OBEX UUID 0x0008** N/A MUST

Service name Displayable
Text name

String Varies 0x0000+b*** MAY “SyncML
Server"

Table 1 SyncML Server Service Records

* The value 00000001-0000-1000-8000-0002EE000002 should be used in this place.

** The value or the attribute ID is specified in the Bluetooth Assigned Numbers specification [4].

*** ’b’ in this table represents a base offset as given by the LanguageBaseAttributeIDList attribute. For the
principal language b must be equal to 0x0100 as described in the Bluetooth SDP specification [3].

The service records, which the SyncML client SHOULD put into its SDDB, are listed below.

SyncML OBEX Binding 9 of 9 Pages

http://www.syncml.org/docs/syncml_obex_v101_20010530.pdf Version 1.0.1

2001-05-30

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,

Item Definition: Type/
Size:

Value: AttrID: Status: Default
Value:

Service Class ID
List

N/A 0x0001** MUST

Service Class #0 SyncMLClient UUID * N/A MUST

Protocol Descriptor
list

N/A 0x0004** MUST

Protocol ID #0 L2CAP UUID 0x0100** N/A MUST

Protocol ID #1 RFCOMM UUID 0x0003** N/A MUST

Param #0 CHANNEL Uint8 Varies N/A MUST

Protocol ID #2 OBEX UUID 0x0008** N/A MUST

Service name Displayable
Text name

String Varies 0x0000+b*** MAY “SyncML
Client"

Table 2 SyncML Client Service Records

* The value 00000002-0000-1000-8000-0002EE000002 should be used in this place.

** The value or the attribute ID is specified in the Bluetooth Assigned Numbers specification [4].

*** ’b’ in this table represents a base offset as given by the LanguageBaseAttributeIDList attribute. For the
principal language b must be equal to 0x0100 as described in the Bluetooth SDP specification [3].

3.2.1.1 SDP Protocol Data Units

Table 3 shows the specified SDP PDUs (Protocol Data Units), which are required.

Ability to Send Ability to RetrievePDU
no.

SDP PDU

SyncML Client SyncML Server SyncML Client SyncML Server

1 SdpErrorResponse MUST* MUST MUST** MUST

2 SdpServiceSearchAtt
ribute-Request

MUST** MUST MUST* MUST

3 SdpServiceSearchAtt
ribute-Response

MUST* MUST MUST** MUST

Table 3 SDP PDUs

* This is only applicable if the SyncML client is able to function as the OBEX server.

** This is only applicable if the SyncML client is able to function as the OBEX client.

SyncML OBEX Binding 10 of 10 Pages

http://www.syncml.org/docs/syncml_obex_v101_20010530.pdf Version 1.0.1

2001-05-30

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,

3.2.2 Other Bluetooth Protocol Requirements

This specification partially requires compliance to the Bluetooth Serial Port (SeP) Profile [5]
if Bluetooth is used as a physical medium for OBEX. These are:

• The compliance is required to the RFCOMM requirements as defined in Chapter 4 in the
SeP Profile.

• The compliance is required to the L2CAP requirements as defined in Chapter 5 in the
SeP Profile.

• The compliance is required to the LM protocol requirements as defined in Chapter 7 in
the SeP Profile.

The SDP requirements are defined by this specification and thus, any of the requirements
defined in the SeP profile (Chapter 6 in the SeP profile) does not apply to this specification.
The SyncML server MUST comply with both the Device 'A' and Device 'B' requirements as
defined in the SeP Profile. The SyncML client MUST comply with either the Device 'A'
requirements, or with the Device 'B' requirements, or both as defined in the SeP Profile.

The Bluetooth LC (Link Controller) capabilities and The Bluetooth Generic Access Profile
(GAP) requirements for this specification are defined in Chapter 6.5 and Chapter 7 of the
Bluetooth GOEP [6], respectively. The SyncML server MUST comply with both the client
and server requirements as defined in Chapter 6.5 and Chapter 7 in the GOEP. The
SyncML client MUST comply with either the client requirements, or the server requirements,
or both as defined in Chapter 6.5 and Chapter 7 in the GOEP.

SyncML OBEX Binding 11 of 11 Pages

http://www.syncml.org/docs/syncml_obex_v101_20010530.pdf Version 1.0.1

2001-05-30

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,

4 OBEX Mapping to SyncML

The following sections define the requirements for the binding of SyncML to OBEX.

In client initiated sync, the SyncML client initiates the OBEX link, so it is also the OBEX
client. The SyncML client can disconnect the OBEX link when it has received the last sync
message from the SyncML server.

With server alerted sync, the SyncML server initiates the OBEX link, so it is the OBEX
client. The SyncML server cannot disconnect the OBEX link before it has received the
SyncML response message for the last SyncML message including a Sync command that it
sends.

4.1 OBEX Operations
The following OBEX operations are required for SyncML.

SyncML Server SyncML Client

OBEX Operation OBEX
Client

OBEX
Server

OBEX
Client

OBEX
Server

Connect MAY MUST MUST MAY

Disconnect MAY MUST MUST MAY

Put MAY MUST MUST MAY

Get MAY MUST MUST MAY

Abort MAY MUST MAY MAY

The OBEX layer must be disconnected using the OBEX Disconnect operation. The OBEX
specification also allows the link to be disconnected by disconnecting the underlying
transport layer.

The OBEX connection can be authenticated as part of the OBEX CONNECT
request/response messages, using the authenticate challenge and response headers

The client can send the OBEX ABORT request, to terminate a multi-packet operation (such
as PUT) before it would normally end.

The PUT FINAL frame must be sent with an empty body.

SyncML OBEX Binding 12 of 12 Pages

http://www.syncml.org/docs/syncml_obex_v101_20010530.pdf Version 1.0.1

2001-05-30

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,

4.2 OBEX Connection Overview
The OBEX connection is made at the start of the synchronisation, and remains open until
the synchronisation has completed.

The following example shows the creation of an OBEX connection, the mapping of PUT
and GET requests to the SyncML message transfers, and the OBEX disconnection.

This example is not intended to show a complete a SyncML Session but merely illustrates
the use of PUT and GET within a SyncML OBEX binding implementation.

OBEX Client OBEX Server Message Direction

CONNECT Request
Success Response

PUT Request SyncML Message from
Continue Response OBEX Client to OBEX Server

PUT Request …
Continue Response …

PUT Final Request
Success Response

GET Final Request SyncML Message from
Continue Response OBEX Server to OBEX Client

GET Final Request …
Continue Response …

GET Final Request
 Success Response

DISCONNECT Request
Success Response

4.2.1 Multiple Messages Per Package

Each SyncML message MUST be transferred as a SyncML MIME media type within the
body of the OBEX request or response. However in order to transfer the message the
OBEX / transport layer may split the message into many PUT requests, followed by a PUT
Final Request. When there are multiple SyncML messages per SyncML package to
transfer, each message is transferred in a separate 'set' of PUT/GET commands;
depending on whether it is a SyncML request or response.

The recipient of a SyncML message can determine if there are more SyncML messages in
the package by the absence of the Final element in the last received SyncML message.
When the recipient receives a SyncML message with the Final element, it is the final
message within that SyncML package.

Similarly if the PUT is not a PUT final then the recipient knows it is not the final part of the
SyncML message, or if the response to the GET Final Request is not an OK/success then
there is more data still to transfer.

SyncML OBEX Binding 13 of 13 Pages

http://www.syncml.org/docs/syncml_obex_v101_20010530.pdf Version 1.0.1

2001-05-30

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,

4.2.2 MIME header type requirement

Client implementations conforming to this specification MUST support the header with
either the "application/vnd.syncml+xml" or "application/vnd.syncml+wbxml"
media type values. Server implementations conforming to this specification MUST support
both "application/vnd.syncml+xml" and "application/vnd.syncml+wbxml"
media type values, as requested by the SyncML Client.

4.3 OBEX Connection Establishment
The OBEX connection is established by the SyncML application generating a Connect
Request, and the remote device indicates that the connection has been established, by
returning a Connect Response. For each SyncML session, a separate OBEX connection
MUST be established.

The OBEX CONNECT request must contain the following fields.

Field/
Header

Name Value M/O Explanation

Field Opcode for CONNECT 0x80 M

Field Packet Length Varies M

Field OBEX Version Number Varies M

Field Flags Varies M

Field Max OBEX Packet Length Varies M

Header Target Varies M The UUID to be used is SYNCML-SYNC,

The OBEX CONNECT response must contain the following fields.

SyncML OBEX Binding 14 of 14 Pages

http://www.syncml.org/docs/syncml_obex_v101_20010530.pdf Version 1.0.1

2001-05-30

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,

Field/
Header

Name Value M/O Explanation

Field Response code for
CONNECT request

0x0A M 0xA0 for success,
otherwise fail

Field Packet Length Varies M

Field OBEX Version Number Varies M

Field Flags Varies M

Field Max OBEX Packet Length Varies M

Header Connection ID Varies M Connection ID is set by the Server during the
OBEX Connect operation as a shorthand way
for the client to direct the requests. This must
be the first header.

Header Who Varies M The UUID returned is the same UUID that was
sent in the connect request target header

SyncML OBEX Binding 15 of 15 Pages

http://www.syncml.org/docs/syncml_obex_v101_20010530.pdf Version 1.0.1

2001-05-30

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,

4.4 Exchanging SyncML Data over the OBEX Connection
Once an OBEX connection has been established, SyncML data can be transferred over the
link.

The PUT packet must include the following fields and headers.

Field/
Header

Name Value M/O Explanation

Field Opcode for PUT 0x02 or
0x82

M 0x02 is used for packets previous to the last
put packet.

0x82 (which is 0x02 with the high bit set) is
used for the last put packet.

Field Packet Length Varies M

Header Connection ID Varies M Connection ID is set to the value returned by
the Server during the OBEX Connect
operation. This must be the first header.

Header Type Varies M The MIME type of the object. This should
contain the SyncML MIME type declaration.

Header Length Varies O Length of the object. This header is optional
but highly recommended.

Header Body/End of Body Varies M End of Body identifies the last chunk of the
object body.

The response to the PUT request has the following fields and headers.

Field/
Header

Name Value M/O Explanation

Field Response code for PUT 0x90,
0xAO,
0xCD,
0xCF,
…

M 0x90 for continue
0xA0 for success
0xCD if the object is too large
0xCF if the object type is not supported

Field Packet Length Varies M

Other headers, which can be optionally used, are found in [1]

SyncML OBEX Binding 16 of 16 Pages

http://www.syncml.org/docs/syncml_obex_v101_20010530.pdf Version 1.0.1

2001-05-30

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,

The GET packet must include the following fields and headers.

Field/
Header

Name Value M/O Explanation

Field Opcode for GET 0x03 or
0x83

M 0x03 is used for packets previous to the last
get packet.

0x83 (which is 0x03 with the high bit set) is
used for the last get packet.

Note, in most cases the GET fits within a
single packet.

Field Packet Length Varies M

Header Connection ID Varies M Connection ID is set to the value returned by
the Server during the OBEX Connect
operation. This must be the first header.

Header Type 0x42, … M The MIME type of the object. This should
contain the SyncML MIME type declaration.

The response to the GET request has the following fields and headers.

Field/
Header

Name Value M/O Explanation

Field Response code for GET 0x90,
0xAO,
0xC0,
0xC3,
…

M 0x90 for continue
0xA0 for success
0xC0 bad request
0xC3 forbidden

Field Packet Length Varies M

Header Length 0xC3, … O Length of the object. This header is optional
but highly recommended.

Header Body/End of Body 0x48/0x4
9, …

M End of Body identifies the last chunk of the
object body.

Other headers, which can be optionally used, are found in [1]

SyncML OBEX Binding 17 of 17 Pages

http://www.syncml.org/docs/syncml_obex_v101_20010530.pdf Version 1.0.1

2001-05-30

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,

4.5 OBEX Disconnection
The OBEX connection is disconnected by the SyncML application, generating a Disconnect
Request, and the remote device indicates that the connection has been terminated, by
returning a success Response.

The OBEX DISCONNECT request must contain the following fields.

Field/
Header

Name Value M/O Explanation

Field Opcode for
DISCONNECT

0x81 M

Field Packet Length Varies M

Header Connection ID Varies M Connection ID is set to the value returned by
the Server during the OBEX Connect
operation. This must be the first header.

Other headers (such as Description) which can be optionally used are found in [1].

The response to an OBEX DISCONNECT request must contain the following fields.

Field/
Header

Name Value M/O Explanation

Field Response code for
DISCONNECT

0xAO M 0xA0 for success, otherwise fail

Field Packet Length Varies M

SyncML OBEX Binding 18 of 18 Pages

http://www.syncml.org/docs/syncml_obex_v101_20010530.pdf Version 1.0.1

2001-05-30

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,

4.6 OBEX ABORT
The client can send an OBEX abort request to terminate a multi-packet operation (such as
PUT) before it would normally end. The ABORT request and response always fit in one
OBEX packet, and they always have the Final bit set.

The OBEX ABORT request must contain the following fields.

Field/
Header

Name Value M/O Explanation

Field Opcode for ABORT 0xFF M

Field Packet Length Varies M

Header Connection ID Varies M Connection ID is set to the value returned by
the Server during the OBEX Connect
operation. This must be the first header.

Other headers (such as Description) which can be optionally used are found in [1].

The response to an OBEX ABORT request must contain the following fields.

Field/
Header

Name Value M/O Explanation

Field Response code for
ABORT

0xAO M 0xA0 for success, otherwise fail and the client
should disconnect the OBEX connection.

Field Packet Length Varies M

Other headers (such as Description) which can be optionally used are found in [1].

SyncML OBEX Binding 19 of 19 Pages

http://www.syncml.org/docs/syncml_obex_v101_20010530.pdf Version 1.0.1

2001-05-30

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,

5 References

[1] IrDA Object Exchange Protocol (IrOBEX), Version 1.2 , IrDA

[2] Key words for use in RFCs to Indicate Requirement Levels, IETF

[3] Bluetooth Service Discovery Protocol, Bluetooth

[4] Bluetooth Assigned Numbers specification, Bluetooth

[5] Bluetooth Serial Port (SeP) Profile, Bluetooth

[6] Bluetooth GOEP, Bluetooth

