WAP WTLS
Version 11-Feb-1999

Wireless Application Protocol
Wireless Transport Layer Security Specification

Disclaimer:

This document is subject to change without notice.

11-Feb-1999 Page 2 (89)

Contents
S O 1 = 4
P B O L1 0 1Y I] VI ST 12NN 1 5
2.1 (@00 =" =L 1 N[0 1 [l =T 5
2.2 Lt 7NN 5
2.3 (@00 1Y 1= 1 =TT 5
G T o ot N 0 i 6
31 NORMATIVE REFERENGCES.cctttttuiiiiiiiiitttttiiieessttssstssessstssssaassessteesssaatessteesssastessseesssssttesssesstsaniteesseessses 6
3.2 INFORMATIVE REFERENCES.......citttttiiiiiiiiitttiisieesstestsssseessseesba s sesssees s b teasstessbaaseesseestbbasseessssssrannsaesssernsses 7
3.3 AACK N OWLEDGEMENT S, tttttietttettttieeesstesssaastesssesssasastsassesssasasessseesssaasstessessssssnssesssessssssssseesseessssnnseeesseessses 7
4 DEFINITIONSAND ABBREVIATIONS ... 8
4.1 [T = Nl L) TN 8
4.2 AABBREV IATIONS ... tiiiiittttie st et st eettb st seesseee s st eeessee s s aaaa s seassse st b aaa s seassees b b aaa s easss s s s b baas s seesseessbaansessssensbbanssaeasses 10
4.3 DOCUMENT CONVENTIONS «..iiuttttuieiiiiiestttiiieesssesssssseesssesssssateesseessssasstesseesssssnsteesssesssssteeesteesssanieeesseessne, 11
5 WTLSARCHITECTURAL OVERVIEW ...ttt 12
51 (= = = = N[0l = Y o] 0] = TN 12
6 WTLSELEMENTSFOR LAYER-TO-LAYER COMMUNICATION ..o 13
6.1 N\ (o1 R0 IS U LS = o TN 13
6.1.1 Definition of Service PrimitiVeS AnN0 ParamELErS........uuuueeeeeeeeeeeeeeeeeeseesssessee 13
6.1.2 TIME SEQUENCE CRAITS. ... ittt ettt sttt rb e s h e e e s et e e st e e e be e e saee e sabeesabeeabeeesbneesnneaans 13
6.1.3 PLIMITIVE TYPIES ettt ettt e bt h e e e bt e s bt e ettt e bt e e ehbe e eabe e embe e e be e e rbee e embeesmbeesnbeeenbeeesnneas 14
6.1.4 SErVICE Parameter TADIES.... .. e nnan 14
6.2 WVT LS TRANSPORT SERVICEccttttuiiiieeiitttttiiieessttessssiteesstessssssteesstestssaseesteesssssteesttestseestresssnearnn 15
6.2.1 SEIVICE PrIIMITIVES. ... s sssssssssnannnnnnnnn 15
6.3 WTLS CONNECTION MANAGEMENTciiiiittttieseeeeieestttssseessseatbsa s eesssees bbb seesssessbbaassessseessbaansessssessssanssaeasses 15
6.3.1 (O Y[Y= 15
6.3.2 SEIVICE PrIMITIVES. s ssaassans s ssssannsnnnnan 16
6.3.3 Congtraints on Using the Service PrimitiVES.........couii it 19
YT A B ISR I N I i 1 = N T 21
7.1 (OIS ST N = 1N =T I =TT 21
7.2 SERVER STATE TABLES. . ..iiitttttiiiiiiiieettas e e e e sttt tb et eeeessee s ba s eessse et bbb eeassee s bbb teassees bbb eesseessbbaaseesssensbaaassns 24
8 PRESENTATION LANGUAGEo aan 28
8.1 2y NS Tl = T (02 S =TS 28
8.11 SO o T SRR 28
8.2 Y IS o= I I T = LU TN 28
8.3 VA=l 0] =TT 28
8.4 [N LOL Y= 2 S TN 29
8.5 [LU = 27N = 0 S TN 29
8.6 (O] NI 12 18T = 0 T 127 = == T 30
8.6.1 VaAlTANES ..o 30
8.7 CRYPTOGRAPHIC ATTRIBUTES ...t iiiiitttttsiteesittstttssessstssssssassesssessssasssesssesssssasteestesssssssteesseessssssteesssessssnns 31
8.8 (@00 NS N 1 1= TR 32
8.9 STRING CON ST AN T Sttt tiiiiitttt it teesteests it teesteestba it teesstesssaa s tesssesssbaa s seassessbbaassessse s st baaasseesseessbaansseesssensrannnsss 32
9 RECORD PROTOCOL SPECIFICATION . 33

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 3 (89)

9.1 CONNECTION STATE 1uuuiiiiiiiitttttiieeesitestsaitessstesssateesstesssaaa s tesstesssaaaatesssesstaaasteesteesssaasseesseesssassseesssessssnnnnns 33
9.2 (R (=ol0) DY N7 = = TN 36
9.21 [=10 100, g1 7= LA Lo o PR PURRRI 36
9.2.2 Record Compression and DECOMPIESSIONeiiiueiaiiieerieesteeeteeasteeestteesabeesbeeasbeeesaaeessbeesabessbeessreeesseeas 38
9.23 ReCOrd Payl0ad ProtECHION.oo ittt ettt e et e e e sbe e e sabe e sabe e ebe e e sbeeesneeas 38

10 HANDSHAKE PROTOCOL SPECIFICATION.uiutittttttttteeteeeeessssssssessmssmmee 41
10.1 CHANGE CIPHER SPEC PROTOCOL .uuuuiiiiiiiiitiiiiie e i eettbiis s s e e s seatbbasssesssessbaassessses s bbb seesseas bbb seessesssbaansseesseensses 41
O I Y I = = = T 1 @ 10 o TN 42
1021 ClOSUrE ALEITSo 43
10.2.2 BITOF AlEITS ... 44
10.3 HANDSHAKE PROTOCOL OVERVIEWciiittttiiiieiiiittitisseessiessssissessssessssssssssssesssssssssesseestsssseeesseesssineeesseessne. 46
10.4 HANDSHAKE RELIABILITY OVER DATAGRAMSoottttiiiiiieiiittiiii e e e st eetbes s e e e s s ess b b s e e e s s eas bbb s s essseesbbaseeesseessses 49
JO.5 HANDSHAKE PROTOCOL .uuiiiiiiiitiie i ee e ettt s e e e st eat s s e e e s s eab b seessse e bbb s eeas s e s s bbb s eeassea s bbb eeesseessbaanseesseensses 49
JO.5.1 HEIIO MESSAQES. ...ttt ettt ettt ettt ettt a e et e ettt e ebe e e sh e e e sabe e s abe e e be e e ebee e eabeesmbeeenbeeenbeeesaneasnneans 50
1052 SErVEr CertifiCate ... 58
10.5.3 Server Key EXChanQgE IMESSAJEcooiurieiiii ittt ettt ettt sat et et e e be e e sbe e e sabe e sabeeenbeeesbeeesaneasnneans 61
10.54 CertifiCAlE ROQUESE ... ettt b et h e a e e sttt e be e e sbee e sabe e sabeeenbeeeabeeesaneasnneaans 62
1055 SErVEr HELO DONE.o 62
1056 CHENt CartifiCaLe.......ooooieiieieeeeeeeee e 63
10.5.7 Client Key EXChanGge IMESSAQEcooiuiiiiieieitet ettt ettt ettt ettt be e sbe e e sabe e sabeesbe e e sbeeesaeeasnneaans 63
JO.5.8 CartifiCaIE VEIITY ..ottt ettt b et h bt a b e e s bt e e be e e sbee e sabe e sabeeenbeeeabeeesaeeesnneaans 65
1059 FINISNEA ... 65

11 CRYPTOGRAPHIC COMPUT ATIONS .. s 67
111 COMPUTING THE M ASTER SECRE T .uuuuiiiiiitttttiieesitesssssissesssesssssseesstesssssssesssessssssetesseeststeesteesrea. 67
1111 RSAENCIYPLON SCREIME ...ttt ettt et b et e sab e e s be e st e e e sbe e e saneasnaeans 67
11.1.2 DIiffierHEIMAN ... 67
11.1.3 ECDIffieHEIMAN. ... 67
S < S Lo [(== U 1 1 < T 68
J1.2 KKEY CALCULATION L.itttttuuiieetiitttstuieeessessssssssessstesssssssssesssessssssstesssesssssssseessesssssssseesseestssssteeesseesssssnneeesseessne, 68
11.3 HMAC AND THE PSEUDORANDOM FUNCTION.citutttiiiiieiiittitiesieeesseetbsasssesssesssssssssesseesssssssesssessssssnsseesseessses 70
11.3 1 MAC CalCUIALION ..o 70
11.3.2 Pseudo-random FUNCLIONooooiiiieeeee e 71
APPENDIX A ALGORITHM DEFINITIONScooeeeiititetttettetteessesssren 72
APPENDIX B IMPLEMENTATION NOTEScoottitittttttteteetetsesesssr 85
B.1 NEGOTIATING NULL CIPHER SPEC iiiiiittiiiiiii ittt s s e e s s eat s s s s s st eatbbaasseassess bbb s ssesseas bbbt seesseessbaasseesseessses 85
B.2 ANONYMOUS HANDSHAKEScctttttiiiieiiitttttiiteesttestssseesstesssssatesstessssstesssesssssssteesseestssieeesseessrinneeesseessne, 85

= TR T (o === = TN 85
B4 DENIAL-OF-SERVICE ATTACKS tttttuuiiiiiiiiittttiiieesttestttstesstessssatesstessssatesstesssssttetteeststeestresiee. 86
APPENDIX CIMPLEMENTATION CLASSES......oooeeieiteiiititiettteetstetesssmsree 87
APPENDIX D REQUIREMENTSFOR THE WTLSPROTOCOLooiiiiiiiiiccecc ettt e e 88

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 4 (89)

1 Scope

The Wireless Application Protocol (WAP) isaresult of continuous work to define an industry-wide specification for
devel oping applications that operate over wirel ess communication networks. The scope for the WAP Forum isto define a
set of specifications to be used by service applications. The wireless market is growing very quickly, and reaching new
customers and services. To enable operators and manufacturers to meet the challenges in advanced services,
differentiation and fast/flexible service creation WAP Forum defines a set of protocolsin transport, security, transaction,
session and application layers. For additional information on the WARP architecture, please refer to “Wireless Application
Protocol Architecture Specification” [WAPARCH].

The Security layer protocol in the WAP architectureis called the Wireless Transport Layer Security, WTLS. The WTLS
layer operates above the transport protocol layer. The WTLS layer ismodular and it depends on the required security level
of the given application whether it is used or not. WTLS provides the upper-level layer of WAP with a secure transport
service interface that preserves the transport service interface below it. In addition, WTLS provides an interface for
managing (eg, creating and terminating) secure connections.

The primary goal of the WTLS layer isto provide privacy, data integrity and authentication between two communicating
applications. WTLS provides functionality similar to TLS 1.0 and incorporates new features such as datagram support,
optimised handshake and dynamic key refreshing. The WTLS protocol is optimised for ow-bandwidth bearer networks
with relatively long latency.

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 5 (89)

2 Document Status

This document is available online in the following formats:

PDF format at http://www.wapforum.org/.

2.1 Copyright Notice

© Wireless Application Protocol Forum Ltd. 1999. Termsand conditions of use are available from the Wirdess
Application Protocol Forum Ltd. web site http://mmww.wapforum.org/docs/copyright.htm.

2.2 Errata

Known problems associated with this document are published at http://www.wapforum.org/.

2.3 Comments

Comments regarding this document can be submitted to WAP Forum in the manner published at
http://mww.wapforum.org/.

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 6 (89)

3 References

3.1 Normative References

[WAPARCH] “WAP Architecture Specification, WAP Forum, 30-April-1998.
URL: http://www.wapforum.org/

[WAPWDP] “Wireless Datagram Protocol Specification”, WAP Forum, 30-April-1998.
URL: http://www.wapforum.org/

[WAPWTPF] “Wireless Transaction Protocol Specification”, WAP Forum, 30-April-1998.
URL: http://www.wapforum.org/

[RFC2119] “ Key words for usein RFCs to Indicate Requirement Levels’, Bradner, S., March 1997.
URL: ftp://ftp.is.edu/in-notes/rfc2119.txt

[TLY “The TLS Protocol”, Dierks, T. and Allen, C., January 1999.
URL: ftp://ftp.isi.edu/in-notes/rfc2246.txt

[RFC2068] “Hypertext Transfer Protocol -- HTTP/1.17, Fieding, R., . al., January 1997.
URL: ftp://ftp.is.edu/in-notes/rfc2068.txt

[HMAC] “HMAC: Keyed-Hashing for Message Authentication”, Krawczyk, H., Bdlare, M., and Canetti, R.,
RFC 2104, February 1997. URL: ftp://ftp.isi.edu/in-notes/rfc2104.txt

[SHA] “Secure Hash Standard”, NIST FIPS PUB 180-1, National Ingtitute of Standards and Technology,
U.S. Department of Commerce, DRAFT, May 1994.

[X509] “The Directory — Authentication Framework”, CCITT, Recommendation X.509, 1988.

[3DES] “Hellman Presents No Shortcut Solutions To DES’, Tuchman, W., |EEE Spectrum, v. 16, n. 7, July
1979, pp 40-41.

[DES] “ American National Standard for Information Systems-Data Link Encryption”, ANSI X3.106,
American National Standards Institute, 1983.

[DH1] “New Directionsin Cryptography”, Diffie, W. and Hellman M. E., IEEE Transactions on
Information Theory, V. IT-22, n. 6, Jun 1977, pp. 74-84.

[DSY] “ Digital Signature Standard”, NIST FIPS PUB 186, National Ingtitute of Standards and Technology,
U.S. Department of Commerce, May 1994.

[IDEA] “ On the Design and Security of Block Ciphers’, Lai, X., ETH Seriesin Information Processing, v. 1,
Konstanz: Hartung-Gorre Verlag, 1992.

[MD5] “The MD5 Message Digest Algorithm”, Rivest, R., RFC 1321, April 1992.
URL: ftp://ftp.is.edu/in-notes/rfc1321.txt

[PKCS]] “PKCS#1: RSA Encryption Standard”, version 1.5, RSA Laboratories, November 1993.

[RSA] “ A Method for Obtaining Digital Signatures and Public-Key Cryptosystems’, Rivest, R., Shamir, A.

and Adleman L.M., Communications of the ACM, v. 21, n. 2, Feb 1978, pp. 120-126.

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999

[RC5]

[P1363]

[X9.62]

Page 7 (89)

“The RC5, RC5-CBC, RC5-CBC-Pad, and RC5-CTS Algorithms’, Baldwin, R. and Rivest R., RFC
2040, October 1996. URL: ftp://ftp.is.edu/in-notes/rfc2040.txt

“Standard Specifications For Public Key Cryptography”, IEEE P1363 / D1a (Draft Version 1a),
February 1998. URL: http://grouper.ieee.org/groups/1363/

“The Elliptic Curve Digital Signature Algorithm (ECDSA)”, ANSI X9.62 Working Draft, September
1998.

3.2 Informative References

[WAPWSP]

[GSM03.40]

[XDR]

[1S07498]

[1S010731]

“Wireless Session Protocol Specification”, WAP Forum, 30-April-1998.
URL: http://www.wapforum.org/

“European Digital Cellular Telecommunication System (phase 2+): Technical realization of Short
Message Service (SMS) Point-to-Point (P)”, ETSI.

“ XDR: External Data Representation Standard”, Srinivansan, R., RFC-1832:, August 1995. URL:
ftp://ftp.is.edu/in-notes/rfc1832.txt

“Information technology - Open Systems Interconnection - Basic Reference Model: The Basic
Model”, ISO/IEC 7498-1:1994.

“Information Technology - Open Systems Interconnection - Basic Reference Model - Conventions
for the Definition of OSI Services’, I1SO/IEC 10731:1994.

3.3 Acknowledgements

WTLS isderived from [TLS]. TLSis based on the SSL 3.0 specification.

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 8 (89)

4 Definitions and Abbreviations

4.1 Definitions

For the purposes of this specification the following definitions apply.

Abbreviated Handshake

A creation of a new connection state based on an existing secure session. See also Session Resume.

Connection State

The operating environment of the record protocol. The connection state includes all parameters that are needed for
the cryptographic operations (encryption/decryption and MAC cal cul ation/verification). Each secure connection
has a connection state

Datagram Transport

A transport service that does not guarantee that the sent transport SDUs are not lost, duplicated or delivered out of
order.

Handshake
The procedure of agreeing on the protocol options to be used between a client and a server. It includes the
negotiation of security parameters (eg, algorithms and key lengths), key exchange and authentication. Handshaking
occurs in the beginning of each secure connection.

Handshake Protocol

The protocal that carries out the handshake.

Full Handshake

A creation of a new secure session between two peers. The full handshake includes the parameter negotiation and
the exchange of public-key information between the client and server.

Optimised Handshake

A creation of a new secure session between two peers. Unlikein the full handshake, the server 1ooks up the client
certificate from its own source without requesting it over the air from the client.

Record
A protocol data unit (PDU) in therecord protocol layer.

Record Protocol

The record protocol takes messages to be transmitted, optionally compresses the data, appliesa MAC, encrypts and
transmits the result. Received data is decrypted, verified, decompressed and then delivered to higher level clients.
There are four record protocol clients described in this document: the handshake protocol, the alert protocal, the
change cipher spec protocol and the application data protocol.

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 9 (89)

Secure Connection

The WTLS connection that has a connection state. Each secure connection is identified by the transport addresses
of the communicating peers.

Secure Session

The secure session that is hegotiated on a handshake. The items that are negotiated (eg, session identifier,
algorithms and master secret) are used for creating secure connections. Each secure session isidentified by a
session ID alocated by the server.

Session Resume

A new secure connection can be established based on a previously negotiated secure session. So if thereisan
existing secure session it is not necessary to perform the full handshake and cryptographic calculations again. For
example, a secure connection may be terminated and resumed later. Many secure connections can be established
using the same secure session through the resumption feature of the WTLS handshake protocal.

Shared Secret Authentication

An authentication method based on a shared secret. This method works without public-key algorithms but requires
that the premaster secret isimplanted or entered manually into both client and server. The shared secret is sensitive
information and, therefore, a secure channd is needed for the distribution.

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999

4.2 Abbreviations

Page 10 (89)

For the purposes of this specification the following abbreviations apply.

APl
CA
CBC
DH

EC
ECC
ECDH
ECDSA
v
MAC
ME
oSl
PDU
PRF
SAP
Sbu
SHA-1
SMS
SSL
TLS
WAP
WDP
WSP
WTLS
WTP

Application Programming Interface
Certification Authority

Cipher Block Chaining
Diffie-Hellman

Elliptic Curve

Elliptic Curve Cryptography
Elliptic Curve Diffie-Hellman

Elliptic Curve Digital Signature Algorithm

Initialisation Vector

Message Authentication Code
Management Entity

Open System Interconnection
Protocol Data Unit
Pseudo-Random Function
Service Access Point

Service Data Unit

Secure Hash Algorithm

Short Message Service
Secure Sockets Layer
Transport Layer Security
Wirdess Application Protocol
Wireless Datagram Protocol
Wireless Session Protocol
Wirdess Transport Layer Security
Wireless Transaction Protocol

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 11 (89)

4.3 Document Conventions

This specification uses the same keywords as specified in RFC 2119 [RFC2119] for defining the significance of each
particular requirement. These words are;

MUST
Thisword, or theterms"REQUIRED" or "SHALL", mean that the definition is an absolute requirement of the
specification.
MUST NOT
This phrase, or the phrase "SHALL NOT", mean that the definition is an absolute prohibition of the specification.
SHOULD

Thisword, or the adjective “RECOMMENDED”, means that there may exist valid reasonsin particular
circumstancesto ignore a particular item, but the full implications must be understood and carefully weighed before
choosing a different course.

SHOULD NOT

This phrase, or the phrase "NOT RECOMMENDED" mean that there may exist valid reasonsin particular
circumstances when the particular behavior is acceptable or even useful, but the full implications should be
understood and the case carefully weighed before implementing any behavior described with this labdl.

MAY

Thisword, or the adjective “ OPTIONAL”, meansthat an item istruly optional. One vendor may choose to include
the item because a particular marketplace requiresit or because the vendor feelsthat it enhances the product while
another vendor may omit the same item. An implementation which does not include a particular option MUST be
prepared to interoperate with another implementation which does include the option, though perhaps with reduced
functionality. In the same vein an implementation which doesinclude a particular option MUST be prepared to
interoperate with another implementation which does not include the aption (except, of course, for the feature the
option provides.)

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 12 (89)

5 WTLS Architectural Overview

5.1 Reference model

A mode of layering the protocolsin WAP isillustrated in Figure 1. The layering of WAP protocols and their functionsis
similar to that of the ISO OSI Reference Mode [1SO7498] for upper layers. Layer Management Entities handle protocol
initialisation, configuration, and error conditions (such asloss of connectivity due to the mobile terminal roaming out of
coverage) that are not handled by the protocol itself.

WTLS isdesigned to function on connection-oriented and/or datagram transport protocols. Security is assumed to be an
optional layer above the transport layer. The security layer preservesthe transport service interfaces. The session or
application management entities are assumed to provide additional support required to manage (eg, initiate and terminate)
Secure connections.

Application - Service Access Point
|

A-Management
Entitity

@ @ Session - Service Access Point
SM t .)
223?.?; * — Session Session Layer Protocol

Application Application Layer Protocol

TR-SAP Transaction — Service Access Point

S

TR-Management
Entitity

WTP Wireless Transaction Protocol

SEC-SAP Security-Service Access Point

SEC-Management .
Entitity Security Security Layer Protocol

@ @ Transport - Service Access Point

T-Management [\
Entitity U WDP/UDP Wireless Datagram Protocol
Underlying
Bearer-Management Bearer Service
Entitity U

Figure 1: Wireless Application Protocol Reference Model

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 13 (89)

6 WTLS Elements for Layer-to-Layer Communication

6.1 Notations Used

6.1.1 Definition of Service Primitives and Parameters

Communication between layers is accomplished by means of service primitives. Service primitives represent, in an
abstract way, the logical exchange of information and control between the security layer and adjacent layers.

Service primitives consist of commands and their respective responses associated with the services requested of another
layer. The general syntax of a primitiveis:

X-Servicetype (Parameters)
where X designates the layer providing the service. For this specification X is“SEC” for the Security layer.
Service primitives are not the same as an application programming interface (API) and are not meant to imply any specific
method of implementing an API. Service primitives are an abstract means of illustrating the services provided by the

protocol layer to the layer above. The mapping of these conceptsto areal API and the semantics associated with areal
APl are an implementation issue and are beyond the scope of this specification.

6.1.2 Time Sequence Charts

The behaviour of service primitivesisillustrated using time sequence charts, which are described in [1SO10731].

Provider

S-request

TS~l S-indication
< -

Figure 2: A Non-confirmed Service

Figure 2 illustrates a smple non-confirmed service, which isinvoked using a request primitive and resultsin an indication
primitivein the peer. The dashed line represents propagation through the provider over a period of time indicated by the
vertical difference between the two arrows representing the primitives.

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 14 (89)

6.1.3 Primitive Types

The primitives types defined in this specification are:

Type Abbreviation | Description
request reg Used when a higher layer is requesting a service from the next lower layer
indication | ind A layer providing a service uses this primitive type to notify the next higher

layer of activitiesrelated to the request primitive type of the peer (such asthe
invocation of the request primitive) or to the provider of the service (such asa
protocol generated event)

response | res A layer uses the response primitive type to acknowledge receipt of the
indication primitive type from the next lower layer
confirm cnf The layer providing the requested service uses the confirm primitive type to

report that the activity has been completed successfully

6.1.4 Service Parameter Tables

The service primitives are defined using tables indicating which parameters are possible and how they are used with the
different primitive types. For example, a smple confirmed primitive might be defined using the following:

Primitive S-primitive
Par ameter req ind res cnf
Parameter 1 M M(=)
Parameter 2 e C(®)

If some primitive typeis not possible, the column for it will be omitted. The entries used in the primitive type columns are
defined in the following table:

Presence of the parameter is mandatory — it MUST be present

Presence of the parameter is conditional depending on values of other parameters

Presence of the parameter isa user option — it MAY be omitted

Presence of the parameter is a service provider option — an implementation MAY not provide it
The parameter is absent

Presence of the parameter is determined by the lower layer protocol

(=) The value of the parameter isidentical to the value of the corresponding parameter of the preceding
service primitive

vTOO<L

*

In the example table above, Parameter 1 isalways present in S-primitive.request and corresponding S
primitive.indication. Parameter 2 MAY be specified in S-primitive.response and in that case it MUST be present and have
the equivalent value also in the corresponding S-primitive.confirm; otherwise, it MUST NOT be present.

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 15 (89)

6.2 WTLS Transport Service

6.2.1 Service Primitives

6.2.1.1 SEC-Unitdata

This primitive is used to exchange user data between the peers. SEC-Unitdata can only be invoked when thereisan
existing secure connection between the transport addresses of the peers.

Primitive SEC-Unitdata
Par ameter req | ind
Source Address M M(=)
Source Port M M(=)
Destination Address M o(=)
Destination Port M o(=)
User Data M M(=)

Source Addressidentifies the originator.

Source Port identifies the port from which the message is sent.
Destination Address identifies the peer to which the user datais sent.
Destination Port identifies the port to which the message is sent.

User Data is the data to be transmitted.
6.3 WTLS Connection Management

6.3.1 Overview

WTLS Connection management allows a client to connect with a server and to agree on protocol optionsto be used. The
secure connection establishment consists of several steps and either client or server can interrupt the negotiation at will
(eg, if the parameters proposed by the peer are not acceptable). The negotiation may include the security parameters (eg,
cryptographic algorithms and key lengths), key exchange and authentication. Either the server or client service user can
also terminate the connection at any time.

The primitive sequence for establishing a secure session (full handshake) is shown in Figure 3.

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999

Create.req
Create.cnf
<
Exchange.ind
Exchange.res
>

Commit.req
Commit.cnf
Unitdata.req

Figure 3: Full Handshake

Provider

Create.ind

>
Create.res

¢

Exchange.req
Exchange.cnf

>
Commit.ind

>
Unitdata.ind

>

Page 16 (89)

The primitive sequence for establishing a secure session in an optimised or abbreviated way is shown in Figure 4.

Createreq

Create.cnf
<

Commit.ind
<

Unitdata.req

Provider

Create.ind
>
Create.res
¢
Commit.req
Commit.cnf
>
Unitdata.ind
>

Figure 4: Abbreviated or Optimised Handshake

6.3.2 Service Primitives

6.3.2.1 SEC-Create

This primitive is used to initiate a secure connection establishment.

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 17 (89)

Primitive SEC-Create

Par ameter req | ind | res cnf
Source Address M M(=)

Source Port M M(=) - -
Destination Address M O(=) - R
Destination Port M 0o(=)

Client Identities e C(®) - R
Proposed Key Exchange Suites M M(=) - R
Proposed Cipher Suites M M(=) - -
Proposed Compression Methods M M(=) - -
Sequence Number Mode 0] C(=) M M(=)
Key Refresh 0 C(=) M M(=)
Session Id (o) C(=) M M(=)
Selected Key Exchange Suite - - M M(=)
Selected Cipher Suite - - M M(=)
Selected Compression Method - - M M(=)
Server Certificate - - 0] C(=)

Source Addressidentifies the originator.

Source Port identifies the port from which the message is sent.
Destination Address identifies the peer to which the user datais sent.
Destination Port identifies the port to which the message is sent.

Client Identities identify the originator in a transport independent way. This parameter may be used by the server to look
up the corresponding client certificate. Client can send several identities corresponding to different keys or certificates.

Proposed Key Exchange Suites include the key exchange suites proposed by the client.

Proposed Cipher Suites include the cipher suites proposed by the client.

Proposed Compression Methods include the compression methods proposed by the client.

Sequence Number Mode defines how sequence numbers are used in this secure connection.

Key Refresh defines how often the encryption and protection keys are refreshed within a secure connection.
Session Id identifies the secure session. It isunique per server.

SHlected Key Exchange Suite identifies the key exchange suite selected by the server.

Salected Cipher Suite identifies the cipher suite selected by the server.

Selected Compression Method identifies the compression method chosen by the server.

Server Certificate is the public-key certificate of the server.

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 18 (89)

6.3.2.2 SEC-Exchange

This primitiveisused in a secure connection creation if the server wishes to perform public-key authentication or key
exchange with the client.

Primitive SEC-Exchange
Par ameter req | ind | res | cnf
Client Certificate - - M M(=)

Client Certificate isthe public-key certificate of the client.

6.3.2.3 SEC-Commit

This primitive isinitiated when the handshake is completed and either peer requests to switch into the newly negotiated
connection state.

Primitive SEC-Commit
Par ameter req | ind | res cnf

6.3.2.4 SEC-Terminate

This primitive is used to terminate the connection.

Primitive SEC-Terminate
Par ameter req | Ind
Alert Description M M(=)
Alert Leve M M(=)

Alert Description identifies the reason that caused the termination.

Alert Level defines whether the session (fatal) or just a connection (critical) is terminated.

6.3.2.5 SEC-Exception

This primitive is used to inform the other end about warning level alerts.

Primitive SEC-Exception
Par ameter req | ind
Alert Description M M(=)

Alert Description identifies what caused the warning.
6.3.2.6 SEC-Create-Request

This primitivesis used by the server to request the client to initiate a new handshake.

Primitive [SEC-Create-Request
Par ameter req | ind
Source Address O C(=)
Source Port O C(=)
Destination Address O C(=)

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999

Destination Port

C(=

Source Addressidentifies the originator.

Source Port identifies the port from which the message is sent.

Page 19 (89)

Destination Address identifies the client to which the data is sent. This parameter is needed when the primitiveisused in a
NULL session state.

Destination Port identifies the port to which the data is sent.

6.3.3 Constraints on Using the Service Primitives

The following tabl es define the permitted primitive sequences on the service interface. The client and server have separate
tables, since the serviceis asymmetric.

Only the permitted primitives are listed on the rows; the layer prefix is omitted for brevity. The table entries are
interpreted as follows:

Table 1: Table Entry Legend

Entry: Description
Theindication or confirm primitive cannot occur.
N/A Invoking this primitiveis an error. The appropriate action is alocal implementation matter.
STATE_NAME | Primitiveis permitted and moves the service interface view to the named state.
Table 2: Permitted Client Security Layer Primitives
CLIENT Session States
SEC- NULL CREATING CREATED EXCHANGE | COMMIT1 | COMMIT2 OPENING OPEN
Primitive
Createrreq CREATING N/A N/A N/A N/A N/A N/A CREATING
Commit.req N/A N/A N/A N/A COMMIT2 N/A N/A N/A
Terminatereq N/A NULL NULL NULL NULL NULL NULL NULL
Exception.req N/A CREATING CREATED EXCHANGE | COMMIT1 | COMMIT2 OPENING OPEN
Unitdata.req N/A N/A N/A N/A N/A N/A OPENING OPEN
Exchangeres N/A N/A N/A COMMIT1 N/A N/A N/A N/A
Exchange.ind EXCHANGE
Commit.ind OPENING
Terminateind NULL NULL NULL NULL
Exception.ind CREATING COMMIT2 OPEN OPEN
Cresate- NULL OPEN OPEN
Request.ind
Unitdata.ind OPEN OPEN
Create.cnf CREATED
Commit.cnf OPEN

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 20 (89)

Table 3: Permitted Server Security Layer Primitives

SERVER Session States

SEC-Primitive NULL CREATING CREATED EXCHANGE COMMIT OPENING OPEN
Exchangereq N/A N/A EXCHANGE N/A N/A N/A N/A
Commit.req N/A N/A COMMIT N/A N/A N/A N/A
Create-Request.req NULL N/A N/A N/A N/A N/A OPEN
Terminatereq N/A NULL NULL NULL NULL NULL NULL
Exception.req N/A CREATING CREATED EXCHANGE COMMIT OPENING OPEN
Unitdata.req N/A N/A N/A N/A N/A N/A OPEN
Createres N/A CREATED N/A N/A N/A N/A N/A
Commit.ind OPEN

Create.ind CREATING CREATING CREATING CREATING
Terminateind NULL NULL NULL
Exception.ind NULL EXCHANGE COMMIT OPEN
Unitdata.ind OPEN
Exchange.cnf OPENING

Commit.cnf OPEN

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 21 (89)

7 WTLS State Tables

The following state tables define the actions of WTLS on a datagram transport service provider.
WTLS PDUs areidentified in italics.
By default, all WTLS PDUs will be processed under the state that is currently in use.

If any PDUs other than the ones listed under Conditions are received, the receiver may generate an alert depending on the
severity of the case. See Section 10.2 for more detailed information.

Although the state tables provided are helpful to understand the WTLS protocol, they are not the formal and complete
definition. Those tables tend to be concise and readable so that certain level of details are not reflected. It istherefore
essential that the textual description of this specification is the unique and compl ete definition of the WTLS protocal.

7.1 Client State Tables

The following tables show the protocol states and event processing on the client.

Client Secure Session NUL L

Event Conditions AETIER] Next State
SEC-Createreq T-Unitdata.req (ClientHello) CREATING
The sequence number is present during a handshake
T-Unitdata.ind HelloRequest SEC-Create-Request.ind NULL
The client may initiate a handshake with SEC-Create.req,
initiate an alert (no_renegotiation) or ignore the request.

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999

Page 22 (89)

Client Secure Sesson CREATING

ACTION

Event Conditions Next State
SEC-Terminatereq T-Unitdata.req (Alert (fatal or critical)) NULL
SEC-Exception.req T-Unitdata.req (Alert (warning)) CREATING
T-Unitdata.ind ServerHello SEC-Create.cnf EXCHANGE
Certificate* SEC-Exchange.ind
ServerKeyExchange*
CertificateRequest*
ServerHelloDone
ServerHello SEC-Create.cnf CREATED
Certificate* SEC-Commit.ind
ChangeCipher Spec Theread current state is set to the pending state by
Finished ChangeCipher Spec so that Finished is processed under the new
state and the read sequence number set to zero.
Alert (critical or fatal) SEC-Terminate.ind NULL
Alert (warning) SEC-Exception.ind CREATING
Retransmission timer T-Unitdata.req (ClientHello) CREATING
expires Thelast buffer resent without incrementing the sequence
number
Theretransmission timer is cleared
Theretransmission counter isincremented
Retransmission SEC-Terminate.ind NULL
counter exceeds the
maximum value
*) Whether these messages are present or not depends on the chosen key exchange method.
Client Secure Session EXCHANGE
Event Conditions ASITTIER] Next State
SEC-Exchange.res Create a buffer with: COMMIT1
Certificate*
ClientKeyExchange*
CertificateVerify*
SEC-Terminatereq T-Unitdata (Alert (critical or fatal)) NULL
SEC-Exception.req T-Unitdata (Alert (warning)) EXCHANGE

*) Whether these messages are present or not depends on the chosen key exchange method.

O Copyright Wireless Application Forum, Ltd. 1999

All rights reserved.

11-Feb-1999

Page 23 (89)

Client Secure Sesson COMMIT1

Event

Conditions

ACTION

Next State

SEC-Commit.req

Append to the buffer:

ChangeCipher Spec

Finished

The write current stateis set to the pending state by

ChangeCipher Spec so that Finished is processed under the new
negotiated state and the write sequence number is set to zero.

Send the buffer out with T-Unitdata.req

COMMIT2

SEC-Terminatereq

T-Unitdata (Alert (critical or fatal))

NULL

SEC-Exception.req

T-Unitdata (Alert (warning))

COMMIT1

Client Secure Sesson COMMIT2

Event

Conditions

ACTION

Next State

SEC-Terminatereq

T-Unitdata.req (Alert (critical or fatal))

NULL

SEC-Exception.req

T-Unitdata (Alert (warning))

COMMIT2

T-Unitdata.ind

Alert (critical or fatal)

SEC-Terminate.ind

NULL

Alert (warning)

SEC-Exception.ind

COMMIT2

ChangeCipher Spec
Finished

Theread current stateis set to the pending state after
ChangeCipher Spec is received so that Finished is processed
under the new negotiated state and the read sequence number
is set to zero.

SEC-Commit.cnf

OPEN

Retransmission timer

expires

No response from the server
isreceived

T-Unitdata.req

The last buffer is resent without incrementing the sequence
number

Theretransmission timer is cleared
The retramission counter is incremented

COMMIT2

Retransmission
counter exceeds the
maximum value

SEC-Terminate.ind

NULL

Cl

ent Secure Sesson CREATED

Event

Conditions

ACTION

Next State

Impel ementation may send
ChangeCipher Spec and
Finished immediately
without user data

Create a buffer with:

ChangeCipher Spec

Finished

The write current state is set to the pending state by

ChangeCipher Spec so that Finished is processed under the new
negotiated state and the write sequence number is set to zero.

Send it out with T-Unitdata.req

OPENING

Implementation may delay
sending ChangeCipher Spec
and Finished and prepend it
to user data (if any)

Create a buffer with:

ChangeCipher Spec

Finished

The write current state is set to the pending state by

ChangeCipher Spec so that Finished is processed under the new
negotiated state and the write sequence number is set to zero.

Set up a Finished prepending timer

OPENING

SEC-Terminatereq

T-Unitdata.req (Alert (critical or fatal 1))

NULL

SEC-Exception.req

T-Unitdata.req (Alert (warning))

CREATED

O Copyright Wireless Application Forum, Ltd. 1999

All rights reserved.

11-Feb-1999 Page 24 (89)
Client Secure Session OPENING
Event Conditions AETIER] Next State
SEC-Unitdata.req Prepend buffer to user dataand call T-Unitdata.req OPENING
SEC-Terminate.req T-Unitdata.req (Alert (critical or fatal)) NULL
SEC-Exception.req T-Unitdata.req (Alert (warning)) OPENING
Finished prepending timer is | Prepend buffer to user data and call T-Unitdata.req OPENING
set Remove the Finished prepending timer.
Finished prepending Send buffer out it T-Unitdata.req OPENING
timer expires
T-Unitdata.ind User dataisreceived SEC-Unitdata.ind OPEN
Alert (duplicate_ OPEN
finished_received)
Alert (critical or fatal) SEC-Terminate.ind NULL
Alert (warning) SEC-Exception.ind OPEN
HelloRequest SEC-Create-Request.ind OPEN
The client may initiate a handshake with SEC-Create.req,
initiate an alert (no_renegotiation) or ignore the request.
Client Secure Session OPEN
Event Conditions ASITIER] Next State
SEC-Createreq T-Unitdata.req (ClientHello) CREATING
SEC-Terminatereq T-Unitdata.req (Alert (critical or fatal)) NULL
SEC-Exception.req T-Unitdata.req (Alert (warning)) OPEN
SEC-Unitdata.req T-Unitdata.req OPEN
T-Unitdata.ind User data received SEC-Unitdata.ind OPEN
Alert (critical or fatal) SEC-Terminate.ind NULL
Alert (warning) SEC-Exception.ind OPEN
HelloRequest SEC-Create-Request.ind OPEN
The client may initiate a handshake with SEC-Create.req,
initiate an alert (no_renegotiation) or ignore the request.
7.2 Server State Tables
The following tables show the protocol states and event processing on the client.
Server Secure Sesson NULL
Event Conditions AETIER] Next State
SEC-Create- T-Unitdata.req (HelloRequest) NULL
Request.req Therate at which HelloRequests are sent should be limited.
T-Unitdata.ind ClientHello SEC-Create.ind CREATING
Alert (no_renegotiation) SEC-Exception.ind NULL

O Copyright Wireless Application Forum, Ltd. 1999

All rights reserved.

11-Feb-1999

Page 25 (89)

Server Secure Sesson CREATING

Event

Conditions

ACTION

Next State

SEC-Terminatereq

T-Unitdata.req (Alert (critical or fatal))

NULL

SEC-Exception.req

T-Unitdata.req (Alert (warning))

CREATING

SEC-Create.res

Create a buffer with:
ServerHello
Certificate*

CREATED

*) Whether this message is present or not depends on the chosen key exchange method.

Server Secure Sesson CREATED

Event

Conditions

ACTION

Next State

SEC-Exchange.req

Full handshake

Append to the buffer:
ServerKeyExchange*
CertificateRequest*
ServerHelloDone

Send it out with T-Unitdata.req

EXCHANGE

SEC-Commit.req

Optimized or abbreviated
handshake

Append to the buffer:

ChangeCipher Spec

Finished

The write current stateis set to the pending state by

ChangeCipher Spec so that Finished is processed under the new
negotiated state and the write sequence number is set to zero.

Send the buffer out with T-Unitdata.req

COMMIT

SEC-Terminatereq

T-Unitdata.req (Alert (critical or fatal))

NULL

SEC-Exception.req

T-Unitdata.req (Alert (warning))

CREATED

*) Whether these messages are present or not depends on the chosen key exchange method.

O Copyright Wireless Application Forum, Ltd. 1999

All rights reserved.

11-Feb-1999 Page 26 (89)
Server Secure Sesson EXCHANGE
Event Conditions AETIER] Next State
SEC-Terminate.req T-Unitdata.req (Alert (critical or fatal)) NULL
SEC-Exception.reqg T-Unitdata.req (Alert (warning)) EXCHANGE
T-Unitdata.ind ClientHello Resend last buffer with T-Unitdata.req EXCHANGE
A record identical to the
previous oneisreceived
ClientHello SEC-Create.ind CREATING
A record not identical to the
previous oneisreceived
Alert (critical or fatal) SEC-Terminate.iind NULL
Alert (warning) SEC-Exception.ind EXCHANGE
Certficate* SEC-Exchange.cnf OPENING
ClientKeyExchange* SEC-Commit.ind
CertificateVerify* Theread current state is set to the pending state after
ChangeCi pher Spec ChangeCipher Spec isreceived so that Finished is processed
Finished under the new negotiated state and the read sequence number
is set to zero.
Create a new buffer with:
ChangeCipher Spec
Finished
The write current state is set to the pending state by sending
the ChangeCipher Spec so that Finished is processed under the
newly negotiated state and the write sequence number is set to
zero.
Send it out with T-Unitdata.req
*) Whether these messages are present or not depends on the chosen key exchange method.
Server Secure Sesson COMMIT
Event Conditions AETIER] Next State
SEC-Terminatereq T-Unitdata.req (Alert (critical or fatal)) NULL
SEC-Exception.req T-Unitdata.req (Alert (warning)) COMMIT
T-Unitdata.ind ClientHello Resend last buffer with T-Unitdata.req COMMIT
A record identical to the
previous oneis received
ClientHello SEC-Create.ind CREATING
A record not identical to the
previous oneis received
Alert (critical or fatal) SEC-Terminate.iind NULL
Alert (warning) SEC-Exception.ind COMMIT
ChangeCipher Spec Theread current stateis set to the pending state after OPEN
Finished ChangeCipher Spec is received so that Finished is processed
under the new negotiated state and the read sequence number
is set to zero.
SEC-Commit.cnf
ChangeCipher Spec Theread current stateis set to the pending state after OPEN
Finished and user data ChangeCipher Spec is received so that Finished is processed
under the new negotiated state and the read sequence number
is set to zero.
SEC-Commit.cnf
SEC-Unitdata.ind

O Copyright Wireless Application Forum, Ltd. 1999

All rights reserved.

11-Feb-1999 Page 27 (89)
Server Secure Sesson OPENING

Event Conditions AETIER] Next State
SEC-Create- T-Unitdata (HelloRequest) OPENING
Request.req
SEC-Terminatereq T-Unitdata (Alert (critical or fatal)) NULL
SEC-Exception.req T-Unitdata.req (Alert (warning)) OPENING
SEC-Unitdata.req T-Unitdata.req OPENING
T-Unitdata.ind ClientHello SEC-Create.ind CREATING

Alert (critical or fatal) SEC-Terminate.ind NULL

Alert (warning) SEC-Exception.ind OPENING

User data received SEC-Unitdata.ind OPEN

Certficate* Resend last buffer with T-Unitdata.req OPENING

ClientKeyExchange*

CertificateVerify*

ChangeCipher Spec

Finished

A group of recordsidentical

tothe previousoneis

received

Server Secure Sesson OPEN

Event Conditions ASITIER] Next State
SEC-Create- T-Unitdata (HelloRequest) OPEN
Request.req
SEC-Terminatereq T-Unitdata (Alert (critical or fatal)) NULL
SEC-Exception.req T-Unitdata.req (Alert (warning)) OPEN
SEC-Unitdata.req T-Unitdata.req OPEN
T-Unitdata.ind ClientHello SEC-Create.ind CREATING

Alert (critical or fatal) SEC-Terminate.ind NULL

Alert (warning) SEC-Exception.ind OPEN

User data received SEC-Unitdata.ind OPEN

ChangeCipher Spec Theread state is unchanged by the ChangeCipher Spec sinceit OPEN

Einished isaduplicate.

A record identical to the T-Unitdata (Alert (duplicate_finished_received))

previous Finished is

received

ChangeCipher Spec Theread state is unchanged by the ChangeCipher Spec sinceit OPEN

Finished and user data isaduplicate.

A record identical tothe SEC-Unitdata.ind

previous Finished is T-Unitdata (Alert (duplicate finished received))

received

O Copyright Wireless Application Forum, Ltd. 1999

All rights reserved.

11-Feb-1999 Page 28 (89)

8 Presentation Language

This document deals with the formatting of datain an external representation similar to TLS. The following very basic and
somewhat casually defined presentation language syntax will be used. The syntax draws from several sourcesin its
structure. Although it resembles the programming language “C” in its syntax and XDR [XDR] in both its syntax and
intent, it would be risky to draw too many paralles. The purpose of this presentation language isto document WTLS only,
not to have general application beyond that particular point.

8.1 Basic Block Size

The representation of all dataitemsisexplicitly specified. The basic block sizeis one byte (ie 8 bits). Multiple byte data
items are concatenations of bytes, from |eft to right, from top to bottom. From the byte stream a multi-byte item (a
numeric in the example) isformed (using C notation) by:

value = (byte[0] << 8*(n-1)) | (byte[l] << 8*(n-2)) | ...| byte[n-1];
This byte ordering for multi-byte values is the commonplace network byte order or big endian format.

8.1.1 Bit Order

The bitsis a byte are ordered from |eft to the right. The leftmost bit is bit O while the rightmost bit isbit 7. Bit 0 isthe
Most Significant Bit whilebit 7 isthe Least Significant Bit.

8.2 Miscellaneous

Comments begin with “/*” and end with “*/”.
Optional components are denoted by enclosing them in “[[]]” double brackets.

Single byte entities containing uninterpreted data are of type opague.

8.3 Vectors

A vector (single dimensioned array) is a stream of homogeneous data el ements. The size of the vector may be specified at
documentation time or |eft unspecified until runtime. In either case the length declares the number of bytes, not the
number of elements, in the vector. The syntax for specifying a new type T’ that is a fixed length vector of type T is

TTI[n];

Here T’ occupies n bytesin the data stream, where n is a multiple of the size of T. Then length of the vector is not
included in the encoded stream.

In the following example, Datum is defined to be three consecutive bytes that the protocol does not interpret, while Datais
three consecutive Datum, consuming atotal of nine bytes.

opaque Datunf 3]; /* three uninterpreted bytes */
Dat um Dat a[9] ; /* 3 consecutive 3 byte vectors */

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 29 (89)

Variable length vectors are defined by specifying a subrange of legal lengths, inclusively, using the notation
<floor..ceiling>. When encoded, the actual length precedes the vector’ s contentsin the byte stream. The length will bein
the form of a number consuming as many bytes as required to hold the vector’ s specified maximum (ceiling) length. A
variable length vector with an actual length field of zero isreferred to as an empty vector.

T T <floor..ceiling>;

In the following example, mandatory is a vector that must contain between 300 and 400 bytes of type opaque. It can never
be empty. The actual length field consumes two bytes, a uint16, sufficient to represent the value 400 (see Section 8.4). On
the other hand, longer can represent up to 800 bytes of data, or 400 uint16 eements, and it may be empty. Its encoding
will include a two byte actual length field prepended to the vector. The length of an encoded vector must be an even
multiple of the length of a single dement (for example, a 17 byte vector of uint16 would beillegal).

opaque mandat or y<300. . 400>; /* length field is 2 bytes, cannot be enpty */
ui nt 16 | onger <0. . 800>; /* zero to 400 16-bit unsigned integers */
Thenotation

A = B[first..last];

indicates that vector A isassigned to be the elements from first to last of B.

8.4 Numbers

The basic numeric data type is unsigned byte (uint8). All larger numeric data types are formed from fixed length series of
bytes concatenated as described in Section 8.1 and are also unsigned. The following numeric types are predefined:

uint8 uint16[2];
ui nt 8 uint24[3];
uint8 uint32[4];
ui nt 8 uint 64[8];

All values, here and e sawhere in the specification, are stored in “network” or “ big-endian” order; the uint32 represented
by the hex bytes 01 02 03 04 is equivalent to the decimal value 16909060.

8.5 Enumerateds

An additional sparse datatypeis available called enum. A field of type enum can only assume the values declared in the
definition. Each definition is a different type. Only enumerateds of the same type may be assigned or compared. Every
element of an enumerated MUST be assigned a value, as demonstrated in the following example. Since the e ements of the
enumerated are not ordered, they can be assigned any unique value, in any order.

enum { el(vl), e2(v2), ..., en(vn), [[(n)]] } Te;

Enumerateds occupy as much space in the byte stream as would its maximal defined ordinal value. The following
definition would cause one byte to be used to carry fields of type Color.

enum { red(3), blue(5), white(7) } Color;

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 30 (89)

One may optionally specify a value without its associated tag to force the width definition without defining a superfluous
element. In the following example, Taste will consume two bytesin the data stream but can only assumethe values 1, 2 or
4.

enum { sweet (1), sour(2), bitter(4), (32000) } Taste;

The names of the e ements of an enumeration are scoped within the defined type. In thefirst example, afully qualified
reference to the second e ement of the enumeration would be Color.blue. Such qualification is not required if the target of
the assignment iswell specified.

Col or col or
Col or col or

Col or.blue; [/* overspecified, legal */
bl ue; /* correct, type inplicit */

For enumerateds that are never converted to external representation, the numerical information may be omitted.

enum { |low, medium high } Anount;

8.6 Constructed Types

Structure types may be constructed from primitive types for convenience. Each specification declares a new, unique type.
The syntax for definition is much like that of C.

struct {
T1 f1;
T2 f2;

'.r.r.lfn;
FLLTIL

The fields within a structure may be qualified using the type’ s name using a syntax much like that available for
enumerateds. For example, T.f2 refersto the second filed of the previous declaration. Structure definitions may be
embedded.

8.6.1 Variants

Defined structures may have variants based on some knowledge that is available within the environment. The sdlector
MUST be an enumerated type that defines the possible variants the structure defines. There MUST be a case arm for every
element of the enumeration declared in the sdect, or a default arm for those elements missing. The body of the variant
structure may be given alabel for reference. The mechanism by which the variant is selected at runtimeis not prescribed
by the presentation language.

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 31 (89)

struct {
T1 f1;
T2 f2;

Tn fn;

Td fd;

select (E) {
case el: Tel;
case e2: Te2;

case en: Ten;

default: TeDefault;

}OLLEvIDS
LIV

For example:

enum { apple, orange } VariantTag;

struct {
ui nt 16 nunber;
opaque string<0..10>; /* variable length */
} vy
struct {
ui nt 32 nunber;
opaque string[10]; /* fixed length */
}ove;
struct {
sel ect (VariantTag) { /* value of selector is inplicit */
case apple: Vi, /* VariantBody, tag = apple */
case orange: V2; /* Variant Body, tag = orange */

} variant _body;
} Vari ant Record;

Variant structures may be qualified (narrowed) by specifying a value for the selector prior to the type. For example, a
orange Vari ant Record
isanarrowed type of VariantRecord containing a variant_body of type V2.

8.7 Cryptographic Attributes

The four cryptographic operations digital signing, stream cipher encryption, block cipher encryption, and public key
encryption are designated digitally-signed, stream-ciphered, block-ciphered, and public-key-encrypted, respectively. A
field’'s cryptographic processing is specified by prepending an appropriate key word designation before the field’ s type
specification. Cryptographic keys are implied by the current session state (see Section 9.1).

In digital signing, one-way hash functions are used asinput for a signing algorithm. A digitally-signed e ement is encoded
as an opague vector <0..2'%-1>, where the length is specified by the signing algorithm and key.

In stream cipher encryption, the plaintext is exclusive-Ored with an identical amount of output generated from a
cryptographically-secure keyed pseudorandom number generator.

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 32 (89)

In block cipher encryption, every block of plaintext encryptsto a block of ciphertext. All block cipher encryption is done
in CBC (Cipher Block Chaining) mode, and all items which are block-ciphered will be an exact multiple of the cipher
block length.

In public-key encryption, a public key algorithm is used to encrypt datain such away that it can be decrypted only with
the matching private key. A public-key-encrypted dement is encoded as an opague vector <0..2'%-1>, wherethe length is
specified by the signing algorithm and key.

In the following example:

bl ock- ci phered struct {

uint8 fieldl,

uint8 field2

digitally-signed opaque hash[20];
} User Type;

The contents of hash are used input for the signing algorithm, then the entire structure is encrypted with a block cipher.
The length of this structure, in bytes would be exact multiple of the cipher block length.

8.8 Constants

Typed constants can be defined for purpose of specification by declaring a symbol of the desired type and assigning values
to it. Under-specified types (opaque, variable length vectors, and structures that contain opaque) cannot be assigned
values. No fields of a multi-element structure or vector may be eided

For example,

struct {
uint8 f1;
uint8 f2;

} Exanpl el;

Exampl el ex1 = {1, 4}; /* assigns f1 =1, f2 =4 */

8.9 String Constants

A string constant must be interpreted as a vector of bytes (uint8) with afixed length. Strings are enclosed with quotation
marks. Unlikein C, no terminating nulls areimplied. ASCII coding must be used.

For exanpl e,

bl ock = H(paraneter, “key expansion”);
[* string length is 13 bytes (no terminating null) */

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 33 (89)

9 Record Protocol Specification

The WTLS Record Protocal isalayered protocol. The Record Protocol takes messages to be transmitted, optionally
compresses the data, appliesa MAC, encrypts, and transmits the result. Received data is decrypted, verified, and
decompressed, then delivered to higher level clients.

Four record protocol clients are described in this document: the change cipher spec protocal, the handshake protocal, the
alert protocol, and the application data protocol. If a WTLS implementation receives arecord type it does not understand,
it should ignoreit.

Several records can be concatenated into one transport SDU. For example, several handshake messages can be transmitted
in one transport SDU. Thisis particularly useful with packet-oriented transports such as GSM short messages.

9.1 Connection State

A WTLS connection state is the operating environment of the WTLS Record Protocol. It specifies a compression
algorithm, encryption algorithm and MAC algorithm. In addition, the parameters for these algorithms are known: the
MAC secret and the bulk encryption keys and Vs for the secure connection in both the read and the write directions.

Logically, there are always two connection states outstanding: the current state and the pending state. All records are
processed under the current state. The security parameters for the pending state are set by the WTLS Handshake Protocal .
The Handshake Protocol must make the pending state current. The pending stateis then reinitialised to an empty state. The
initial current state always specifies that no encryption, compression, or MAC will be used.

The security parameters for aWTLS connection state are set by providing the following values. Note that the following
values are agreed on in a handshake procedure between a client and server when a secure session is negotiated (for more
information see Chapter 10):

These parameters are defined in the presentation language as:

enum { server(1l), client(2) } ConnectionEnd;

uint8 Bul kG pher Al gorithm

enum { stream(1l), block(2), (255) } G pherType;

enum { true, false } |sExportable;

uint8 MACAl gorithm

enum { of f(0), inplicit(1l), explicit(2), (255) } SequenceNunber Mode;

ui nt 8 Conpr essi onMet hod;

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999

struct {
Connecti onEnd

Page 34 (89)

entity;

Bul kG pher Al gorithm bul k_ci pher _al gorithm

G pher Type
ui nt8

ui nt8
ui nt8
| sExport abl e
MACAI gori t hm
ui nt8
ui nt8
opaque
opaque
opaque

ci pher _type;
key_size; /* bytes */

iv_size; /* bytes */

key material length; /* bytes */
i s_exportabl e;

mac_al gorit hm

mac_key_size; /* bytes */
mac_size; /* bytes */

mast er _secret|[20];
client_randoni 16];

server _randoni 16];

SequenceNunber Mode sequence_nunber _node;

uint8

key refresh;

Conpr essi onMet hod conpression_al gorithm
} SecurityParaneters;

Item

Description

Connection End

Bulk Cipher
Algorithm

MAC Algorithm

Compression
Algorithm

Master Secret
Client Random

Server Random

Whether this entity is considered a client or a server in this secure session.

An agorithm to be used for bulk encryption. This specification includes the key size of this
algorithm, how much of that key is secret, whether it isablock or stream cipher, the block size
of the cipher (if appropriate), and whether it is concidered as an “export cipher”. Bulk cipher
algorithms arelisted in Appendix A.

An algorithm to be used for message authentication. This specification includes the size of the
key used for MAC calculation and the size of the hash which isreturned by the MAC algorithm.
MAC agorithms are listed in Appendix A.

The algorithm to compress data prior to encryption. This specification must include all
information the algorithm requires to do compression.

A 20 byte secret shared between the two peersin the secure connection.
A 16 byte value provided by the client.
A 16 byte value provided by the server.

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999

Item

Page 35 (89)

Description

Sequence
Number Mode

Key Refresh

Which schemeis used to communicate sequence numbersin this secure connection:
Implicit sequence numbering

Sequence numbers will be used as an input to MAC calculations. Thisrequiresthat a
reliable transport protocol is used.

Explicit sequence numbering

The sequence number will be sent in plaintext with record layer messages and it is used
asan input to MAC calculations. This option MUST be used when operating on a
datagram transport protocol. Note that in this case sequence numbers do not have to bein
unbroken sequence, but they have to be sent in monotonic way (the sequence number of
each sent record is greater than the previous one).

Off

No sequence numbers will be used. This option is not recommended and choosing it
makes the system vulnerable for playback attacks. In this case, protection against such
attacks must be provided by upper protocol layers.

Defines how often some connection state parameters (encryption key, MAC secret, and 1V) are
updated New keys are calculated at every
n= 2key7refresh

messages, ie, when the sequence number is 0O, n, 2n, 3n etc.

For example, if threeis chosen as a value for key refresh, a new set of keysis generated for
every eight (2°) messages, ie, messages with sequence numbers 0, 8, 16 eic. If zerois chosen, a
new key set is generated for each message (2°).

Once the security parameters have been set and the keys have been generated, the connection states can be instantiated by
making them the current states. These current states must be updated for each record processed. Each connection state
includes the following e ements:

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999

Item

Page 36 (89)

Description

Compression State

The current state of the compression algorithm. Note that a stateful compression cannot be
used when operating on top of a datagram protocol. If a stateful compression is used, there are
Separate states for both directions.

Client write MAC
secret

The secret used for MAC calculation/verification for records sent by the client. The secret
must be updated according to the key refresh parameter.

Client write
encryption key

The key used for encryption/decryption of records sent by the client. The key must be updated
according to the key refresh parameter.

Client write IV

The base 1V used to calculate arecord level 1V for block ciphersrunning in CBC mode for
records sent by the client.

Client write The sequence number used for records sent by the client. Sequence numbers are of type uint16

sequence number and may not exceed 2'°-1. When a new connection state s established the sequence number of
thefirst record is zero.

Server write MAC | The secret used for MAC calculation/verification for records sent by the server. The secret

secret must be updated according to the key refresh parameter.

Server write The key used for encryption/decryption of records sent by the server. The key must be updated

encryption key

according to the key refresh parameter.

Server write IV The base 1V used to calculate arecord level 1V for block ciphersrunning in CBC mode for
records sent by the server.

Server write The sequence number used for records sent by the server. Sequence numbers are of type

sequence number uint16 and may not exceed 2'°-1. When a new connection state is established the sequence

9.2

number first record is zero.

Record Layer

The WTLS Record Layer receives uninterpreted data from higher layersin non-empty blocks of size maximum of
2'0-1.

9.2.1 Fragmentation

Unlikein TLS, therecord layer does not fragment information blocks. It is assumed that the transport layer takes care of
the necessary fragmentation and reassembly.

enum {
change_ci pher_spec(1), alert(2), handshake(3),
application_data(4), (15)

} Cont ent Type;
enum { without(0), with(1l) } SequenceNunberl ndi cation;

enum { without(0), with(1l) } FragmentLengthl ndication;

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999

struct {

opaque record_type[1];
sel ect (SequenceNunber | ndi cation) {
case w thout:

case with:

struct {};

Page 37 (89)

ui nt 16 sequence_number;

sel ect (Fragnent Lengt hl ndi cation) {
case w thout:

case with:

uint16 | engt h;

struct {};

opaque fragnent [WILSPI ai ntext. | ength];

} WILSPI ai nt ext ;

Description of WTLSPlaintext fields:

Item

Description

record_type

Defines the higher level protocol used to process the enclosed fragment. Contains also
information about the existence of optional fieldsin the record and an indication about
ciphering state.

Bits

Length

Description

0

1 bit

Record length field indicator defines whether the record contains alength
fidd:

0 =no record length field
1 =record length field included

In some circumstances, it is possible to avoid sending the record length in
the record layer. This reduces the amount of overhead two bytes per
record. The requirements for leaving the field out are:

1. Thereceiver must be able to determine the size of the transport SDU.
2. Thisisthelast (or the only) record in this transport SDU.

If both requirements are met, each peer can decide per message whether
they use the record length field or not. If possible the record length field
should be l€ft out.

1 bit

Sequence number field indicator defines whether the next bytein this
record contains a sequence number field:

0 = no sequence number field
1 = sequence number included

The sequence number field MUST be used with datagram transports (see
Section 9.2.3.1 for explicit sequence numbering).

1 bit

Cipher spec indicator defines whether thisrecord istransmitted under a
cipher spec different from null

0 = null cipher spec used
1 = current, different from null, cipher specis used

Null cipher spec means that no compression, MAC protection or
encryption isused. Itsusageis restricted to handshake messages starting
anew session and certain alerts sent in cleartext (see Section 10.2.2).

1 bit

Reserved for future use

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 38 (89)

[tem Description

4-7 4 bits | Content type

sequence_number | An optional sequence number of the record. Note that thisfield MUST be used with datagram
transports (see Section 9.2.3.1 for explicit sequence numbering).

length The optional length (in bytes) of the following WTLSPlaintext.fragment. Thisfiedld MUST be
used if several records are concatenated into one transport SDU.

fragment The application data. This dataistransparent and treated as an independent block to be dealt
with by the higher level protocol specified by the typefield.

Note: Data of different WTLS Record layer content types may be interleaved. Application datais generally of lower
precedence for transmission than other content types.

9.2.2 Record Compression and Decompression

All records are compressed using the compression algorithm defined in the current connection state. Thereis always an
active compression algorithm; however, initialy it is defined as NULL. Note that a stateful compression algorithm can not
be used if WTLSisran on top of a datagram transport.

The compression algorithm trandates a WTL SPlaintext structure into a WTLSCompressed structure. This means that the
WTLSPlaintext.fragment is compressed and copied. Other fields (such as the fragment length) are updated if needed.

struct {
opaque record_type[1];
sel ect (SequenceNunber | ndi cation) {
case without: struct {};
case with: uintl6 sequence_nunber;

sel ect (Fragnent Lengt hl ndi cation) {
case without: struct {};
case with: uintl16 | ength;
}
opaque fragnent [WILSConpr essed. | engt h] ;
} WILSConpr essed,;

Description of WTLSCompressed fields:

Item Description

record_type Asin Section 9.2.1.

sequence_number | Asin Section 9.2.1.

length The optional length (in bytes) of the following WTL SCompressed.fragment (See Section 9.2.1).
fragment The compressed form of WTLSP aintext.fragment.

9.2.3 Record Payload Protection
The encryption and MAC functions trand ate a WTL SCompressed structure into a WTL SCiphertext. The decryption
functions reverse the process.

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 39 (89)

struct {
opaque record_type[1];
sel ect (SequenceNunber | ndi cation) {
case wi thout: struct {};
case wi th: uintl6 sequence_nunber;

sel ect (Fragnent Lengt hl ndi cation) {
case wi thout: struct {};
case with: uintl16 | ength;

sel ect (SecurityParameters.cipher_type) {
case stream GCenericStreanC pher;
case bl ock: CenericBl ockG pher;
} fragnent;
} WILSG phertext;

[tem Description

record_type Asin Section 9.2.1.

sequence_number | Asin Section 9.2.1.
length The optional length (in bytes) of the following WTL SCiphertext.fragment (See Section 9.2.1).

fragment The encrypted form of WTL SCompressed.fragment.

9.2.3.1 Explicit Sequence Numbering

When explicit sequence numbering is used, record verification and decryption require special measures. Explicit sequence
numbering MUST be used with a datagram transport protocols meaning that records can be lost, duplicated, or received
out of order.

The receiver MUST keep books about received recordsin order to discard duplicated records. This can be implemented
using a diding window. For example, awindow size of 32 can be used. Using this window, the receiver can keep books
on received messages with sequence numbersin the range

n-32 ...n
where n isthe current (expected) sequence number. Records with sequence numbers n — 32 MUST be discarded

When a handshake starts with plain text message exchanges, sequence numbers start from zero and are incremented by
one in each handshake message. When a handshake starts on a secure connection, the current sequence numbers for the
secure connection is used for handshake messages and are incremented by one for each handshake message. They are set
to zero after ChangeCipherSpec message for either cases. In retransmissions, sequence numbers remain the same asin the
original messages. When the sequence number exceeds 2'°-1 the secure connection MUST be closed.

In handshake messages, sequence numbers MUST be used (even on connection oriented transports). After negotiation,
sequence numbers are either used or not. Note that with datagram transport protocols, sequence numbers MUST aways be
used.

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 40 (89)

9.2.3.2 Null or Standard Stream Cipher

Stream ciphers (including BulkCipherAlgorithm NULL) convert WTL SCompressed.fragment structuresto and from
stream WTL SCiphertext.fragment structures.

stream ci phered struct ({
opaque cont ent [WILSConpr essed. | engt h] ;
opaque MA(SecurityParaneters. mac_size];
} CenericStreanG pher;

The MAC is generated as:

HVAC hash (MAC secret, seq_nunber + WILSConpressed.record_type +
WILSConpr essed. | engt h + WILSConpr essed. fragnent)

where “+" denotes concatenation. If WTLSCompressed.length is not available, the actual length of the compressed
fragment should be used instead.

Note that no stream ciphers except BulkCipherAlgorithm NULL are defined in the current WTLS specification.

9.2.3.3 CBC Block Cipher

For block ciphers (such as RC5 and DES), the encryption and MAC functions convert WTL SCompressed.fragment
structures to and from block WTL SCiphertext.fragment structures.

bl ock- ci phered struct {
opaque cont ent [WILSConpr essed. | engt h] ;
opaque MA(SecurityParaneters. nmac_si ze];
ui nt 8 paddi ng[paddi ng_| engt h] ;
ui nt 8 paddi ng_I engt h;

} GenericBl ockG pher;

The MAC is generated as described in Section 9.2.3.2.

Item Description

Padding Padding that is added to force the length of the plaintext to be a multiple of the block cipher’s
block length. Each uint8 in the padding data vector MUST be filled with the padding length
value.

padding_length The padding length should be such that the total size of the GenericBlockCipher structureisa
multiple of the cipher’s block length. Legal values range from zero to 255, inclusive.

The encrypted data length (WTL SCiphertext.length) is one more than the sum of WTLSCompressed.length,
SecurityParameters.mac_size, and padding_length.

Example: If the block length is 8 bytes, the content length (WTL SCompressed.length) is 59 bytes, and 10 bytes of the
MAC are used, the length before padding is 70 bytes. Since 70 mod 8 is 6, 2 bytes of padding are required.

Generation of the encryption key and theinitialization vector (1V) is explained in the Section 11.2.

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 41 (89)

10 Handshake Protocol Specification

The WTLS Handshake Protocol is composed of three sub-protocols which are used to allow peersto agree upon security
parameters for the record layer, authenticate themselves, instantiate negotiated security parameters, and report error
conditions to each other.

The Handshake Protocal is responsible for negotiating a secure session, which consists of the following items:

[tem Description

Session Identifier An arbitrary byte sequence chosen by the server to identify an active or resumable secure
session.

Protocol Version WTLS protocol version number.

Peer Certificate Certificate of the peer. This dement of the state may be null.

Compression The algorithm used to compress data prior to encryption.

Method

Cipher Spec Specifies the bulk data encryption algorithm (such as null, RC5, DES, etc.) and aMAC

algorithm (such as SHA-1). It also defines cryptographic attributes such asthe mac_size.

Master Secret 20-byte secret shared between the client and server.

Sequence Number | Which sequence numbering scheme (off, implicit, or explicit) isused in this secure
Mode connection.

Key Refresh Defines how often some connection state values (encryption key, MAC secret, and 1V)
calculations are performed.

Is Resumable A flag indicating whether the secure session can be used to initiate new secure connections.

Theseitems are then used to create security parameters for use by the Record Layer when protecting application data.
Many secure connections can be instantiated using the same secure session through the resumption feature of the WTLS
Handshake Protocol.

10.1 Change Cipher Spec Protocol

The change cipher spec protocol existsto signal transitionsin ciphering strategies. The protocol consists of asingle
message, which is encrypted and compressed under the current (not the pending) connection state. The message consists
of asingle byte of value 1.

struct {
enum { change_ci pher _spec(1), (255) } type;
} ChangeC pher Spec;

The change cipher specis sent either by the client or server to notify the other party that subsequent records will be
protected under the newly negotiated CipherSpec and keys. In practise, sending this message means that the sender has set
the current write state to the pending state. When a ChangeCipherSpec is received the receiver should set the current read
dtate to the pending state. The change cipher spec message is sent during the handshake after the security parameters have
been agreed upon, but before the verifying finished message is sent. Implementations MUST check that the change cipher
spec message is sent or received before sending or receiving the verifying finished message, so that the finished and
subsequent messages are protected under the newly negotiated Cipher Spec and keys.

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 42 (89)

10.2 Alert Protocol

One of the content types supported by the WTLS Record layer isthe alert type. Alert messages convey the severity of the
message and a description of the alert.

Alert messageswith aleve of fatal result in the immediate termination of the secure connection. In this case, other
connections using the secure session MAY continue, but the session identifier MUST be invalidated, preventing the failed
secure session from being used to establish new secure connections.

Alert messageswith aleve of critical result in the immediate termination of the secure connection. Other connections
using the secure session MAY continue and the session identifier MAY be preserved to be used for establishing new
Secure connections.

An aert message is either sent as specified by the current connection state (ie, compressed and encrypted), or under null
cipher spec (ie, without compression or encryption).

A 4-byte checksum isused in alerts. The checksum is calculated from the last record (ie, WTLSCiphertext structure)
received from the other party, in the following way:

1. Padtherecord with zero bytes so that its length is modulo 4
2. Devidetheresult into 4-byte blocks
3. XOR these blocks together

Thereceiver of the alert SHOULD verify that the checksum matches with the message earlier sent by him.

enum { warning(1l), critical (2), fatal (3), (255) } AertlLevel;

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 43 (89)

enum {
connection_cl ose_notify(0),
session_cl ose_notify(1)
no_connecti on(5),
unexpect ed_nessage(10),
bad_record_nac(20),
decryption_failed(21),
record_overfl ow22),
deconpressi on_fail ure(30),
handshake_f ai | ure(40),
bad_certificate(42),
unsupported_certificate(43),
certificate_revoked(44),
certificate_expired(45),
certificate_unknown(46),
illegal _paraneter(47),
unknown_ca(48),
access_deni ed(49),
decode_error (50),
decrypt _error(51),
unknown_key i d(52),
di sabl ed_key_i d(53),
key_exchange_di sabl ed(54),
sessi on_not _ready(55),
unknown_par anet er _i ndex(56),
duplicate_finished_received(57),
export _restriction(60),
pr ot ocol _version(70),
i nsufficient_security(71),
i nternal _error(80),
user _cancel ed(90),
no_renegoti ati on(100), (255)
} AlertDescription;

struct {
Al ertLevel [evel;
Al ertDescri ption description;
opaque checksuni 4]

} Alert;

10.2.1 Closure Alerts

The client and the server must share knowledge that the secure connection is ending. Either party may initiate the
exchange of closing messages.

Alert Description

connection_close notify | This message notifies the recipient that the sender will not send any more messages
using this connection state.

session_close_notify This message notifies the recipient that the sender will not send any more messages
using this connection state or the secure session.

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 44 (89)

Either party may initiate a close by sending a connection_close _notify or session_close _notify alert. Any data received
after aclosure alert isignored. It isrequired that the other party responds with a connection_close _notify or
session_close notify aert of its own, respectively, and close down the secure connection immediately, discarding any
pending writes. It the case of a session_close_notify, the receiver MUST also invalidate the session identifier. It is not
required for the initiator of the close to wait for the responding connection_close _notify or sesson_close_notify alert
before closing the read side of the secure connection. The alert level MUST be set to critical for connection_close_notify
and fatal for session_close notify.

10.2.2 Error Alerts

Error handling in the WTLS Handshake protocol is very smple. When an error is detected, the detecting party sendsa
message to the other party. Upon transmission or receipt of afatal alert message, both partiesimmediately close the secure
connection. Servers and clients arerequired to forget any session identifiers, keys, and secrets associated with a failed
secure connection. Upon transmission or receipt of acritical alert message, both partiesimmediately close the secure
connection but MAY preserve the session-identifiers and use that for establishing new secure connections. The following
error alerts are defined:

Alert

Description

Nno_connection

A message was received while there is no secure connection with the sender. This
message is fatal or critical. The message is sent in cleartext.

unexpected_message

An inappropriate message was received. Thisalert SHOULD be fatal or critical.

bad record_mac

Thisalert isreturned if arecord is received with an incorrect MAC. Thismessage is
generally awarning. The message is sent in cleartext.

decryption_failed

A WTLSCiphertext decrypted in an invalid way: either it wasn't a multiple of the block
length or its padding values, when checked, weren’t correct. This messageis generally a
warning. The messageis sent in cleartext.

record_overflow

A WTLSCiphertext record was received which had alength more than allowed bytes, or
arecord decrypted to a WTLSCompressed record with more than allowed bytes. This
message is generally awarning. The messageis sent in cleartext.

decompression_failure

The decompression function received improper input (eg, data that would expand to
excessve length). This messageis generally awarning. The messageis sent in cleartext.

handshake failure

Reception of a handshake failure alert message indicates that the sender was unable to
negotiate an acceptable set of security parameters given the options available. Thisisa
fatal error.

bad certificate

A certificate was corrupt, contained signaturesthat did not verify correctly, etc.

unsupported_certificate

A certificate was of an unsupported type.

certificate revoked

A certificate was revoked by its signer. Note that certificate revocation is likely to be
checked by serversonly.

certificate_expired

A certificate has expired or isnot currently valid.

certificate_unknown

Some other (unspecified) issue arosein processing the certificate, rendering it
unacceptable.

illegal_parameter A fidd in the handshake was out of range or inconsistent with other fields. Thisis
always fatal.
unknown_ca A valid certificate chain or partial chain was received, but the certificate was not

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999

Page 45 (89)

Alert Description
accepted because the CA certificate could not be located or couldn’t be matched with a
known, trusted CA. This messageis always fatal.

access denied A valid certificate was received, but when access control was applied, the sender decided
not to proceed with negotiation. This message is always fatal.

decode_error A message could not be decoded because some field was out of the specified range or the

length of the message was incorrect. This message is fatal or critical.

decrypt_error

A handshake cryptographic operation failed, including being unable to correctly verify a
signature, decrypt a key exchange, or validate a finished message. This message
SHOULD be sent asfatal.

unknown_key id None of the client key_id’slisted in ClientHello.client_key idsis known or recognized
to the server, or the client did not supply any items, if the server has the policy that
reguires recognition of client_key id's. Thisisgenerally afatal aert.

disabled_key id All theclient_key id'slisted in ClientHello.client_key_ids are disabled administratively.

Thisisgenerally acritical alert.

key_exchange disabled

To protect the outcome of the anonymous key exchange from being overriding by the
undesirable subsequent anonymous key exchanges, key exchange is administratively
disabled.

session_not_ready

The secure session is not ready to resume new secure connections due to administrative
reasons such as that the session is temporarily not available due to maintenance in the
server. Thisisgeneraly acritical alert.

unknown_parameter
index

The client has suggested a key exchange suite that could be supported by the server, but
the server does not know the key exchange parameter index supplied. When receiving
thisalert, the client may initiate a new handshake and suggest another parameter index,
supply the parameters explicitly or let the server supply the parameters.

duplicate finished
received

In an abbreviated or optimised handshake, the client has sent a second (resent) finished
message. This message is generally awarning.

export_restriction

A negotiation not in compliance with export restrictions was detected. This messageis
always fatal.

protocol_version

The protocol version the client (or server) has attempted to negotiate is recognised, but
not supported by the server (or client). (For example, old protocol versions might be
avoided for security reasons). This message is always fatal.

insufficient_security

Returned instead of handshake failure when a negotiation has failed specifically because
the server requires ciphers more secure than those supported by the client. This message
isalways fatal.

internal_error Aninternal error unrelated to the peer or the correctness of the protocol makesit
impossible to continue (such as a memory allocation failure). This messageis fatal or
critical.

user_canceled This handshakeis being cancelled for some reason unrelated to a protocal failure. If the

user cancels an operation after the handshake is complete, just closing the secure
connection by sending a connection_close_notify is more appropriate. Thisalert should
be followed by a connection_close_notify. This message is generally a warning.

no_renegotiation

Sent by the client in response to a hello request or by the server in responseto a client

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 46 (89)

Alert Description

hello after initial handshaking. Either of these would normally lead to renegotiation;
when that is not appropriate, the recipient SHOULD respond with this alert; at that point,
the original requester can decide whether to proceed with the secure connection.

For al errorswhere an alert level isnot explicitly specified, the sending party may determine at its discretion whether this
isafatal or critical error or awarning; if an alert with aleve of warning or critical is received, the receiving party may
decide at its discretion whether to treat thisas afatal error or not. However, all messages which are transmitted with a
level of fatal MUST be treated as fatal messages.

Implementations MAY maintain a count of received alertswith alevel of warning or critical, and treat them asfatal when
acertain configurable limit is exceeded.

A fatal alert only terminates the session to be created and leaves the existing session intact if the handshaking is conducted
on an existing secure session. However, there may be some cases that closing the existing session isdesirable. A
session_close_notify MUST be sent to the peer if one of the parties decide to terminate the existing session immediately
after afatal alert issent or received during a handshake that intends to create a new session. Under any other
circumstances, afatal aert istreated normally as described at the beginning of this section.

10.3 Handshake Protocol Overview

The cryptographic parameters of the secure session are produced by the WTLS Handshake Protocol, which operates on
top of the WTLS Record Layer. When aWTLS client and server first start communicating, they agree on a protocol
version, select cryptographic algorithms, optionally authenticate each other, and use public-key encryption techniques to
generate a shared secret.

The WTLS Handshake Protocol involves the following steps:

- Exchange hello messages to agree on algorithms, exchange random values.

- Exchange the necessary cryptographic parametersto allow the client and server to agree on a pre-master secret.
- Exchange certificates and cryptographic information to allow the client and server to authenticate themsel ves.

- Generate a master secret from the pre-master secret and exchanged random values.

- Provide security parametersto the record layer.

- Allow the client and server to verify that their peer has calculated the same security parameters and that the
handshake occurred without tampering by an attacker.

These goals are achieved by the handshake protocol, which can be summarised as follows: The client sendsa client hello
message to which the server must respond with a server hello message, or else afatal error will occur and the secure
connection will fail. The client hello and server hello are used to establish security enhancement capabilities between
client and server. The client hello and server hello establish the following attributes: Protocol VVersion, Key Exchange
Suite, Cipher Suite, Compression Method, Key Refresh, and Sequence Number Mode. Additionally, two random values
are generated and exchanged: ClientHello.random and ServerHello.random.

Following the hello messages, the server will send its certificate, if it isto be authenticated. Additionally, a server key
exchange message may be sent, if it isrequired (eg, the server does not have a certificate, or if its certificate isfor signing
only). The server may request a certificate from the client (or get the certificate from some certificate distribution service),
if that is appropriate to the key exchange suite selected. Now the server will send the server hello done message, indicating
that the hello-message phase of the handshake is complete. (The previous handshake messages are combined in one lower
layer message.) The server will then wait for a client response. If the server has sent a certificate request message, the
client must send the certificate message. The client key exchange message is now sent if the client certificate does not
contain enough data for key exchange or if it is not sent at all. The content of that message will depend on the public key

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 47 (89)

algorithm selected between the client hello and the server hello. If the client is to be authenticated using a certificate with a
signing capability (eg, RSA), a digitally-signed certificate verify messageis sent to explicitly verify the certificate.

At this point, a change cipher spec message is sent by the client, and the client copies the pending Cipher Spec into the
current write Cipher Spec. The client then immediately sends the finished message under the new algorithms, keys, and
secrets. From now on, the Cipher Spec indicator is set to 1 in the messages. When the server receives the change cipher
spec message it also copies the pending Cipher Spec into the current read Cipher Spec. In response, the server will also
send its own ChangeCipher Spec message, set its current write Cipher Spec to the pending Cipher Spec, and send its own
finished message under the new Cipher Spec. At this point, the handshake is complete and the client and server may begin
to exchange application layer data. (See flow chart below.)

dient Server

CientHello a--en--- >
ServerHel | o
Certificate*
Ser ver KeyExchange*
Certificat eRequest*

S Server Hel | oDone
Certificate?*
d i ent KeyExchange*
CertificateVerify*
[ChangeCi pher Spec]
Finished -------- >
Cmmmmme-- [ChangeG pher Spec]
Fi ni shed
Application Data <------- > Application Data

Figure 5. Message flow for a full handshake
* Indicates optional or situation-dependent messages that are not always sent.

When the client and server decide to resume a previous secure session instead of negotiating new security parameters the
message flow is as follows:

The client sends a ClientHello using the Session ID of the secure session to be resumed. The server then checks its secure
session cache for amatch. If amatch isfound, and the server iswilling to re-establish the secure connection under the
specified secure session, it will send a ServerHello with the same Session ID value. At this point, the server must send a
ChangeCipherSpec message and proceed directly to the Finished message to which the client should response with its own
ChangeCipher Spec and Finished message. Once the re-establishment is complete, the client and server may begin to
exchange application layer data. (See flow chart below.) In addition, a new key refresh rate MAY be negotiated during the
abbreviated handshake for a secure connection. If a Session ID match is not found, the server generates a new session ID
and the TLS client and server perform afull handshake.

Note that many simultaneous secure connections can be instantiated under one secure session. Each secure connection
established from the same secure session shares some parameters with the others (eg, master secret).

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 48 (89)

dient Server

dientHello a-ee-n-- >
ServerHel | o
[ChangeCi pher Spec]

S Fi ni shed
[ChangeCi pher Spec]
Fi ni shed
Application Data -------- >
Application Data S > Application Data

Figure 6. Message flow for an abbreviated handshake

The shared-secret handshake means that the new secure session is based on a shared secret already implanted in both ends
(eg, physically). In this case, the shared secret is used as the pre-master secret and the SHARED _SECRET key exchange
suite is requested by the client in ClientHello. The message flow is similar to the abbreviated handshakein Figure 6,
except that the ClientHello.session_id is empty and that a non-empty identifier MUST be supplied in the corresponding
element for SHARED_SECRET key exchange suite of the ClientHello.client_key _ids. Like the secure sessions created by
any other types of handshakes, a secure session created by the shared-secret handshake MAY also be resumable.

Anocther variation isthat the server, after receiving the ClientHello, can retrieve client’ s certificate using a certificate
distribution service or from its own sources. In a Diffie-Hellman type key exchange method, assuming the Diffie-Hellman
parameters are provided in the certificates, the server can calculate the pre-master secret and master secret at this point. In
this casg, the server sendsits certificate, a Change Cipher Spec, and a Finished message. The client respondswith a
ChangeCipherSpec and Finished message and appication data can nhow be exchanged.

dient Server
CientHello ceeeaa-- >
ServerHel |l o
Certificate
[ChangeCi pher Spec]
<m------- Fi ni shed

[ChangeCi pher Spec]

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 49 (89)

Fi ni shed
Application Data @ -------- >
Application Data <------- > Application Data

Figure 7. Message flow for an optimised full handshake

10.4 Handshake Reliability over Datagrams

In the datagram environment, handshake messages may be lost, out of order, or duplicated. To make the handshake
reliable over datagrams, WTLS requires that the handshake messages going in the same direction must be concatenated in
asingle transport Service Data Unit (SDU) for transmission, that the client retransmits the handshake messages if
necessary, and that the server MUST appropriately respond the retransmitted messages from the client.

The handshake may consist of multiple messages to be delivered in one direction before any responses are required from
the other end. Those messages must be concatenated into a single transport SDU for transmission or retransmission to
guarantee that all the messagesin the same SDU arrivein order. For instance, ServerHello, ChangeCipher Spec, and
Finished messages can be sent in a single transport SDU for the abbreviated handshake. The maximum size of SDU for
the underlying transport service layer must be sufficient to contain all those messages.

For the full handshake, the client must retransmit ClientHello and Finished messagesiif the expected response messages
are not received from the server for a predefined time-out period. Note that the whole transport SDU which contains the
Finished message must be retransmitted. After the number of retransmissions exceeds the maximum predefined
retransmission counter, the client terminates the handshake. Those predefined time-out and counter values may be
obtained from the WTP stack through the management entity if the WTP stack is present above the WTLS stack.

For the optimized and abbreviated handshakes, like the full handshake, the client retransmits ClientHello, if necessary. In
addition, the client must also prepend Finished message with the Application Data message until an Application Data
message from the server is received and decrypted successfully or a duplicated finished received alert (warning) is
received from the server. However, the first Finished message can be either sent alone or prepend with the Application
Data message, if any.

For the full handshake, the server MUST retransmit the transport SDU which contains the ServerHello message upon
receiving a duplicated ClientHello message. However, if the ClientHello is new, the server MUST start a new handshake
and SEC-Create.ind service primitive MUST be generated. The server MUST also retranamit the transport SDU which
contains the Finished message upon receiving a duplicated Finished message from the client.

For the optimized and abbreviated handshakes, the server behaves the same as that in the full handshake for handling the
duplicated or new ClientHello messages. In addition, the server MUST ignore duplicated Finished message and keep the
committed secure connection intact. If the server has no Application Data to send to the client, it SHOULD send
duplicated finished received alert (warning).

10.5 Handshake Protocol

The WTLS Handshake Protocol is one of the defined higher level clients of the WTLS Record Pratocol. This protocol is
used to negotiate the secure attributes of a secure session. Handshake messages are supplied to the WTLS Record Layer,
where they are encapsulated within one or more WTLSPlaintext structures, which are processed and transmitted as
specified by the current active connection state.

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 50 (89)

enum {
hel l o_request (0), client_hello(1), server_hello(2),
certificate(1l), server_key_exchange(12),
certificate_request(13), server_hell o_done(14),
certificate_verify(15), client_key_exchange(16),
fini shed(20), (255)

} HandshakeType;

struct {
HandshakeType nsg_type; /* handshake type */
uint 16 | engt h; /* bytes in nessage */
sel ect (msg_type) {
case hel |l o_request: Hel | oRequest ;
case client _hello: AientHello;
case server _hell o: Server Hel | o;
case certificate: Certificate;
case server_key_exchange Ser ver KeyExchange;
case certificate_request: Certificat eRequest;
case server_hel |l o_done: Server Hel | oDone;
case certificate verify: CertificateVerify;
case client_key_exchange: d i ent KeyExchange;
case finished: Fi ni shed;
} body;
} Handshake;

The handshake protocol messages are presented below in the order they must be sent; sending handshake messagesin an
unexpected order resultsin afatal error. Unneeded handshake messages can be omitted, however. Note one exception to
the ordering: the Certificate message is used twice in the handshake (from server to client, then from client to server), but
described only in itsfirst position. The one message which is not bound by these ordering rulesis the Hello Request
message, which can be sent at any time, but which should beignored by the client if it arrivesin the middle of a
handshake.

10.5.1 Hello Messages

The hello phase messages are used to agree on used security parameters between the client and server. When a new secure
session begins, the connection state (encryption, hash, and compression algorithms) isinitialised to null. The Cipher Spec
indicator is set to 0 in the records.

10.5.1.1 Hello Request

When this message will be sent:
The hello request message may be sent by the server at any time.
Meaning of this message:

Hello request is a simple natification that the client should begin the negotiation process anew by sending a client
hello message when convenient. This message will beignored by the client if the client is currently negotiating a
secure session. Thismessage MAY beignored by the client if it does not wish to make a new handshake, or the
client may, if it wishes, respond with ano_renegotiation alert. Since handshake messages are intended to have
transmission precedence over application data, it is expected that the negotiation will begin before no more than a
few records are received from the client. If the server sends a hello request but does not receive aclient helloin
response, it MAY close the secure connection with afatal alert.

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 51 (89)

After sending a hello request, servers should not repeat the request until the subsequent handshake negotiation is complete.
However, if the client does not respond in a reasonable time, the message MAY be sent again.

Structure of this message:

struct { } Hell oRequest;

Note: This message must not beincluded in the message hashes which are maintained throughout the handshake and used
in the finished messages and the certificate verify message.

10.5.1.2 Client Hello

When this message will be sent:

When aclient first connectsto a server it is required to send the client hello asitsfirst message. The client can also
send aclient hello in response to a hello request or on its own initiative in order to renegotiate the security
parametersin an existing secure connection.

Structure of this message:

The key exchange list contains the cryptographic key exchange algorithms supported by the client in decreasing order of
preference. In addition, each entry defines the certificate or public key the client wishesto use. The server will select one
or, if no acceptable choices are presented, return a handshake_failure alert and close the secure connection. The trusted
authoritieslist with a ssmilar format identifies the trusted certificates known by the client.

struct {
uint 32 gnt _uni x_ti ne;
opaque random bytes[12];

} Random
[tem Description
gmt_unix_time The current time and date in standard UNIX 32-bit format (seconds since the midnight starting
Jan 1, 1970, GMT) according to the sender’ sinternal clock. Clocks are not required to be set
correctly by the basic WTLS Protocal ; higher level or application protocols may define
additional requirements. If the client is not able to produce the time in standard UNIX 32-bit
format it SHOULD use here a 32-bit value that has the 8 most significant bits set to zero (to
indicate that thisvalueis not the standard UNIX 32-bit format) and the rest of 24 bits set
according to alternative date/time source or arandom number.
random_bytes 12 bytes generated by a secure random number generator. Thisvalue will be used later in the
protocol.
ui nt 8 KeyExchangeSuit e; /* Key exchange suite selector */
struct {
uint8 dh_e;

opaque dh_p<1..2716-1>;

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 52 (89)

opaque dh_g<1..2716-1>;
} DHParameters;

[tem Description

dh_e The exponent length in bytes. The value O indicates that the default length isused (i, the
same length asthe prime).

dh_p The prime modulus used for the Diffie-Hellman operation.

dh_g The generator used for the Diffie-Hellman operation.

enum { ec_prinme_p(1l), ec_characteristic_two(2), (255) } ECFieldlD

enum { ec_basis_onb(1l), ec_basis_trinomal (2), ec_basis_pentanom al (3),
ec_basis_pol ynom al (4) } ECBasi sType;

struct {
opaque a <1..278-1>;
opaque b <1..278-1>;
opaque seed <0..2"8-1>;

} ECCurve;
Item Description
a b These parameters specify the coefficients of the dliptic curve. Each value shall be the octet
string representation of a field element following the conversion routine in [X9.62], section
4.3.1.
seed: Thisisan optional parameter used to derive the coefficients of arandomly generated dliptic
curve.
struct {
opaque point <1..2"8-1>;
} ECPoi nt;
Item | Description
point Thisisthe octet string representation of an eliptic curve point following the conversion
routine in [X9.62], section 4.3.6. The representation format is defined following the definition
in [X9.62], section 4.3.6.
struct {

ECFieldID field,
select (field) {
case ec_prine_p: opaque prime_p <1..278-1>;
case ec_characteristic_two:

uint16 m

ECBasi sType basi s;

sel ect (basis) {

case ec_basi s _onb:
struct { };

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999

Page 53 (89)

case ec_trinomal:

uint16 k;

case ec_pentanom al :

uint 16 ki1;
uint16 k2;
ui nt 16 k3;

case ec_basis_pol ynoni al :

b
1
ECCur ve
ECPoi nt
opaque
opaque
} ECParaneters;

opaque irreducible <1..2"8-1>

curve;

base;

order <1..278-1>;
cof actor <1..2"8-1>;

[tem Description

field Thisidentifies thefinite field over which the dliptic curve is defined.

prime_p Thisisthe odd prime defining the field Fp.

m Thisisthe degree of the characterigtic-two field Fom

k The exponent k for the trinomical basis representation x ™ + x * + 1.

k1, k2, k3 The exponents for the pentanomial representation x ™ + x*© + x 2 + x** + 1.

irreducible The irreducible polynomial.

curve Specifies the coefficients aand b of the dliptic curve E.

base The base point P on the dliptic curve.

order The order n of the base point. The order of a point P is the smallest possible integer n such that
nP = 0 (the point at infinity).

cofactor

Theinteger h = #E(Fq)/n, where #E(Fq) represents the number of points on the liptic curve E
defined over the field Fq.

ui nt 8 Par anet er | ndex;

enum{ rsa, diffie_hellman, elliptic_curve } PublicKeyAl gorithm

struct {

ui nt 16 | engt h;

sel ect (PublicKeyAl gorithm {

case rsa:

struct {};

case diffie_hell man: DHParaneters parans;
case elliptic_curve: ECParameters parans;

} Paranet er Set ;

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 54 (89)

[tem | Description
length | Indicates the number of bytes of all the following data in the Parameter Set structure.
struct {

Par anet er | ndex par anet er _i ndex;

sel ect (parameter_index) {
case 255: Paraneter Set paraneter_set;
default: struct {};

} Paranet er Specifier;

[tem Description

parameter_index Indicates parameters relevant for this key exchange suite
0 = not applicable, or specified e sewhere.
1...254 = assigned number of a parameter set, defined in Appendix A

255 = explicit parameters are present in the next field

parameter_set Explicit parameters, eg, Diffie-Hellman or ECDH parameters. |mplementations
SHOULD use parameter indexesinstead of explicit parameters.

enum { null (0), text(1l), binary(2), key_hash_sha(254), x509_ nane(255)}
I dentifierType;

ui nt 16 Char act er Set ;

struct {
IdentifierType identifier_type;
select (identifier_type) {
case null: struct {};
case text:
Charact er Set character_set;
opague nane<l.. 2/8-1>
case binary: opaque identifier<l..2"8-1>;
case key_hash_sha: opaque key_hash[20];
case x509_name: opaque distingui shed_nanme<1..278-1>
} ldentifier;

[tem Description

identifier_type Type of identifier used

0 = noidentity supplied

1 = textual name with character set
2 = binary identity

254 = SHA-1 hash of the public key

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999

Page 55 (89)

[tem Description
255 = X.509 distinguished name
character set Maps to IANA defined character set.
name Textual name.
identifier Binary identifier.
key_hash Hash of the public key of the key pair which the client intends to use in the handshake

to proveitsidentity.

For RSA, the SHA-1 hash is to be done on the byte string representation of the public
modulus [PKCS1].

For ECC, the SHA-1 hash is to be done on the byte string representation of the x-
coordinate of the liptic curve point [X9.62].

distinguished_name

struct {

X.509 digtinguished name.

KeyExchangeSui t e key_exchange_suite;
Par anet er Speci fi er paraneter_specifier;
Identifier identifier;

} KeyExchangel d;

Item

Description

key_exchange suite

Assigned number of the key exchange suite, defined in Appendix A.

parameter_specifier

Specifies parameters relevant for this key exchange suite. Value zero of a parameter
index for a key exchange suite using parameters, indicates that the server MUST supply
parameters

identifier

Identifies the client in arelevant way for the key exchange suite. The server can use
thisinformation to fetch a client certificate from a database.

The CipherSuite list, passed from the client to the server in the client hello message, contains the combinations of
symmetric cryptographic algorithms supported by the client in order of the client's preference (favourite choice first). Each
CipherSuite defines a bulk encryption algorithm (including secret key length) and a MAC algorithm. The server will select
acipher suiteor, if no acceptabl e choices are presented, return a handshake failure alert and close the secure connection.

struct {

Bul kG pher Al gorithm bul k_ci pher _al gorithm

MACAI gori t hm
} G pherSuite

Item

mac_al gorithm

Description

bulk_cipher_algorithm

Assigned number of the bulk cipher algorithm, defined in Appendix A.

mac_algorithm

Assigned number of the MAC algorithm, defined in Appendix A.

opaque Sessi onl D<0. . 8>;

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999

Page 56 (89)

Theclient hello includes alist of compression algorithms supported by the client, ordered according to the client's

preference.

ui nt 8 Conpr essi onMet hod;

struct {

uint8 client _version;

Random r andom

Sessi onl D session_id;

KeyExchangel d client_key_ ids<0..2"16-1>;
KeyExchangel d trusted_key_ i ds<0..2"16-1>;

G pher Suite ci pher_suites<2..2"8-1>;

Conpr essi onMet hod conpr essi on_met hods<1. . 278- 1>;
SequenceNunber Mbde sequence_nunber _node;

uint 8 key_refresh;

} dientHello;

Iltem

Description

client_version

The version of the WTLS protocol by which the client wishes to communicate during
this secure session. This should be the latest (highest valued) version supported by the
client. For this version of the specification, the version will be 1.

random A client-generated random structure.

session_id The ID of a secure session the client wishes to use for this secure connection. Thisfield
should be empty if no session_id isavailable or the client wishes to generate new
security parameters.

client_key_ids A list of cryptographic key exchange options and identities supported by the client,
with the client'sfirst preference first.

trusted_key ids A list of trusted certificates known by the client, with the client's first preferencefirst.

cipher_suites Thisisalist of the cryptographic options supported by the client, with the client's first

preferencefirst.

compression_methods

Thisisalist of the compression methods supported by the client, sorted by client
preference. Thisvector MUST contain, and all implementations MUST support,
CompressionMethod NULL. Thus, aclient and server will always be able to agreeon a
compression method.

sequence_number_mode

This value indicates how sequence numbering should be used in record layer messages.

key refresh

Defines how often some connection state parameters (encryption key, MAC secret, and
V) are updated. See Section 9.1. A new key refresh rate MAY be suggested for
abbreviated handshake.

After sending the client hello message, the client waits for a server hello message. Any other handshake message returned
by the server except for ahello request istreated asacritical or fatal error.

When the client has an existing session_id and isinitiating an abbreviated handshake, it MAY omit key exchange related
items (client_key ids, trusted key ids) from the client hello message. In this case, if the server is not willing to resume
the session and is not able to continue with afull handshake, and it MUST to return an unknown_key id alert.

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 57 (89)

10.5.1.3 Server Hello

When this message will be sent:

The server will send this messagein response to a client hello message when it was able to find an acceptable set of
algorithms. If it cannot find such a match, it must respond with a handshake failure alert.

Structure of this message:

struct {
ui nt 8 server_version;
Random r andom
Sessi onl D session_id;
uint8 client_key_ id;
G pher Suite ci pher_suite;
Conpr essi onMet hod conpr essi on_met hod,;
SequenceNunber Mbde sequence_nunber _node;
ui nt 8 key_refresh;
} ServerHell o;

[tem Description

Server_version Thisfield will contain the lower of that suggested by the client in the client hello and the
highest supported by the server. For this version of the specification, the version is 1.

Random This structure is generated by the server and must be different from (and independent of)
ClientHdlo.random.

session_id Thisisthe identity of the secure session corresponding to this secure connection. If the
ClientHello.session_id was non-empty, the server will look in its secure session cache for
amatch. If amatch isfound and the server iswilling to establish the new secure
connection using the specified secure session, the server will respond with the same value
aswas supplied by the client. Thisindicates a resumed secure session and dictates that
the parties must proceed directly to the finished messages. Otherwise thisfield will
contain a different value identifying the new secure session. The server MAY return an
empty session_id to indicate that the secure session will not be cached and therefore
cannot be resumed. If a secure session isresumed, it must be using the same cipher suite
it was originally negotiated with.

client_key id The number of the key exchange suite selected by the server from thelist in
ClientHdlo.client_key_ids. For example, value one indicates that the first entry was
selected. For abbreviated handshake, value 0 MAY be used to indicate that thisfield
MUST beignored.

cipher_suite The single cipher suite seected by the server from thelist in ClientHello.cipher_suites.
compression_method The single compression algorithm selected by the server from thelist in

ClientHello.compression_methods.

sequence_number_mode | If the client suggested usage of sequence numbers then the server MUST confirm the
value. If the client did not suggest usage the server can confirm that choice or indicate
that sequence numbering should be used. So, if any party wishes to use sequence
numbers then they have to be used.

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 58 (89)

[tem Description

key _refresh This value indicates how many bits of the sequence number the server wishesto useto
trigger key refresh. The value can be equal to what the client suggested or less. So, lower
choice isused resulting in more frequent key refresh and thus higher security. A new key
refresh rate MAY be suggested for abbreviated handshake.

10.5.2 Server Certificate

When this message will be sent:
If sent this message must always immediately follow the server hello message.
Meaning of this message:

The certificate type must be appropriate for the selected key exchange suite's algorithm. It can be a X.509v3
certificate [X509], a WTLS certificate which is optimised for size, or a X9.68 certificate (note: this certificate type
has not been defined at the point of time of publication of this specification). Other certificate types may be added
in the future. It must contain a key which matches the key exchange method, as follows. Unless otherwise
specified, the signing algorithm for the certificate must be the same as the algorithm for the key carried in the
certificate. Unless otherwise specified, the public key may be of any length.

As KeyExchangeSuites which specify new key exchange methods are specified for the WTLS Protocol, they will imply
certificate format and the required encoded keying information.

Structure of this message:

enum { WLSCert (1), X509Cert(2), X968Cert(3), (255) } CertificateFormat;

opaque X509Certificate<l..2716-1>;

opaque X968Certificate<l..2"16-1>;

enum { anonynous(0), ecdsa_sha(l), rsa_sha(2), (255)} SignatureAl gorithm

enum { rsa(2), ecdh(3), ecdsa(4), (255) } PublicKeyType;

ECPoi nt ECPubl i cKey;

[tem | Description
ECPublicKey | The EC public key W = sG [P1363].
struct {

opaque rsa_exponent<l..2"16- 1>,
opaque rsa_nodul us<1..2"16-1>;
} RSAPubl i cKey;

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 59 (89)

[tem Description

rsa_exponent The exponent of the server’s RSA key.

rsa_modulus The modulus of the server’s RSA key.
struct {

sel ect (PublicKeyType) ({
case ecdh: ECPubli cKey;
case ecdsa: ECPubl i cKey;
case rsa: RSAPubl i cKey;
} Publi cKey;

struct {
uint8 certificate_version;
Si gnat ur eAl gorithm si gnat ure_al gorithm
Identifier issuer;
uint32 valid not before;
uint32 valid not_after;
Identifier subject;
Publ i cKeyType public_key_ type;
Par anet er Speci fi er paraneter_specifier;
Publ i cKey public_key;
} ToBeSi gnedCertificate;

[tem Description

certificate version Version of the certificate. For this specification, the version is 1.

signature_algorithm Algorithm used to sign the certificate.

i ssuer Issuer of the certificate. Defines who signed the certificate. Certificates are usually signed
by Certification Authorities (CA)

valid_not_before Beginning of the validity period of the certificate, expressed in standard UNIX 32-bit
format (seconds since the midnight starting Jan 1, 1970, GMT)

valid_not_after End of the validity period of the certificate, expressed in standard UNIX 32-bit format
(seconds since the midnight starting Jan 1, 1970, GMT)

subject Owner of the key, associated with the public key being certified.

public_key type Type (algorithm) of the public key.

parameter_specifier Specifies parameter relevant for the public key.

public_key Public key that is being certified.

The hash value and the signature is calculated from ToBeSignedCertificate using the algorithms defined in
CertificateSignatureAlgorithm.

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999

Page 60 (89)

sel ect(SignatureAl gorithm)

ly-signed struct {

opaque sha_hash[20]; /* SHA-1 hash of data to be signed */

ly-signed struct {

opaque sha_hash[20]; /* SHA-1 hash of data to be signed */

{
case anonynmous: { };
case ecdsa_sha:
digital
}
case rsa_sha:
digital
} Signature;
struct {

ToBeSi gnedCertificate to_be signed_certificate;
Si gnat ure si gnat ure;
} WILSCertificate,;

struct {

CertificateFormat certificate fornmat;

select (certificate_format) {
case WILSCert: WLSCertificate;
case X509Cert: X509Certificate;
case X968Cert: X968Certificate;

}
} Certificate;

struct {

Certificate certificate |ist<0..2"16-1>;
} Certificates;

Item

Description

certificate list

Thisis a sequence (chain) of certificates. The sender's certificate MUST comefirst in thelist. Each
following certificate MUST directly certify the one preceding it. Because certificate validation
requires that root keys must be distributed independently, the self-signed certificate which specifies
the root certificate authority is omitted from the chain, under the assumption that the remote end
must already possessit in order to validate it in any case.

The same message type and structure will be used for the client's response to a certificate request message. Note that a
client may send no certificatesif it does not have an appropriate certificate to send in response to the server's
authentication request.

To optimise the traffic and client processing, the chain should have minimal length. For server certificates, it ispossible to
have only one certificate: the server certificate certified by a CA public key of which is distributed independently.

Client certificate chain islikely to contain several certificates. However, thisis acceptable because this chain is processed
by the server. Also, server may get the client certificate from a certificate distribution service.

In acertificate chain, all certificates must use algorithms appropriate for the selected key exchange suite. Eg,

- for RSA, al certificates carry RSA keys signed with RSA

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 61 (89)

- for ECDH_ECDSA, thefirgt certificate contains an ECDH key signed with ECDSA, and the following certificates
carry ECDSA keys signed with ECDSA

10.5.3 Server Key Exchange Message

When this message will be sent:

This message will be sent immediately after the server certificate message (or the server hello message, if thisisan
anonymous negotiation).

The server key exchange message is sent by the server only when the server certificate message (if sent) does not contain
enough data to allow the client to exchange a pre-master secret. Thisistrue for the following key exchange methods:

- ECDH_anon

- RSA_anon

- DH_anon

The server key exchange message MUST NOT be sent for the following key exchange methods:

- ECDH_ECDSA (fixed parameters)

- RSA

Meaning of this message:
This message conveys cryptographic information to allow the client to communicate the pre-master secret: either
an RSA public key to encrypt a secret with, or EC Diffie-Hellman parameters with which the client can complete a
key exchange (with the result being the pre-master secret). As additional Key Exchange Suites are defined for
WTLS which include new key exchange algorithms, the server key exchange message will be sent if and only if the

certificate type associated with the key exchange algorithm does not provide enough information for the client to
exchange a pre-master secret.

Structure of this message:

enum { rsa, rsa_anon, dh_anon, ecdh_anon, ecdh_ecdsa } KeyExchangeAl gorithm

struct {
opaque dh_Y<1..2716-1>;
} DHPubl i cKey;

[tem | Description

dn_y | The Diffie-Hellman public value (Y).

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 62 (89)

struct {
Par anet er Speci fi er paraneter_specifier;
sel ect (KeyExchangeA gorithm {
case rsa_anon:
RSAPubl i cKey par ans;
case dh_anon:
DHPubl i cKey par ans;
case ecdh_anon:
ECPubl i cKey par ars;

1
} Server KeyExchange;
[tem Description
parameter_specifier Specifies parameters relevant for this key exchange suite. Value zero of a parameter

index for a key exchange suite using parameters, indicates that the server iswilling to use
those parameters indicated by the client. If the client has not indicated parameters then
the server MUST indicate them.

Params The server's key exchange parameters (RSA, ECDH or DH public key).

10.5.4 Certificate Request

When this message will be sent:

A server can optionally request a certificate from the client, if appropriate for the selected cipher suite. This
message, if sent, will immediately follow the Server Certificate message and Server Key Exchange message (if
sent).

Structure of this message:

struct {
KeyExchangel d trusted_aut horities<0..2"16-1>;
} CertificateRequest;

[tem Description

trusted_authorities A list of the names and types of acceptable certificate authorities. These hames may
specify adesired id for aroot CA or for a subordinate CA; thus, this message can be
used both to describe known roots and a desired authorisation space. If no authoritiesare
sent, client may send any certificate.

10.5.5 Server Hello Done

When this message will be sent:

The server hello done message is sent by the server to indicate the end of the server hello and associated messages.
After sending this message the server will wait for a client response.

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 63 (89)

Meaning of this message:

This message means that the server is done sending messages to support the key exchange, and the client can
proceed with its phase of the key exchange.

Upon receipt of the server hello done message the client should verify that the server provided a valid certificate if
required and check that the server hello parameters are acceptable.

Structure of this message:

struct { } ServerHell oDone;

10.5.6 Client Certificate

When this message will be sent:

This message the client can be sent after receiving a server hello done message. This message isonly sent if the
server requests a certificate. If no suitable certificate is available, the client must send a certificate message
containing no certificates. If client authentication is required by the server for the handshake to continue, it MAY
respond with afatal handshake failure aert. Client certificates are sent using the Certificate structure defined
previously for server certificates.

10.5.7 Client Key Exchange Message

When this message will be sent:

This message will immediately follow the client certificate message, if it is sent. Otherwise it will be the first
message sent by the client after it receives the server hello done message.

Meaning of this message:

With this message, the pre-master secret is set, either through direct transmission of the RSA-encrypted secret, or
by the transmission of EC Diffie-Hellman public key which will allow each side to agree upon the same pre-
master secret. When the key exchange method is ECDH, client certification has been requested, and the client was
able to respond with a certificate that contained EC Diffie-Hellman parameters matched those specified by the
server in its certificate, this message is omitted.

Structure of this message:

The structure of the message depends on which key exchange method has been selected.

struct {
sel ect (KeyExchangeAl gorithm {
case rsa: RSAEncryptedSecret param
case rsa_anon: RSAEncryptedSecret param
case dh_anon: DHPublicKey param /* client public val ue*
case ecdh_anon: ECPublicKey param /* client public value */
case ecdh_ecdsa: ECPublicKey param /* client public value */
} exchange_keys;
} dient KeyExchange;

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 64 (89)

10.5.7.1 RSA Encrypted Secret Message

Meaning of this message:

If RSA isbeing used for key agreement and authentication, the client generates a 20 byte secret, encryptsit using
the public key from the server's certificate and sends the result in an encrypted secret message.

Structure of this message:

struct {
uint8 client _version;
opaque randoni 19];

Secret;
[tem Description
client_version The latest (newest) version supported by the client. Thisis used to detect version roll-
back attacks. Upon receiving the secret, the server should check that this value matches
the value transmitted by the client in the client hello message.
random 19 securely-generated random bytes.
struct {

publ i c- key-encrypted Secret secret;
} EncryptedSecret;

[tem Description

secret Thisrandom value is generated by the client. This value appended with the public key is
used as the pre-master secret which is used to generate the master secret, as specified in
Chapter 11.

10.5.7.2 Client EC Diffie-Hellman Public Value

Meaning of this message:

This message conveys the client's EC Diffie-Hellman public key if it was not already included in the client's
certificate. This structureis avariant of the client key exchange message, not a message in itself.

10.5.7.3 Client Diffie-Hellman Public Value

Meaning of this message:

This message conveys the client's Diffie-Hellman public key if it was not already included in the client's certificate.
This structureis a variant of the client key exchange message, not a message in itself.

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 65 (89)

10.5.8 Certificate Verify

When this message will be sent:

This message is used to provide explicit verification of a client certificate. This messageis only sent by the client
following a client certificate that has signing capability (ie, RSA certificates). When sent, it will immediately
follow the client key exchange message.

Structure of this message:

struct {
Si gnat ure si gnat ure;
} CertificateVerify;

[tem Description

signature The hash value to be signed is calculated as follows:
H(handshake messages);

Here handshake messages refersto all handshake messages sent or received starting at
client hello up to but not including this message, in the order they were sent by the client or
by the server, including the data visible at the handshake layer, ie, also the type and length
fields of the handshake messages. Thisisthe concatenation of all the Handshake structures
as defined in Section 10.5 exchanged thisfar.

The hash algorithm used is the one agreed during the handshake.

10.5.9 Finished

When this message will be sent:

A finished message is always sent at the end of the handshake to verify that the key exchange and authentication
processes were successful. Both ends must change finished messages immediately after a change cipher spec

message.
Meaning of this message:

The finished message is the first protected with the just-negotiated algorithms, keys, and secrets. Recipients of
finished messages MUST verify that the contents are correct. Once a side has sent its Finished message and
received and validated the Finished message from its peer, it may begin to send and receive application data over
the secure connection.

Structure of this message:

struct {
opaque verify_data] 12];
} Fini shed;

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 66 (89)

[tem Description

verify_data Thevalueis calculated as follows:
PRF(master_secret, finished label, H(handshake _messages)) [0..11];
finished_|abel

For Finished messages sent by the client, the string "client finished". For Finished
messages sent by the server, the string "server finished".

handshake messages

All of the data from all handshake messages up to but not including this message, in

the order they were sent by the client or by the server. Thisisonly data visible at the
handshake layer and does not include record layer headers. Thisisthe concatenation
of all the Handshake structures as defined in Section 10.5 exchanged thus far.

Itisacritical or fatal error if afinished message is not preceded by a change cipher spec message at the appropriate point
in the handshake.

The value handshake messagesincludes all handshake messages starting at client hello up to, but not including, this
finished message. The handshake messages for the finished message sent by the client will be different from that for the
finished message sent by the server, because the one which is sent second will include the prior one.

Note: Change cipher spec messages, alerts and any other record types are not handshake messages and are not included in
the hash computations. Also, Hello Request messages are omitted from handshake hashes.

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 67 (89)

11 Cryptographic Computations

11.1 Computing the Master Secret

In order to begin message protection, the WTLS Record Protocol requires specification of a suite of algorithms, a master
secret, and the client and server random values. The encryption and MAC algorithms are determined by the cipher_suite
sdlected by the server and revealed in the server hello message. The key exchange and authentication algorithms are
determined by the key _exchange suite also revealed in the server hello. The compression algorithm is negotiated in the
hello messages, and the random values are exchanged in the hello messages. All that remainsis to calcul ate the master
SECret.

For all key exchange methods, the same algorithm is used to convert the pre_master_secret into the master_secret. The
pre_master_secret SHOULD be deleted from memory once the master_secret has been computed.

master _secret = PRF(pre_master_secret, "master secret"”,
CientHello.random + ServerHell o.random) [0..19];

The master secret is always exactly 20 bytes in length. The length of the pre-master secret will vary depending on key
exchange method.

11.1.1 RSA Encryption Scheme

When RSA isused for server authentication and key exchange, a 20-byte secret value is generated by the client,
encrypted under the server's public key, and sent to the server. The server usesits private key to decrypt the secret value .
The pre_master_secret isthe secret value appended with the server’s public key. Both parties then convert the
pre_master_secret into the master_secret, as specified above.

In RSA signing, a 20-byte structure of SHA-1 [SHA] hash is signed (encrypted with the private key), using PKCS #1
[PKCS1] block type 1.

RSA public key encryption is performed using PKCS #1 block type 2.
11.1.2 Diffie-Hellman

The conventional Diffie-Hellman computation is performed. The negotiated key (Z) isused asthe pre_master_secret, and
is converted into the master_secret, as specified above.

11.1.3 EC Diffie-Hellman

The EC Diffie-Hellman computation is performed. The negotiated key (Z) isused asthe pre_master_secret, and is
converted into the master_secret, as specified above.

Elliptic curve calculations are performed according to [P1363].

EC parameters may be transmitted explicitly or using an algorithm definition which specifies pre-defined parameters (see
Appendix A).

EC points are represented according to [P1363] Elliptic Curve Point to Octet String Primitive (EC20SP). Implementations
SHOULD use point compression.

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 68 (89)

ECDSA signature and verification is performed according to [P1363] Elliptic Curve Signature Scheme with Appendix
(ECSSA) using

EMSA-hash with SHA-1, for calculating the hash of the data to be signed

the Elliptic Curve Signature Primitive, DSA version (ECSP-DSA) for signature, and the Elliptic Curve Verification
Primitive, DSA version (ECVP-DSA) for verification

output format for ECSSA, for output of the signature as an octet string
ECDH calculation of the key Z is performed according to [P1363]

using the Elliptic Curve Secret Value Derivation Primitive, Diffie-Hellman version (ECSVDP-DH), for generating a
shared secret value z as afield element

converting the shared secret value z to an octet string Z using Field Element to Octet String Conversion Primitive
(FE20SP)

11.1.4 Session resume

In asession resume, the master_secret is not recal culated. This meansthat a resumed session uses the same master_secret
asthe previous one.

Note that although the same master_secret is used, new ClientHello.random and ServerHello.random values are
exchanged in the abbreviated handshake. These randoms are taken into account in key block generation (see Section 11.2)
meaning that each secure connection starts up with different key material.

11.2 Key Calculation

A connection state (see Section 9.1) is the operating environment of the Record Protocol. An algorithm isrequired to
generate the connection state (encryption keys, 1Vs, and MAC secrets) from the secure session parameters provided by the
handshake protocal.

A new connection state is calculated in the following way:

The master secret is hashed into a sequence of secure bytes, which are assigned to the MAC secrets, encryption keys, and
IVs. To generate the key material, compute

key bl ock = PRF (SecurityParaneters. master_secret,
expansi on_| abel, seq_num +
SecurityParameters. server_random +
SecurityParameters. client_random;

until the needed amount of output has been generated. key_bl ock can be either for client write or server write.
seq_numcan be either Client Write Sequence Number or Server Write Sequence Number. When akey block is
calculated for client write, Client Write Sequence Number is used. When akey_block is calculated for server write,
Server Write Sequence Number isused. Thefirst key_bl ock iscalculated right after the ChangeCipher Spec messageis
sent or received and seq_numisset to 0.

A new key block generation takes place at intervals of the sequence number, corresponding to key refresh frequency. The
sequence number used in the calculation isthe first one that mandates key refresh. For instance, if the key refresh
frequency is every 8 messages, the possible seq_numthat may beused in key_bl ock calculation isQ, 8, 16, 24,

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 69 (89)

When a client receives a record with a sequence number 19 from the server, the client uses 16 asseq_numin calculating
key_bl ock for server write to decrypt the record.

Different value of expansion_labdl is used for client write keys and server write keys. So, the key block generated with
“client expansion” asexpansion_labd, is partitioned as follows:

client_wite_ MAC secret[SecurityParameters. nac_key_si ze]
client_wite encryption_key[SecurityParaneters. key _material _Iength]
client_wite |V[SecurityParanmeters.|V_size]

The key_block generated with “ ser ver expansi on” asexpansion_labe, is partitioned as follows:

server_wite MAC secret[SecurityParaneters. mac_key_size]
server_wite encryption_key[SecurityParaneters. key_material _| ength]
server_wite |V[SecurityParaneters.|V_size]

In WTLS many connection state parameters can be recal culated during a secure connection. Thisfeatureis called the key
refresh. It is performed in order to minimise the need for new handshakes. In the key refresh, the values of MAC secret,
encryption key, and 1V will change due to the sequence number. The frequency of these updates depends on the key
refresh parameter. For example, the key refresh may be performed for every four records. The seq_num parameters used in
the above calculation is the sequence number of the record that triggers key refresh.

Exportable encryption algorithms (for which SecurityParameters.is_exportableistrue) require additional processing as
follows to derive their final write keys:

final _client_wite_encryption_key =
PRF(SecurityParameters.client_wite_encryption_key, "client wite key",
SecurityParaneters.client_random + SecurityParaneters. server_randon;

final _server_wite_encryption_key =
PRF(SecurityParameters. server_wite_encrypti on_key, "server wite key",
SecurityParaneters. client_random + SecurityParaneters. server_randon;

Exportable encryption algorithms derive their Vs solely from the random values from the hello messages:

client_wite_iv = PRF("", "client wite IV', client_wite_seq_num +
SecurityParaneters.client_random + SecurityParaneters. server_randon;

server_ wite iv = PRF("", "server wite |V', server_wite_seq_num+
SecurityParameters.client_random + SecurityParaneters.server_randonj;

Note that the PRF is used without a secret in this case: this just means that the secret has alength of zero bytes and
contributes nothing to the hashing in the PRF.

For CBC mode block ciphers, thelV (initialisation vector) for each record is calculated in the following way:

record IV =1V XOR S

wherelV istheoriginal 1V (client_write IV or server_write 1V) and Sis obtained by concatenating the 2-byte sequence
number of the record needed number of timesto obtain as many bytesasin V. It is also possible that an encryption

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 70 (89)

algorithm supports using a sequence number as input. Then the record sequence number is used as the algorithm sequence
number.

11.3 HMAC and the Pseudorandom Function

A number of operationsin the WTLS record and handshake layer require a keyed MAC; thisis a secure digest of some
data protected by a secret.

In addition, a construction is required to do expansion of secretsinto blocks of data for the purposes of key generation or
validation. This pseudo-random function (PRF) takes as input a secret, a seed, and an identifying label and produces an
output of arbitrary length.

11.3.1 MAC Calculation

HMAC [HMAC] can be used with a variety of different hash algorithms. For example, SHA-1 [SHA] or MD5 [MD5]
could be used. The cryptographic hash function is denoted by H. In addition, a secret key K isrequired. We assume H to
be a cryptographic hash function where data is hashed by iterating a basic compression function on blocks of data. We
denote by B the byte-length of such blocks (B=64 for all the above mentioned examples of hash functions), and by L the
byte-length of hash outputs (L=16 for MD5, L=20 for SHA-1). The authentication key K can be of any length up to B, the
block length of the hash function. Applications that use keys longer than B bytes will first hash the key using H and then
usetheresultant L byte string as the actual key to HMAC. In any case, the minimal recommended length for K isL bytes
(asthe hash output length).

We define two fixed and different stringsipad and opad as follows (the'i* and '0' are mnemonics for inner and outer):

i pad
opad

the byte 0x36 repeated B tines
the byte Ox5C repeated B tines.

To compute HMAC over the data, we use HMAC _hash(K, data) function as defined bel ow,

HVAC hash(K, data) = H K XOR opad + Hl K XOR ipad + data))

where + indicates concatenation. XOR has higher precedence than +. K isalso known asHMAC key.

Namely,

1. Append zerosto the end of K to create a B byte string (eg, if K is of length 20 bytes and B=64, then K will be
appended with 44 zero bytes 0x00).

XOR (bitwise exclusive-OR) the B byte string computed in step (1) with ipad.

Append the datato the B byte string resulting from step (2).

Apply H tothe data generated in step (3).

XOR (bitwise exclusive-OR) the B byte string computed in step (1) with opad.

Append the H result from step (4) to the B byte string resulting from step (5).

Apply H to the data generated in step (6) and output the result.

N o bk wdN

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 71 (89)

11.3.2 Pseudo-random Function

In the TLS standard, two hash algorithms were used in order to make the PRF as secure as possible. In order to save
resources, WTLS can be implemented using only one hash agorithm. Which hash algorithm is actually used, is agreed
during the handshake as a part of the cipher spec.

First, we define a data expansion function, P_hash(secret, data) using a single hash function to expand a secret and seed
into an arbitrary quantity of output:

P_hash(secret, seed) = HVAC hash(secret, A(1l) + seed

) +
HVAC hash(secret, A(2) + seed) +
HVAC hash(secret, A(3) + seed) +

Where + indicates concatenation.

A(0)
A(i)

seed
HVAC hash(secret, A(i-1))

P_hash can beiterated as many times as is hecessary to produce the required quantity of data. For example, if P_SHA was
being used to create 64 bytes of data, it would haveto be iterated 4 times (through A(4)), creating 80 bytes of output data;
the last 16 bytes of the final iteration would then be discarded, leaving 64 bytes of output data.

Then,

PRF(secret, l|label, seed) = P_hash(secret, |abel + seed)

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999

Page 72 (89)

Appendix A Algorithm Definitions

Table 4. The Available Key Exchange Suites

Key Exhange Suite

Assigned
Number

Description

Key Size
Limit
(bits)

NULL

No key exchangeis done. A zero length pre-master secret
isused. Master secret and Finished messages are used for
error checking purposes only.

N/A

SHARED_SECRET

Symmetric-key based handshake. Parties share a secret key
that is used as the pre-master key as such.

None

DH_anon

Diffie-Hellman key exchange without authentication.
Parties send each other (temporary) DH public keys. Each
party calculates the pre-master secret based on one's own
private key and counterpart's public key .

None

DH_anon_512

As DH_anon, but subject to the key size limit.

512

DH_anon_768

As DH_anon, but subject to the key size limit.

768

RSA_anon

RSA key exchange without authentication. The server
sendsits RSA public key. The client generates a secret
value, encryptsit with the server's public key and sendsiit
to the server. The pre-master secret is the secret value
appended with the server’s public key.

None

RSA_anon_512

AsRSA_anon, but subject to the key size limit.

512

RSA_anon_768

AsRSA_anon, but subject to the key size limit.

768

RSA

RSA key exchange with RSA based certificates. The
server sends a certificate that contains its RSA public key.
The server certificate is signed with RSA by athird party
trusted by the client. The client extracts server's public key
from received certificate, generates a secret value,
encryptsit with the server's public key and sendsit to the
server. The pre-master secret is the secret value appended
with the server’s public key. If the client isto be
authenticated it signs some data (messages send during the
handshake) with its RSA private key and sends its
certificate and the signed data.

None

RSA 512

AsRSA, but subject to the key size limit.

512

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 73 (89)

Key Exhange Suite Assigned | Description Key Size
Number Limit
(bits)
RSA_768 10 AsRSA, but subject to the key size limit. 768
ECDH_anon 11 EC Diffie-Hellman key exchange without authentication. None

Parties send each other (temporary) ECDH public keys.
Each party calculates the pre-master secret based on one's
own private key and counterpart's public key .

ECDH_anon_113 12 As ECDH_anon, but subject to the key size limit. 113
ECDH _anon 131 13 As ECDH_anon, but subject to the key size limit. 131
ECDH_ECDSA 14 EC Diffie-Hellman key exchange with ECDSA based None

certificates. The server sends a certificate that containsits
ECDH public key. The server certificate is signed with
ECDSA by athird party trusted by the client. Depending
whether the client isto be authenticated or nat, it sendsits
certificate containing its ECDH public key signed with
ECDSA by athird party trusted by the server, or just its
(temporary) ECDH public key. Each party calculates the
pre-master secret based on one's own private key and
counterpart's public key received as such or contained in a
certificate.

Field | Description

KeySizeLimit | The size of the largest public key that can be used.

Note that regarding to some key exchange suites, export restrictions may apply.

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 74 (89)
Table 5. The Available Bulk Encryption Algorithms
Cipher Assigned | Is Type Key Expanded | Effective | 1V Size | Block
Number | Export- Material Key Key Bits | (bytes) Size
able (bytes) Material (bits) (bytes)
(bytes)
NULL 0 True Stream 0 0 0 0 N/A
RC5_CBC_40 1 True Block 5 16 40 8 8
RC5_CBC_56 2 True Block 7 16 56 8 8
RC5_CBC 3 False Block 16 16 128 8 8
DES CBC_40 4 True Block 5 8 40 8 8
DES CBC 5 False Block 8 8 56 8 8
3DES _CBC_EDE 6 False Block 24 24 168 8 8
IDEA_CBC_40 7 True Block 5 16 40 8 8
IDEA_CBC_56 8 True Block 7 16 56 8 8
IDEA_CBC 9 False Block 16 16 128 8 8
Field Description
IsExportable Encryption algorithms for which IsExportableis true have a limited effective key length
in order to comply with certain export regulations. For them, an additional key expansion
is performed and theinitialization vector is derived in a special way (Chapter 11.2). This
specification does not imply whether it is actually legal to export these algorithms (or
illegal to export algorithms for which IsExportableisfalse) from one specific country to
another.
Type Indicates whether thisis a stream cipher or ablock cipher running in CBC mode.
Key Material The number of bytes from the key block that are used for generating the write keys.

Expanded Key Material | The number of bytesin the write keys.

Effective Key Bits How much entropy material isin the key material being fed into the encryption routines.

IV Size How much data needs to be generated for the initialization vector. Zero for stream
ciphers; equal to the block size for block ciphers.

Block Size The amount of data a block cipher enciphersin one chunk; a block cipher running in

CBC mode can only encrypt a multiple of its block size.

RC5 [RC5] isafamily of block cipher algorithms. RC5 implementations can be designated as RC5-w/r/b, where w isthe
word sizein bits (and also the half of the block size), r isthe number of rounds, and b isthe length of the key in bytes.
Using this notation, the cipher RC5_CBC is RC5-32/16/16. The cipher RC5_CBC_40 isimplemented as an export cipher,

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 75 (89)

using 5 bytes as key material and expanding that to 16 bytes, and then applying RC5-32/12/16. The cipher RC5_CBC_56
isimplemented as an export cipher, using 7 bytes as key material and expanding that to 16 bytes, and then applying RC5-
32/12/16.

Data Encryption Standard (DES) is a very widely used symmetric encryption algorithm. DES is a block cipher with a 56
bit key and an 8 byte block size. Note that in WTLS, for key generation purposes, DESistreated as having an 8 byte key
length (64 bits), but it still only provides 56 bits of protection. DES can also be operated in a mode where three
independent keys and three encryptions are used for each block of data; this uses 168 bits of key (24 bytesin the WTLS
key generation method) and provides the equivalent of 112 hits of security. [DES], [3DES]

IDEA isa64-hit block cipher designed by XugjiaLai and James Massey. [IDEA]

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999

Table 6. The Available Keyed MAC Algorithms

Page 76 (89)

Hash Function

Assigned
Number

Description

Key
Size
(bytes)

MAC
Size
(bytes)

SHA_O

No keyed MAC is calculated. Note than in other than
keyed MAC operations (eg, PRF) the full-length SHA-1 is
used.

SHA_40

The keyed MAC is calculated using SHA-1 but only the
first 5 bytes of the output are used. Note that in other than
keyed MAC operations (eg, PRF) the full-length SHA-1 is
used.

20

SHA_80

The keyed MAC is calculated using SHA-1 but only the
first half of the output (10 bytes) is used. Note that in other
than keyed MAC operations (eg, PRF) the full-length
SHA-1 isused.

20

10

SHA

The keyed MAC is calculated using SHA-1.

20

20

SHA_XOR 40

A 5-byte XOR checksum.

Theinput dataisfirst divided into the multiple blocks of 5
bytes. Then all blocks are XOR’ ed one after ancother. If the
last block islessthan 5 bytes, it is padded with 0xQ0.
SHA is much stronger than XOR for generating MAC's,
although there were no significant attacks reported on
XOR MAC's, which must be encrypted and is only used
for CBC mode block ciphers. XOR isonly intended for
some devices with very limited CPU resources.

Warning: With exportable grade of encryption (eg,
RC5_40), XOR can not provide as strong message
integrity protection as SHA can. It is recommended that
the security consequence should be carefully evaluated
before XOR MAC is adopted in those environments.

In other than MAC operations for message integrity (eg,
PRF) the full-length SHA-1 is used.

MD5_40

The keyed MAC is calculated using MD5 but only the first
5 bytes of the output are used.

Note than in other than keyed MAC operations (eg, PRF)
the full-length MD5 is used.

16

MD5_80

The keyed MAC is calculated using MD5 but only the first
10 bytes of the output are used.

Note than in other than keyed MAC operations (eg, PRF)
the full-length MD5 is used.

16

10

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999

Page 77 (89)

Hash Function | Assigned Description Key MAC
Number Size Size
(bytes) | (bytes)
MD5 7 The keyed MAC is calculated using MD5. 16 16
Field Description
Key Size The number of bytes used asthe HMAC key.
MAC Size The number of bytes used in the MAC.

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 78 (89)

Table 7. The Available Compression Algorithms

Compression Algorithm Assigned | Description
Number
NULL 0 No compression.

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 79 (89)

Table 8. Elliptic Curve Parameters For Selected Curves

All implementations using ECC MUST support at least one of the curves marked as Basic. All server implementations
SHOULD support all curves marked as Basic. Other curves MAY be used.

Curves with field size smaller than 160 bits MUST NOT be used for ECDSA operations. They MAY be used for ECDH
operationsin circumstances when alonger field sizeis not permitted by export or other regulations.

All implementations using ECDSA verification, SHOULD support verification for curves marked as Basic and with field
size not smaller than 160 hits.

Sign bits (Vp), the compressed one-bit representation of the y-coordinate, have been included as octet string values

following the y-coordinate of the generator pointsin the following curves. Note that the appropriate encoding rule (see
|EEE 1363) should be followed when representing curve pointsin a portable manner.

Assigned number 1
Basic No
Field size 113

Irreducible polynomial | x*3 + x° + 1

Elliptic curve E y> + xy = x3 + ax® + b; over GF(2'B®)
Parameter a 01

Parameter b 01

Generating point G 016679 79A40BA4 97E5D5C2 70780617,

00F44B 4AF1ECC2 630E0878 5CEBCC15 (yp = 01)

Order of G OOFFFF FFFFFFFF FFFDBF91 AFGDEA73

Cofactor K 02

(Nunmber 2 has intentionally been |eft unassigned.)

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 80 (89)
Assigned number 3

Basic No

Field size 163

Irreducible polynomial

X163+X7+X6+X3+1

Elliptic curve E

y2 + xy = x® + ax? + b; over GF(2!%)

Parameter a

01

Parameter b

01

Generating point G

02 FE13C053 7BBC11AC AA07D793 DE4E6DSE 5CO4EEES,

02 89070FBO 5D38FF58 321F2E80 0536D538 CCDAA3D9 (yp = 01)

Order of G 04 00000000 00000000 00020108 A2EOCCOD 99F8ASEF
Cofactor K 02

Assigned number 4

Basic Yes

Fidd size 113

Irreducible polynomial

X113 + X9 + 1

Elliptic curve E

y2 + xy = x® + ax? + b; over GF(2!%)

Seed 10E723AB 14D696E6 76875615 1756FEBF 8FCB49A9
Parameter a 003088 250CAGE7 C7FE649C E85820F7
Parameter b OOE8SBE E4D3E226 0744188B EOE9C723

Generating point G

009D73 616F35F4 AB1407D7 3562C10F,

00A528 30277958 EE84D131 5ED31886 (yp = 01)

Order of G

010000 00000000 OOD9CCEC 8A39ES6F

Cofactor K

02

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999

Page 81 (89)

Assigned number 5
Basic Yes
Feld size 163

Irreducible polynomial

X163+X8+X2+X+1

Elliptic curve E

y2 + xy = x® + ax? + b; over GF(2!%)

Seed D2Q0FB15 760860DE F1EEF4D6 96E67687 56151754
Parameter a 07 2546B543 5234A422 E0789675 F432C894 35DE5242
Parameter b 00 C9517D06 D5240D3C FF38C74B 20B6CD4AD 6F9DD4DO

Generating point G

07 AF699895 46103D79 329FCC3D 74880F33 BBEBO3CB,

01 EC23211B 5966ADEA 1D3F87F7 EAS5848AE FOB7CA9F (yp

= 01)

Order of G 04 00000000 00000000 O0O01E6OF CB821CC7 4DAEAFCL
Cofactor K 02

Assigned number 6

Basic Yes

Fidd size 112

Elliptic curve E

y2 = x3 + ax + b; over GF(p)

Primep DB7C 2ABF62E3 5E668076 BEAD208B

Seed S = 00F50B02 8S8E4DG96E 67687561 51752904 72783FB1,;
r = 29E4 9E36F941 C1B2DClF B82B5BCE

Parameter a DB7C 2ABF62E3 5E668076 BEAD2088

Parameter b 659E F8BA0439 16EEDE89 11702B22

Generating point G

0948 7239995A 5EE76B55 F9C2F098,

A89C E5AF8724 COA23EOE OFF77500 (yp = 00)

Order of G

DB7C 2ABF62E3 5E7628DF AC6561C5

Cofactor K

01

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 82 (89)
Assigned number 7

Basic Yes

Field size 160

Elliptic curve E

y2 = x3 + ax + b; over GF(p)

Primep FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 7FFFFFFF
Seed S = 1053CDE4 2Cl4D696 E6768756 1517533B F3F83345;
r = 2DA6CAD7 0B9OFF91 2E725E25 E90AF631 Cl8FODR2F
Parameter a FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 7FFFFFFC
Parameter b 1C97BEFC 54BD7A8B 65ACF89F 81DADAAD C565FA45

Generating point G

4A96B568 8EF57328 46646989 68C38BB9 13CBFC382,

23A62855 3168947D 59DCC912 04235137 7ACS5FB32 (yp

= 00)

Order of G 01 00000000 00000000 0O001F4C8 F927AED3 CA752257
Cofactor K 01

Assigned number 8

Basic No

Field size 112

Elliptic curve E

y2 = x3 + ax + b; over GF(p)

Prime p FFFF FFFFFFFF FFFFFFFF FFFFFDE7
Parameter a 0

Parameter b 3

Generating point G (1,2

Order of G

010000 00000000 O1ECEAS5 1AD837E9

Cofactor K

1

O Copyright Wireless Application Forum, Ltd. 1999

All rights reserved.

11-Feb-1999 Page 83 (89)
Assigned number 9

Basic No

Field size 160

Elliptic curve E

y2 = x3 + ax + b ; over GF(p)

Prime p FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFCB08F
Parameter a 0

Parameter b 3

Generating point G (1, 2)

Order of G

01 00000000 00000000 0001CDC9 8AEOE2DE 574ABF33

Cofactor K

1

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 84 (89)

Table 9. Predefined Diffie-Hellman Parameters

Par ameter Value

Assigned number 1

Exponent bits 160

Prime modulus FAF30C63D171E54A8131CD331D7C8D6C
8AED41B0354E1A29D8DADO3E2E6 7FFBE

(512 bits) 00053A07FD28A1EE6AF199FD70330EA8
C4AC602B86EDFBF47FD1D7BFB6456BD57

Generator E7734EBBCF50893C760181B2AA2DBOAC
F2D5B6E775EE88BAFC7 AASAGBB20A64E

(512 hits) B9F54301141F90291B7B375135394504

81C9F9CB2BA3E67B4580E2153FD22B80

Par ameter Value

Assigned number 2

Exponent bits 160

Prime modulus 85DB5DB185090AED3BDB3BABFCB46669F9563E681EDB4359
9241FEF6AA9B5DF9EFE39COCB7994A04F2BD8F57B5B22AF7

(768 bits) 5E360526216420BCA08FCDF98FF6417DCFDD1CAOE4AFFB183
260E3B28EFOB31A3633788C988B1BC6734A81B31A28CD6FB

Generator 1B15C3C57263BODD1A9DO96768B88370ED458D7B0081A220
054EFDD23B9CD8298B719FD3B67CB093817332D033642D21

(760 bits) 130F83D9CB2CC5ACDD36E6E6DDB2410AB30311CDBEES222C

CFE644443B0C7204F2D12F7A3719C8866A20A0E778EBBA

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 85 (89)

Appendix B Implementation Notes

The following implementation notes are provided to identify areas where implementation choices may impact the security,
performance and effectiveness of the WTLS protocols. The implementation notes provide guidance to implementers of
the protocols.

B.1 Negotiating Null Cipher Spec

Null cipher spec can be negotiated to be used in a session. The NULL key exchange suite may be used for that purpose, so
that no key exchange actually takes place. The master secret is calcucated with a zero length pre-master secret. The
message flow islike in the abbreviated handshake.

Implementations MUST be careful when accepting a null cipher spec sinceit offers no security.

B.2 Anonymous handshakes

Completely anonymous sessions can be established using RSA or Diffie-Hellman for key exchange. With anonymous
RSA, the client generates a secret value and encrypts it with the server's uncertified public key extracted from the server
key exchange message. The result is sent in a client key exchange message. Since eavesdroppers do not know the server's
private key, it will be infeasible for them to decode the secret value. (The pre_master_secret is this value appended with
server's public key.)

With Diffie-Hellman, the server's public value is contained in the server key exchange message and the client'sissent in
the client key exchange message. Eavesdroppers who do not know the private values are not able to find the Diffie-
Hellman result (ie, the pre_master_secret).

War ning: Completely anonymous handshakes (ie, where neither the client nor the server is authenticated) only
provide protection against passive eavesdropping. The active eavesdroppers, or the active man-in-the-middie
attackers may replace the finished messages with their own during the handshaking process for creating sessions.
However, there are known methods that may effectively defeat those active attacks in environments where those
attacks are a concern. For instance, server authentication, or using an independent tamper-proof channel to verify
that the finished messages were not replaced by the attacker. When the handshaking processis complete and
authenticated or verified, the established sessions should be secure and protected against both passive and active
man-in-the-middle attacks or eavesdroppers.

B.3 Key refresh

The passive key refresh mechanism of WTLS makesit possible to update keysin a secure connection without
handshaking.

Key refresh makes cryptoanalysis less attractive for an attacker because keys will be invalidated regularly and the material
that can be gained islimited. Thisis particularly useful in environments, where export-restricted encryption is used and
handshaking is expensive (ie, connections with long lifetimes are desirable).

The frequency of key refresh is agreed on during the handshake. This parameter defines how many messages are sent
before key refresh istriggered. For example, key refresh may be triggered after each four messages.

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 86 (89)

In key refresh, a new key block is generated using the master secret as a source of entropy and the message sequence
number as an additional parameter (along with other parameters) in the pseudorandom function. The generated key block
is used for message protection keys: MAC keys, encryption keys and initialization vectors.

B.4 Denial-of-Service Attacks

Since WTLS operates on top of datagrams, the implementation should pay special attention to preventing denial-of-
service attacks. It should take into account that in some networks transport addresses may be forged relatively easy.

In order to make denial-of-service attacks harder to accomplish, it should not be possible for an attacker to break up an
existing connection/session by sending a single message in plaintext from a forged address.

In addition, the server should be careful in accepting new connection requestsin plain text within an existing secure
connection. Note that the server cannot just ignore them because eg, ClientHello in plain text may be sent by a client
whose connection state was lost. Special care must be taken with arbitrated and optimized handshakesin which the server
switches the pending state current immediately after responding to ClientHello message. In such a case, the old active
state should be kept intact until the new handshake is accomplished. In other words, the server should not discard the old
active state until the client responds with Finished and the handshake is completed successfully. The old active state
should berestored to the current stateif it is evidenced that the handshake started isinvalid.

For the same reason, when a client receives a plaintext ServerHello on its secure connection, it should not cause the
existing secure connection broken because of the unexpected message. It should keep the existing secure connection and
send the unexpected_message as a warning.

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 87 (89)

Appendix C Implementation Classes

WTLS implementations may have support for various features. This appendix defines classes guiding implementors to
select these features. A class may have mandatory (M) or optional (O) support for a certain feature. Certain features are
not yet defined in the current version of the specification.

The current version of the WTLS specification covers all featuresin class 1.

Table 10. WTLS Classes

Feature Class1 Class 2 Class 3
Public-key exchange M M M
Server certificates o M M
Client certificates o o M
Shared-secret hanshake o o o
Compression - O O
Encryption M M M
MAC M M M
Smart card interface - o o

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 88 (89)

Appendix D Requirements for the WTLS Protocol

The common requirements set by wireless mobile networks are described below.

[tem Description
Datagram transport Both datagram and connection oriented transport layer protocols must be supported. It
protocol must be possible to cope with, for example, lost, duplicated, or out of order datagrams

without breaking the connection state.

Slow interactions

The protocol must take into account that round-trip times with some bearers (eg, SMS
[GSM03.40]) can be long. For example, sending a query and receiving a response might
reguire more than 10 seconds. This must be taken into account in the protocol design.

Low transfer rate

The downess of some bearersisamajor constraint. Therefore, the amount of overhead
must be kept in the minimum. For example, with SM S the effective transfer rate may be
lower than 100 hit/s.

Limited processing
power

The processing power of many mobile terminalsis quite limited. This must be taken into
account when cryptographic algorithms are chosen.

Limited memory
capacity

The memory capacity of most mohile terminalsis very modest. Therefore, the number of
cryptographic algorithms must be minimised and small-sized algorithms must be chosen.
Especially the RAM requirements must be as low as possible.

Restrictions on
exporting and using
cryptography

International restrictions and rules for using, exporting, and importing cryptography must
be taken into account. This meansthat it must be possible to achieve the best permitted
security level according to the legidation of each area. For example, in many cases,
strong authentication can be used although strong encryption is prohibited.

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

11-Feb-1999 Page 89 (89)

O Copyright Wireless Application Forum, Ltd. 1999
All rights reserved.

