

Copyright 2001 Wireless Application Protocol Forum Ltd. All Rights Reserved. Terms and conditions of use are available from the
Wireless Application Protocol Forum Ltd. Web site (http://www.wapforum.org/what/copyright.htm).

Wireless Application Protocol
WAP Certificate and CRL Profiles Specification

 WAP Certificate and CRL Profiles
WAP-211-WAPCert

Approved
22-May-2001

Disclaimer:

A list of errata and updates to this document is
available from the WAP Forum™ Web site,
http://www.wapforum.org/, in the form of SIN
documents, which are also subject to revision or
removal without notice.
This document is subject to change without notice.

Copyright 2001, Wireless Application Protocol Forum Ltd. All rights reserved

You may use this document or any part of the document for internal or educational purposes only,
provided you do not modify, edit or take out of context the information in this document in any
manner. You may not use this document in any other manner without the prior written permission of
the WAP Forum™. The WAP Forum™ authorizes you to copy this document, provided that you
retain all copyright and other proprietary notices contained in the original materials on any copies of
the materials and that you comply strictly with these terms. This copyright permission does not
constitute an endorsement of the products or services offered by you.

The WAP Forum™ assumes no responsibility for errors or omissions in this document. In no event
shall the WAP Forum™ be liable for any special, indirect or consequential damages or any damages
whatsoever arising out of or in connection with the use of this information.

WAP Forum TM members have agreed to use reasonable endeavors to disclose in a timely manner to
the WAP Forum the existence of all intellectual property rights (IPR’s) essential to the present
document. The members do not have an obligation to conduct IPR searches. This information is
publicly available to members and non-members of the WAP Forum and may be found on the “WAP
IPR Declarations” list at http://www.wapforum.org/what/ipr.htm. Essential IPR is available for license
on the basis set out in the schedule to the WAP Forum Application Form.

No representations or warranties (whether express or implied) are made by the WAP Forum TM or
any WAP Forum member or its affiliates regarding any of the IPR’s represented on this list, including
but not limited to the accuracy, completeness, validity or relevance of the information or whether or
not such rights are essential or non-essential.

This document is available online in PDF format at http://www.wapforum.org/.

Known problems associated with this document are published at http://www.wapforum.org/.

Comments regarding this document can be submitted to the WAP Forum TM in the manner published
at http://www.wapforum.org/.

Copyright 2001, Wireless Application Protocol Forum Ltd. All rights reserved

Contents

1 SCOPE...4
2 DOCUMENT STATUS .. 5

2.1 DOCUMENT HISTORY ...5
2.2 ERRATA ..5
2.3 COMMENTS .. 5

3 REFERENCES ...6
3.1 NORMATIVE REFERENCES ...6
3.2 INFORMATIVE REFERENCES ..7

4 DEFINITIONS AND ABBREVIATIONS...8
4.1 DEFINITIONS ..8
4.2 ABBREVIATIONS ...8

5 REQUIREMENTS AND ASSUMPTIONS ...9
5.1 ASSUMPTIONS ON THE WAP ENVIRONMENT ...9
5.2 GENERAL REQUIREMENTS ON WAP CERTIFICATE PROFILES ...9

6 CERTIFICATE PROFILES ... 10
6.1 GENERAL ...10
6.2 USER CERTIFICATES FOR AUTHENTICATION ..10
6.3 USER CERTIFICATES FOR D IGITAL SIGNATURES ...11
6.4 X.509-COMPLIANT SERVER CERTIFICATES ..11
6.5 ROLE CERTIFICATES ...13
6.6 AUTHORITY CERTIFICATES ...13
6.7 OTHER CERTIFICATES ..13

7 CRL PROFILES ...14
8 ATTRIBUTES ...15

8.1 DISTINGUISHED ATTRIBUTES ...15
8.2 WTLS CERTIFICATE RESERVED NAMING ATTRIBUTE TYP ES AND VALUES ...15

9 SIGNATURE ALGORITHMS AND PUBLIC -KEY TYPES ...16
9.1 SIGNATURE ALGORITHMS ... 16
9.2 PUBLIC-KEY TYPES.. 16

10 CERTIFICATE EXTENSIO NS .. 17
10.1 THE DOMAININFORMATION EXTENSION ...17

ANNEX A OBJECT CLASSES ...18
A.1 THE WAPENTITY OBJECT CLASS .. 18

ANNEX B ASN.1 MODULE ..19
ANNEX C STATIC CONFORMANCE REQUIREMEN TS ..22

C.1 ME OPTIONS ...22
C.2 CERTIFICATE-PROCESSING APPLICATION OPTION ...25

ANNEX D CERTIFICATE EXAMPLES ...26
D.1 EXAMPLE OF A CLIENT CERTIFICATE FOR AUTHENTICATION...26
D.2 EXAMPLE OF A CA CERTIFICATE.. 27
D.3 EXAMPLE OF A SERVER CERTIFICATE FOR SERVER AUTHENTICATION..29

Copyright 2001, Wireless Application Protocol Forum Ltd. All rights reserved

1 Scope
Wireless Application Protocol (WAP) is a result of continuous work to define an industry-wide specification for
developing applications that operate over wireless communication networks. The scope for the WAP Forum is to
define a set of standards to be used by service applications. The wireless market is growing very quickly and reaching
new customers and services. To enable operators and manufacturers to meet the challenges in advanced services,
differentiation and fast/flexible service creation, WAP defines a set of protocols in transport, session and application
layers. For additional information on the WAP architecture, refer to [17].

This document specifies WAP Certificate profiles. It is based on work done within IETF’s PKIX working group [15]).
This version of this document specifies profiles for user, server, and authority certificates only. It is anticipated that
later versions will include specifications for other types of certificates as well. The term “WAP server” used here is
not limited to WAP gateways but may include third party servers and content/service provider servers processing
certificates conforming to this specification.

Copyright 2001, Wireless Application Protocol Forum Ltd. All rights reserved

2 Document Status
This document is available online in the following formats:

- PDF format at http://www.wapforum.org/ .

2.1 Document History
First proposed version: WAP-211-WAPCert-20000309-p

Incorporated SCDs:

SCD Title

WAP-211_100-WAPCert-20000705-p ADDITION OF INFORMATION REGARDING
RESERVED WTLS CERTIFICATE ATTRIBUTES

WAP-211_101-WAPCert-20001221-p
ADDITION OF INFORMATION REGARDING
RESERVED WTLS CERTIFICATE ATTRIBUTES

MODIFICATION OF CLIENT ECC CAPABILITY
REQUIREMENTS

EDITORIAL CORRECTIONS

WAP-211_102-WAPCert-20010502-p ADDITION OF X.509-BASED SERVER
CERTIFICATE PROFILE

WAP-211_103-WAPCert-20010424-p CHANGE OF CHAIN LENGTH PROCESSING
REQUIREMENT

Editorial changes:

Section Change

General Adapted to new document template, spelling corrections

3.1 Corrected URL for reference [16]

Corrected reference [17] - [20] to be in alignment with
WAP guidelines

Updated reference [23] and [24]

6.2.2, 6.4.3, 9.1 Corrected ASN.1 value reference name (shall be ecdsa-
with-SHA1)

C.1.2 Cert-SrvA-C-05: Clarified sub-function statement
(Reference [8] accompanies reference [7]). Added word
“Server” to section heading.

C.2.1 Cert-Gen-S-04: Clarified sub-function statement
(Reference [8] accompanies reference [7])

Cert-Gen-S-14: Corrected Section reference

2.2 Errata
Known problems associated with this document are published at http://www.wapforum.org/ .

2.3 Comments
Comments regarding this document can be submitted to the WAP Forum in the manner published at
http://www.wapforum.org/ .

Copyright 2001, Wireless Application Protocol Forum Ltd. All rights reserved

3 References

3.1 Normative references
The following specifications, recommendations and international standards contain provisions, which, through
reference in this text, constitute provisions of this specification.

[1] American National Standard X9.62, “Public Key Cryptography For The Financial Services Industry:
The Elliptic Curve Digital Signature Algorithm,” Accredited Standards Committee X9F1, 1999.

[2] T. Berners-Lee, L. Masinter, M. McCahill, “Uniform Resource Locators (URL),” IETF RFC 1738,
December 1994. URL: ftp://ftp.isi.edu/in-notes/rfc1738.txt .

[3] S. Bradner, “Key words for use in RFCs to Indicate Requirement Levels ,” IETF RFC 2119, March 1997.
URL: ftp://ftp.isi.edu/in-notes/rfc2119.txt .

[4] Dierks, T., C. Allen, “The TLS Protocol Version 1.0,” IETF RFC2246, January 1999. URL:
ftp://ftp.isi.edu/in-notes/rfc 2246.txt .

[5] ITU -T Recommendation X.500 (1997) | ISO/IEC 9594-1:1997, “Information Technology – Open
Systems Interconnection – The Directory: Overview of concepts, models and services .”

[6] ITU -T Recommendation X.501 (1997) | ISO/IEC 9594-2:1997, “Information Technology – Open
Systems Interconnection – The Directory: Models .”

[7] ITU -T Recommendation X.509 (1997) | ISO/IEC 9594-8:1997, “Information Technology – Open
Systems Interconnection – The Directory: Authentication Framework.”

[8] ITU-T Recommendation X.509 (1997)/Cor. 1 (2000E) | ISO/IEC 9594-8:1998/Cor. 1: 2000(E),
“Technical Corrigendum 1.”

[9] ITU -T Recommendation X.520 (1997) | ISO/IEC 9594-6:1997, “Information Technology – Open
Systems Interconnection – The Directory: Selected Attribute Types .”

[10] ITU -T Recommendation X.680 (1997) | ISO 8824-1:1998, “Information Technology — Abstract Syntax
Notation One (ASN.1): Specification of basic notation.”

[11] ITU -T Recommendation X.681 (1997) | ISO/IEC 8824-2:1998, “Information Technology – Abstract
Syntax Notation One (ASN.1): Information Object Specification .”

[12] ITU -T Recommendation X.682 (1997) | ISO/IEC 8824-3:1998, “Information Technology – Abstract
Syntax Notation One (ASN.1): Constraint Specification.”

[13] ITU -T Recommendation X.683 (1997) | ISO/IEC 8824-4:1998, “Information Technology – Abstract
Syntax Notation One (ASN.1): Parameterization of ASN.1 Specifications .”

[14] ITU -T Recommendation X.690 (1997) | ISO/IEC 8825 -1:1998, “Information Technology – ASN.1
encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and
Distinguished Encoding Rules (DER).”

[15] R. Housley, W. Ford, W. Polk, D.Solo, “Internet X.509 Public Key Infrastructure – Certificate and CRL
Profile,” IETF RFC 2459, January 1999. URL: ftp://ftp.isi.edu/in-notes/rfc2459.txt .

[16] RSA Laboratories , “PKCS #1: RSA Cryptography Standard,” Version 2.0, October 1998. URL:
http://www.rsalabs.com/pkcs.

[17] WAP Forum, “Wireless Application Protocol Architecture Specification,” WAP-100-WAPArch-
19980430 -a. URL: http://www.wapforum.org/ .

[18] WAP Forum, “Wireless Transport Layer Security Specification,” WAP-199-WTLS-20000218-a. URL:
http://www.wapforum.org/.

[19] WAP Forum, “Wireless Identity Module Specification,” WAP-198-WIM-20000218-a. URL:
http://www.wapforum.org/ .

[20] WAP Forum, “WMLScript Crypto API Library,” WAP-161-WMLScriptCrypto-19991105-a. URL:
http://www.wapforum.org.

Copyright 2001, Wireless Application Protocol Forum Ltd. All rights reserved

[21] WAP Forum, “Specification of WAP Conformance Requirements ,” WAP-221-CREQ -20010425 -a. URL:
http://www.wapforum.org/.

[22] WAP Forum, ”Wireless Telephony Application Specification ,” WAP-169-WTA-20000707-a. URL:
http://www.wapforum.org/.

3.2 Informative References
[23] L. Bassham, R. Housley, W. Polk, “Algorithms and Identifiers for the Internet X.509 Public Key

Infrastructure Certificate and CRL profile,” IETF Work in progress, March 2001. URL:
http://www.ietf.org/internet-drafts/draft-ietf-pkix-ipki-pkalgs-02.txt .

[24] R. Housley, W. Ford, W. Polk, D. Solo, “Internet X.509 Public Key Infrastructure – Certificate and
CRL Profile,” IETF Work in progress, April 2001. URL: http://www.ietf.org/internet-drafts/draft-ietf-
pkix-new-part1-06.txt .

[25] S. Kille, M. Wahl, A. Grimstad, R. Huber, S. Sataluri, “Using Domains in LDAP/X.500 Distinguished
Names ,” IETF RFC 2247, January 1998. URL: ftp://ftp.isi.edu/in-notes/rfc2247.txt .

[26] M. Myers, R. Ankney, A. Malpani, S. Galperin, C. Adams, “Internet X.509 Public Key Infrastructure –
Online Certificate Status Protocol – OCSP,” IETF RFC 2560, June 1999. URL: ftp://ftp.isi.edu/in-
notes/rfc2560.txt .

[27] RSA Laboratories, “PKCS #9: Selected Object Classes and Attribute Types,” Version 2.0, February
2000. URL: http://www.rsalabs.com/pkcs.

[28] M. Wahl, T. Howes, S. Kille, “Lightweight Directory Access Protocol (v3),” IETF RFC 2251, December
1997. URL: ftp://ftp.isi.edu/in-notes/rfc2251.txt .

[29] M. Wahl, S. Kille, T. Howes, “Lightweight Directory Access Protocol (v3): UTF-8 String
Representation of Distinguished Names ,” IETF RFC 2253, December 1997. URL: ftp://ftp.isi.edu/in-
notes/rfc2253.txt .

Copyright 2001, Wireless Application Protocol Forum Ltd. All rights reserved

4 Definitions and Abbreviations

4.1 Definitions
The following are terms and conventions used throughout this specification.

In this document, the term “Recognize” stands for “object is parsed as needed, and its value may thereafter be
processed, displayed or ignored.” The term “Process” means “Understand and act in accordance with a given
semantics.”

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "MAY" and "OPTIONAL" in this document are to be interpreted as described in [3].

4.2 Abbreviations
For the purposes of this specification, the following abbreviations apply:

ASN.1 Abstract Syntax Notation One, as defined in [10], [11], [12] and [13].
CA Certification Authority
CRL Certificate Revocation List
DER Distinguished Encoding Rules
EC Elliptic Curve
ECDH Elliptic Curve Diffie-Hellman
ECDSA Elliptic Curve Digital Signature Algorithm
LDAP Lightweight Directory Access Protocol
ME Mobile Equipment
OCSP Online Certificate Status Protocol
RSA Rivest -Shamir-Adleman public key algorithm
TLS Transport Layer Security
URL Uniform Resource Locator
WAP Wireless Application Protocol
WIM WAP Identity Module
WTLS Wireless Transport Layer Security

Copyright 2001, Wireless Application Protocol Forum Ltd. All rights reserved

5 Requirements and Assumptions

5.1 Assumptions on the WAP Environment
For the purposes of t his specification, the WAP environment may be characterized in the following way:

- Limited bandwidth between WAP clients and WAP servers
- Limited computational capabilities in WAP clients
- Limited memory resources in WAP clients

Further, a reasonable assumption is that WAP servers are, in many cases, connected to, and inter-operating with, the
Internet. A certificate profile for use in this environment should therefore, to the extent possible, take this
characterization into account.

5.2 General Requirements on WAP Certificate Profiles
This section specifies general requirements on certificates, which are to be used in the WAP environment (as
characterized in Section 5.1) and which may be transmitted in WAP protocols.

5.2.1 Reduced Footprint
When defining a certificate profile for WAP, the storage requirements for the certificate needs to be reduced, but
without loss of the functionality that makes the certificate meaningful and useful. The certificate must, within an
appropriate context, identify the holder of the public key. It must also provide a secure binding between the key and
its holder.

5.2.2 Limited Processing Requirements
When developing software, it is often possible to reduce the memory requirements of an application by increasing the
processing time. This type of time-memory tradeoff cannot be used extensively for WAP certificates, since WAP
clients (and in particular the WIM [19] card) have not only restricted memory size but also relatively limited
proces sing power.

In addition to the burden on the constrained WAP client, additional computation requirements may also cause
problems for WAP servers that interact with them. While WAP servers in general are free of the memory and
processing limitations of WAP clients, they must perform operations on behalf of a large number of clients in a small
amount of time. Any significant increase in the time required to process a certificate could impair the server's ability
to process transactions at the needed rate.

Some additional processing, above that required for existing certificate formats, may be required. In particular, a more
computationally intensive data encoding method may be used. This additional processing required for encoding
should be small in comparison to that required for public or private key operations.

5.2.3 Security
Public key certificates are used to provide a secure binding between an entity and its public key. Any modification to
the certificate format must provide at least the same level of security as existing certificates.

In any new format, the security of the data representation must be examined as well. Signatures must be properly
padded to avoid possible forgery, and parameter specifications must have sufficient integrity protection to avoid
substitution attacks.

5.2.4 Compatibility with Existing Infrastructure
To the extent possible, certificates issued in conformance with this specification should work interchangeably with
other X.509 [7] certificates in certificate-processing Internet applications in order to leverage the existing
infrastructure. Any new format that requires major changes to the installed base of certificate-processing products and
CA infrastructure is unlikely to be easily adopted.

Copyright 2001, Wireless Application Protocol Forum Ltd. All rights reserved

6 Certificate Profiles

6.1 General
This section defines WAP certificate profiles. The profiles are, unless otherwise mentioned, based on the Internet
Certificate Profile [15], which in turn is based on the format defined in [7]. For full implementation of this section
implementers are required to consult the underlying format and semantics defined in [7] and [15]. This specification
provides, for each certificate type discussed, additional details regarding the contents of some individual fields in the
certificate. Certificates issued in conformance with recommendations and requirements in this section will be
reasonably compact, and MEs MUST be able to process certificates of size up to at least 700 bytes, while other
certificate-processing entities MUST be able to process certificates of size up to at least 2000 bytes. MEs that support
X.509-based server authentication MUST be able to process server certificates of size up to at least 1000 bytes and
CA certificates of size up to at least 2000 bytes, in addition to requirements listed in Section 6.4, and SHOULD be
able to process longer certificates. Certificate-processing clients MUST support a certificate chain depth of at least
three (i.e., two subordinate CA certificates between the end-entity certificate and the CA root certificate in the chain).
A client that encounters a certificate or certificate chain that does not conform to this profile must not fail the
certificate processing in an uncontrolled manner. In addition, certificate-processing servers must also support a chain
depth of at least three.

ASN.1 definitions relevant for this section that are not supplied by the normative references can be found in Annex B.

6.2 User Certificates for Authentication
This certificate type is intended for client authentication, e.g. in WTLS ([18]) or TLS ([4]).The certificate profile is
intended for certificates stored in WAP clients such as handsets and WIM cards. Since it will not always be the case
that the identity of the cardholder is known at the time of certificate issuance, some certificates will bind a public key
to some distinguishable entity (e.g. a particular WIM card), rather than to a specific subscriber.

6.2.1 Certificate Serial Number
CAs claiming conformance with this specification should avoid using serial numbers longer than 8 bytes (63 bits,
topmost bit cannot be set to 1).

6.2.2 Signature (Algorithm)
The only signature algorithms defined for use with this profile are sha1WithRSAEncryption and ecdsa-with-SHA 1,
see Section 9. Certificate-processing applications MUST be able to verify certificates signed with one of these
algorithms (certificate-processing applications need only support one of them).

6.2.3 Issuer (Name)

Applications claiming conformance with this specification MUST recognize all required distinguished name attributes
listed in Section 4.1.2.4 in [15] (i.e. attributes countryName, organizationName , organizationalUnitName,
stateOrProvinceName, commonName and domainComponent) and SHOULD recognize all other attributes listed
in Section 4.1.2.4 in [15]. Further, they MUST recognize the serialNumber attribute defined in Section 8 in this
document. CAs claiming conformance with this specification are not required to issue certificates with the
serialNumber attribute, but they should be able to do so. When including attributes with DirectoryString syntax, CAs
should use the UTF8String choice, and must do so for certificates issued after December 31, 2003 (see [15]). This
field must not be left empty.

6.2.4 Subject (Name)
As for the Issuer field, applications claiming conformance with this specification MUST recognize all required
distinguished name attributes listed in Section 4.1.2.4 in [15] (see above), and SHOULD recognize all other attributes
listed in Section 4.1.2.4 in [15]. Further, they MUST recognize the serialNumber attribute defined in Section 8 in this
document. CAs claiming conformance with this specification are not required to issue certificates with the
serialNumber attribute, but are encouraged to do so, especially for initial certificates stored in WAP clients. In those
cases, this specification also recommends that it be the only attribute in subject names. Such practice will result in
compact certificates. Whatever the practice in those cases are, the certificate must bind the public key to a
distinguishable entity (e.g. a particular WIM card or other key storage). When including attributes with

Copyright 2001, Wireless Application Protocol Forum Ltd. All rights reserved

DirectoryString syntax, CAs shou ld use the UTF8String choice, and must do so for certificates issued after December
31, 2003. This field must not be left empty.

6.2.5 Subject Public Key
The only public key types defined for use with this specification are rsaEncryption and id-ecPublicKey (see Section
9). RSA keys should be 1024 bits or longer. EC public keys should be 160 bits or longer. Certificate-processing
applications are not required to handle keys longer than 20481 (RSA) or 163 (EC) bits.

6.2.6 Certificate Extensions

Certificate-processing applications claiming conformance with this specification MUST recognize the following
standard extensions: keyUsage, extKeyUsage, certificatePolicies, subjectAltName, and basicConstraints . Further,
they SHOULD recognize the nameConstraints , policyConstraints , authorityKeyIdentifier and
subjectKeyIdentifier extensions. If the keyUsage extension is included, it shall have the digitalSignature bit set if
the public key is an RSA key. If the public key is an EC-DH key, it shall have the keyAgreement bit set. For RSA
keys, the extension may also have the keyEncipherment bit set. Other bits must not be set. The keyUsage extension
should be marked as critical.

NOTE 1 – The choice between the keyEncipherment bit and the keyAgreement bit depends on the particular public key
algorithm; for RSA, it shall be keyEncipherment, for EC, it shall be keyAgreement.

NOTE 2 – This specification recommends that the certificatePolicies extension only consist of one CertPolicyId. Conformin g
certificate-processing applications are not required to recognize policyQualifiers.

CAs should not include the basicConstraints extension.

CAs should, if including the subjectKeyIdentifier and/or authorityKeyIdentifier extension, use the KeyIdentifier
field, and calculate the value of that field in accordance with the procedure defined in Section 9.4.4 of [19].

Further, certificate-processing applications claiming conformance with this specification SHOULD recognize the
domainInformation extension defined in Section 10. CAs may include this extension in issued certificat es.

NOTE – A CA which does not include any extensions in issued certificates shall set the certificate version to 1 (i.e. the default
value).

6.3 User Certificates for Digital Signatures
This certificate type is intended for verifications of digital signatures, created for example by signText() in
WMLScript [20]. The certificate profile is intended for certificates stored in WAP clients such as handsets and WIM
cards.

The requirements on this certificate type are identical to the type in Section 6.2 , except that if the keyUsage extension
is present (recommended), the only bits allowed to be set are the digitalSignature bit and/or the nonRepudation bit.

6.4 X.509-Compliant Server Certificates
6.4.1 Scope
This certificate type is intended for server authentication, e.g. in WTLS ([18]) or TLS ([4]). The certificate profile is
intended for certificates sent over the air in WAP protocols

6.4.2 Certificate Serial Number
CAs claiming conformance with this specification must avoid using serial numbers longer than 20 bytes (159 bits
since top-most bit must be set to 0). Clients MUST be able to recognize serial number values up to 20 bytes long.

NOTE – A client, which does not perform certificate status checking, only needs to parse this field.

1 While using 2048-bit RSA keys in conjunction with SHA-1-based signatures does not add any security over 1024-bit RSA keys, the requirement
is included here for legacy reasons

Copyright 2001, Wireless Application Protocol Forum Ltd. All rights reserved

6.4.3 Signature (Algorithm)
The only signature algorithms defined for use with this profile are sha1WithRSAEncryption and ecdsa-with-SHA1
(see Section 9). Clients MUST support at least one of these algorithms. Clients that support server-authenticated TLS
sessions MUST support sha1WithRSAEncryption. Clients MUST be able to process certificates signed with keys up
to and including 2048 bits (RSA) or 233 bits (EC).

6.4.4 Issuer (Name)
Clients claiming conformance with this specification MUST recognize all required distinguished name attributes listed
in Section 4.1.2.4 in [15] (i.e. attributes countryName, organizationName, organizationalUnitName,
stateOrProvinceName, commonName , and domainComponent) and SHOULD recognize all other attributes listed
in Section 4.1.2.4 in [15]. Further, they MUST recognize the serialNumber attribute defined in Section 8 in this
document. Clients MUST be able to process certificates (e.g. chain building) even if naming attributes are unknown.
CAs claiming conformance with this specification are not required to issue certificates with the serialNumber
attribute, but they should be able to do so. When including attributes with DirectoryString syntax, CAs should use the
UTF8String choice, and must do so for certificates issued after December 31, 2003 (see [15]). This field must not be
left empty.

6.4.5 Subject (Name)
As for the Issuer field, clients claiming conformance with this specification MUST recognize all required
distinguished name attributes listed in Section 4.1.2.4 in [15] (see above), and SHOULD recognize all other attributes
listed in Section 4.1.2.4 in [15]. Further, they MUST recognize the serialNumber attribute defined in Section 8 in this
document. Clients MUST be able to process certificates (e.g. chain building) even if naming attributes are unknown.
CAs claiming conformance with this specification are not required to issue certificates with the serialNumber
attribute, but should be able to do so. When including attributes with DirectoryString syntax, CAs should use the
UTF8String choice, and must do so for certificates issued after December 31, 2003. This field must not be left empty.

6.4.6 Subject Public Key
The only public key types defined for use with this specification are rsaEncryption and id-cePublicKey (see Section
9). RSA keys should be 1024 bits or longer. EC public keys should be 160 bits or longer.

6.4.7 Certificate Extensions
Clients MUST recognize the following standard extensions, which may appear in server certificates: keyUsage,
extKeyUsage, authorityKeyIdentifier, and subjectAltName,. Further, they SHOULD recognize the
certificatePolicies and authorityAccessInfo extensions. Client certificate processing MUST NOT fail due to the
presence of unrecognized, but non-critical, extensions.

For the extKeyUsage extension, clients MUST recognize the id-kp-serverAuth object identifier.

For the authorityKeyIdentifier extension, clients MUST recognize the keyIdentifier field.

For the subjectAltName extension, clients MUST recognize the dNSName and the iPAddress choices of the
GeneralName type.

For the certificatePolicies extension, clients SHOULD recognize the CPSuri qualifier and the UserNotice qualifier,
defined in [15] , and SHOULD be able to process (i.e. retrieve and display) information conveyed in them.

Server certificates issued in conformance with this sp ecification extension should contain the authorityKeyIdentifier,
keyUsage, extKeyUsage, and subjectAltName extensions.

Server certificates issued in conformance with this profile, which are intended for use in TLS sessions and contains
the keyUsage extension, must have key usage bits set in accordance with [4], Section 7.4.2. CAs should mark the
keyUsage extension as critical.

Further, server certificates issued in conformance with this specification must include the ip-kp-serverAuth object
identifier in the extKeyUsage extension, when present, and are recommended to use the dNSName choice in the
subjectAltName extension.

Conformant CAs should, if including the subjectKeyIdentifier and/or authorityKeyIdentifier extension, use the
KeyIdentifier type, and calculate the value of that type in accordance with the procedure defined in Section 9.4.4 of
[19].

Copyright 2001, Wireless Application Protocol Forum Ltd. All rights reserved

6.5 Role Certificates
This version of this specification does not define a profile for role certificates (i.e. certificates giving its holders
certain privileges, e.g. network operators). It is expected, however, that this will be included in later versions.

6.6 Authority Certificates
This section defines a profile for CA certificates. The certificate profile is intended for certificates stored in WAP
clients such as handsets and WIM cards, or sent over-the-air in WAP protocols.

NOTE – When a WTLS Server Certificate has been issued by a CA, whose public key only exist in the form of an X.509-
certificate, a certificate-processing application may use the following procedure to find the corresponding CA certificate:

- If the WTLSCertificate.ToBeSignedCertificate.issuer.identifier_type is
x509_name, the application shall assume that the field contains a full, DER-encoded distinguished
name from a corresponding subject field in an X.509-certificate, and use this as a basis for further
search. If no matching certificate can be found, the chaining fails.

- If the WTLSCertificate.ToBeSignedCertificate.issuer.identifier_type is
key_hash_sha , the application shall assume that the field contains a value to be found in the corresponding
X.509-certificate’s subjectKeyIdentifier extension or in the
PKC S15CommonCertificateAttributes.requestId field for the CA certificate in question, if it is stored in a
WIM. If no such certificate can be found, the chaining fails.

In all other cases (i.e. when the issuer.identifier_type is of type text or binary) the chaining procedure is undefined.

6.6.1 Certificate Serial Number
Same requirements as in Section 6.2.

6.6.2 Signature Algorithm
Same requirements as in Section 6.2.

6.6.3 Issuer (Name)
Same requirements as in Section 6.2.

6.6.4 Subject (Name)
In self-signed certificates, the subject name shall be the same as the issuer name. Apart from this, same requirements
as in Section 6.2 .

6.6.5 Subject Public Key
Same requirements as in Section 6.4. Keys must be at least 1024 (RSA) or 160 (EC) bits long. WAP Clients MUST be
able to process keys up to and including 2048 bits (RSA) or 233 bits (EC).

6.6.6 Certificate Extensions
Same requirements as in Section 6.2.6, except for the following differences:

- The keyUsage extension should be present, and must have at least the keyCertSign bit set if present.
- The basicConstraint extension must be present, and shall be critical. The cA component shall be set to TRUE,

and the pathLenConstraint component need not be present.

Clients supporting X.509-based server authentication MUST be able to process the basicConstraint extension as well
as the subjectKeyIdentifier extension.

6.7 Other Certificates
This profile does not put any requirements on other certificates used in the WAP environment (i.e. certificates not
transmitted in WAP protocols and not stored in WAP clients), but recommends that these certificates be issued in
conformance with the profile in [15].

Copyright 2001, Wireless Application Protocol Forum Ltd. All rights reserved

7 CRL Profiles
As it is not expected that X.509 CRLs will be sent over the air in WAP protocols, or stored (or processed) by MEs,
this specification does not put any requirements on the format of these data structures, but recommends that they be
issued in conformance with the profile in [15].

Copyright 2001, Wireless Application Protocol Forum Ltd. All rights reserved

8 Attributes

8.1 Distinguished Attributes
This specification defines one certificate attribute for use in relative distinguished names. Certificate-processing
applications claiming conformance to this standard MUST recognize this attribute. CAs are not required to include it
in issued certificates, but are, as mentioned in Section 6, encouraged to do so under certain circumstances.

8.1.1 The serialNumber Attribute

The serialNumber attribute is intended to carry locally unique names (values). Use of this attribute provides for short
subject names, while maintaining distinguished name requirements. In addition, some business and processing
advantages may present themselves if the identifier for an entity, once assigned, remains invariant over a CA’s
lifetime. For example, this enables certificate-processing systems to identify a particular entity even when keys or
other distinguished name attributes change for the entity. Privacy concerns must also be taken into account when
considering such usage, however. CAs including this attribute in the subject name of an entity must not reuse the
attribute value in certificates issued to other entities. When included in CA names, it can be a representation of the
hash of the CA’s key or some other unique value. The attribute is defined in [9] and reproduced here for reference
purposes:

serialNumber ATTRIBUTE ::= {
WITH SYNTAX PrintableString
EQUALITY MATCHING RULE caseIgnoreMatch
ID id-at-serialNumber
}

8.2 WTLS Certificate reserved naming attribute types and values
This section lists WTLS certificate ([18], Section 10.5.2) naming attribute types and values that are “reserved,” in the
sense that other specifications MAY have special processing for PKI entities using them. CAs issuing certificates (or
naming themselves) MUST ONLY use these reserved naming attribute values in accordance with the referenced
specification.

- WTA entity: WTLS Certificate naming attribut e “T=wta” (“T=wta” is the X.520 naming attribute title with
value “wta”). Governing specification: [22].

- Certificate Authority: WTLS Certificate naming attribute “T=ca” (“T=ca” represents the X.520 naming attribute
title with value “ca”). Governing specification: [18].

Copyright 2001, Wireless Application Protocol Forum Ltd. All rights reserved

9 Signature Algorithms and Public -Key Types
Algorithms are represented in X.509 -certificates with the following ASN.1 type

AlgorithmIdentifier {ALGORITHM:AlgorithmSet} ::= SEQUENCE {
algorithm ALGORITHM.&id ({AlgorithmSet}),
parameters ALGORITHM.&Type ({AlgorithmSet}{@algorithm}) OPTIONAL
}

ALGORITHM ::= TYPE-IDENTIFIER

A reference to parameterized type AlgorithmIdentifier{} tightly binds a set of algorithm object identifiers to their
associated parameters types.

9.1 Signature Algorithms
The following information object set may be augmented to meet local requirements. Note that deleting members of
the set, or adding members to it, may prevent interoperability with conforming implementations.

SupportedSignatureAlgorithms ALGORITHM ::= {
{NULL IDENTIFIED BY sha1WithRSAEncryption} |
{NULL IDENTIFIED BY ecdsa-with-SHA1},
... -- For future (or local) extensions
}

The object identifier value for sha1WithRSAEncryption can be found in [16]. When this algorithm is used, the
signing and formatting shall be done in accordance with the procedure defined in [16].

The object identifier value for ecdsa-with-SHA1 can be found in [1] (or [23]). When this algorithm is used, the
signing and formatting shall be done in accordance with the procedure defined in [1]. Parameters for the used Elliptic
Curve shall be included in the subjectPublicKeyInfo field of the certificate for the authority issuing the certificate in
question.

9.2 Public-Key Types
The following information object set may be augmented to meet local requirements. Note that deleting members of
the set, or adding members to it, may prevent interoperability with conforming implementations.

SupportedPublicKeyAlgorithms ALGORITHM ::= {
{NULL IDENTIFIED BY rsaEncryption} |
{Parameters IDENTIFIED BY id-ecPublicKey},
... -- For future extensions
}

The object identifier value for rsaEncryption can be found in [16]. The format of the public key shall in this case be
in accordance with [16].

The object identifier value for id-ecPublicKe y can be found in [1] . The format of the public key shall in this case be
in accordance with [1]. The Parameters type is defined in [1] , and is repeated here for reference purposes:

Parameters ::= CHOICE {
ecParameters ECParameters,
namedCurve CURVES.&id({CurveNames}),
implicitlyCA NULL
}

When EC parameters are inherited, the parameters field shall contain implictlyCA, which is the ASN.1 value NULL.
This is the preferred option. When EC parameters are specified by reference, the parameters field shall contain the
namedCurve choice, which is an object identifier. When EC parameters are explicitly included, they shall be encoded
in the ASN.1 structure ECParameters . Whatever the choice, only those values consistent with the curves defined in
[18] are allowed. For example, the basic curve assigned number 5 in [18] shall be identified as follows:

ansi-x9-62 OBJECT IDENTIFIER ::= {iso(1) member-body(2) us(840) 10045}

-- WTLS basic curve assigned number 5

parameter Parameters ::= namedCurve : {ansi-x9-62 curves(3) characteristic-two(0) 1}

Copyright 2001, Wireless Application Protocol Forum Ltd. All rights reserved

10 Certificate Extensions

10.1 The domainInformation Extension
This extension carries information that pertain to the usage of this certificate and the domain in which it has been
issued, such as:
- whether on-line status requests, for example using the OCSP ([26]) protocol, are required before using this

certificate;
- the name of the domain root Certification Authority (optional); and
- an (optional) URL ([2]) pointing to a resource containing a DER-encoded ([14]) value of type Extensions,

carrying more (non-critical) extensions linked to this certificate. The hash included in the certificate protects the
integrity of this externally stored value.

This extension shall not be critical.

domainInformation EXTENSION ::= {
SYNTAX DomainInformation
IDENTIFIED BY wap-ce-domainInformation
}

DomainInformation ::= SEQUENCE {
domainInfoFlags DomainInfoFlags DEFAULT {onLineStatusRequest},
domainAuthorityIdentifier Name {{SupportedNamingAttributes}} OPTIONAL,
otherExtensions [0] ExtensionReference OPTIONAL,
... -- For future extensions
} (CONSTRAINED BY {-- Critical extensions may not be referenced but must be explicitly included --})

DomainInfoFlags ::= BIT STRING {
onLineStatusRequest (0)
}

ExtensionReference ::= SEQUENCE {
url IA5St ring, -- URL in accordance with [2] pointing to a DER-encoded value of type Extensions
digest Digest
}

Digest ::= SEQUENCE {
digestAlgorithm AlgorithmIdentifier {{DigestAlgorithms}} DEFAULT sha1,
digest OCTET STRING (SIZE(8..wap-ub-digest))

}

The domainInfoFlags.onLineStatusRequest bit, when set, indicates that a certificate-processing application should
perform some on-line checking of the certificates’ status before using it.

The domainAuthorityIdentifier field will, when present, contain the distinguished name of the domain root CA.
Inclusion of this in an end-entity certificate may simplify policy-checking, certificate chain traversal, etc.

The otherExtensions field will, when present, contain a URL pointing to other (non -critical) extensions pertaining to
this certificate, and a digest of those extensions (the digest shall be calculated on the whole DER-value, including tag
and length, of an Extensions PDU).

Copyright 2001, Wireless Application Protocol Forum Ltd. All rights reserved

Annex A Object Classes
This specification defines one new object class, wapEntity, in support of the attributes defined in Section8. The
purpose of this object class is to enable usage (e.g. storage, lookup) of those attributes in Directory-enabled
environments. As an alternative, the naturalPerson object class, defined in [27], can be used.

A.1 The wapEntity Object Class
This auxiliary object class is intended to hold WAP-specific attributes for entities. It has been designed for use within
directory services based on the LDAP protocol ([28]) and the X.500 family of protocols ([5], [6]), where support for
WAP-defined attributes is considered useful.

wapEntity OBJECT-CLASS ::= {
SUBCLASS OF { top }
KIND auxiliary
MAY CONTAIN { WAPEntityAttributeSet }
ID wap-oc-wapEntity
}

WAPEntityAttributeSet ATTRIBUTE ::= {
serialNumber,
… -- For future extensions
}

Copyright 2001, Wireless Application Protocol Forum Ltd. All rights reserved

Annex B ASN.1 Module
This annex includes all of the ASN.1 type, value, and information object class definitions contained in this
specification, in the form of the ASN.1 module WAPCertificateProfiles (external type, value and class definitions are
imported from modules in normative references). To simplify strict type checking and adherence to profiles in this
specification, the module contains a definition of the WAPCertificate type (compatible with the Certificate type
defined in [7]) as well. This module could be input to an ASN.1 compiler for the purpose of verifying syntactic
correctness or automatic generation of ASN.1-handling code.

WAPCertificateProfiles {joint-iso- itu-t(1) identified-organizations(23) wap(43) modules(0) certificate -profiles(1)}

DEFINITIONS IMPLICIT TAGS ::=

BEGIN

-- EXPORTS All --

-- All types and values defined in this module are exported for use in other ASN.1 modules.

IMPORTS

informationFramework, selectedAttributeTypes, authenticationFramework, certificateExtensions
FROM UsefulDefinitions {joint-iso-itu-t(2) ds(5) module(1) usefulDefinitions(0) 3}

ATTRIBUTE, OBJECT-CLASS, top
FROM InformationFramework informationFramework

countryName, organizationName, organizationalUnitName, stateOrProvinceName, commonName,
serialNumber
FROM SelectedAttributeTypes selectedAttributeTypes

SIGNED, ALGORITHM, EXTENSION, Version, Validity
FROM AuthenticationFramework authenticationFramework

keyUsage, extKeyUsage, certificatePolicies, subjectAltName, basicConstraints, nameConstraints,
policyConstraints, authorityKeyIdentifier, subjectKeyIdentifier
FROM CertificateExtensions certificateExtensions

rsaEncryption, sha1WithRSAEncryption
FROM PKCS-1 {iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) modules(0) pkcs-1(1)}

id-ecPublicKey, ecdsa-with-SHA1, Parameters
FROM ANSI-X9-62 {iso(1) member-body(2) us(840) 10045 module(4) 1}

id-sha1
FROM OIWSECSIGAlgorithmObjectIdentifiers {iso(1) identified-organization(3) oiw(14) secsig(3)
oiwsecsigalgorithmobjectidentifiers(1)};

-- Upper bounds --

wap-ub-depth INTEGER ::= 5

wap-ub-width INTEGER ::= 1

wap-ub-extensions INTEGER ::= 255

wap-ub-attributes INTEGER ::= 255

wap-ub-publicKey INTEGER ::= 5000

wap-ub-digest INTEGER ::= 255

-- Object Identifiers --

wap OBJECT IDENTIFIER ::= {joint- iso-itu-t(2) identified-organizations(23) 43}

wap-at OBJECT IDENTIFIER ::= {wap 2} -- Attributes branch

wap-ce OBJECT IDENTIFIER ::= {wap 3} -- Certificate extensions branch

wap-oc OBJECT IDENTIFIER ::= {wap 4} – Object class branch

wap-ce-domainInformation OBJECT IDENTIFIER ::= {wap-ce 1}

wap-oc-wapEntity OBJECT IDENTIFIER ::= {wap-oc 1}

Copyright 2001, Wireless Application Protocol Forum Ltd. All rights reserved

-- WAP certificate syntax --

WAPCertificateInfo ::= SEQUENCE {
version [0] EXPLICIT Version DEFAULT v1,
serialNumber CertificateSerialNumber,
signature AlgorithmIdentifier {{SupportedSignatureAlgorithms}},
issuer Name {{SupportedNamingAttributes}},
validity Validity,
subject Name {{SupportedNamingAttributes}},
subjectPublicKeyInfo SubjectPublicKeyInfo {{SupportedPublicKeyAlgorithms}},
extensions [3] EXPLICIT Extensions {{SupportedExtensions}} OPTIONAL-- if present,

-- version must be v3
}

WAPCertificate ::= SIGNED {WAPCertificateInfo}

CertificateSerialNumber ::= INTEGER -- Recommended to be less than 8 bytes

AlgorithmIdentifier {ALGORITHM:AlgorithmSet} ::= SEQUENCE {
algorithm ALGORITHM.&id ({AlgorithmSet}),
parameters ALGORITHM.&Type ({AlgorithmSet}{@algorithm}) OPTIONAL
}

SupportedPublicKeyAlgorithms ALGORITHM ::= {
{NULL IDENTIFIED BY rsaEncryption} |
{Parameters IDENTIFIED BY id-ecPublicKey},
... -- For future extensions
}

SupportedSignatureAlgorithms ALGORITHM ::= {
{NULL IDENTIFIED BY sha1WithRSAEncryption} |
{NULL IDENTIFIED BY ecdsa-with-SHA1},
... -- For future extensions
}

Name {ATTRIBUTE: IOSet} ::= CHOICE {
rdnSequence SEQUENCE SIZE (1..wap-ub-depth) OF RelativeDistinguishedName {{IOSet}}
}

RelativeDistinguishedName {ATTRIBUTE : IOSet} ::= SET SIZE(1..wap-ub-width) OF
AttributeTypeAndValue {{IOSet}}

AttributeTypeAndValue {ATTRIBUTE : IOSet} ::= SEQUENCE {
type ATTRIBUTE.&id ({IOSet}),
value ATTRIBUTE.&Type ({IOSet}{@type})
}

SupportedNamingAttributes ATTRIBUTE ::= {
countryName |
organizationName |
organizationalUnitName |
stateOrProvinceName |
commonName |
domainComponent |
serialNumber,
... -- For future extensions
}

-- Defined here for easier access (see IETF RFC 2247)

domainComponent ATTRIBUTE ::= {
WITH SYNTAX IA5String
ID { 0 9 2342 19200300 100 1 25}
}

SubjectPublicKeyInfo {ALGORITHM: IOSet} ::= SEQUENCE {
algorithm AlgorithmIdentifier {{IOSet}},
subjectPublicKey BIT STRING (SIZE(1..wap-ub-publicKey))
}

Extensions {EXTENSION : IOSet} ::= SEQUENCE SIZE (1..wap-ub-extensions) OF Extension {{IOSet}}

Extension {EXTENSION : IOSet} ::= SEQUENCE {
extnId EXTENSION.&id ({IOSet}),
critical BOOLEAN DEFAULT FALSE,

Copyright 2001, Wireless Application Protocol Forum Ltd. All rights reserved

extnValue OCTET STRING
}(CONSTRAINED BY {-- extnValue must contain a DER-encoded value of type EXTENSION.&Extntype
-- for the object identified by extnId --})

domainInformation EXTENSION ::= {
SYNTAX DomainInformation
IDENTIFIED BY wap-ce-domainInformation
}

DomainInformation ::= SEQUENCE {
domainInfoFlags DomainInfoFlags DEFAULT {onLineStatusRequest},
domainAuthorityIdentifier Name {{SupportedNamingAttributes}} OPTIONAL,
otherExtensions [0] ExtensionReference OPTIONAL,
... -- For future extensions
} (CONSTRAINED BY {-- This extension should not be critical--})

DomainInfoFlags ::= BIT STRING {
onLineStatusRequest (0)
}

ExtensionReference ::= SEQUENCE {
url IA5String, -- URL in accordance with pointing to a DER-encoded value of type Extensions
digest Digest
}

Digest ::= SEQUENC E {
digestAlgorithm AlgorithmIdentifier {{DigestAlgorithms}} DEFAULT sha1,
digest OCTET STRING (SIZE(8..wap-ub-digest))
}

DigestAlgorithms ALGORITHM ::= {
{NULL IDENTIFIED BY id-sha1},
... -- For future extensions
}

sha1 AlgorithmIdentifier {{DigestAlgorithms}} ::= {algorithm id-sha1, parameters SHA1Parameters : NULL}

SHA1Parameters ::= NULL

SupportedExtensions EXTENSION ::= {
domainInformation |
keyUsage |
extKeyUsage |
certificatePolicies |
subjectAltName |
basicConstraints |
nameConstraints |
policyConstraints |
authorityKeyIdentifier |
subjectKeyIdentifier,
... -- For future extensions
}

wapEntity OBJECT-CLASS ::= {
SUBCLASS OF { top }
KIND auxiliary
MAY CONTAIN { WAPEntityAttributeSet }
ID wap-oc-wapEntity
}

WAPEntityAttributeSet ATTRIBUTE ::= {
serialNumber,
… -- For future extensions
}

END

Copyright 2001, Wireless Application Protocol Forum Ltd. All rights reserved

Annex C Static Conformance Requirements

C.1 ME Options
C.1.1. General Certificate Options
This table specifies generic certificate-processing requirements for MEs 2. In the table, “M” stands for “Mandatory to
implement” and “O” stands for “Optional.”

Item Function Sub-Function Reference Status Requirements
Cert-Gen-C-01 Parsing of fields as needed for functionality

outlined below
6 M

Cert-Gen-C-02

General X.509
Certificate
support

Able to handle client certificates at least up
to 700 bytes long

6 M

Cert-Gen-C-03 Recognize the following required RFC
2459 attributes:
countryName, organizationName,
organizationalUnitName, commonName,
stateOrProvinceName, domainComponent

6.2, 6.3 ,
6.4

M

Cert-Gen-C-04 Recognize all recommended RFC 2459
attributes:
localityName, title, surname, givenName,
initials, generationQualifier

6.2, 6.3 ,
6.4

O

Cert-Gen-C-05 Capable of displaying PrintableString,
UTF8String and NumericString values

6.2, 6.3 ,
6.4

M

Cert-Gen-C-06

Issuer Name

Recognize the serialNumber attribute 6.2, 6.3 ,
6.4

M

Cert-Gen-C-07 Recognize the following required RFC
2459 attributes :
countryName, organizationName,
organizationalUnitName, commonName,
stateOrProvinceName, domainComponent

6.2, 6.3 ,
6.4

M

Cert-Gen-C-08 Recognize all recommended RFC 2459
attributes:
localityName, title, surname, givenName,
initials, generationQualifier

6.2, 6.3 ,
6.4

O

Cert-Gen-C-09 Capable of displaying PrintableString,
UTF8String and NumericString values

6.2, 6.3 ,
6.4

M

Cert-Gen-C-10

Subject Name

Recognize the serialNumber attribute 6.2, 6.3 ,
6.4

M

2 This subsection does not apply to ME implementations that never handles (receives, stores, etc.) certificates profiled in accordance with this
document

Copyright 2001, Wireless Application Protocol Forum Ltd. All rights reserved

C.1.2. X.509 Server Certificate options
This table specifies certificate-processing requirements for MEs that support X.509-based server authentication.

Item Function Sub-Function Reference Status Requirements
Cert-SrvA-C-01

Parsing of all fields 6.1 M
Cert-SrvA-C-02 Able to process server certificates

at least up to 1000 bytes long (CA
certificates 2000 bytes)

6.4.1 M

Cert-SrvA-C-03
Capable of processing certificates
with unknown distinguished name
attributes (e.g. needed for chain
building)

6.4.4

6.4.5

M

Cert-SrvA-C-04

General X.509
Certificate
support

Capable of processing certificates
with unknown, non-critical
certificate extensions

6.4.7 M

Cert-SrvA-C-05
Verification Certificate path processing as

defined in [7] (and [8]), but
subject to limitations in Section
6.4 and 6.1

6.4, 6.1 M

Cert-SrvA-C-06 Serial Number Handling of serial numbers up to
20 bytes long

6.4.2 M

Cert-SrvA-C-07 Recognize the following required
RFC 2459 attributes:

countryName, organizationName,
organizationalUnitName,
commonName,
stateOrProvinceName,
domainComponent

6.4.4 M

Cert-SrvA-C-08 Recognize all recommended RFC
2459 attributes:

localityName, title, surname,
givenName, initials,
generationQualifier

6.4.4 O

Cert-SrvA-C-09

Issuer Name

Recognize the serialNumber
attribute

6.4.4 M

Cert-SrvA-C-10 Recognize the following required
RFC 2459 attributes:

countryName, organizationName,
organizationalUnitName,
commonName,
stateOrProvinceName,
domainComponent

6.4.4, 6.4.5 M

Cert-SrvA-C-11 Recognize all recommended RFC
2459 attributes:

localityName, title, surname,
givenName, initials,
generationQualifier

6.4.4, 6.4.5 O

Cert-SrvA-C-12

Subject Name

Recognize the serialNumber
attribute

6.4.4, 6.4.5 M

Copyright 2001, Wireless Application Protocol Forum Ltd. All rights reserved

Cert-SrvA-C-13 Recognize and process extensions
as specified in this document:
keyUsage , subjectAltName ,
extKeyUsage ,
authorityKeyIdentifier . For CA
certificates, must also process the
basicConstraints and
subjectKeyIdentifier extension.

6.4.7

6.6.6

M

Cert-SrvA-C-14

Extensions

Recognize and process extensions
as specified in this document:
certificatePolicies,
authorityAccessInfo

6.4.7 O

Cert-SrvA-C-15 Capable of processing certificates
signed with at least one of the
algorithms specified in this
document

6.4.3 M Cert-SrvA-C-16

OR

Cert-SrvA-C-17

Cert-SrvA-C-16 Capable of verifying signatures
made with RSA keys up to and
including 2048 bits

6.4.3 O

Cert-SrvA-C-17

Signature
Algorithms

Capable of verifying signatures
made with EC keys up to and
including 233 bits

6.4.3 O

NOTE – Only one of Cert-SrvA-C-16 and Cert-SrvA-C-17 need to be implemented, but see also Annex C.1.3.

C.1.3. TLS Certificate options
This table specifies further certificate-processing requirements for those MEs that support server-authenticated TLS
sessions.

Item Function Sub-Function Reference Status Requirements
Cert-TLS-C-01

Signature
Algorithms

Capable of verifying signatures
made with RSA keys up to and
including 2048 bits

6.4.3 M

Copyright 2001, Wireless Application Protocol Forum Ltd. All rights reserved

C.2 Certificate-processing application Option
This section specifies requirements on certificate processing WAP applications not located in the ME, e.g. WTLS
servers.

C.2.1 General Certificate Options
This table specifies generic certificate-processing requirements. In the table, “M” stands for “Mandatory to
implement” and “O” stands for “Optional.

Item Function Sub-Function Reference Status
Cert-Gen-S-01

Parsing of all fields 6 M
Cert-Gen-S-02 Able to handle certificates at least up to 2000

bytes long
6 M

Cert-Gen-S-03

General X.509
Certificate
support

Capable of processing certificates with unknown
distinguished name attributes (e.g. needed for
chain building)

6 M

Cert-Gen-S-04 Verification Certificate path processing as defined in [7] (and
[8]).

6.1 M

Cert-Gen-S-05 Recognize the following required RFC 2459
attributes:
countryName, organizationName,
organizationalUnitName, commonName,
stateOrProvinceName, domainComponent

6.2, 6.3 M

Cert-Gen-S-06 Recognize all recommended RFC 2459 attributes:
localityName, title, surname, givenName, initials,
generationQualifier

6.2, 6.3 O

Cert-Gen-S-07

Issuer Name

Recognize the serialNumber attribute 6.2, 6.3 M

Cert-Gen-S-08 Recognize the following required RFC 2459
attributes:
countryName, organizationName,
organizationalUnitName, commonName,
stateOrProvinceName, domainComponent

6.2, 6.3 M

Cert-Gen-S-09 Recognize all recommended RFC 2459 attributes:
localityName, title, surname, givenName, initials,
generationQualifier

6.2, 6.3 O

Cert-Gen-S-10

Subject Name

Recognize the serialNumber attribute 6.2, 6.3 M

Cert-Gen-S-11 Recognize and process extensions as specified in
this document

6 M

Cert-Gen-S-12

Extensions

Recognize and process the domainInformation
extension

10 O

Cert-Gen-S-13 Capable of processing certificates signed with at
least one of the algorithms specified in this
document

9 M

Cert-Gen-S-14 Capable of verifying signatures made with RSA
keys up to and including 2048 bits

6.6.5 O

Cert-Gen-S-15

Signature
Algorithms

Capable of verifying signatures made with EC
keys up to and including 233 bits

6.6.5 O

Cert-Gen-S-16 Chain
Processing

Process certificate chains of at least 3 6.1 M

NOTE – Only one of Cert-Gen-S-14and Cert-Gen-S-15 need to be implemented.

Copyright 2001, Wireless Application Protocol Forum Ltd. All rights reserved

Annex D Certificate Examples
ACKNOWLEDGEMENT – These examples have been developed with the help of the OSS ASN.1 compiler.

D.1 Example of a client certificate for authentication
The certificate is shown both as a dump of the WAPCertificateInfo contents and as a hexadecimal dump of the whole
certificate.

WAPCertificateInfo SEQUENCE: tag = [UNIVERSAL 16] constructed; length = 270

 serialNumber SerialNumber INTEGER: tag = [UNIVERSAL 2] primitive; length = 4

 1234567890

 signature SEQUENCE: tag = [UNIVERSAL 16] constructed; length = 13

 algorithm OBJECT IDENTIFIER: tag = [UNIVERSAL 6] primitive; length = 9

 { 1 2 840 113549 1 1 5 }

 parameters OpenType

 0x0500

 issuer SEQUENCE OF: tag = [UNIVERSAL 16] constructed; length = 38

 SET OF: tag = [UNIVERSAL 17] constructed; length = 18

 SEQUENCE: tag = [UNIVERSAL 16] constructed; length = 16

 type OBJECT IDENTIFIER: tag = [UNIVERSAL 6] primitive; length = 3

 { 2 5 4 10 } -- OrganizationName

 value OpenType

 0x0c0941434d4520496e632e -- "ACME Inc."

 SET OF: tag = [UNIVERSAL 17] constructed; length = 16

 SEQUENCE: tag = [UNIVERSAL 16] constructed; length = 14

 type OBJECT IDENTIFIER: tag = [UNIVERSAL 6] primitive; length = 3

 { 2 5 4 3 } -- commonName

 value OpenType

 0x0c0754657374204341 -- "Test CA"

 validity Validity SEQUENCE: tag = [UNIVERSAL 16] constructed; length = 30

 notBefore Time CHOICE

 utcTime UTCTime: tag = [UNIVERSAL 23] primitive; length = 13

 000101110000Z

 notAfter Time CHOICE

 utcTime UTCTime: tag = [UNIVERSAL 23] primitive; length = 13

 001101100000Z

 subject SEQUENCE OF: tag = [UNIVERSAL 16] constructed; length = 15

 SET OF: tag = [UNIVERSAL 17] constructed; length = 13

 SEQUENCE: tag = [UNIVERSAL 16] constructed; length = 11

 type OBJECT IDENTIFIER: tag = [UNIVERSAL 6] primitive; length = 3

 { 2 5 4 5 } -- serialNumber

 value OpenType

Copyright 2001, Wireless Application Protocol Forum Ltd. All rights reserved

 0x130431303031 –- "1001"

 subjectPublicKeyInfo SEQUENCE: tag = [UNIVERSAL 16] constructed; length = 157

 algorithm SEQUENCE: tag = [UNIVERSAL 16] constructed; length = 13

 algorithm OBJECT IDENTIFIER: tag = [UNIVERSAL 6] primitive; length = 9

 { 1 2 840 113549 1 1 1 }

 parameters OpenType

 0x0500

 subjectPublicKey BIT STRING: tag = [UNIVERSAL 3] primitive; length = 139

0x0030818702818100b8488400d4b6088be48ead459ca19ec717aaf3d1d4ee3ecca49612...

Hexadecimal dump of the signed certificate :

308201A5 3082010E 02044996 02D2300D 06092A86 4886F70D 01010505 00302631

12301006 0355040A 0C094143 4D452049 6E632E31 10300E06 03550403 0C075465

73742043 41301E17 0D303030 31303131 31303030 305A170D 30303131 30313130

30303030 5A300F31 0D300B06 03550405 13043130 30313081 9D300D06 092A8648

86F70D01 01010500 03818B00 30818702 818100B8 488400D4 B6088BE4 8EAD459C

A19EC717 AAF3D1D4 EE3ECCA4 96128A13 597D16CC 8B85EB37 EFCE110C 63B01E68

4E5CF632 291EAC60 FD153C26 6EAAC36A D4CEA923 19F9BFDD 261AD2BF E41EAB4E

17FE6783 41EE52D9 A0A8B4DE C07B7ACC 76762514 045CEE99 94E0CF37 BAE05F8D

E33B35FF 98BCE777 42CE4B12 273BD122 137FE902 0105300D 06092A86 4886F70D

01010505 00038181 00202BB7 D273C08B 9A0BF4D0 3B314FEB 2A30BC4E 4929DC30

A6CB3EA1 4760D991 A3C083A8 C59E33D8 A5A866F0 E94A33B0 92FA6A31 95D7E8C5

FD9B5E4E 673F2C1C 6ECF5C0D 511A905E C300F672 61774275 084DA194 FBF4F01C

BD9DABB7 CD32044F 350B0DC6 1081E68B 10AC2ACD 9E526312 D737B665 08FC48B0

A0074516 9E7FEC12 1E

D.2 Example of a CA certificate
The certificate can be used to verify the signature of the client certificate in the previous section.

WAPCertificateInfo SEQUENCE: tag = [UNIVERSAL 16] constructed; length = 318

 version : tag = [0] constructed; length = 3

 Version INTEGER: tag = [UNIVERSAL 2] primitive; length = 1

 2

 serialNumber SerialNumber INTEGER: tag = [UNIVERSAL 2] primitive; length = 1

 1

 signature SEQUENCE: tag = [UNIVERSAL 16] constructed; length = 13

 algorithm OBJECT IDENTIFIER: tag = [UNIVERSAL 6] primitive; length = 9

 { 1 2 840 113549 1 1 5 }

 parameters OpenType

 0x0500

 issuer SEQUENCE OF: tag = [UNIVERSAL 16] constructed; length = 38

 SET OF: tag = [UNIVERSAL 17] constructed; length = 18

Copyright 2001, Wireless Application Protocol Forum Ltd. All rights reserved

 SEQUENCE: tag = [UNIVERSAL 16] constructed; length = 16

 type OBJECT IDENTIFIER: tag = [UNIVERSAL 6] primitive; length = 3

 { 2 5 4 10 } -- organizationName

 value OpenType

 0x0c0941434d4520496e632e -- "ACME Inc."

 SET OF: tag = [UNIVERSAL 17] constructed; length = 16

 SEQUENCE: tag = [UNIVERSAL 16] constructed; length = 14

 type OBJECT IDENTIFIER: tag = [UNIVERSAL 6] primitive; length = 3

 { 2 5 4 3 } -- commonName

 value OpenType

 0x0c0754657374204341 -- "Test CA"

 validity Validity SEQUENCE: tag = [UNIVERSAL 16] constructed; length = 30

 notBefore Time CHOICE

 utcTime UTCTime: tag = [UNIVERSAL 23] primitive; length = 13

 000101100000Z

 notAfter Time CHOICE

 utcTime UTCTime: tag = [UNIVERSAL 23] primitive; length = 13

 001111100000Z

 subject SEQUENCE OF: tag = [UNIVERSAL 16] constructed; length = 38

 SET OF: tag = [UNIVERSAL 17] constructed; length = 18

 SEQUENCE: tag = [UNIVERSAL 16] constructed; length = 16

 type OBJECT IDENTIFIER: tag = [UNIVERSAL 6] primitive; length = 3

 { 2 5 4 10 } -- organizationName

 value OpenType

 0x0c0941434d4520496e632e -- "ACME Inc."

 SET OF: tag = [UNIVERSAL 17] constructed; length = 16

 SEQUENCE: tag = [UNIVERSAL 16] constructed; length = 14

 type OBJECT IDENTIFIER: tag = [UNIVERSAL 6] primitive; length = 3

 { 2 5 4 3 } -- commonName

 value OpenType

 0x0c0754657374204341 "Test CA"

 subjectPublicKeyInfo SEQUENCE: tag = [UNIVERSAL 16] constructed; length = 159

 algorithm SEQUENCE: tag = [UNIVERSAL 16] constructed; length = 13

 algorithm OBJECT IDENTIFIER: tag = [UNIVERSAL 6] primitive; length = 9

 { 1 2 840 113549 1 1 1 }

 parameters OpenType

 0x0500

 subjectPublicKey BIT STRING: tag = [UNIVERSAL 3] primitive; length = 141

0x0030818902818100ad1f35964b3674c807b9f8a645d2c8174e514b69a4b46a7382915a...

 extensions : tag = [3] constructed; length = 19

Copyright 2001, Wireless Application Protocol Forum Ltd. All rights reserved

 SEQUENCE OF: tag = [UNIVERSAL 16] constructed; length = 17

 SEQUENCE: tag = [UNIVERSAL 16] constructed; length = 15

 extnId OBJECT IDENTIFIER: tag = [UNIVERSAL 6] primitive; length = 3

 { 2 5 29 19 }-- basicConstraints

 critical BOOLEAN: tag = [UNIVERSAL 1] primitive; length = 1

 TRUE

 extnValue OCTET STRING: tag = [UNIVERSAL 4] primitive; length = 5

 0x30030101ff

Hexadecimal dump of the self-signed CA certificate:

308201D5 3082013E A0030201 02020101 300D0609 2A864886 F70D0101 05050030

26311230 10060355 040A0C09 41434D45 20496E63 2E311030 0E060355 04030C07

54657374 20434130 1E170D30 30303130 31313030 3030305A 170D3030 31313131

31303030 30305A30 26311230 10060355 040A0C09 41434D45 20496E63 2E311030

0E060355 04030C07 54657374 20434130 819F300D 06092A86 4886F70D 01010105

0003818D 00308189 02818100 AD1F3596 4B3674C8 07B9F8A6 45D2C817 4E514B69

A4B46A73 82915ABB C44ECCED E914DAE8 FCC023AB CEA9C533 80E64179 5CB0DDA6

64B872FC 109F9BBB 852BF42D 994F634C 681608E3 88DCE240 B558513E 5B60027B

D1A07CEF 9C9B6DB3 7C7E1F1A BD238EED 96E4B669 056B260F 55E83F14 E6027127

C9DEB3AD 18AFCD3F 8A5F5BF5 02030100 01A31330 11300F06 03551D13 0101FF04

05300301 01FF300D 06092A86 4886F70D 01010505 00038181 0029E927 40EC957B

313933B1 DD45BB7B 2DA2BC03 A4C40224 5B183E36 E4FE4FB8 948D1155 F47938CC

422C6D77 52F0FAAF FEC11E05 8B6945E3 D7FA8208 B2367A10 6BD546B7 33C235C9

D4DC21F5 B9A1903D B9B19D97 985DBABB 67146949 43C362ED 662872F4 A7C2C859

F6F47752 F25FABD3 E056A7AF E16A96F4 8FC7ADEA 92057A2D 5C

D.3 Example of a server certificate for server authentication
The certificate is shown both as an ASN.1 dump of the contents and as a hexadecimal dump of the whole certificate.
The certificate contains a (critical) keyUsage extension, an extKeyUsage extension, a subjectAltName extension
(dNSName alternative), and an authorityKeyIdentifier extension. The size of the certificate is 552 bytes.

ASN.1 dump of the certificate information:

WAPCertificateInfo SEQUENCE: tag = [UNIVERSAL 16] constructed; length = 397

 version : tag = [0] constructed; length = 3

 Version INTEGER: tag = [UNIVERSAL 2] primitive; length = 1

 2

 serialNumber SerialNumber INTEGER: tag = [UNIVERSAL 2] primitive;

 length = 3

 5678901

 signature SEQUENCE: tag = [UNIVERSAL 16] constructed; length = 13

 algorithm OBJECT IDENTIFIER: tag = [UNIVERSAL 6] primitive; length = 9

 { 1 2 840 113549 1 1 5 } -- sha1WithRSAEncryption

 parameters OpenType -- NULL

 0x0500

Copyright 2001, Wireless Application Protocol Forum Ltd. All rights reserved

 issuer SEQUENCE OF: tag = [UNIVERSAL 16] constructed; length = 38

 SET OF: tag = [UNIVERSAL 17] constructed; length = 18

 SEQUENCE: tag = [UNIVERSAL 16] constructed; length = 16

 type OBJECT IDENTIFIER: tag = [UNIVERSAL 6] primitive; length = 3

 { 2 5 4 10 } -- organizationName

 value OpenType -- UTF8String

 0x0c0941434d4520496e632e -- "ACME Inc."

 SET OF: tag = [UNIVERSAL 17] constructed; length = 16

 SEQUENCE: tag = [UNIVERSAL 16] constructed; length = 14

 type OBJECT IDENTIFIER: tag = [UNIVERSAL 6] primitive; length = 3

 { 2 5 4 3 } -- commonName

 value OpenType -- UTF8String

 0x0c0754657374204341 -- "Test CA"

 validity Validity SEQUENCE: tag = [UNIVERSAL 16] constructed; length = 30

 notBefore Time CHOICE

 utcTime UTCTime: tag = [UNIVERSAL 23] primitive; length = 13

 000101110000Z

 notAfter Time CHOICE

 utcTime UTCTime: tag = [UNIVERSAL 23] primitive; length = 13

 011101100000Z

 subject SEQUENCE OF: tag = [UNIVERSAL 16] constructed; length = 34

 SET OF: tag = [UNIVERSAL 17] constructed; length = 11

 SEQUENCE: tag = [UNIVERSAL 16] constructed; length = 9

 type OBJECT IDENTIFIER: tag = [UNIVERSAL 6] primitive; length = 3

 { 2 5 4 6 } -- countryName

 value OpenType -- PrintableString

 0x13025553 -- "US"

 SET OF: tag = [UNIVERSAL 17] constructed; length = 19

 SEQUENCE: tag = [UNIVERSAL 16] constructed; length = 17

 type OBJECT IDENTIFIER: tag = [UNIVERSAL 6] primitive; length = 3

 { 2 5 4 10 } -- organizationName

 value OpenType -- PrintableString

 0x130a43657274732052205573 -- "Certs R Us"

 subjectPublicKeyInfo SEQUENCE: tag = [UNIVERSAL 16] constructed;

 length = 157

 algorithm SEQUENCE: tag = [UNIVERSAL 16] constructed; length = 13

 algorithm OBJECT IDENTIFIER: tag = [UNIVERSAL 6] primitive;

 length = 9

 { 1 2 840 113549 1 1 1 } -- rsaEncryption

 parameters OpenType -- NULL

 0x0500

Copyright 2001, Wireless Application Protocol Forum Ltd. All rights reserved

 subjectPublicKey BIT STRING: tag = [UNIVERSAL 3] primitive;

 length = 139

 0x0030818702818100b8488400d4b6088be48ead459ca19ec717aaf3d1d4ee3ecc...

 extensions : tag = [3] constructed; length = 102

 SEQUENCE OF: tag = [UNIVERSAL 16] constructed; length = 100

 SEQUENCE: tag = [UNIVERSAL 16] constructed; length = 14

 extnId OBJECT IDENTIFIER: tag = [UNIVERSAL 6] primitive; length = 3

 { 2 5 29 15 } -- keyUsage

 critical BOOLEAN: tag = [UNIVERSAL 1] primitive; length = 1

 TRUE

 extnValue OCTET STRING: tag = [UNIVERSAL 4] primitive; length = 4

 0x030205a0 -- digitalSignature, keyEncipherment

 SEQUENCE: tag = [UNIVERSAL 16] constructed; length = 19

 extnId OBJECT IDENTIFIER: tag = [UNIVERSAL 6] primitive; length = 3

 { 2 5 29 37 } -- extKeyUsage

 extnValue OCTET STRING: tag = [UNIVERSAL 4] primitive; length = 12

 0x300a06082b06010505070301 -- {id-kp-serverAuth}

 SEQUENCE: tag = [UNIVERSAL 16] constructed; length = 28

 extnId OBJECT IDENTIFIER: tag = [UNIVERSAL 6] primitive; length = 3

 { 2 5 29 17 } -- subjectAltName

 extnValue OCTET STRING: tag = [UNIVERSAL 4] primitive; length = 21

 0x301382117761702e63657274732d722d75732e7573

 -- dNSName : "wap.certs-r-us.us"

 SEQUENCE: tag = [UNIVERSAL 16] constructed; length = 31

 extnId OBJECT IDENTIFIER: tag = [UNIVERSAL 6] primitive; length = 3

 { 2 5 29 35 } -- authorityKeyIdentifier

 extnValue OCTET STRING: tag = [UNIVERSAL 4] primitive; length = 24

 0x30168014000102030405060708090a0b0c0d0e0ffedcba98

Hexadecimal dump of the signed certificate :

30820224 3082018D A0030201 02020356 A735300D 06092A86 4886F70D 01010505

00302631 12301006 0355040A 0C094143 4D452049 6E632E31 10300E06 03550403

0C075465 73742043 41301E17 0D303030 31303131 31303030 305A170D 30313131

30313130 30303030 5A302231 0B300906 03550406 13025553 31133011 06035504

0A130A43 65727473 20522055 7330819D 300D0609 2A864886 F70D0101 01050003

818B0030 81870281 8100B848 8400D4B6 088BE48E AD459CA1 9EC717AA F3D1D4EE

3ECCA496 128A1359 7D16CC8B 85EB37EF CE110C63 B01E684E 5CF63229 1EAC60FD

153C266E AAC36AD4 CEA92319 F9BFDD26 1AD2BFE4 1EAB4E17 FE678341 EE52D9A0

A8B4DEC0 7B7ACC76 76251404 5CEE9994 E0CF37BA E05F8DE3 3B35FF98 BCE77742

CE4B1227 3BD12213 7FE90201 05A36630 64300E06 03551D0F 0101FF04 04030205

A0301306 03551D25 040C300A 06082B06 01050507 0301301C 0603551D 11041530

13821177 61702E63 65727473 2D722D75 732E7573 301F0603 551D2304 18301680

Copyright 2001, Wireless Application Protocol Forum Ltd. All rights reserved

14000102 03040506 0708090A 0B0C0D0E 0FFEDCBA 98300D06 092A8648 86F70D01

01050500 03818100 530D71EC C3F44439 08125646 63709402 19555609 F3ECB411

D39DFD79 9F48A418 92EBC51D 2FF0EB3E 341CC834 B81DDC43 53B5FD4D D34760A7

12ECF610 20C77F0A D387A235 739C1D82 45C049B3 817D32DD 661C67BE A4588A52

68DB4156 669B92B2 DE66A4CE 57C4FDC8 ABDADCC3 5BD3EDDF 6F018B93 ACAD4AE6

E9637EC2 D379B48B

