Wireless Transaction Protocol
Version 10-Jul-2001

Wireless Application Protocol
WAP-224-WTP-20010710-a

A list of errata and updates to this document is available from the WAP Forum™ Web site, http://www.wapforum.org/,
in the form of SIN documents, which are subject to revision or removal without notice.

0 2001, Wireless Application Protocol Forum, Ltd. All Rights Reserved. Terms and conditions of use are available from
the WAP ForumO Web site (http://www.wapforum.org/what/copyright.htm).

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 2 (73)

© 2001, Wireless Application Protocol Forum, Ltd. All rights reserved.

Terms and conditions of use are available from the WAP Forun® Web site at
http://www.wapforum.org/what/copyright.htm.

Y ou may use this document or any part of the document for internal or educational purposes only, provided you do not
modify, edit or take out of context the information in this document in any manner. Y ou may not use this document in
any other manner without the prior written permission of the WAP Forum™. The WAP Forum authorises you to copy
this document, provided that you retain all copyright and other proprietary notices contained in the original materials on
any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute
an endorsement of the products or services offered by you.

The WAP Forum™ assumes no responsibility for errors or omissionsin this document. In no event shall the WAP
Forum be liable for any special, indirect or consequential damages or any damages whatsoever arising out of or in
connection with the use of thisinformation.

WAP Forum™ members have agreed to use reasonabl e endeavors to disclosein atimely manner to the WAP Forum the
existence of all intellectual property rights (IPR's) essential to the present document. The members do not have an
obligation to conduct IPR searches. Thisinformation is publicly available to members and non-members of the WAP
Forum and may be found on the "WAP IPR Declarations" list at http://www.wapforum.org/what/ipr.htm. Essential IPR
isavailablefor license on the basis set out in the schedule to the WAP ForumA pplication Form.

No representations or warranties (whether express or implied) are made by the WAP Forun™ or any WAP Forum
member or its affiliates regarding any of the IPR's represented on thislist, including but not limited to the accuracy,
completeness, validity or relevance of the information or whether or not such rights are essential or non-essential.

This document is available online in PDF format at http://www.wapforum.org/.
Known problems associated with this document are published at http://www.wapforum.org/.

Comments regarding this document can be submitted to the WAP Forunt™ in the manner published at
http://www.wapforum.org/.

Document History

WA P-201-WTP-20000219-a Approved
WAP-201_001-WTP-20001212-a SIN
WAP-201_002-WTP-20001213-a SIN

WA P-224-WTP-20010208-p Proposed
WAP-224_001-WTP-20010710-p SIN
WAP-224-WTP-20010710-a Current

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 3 (73)

Contents
L SCOPE ...ttt e bbb R R R R R R AR AR Rt 7
2. REFERENCES ...ttt tsestsessssesesssssesssessssssssssssssssssassssssssssssssssssssssssssssssessssessssessssassssassssassessssnsessnsessssssssssnsssassesssesnes 8
2.1. NORMATIVE REFERENCES........oetuetrturtrttrereesesssstasesesesstsssssseessssssssaesssasssssessssssssessssssssssssssesssssssssssssssssssassnsassessssssssssssssssssssasens 8
2.2, INFORMATIVE REFERENCES......c.corttrtrttreteressestassstsesstssessssessssssssasssssessssessssssssessssssssssssssessssssssssssssssssassnsassssssssssssssssssssssssasens 8
3. TERMINOLOGY AND CONVENTIONS ..ottt esessess st essbsese st sesessesessssssssssessssssssssssssnsssnnsessnsesanes 9
3. L. CONVENTIONS ...ctutteiuteeeseesesetsesetsesessessesesseesseses s s s e s e b e e s b e ese b ees e b £ b bR £ b £ e bR et b bbb bbbt 9
3.2, DEFINITIONS .cctueutteiuteeessesesessesetsesessessesessees s ses s st s e s e e b e e s b e e s ees b es e bR R £ E £ e e e s et R bbb bbb 9
3.3 ABBREVIATIONScucttteureresetressesessssessssssssssssesssessssessssessssessssessssessssassssasssssnsessnsessnssssnssssssssssssssssnes 10
4. PROTOCOL OVERVIEW ...ttt ettt st £ttt bbbt 11
4.1, PROTOCOL FEATURESceutturireererteressesessesessessssssssesssssssssssssssssssssssssssssssessssesssssssssasssssssssassssssssssssssssssssssasssssssssassesssesssesnnes 11
A.2. TRANSACTION CLASSESoiureriurereeresseressesessesessssssessssssssssssssesssssssssessssessssssesssssssssessssasssassssssssssssessesssssssssssssssssssesassesssesnes 11
4.2.1. Class 0: Unreliable Invoke Message With NO RESUIT MESSAgE........c.cveerviiereriiiierisirisesese s sssssssssssssssenens 11
4.2.2. Class 1. Reliable Invoke Message with No Result Message
4.2.3. Class 2: Reliable Invoke Message with One Reliable RESUIt MESSAGE.........c.cvvicieineecenereseee st essesaeens 12
4.3. RELATION TO OTHER PROTOCOL S....ccuttiuiteiteeaseesaesseessessssessssessssesssssesssssesssssssssesssssssssesessssssssssssssssssssssssssssssssessssesaees 12

4.4. SECURITY CONSIDERATIONS
4.5. MANAGEMENT ENTITY

4.6. INTEROPERABILITY CONSIDERATIONS.......ccieteteteteesestessssessesessssesssesssessesssssssssssssssesessasssssensasssessssssstesessssssssensssstesssssssens 14
A7, OTHERWTP USERS.....coiiiictctiieistetese st e sse s te e s ssssse s sesbe s s sestesessstesesesssesbessssssesesesestesassasssebensaestesssssestebensssssetenssestensasssssens 14
5.ELEMENTS FOR LAYER-TO-LAYER COMMUNICATION ..ottt sn s st 15
LT R N0 3 N L ST WS = o J 15
5.1.1. Definition of Service Primitives and ParamELELS ..ottt sas st sassssbs s ssssssnsnns 15
5.1.2. Primitive Types
5.1.3. SEIVICE ParaMELEr TADIES ..ottt et s b e e b b e e b e e be b e ae b e b ebe st e sesbasbebnbans 15
5.2. REQUIREMENTSON THE UNDERLAYING LAYERc.oiotetititeteeetseeeetsesestessssesesssssssssssssssssssssssssssssssssssssnssssssssssssnssssssanes 16
5.3. SERVICES PROVIDED TO UPPER LAYER

BBL L TRANVOKE ...ttt ettt ettt bbbt e b ebe b et e bebe b et e b et e b et e b e b et et e b et et et e b et et et et et et et et ebeb et et etebebebenne
5.3.2. TR-InvokeData.
5.3.3. TR-Result
5.3.4. TR-ResultData.
B.3.5. TRADOI ...ttt bbb bbb b e bbbt bbb s R bbb bR bbb AR bt e bbb s At p et s ne

6. CLASSES OF OPERATION

6.1. CLASS O TRANSACTION
(300 T 1Y o (V7= (10
6.1.2. Protocol Data Units
6.1.3. Procedure

6.2. CLASS 1 TRANSACTION
(ST N1V o V2= o o
6.2.2. Service Primitive Sequences...
6.2.3. Protocol Data Units
(ST S = (0wl LU [(=TT

6.3. CLASS 2 TRANSACTION
(ST 20 I 1Y o) Y21 £ o] o T
6.3.2. Service Primitive Sequences.
6.3.3. Protocol Data Units
6.3.4. Procedure

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 4 (73)

7. PROTOCOL FEATURES ...t bbb bbb bbb bbb

T. 1. MIESSAGE TRANSFER.......ouctetettesteetstssssssssssssestassssssssstssssessasssssentasssessssssssssestasssssensssssessasasssssestasssessssessessssesssssentasssessasssssensaes
0 0 O T o] (o OO ST SO T ST PP PP
S < AV (o sl 1 1 111 K/
7.1.3. Transport Protocol Data Units............
N BT 01 (= A T a1 (S V2= Bz 10 O 10 1 (= £
A ST = (00 o (U TSRS

7.2. RE-TRANSMISSION UNTIL ACKNOWLEDGEMENT
7.2.1. MOtIVaALiON....eceveeeececeeeese e
7.2.2. Transport Protocol Data Units............
7.2.3. TIMEY INTENVAIS ANU COUNLETSoeecvceeietctctcee ettt e st bs s e b e se st bsbe st sbe e s sesbe s st s besesssestebe e ntsaasessneatan
A = (oo LU (T

7.3. USER ACKNOWLEDGEMENT
ARSI R 1Y o) V7= (10 R
ARSI = (o) (0 o0 DT r= 1L Lo 1] 3
7.3.3. Procedure

7.4. INFORMATION IN LAST ACKNOWLEDGEMENT ..cuttiteiiste ettt tsse et e s s sesbess st st ss e s sessassssssssasssestessssssssssasassssssasssssessses
A R Y o) (V7 (10 o S
7.4.2. Service Primitives.......
7.4.3. Protocol Data Units...............
T7.4.4. ProCedure........ooeeeeeeeeieeseeesee s

7.5. CONCATENATION AND SEPARATION.....ccueiiiititiisistseissses et sesbsssssssstssasssssssbesssesbesessssssssassssssssssssestessssssssssessassssssnsssstessses
ST T\ o V2= o] o T
7.5.2. Procedure

7.6. ASYNCHRONOUS TRANSACTIONS.cueeiieeteuieseetesesestssesessssstessssssessssssssssessasssssessssstessssssssssestasssssenssestessssasssssensasssessasssstensans
T R 1Y o) (V7= (10 o

7.7. TRANSACTION ABORT
7.7.1. Motivation....................
7.7.2. Service Primitives
7.7.3. Transport Protocol Data Units
A (0 0= o (U TSRS

7.8. TRANSACTION IDENTIFIER
RS Y o V2= o] o 1T
7.8.2. Procedure at the RESPONUEN..........c.ccriiirereecie st es sttt s st st s s et et s st b s s et e s s nanses s sens 30
7.8.3. Procedure at the INitiator........ccveveeveceevecceeeceeeens

7.9. TRANSACTION IDENTIFIER VERIFICATION
A 5 I \Y o) AV o] o 1S
S I = (o) 0 o0 DT r= 1L Lo 11 3R
S G T = (00 o [0 T

7.10. TRANSPORT INFORMATION ITEMS (TPIS)
O B Y o) (V7 (o SRR
A O 2 = 0T [| (T

7.11. TRANSMISSION OF PARAMETERS
8 0 TR 1Y 0 Y= o] ST
A N R 0T o (U (TS

7.12. ERROR HANDLING.......
7.12.1. Motivation..............
7.12.2. Protocol Data Units
B 2R T 0 Tor o 16T

T.13. VERSION HANDLING ...oviveteiseetetststsesstses e etssssssessssssssesasssssessssssessasssssssastasssssasseasesestasssssestasssessnssestesesesseesantasssessassessensnes
7.13.1. Motivation
ARSI = (o) (o oo I BT x4 11O
A R G T = (0101 [(TS

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 5 (73)

7.14. SEGMENTATION AND RE-ASSEMBLY (OPTIONAL)...otvutuerererrernerserssssessesseseesessessessesssssssssssssssssssssssssessessssssssssssssssnssnsens 35
T LA L. IMIOUIVALTON.....orieerieestiseeet et E s8R E e R e E e b bR bbb 35
7.14.2. Procedure fOr SEOMENEALIONcoucerieerierreeereieetieesi e ses bbb bbb 35
7.14.3. ProCedure fOr PACKEL GIOUPS...........cruuiuiereeeeeeseesreseseesssssssessessssssssssssssssssssssssssssssssss s ssssssssssssssssssssssssssssssssssesssssssnees 36
7.14.4. Procedure for Selective RE-traNSMIiSSION.........cv i sssses 36

7.15. EXTENDED SEGMENTATION AND RE-ASSEMBLY (OPTIONAL) c.vuvetiecrrieemteemeeemssssessssess s sessssesessessssesssssssesssnsssens 36

8 ST 1Y o (V7 o] o 1TSS 36
7.15.2. Procedure fOr SEOMENTALIONcciuiiiereerece st ee s et s s bbbt es s s s s s bbb s s an s e s s s an s s s ens 37
7.15.3. Procedure fOr SlidiNg WINGOW..........cccccieceriisieesessie st sss s sss s st st ssssss s s st sssssssessssssssesssnens 38
7.15.4. Procedure fOr REHADIILYcvicieiiiecesesese sttt sttt s et s st s an s s s ens 39

8. STRUCTURE AND ENCODING OF PROTOCOL DATA UNITS ..ottt seesessssessssesssssssssssesnes 40
8.1, GENERAL ..ceriuituertiettte ettt ese st b e s s et s b e s e b b4 £ b £ E £ bR e R A e e R e R bR bR bbbt 40
8.2. COMMON HEADER FIELDScoiuetiueitieistieestesetesessistssssess s ettt nes bbbttt 40

8.2.1. CONLINUE FlAG (CON)....cuviurieetrereieesesesseessesessesesses st esss bbb sese st b bbb 40
8.2.2. Group Trailer (GTR) and Transmission Trailler (TTR) Flag......coccverrnnrereeneeseeees s 41
8.2.3. PaCKet SEQUENCE NUMIET ...ttt ettt s ettt n st s ens 41

o N D 1 IV o OO OO 41
8.2.5. RESEIVEIT (RES)oviiuiueireeeieirire ettt as sttt s b b A s b £ £t b £ e e R b £t bbb ettt an bt e 41
8.2.6. Re-transmission INiCALON (RID).....c.cuireirieeeeieesisie ettt se bbb bbb snbebesasasesesnsnsesasaes 41

8.2.7. TranSaCtion [AENLITIEN (TID) ..ottt b bbb s s st s b s st n s s an b s e ens 41
8.3. FIXED HEADER STRUCTUREcccstetetstetsstsstsstsstsssssssssssssssssssssssssssssssssssasssssessssssssessssssssssassassassassassesssssssssssssassassassassassns 41
8.3, L. INVOKE PDU ...ttt s b £t bbb bbbttt 41

8.3.2. RESUIT PDU ...ttt ss s es s bbbttt 42
8.3.3. ACKNOWIEAGEMENT PD U ...ttt sttt ss sttt sttt s et ans s e nsnsessnens 42
8.3.4. ADOIE PDUcouiiieiitiintieeie et ses s es s s ess s bbb s s b 8RRt 43

8.3.5. Segmented INVOKE PDU (OPLIONEL)cviuierrieirieeetieesieessisesss e sess sttt ssssssssssssssnes 44
8.3.6. Segmented ReSUIt PDU (OPLIONAD) ..ot sess sttt ssssss s sssssssesessssnes 44
8.3.7. Negative Acknowledgement PDU (PDU).......ccueeneer e sessessssessssessssssssssss s sss s sssssssessssssees a4
8.4. TRANSPORT INFORMATION ITEMS.....cuitiiurerierereresseressesessesesesssssssssssssssessssessssessssssessssessssssssssssssassssssssssssssssssssssssssssesssssassnes 45
S T 0T | OO OO 45
842, ENTON TPl .ttt bbb b bbb bbb bR b b e bbb b e R e R e b b e R e R e R b e b e R e R b e R e b e b e b e b e b e b b e b e b et b e b e b et et ebenns 46
B3, INFO TP ettt bbb R AR bRt b bbb bbbt 46
ST B @] 1o o I TP 46
8.4.5. Packet Sequence NUMDBEr TPl (OPLIONAL)ccuvviieeiririserecsets sttt sss s ssss e sss s ssssssssssessssens 48
8.4.6. SDU BOUNUAIY TPoeeeeieeeeeeirireetetsisessstsesessssssesesssstssssssssessesssessssssssssessssssssssesssesssssssnsessssssssesssnssesesssssnsessssssnsessnens 48

ST A L= 2 Lo T T = I OO 48

8.5. STRUCTURE OF CONCATENATED PDUS......ccotiriiirtieireeeineieiness sttt et ssssbssse s ssssssessssesssssssssssnsssens 49
Q. STATE TABLES ...ttt et bbb £ a bR bbb e bbb bbbt 50
O.0. GENERAL «ututucereueeeseesssessesessssesssssssssasesssssssesessssssssssssssassssssssssesnssssssssssssssessssessssessssessssessssessssessssasssssnsssnsssnsessnssssssssssssnsnsnes 50
9.2, EVENT PROCESSING.....cttrureereeressesessesessesessessssesssssssssssssssssssssesassssssssssssssssssssssssessssessssessssesssssssssasssssssssssssssssesssssssssssssssssssnns 50
LSS 0 N 0 1 TV 7T 51

LS G 00 R T2 1 OO 51

LS T A ©o U 1= £ OSSR OSRTOR 51

LS 0 TR TV = .S o =TSO 51

9.4. TIMERS, COUNTERS AND VARIABLEcotttuttetrtntuteetsesesasssestasas e sesssssessessssssssessse et s st s sesssssessesssstessssesssssessssssesssssnssesanns 51

L I St T I 0 1= T 51
O0.4,2. COUNLELS ...ecteiitiiteie ettt e e e bt st e e s be e se st e e s be s eae b esesb e s e b e s b esesb e s ebesbesseb e e ebe s e eRs et e e eb e b eneebe e ebesbeneebe e eaeabeneabenseaeabesesbensebnabans 52
L T RN = (= o | =TT 52
L T TAY A I T 1 0] T 53
O0.6. WT P RESPONDER.......ceesuitetetsesseststssssssssssssestassssssssssssssssasssssestasssessssssssssestasssssestssssesssasssssestasssessassessessssssssssentessssssasssssensns 55

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 6 (73)

10. EXAMPLES OF PROTOCOL OPERATION ..ottt sttt seessssssse s sssssssssssssssssssssssssssssssssssssssnsssnsnns 57
10.1. INTRODUGCTION....cuceiitcteeiesteseesessesessssssssessesssessasssssessssssesssesesesesssssssessssssessssssssesessasesesensssssestasssessssssesesessasssssensasssessnsssssesenes 57
10.2. CLASS O TRANSACTION.....cuiciieeteteeieteeesestesesesessestesssssssssseasssesessasssssessssssessssssssssessasesesensssssestsssessssssesesessasssssensasssessassssseseans 57

10.2.1. BASIC TIANSACHION.....cvcvieeeetcteeeeeetcteee ettt ee st ete e e tete e sesesbe e e sesesesestesesessssebessassseseassentesessssesesensasetessnssseteneseetesesnnsssesennas 57
10.3. CLASS L TRANSACTION.....cuiieeetcueeeteteteeeeteteseeesteteseeeeseseseesesesaseasssesassseebesessasesesassasesesensssetesensasesesessetesasssesesansaseseseassentesenes 57
10.3.1. BASIC TIANSACHION.....covieieeicieeeeeeetee ettt ettt et e et te e s et eseeeebesese s esebe e s esesessseetesessesesesensesebesensssebeseseebeseanssetesaneas 57
10.4. CLASS 2 TRANSACTION....cuciuitereeriteteeseseeessseesssssssesssssesesssssssssssssssessssssssssasssasasnsasssnsnsssasnsnsssanas 58

10.4.0. BBSIC TIANSACHIONucueriureriieeseereneisessisessisesebseasssessesesseses s s s s s seb e bt ees b eea e s s s b e b e e re bbb bt e bt e st esaas 58
10.4.2. Transaction with “Hold on” ACKNOWIEAGEMENLcoviicieieccereee et 58
10.5. TRANSACTION IDENTIFIER V ERIFICATION....tuiureiereeeeesnessesssssasssssessessssssssssssessessessssssssssssssssssssssssesssssssssssssssassesens 59

10.5.1. VENTICAION SUCCEEUS.ccveuieieiecteiiee ettt sas e se sttt s st babe s s st b e s s st ebesese st ebese s sbebe s st sbebeassesbese e stebese s stebeneas 59
OV A a1 Tor= o) =TT T 59
10.5.3. Transaction With OUL-Of-OrdEr INVOKEcccceieeeeeceeecee sttt see et ese s sss e sssessess s sesbesesessssssessssesensas 60
10.6. SEGMENTATION AND RE-ASSEMBLY ...uttviviuieiresreestsssssestssssessssssssessssssessassssssssssassssssssssssestasssssssssssssssssesssssessassssssesssssensns 60
10.6.1. SElECHVE RE-TIANSIMISSION.....cuiivieieiieeiitiiees e se st s st et s e st et s be st sbeses st sbe st sbeses s sbesesbesteseabesesse st esesbestessebasesssstesesranssrnsans 61
10.6.2. Re-transmission Of the GTRITTR PACKELocciiiieccsece sttt st s e s st bs e srnsnans 61

10.6.3. SAR @NA TID VEIITICALTION.....ccuiuririiecirirerecte ettt b bbb es et 62
10.6.4. Flow Control Using Option TPl (Maximum Group) Conjointly With SAR.........ccovrneneneeeeerenes 62
10.6.5. BASIC EXIENAEA SAR......ccooieriitricirieeirtee ettt sttt es bbbt ee s e re s s s b s b ee s bbb b et e st e st enans 64
10.6.6. Example of Re-transmission HOIA-0fT ... e 65
10.6.7. Another Example of Re-transmission HOIA-0ff ..ot e 66
APPENDIX A. DEFAULT TIMER AND COUNTER VALUES (NORMATIVE) .coostrrrrerererireeeseesessesessesesseseneens 67
APPENDIX B. IMPLEMENTATION NOTES (INFORMATIVE) ..ottt ssess s ssssssssssessens 69
B.1. EXTENDED TIMERS FOR LARGE IMESSAGEScoiuitiuetiueetesetesestesessesess sttt ss s sssssssessssssssssssessssssssssssssssesaees
B.2. DATA HANDLING WITH EXTENDED SAR ...ttt
B.3. NACK GENERATION AND INTERPRETATION......ccvueureerermererseressesessesessesssessssesns
B.3.1. Recommendations for Nack Generationcccccoeverevvenenennenseeneneneenens
B.3.2. Recommendations for Nack Interpretation
APPENDIX C. STATIC CONFORMANCE REQUIREMENTS (NORMATIVE) ..ccontirreeireeneeereeeeseseesesseeens 71
APPENDIX D. CHANGE HISTORY (INFORMATIVE) ..ovtritintieirtieineisineisee et sssss s ssssssssens 73

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 7 (73)

1. Scope

A transaction protocol is defined to provide the services necessary for interactive "browsing" (request/response)
applications. During a browsing session, the client requests information from a server, which MAY be fixed or mobile,
and the server responds with the information. The request/response duo isreferred to as a "transaction” in this
document. The objective of the protocol isto reliably deliver the transaction while balancing the amount of reliability
required for the application with the cost of delivering the reliability.

WTP runs on top a datagram service and optionally a security service. WTP has been defined as alight weight
transaction oriented protocol that is suitable for implementation in "thin" clients (mobile stations) and operates
efficiently over wireless datagram networks. The benefits of using WTP include:

Improved reliability over datagram services. WTP relieves the upper layer from re-transmissions and
acknowledgements which are necessary if datagram services are used.

Improved efficiency over connection oriented services. WTP has no explicit connection set up or teardown phases.
WTP is message oriented and designed for services oriented towards transactions, such as “browsing”.

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 8 (73)

2. References

2.1. Normative References

[CREQ]

[RFC2119]

[WDP]

“Specification of WAP Conformance Requirements”. WAP Forum0 .
WAP-221-CREQ-20010425-a. URL :http//www.wapforum.org/

“Key words for use in RFCs to Indicate Requirement Levels’. S. Bradner. March 1997.
URL :http://www.ietf.org/rfc/rfc2119.txt

“Wireless Datagram Protocol Specification”. WAP Forunm® . 19-Feb-2000.
WA P-200-WDP-20000219-a. URL : http://www.wapforum.org/

2.2. Informative References

[FLEX]
[FLEXSuite]
[GSM0260]
[GSM0290]
[GSM0340]
[GSM0360]
[GSM0390]
[GSM0490]

[15130]
[15135]
[15136]
[1S176]
[1S637]
[1SO7498]
[1S08509]
[RFC768]
[RFC791]
[ReFLEX]

[TR45.3.6]
[WAPARCH]

[WSP]

FLEX™ Protocol Specification and FLEX™ Encoding and Decoding Requirements, Version
G1.9, Document Number 68P81139B01, March 16, 1998, Motorola.

FLEX™ Suite of Application Protocols, Version 1.0, Document Number 6881139810, October
29, 1997, Motorola

ETSI European Digital Cellular Telecommunication Systems (phase 2+): General Packet Radio
Service (GPRS) — stage 1 (GSM 02.60)

ETSI European Digital Cellular Telecommunication Systems (phase 2): Unstructured
Supplementary Service Data(USSD) - stage 1 (GSM 02.90)

ETSI European Digital Cellular Telecommunication Systems (phase 2+): Technical realisation of
the Short Message Service (SMS) Point-to-Point (P) (GSM 03.40)

ETSI European Digital Cellular Telecommunication Systems (phase 2+): General Packet Radio
Service (GPRS) — stage 2 (GSM 03.60)

ETSI European Digital Cellular Telecommunication Systems (phase 2): Unstructured
Supplementary Service Data(USSD) - stage 2 (GSM 03.90)

ETSI European Digital Cellular Telecommunication Systems (phase 2): Unstructured
Supplementary Service Data(USSD) - stage 3 (GSM 04.90)

EIA/TIA 1S-130

EIA/TIA 1S-135

EIA/TIA 1S-136

EIA/TIA 1S-176 — CDPD 1.1 specifications

TIA/EIA/IS-637: Short Message Services for Wideband Spread Spectrum Cellular Systems
1SO 7498 OSI Reference Model

SO TR 8509 Service conventions

"User Datagram Protocol"”, J. Postel, August 1980, http://www.ietf.org/rfc/rfc768.txt

"IP: Internet Protocol", J. Postel, http://www.ietf.org/rfc/rfc791.txt

ReFLEX?25 Protocol Specification Document, Version 2.6, Document Number 68P81139B02-A,
March 16, 1998, Motorola.

General UDP Transport Teleservice (GUTS) i Stage |11, TR45.3.6/97.12.15

“Wireless Application Protocol Architecture Specification”. WAP Forun© . 30-April-1998.
WAP-100-WAPArch-19980430-a. URL : http://www.wapforum.org/

“Wireless Session Protocol Specification”. WAP Forun© . 4-May-2000.
WA P-203-WSP-20000504-a. URL : http://www.wapforum.org/

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 9 (73)

3. Terminology and Conventions

3.1. Conventions

The key words*MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD", “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL" in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “ Scope”, are normative, unless they are explicitly indicated to be informative.

3.2. Definitions

Device Address
The unigue network address assigned to adevice and following the format defined by an international standard

such as E.164 for MSISDN addresses, X.121 for X.25 addresses or RFC 791 for | Pv4 addresses. An address
uniquely identifies the sending and/or receiving device.

Initiator
The WTP provider initiating atransaction is referred to as the Initiator.

M obile Device
Refersto a device, such as a phone, pager, or PDA, connected to the wireless network viaawireless link. While

the term ‘mobile’ impliesthe device is frequently moving, it MAY also include fixed or stationary wireless
devices (i.e. wireless modems on el ectric meters) connected to a wireless network.

Network Type
Network type refersto any network, which is classified by acommon set of characteristics (i.e. air interface) and

standards. Examples of network types include GSM, CDMA, 1S-136, iDENO, FLEX, ReFLEX, and Mobitex.
Each network type may contain multiple underlying bearer services.

Protocol Control Information (PCI)
Information exchanged between WTP entities to coordinate their joint operation.

Protocol Data Unit (PDU)

A unit of data specified in the WTP protocol and consisting of WTP protocol control information and possibly
user data.

Responder
The WTP provider responding to atransaction is referred to as the Responder.

Service Data Unit (SDU)
Unit of information from an upper level protocol that defines a service request to alower layer protocol.

Service Primitive
An abstract, implementation independent interaction between a WTP user and the WTP provider.

Transaction
The transaction is the unit of interaction between the Initiator and the Responder. A transaction begins with an
invoke message generated by the Initiator. The Responder becomes involved with atransaction by receiving the
invoke. In WTP several transaction classes have been defined. The invoke message identifies the type of
transaction requested which defines the action required to complete the transaction.

User Data
The data transferred between two WTP entities on behalf of the upper layer entities (e.g. session layer) for whom
the WTP entities are providing services.

WTP Provider
An abstract machine which models the behaviour of the totality of the entities providing the WTP service, as
viewed by the user.

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 10 (73)

WTP User

An abstract representation of the totality of those entitiesin a single system that make use of the WTP service.
Examples of WTP usersinclude the WAP session protocol WSP or an application that runs directly onto WTP.

3.3. Abbreviations

API Application Programming Interface

CDMA Code Division Multiple Access

CDPD Cellular Digital Packet Data

ESAR Extended Segmentation And Reassembly

ETSI European Telecommunication Standardisation I nstitute
GPRS General Packet Radio Service

GSM Global System for Mobile Communication
GTR Group Trailer, indicates the end of packet group
GUTS General UDP Transport Service

IDEN Integrated Digital Enhanced Network

IP Internet Protocol

LSB Least significant bits

MDC More Data Flag Cleared

MPL Maximum Packet Lifetime

MS Mobile Station

MSB Most significant bits

MSISDN Mobile Subscriber ISDN (Telephone number or address of device)
PCI Protocol Control Information

PDU Protocol Data Unit

PSN Packet Sequence Number

RTT Round-Trip Time

SAR Segmentation and Re-assembly

SAP Service Access Point

SDbU Service Data Unit

SMS Short Message Service

SPT Server Processing Time

TIA/EIA Telecommunications Industry Association/Electronic Industry Association
TPI Transport Information Item

TTR Transmission Trailer

UDP User Datagram Protocol

USSD Unstructured Supplementary Service Data
WAP Wireless Application Protocol

WDP Wireless Datagram Protocol

WSP Wirel ess Session Protocol

WTP Wireless Transaction Protocol

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 11 (73)

4. Protocol Overview

4.1. Protocol Features

The following list summarises the features of WTP.

Three classes of transaction service:
Class 0: Unreliable invoke message with no result message
Class 1: Reliable invoke message with no result message
Class 2: Reliable invoke message with exactly one reliable result message

Reliability isachieved through the use of unique transaction identifiers, acknowledgements, duplicate removal and
re-transmissions.

No explicit connection set up or tear down phases. Explicit connection open and/or close imposes excessive
overhead on the communication link.

Optionally user-to-user reliability: the WTP user confirms every received message.

Optionally, the last acknowledgement of the transaction MAY contain out of band information related to the
transaction. For example, performance measurements.

Concatenation MAY be used, where applicable, to convey multiple Protocol Data Unitsin one Service Data Unit of
the datagram transport.

Message orientation. The basic unit of interchange is an entire message and not a stream of bytes.

The protocol provides mechanisms to minimise the number of transactions being replayed as the result of duplicate
packets.

Abort of outstanding transaction, including flushing of unsent data both in client and server. The abort can be
triggered by the user canceling arequested service.

For reliable invoke messages, both success and failureis reported. If an invoke can not be handled by the
Responder, an abort message will be returned to the Initiator instead of the result.

The protocol allows for asynchronous transactions. The Responder sends back the result as the data becomes
available.

4.2. Transaction Classes

The following subsections describe the transaction classes of WTP. The WTP provider initiating atransaction is
referred to as the Initiator. The WTP provider responding to atransaction isreferred to as the Responder. The
transaction classis set by the Initiator and indicated in the invoke message sent to the Responder. Transaction classes
can not be negotiated.

4.2.1. Class 0: Unreliable Invoke Message with No Result Message

Class 0 transactions provide an unreliable datagram service. It can be used by applications that require an "unreliable
push” service. This classisintended to augment the transaction service with the capability for an application using WTP
to occasionally send a datagram within the same context of an existing session using WTP. It isnot intended as a
primary means of sending datagrams. Applications requiring a datagram service as their primary means of data delivery
SHOULD use WDP [WDP].

The basic behaviour for class O transactionsis as follows: One invoke message is sent from the Initiator to the
Responder. The Responder does not acknowledge the invoke message and the Initiator does not perform re-
transmissions. At the Initiator, the transaction ends when the invoke message has been sent. At the Responder, the
transaction ends when the invoke has been received. The transaction is statel ess and can not be aborted.

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 12 (73)

4.2.2.Class 1: Reliable Invoke Message with No Result Message

Class 1 transactions provide areliable datagram service. It can be used by applications that require a"reliable push”
service.

The basic behaviour for class 1 transactions is as follows: One invoke message is sent from the Initiator to the
Responder. The invoke message is acknowledged by the Responder. The Responder maintains state information for
some time after the acknowledgement has been sent to handl e possibl e re-transmissions of the acknowledgement if it
getslost and/or the Initiator re-transmits the invoke message. At the Initiator, the transaction ends when the
acknowledgement has been received. The transaction can be aborted at any time.

If the User acknowledgement function is enabled, the WTP user at the Responder confirms the invoke message before
the acknowledgement is sent to the Initiator.

4.2.3. Class 2: Reliable Invoke Message with One Reliable Result Message

Class 2 transactions provide the basic invoke/response transaction service. One WSP session MAY consist of several
transactions of thistype.

The basic behaviour for class 2 transactionsis as follows: One invoke message is sent from the Initiator to the
Responder. The Responder replies with exactly one result message that implicitly acknowledges the invoke message. If
the Responder takes longer to service the invoke than the Responder's acknowledgement timer interval, the Responder
MAY reply with a"hold on" acknowledgement before sending the result message. This preventsthe Initiator from
unnecessarily re-transmitting the invoke message. The Responder sends the result message back to the Initiator. The
result message is acknowledged by the Initiator. The Initiator maintains state information for some time after the
acknowledgement has been sent. Thisisdonein order to handle possible re-transmissions of the acknowledgement if it
getslost and/or the Responder re-transmits the result message. At the Responder the transaction ends when the
acknowledgement has been received. The transaction can at any time be aborted.

If the User acknowledgement function is enabled, the WTP user at the Responder confirms the invoke message before
theresult is generated. The WTP user at the Initiator confirms the result message before the acknowledgement is sent to
the Responder.

4.3. Relation to Other Protocols

This chapter describes how WTP relates to other WAP protocols. For a complete description of the WAP Architecture
refer to [WAP]. Thefollowing table illustrates the where the services provided to the WTP user are located.

WTP User
(e.g. WSP)
WTP O Transaction handling
O Re-transmissions, duplicate removal, acknowledgements
O Concatenation and separation
[WTLS] Q Optionally compression
Q Optionaly encryption
O Optionally authentication
Datagram Transport Q Port number addressing
(e.g. WDP) O Segmentation and re-assembly (if provided)
Q Error detection (if provided)
Bearer Network O Routing
(e.g. IP, GSM SMS/USSD, |1S-136 O Deviceaddressing (IP address, MSISDN)
GUTYS) O Segmentation and re-assembly (if provided)
Q Error detection (if provided)

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 13 (73)

WTP s specified to run over a datagram transport service. The WTP protocol data unit islocated in the data portion of
the datagram. Since datagrams are unreliable, WTP is required to perform re-transmissions and send acknowledgement
in order to provide areliable service to the WTP user. WTP is aso responsible for concatenation (if possible) of
multiple protocol data unitsinto one transport service data unit.

The datagram transport for WAP is defined in [WDP]. The datagram transport is required to route an incoming
datagram to the correct WDP user. Normally the WDP user isidentified by a unique port number. The responsibility of
WDP isto provide a datagram service to the WDP user, regardless of the capability of the bearer network type.
Fortunately, datagram service is acommon transport mechanism, and most bearer networks already provide such a
service. For example, for IP-based utilise UDP for this service.

The bearer network is responsible for routing datagrams to the destination device. Addressing is different depending on
the type of bearer network (I P addresses or phone numbers). In addition, some networks are using dynamic allocation of
addresses, and a server hasto be involved to find the current address for a specific device. Network addresses within the
WAP stack MAY include the bearer type and the address (e.g. [P; 123.456.789.123]). The multiplexing of datato and
from multiple bearer networks with different address spaces to the same WAP stack has not been specified.

4.4, Security Considerations

WTP has no security mechanisms.

4.5. Management Entity

The WTP Management Entity is used as an interface between the WTP layer and the environment of the device. The
WTP Management Entity provides information to the WTP layer about changes in the device environment, which
MAY impact the correct operation of WTP.

The WTP protocol is designed around an assumption that the environment in which it is operating is capable of
transmitting and receiving data. For example, this assumption includes the following basic capabilities that MUST be
provided by the mobile device:

the mobile is within a coverage area applicabl e to the bearer service being invoked;
the mobile having sufficient power and the power being on;

sufficient resources (processing and memory) within the mobile are available to WTP,
the WTP protocol is correctly configured, and ;

the user iswilling to receive/transmit data.

The WTP Management Entity monitors the state of the above services/capabilities of the mobile’ s environment and
would notify the WTP layer if one or more of the assumed services were not available. For example if the mobile
roamed out of coverage for a bearer service, the Bearer Management Entity SHOULD report to the WTP Management
Entity that transmission/reception over that bearer is no longer possible. In turn, the WTP Management Entity would
indicate to the WTP layer to close al active connections over that bearer. Other examples such as low battery power
would be handled in asimilar way by the WTP Management Entity.

In addition to monitoring the state of the mobile environment the WTP Management Entity MAY be used asthe
interface to the user for setting various configuration parameters used by WTP, such as device address. It could also be
used to implement functions available to the user such asa‘drop all dataconnections’ feature. In general the WTP
Management Entity will deal with all issues related to initialisation, configuration, dynamic re-configuration, and
resources as they pertain to the WTP layer.

Since the WTP Management Entity MUST interact with various components of a mobile device which are
manufacturer specific, the design and implementation of the WTP Management Entity is considered outside the scope
of the WTP Specification and is an implementation issue.

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 14 (73)

4.6. Interoperability Considerations

The static conformance requirements define a minimum set of WTP features that need to be implemented to ensure that
the implementation will be able to interoperate. The WTP user dictates which WTP features it needs. These features can
be specified by referring to the WTP static conformance requirement tablesin Appendix C using the notation from
[CREQ)].

If the WTP provider isrequested to execute a procedure it does not support, the transaction MUST be aborted with the
an appropriate error code. For example, a Responder not supporting class 2 receiving a class 2 transaction aborts the
transaction with the NOTIMPLEMENTEDCL 2 abort code.

Segmentation and re-assembly (SAR) and selective re-transmission MAY be implemented in order to enhance the WTP
service. If SAR is not implemented in WTP, another layer in the stack should provide this functionality. For example, in
1S-136 the SSAR layer handles SAR, in an IP network | P [RFC791] handles SAR and for GSM SMS/USSD SARis
achieved by using SM'S concatenation [GSM0340]. The motivation for implementing WTP SAR is the selective re-
transmission procedure, which MAY , if large messages are sent, improve the over-the-air efficiency of the protocol.

Extended Segmentation and Re-assembly complicates the picture further due to the fact that it MAY use either asliding
window based transmission or the traditional stop and wait mechanism.

Whether WTP SAR is supported or not isindicated by the Initiator when the transaction isinvoked. The following table
shows how WTP Initiators and Responders SHOUL D guarantee interoperability between WTP providers that have and
those that have not implemented WTP SAR.

Table 1 Interoperability between WTP Providers with no SAR, SAR, ESAR

I nitiator
Responder No SAR SAR Extended SAR
No SAR Full interoperability | Responder aborts transaction Initiator MUST include
with the abort code NumGroups TPI in Invoke.
NOTIMPLEMENTEDSAR. Responder aborts transaction
Initiator MUST re-send with the abort code
without using SAR NOTIMPLEMENTEDSAR.
Initiator MUST re-send without
using SAR
SAR Responder MUST Full interoperability Initiator MUST include
NOT respond with a NumGroups Option TPI in
segmented message Invoke. Initiator will learn that
Responder does not support
ESAR by absence of thisTPI in
ACK, NACK or Result PDU.
Extended SAR Responder MUST No NumGroups Option TPI Initiator MUST include
NOT respond with a isincluded in the Invoke NumGroups Option TPl in
segmented message message Invoke. Responder can respond
using NumGroups Option TPI.
Full interoperability.

Note 1) If a Responder not supporting WTP SAR receives a non-segmented message from an Initiator that supports
WTP SAR, there is no need to abort the transaction. The Initiator will never be aware of the fact that the
Responder does not support WTP SAR.

4.7. Other WTP Users

The intended use of this protocol isto provide WSP [WSP] with areliable transaction service over an unreliable
datagram service. However, the protocol can be used by other applications with similar communication needs.

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 15 (73)

5. Elements for Layer-to-Layer Communication

5.1. Notations Used

5.1.1. Definition of Service Primitives and Parameters

Communications between layers and between entities within the layer are accomplished by means of service primitives.
Service primitives represent, in an abstract way, the logical exchange of information and control between the
transaction layer and adjacent layers. They do not specify or constrain implementations.

Service primitives consist of commands and their respective responses associated with the services requested of another
layer. The general syntax of a primitiveis:

X - Generic name . Type (Parameters)

where X designates the layer providing the service. For this specification X is:
"TR" for the Transaction Layer.

An example of aservice primitive for the WTP layer would be TR Invoke.Request.

Service primitives are not the same as an application programming interface (API) and are not meant to imply any
specific method of implementing an API. Service primitives are an abstract means of illustrating the services provided
by the protocol layer to the layer above. The mapping of these conceptsto areal APl and the semantics associated with
areal API are animplementation issue and are beyond the scope of this specification.

5.1.2. Primitive Types

The primitives types defined in this specification are

Type Abbreviation Description
Request req Used when a higher layer is requesting a service from the next lower layer
Indication ind A layer providing a service uses this primitive type to notify the next higher

layer of activitiesrelated to the peer (such as theinvocation of the request
primitive) or to the provider of the service (such as a protocol generated

event)

Response res A layer uses the response primitive type to acknowledge receipt of the
indication primitive type from the next lower layer

Confirm cnf The layer providing the requested service uses the confirm primitive type to

report that the activity has been completed successfully

5.1.3. Service Parameter Tables

The service primitives are defined using tables indicating which parameters are possible and how they are used with the
different primitive types. For example, asimple confirmed primitive might be defined using the following:

Primitive TR-primitive
Par ameter req [ind | res | cnf
Parameter 1 M M(=) - -
Parameter 2 - - 0] C(®)

In the exampl e table above, Parameter 1 is always present in TR-primitive.request and corresponding TR-
primitive.indication. Parameter 2 MAY be specified in TR-primitive.response and in that case it MUST be present and
have the equivalent value also in the corresponding TR-primitive.confirm; otherwise, it MUST NOT be present.

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 16 (73)

If some primitive typeis not possible, the column for it will be omitted. The entries used in the primitive type columns
are defined in the following table:

Table 2. Parameter Usage Legend
M Presence of the parameter is mandatory - it MUST be present

C Presence of the parameter is conditional depending on values of other parameters
(0] Presence of the parameter is auser option-it MAY be omitted
P Presence of the parameter is a service provider option - an implementation MAY not provideit

The parameter is absent
Presence of the parameter is determined by the lower layer protocol

= The value of the parameter isidentical to the value of the corresponding parameter of the preceding
service primitive

*

5.2. Requirements on the Underlaying Layer

The WTP protocol is specified to run on top of adatagram service. The datagram service MUST handle the following
functions:

Port numbers to route the incoming datagram to the WTP layer;
Length information for the SDU passed up to the WTP layer.

The datagram service MAY handle the following functions
Error detection. For example, by using a checksum.

In addition, Segmentation And Re-assembly (SAR) is expected to be provided by the underlying layers. However, it is
usually done at alayer below the datagram layer. For example, in an IP network, the IP protocol handles SAR.

5.3. Services Provided to Upper Layer
5.3.1. TR-Invoke

This primitive is used to initiate a new transaction.

Primitive TR-Invoke

Par ameter req | ind | res | onf
Source Address M M (=)

Source Port M M (=)

Destination Address M M (=)

Destination Port M M (=)

Ack-Type M M (=)

User Data @] C (=)

Class Type M M (=)

Exit Info 0] C(®
More Data M M (=)

Frame Boundary M M (=)

Handle M M M M

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 17 (73)

5.3.1.1. Source Address

The source address is the unique address of the device making arequest to the WTP layer. The source address MAY be
an MSISDN number, 1P address, X.25 address or other identifier.

5.3.1.2. Source Port

The source port number associated with the source address.

5.3.1.3. Destination Address

The destination address of the user data submitted to the WTP layer. The destination addressMAY be an MSISDN
number, 1P address, X.25 address or other identifier.

5.3.1.4. Destination Port

The destination port number associated with the destination address for the requested or existing transaction.

5.3.1.5. Ack-Type

This parameter is used to turn the User acknowledgement function on or off.

5.3.1.6. User Data

The user data carried by the WTP protocol. The unit of data submitted to or received from the WTP layer isalso
referred to as the Service Data Unit. Thisisthe complete unit (message) of data that the higher layer has submitted to
the WTP layer for transmission. The WTP layer will transmit the Service Data Unit and deliver it to its destination
without any manipulation of its content.

5.3.1.7. Class Type

Indicates the WTP transaction class.

5.3.1.8. Exit Info

Additional user datato be sent to the originator on transaction completion. This parameter can be present only if More
Dataiscleared and Class Type is 1.

5.3.1.9. More Data

More Datais aBoolean flag that specifies whether additional invocations of the primitive will be following for the
sametransaction. Thisflagisvalid only if the optional extended segmentation and re-assembly functionis used.

5.3.1.10. Frame Boundary

Frame Boundary is a Boolean flag that specifies whether this User Datais the beginning of a new user defined frame.
WTP will insert the Frame Boundary TPI into the very first data packet transmitted. Thisflagisvalid only if the
optional extended segmentation and re-assembly function is used.

5.3.1.11. Handle

Thetransaction handle is an index returned to the higher layer so the higher layer can identify the transaction and
associ ate the data received with an active transaction. The TR-Handle uniquely identifies atransaction. TR-Handle is
an alias for the source address, source port, destination address, and destination port of the transaction.

The TR-Handle has local significance only.

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 18 (73)

5.3.2. TR-InvokeData

This primitive is used to send additional data belonging to the same transaction in case of the optional extended
segmentation and re-assembly function. This service primitive can be given only after theinitial TR-Invoke service
primitive started the transaction. The WTP user MUST issue Invoke.res and InvokeData.res primitives in the same
order aslInvoke.ind and InvokeData.ind primitives were received. Similarly, WTP issuesInvoke.cnf and
InvokeData.cnf primitives in the same order as Invoke.req and InvokeData.req primitives were submitted by the user.
Note that the SDU associated with alnvokeData.req may be transmitted in multiple groups, the InvokeData.cnf MUST
beissued only after the acknowledgement for the last group is received.

Primitive TR-InvokeData
Par ameter req | ind | res | enf
User Data o C(®
Exit Info O Cc(
More Data M M(=)
Frame Boundary M M(=)
Handle M M M M

5.3.2.1. Handle

The transaction handleisthe index returned to the higher layer for the previous TR-Invoke, i.e. the TR-Invoke for
which this TRInvokeDatais providing further data, so the higher layer can identify the transaction and associate the
datareceived with the active transaction already started by the previous TR-Invoke service primitive. Inthe TR
Invoke.req the handleis passed up to the Initiator WTP user from the WTP provider. In the TR-InvokeData.req the
handleis passed down to the WTP provider by the WTP user. The Handle uniquely identifies atransaction. Handle is
an aliasfor the source address, source port, destination address, destination port, and the transaction identifier of the
transaction.

The Handle has local significance only.

5.3.3. TR-Result

This primitive is used to send back aresult of apreviously initiated transaction.

Primitive TR-Result
Parameter req ind res cnf
User Data (0] C(=)
Exit Info 0] C (3
More Data M M(=)
Frame Boundary M M(=)
Handle M M M M

5.3.3.1. Exit Info

Additional user datato be sent to the originator on transaction completion. This parameter can be present only if More
Dataiscleared.

5.3.4. TR-ResultData

This primitive is used to send additional data belonging to the same transaction in case of the optional extended
segmentation and re-assembly function. Thisservice primitive can be given only after theinitial TR-Result service
primitive started to send back the result of athe previously initiated transaction. The WTP user MUST issue Result.res
and ResultData.res primitivesin the same order as Result.ind and ResultData.ind primitives were received. Similarly,

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 19 (73)

WTP issues Result.cnf and ResultData.cnf primitives in the same order as Result.req and ResultData.req primitives
were submitted by the user. Note that the SDU associated with a ResultData.req may be transmitted in multiple groups;
the ResultData.cnf MUST be issued only after the acknowledgement for the last group is received.

Primitive TR-ResultData

Parameter req ind res cnf
User Data (0] C(®

Exit Info O c(
More Data M M(=)

Frame Boundary M M(=)

Handle M M M M

5.3.4.1. Handle

Thetransaction handle isthe index returned to the higher layer for the previous TR-Result, i.e. the TR Result for which
this TR-ResultDatais providing further data, so the higher layer can identify the transaction and associate the data
received with the active transaction already started by the previous TR-Invoke service primitive. In the TR-Invoke.req
the handle is passed up to the Initiator WTP user from the WTP provider. In the TR-ResultData.req the handle is passed
down to the WTP provider by the WTP user. The Handle uniquely identifies atransaction. Handleis an alias for the
source address, source port, destination address, destination port, and the transaction identifier of the transaction.

The Handle haslocal significance only.

5.3.5. TR-Abort

This primitive is used to abort an existing transaction

Primitive TR-Abort
Par ameter req | ind
Abort Code) C(®
Handle M M

5.3.5.1. Abort Code

The abort code indicates the reason for the transaction being aborted. This can include abort codes generated by the
WTP protocol and user defined local abort codes.

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 20 (73)

6. Classes of Operation

6.1. Class 0 Transaction
6.1.1. Motivation

Class O isan unreliable datagram service. It can be used by WSP [WSP], for example, to make an unreliable “push”
within a session using the same socket association.

Thisclassisintended to augment the transaction service with the capability for an application using WTP to
occasionally send a datagram within the same context of an existing session using WTP. It is not intended as a primary
means of sending datagrams. Applications requiring a datagram service SHOULD use WDP as defined in [WDP].

6.1.2. Protocol Data Units

The following PDU is used:
1. Invoke PDU

6.1.3. Procedure

A Class 0 transaction isinitiated by the WTP user by issuing the TR-Invoke request primitive with the Transaction
Class parameter set to Class 0. The WTP provider sends the invoke message and becomes the Initiator of the
transaction. The remote WTP provider receives the invoke message and becomes the Responder of the transaction. The
Initiator does not wait for or expect aresponse. If the invoke message is received by the Responder it is accepted
immediately. Thereis no duplicate removal or verification procedure performed. However, theinitiator MUST
increment the TID counter between each transaction, but the responder MUST NOT updateit's cached TID.

Thistransaction class MUST be supported by the WTP provider. The WTP provider MUST be ableto act as both
Initiator and Responder.

An example of this class can be found in chapter 10.2.

6.2. Class 1 Transaction
6.2.1. Motivation

The Class 1 transaction is areliable invoke message without any result message. This type of transaction can be used by
WSP [WSP] to realise areliable "push” service.

6.2.2. Service Primitive Sequences

The following table describes legal service primitive sequences. A primitive listed in the column header MAY only be
followed by primitives listed in the row headers that are marked with an " X".

Table 3 Primitive Sequence Table for Transaction Class 1

TR-Invoke TR-Abort
req ind res cnf req ind
TR-Invoke.req
TR-Invoke.ind
TR-Invokeres X
TR-Invoke.cnf X
TR-Abort.req X X X
TR-Abort.ind X X X

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 21 (73)

6.2.3. Protocol Data Units

The following PDUs are used:
1. Invoke PDU
2. Ack PDU
3. Abort PDU

6.2.4. Procedure

A Class 1 transaction isinitiated by the WTP user by issuing the TR-Invoke request primitive with the Transaction
Class parameter set to Class 1. The WTP provider sends the invoke message and becomesthe Initiator of the
transaction. The remote WTP provider receives the invoke message and becomes the Responder of the transaction. The
Responder checks the Transaction Identifier and determines whether a verification hasto be initiated. If not, it delivers
the message to the user and returns the last acknowledgement to the Initiator. The Responder MUST keep state
information in order to re-transmit the last acknowledgement if it gets lost.

Thistransaction class MUST be supported by the WTP provider. The WTP provider MUST be ableto act as both
Initiator and Responder.

An example of this class can be found in chapter 10.3.

6.3. Class 2 Transaction
6.3.1. Motivation

The Class 2 transaction is the basic request/response transaction service. Thisis the most commonly used transaction
service. For example, it is used by WSP [WSP] for method invocations.

6.3.2. Service Primitive Sequences

The following table describes generally the legal service primitive sequences by generic names. A primitive listedin the
column header MAY only be followed by primitiveslisted in the row header and marked with an "X". MDC indicates
that the More Dataflag is cleared, otherwiseit is set.

Table 4 Primitive Sequence Table for Transaction Class 2

TR TR
i | | 7| TR | o IR, | TR | THZSE | mobaa | TRESI | Retdas
MDC MDC
TRInvoke
T RInvokeData
X X
TR Realt
X X
T RResultData
X X
T R-Abort
X X X X X X X
TRInvoke
MDC
T RInvokeData
MDC X X
T RResult
MDC X X
T RResultData
MDC X X

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 22 (73)

6.3.3. Protocol Data Units

The following PDUs are used:
1. Invoke PDU
2. Result PDU
3. AckPDU
4. Abort PDU

6.3.4. Procedure

A Class 2 transaction isinitiated by the WTP user by issuing the TR-Invoke request primitive with the Transaction
Class parameter set to Class 2. The WTP provider sends the invoke message and becomes the Initiator of the
transaction. The remote WTP provider receives the invoke message and becomes the Responder of the transaction. The
Responder checks the Transaction Identifier and determines whether a verification hasto be initiated. If not, it delivers
the message to the WTP user and wait for the result. The Responder MAY send a hold on acknowledgement after a
specified time.

The WTP user sends the result message by issuing the TR-Result request primitive. When the Initiator has received the
result message it returns the last acknowledgement to the Responder. The Initiator MUST keep state information in
order to re-transmit the last acknowledgement if it getslost.

If the Responder does not support this transaction classit returns an Abort PDU with the abort reason
NOTIMPLEMENTEDCL 2 as aresponse to the invoke message.

An example of this class can be found in chapter 10.4.

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 23 (73)

7. Protocol Features

7.1. Message Transfer
7.1.1. Description

WTP consists of two types of messages: data messages and control messages. Data messages carry user data. Control
messages are used for acknowledgements, error reporting, etc. and do not carry user data. This section gives the reader
an overall picture of how transactions are realised by WTP. The procedures to guarantee reliable message transfer are
outlined. Special functions like concatenation and separation, re-transmission until acknowledgement, transaction abort,
user acknowledgement, and others are described in further detail in separate sections.

It isimportant to note that not all messages and functions are used by all transaction classes. The following table
illustrates which messages are used for the different transaction classes.

Table 5 Summary of WTP message transfer

M essage/function Class 2 Class1 Class0
Invoke message X X X (Note 2)
Verification X X

Hold on acknowledgement X (Note 1)

Result message X

L ast acknowledgement X X

Note 1) Only sent in the case when the user takes longer time to service the invoke message than the Responder's
acknowledgement timer interval.

Note 2) The class 0 transaction is unreliable. No response is expected from the Responder and no verificationis
performed.

7.1.2. Service Primitives

Thefollowing service primitives are used during nominal WTP transactions. Their use is transaction class dependent:
1. TR-Invoke
2. TR-Result

7.1.3. Transport Protocol Data Units

The following PDUs are used during nominal WTP transactions. It isimportant to note that not all PDUsareused in
every transaction class.

1. Invoke PDU
2. Result PDU
3. Ack PDU

7.1.4. Timer Intervals and Counters

The following timer intervals and counters are used during a nominal WTP transaction. Their useis transaction class
dependent.

1. Retransmission interval
2. Re-transmission counter
3. Acknowledgement interval
4. Wait timeout interval

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 24 (73)

The values and relations between timer intervals and counters MAY depend on the transaction class being used. A
detailed description of timers and countersis provided in a separate section.

7.1.5. Procedure

A transaction takes place between two WTP providers. A WTP user initiates atransaction by issuing the TR-Invoke
request primitive. The TCL parameter of the primitive indicates the transaction class: 0, 1 or 2. In WTP, the Initiator is
the WTP provider initiating the transaction and the Responder is the WTP provider responding to theinitiated
transaction.

7.1.5.1. Invoke Message

The invoke message is always the first message of atransaction and it is sent using the Invoke PDU. The Initiator
administers the Transaction Identifier (TID) by incrementing the TID by one for every initiated transaction. The TID is
conveyed in every PDU belonging to the transaction. When the Invoke PDU has been sent the Initiator startsthe re-
transmission timer and waits for a response. When the Responder receives the Invoke PDU with avalid TID, it delivers
the message to the user by generating the TR-Invoke indication primitive.

7.1.5.2. Verification

When the Responder has received and accepted the invoke message it SHOULD cachethe TID. Thisisdonein order to
filter out duplicate and old invoke messages that have lower or identical TID values (see section on Transaction
Identifier). If the Responder determinesthe TID in the Invoke PDU isinvalid, the Responder can verify whether the
invoke message is anew or delayed message. Thisis accomplished by sending an Ack PDU which initiates athree way
handshake towards the Initiator (see section on TID Verification). In this case, the Responder MUST NOT deliver the
datato the user until the three-way handshake is successfully completed. If the three-way handshake attempt fails, the
transaction is aborted by the Initiator.

7.1.5.3. Hold on Acknowledgement

When the invoke message has been delivered to the WTP user, the acknowledgement timer is started. |f the WTP user
requires more time to service the invoke message than the acknowledgement timer interval, the Responder MAY or
SHOULD or MUST send a‘hold on” acknowledgement. This is done to prevent the Initiator from re-transmitting the
Invoke PDU. When the Initiator receivesthe Ack PDU it stops re-transmitting the Invoke PDU and generates the
TR-Invoke confirm primitive.

7.1.5.4. Result Message

Upon assembling the data, the WTP user sends a result message by initiating the TR-Result request primitive. The
result message is transmitted using the Result PDU. When the Result PDU has been sent the Responder startsthere-
transmission timer and waits for aresponse. After the Result PDU is received by the Initiator it generates the TR-Invoke
confirm primitive if one has not already been issued and the forwards up the TR-Result indication primitive.

7.1.5.5. Last Acknowledgement

Thelast Ack PDU is sent when the last message of the transaction has been received. The sender of the
acknowledgement MUST maintain state information required to handle a re-transmission of the previous message. This
can be done by using await timer, or by keeping atransaction history that indicates the results of past transactions.

7.2. Re-transmission until Acknowledgement
7.2.1. Motivation

The re-transmission until acknowledgement procedure is used to guarantee reliable transfer of datafrom one WTP
provider to another in the event of packet loss. To minimise the number of packets sent over-the-air, WTP usesimplicit
acknowledgements wherever possible. An example of thisisthe use of the Result message to implicitly acknowledge
the Invoke message.

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 25 (73)

7.2.2. Transport Protocol Data Units

The following PDUs are used:

1. InvokePDU
2. Result PDU
3. Ack PDU

7.2.3. Timer Intervals and Counters

The following timer intervals and counters are used:
1. Re-transmissioninterval
2. Re-transmission counter

The values and relationships between timers and counters MAY depend on the transaction class being used. A detailed
description of timers and countersis provided in a separate section.

7.2.4. Procedure

When a packet has been sent, the re-transmission timer is started and the re-transmission counter is set to zero. If a
response has not been received when the re-transmission timer expires, the re-transmission counter is incremented by
one, the packet re-transmitted, and the re-transmission timer re-started. The WTP provider continues to re-transmit until
the number of re-transmissions has exceeded the maximum re-transmission value. If no acknowledgement has been
received when the retransmission counter isfully incremented and the timer expires, the transaction is terminated and
the local WTP user isinformed.

In an extended SAR transaction, the re-transmission timer is used to re-transmit a packet group. If there are no more
packetsto send, the re-transmission timer is started and the re-transmission counter is set to zero. If an
acknowledgement or a negative acknowledgement has not been received when the re-transmission timer expires, the re-
transmission counter isincremented by one, the last unacknowledged GTR or TTR packet isre-transmitted and the re-
transmission timer is re-started. The WTP provider continuesto re-transmit until the number of re-transmissions
exceeds the maximum re-transmission value. If no acknowledgement has been received when the re-transmission
counter isfully incremented and the timer expires, the transaction is terminated and the local WTP user isinformed.

Thefirst time aPDU istransmitted the re-transmission indicator (RID) field in the header is clear. For all re-
transmissions the RID field is set. Other than the RID field, the WTP provider MUST NOT change any fieldsin the
PDU header.

The motivation for the re-transmission indicator is for the receiver to detect messages that have been duplicated by the
network. A WTP provider that receives two identical messages with the RID set to zero, can safely ignore the second
message because it must have been duplicated by the network. Any subsequent retransmissions that have the RID flag
set to one can not be ignored by the receiver. Re-transmitted messages that get duplicated by the network must be
treated as valid messages by the provider. The receiver in this situation can no longer distinguish between provider
retransmissions and network duplicated packets. In this case, if the message is an Invoke PDU, thereisarisk that the
transaction will bere-played. To avoid such an error, the WTP provider should make a TID validation (see chapter 7.8).

7.3. User Acknowledgement
7.3.1. Motivation

The User Acknowledgement function allows for the WTP user to confirm every message received by the WTP
provider. In case of an extended SAR transaction if thisfunction is enabled, the WTP user will acknowledge the last
packet group of the data flow in the appropriate direction.

When thisfunction is enabled, the WTP provider does not respond to areceived message until after the WTP user has
confirmed the indication service primitive (by issuing the response primitive). If the WTP user does not confirm the
indication primitive after a specified time, the transaction is aborted by the provider. Note that thisis a much stronger

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 26 (73)

form of aconfirmed service than the traditional definition [ISO8509]. The traditional definition of aconfirmed service
isthat thereis a confirmation from the service provider, however, thereis not necessarily any relationship to aresponse
from the peer service user. In WTP, when the User Acknowledgement function is used, the service provider requires a
response from the service user for each indication. As aresult, when the confirmation primitive is generated, thereis a
guarantee that there was a response from the peer service user.

Thisfunction is optional within WTP however WSP does utilise the User Acknowledgement feature and therefore any
implementation of WTP that will have WSP as the higher layer, must implement it (see Appendix C). WSP requires a
feature that at the end of a request-response transaction, the server gets a positive indication that the client has processed
theresponse. Thisisillustrated below.

iat Sve
Reged -
J ResooeDaa
Adcodeamet

Figure 1 Generic WSP [WSP] transaction

In this model, the Acknowledgement is used to convey the fact that the response was received and processed by the
client application. It isimportant to note that the Client and the Server in the figure refersto the client and server
Application, and not only the protocol stack.

When the User Acknowledgement function is used the WSP -WTP primitive sequence for a Class 2 transaction
becomes asillustrated below.

Client Server
< > < >

WsP WTP WsP
SMethodreg

—— P TRInvoker ;
J—} TR—InvokelndI SMehodind

TRInvokeartf TR-Invokeres 'S-Meihod.r&s

S-Method.cnf

. . TR-Resultreg SReply.req
SReply.ind TR-Reaultind ¢ =
SReply.res

TR-Resultres
——————— TR—ResuIt.cnf' SRenlv.orf

Figure2 WSP-WTP primitive sequence for reguest-response

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 27 (73)

The primitive sequence started by the S-Reply.res and TR-Result.res primitives realises the Complete and Confirm
primitives from Figure 1. If the application and/or the WSP for some reason does not issue these primitives, WTP
aborts the transaction with the NORESPONSE reason. The abort is used by the WSP server as an indication that the
result was not properly received or processed by the client.

The primitive sequence started by the S-Method.res and TR-Invoke.res primitives can be used by the client WSP to
indicate to the application (and human user) that the invoke message has been received by the server WSP.

When this function is not used, WTP MAY acknowledge received messages independently of the WTP user. InFigure
2 this means that the response primitives MAY be ignored by the WTP provider. Put in other words; the WTP provider
receives a message, returns an acknowledgement and indicates to the user that a message has been received. If thereis
an error, the transaction will be aborted by the WTP provider. If the WTP user is alive but can not process the message
it MAY abort the transaction with an appropriate abort reason.

Thisfunction isoptional. It appliesto transaction class 1 and 2.

Note) Even though the WTP user has issued aresponse primitive thereis no guarantee that it has interpreted the data
and started processing. The WTP user MAY have only copied the data from one buffer to another, or issued the
response primitive without any action taken at all. A WTP user can always abort atransaction if it discovers that
the received datais corrupt or for some other reason not possible to process (see section on Transaction abort).

7.3.2. Protocol Data Units

The following PDUs are used:
1. Invoke PDU
2. Abort PDU

7.3.3. Procedure

The Initiator sets the U/P-flag in the Invoke PDU to indicate that User acknowledgement is required. A Responder not
supporting this function aborts the transaction with the abort reason NOTIMPLEMENTEDUACK. The Initiator MAY
then take the decision to re-initiate the transaction without the User acknowledgement function.

When the Responder receives the Invoke PDU with the U/P-flag set it generates the TR-Invoke indication and starts the
acknowledgement timer. To give the WTP user time to read the parameters in the indication primitive and issue the
TR-Invoke response primitive, the value of the timer MAY have a higher value than the provider’ s acknowledgement
timer (see definitions of default timer values). The Responder MUST NOT return a response before the WTP user has
issued the TR-Invoke response primitive. If the Initiator re-transmits Invoke PDUs due to lack of acknowledgement, the
Responder MUST silently discard the PDU and restart the acknowledgement timer. When the WTP user issues the
TR-Invoke response primitive, the Responder is enabled to send the Ack PDU. If the TR-Invoke response primitive has
not been issued after a specified time, the provider aborts the transaction with the abort reason NORESPONSE. If the
WTP user issues the TR-Result request primitive, the result is sent instead of the acknowledgement. The Initiator
receiving the Ack PDU generates the confirm primitive which indicates that the remote WTP user hasissued the
corresponding response primitive.

For class 2 transactions, if the Initiator has indicated that the User Acknowledgement function shall be used, it isvalid
for the entire transaction. This means that when the Initiator has received the result and generated the TR-Result
indication primitive it MUST wait for the TR-Result response primitive from the WTP user before the last
acknowledgement can be sent. If the TR-Result response primitive has not been issued after a specified time, the
provider aborts the transaction with the abort reason NORESPONSE. When the Responder receives the NORESPONSE
abort it generates the TR-Abort indication primitive, indicating to the WTP user that the transaction failed.

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 28 (73)

7.4. Information in Last Acknowledgement
7.4.1. Motivation

The WTP user is alowed to attach information in the last, and only the last, acknowledgement of atransaction. This
function is meant for transporting small amounts of information related to the transaction. The information can be, for
example, performance measurements collected in order to evaluate the user’ s perceived quality of service.

For class 2 transactions, this function can be used by the Initiator to communicate some information back to the
Responder. For aclass 1 transaction, this function can be used by the Responder to communicate some information to
the Initiator.

7.4.2. Service Primitives

The following service primitives and parameters are used:
1. TR-Result.res(Class2)
2. TR-Invoke.res(Class 1)

7.4.3. Protocol Data Units

The following PDU is used:
1. Ack PDU

7.4.4. Procedure

For aclass 2 transaction, information is attached to the | ast acknowledgement by issuing the TR-Result response
primitive with the ExitInfo parameter.

For aclass 1 transaction, information is attached to the last acknowledgement by issuing the TR-Invoke response
primitive with the ExitInfo parameter.

The exit information is transferred as a Transport Information Item (TPI) in the variable part of the Ack PDU header.

For class 2 transactions, the ExitInfo parameter MUST NOT be included in the TR-Invoke response primitive and the
Info TPl MUST NOT beincluded in the Ack PDU that acknowledges the Invoke PDU.

7.5. Concatenation and Separation
7.5.1. Motivation

Concatenation is the procedure to convey multiple WTP Protocol Data Units (PDUSs) in one Datagram Service Data
Unit (SDU) of the bearer network. When concatenation is done, a special mapping of the WTP PDUsto the SDUsis
used. Thisisdescribed in chapter 8.5.

Separation is the procedure to extract multiple PDUs from one SDU. When the PDUs have been separated they are
dispatched to the transactions.

Concatenation and separation is used to provide over-the-air efficiency, since fewer transmissions over the air are
required.

7.5.2. Procedure

Concatenation can only be done for messages with the same address information (source and destination port, source
and destination device address).

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 29 (73)

Concatenation of PDU from different transactions can be done at any time. For example, the last acknowledgement of
one transaction can be concatenated with the invoke message of the next transaction. Concatenation and separation is
performed outside the WTP state machine.

The exact implementation of concatenation is not specified. Only the structure to be used when multiple packets are
concatenated is specified. Exactly how the packets are buffered and concatenated is an implementation issue.

7.6. Asynchronous Transactions
7.6.1. Motivation

The implementation of the WTP provider SHOULD be able to initiate multiple transactions before it receives the
response to the first transaction. Multiple transactions SHOULD be handled asynchronously. For example, the
responses to transaction number 1, 2 and 3 MAY arriveto the Initiator as 3, 1 and 2. The Responder SHOULD send
back the result as soon as it is ready, independently of other transactions.

The maximum number of outstanding transactions at any moment is limited by the maximum number of Transaction
Identifiers. The Transaction Identifier is 16 bits, but the high order bit is used to indicate the direction of the message,
so the maximum number of outstanding transactionsis 2** 15. The implementation environment will also set alimit to
how many outstanding transactions it can handle simultaneously.

If the maximum number of outstanding transactionsis exceeded the responder should ignore and discard the invoke
message.
7.7. Transaction Abort

7.7.1. Motivation

An outstanding transaction can be aborted by the WTP user by issuing the TR-Abort request primitive. The user abort
can be triggered by the application (e.g. input from human user) or it can be a negative result (e.g. the WTP user could
not generate aresult dueto an error).

An outstanding transaction can also be aborted by the WTP provider due to a protocol error (e.g. reject the received
data) or if arequested function is not implemented.

Thisfunction MUST be used with care. If the invoke message has already been sent, the response message MAY be on
its way to the client and an abort will only increase network load.

7.7.2. Service Primitives

Thefollowing service primitiveis used:
1. TR-Abort

7.7.3. Transport Protocol Data Units

The following PDU is used:
1. Abort PDU

7.7.4. Procedure

There are three special cases of the abort procedure:
A) The sending WTP provider has not yet sent the message: the provider MUST discard the message from its memory.

B) The sending WTP provider has sent the message to the peer, or isin the process of sending the message: the
provider MUST send the Abort PDU to the remote peer to discard all data associated with the transaction.

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 30 (73)

C) Thereceiving provider receives the Abort PDU: it generates the TR-Abort indication primitive and discards al
transaction data.

When an Abort PDU is sent the reason for the abort isindicated in the abort reason field. There are two main types of
aborts: User abort (USER) and Provider abort (PROVIDER). The user abort occurs when the WTP user has issued the
TR-Abort request primitive. The provider abort occurs when thereisan error in the WTP provider.

7.8. Transaction ldentifier
7.8.1. Motivation

A transaction is uniquely identified by the socket pair (source address, source port, destination address and destination
port) and the Transaction Identifier (TID). The Initiator increments the TID by one for every initiated transaction. This
meansthat TIDs 1, 2 and 3 can go to server A, TIDs 4, 5 and 6 to server B and TIDs 7, 8 and 9 to server A.

The main use of the TID isto identify messages belonging to the same transaction. When amessage is re-transmitted
the TID isreused for the re-transmitted messages. A Responder MAY choose to remember the TID after an invoke
message has been accepted and force TID verification in order to avoid replaying transactions. Also, the Initiator
incrementsthe TID by one for each transaction. Thisinformation can be used by the Responder to filter out new invoke
messages from old and duplicated invoke messages: a new invoke always has a higher TID value.

Since transactions can be initiated simultaneously from both directions on the same socket association, the high order
bit of the TID is used to indicate the direction of the transaction. The Initiator setsthe high order bit to 0 in the Invoke
PDU. Thereafter the high order bit is alwaysinverted in the received TID before it is added to the response packet. By
setting the high order bit of the TID field to O at the Initiator and 1 at the Responder, the Initiator can be guaranteed that
the allocated TID will not collide with the remote entity.

The TID is 16-bits but the high order bit is used to indicate the direction. This means that the TID spaceis 2**15. The
TID isan unsigned integer.

7.8.2. Procedure at the Responder
7.8.2.1. Variables

If the Responder caches old TID values for each different Initiator the old TID valueiscalled LastTID. The TID in the
received invoke message is called RevTID.

7.8.2.2. Decisions when Receiving a New Invoke Message
When the Responder receives an invoke message it takes one of the following actions depending on whether the

Responder is caching old TID values or not, the characteristics of the underlying transport and the outcome of the TID
test (described in the following chapter):

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 31 (73)

Table 6 Decisions when receiving new invoke message

Event Condition Action

TID test Fail Underlying transport service can guarantee there are no Start transaction
duplicates (Note 1)

Underlying transport service can NOT guarantee thereare | Invoke TID verification

no duplicates
TID test Ok LastTID = RevTID
Start transaction
TIDnew flag set LastTID =0
Invoke TID verification
No cache Responder cachesthe TID for each Initiator for the Create new record for this Initiator

Maximum Packet Lifetime (MPL) of the network and it LastTID = RevTID
has not been re-booted during thistime period and lost the | Start transaction
information. If the invoke was not a new one, the
Responder would have had the latest TID in itis cache.

Responder does not cache TIDs (Note 2) Invoke TID verification

Note 1) Thisisthe case, for example, if asecurity layer islocated under WTP and that can remove duplicates.
Note 2) Thisisnot very efficient and SHOULD be avoided.

7.8.2.3. The TID Test

One method of validating the TID is to use awindow mechanism. The Responder MAY cache the last valid TID
(LastTID) from each different Initiator. When the Responder receives a new invoke message it comparesthe TID in the
invoke message (RcvTID) with the cached one. Let W be the size of the window. If W=2**14, it means that the
boundary between two TID values occurs when they differ by 2** 14, that is, half the TID space.

Table 7 TID test; RcvTID >= LastTID

RevTID >= LastTID
| RevTID - LastTID | TID test
0 Fail
<=W Ok
>W Fail (see 7.8.2.4)

Table 8 TID test; RcvTID < LastTID

RevTID < LastTID
| RevTID - LastTID | TID test
<W Fail (see 7.8.2.4)
>=W Ok

The above tables show different results from the TID test. If the test succeedsit is guaranteed that the received invoke
message is hew and not an old delayed one. Thisis under the assumption that all messages have a Maximum Packet
Lifetime (MPL), and that after MPL secondsit is guaranteed that there are no duplicate messages present in the network
(see Note). Furthermore, it is assumed that the TID is not incremented faster than 2** 14 stepsin 2*MPL.

Note) For some networks types, the average Maximum Packet Lifetime MAY have avery high variance. For example,
in a store-and-forward network like GSM SMS, a short message MAY reside in the SMS-C for avery long time, before
it gets delivered to the destination. Thisfact MAY in some cases violate the correctness of the TID validation.

7.8.2.4. Reception of Out-of-order Invoke Messages

M essages can arrive out-of-order. This means that even if the Initiator increments the TID by one for each transaction, a
transaction with alower TID value can arrive after a TID with ahigher value. ThisMAY causethe TID test to fail and

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 32 (73)

aTID verification to be started. Thiswill not break the protocol, however, it will lead to degraded performance. One
way to overcome thisisto keep an array of TID values for past transactions. If the received TID isnot in the array it can
be accepted without any TID verification. This solution improves performance, but requires the Responder to maintain
more information.

7.8.3. Procedure at the Initiator
7.8.3.1. Administration of TID

The Initiator isresponsible for incrementing the TID by one for each transaction. ThisMUST NOT be done faster than
2**14 stepsin 2*MPL.

7.8.3.2. Violating the Monotonic Property of the TID

There are cases when the Initiator MAY generate non-monotonic TID values, that is, the next TID MAY be smaller
than the previous:

1. Thelnitiator has crashed and re-booted and randomly picked asmaller TID value than the previous.
2. TheTID values have wrapped around the finite space. This can happen if, for example, the Initiator sends a

transaction to Responder A, then sends 2** 14 transactions to Responder B and finally returns to Responder A. The
cached TID value at Responder A for this Initiator will now be smaller than current TID.

Neither of these two cases will break the protocol. However, TID verifications will be invoked and that will lead to
lower efficiency.

In (1), if the Responder discards cached TID values after MPL seconds and the time to re-boot takes longer than that,
the Responder will accept the new TID value without a TID verification (see 7.8.2.2). We have assumed that it will take
longer time than 2*MPL to increment the TID 2** 14 steps. However, if the Responder cachesthe TID value longer
than for MPL secondsit will initiate a TID verification in this case.

Thewraparound in (2) will be detected only if the Initiator caches the last sent TID to each Responder.

In both (1) and (2) excessive use of the TID verification mechanism SHOULD be avoided by setting the TIDnew flag in
the Invoke PDU, i.e. when the initiator has received multiple subsequent verification requests from the responder the
TIDnew flag should be set in the next transaction. Thiswill invalidate the Responder's cached TID for the Initiator (see
7.8.2.2). When the Initiator uses the TIDnew flag it MUST NOT initiate any subsequent transaction until the TID
verification has been completed. The reason for thisisthat the TIDnew MAY be delayed in the network. If, during that
time period, transactions with higher TID areinitiated, duplicates from these will get erroneously accepted when
Responder has updated its cache with the lower TID in the TIDnew packet.

7.9. Transaction Identifier Verification
7.9.1. Motivation

Thetransaction identifier verification procedure is athree-way handshake. A three-way handshake between an Initiator
(1) and a Responder (R) has the following steps:

(1) 1 2> R Thisisthe TID (Invoke PDU)
(2) | € R Doyou have an outstanding transaction with this TID? (Ack PDU)
(3) 1 > R Yes/No! (Ack PDU / Abort PDU)

The TID verification procedure is hecessary to guarantee that the same invoke message is not accepted and delivered to
the WTP user more the once, dueto old duplicate packets.

The invoke message MUST NOT be delivered to the user before the TID verification procedure is completed
successfully.

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 33 (73)

7.9.2. Protocol Data Units

Thefollowing PD Us are used:
1. Invoke PDU
2. Ack PDU
3. Abort PDU

7.9.3. Procedure

In the event that the Responder has received an Invoke PDU from an Initiator and has decided, using the rules for the
Transaction I dentifier procedure, to verify the TID, the following processis used.

The Responder sends an Ack PDU with Tve flag set indicating that it has received an invoke message with this TID.

When the Initiator receives the Ack PDU from the Responder it checks whether it has a corresponding outstanding
transaction with this TID. In this case, the Initiator sends back an Ack PDU with TIDok flag set indicating that the TID
isvalid. This completes the three way handshake. If the Initiator does not have a corresponding outstanding transaction,
it MUST abort the transaction by sending an Abort PDU with the Abort reason INVALIDTID.

Depending on the outcome of the TID verification WTP SHOULD take different actions. These are listed in the below
table.

Table 9 Actions depending on result of TID verification

Result of TID verification Condition Action
VaidTID TIDnew == True Start transaction
LastTID = RevTID
TIDnew == False Start transaction
LastTID = LastTID
Invalid TID Abort transaction

The TIDnew flag is set in the invoke message and is used by the Initiator to invalidate the Responder's cache.

An example of this procedure can be found in chapter 10.5.

7.10. Transport Information Items (TPIs)
7.10.1. Motivation

The variable portion of the header inaWTP PDU MAY consist of Transport Information Items (TPIs). If not, the
variable part of the header MUST be empty. The use of TPIsallows for future extensions of the protocol.

7.10.2. Procedure

All TPIsfollow the general structure: TPI identity, TPI length and TPI data; the length can be zero. The following table
lists the currently defined TPI and in which section they are explained:

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 34 (73)

Table 10 WTP Transport Information Items (TPIs)

Transport Information Item | Described in section

Error "Transport Information Items (TPIs)" section7.10
Frame Boundary “Procedure for Segmentation” section 7.15.2

Info "Information in Last Acknowledgement” section 7.4
Option "Transmission of Parameters" section7.11

Packet Sequence Number " Segmentation and Re-assembly" section 7.14

SDU Boundary “Procedure for Segmentation” section 7.15.2

A WTP provider without error ignorea TPI it does not implement, assuming the general TPI structureis used by all
TPIs.

Theerror TPI can be used to inform the sender that an unsupported or erroneous TPl was received. When aWTP
provider receivesa TPI that is not supported, the WTP provider returns the Error TPI with the ErrorCode indicating
"Unknown TPI" along with the identity of the unsupported TPI. When aWTP provider receives a supported TPI, but
fails to understand the content of the TPI, the WTP provider returns the Error TPl with the ErrorCode indicating
"Known TPI, unknown content”, and the identity of the TPI and the first octet of the content included as argument.

Note that if an unsupported or erroneous TPI is received in the last message of atransaction, the receiver can not notify
the sender of the event.

7.11. Transmission of Parameters
7.11.1. Motivation

Protocol parameters can be transmitted between two WTP providers by using the Option TPI in the variable part of the
PDU header.

No mandatory parameters have been defined. Optional parameters used by the segmentation and re-assembly function
arelistedin8.4.4.

7.11.2. Procedure

A WTP provider MAY support only asubset of all parameters. The parameters are transported in the variable part of
the PDU header by using the Option TPI. Thefirst octet of the Option TPI identifies the parameter and the following

octets contains the value of the parameter. A WTP provider not supporting a parameter ignoresit and returns the Error
TPI.

7.12. Error Handling
7.12.1. Motivation

When an unrecoverable error is detected during the transaction, the transaction MUST be aborted. Currently no
recovery mechanisms have been defined.

7.12.2. Protocol Data Units

The following PDU is used:
1. Abort PDU

7.12.3. Procedure

When an error occursin the WTP provider during atransaction, the transaction MUST be aborted with an appropriate
Abort reason and the local WTP user informed. The abort procedure is described in a separate section.

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 35 (73)

7.13. Version Handling
7.13.1. Motivation

A WTP provider receiving an invoke message with a higher version number than what is supported MUST abort the
transaction.

7.13.2. Protocol Data Units

The following PDUs and parameters are used:
1. Invoke PDU
2. Abort PDU

7.13.3. Procedure

The Initiator indicates its version in the version field of the Invoke PDU.

If the Responder does not support the version it MUST return an Abort PDU with the Abort Reason set to
WTPVERSIONONE. Thisindicates that the WTP provider supports version one of the WTP protocol.

7.14. Segmentation and Re-assembly (Optional)
7.14.1. Motivation

If the length of a message exceeds the MTU for the current bearer, the message can be segmented by WTP and sent in
several packets. When amessage is sent as a large number of small packets, the packets MAY be sent and
acknowledged in groups. The sender can exercise flow control by changing the size of the packet groups depending on
the characteristics of the network.

Selective re-transmission allows for areceiver to request one or multiple lost packets. The alternativeis for the sender
to re-transmit the entire message, which MAY include packetsthat have been successfully received. Thisfunction
minimises the number of packets sent by WTP.

Thisfunction isoptional. If SAR isnot implemented in WTP, this functionality hasto be provided by another layer in
the stack. For example, in 1S-136 the SSAR layer handles SAR, in an IP network |P [RFC791] handles SAR and for
GSM SMS/USSD SAR is achieved by using SMS concatenation [GSM0340]. The motivation for implementing WTP
SAR isthe selective re-transmission procedure, which MAY,, if large messages are sent, improve the over-the-air
efficiency of the protocol.

An example of this procedure can be found in chapter 10.6.

7.14.2. Procedure for Segmentation

For the sake of brevity only the procedure to segment an invoke message is described here (segmentation of aresult
message isidentical except for the names of the PDUs.)

An invoke message which exceeds the MTU for the network is segmented into an ordered sequence of one Invoke PDU
followed by one or more Segmented Invoke PDUs. Theinitial Invoke PDU has the implicit packet sequence number of
zero, the following Segmented Invoke PDU has the packet sequence number one and all the following Segmented
Invoke PDUs have packet sequence number that is one greater than the previous (n, n+1, n+2, etc). The Invoke PDU
has an "implicit" packet sequence number since this number is not included as afield in the header. The client indicates
in the Invoke PDU if the invoke message is segmented by clearing the TTR flag. If the invoke message is segmented,
the server counts the Invoke PDU as packet number zero and waits for the following Segmented Invokes PDUs. The
packet sequence number MUST NOT wrap. The packet sequence number field is 8 bits; and thus the maxi mum number
of packetsis 256.

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 36 (73)

7.14.3. Procedure for Packet Groups

The packets (Segmented Invoke PDUs and/or Segmented Result PDUs) are sent and acknowledged in groups. The
sender MUST NOT send any new packets belonging to the same transaction until the previous packet group has been
acknowledged. That is, packet groups are sent according to a stop-and-wait protocol. The sender determines the number
of packets for each packet group. The size of a packet group SHOULD be decided with regards to the characteristics of
the network and the device. No procedure for determining packet group size has been defined.

The packetsin apacket group are sent in one batch. The last packet of the group hasthe GTR flag set. The last packet
of the last packet group of the entire message hasthe TTR flag set. Since the first group is sent without knowing the
status of the receiver the number of packets SHOULD not be too large. When the receiver receives a packet that is not a
GTR or TTR packet it MUST store the packet and wait for a new one.

When the receiver receives a packet with the GTR flag set it MUST check whether it has received all packets belonging
to that packet group. If the complete packet group has been received the receiver returns an Ack PDU with the PSN TPI
containing the Packet Sequence Number of the GTR packet. If one or more packets are missing the receiver returns a
Nack PDU including the sequence number(s) of missing packet(s). The missing packets are re-transmitted with the
original Packet Sequence Numbers but with the Re-transmission Indicator flag set. When the receiver has received the
complete packet group, including those that were re-transmitted, it acknowledges the GTR packet.

When the receiver has received a complete packet group and the last packet hasthe TTR flag set, it SHOULD be able to
re-assembl e the compl ete message.

If the sender has not received an acknowledgement when the re-transmission timer expires, only the GTR/TTR packet
isre-transmitted, not the entire packet group.

7.14.4. Procedure for Selective Re-transmission

When aGTR or TTR packet has been received and one or more packets of the packet group are missing, the WTP
provider returns the Nack PDU with the sequence number of the missing packet(s). For example, if the receiver has
received packet number 2, 3, 5 and 7, and packet number 7 has the GTR flag set, it returns a Nack PDU with packet
numbers 4 and 6, indicating missing packets. The packet sequence number of the missing packets are contained in the
header part of the Nack PDU.

If the Nack PDU is received with the number of missing packets field set to zero, this means that the entire packet
group shall be re-transmitted.

The missing packets are re-transmitted with the original Packet Sequence Numbers. When the sender has re-transmitted
the requested packets, it reverts to wait for the original acknowledgement (for the GTR or TTR packet).

When the receiver has received all packetsit acknowledgesthe GTR or TTR packet according to the normal procedure,
using the Ack PDU.

A WTP provider not supporting this function MUST re-transmit the entire message when one or multiple packets are
requested for re-transmission.

When the GTR or TTR packet has been received and one or more packets of the group are missing, the WTP provider
SHOULD wait for some period of time, such as ¥4he median round-trip, before returning the Nack PDU with the
sequence numbers of the missing packet(s). It the status of the group changes during the time, i.e. one of the missing
packetsisreceived, the waiting time SHOULD be reset.

7.15. Extended Segmentation and Re-assembly (Optional)
7.15.1. Motivation

The segmentation and re-assembly function described in section 7.14 is defined for a data transfer where the size
exceeds the actual MTU. However, the overall size of datathat can be transferred islimited to 256 packets by the fact
that the PSN is 8 bits and therefore it does not address large data transfer issues. Thus an extended segmentation and re-

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 37 (73)

assembly procedure has been defined which allows the transmission of alarge amount of data, i.e. where the volume
exceeds 256 packets. Two key objectives of the procedure are to ensure an efficient data transfer and not to limit the
amount of datathat can be transferred.

7.15.2. Procedure for Segmentation

For the sake of brevity only the procedure for applying ext ended segmentation to an invoke message sequenceis
described here. The Extended SAR mechanism appliesto both a Class 1 and Class 2 WTP transaction. Extended SAR
function is optional.

At the beginning of each extended SAR transaction a negotiation of the feature takes place. The NumGroups Option
TPl is used to advertise the extended segmentation and re-assembly feature availability to the peer. All WTP
implementations, which support extended SAR function, MUST include this TPI in theinitial Invoke PDU. The
absence of this TPI in the Ack, Nack or Result PDU will indicate to the receiving WTP that the sender of the PDU does
not support the extended SAR. The Initiator MAY send the Invoke PDU in a packet group, but the transmission rules
for the first group correspond to the SAR without extended mode (section 7.14).

The Initiator MUST NOT send more than one group until it has confirmed that the responder supports ESAR. The value
of NumGroups indicates the maximal number of outstanding groupsin the sliding window. If its value of length is zero,
it defines the default value 1 (which means no sliding window has to be taken into use).

From this point on it is assumed that the negotiation was successful and only the normal operating procedureis
described. If the negotiation fails, the SAR procedure without extended mode is applied, or the Initiator MAY abort the
transaction with the NOTIMPLEMENTEDESAR abort code.

The SDU (user data) received in the TR-Invoke.req or in the TR-InvokeData.req service primitivesis segmented into a
series of one Invoke PDU and additional Segmented Invoke PDUs. So from the TR-Invoke.req SDU one Invoke PDU
and anumber of Segmented Invoke PDUs are generated and from each subsequent TR-1nvokeData.req primitives
subsequent only Segmented Invoke PDUs are created.

Theinitial Invoke PDU has a packet sequence number of zero, the following Segmented Invoke PDU has the packet
sequence number of one and all following Segmented Invoke PDUs have one greater than the previous (n, n+1, n+2).
When the least significant byte of PSN wraps around, the PSN TPI hasto be taken into use. So after the Segmented
Invoke PDU that has a PSN of 255 and does not have a PSN TPl a Segmented Invoke PDU with a PSN (least
significant byte) of zero and a PSN TPI of length 1 and value 1 will follow.

If the PSN value wraps around it MUST be handled as if monotonically increased. The exception of wraparound will
not be mentioned below.

The SDUs received in the TR-Invoke.req and TR-InvokeData.req service primitives are segmented into a series of
packets. If the service primive has the MoreData parameter cleared the last packet resulting from that SDU will have
the TTR flag set. This denotes the last PDU and the end of the extended invoke. After that the result can be retrieved. If
the Frame Boundary flag in an invoked service primitiveis set, a Frame Boundary TPl is attached to the first packet
resulting from that SDU and it marks the beginning of a new partial invoke message. The very last packet having the
TTR flag set MUST NOT be appended with the SDU Boundary TPI. The TTR flag implies a frame and SDU boundary
aswell.

If the service primitive MoreData parameter is set, the WTP provider will attach the SDU Boundary TPI to the last
GTR packet of the last group of the SDU indicating the peer the end of the SDU.

Ordering of service primitives MUST be enforced by the WTP provider. That is, confirm service primitives MUST be
passed to the WTP user in the order that the request were made. Inside WTP layer the sequence of the dataflow is
ensured by the numbering of the packets. WTP isaserial channel, i.e. data MUST be delivered to the peer WTP user in
the same order as submitted to WTP by the local user.

The order in which service primitives within the same transaction are submitted to WTP must be preserved. For
example, say that SP1, SP2 and SP3 are service primitives being used to transfer fragments for data of the same
transaction and are submitted to WTP in that order by the WTP user. The user datain SP1 must be sent entirely to the
WTP peer before the user datafor SP2 is sent, and similarly for SP3.

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 38 (73)

7.15.3. Procedure for Sliding Window

Packets are organized into groups. The last packet of the group hasthe GTR flag set. The last packet of the last group in
the transmission hasthe TTR flag set and GTR flag cleared. So far thisis the same as of the original SAR. If a packet
carries the SDU Boundary TPI it MUST have the GTR flag set.

A single group cannot include packets referenced by different high order PSN values. For example, a group cannot
include PSN = 255 and PSN = 256.

The packet sequence number PSN MUST always be increased one by one, so there cannot be any holesin the sequence
number space. For example, aprovider cannot generate PSN 1,2 and 4 without generating PSN 3.

Theinitiator MAY send a number of neighbouring groupsin one batch sending the packets in the order of their
extended PSNs. The responder MUST acknowledge each group that has been fully received. While agroup is not
acknowledged it is counted as outstanding. So at a time there can be more than one groups outstanding. The window

comprises the amount of groups the peer is able to receive.

The size of the sender window in packetsis equal to
NumGroups x [Maximum Group/BearerPacketSize]

where[] meansinteger part of the division. The number of outstanding groups cannot exceed the value that has been
received in the last NumGroups TPI . The size of any group created cannot exceed the value received in the Maximum
Group TPI divided by the maximal packet size value of the underlying bearer network, so the formula above gives the
actual size of the window measured in packets. These Maximum Group and NumGroups TPI values can be used for
flow control and can be sent multiple times during atransaction. The initiator can start to transmit the next group only if
the size of the next group, when added to the size of the groups are currently outstanding, does not exceed the
negotiated window size. So the operation is sliding window based and the measure of sliding is one group. The
Maximum Group Option TPI can be set in any PDU sent by the receiver to control the maximum number of packetsin
agroup and so indirectly the window size. If no Maximum Group Option TPl was given during the extended SAR
transfer, it gets adefault value. This value defines the minimum size of datain bytesthe receiver is ableto receive by
default.

The receiver can practise flow control by sending a NumGroups Option TPI (in Ack or Nack PDUs) having a value of
zero. Thiswill prevent the sender from starting the transmission of anew group, once all the packets in the outstanding
groups have been successfully acknowledged. If there are no outstanding groups (ie. The transaction isidle for thetime
being), the NumGroups Option TPI can be transmitted by resending the latest Ack PDU. Reopen of the channel MUST
be done by sending larger than 0 valuein aNumGroups TPI in any appropriate PDU (Nack or Ack). The sender MAY
clear its retransmission counter each time it receivesthe NumGroups TPI set to zero and MAY keep sending probe
packetsin order to keep the transaction alive. If the receiver closes the window (by the NumGroups TPI zero), the
sender hasto start itsre-transmission timer and after the expiration it has to send a datal ess one-packet group to the
receiver to stimulate it to send its status, i.e. to check whether the window should be reopened. The probe packet sent by
the sender must be the packet for which the Ack to reopen the window is expected. For example, if the receiver closed
the window using the Ack for PSN 12, the sender has to retransmit packet PSN 12 as a probe packet. This packet does
not contain data. The receiver reopens the window by sending an Ack for PSN 12 with NumGroups set to avalue
greater than zero.

The receiver may also send the closing TPI in the Nack PDU and it means the same: it will stop only the sliding of the
window.

If the initiator supports a sliding window when acting as areceiver, i.e. more than 1 group can be sent before an Ack
received, theinitiator includes the NumGroups TPI value more than 1 in the Invoke PDU. Thisis used by the responder
when sending Segmented Result PDUsto the initiator; it defines the number of groups of Segmented Results that can
be sent to the initiator before an Ack received. The responder sending the NumGroups TPI value more than 1 in the
Ack, Nack or Result PDU which indicates the number of groups of Segmented Invokes, which the initiator may send to
the responder without waiting for an acknowledgement. The NumGroups TPI with value of length zero included in the
Ack PDU signals, that theinitiator MUST NOT send more than 1 group before waiting for an acknowledgement.

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 39 (73)

Theinitiator MAY send a number of Segmented Invoke PDUs after the Invoke has beensent and before the Ack is
received from the responder. Since the Ack has not been received yet, the initiator does not know the status of the
responder and therefore the group size SHOULD not betoo large. The initiator MUST NOT send multiple groups at
this point.

7.15.4. Procedure for Reliability

The sender cannot have awindow that has more than 255 packets pending

When the receiver receives a packet with the GTR or TTR flag set or any of the groups becomes completeit MUST
check whether all of the groups of the receiver window are complete or not. If every group is completeit returns an Ack
PDU with the PSN of the packet with the highest extended PSN (the acknowledgement is cumul ative) with the same
values as the received packet has. If any of the groupsisincomplete it MUST send a Nack PDU that:

MUST include all the least significant PSN bytes of all the missing packets (holes in the packet sequence) within
the window.

MUST attach aPSN TPI having the value of the PSN of the packet with the highest extended PSN.
Note that the receiver MUST NOT send Ack PDU if thereis any incomplete group.

The sender upon receiving this Nack MUST go through the list of missing packets and MUST interpret it in the
following way:

If the least significant byte of the PSN of the missing packet islower than, or the same as, the |least significant byte of
the value carried in the PSN TPI attached to the Nack PDU then the high order PSN bytes for the missing packet are the
same as carried by the PSN TPI attached to the Nack PDU. Otherwiseit is assumed to bein the previous PSN high
order domain so the high order PSN bytes of the missing packet will be in this case one lower than the value carried in
the PSN TPI attached to the Nack PDU.

PSN(L SB) missing<=PSN(L SB)nack == PSN(HOB) missing: =PSN(HOB)nack
PSN(LSB)miSS‘ng> PSN(LSB)Nack => PSN(HOB) misgngZ:PSN(HOB)Nack-l
where LSB means Least Significant Byte and HOB designates the High Order Bytes.

If upon receiving aNack it turns out that for a particular outstanding group every packet isreceived (no missing packet
for the group islisted in the Nack and extended PSN of the Nack is not lower than the extended PSN of the trailing
packet of the group), the receiver MUST treat the group as acknowledged. It can be removed at any timeif the
continuity of the window can be preserved. See examplein section 10.6.7. Thus a Nack may acknowledge implicitly a

group.

The sender upon sending the last packet of the sending window MUST start the retransmission timer. If the
retransmission timer expiresit has to increase the retransmission counter and MUST send the GTR or TTR packet
which has the highest extended PSN amongst the unacknowledged packetsin order to force the receiver to send an Ack
or Nack PDU. If the counter reaches the maximum the transaction MUST be aborted.

The sender - supporting sliding window mechanism - MUST be prepared to the situation where two Nacks are received
within avery short time period listing some common packets. This can happen if thereis alost packet and the receiver
sends Nacks as an answer to two subsequent GTR packets. The sender SHOULD run a retransmission hold-off timer to
avoid excessive retransmissionswhen multiple Nacks for the same group are received in ashort interval. One possible
procedure for managing this timer is described in Appendix B. Moreover the sender MUST use exponential back-off
(see section 9.4.1) when retransmitting.

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 40 (73)

8. Structure and Encoding of Protocol Data Units

8.1. General

A Protocol Data Unit, PDU, contains an integer number of octets and consists of:
a) the header, comprising:
1. thefixed part
2. thevariable part

b) thedata, if present

The fixed part of the headers contains frequently used parameters and the PDU code. The length and the structure of the
fixed part are defined by the PDU code. The following PDU types are currently defined:

Table 11 WTP PDU Types

PDU Type PDU Code

* NOT ALLOWED * 0x00 (Note 1)
Invoke 0x01

Result 0x02

Ack 0x03

Abort 0x04
Segmented Invoke 0x05 (Note 2)
Segmented Result 0x06 (Note 2)
Negative Ack 0x07 (Note 2)

The variable part is used to define less frequently used parameters. Variable parameters are carried in Transport
Information Items, TPI.

The very first bit of the fixed header indicates whether the PDU has a variable header or not. The length of the fixed
header is given by the PDU type. The variable header consists of TPIs. Every TPl has alength field for it's own length.
The very first bit of each TPI indicates whether it isthelast TPI or not.

Network Octet order for multi-octet integer valuesis “big-endian”. In other words, the most significant octet is
transmitted on the network first followed subsequently by the less significant octets.

Theleft most bit (bit number 0) of an octet or abit field is the most significant. Bit fields described first are placed in
the most significant bits of the octet. The transmission order in the network is determined by the underlying transport
mechanism

Note 1) If thefirst octet of adatagram is 0x00, it will be interpreted as if the datagram contains multiple concatenated
PDUs. See section on Encoding of Concatenated PDUSs.

Note 2) ThisPDU isonly applicableif the optional Segmentation and Re-assembly function is implemented.

8.2. Common Header Fields
8.2.1. Continue Flag (CON)

Asthefirst bit of the fixed portion of the header, the Continue Flag indicates the presence of any TPIsin the variable
part. If the flag is set, there are one or more TPIsin the variable portion of the header. If the flag is clear, the variable
part of the header is empty.

Thisflag isalso used asthefirst bit of aTPI, and indicates whether the TPI isthe |ast of the variable header. If the flag
is set, another TPI followsthis TPI. If the flag is clear, the octet after this TPI isthe first octet of the user data.

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 41 (73)

8.2.2. Group Trailer (GTR) and Transmission Trailer (TTR) Flag

When segmentation and re-assembly isimplemented the TTR flag is used to indicate the last packet of the segmented
message, the GTR flag is used to indicate the last packet of a packet group.

Table 12 GTR/TTR flag combinations

GTR TTR Description
0 0 Not last packet
0 1 L ast packet of message
1 0 L ast packet of packet group
1 1 Segmentation and Re-assembly NOT supported

The default setting SHOULD be GTR=1 and TTR=1, that is, WTP segmentation and re-assembly not supported. In the
case of SAR, if the TTR flag is set in the last segment, then the GTR flag must be ignored.

8.2.3. Packet Sequence Number

Thisisused by the PDUs bel onging to the segmentation and re-assembly function. This number indicates the position
of the packet in the segmented message.

8.2.4.PDU Type

The PDU Type field indicates what type of WTP PDU the PDU is (Invoke, Ack, etc). This providesinformation to the
receiving WTP provider asto how the PDU data SHOULD be interpreted and what action is required.

8.2.5. Reserverd (RES)

All reserved bits are to be set to the value 0x00 unless otherwise specified.

8.2.6. Re-transmission Indicator (RID)

Enablesthe receiver to differentiate between packets duplicated by the network and packets re-transmitted by the
sender. In the original message the RID is clear. When the message gets re-transmitted the RID is set.

8.2.7. Transaction Identifier (TID)

The TID is used to associate a packet with a particular transaction.
8.3. Fixed Header Structure

8.3.1. Invoke PDU

Table 13 Structure of Invoke PDU

Bit/Octet 0 1 2 | 3 4 5 6 7
1 CON PDU Type = Invoke GTR TTR RID
2 TID
3
4 Version | TiIbDnew | uP | RES | RES | TCL

8.3.1.1. Transaction Class, TCL

The Initiator indicates the desired transaction class in the invoke message.

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 42 (73)

Table 14 Encoding of Class field

Class TCL
0 0x00
1 0x01
2 0x10

The transaction classes are explained in separate chapter.

8.3.1.2. TIDnew Flag

Thisis set when the Initiator has "wrapped" the TID value; that is, the next TID will be lower than the previous. When
the Responder receives the Invoke PDU and the TIDnew flag is set, it invalidates its cached TID value for this Initiator.

8.3.1.3. Version
The current version is 0x00.
8.3.1.4. U/P Flag

When thisflag is set it indicates that the Initiator requires a User acknowledgement from the server WTP user. This
means that the WTP user confirms every received message.

When thisflag is clear the WTP provider MAY respond to a message without a confirmation from the WTP user.
8.3.2.Result PDU

Table 15 Structure of Result PDU

Bit/Octet 0 1 | 2 | 3 | 4 5 6 7
1 CON PDU Type = Result GTR TTR RID
2 TID
3

8.3.3. Acknowledgement PDU

Table 16 Structure of Ack PDU

Bit/Octet 0 1 | 2 | 3 4 5 6 7
1 CON PDU Type = Acknowledgement Tve/Tok RES RID
2 TID
3

8.3.3.1. Tve/Tok Flag

In the direction from the responder to the initiator the Tve (TID Verify) means: -"Do you have an outstanding
transaction with this TID?". In the opposite direction the Tok (TID OK) flag means: -"| have an outstanding transaction
with this TID!"

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 43 (73)

8.3.4. Abort PDU

Table 17 Structure of Abort PDU

Bit/Octet 0 1 | 2 | 3 | 4 5 | e | 7
1 CON PDU Type = Abort Abort type
2 TID
3
4 Abort reason

8.3.4.1. Abort type and Abort reason
Currently the following abort types are specified:
Table 18 WTP Abort Types

Abort type Code | Description

Provider (PROVIDER) 0x00 The abort was generated by the WTP provider itself.
The abort reason is specified below.

User (USER) 0x01 The abort was generated by the WTP user. The abort
reason is provided to the WTP provider by the WTP
user.

Abort reasons from the WTP provider

The following abort reasons are specified:

Table 19 WTP Provider Abort Codes

Abort reason (PROVIDER) Code | Description

Unknown (UNKNOWN) 0x00 A generic error code indicating an unexpected error .

Protocol Error (PROTOERR) 0x01 Thereceived PDU could not beinterpreted. The
structure MAY be wrong.

Invalid TID (INVALIDTID) 0x02 Only used by the Initiator as a negative result to the
TID verification.

Not Implemented Class 2 0x03 The transaction could not be completed since the

(NOTIMPLEMENTEDCL?2) Responder does not support Class 2 transactions.

Not Implemented SAR 0x04 The transaction could not be completed since the

(NOTIMPLEMENTEDSAR) Responder does not support SAR.

Not Implemented User 0x05 The transaction could not be completed since the

Acknowledgement Responder does not support User acknowledgements.

(NOTIMPLEMENTEDUACK)

WTP Version One 0x06 Current version is 1. Theinitiator requested a different

(WTPVERSIONONE) version that is not supported.

Capacity Temporarily Exceeded 0x07 Dueto an overload situation the transaction can not be

(CAPTEMPEXCEEDED) completed.

No Response (NORESPONSE) 0x08 A User acknowledgement was requested but the WTP
user did not respond

Message too large 0x09 Due to a message size bigger than the capabilities of the

(MESSAGETOOLARGE) receiver the transaction cannot be compl eted.

Not Implemented Extended SAR Ox0A The transaction could not be completed since the

(NOTIMPLEMENTEDESAR) Responder does not support extended SAR.

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 44 (73)

Abort reasons from the WTP user

The abort reasons from the WTP user are given to the local WTP provider inthe T-TRAbort request primitive. The
abort reason is specific to the WTP user. For example, if the WTP user is WSP, abort codes defined in [WSP] can be
used.

8.3.5. Segmented Invoke PDU (Optional)

Table 20 Structure of Segmented Invoke PDU

Bit/Octet 0 1 | 2 | 3 | 4 5 6 7
1 CON PDU Type = Segmented Invoke GTR TTR RID
2 TID
3
4 Packet Sequence Number

8.3.6. Segmented Result PDU (Optional)

Table 21 Structure of Segmented Result PDU

Bit/Octet 0 1 | 2 | 3 | 4 5 6 7
1 CON PDU Type = Segmented Result GTR TTR RID
2 TID
3
4 Packet Sequence Number

8.3.7. Negative Acknowledgement PDU (PDU)

Table 22 Structure of Negative Acknowledgement PDU

Bit/Octet 0 1 | 2 | 3 | 4 5 6 7
1 CON PDU Type = Negative Ack Reserved RID
2 TID
3
4 Number of Missing Packets=N
5 Packet Sequence Number(s) of Missing Packets
4+N

8.3.7.1. Number of Missing Packets

Indicates the requested number of missing packets. If 0x00, this means that the entire packet group shall bere-
transmitted.

8.3.7.2. Packet Sequence Number(s) of Missing Packets

List of packet sequence number for the request packets.

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 45 (73)

8.4. Transport Information Items
8.4.1. General

The variable part of the PDU can consist of one or several Transport Information Items, TPIs. The length field of a TP
can be2 or 8 bits.

Thelong TPI (8 bitslength) has the following structure:

Table 23 Long TPI structure

Bit/Octet 0 1 2 3 4 5 6 7
1 CON TPI Identity 1 RES RES
2 TPl Length=N
3 TPl Data
2+N

The short TPI (2 bitslength) is structured as

Table 24 Short TPI Structure

Bit/Octet 0 1 2 3 4 5 6 | 7
1 CON TPI Identity 0 TPl Length = M
2 TPI Data
1+M

In the above tables, N=0..255 and M=0..3. The datafield of the TPI MUST contain an integer number of octets. In
theory the maximum length of a TPI is 255 octets, however, it isalso limited by the MTU size of the bearer network
and the number of, and length of, other TPIsin the same PDU header.

Thefollowing TPIs are currently defined:

Table 25 Encoding of TPIs

TPI TPI ldentity Comment
Error 0x00

Info 0x01

Option 0x02

Packet Sequence Number (PSN) | 0x03 Note 1
SDU Boundary 0x04 Note 2
Frame Boundary 0x05 Note 2

Note 1) This TPl isonly applicable if the optional segmentation and re-assembly function isimplemented.
Note 2) This TPI isonly applicable if the optional extended segmentation and re-assembly function is implemented.

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 46 (73)

8.4.2. Error TPI

The Error TPI isreturned to the sender of an erroneous or unsupported TPI. Currently the following error codes have
been defined:

Table 26 Encoding of Error TPI

Error Code Argument
Unknown TPI 0x01 TPI Identity of unknown TPl
Known TPI, unknown content 0x02 TPI |dentity and first octet of content

Depending on the ErrorCode the Bror TPI can have a different structure.

Table 27 Structure of Error TPI (UNKNOWN)

Bit/Octet 0 1 2 3 | 4 5 6 7
1 CON TPI Identity = 0x00 0 TPI Length = 0x01
2 ErrorCode = 0x01 | Bad TPI Identity

Table 28 Structure of Error TPl (KNOWN)

Bit/Octet 0 1 2 3 | 4 5 6 7
1 CON TPI Identity = 0x00 0 TPI Length = 0x02
ErrorCode = 0x02 | Bad TPI Identity
3 First octet of TPI

Note that this TPl is mandated to support by aWTP provider. Consequently, the WTP provider MUST also be able to
recognise the general structure of aTPI.

8.4.3. Info TPI

ThisTPI is used to piggyback asmall amount of datain the variable part of the PDU header. For example, the data can
be performance measurements or statistical data.

The structure of the Info TPl isillustrated below.

Table 29 Structure of Info TPI

Bit/Octet 0 1 2 3 4 5 6 7
1 CON TPI Identity 0 TPl Length=N
2 Information
1+N

The above table shows the Info TPI as short TPI. If moreinformation MUST be sent, the long TPI can be used.

8.4.4. Option TPI

The Option TPI is used to transfer parameters between two WTP entities. The parameter carried in the Option TPl is
valid for the lifetime of the transaction. The following options are currently defined:

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224\WTP-20010710-a, Version 10-Jul-2001

Page 47 (73)

Table 30 Encoding of Option TPI

Option

I dentity

Description

Comment

Maximum Receive Unit

0x01

This parameter is used by the Initiator to
advertise the maximum unit of datain bytes
that can be received in the result

Total Message Size

0x02

This parameter can be sent in the first packet of
a segmented message to inform the receiver
about the total message size in bytes

Note 1

Delay Transmission
Timer

0x03

This parameter can be sent in the Ack PDU
when a packet group is acknowledged. The
receiver MUST NOT send the next packet
group until the specified time has elapsed. The
timeisin 1/10 seconds.

Note 1

Maximum Group

0x04

This parameter can be used by either
transaction party to advertise the maximum
group size, which can be received. The
parameter indicates the maximum size in bytes
of datain asingle group. The default is 1405.

Note 1

Current TID

0x05

This parameter may be sent with an Ack PDU
when a 3-way-handshake is requested by the
server, i.e. the Verify flag is set. The use of the
parameter is optional, and the interpretation by
the client implementation dependent. When
used, the value shall be the value cashed by the
server (LastTID).

No Cached TID

0x06

This parameter may be sent with an Ack PDU
when a 3-way-handshake is requested by the
server, i.e. the Verify flag is set. The use of the
parameter is optional, and the interpretation by
the client implementation dependent. When
used, the parameter indicated that there is no
cached LastTID

NumGroups

0x07

This parameter can be used by either
transaction party to advertise the maximum
number of outstanding groups which can be
received. Thisvalue is expressed in number of
groups. This TPI is used to signal the extended
segmentation and re-assembly feature
availability to the peer. A WTP
implementation, which supports extended SAR
function, MUST include this TPl in theinitial
Invoke PDU. The absence of this TPI in the
Ack, Nack or Result PDU will indicate to the
receiving WTP that the sender of the PDU does
not support the extended SAR. The value of
length zero indicates the usage of the default
value, 1.

Note 2

Note 1) This parameter is only applicable if the optional segmentation and re-assembly function isimplemented.
Note 2) This parameter is only applicable if the optional extended segmentation and re-assembly function is

implemented.

O 2001, Wireless Application Protocol Forum, Ltd.

All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 48 (73)

The structure of the Option TPI isillustrated below.

Table 31 Structure of Option TPI

Bit/Octet 0 1 | 2 | 3 | a 5 6 | 7
1 CON TPI Identity 0 TPI Length=N
2 Option Identity
3 Option Value
1+N

The above table shows the Option TPI as ashort TPI. If more information must be sent, the long TPI can be used.

8.4.5. Packet Sequence Number TPI (Optional)

The Ack PDU does not have a Packet Sequence Number (PSN) field. When Segmentation and Re-assembly is used this
TPI is attached to the variable part of the Ack PDU header. The PSN included in the Ack PDU isthe PSN of the
acknowledged packet (GTR or TTR packet).

In case of extended SAR, the range of PSN is 24 hits, therefore the TPI length=M, where M may vary between 1 and 3.
This TPI provides the high-order bytes of the sequence number, which are not included in the PDU itself. This TPI
provides the high-order bytes of the sequence number in the case of Segmented Invoke/Result PDUs and the complete
PSN when sent in the Nack or Ack PDU. PSN will be reset to zero once it reaches 224 (wraps around).

Table 32 Structure of Packet Sequence Number TPI

Bit/Octet 0 1 2 | 3 | a4 5 6 | 7
1 CON TPI Identity = Packet Sequence Number 0 TPI Length=M
2 First Byte (MSB) of PSN
Optional Second Byte of PSN
1+M Optional Third Byte of PSN

8.4.6. SDU Boundary TPI

This TPl isused only in the optional extended segmentation and re-assembly function to put a framing boundary into
the SDU data transmitted to the peer. This TPI will be attached to the GTR packet fix header of the last group by the
protocol automatically, if the service primitive parameter MoreData is set.

Table 33 Structure of SDU Boundary TPI
Bit/Octet 7 6 5 4 3 2 1 0
1 CON TPI Identity = SDU Boundary 0 TPl Length=0

8.4.7. Frame Boundary TPI

This TPl isused only in the optional extended segmentation and re-assembly function to put a user controlled framing
boundary at the beginning of SDU data transmitted to the peer. This TPI can be attached only to the very first packet’'s
fixed header.

Table 34 Structure of Frame Boundary TPI
Bit/Octet 7 6 5 4 3 2 1 0
1 CON TPI Identity = Frame Boundary 0 TPI Length=0

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 49 (73)

8.5. Structure of Concatenated PDUs

One or more WTP Protocol Data Units (PDUs) MAY be contained in one datagram Service Data Unit (SDU). Thisis
illustrated below.

Datagram Service Data Unit

WTP Protocol Data Unit(s)

The following table represents a datagram SDU with one WTP PDU. The PDU including header and datais N octets.

Table 35 WTP PDU without Concatenation
Bit/Octet 0 1 2 3 4 5 6 7

1 WTPPDU

N

The following table represents two WTP PDUs concatenated in the same SDU of the bearer network. Thefirst PDU is
N octets and the second is M octets.

Table 36 Concatenated WTP PDUs

Bit/Octet o | 1 2 3 4 5 6 7

1 Concatenation Indicator = 0x00
2 0 | WTP PDU Length = N
3 WTP PDU

N+2

N+3 0 WTP PDU Length=M

N+4 WTP PDU

N+M+3

The concatenation indicator is used to indicate that the SDU contains multiple WTP PDUs. The number of PDUsis
limited only by the maximum size of the SDU.

The PDU Length field can be 7 or 15 bits. If the first bit in the PDU Length field is set, the length field is 15 bits, if not,
itis 7 bits. This meansthat the PDU Length field takes up 8 or 16 bits depending on whether the first bit is set or not. In
the above table the first bit is 0 and thus the length field is 7 bits.

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 50 (73)

9. State Tables

9.1. General

This chapter defines state tables for the core WTP protocol without the optional segmentation and re-assembly function.

9.2. Event Processing

The WTP provider initiating a transaction is called the Initiator. The WTP provider responding to an initiated
transaction is called the Responder. An implementation of the WTP protocol is not required to have both Initiator and
Responder functionality. For example, if the WTP user isthe WSP client protocol the WTP provider MAY only support
initiation of transactions, that is, no Responder functionality. See Static Conformance Reguirements appendix for

details on what MUST be implemented in order to conform to the standard.

The interface to the next higher layer is defined by the WTP service primitives. The next lower layer istypically a
datagram service and the only service primitives are the UnitData indication and requests. The request and response
service primitives from the next higher layer together with indication primitive from the next lower layer are termed
events. If multiple PDUs are concatenated in the SDU from the next lower layer, they MUST be separated and
dispatched to the transactions. In addition to the external events, there will also be internal events such astimer
expirations and errors.

Anevent isvalidated beforeit is processed. The following tests are performed, and if no action is taken, the event is
processed according to the state tables.

Table 37 Test of incoming events
Test Action
UnitData.ind on the Responder: Invoke PDU Create anew transaction
UnitData.ind on the Initiator: Ack PDU with the TIDve Send Abort PDU (INVALIDTID)
flag set, no matching outstanding transaction

UnitData.ind: Ack PDU, Nack PDU, Result PDU or Ignore

Abort PDU, no matching outstanding transaction

I1legal PDU type or erroneous header structure Referto entry for "RcvErrorPdu’ in state tables
Buffer overflow or out-of-memory errors Send Abort PDU (CAPTEMPEXCEED)

UnitData.ind on the Responder: Invoke PDU requesting | Send Abort PDU (NOTIMPLEMENTEDCL2)
Class 2 transaction and Class 2 is not supported
UnitData.ind on the Responder: Invoke PDU using SAR | Send Abort PDU (NOTIMPLEMENTEDSAR)
and SAR is not supported
UnitData.ind on the Responder: Invoke PDU requesting | Send Abort PDU (NOTIMPLEMENTEDUACK)
User acknowledgement and User acknowledgement is

not supported

UnitData.ind on the Responder: Invoke PDU with Send Abort PDU (WTPVERSIONONE)
Version != 0x00

UnitData.ind on the Responder: Invoke PDU when no Ignore.

more transaction requests can be accepted

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 51 (73)

9.3. Actions
9.3.1. Timers

The following timer actions can be used in the state tables:

Start timer, <value>

Starts the timer with the specified interval value. If the timer isalready running, it is re-started with the new
value.

Stop timer
Stop the timer without generating an event.

9.3.2. Counters

The following counter actions can be used in the state tables:

Reset counter
Set the counter to zero.

Increment counter
Increment the counter with one.

9.3.3. Messages
The following message actions can be used in the state tables:

Queue (TimeT)
Queuing aPDU causesit to be queued for eventual delivery. The message MUST NOT be queued for longer
timethan T time units and is queued only until the already started timer T expires. The timer is not restarted

Send
Sending aPDU causes it and any queued PDUsto be sent immediately.

The queuing mechanism is used to concatenate messages from different transactions. Thiscan be seenasa
concatenation layer that operates below the transaction state machine. The realisation of the concatenation layer is
implementation dependent and not specified.

9.4. Timers, Counters and Variable
9.4.1. Timers

Thefollowing timers are used by WTP:

Table 38 WTP Timers
Timer Description

Transaction timer Each transaction has atimer associated with it. The timer is used for both
theretry interval, acknowledgement interval and wait timeout interval.

A timer can be started with different timer val ues depending on the type of transaction and the current state of the
transaction. Timer values are grouped according to their purpose. Thisis shown in the following table.

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224\WTP-20010710-a, Version 10-Jul-2001

Page 52 (73)

Table 39 WTP Timer Intervals

Timer interval (name)

Description

Acknowledgement interval (A)

acknowl|edgement.

This sets abound for the amount of time to wait before sending an

Retry interval (R

)

This sets abound for the amount of time to wait before re-transmitting a PDU.

Wait timeout interval (W)

about atransaction is released.
Only Class 2 Initiator and Class 1 Responder

This sets abound for the amount of time to wait before state information

The Retry interval MAY be implemented as an array with the re-transmission counter as an index, RIRCR]. An
exponential back off algorithm can be implemented by populating R[] with values that are increasing successive powers

of 2.

The value of atimer interval depends on the following parameters:;
The characteristics of the bearer network
The transaction class

The state of the transaction (which message is being re-tried or acknowledged)

Timer interval values for different bearer networks can be found in Appendix A.

9.4.2. Counters

The following counters are used by the WTP:

Table 40 WTP Counters

Counter (name)

Description

Re-transmission Counter (RCR)

This set abound for the maximum number of re-transmissions
of any PDU. The max valueis defined asRCR_MAX.

Acknowledgment Expiration Counter (AEC)

This setsabound for the maximum number of timesthe
transaction timer, initialised with the acknowledgement interval,
isalowed to expire and be re-started before the transaction is
aborted. The max value is defined asAEC_MAX.

9.4.3. Variables

Thefollowing variables are used by WTP at the Initiator and Responder.

Table 41 WTP Variables

WTP variables
Variables Type Description
GenTID Uintl6 | TheTID to use for the next transaction. Incremented by one | Global
for every initiated transaction. Only Initiator
SendTID Uintl6 | TheTID valueto sendinall PDUsin thistransaction One per transaction
RecvTID Uintl6 | The TID values expected to receivein every PDU in this One per transaction
transaction.
RcvTID = SendTID XOR 0x8000
LastTID Uintl6 | Thelast received TID from acertain remote host One per remote host
Only Responder
HoldOn BOOL | Trueif HoldOn acknowledgement has been received One per class 2
transaction
Uack BOOL | Trueif User Acknowledgement has been requested for this | One per transaction
transaction

O 2001, Wireless Application Protocol Forum, Ltd.

All rights reserved

WAP-224\WTP-20010710-a, Version 10-Jul-2001

Page 53 (73)

The Uint16 typeisan unsigned 16-bit integer. The BOOL type is a Boolean value that only can take the value of True

or False.

9.5. WTP Initiator

WTP Initiator NUL L
Event Condition Action Next State
TRInvokereq Class==2|1 SendTID = GenTID RESULT WAIT
Send Invoke PDU
Reset RCR
Start timer, R[RCR]
Uack = Fdse
Class==2]|1 SendTID = GenTID
UserAck Send Invoke PDU
Reset RCR
Starttimer, R [RCR]
Uack = True
Class == SendTID = GenTID NULL
Send Invoke PDU
WTP Inititator RESULT WAIT
Event Condition Action Next State
TRAbort.req Abort transaction NULL
Send Abort PDU (USER)
RcvAck Class== Stop timer RESULT WAIT
HoldOn == Fase Generate T-TRInvoke.cnf
HoldOn = True
Class== Ignore RESULT WAIT
HoldOn == True
Class==1 Stop timer NULL
Generate T-TRInvoke.cnf
TIDve Send Ack(TIDok) RESULT WAIT
Class==2]|1 Increment RCR
RCR < MAX_RCR Start timer, R[RCR]
TIDve Ignore RESULT WAIT
Class==2]|1
RcvAbort Abort transaction NULL
Generate TRAbort.ind
RcvErrorPDU Abort Transaction NULL
Send Abort PDU (PROTOERR)
Generate TRAbort.ind
TimerTO_R RCR < MAX_RCR Increment RCR RESULT WAIT
Start timer R [RCR]
Send Invoke PDU
RCR < MAX_RCR, Increment RCR RESULT WAIT
Ack(TIDok) already sent Start timer R [RCR]
Send Ack(TIDok)
RCR == Abort transaction NULL
MAX_RCR Generate TRAbort.ind
RevResult Class==2 Stop timer RESULT RESPWAIT
HoldOn == True Generate TRResult.ind
Starttimer, A
Class==2 Stop timer
HoldOn == False Generate TRInvoke.cnf
Generate TRResult.ind
Starttimer, A

O 2001, Wireless Application Protocol Forum, Ltd.

All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 54 (73)
WTP Inititator RESULT RESP WAIT (class 2 only)
Event Condition Action Next State
TRResult.res Queue(A) Ack PDU WAIT TIMEOUT
Start timer, W
ExitInfo Queue(A) Ack PDU with Info TPI
Start timer, W
RevAbort Abort transaction NULL
Generate T-TRAbort.ind
TRAbort.req Abort transaction
Send Abort PDU (USER)
RcvErrorPDU Abort Transaction NULL
Send Abort PDU (PROTOERR)
Generate TRAbort.ind
RevResult Ignore RESULT RESPWAIT
TimerTO_A AEC <AEC_MAX Increment AEC RESULT RESPWAIT
Start timer, A
AEC==AEC_MAX Abort transaction NULL
Send Abort PDU (NORESPONSE)
Uack == False Queue(A) Ack PDU WAIT TIMEOUT
Start timer, W
WTP Inititator WAIT TIMEOUT (class 2 only)
Event Condition Action Next State
RevResult RID=0 Ignore WAIT TIMEOUT
RevResult RID=1 Send Ack PDU WAIT TIMEOUT
RevResult RID=1, Exitinfo Send Ack PDU withinfo TPI WAITTIMEOUT
RcvAbort Abort transaction NULL
Generate T-TRAbort.ind
RcvErrorPDU Abort Transaction NULL
Send Abort PDU (PROTOERR)
Generate TRAbort.ind
TimeTO_ W Clear Transaction NULL
TRAbort.req Abort transaction NULL
Send Abort PDU (USER)

O 2001, Wireless Application Protocol Forum, Ltd.

All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 55 (73)

9.6. WTP Responder

WTP Responder LISTEN
Event Condition Action Next State
Revinvoke Class==2]1 Generate TRInvoke.ind INVOKE RESPWAIT
Vdid TID Start timer, A
U/Pflag Uack = True
Class==2|1 Generate TRInvoke.ind
Vaid TID Starttimer, A
Uack = Fdse
Class== Generate TRInvoke.ind LISTEN
Class==2 |1 Send Ack(TIDve) TIDOK WAIT
InvalidTID
RcvErrorPDU Send Abort PDU (PROTOERR) LISTEN
WTP Responder TIDOK WAIT
Event Condition Action Next State
RcvAck Class==2]|1 Generate TRInvoke.ind INVOKE RESPWAIT
TIDok Starttimer, A
RcvErrorPDU Send Abort PDU (PROTOERR) LISTEN
Abort Transaction
RcvAbort Abort transaction LISTEN
Revinvoke RID=0 Ignore TIDOK WAIT
RID=1 Send Ack(TIDve) TIDOK WAIT
WTP Responder INVOKE RESP WAIT
Event Condition Action Next State
TRInvokeres Class == Queue(A) Ack PDU with InfoTPI WAIT TIMEOUT
Exitlnfo Start timer, W
Class==1 Queue(A) Ack PDU
Start timer, W
Class== Starttimer, A RESULT WAIT
T RResult.req Reset RCR RESULT RESPWAIT
Start timer R[RCR]
Send Result PDU
TRAbort.req Abort transaction LISTEN
Send Abort PDU (USER)
RcvAbort Generate TRAbort.ind LISTEN
Abort transaction
Revinvoke Ignore INVOKE RESPWAIT
RcvErrorPDU Abort Transaction LISTEN
Send Abort PDU (PROTOERR)
Generate TRAbort.ind
TimerTO_A AEC <AEC_MAX Increment AEC INVOKE RESPWAIT
Start timer, A
AEC == AEC MAX Abort transaction LISTEN
Send Abort PDU (NORESPONSE)
Generate TRAbort.ind
Class==1 Queue(A) Ack PDU WAIT TIMEOUT
Uack == False Start timer, W
Class== Send Ack PDU RESULT WAIT
Uack == False

O 2001, Wireless Application Protocol Forum, Ltd.

All rights reserved

WAP-224\WTP-20010710-a, Version 10-Jul-2001

Page 56 (73)

WTP Responder RESULT WAIT (class 2 only)

Event Condition Action Next State
T RResult.reg Reset RCR RESULT RESPWAIT
Start timer, R[RCR]
Send Result PDU
Revlnvoke RID=0 Ignore RESULT WAIT
RID=1 Ignore RESULT WAIT
RID=1, Ack PDU aready sent | Resend Ack PDU RESULT WAIT
RcvErrorPDU Abort Transaction LISTEN
Send Abort PDU (PROTOERR)
Generate TRAbort.ind
TRAbort.req Abort transaction LISTEN
Send Abort PDU (USER)
RcvAbort Generate T-TRAbort.ind LISTEN
Abort transaction
TimerTO_A Send Ack PDU RESULT WAIT
WTP Responder RESULT RESP WAIT (class 2 only)
Event Condition Action Next State
T RAbort.req Abort transaction LISTEN
Send Abort PDU (USER)
RcvAbort Generate T-TRAbort.ind LISTEN
Abort transaction
RevAck TIDok Ignore RESULT RESPWAIT
RcvAck GenerateT R Result.cnf LISTEN
RcvErrorPDU Abort Transaction LISTEN
Send Abort PDU (PROTOERR)
Generate TRAbort.ind
TimerTO_R RCR < MAX_RCR Increment RCR RESULT RESPWAIT
Send Result PDU
Start timer, R [RCR]
RCR == MAX_RCR Generate T-TRAbort.ind LISTEN
Abort transact ion
WTP Responder WAIT TIMEOUT (class1 only)
Event Condition Action Next State
Revlnvoke RID=0 Ignore WAIT TIMEOUT
Revinvoke RID=1 Send Ack PDU WAIT TIMEOUT
Rcvinvoke RID=1, ExitInfo Send Ack PDU with Info TPI WAIT TIMEOUT
RcvAck TIDok, RID=1 Send Ack PDU WAIT TIMEOUT
RcvAck TIDok, RID=1, ExitInfo Send Ack PDU with Info TPI WAIT TIMEOUT
RcvErrorPDU Abort Transaction LISTEN
Send Abort PDU (PROTOERR)
Generate TRAbort.ind
RcvAbort Abort transaction LISTEN
Generate T-TRAbort.ind
TimerTO_W Clear Transaction LISTEN
TRAbort.req Abort transaction LISTEN
Send Abort PDU (USER)

O 2001, Wireless Application Protocol Forum, Ltd.

All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 57 (73)

10. Examples of Protocol Operation

10.1. Introduction

The examplesin this chapters attempt to illustrate and clarify how the protocol operates. For the sake of brevity, only
header fields relevant for the specific example are included in the diagrams. Each flag in the Flag field of the PDU
header isindicated by one character. The below table shows the different characters that can appear in the examples.

Table 42 Abbreviations Used in the Examples

Abbreviation [Meaning

N TIDnew flag is set

V TIDveflag is set

@) TIDok flag is set

U U/Pflag is set

G GTRflagis set

T TTRflagisset

TG Both TTR and GTR flags are set to indicate that SAR is not supported
RID = X Re-transmission Indicator is X

TID=N Transaction |dentifier isN

c0 The TCL field indicates class 0 transaction
cl The TCL field indicates class 1 transaction
c2 The TCL field indicates class 2 transaction

Parameters like Abort reason and Error codes are written in clear text, and so are TPIs. For Transaction Identifiers N* is
N with the high order bit set; if N = 0x0000 then N* = 0x8000.

10.2. Class 0 Transaction

10.2.1. Basic Transaction

| nitiator Responder

. Invoke(TID=N, TG, 0 ...)
>

A A

Figure 3 Basic Class 0 Transaction

1. Thelnitiator initiates a class O transaction (c0).

10.3. Class 1 Transaction

10.3.1. Basic Transaction

Initiator Responder
1 Invoke(TID=N, TG, cl ...) R
2 Ack(TID=N*)
<
A A

Figure 4 Basic Class 1 Transaction

1. Thelnitiator initiates a class 1 transaction (c1).
2. The Responder acknowledges the received invoke message.

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224\WTP-20010710-a, Version 10-Jul-2001

Page 58 (73)

10.4. Class 2 Transaction

10.4.1. Basic Transaction

I nitiator

1

Invoke(TID=N, TG, 2, ..

) R

Result (TID=N*, TG, ...)

2 |«

Ack(TID=N)

3

A

Figure 5 Basic Class 2 Transaction

1. Thelnitiator initiates a class 2 transaction (c2).

2. The Responder waits for the invoke message to be processed and implicitly acknowledges the invoke message with

the Result.

3. Thelnitiator acknowledges the received result message.

10.4.2. Transaction with “Hold on” Acknowledgement

Initiator

1

2

3

4

Invoke(TID=N, TG, c2,

Responder

)

Ack(TID=N*)

Result(TID=N*, TG, ...)

Ack(TID=N)

4

4

Figure 6 Class 2 Transaction with "hold on" acknowledgement.

1. Thelnitiator initiates a class 2 transaction (c2).

2. The Responder waits for the invoke message to be processed. The acknowledgement timer at the Responder
expires and an "hold-on" acknowledgement is sent to prevent the I nitiator from re-transmitting the invoke message.

3. Theresult issent to the Initiator

4. TheInitiator acknowledges the received result message.

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224\WTP-20010710-a, Version 10-Jul-2001

Page 59 (73)

10.5. Transaction Identifier Verification

10.5.1. Verification Succeeds

[nitiator

1

Invoke(TID=N, TG, c2...)

Ac(TID=N*,V, ...)

2

3

Ack(TID=N.O)

Result(TID=N*, TG)

Ack(TID=N)

4

Figure 7 Verification Succeeds

v

Responder

The Responder receives a new invoke message and the TID test fails, this causes the Verification procedure to be
invoked. The Responder returns an acknowledgement to the Initiator for a verification of whether it has an outstanding
transaction with this TID. In this example, the Initiator has an outstanding transaction with the TID and acknowledges

the verification.

10.5.2. Verification Fails

I nitiator

Transaction number N isterminated

Invoke(TID=N, TG, 2, ...)

Ack(TID=N*, V)

Abort(TID=N, INVALIDTID)

ER 4

vy

Figure 8 Verification Fails

Responder

The invoke message with TID=N is duplicated in the network, or has been delayed. When it arrives, transaction N has
already been terminated and the Responder asks the Initiator to verify the transaction. The Initiator aborts the

transaction by sending an Abort.

O 2001, Wireless Application Protocol Forum, Ltd.

All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 60 (73)

10.5.3. Transaction with Out-of-Order Invoke

Aninvoke messageis delayed in the network. When the message finally arrives to the Responder, the Responder has
cached a higher TID value. The Responder initiates a Verification in order to check whether the Initiator still has an
invoke message with TID=N outstanding.

Invoke(TID=N, TG, c2....) N

1

Invoke(TID=N+3, TG, 2, ...)

2

Result(TID=N+3*, TG, ...)

3
Ack(TID=N+3)

Ack(TID=N*, V)

Ack(TID=N,0)

Result(TID=N*, TG, ...)

Ack(TID=N)

Figure 9 Delayed Invoke Message

Note that the Responder must not replace its cached TID value (N+3) with the lower TID value (N). If the cached TID
ismoved backwards, old duplicates with higher TID values will erroneously get accepted.

10.6. Segmentation and Re-assembly

Thisexampleillustrates a Class 2 transaction using segmentation. The Invoke is segmented and sent in five packetsin
two packet groups.

1 Invoke(TID=N, 2, ...) N

Segminvoke(TID=N.PSN=1....)

2

Segminvoke(TID=N, G, PSN= 2,..)

3 »
o e Ack(TID=N*, PSNR= 2)

5 Segminvoke(TID=N, PSN=3,..) ,
5 Segminvoke(TID=N, T, PSN=4,..) ,
7 le Result (TID=N*, T,...)

s Ack(TID=N)

vy A
Figure 10 Segmentation of invoke message

The Initiator starts off by sending the first three packets in one batch. The last packet hasthe GTR flag to trigger an

acknowledgement from the Responder. Once the acknowledgement is received by the Initiator the last two packets of

the message are sent. The final message hasthe TTR flag set. After some time, the Responder sends back the result to

the Initiator. The Initiator acknowledges the result and the transaction is finished.

Note that the PSN TPI is used for the Packet Sequence Number in the Ack PDU.

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 61 (73)

10.6.1. Selective Re-transmission

Thisexampleillustrates a Class 1 transaction using segmentation. One of the packetsin the only packet group islost
and the Responder hasto request the packet to be re-transmitted. In the case of SAR, if the TTR flag is set in the last
segment, then the GTR flag must be ignored.

I nitiator Responder

Invoke(TID=N, c1, ...)

1

Segminvoke(TID=N, PSN=1, RID=0,...)
2 » X

Segminvoke(TID=N, T, PSN=2, ..) N
3

Nack(TID=N*, “Missing packet”, PSNR=1)
4 |

5 Segminvoke(TID=N, PSN=1, RID=1.)

6 |o Ack(TID=N*, PSNR=2)
v

Figure 11 Selective re-transmission

The Initiator starts off by sending the first three packets. The second packet islost. When the Responder receives the
packet with the GTR flag set, it attempts to re-assembl e the packet group but fails due to the one missing packet. The
Responder returns a Nack to request the missing packet. The Initiator re-transmit the missing packet. The re-transmitted
packet hasthe RID flag set. Once the missing packet has been received by the Responder the message is acknowledged
and the transaction is finished.

Note that the PSN TPI is used for the Packet Sequence Number in the Ack PDU.

10.6.2. Re-transmission of the GTR/TTR Packet

Thisexampleillustrates a class 1 transaction using segmentation. The last packet is and the initiator hasto re-transmit
it.

lni(iaﬂor Eeponde

Invoke(TID=N, cl, ...

Segminvoke TID=N, PSN=1,..)

Segminvokg TID=N, T, PSN=2RID=0. .) _ ¢

[timeout] | _Segminvoke TID=N, T, PSN=2, RID=1...)
4

5 |« Ack(TID=N*, PSNR=2)

Figure12 GTR/TTR packet retransmission

Theinitiator starts off by sending three packets. The third packet islost. Since the responder does not receive the packet
with the GTR or TTR flag set, it can’t determine whether the whole packet group has been transmitted or not. After a
certain time without receiving any acknowledgement for this group, the initiator re-transmits the last packet of the
group. There-transmitted packet has the RID flag set. Once the responder has received the missing packet, the message
is acknowledged and the transaction is finished.

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 62 (73)

10.6.3. SAR and TID Verification

If TID verification is necessary when receiving a segmented invoke message, it has to take place when the Responder
successfully received the first packet group. TID verification acknowledges the successful transmission of the first
packet group.

Initiator Eeq,mde,
| =N, c1,

Ack (TID=N*, Tve, PSNR=2)

Ack(TID=N*, TOK)

Figure13 SAR and TID Verification, no missing pack ets

If some packets were lost during the transmission, first a negative acknowledgement (Nack) MUST be sent. TID
verification takes place only after the successful transmission of the whole group.

[mllamr Responder
o,

Seqminvoke(TID=N, PSN-L1...) X

Segminvoke(TID=N, T, PSN=2,RID=0, .)

Nack (TID=N*, PSNR=1)

Segmlnvoke(TID=N, PSN=1, RID=1,...)

ACk(TID=N*, TVe PSNR=2....)

Ack(TID=N, ToR

Segminvoke(TID=N, PS\=3,...)

Figure14 SAR and TID Verification, some packets wer e lost

If the TID isinvalid (e.g. Responder received a network duplicate of a group trailer packet), the Responder will send a
negative acknowledgement (Figure 14). The initiator M UST ignore Nack PDUs with invalid TID. The Responder
MUST NOT retransmit the Nack PDU. After areasonable amount of time, the Responder SHOULD remove all data
related to the non-existing transaction.

10.6.4. Flow Control Using Option TPI (Maximum Group) Conjointly with SAR

Example situation

Initiator can receive up to 200 bytes

Responder can receive up to 100 bytes

Initiator can send up to 300 bytesin agroup

The size of each packet in agroup is 150 bytes
Under these conditions, the initiator would like to send 700 bytes of user datain an Invoke PDU. However the
maximum value the initiator can send in agroup is 300 bytes, so it sends only two packetsin agroup containing 300

bytes of data. After the responder receives the two packets, it can send an Ack PDU with the option TPI(Maximum
Group) whose maximum group valueis 100 bytes. If the initiator receives an Ack PDU with option TPl (Maximum

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224\WTP-20010710-a, Version 10-Jul-2001

Page 63 (73)

Group), it must re-assign group size to 100 bytes and sends Invoke PDU whose size if 100 bytes. If the responder sends
and Ack PDU with option TPI (Maximum Group) whose value is 300 bytes, the initiator can send 3 packetsin a group.

In thisway, user datais segmented using option TPI (Maximum Group) and their flow can be controlled by option TPI

(Maximum Group).

Initi

ator

Responder

Upper layer call TR-Invoke.req
with 700 bytes of data

Invoke(TID=N, C2,..)+OptionTPI(MG=200)+data(length = 143)

Because initial group size is 300

>

Segminvoke(TID=N, G, PSN=1)+data(length = 146)
Eal

GTRis set

Initiator assign group size to 100

Initiator assign group size to 400

Ack(TID=N*, PSNR=1)+OptionTPI(MG=100)

<
<

Segminvoke(TID=N, G, PSN=2)+data(length = 96)

3

>

Ack(TID=N*, PSNR=2)+Option TPI(MG=400)

i

Responder store initiator's MG
in transaction information

Management Entity assign

& 400 bytes to MG

<

Segminvoke(TID=N, PSN=3)+data(length = 146)

»
Segminvoke(TID=N, PSN=4)+data(length = 146)

3

>

Segminvoke(TID=N, T, PSN=5)+data(length = 23)

>

>

Result(TID=N*,)+OptionTPI(MG=400)+data(length = 143)
-

<

SengﬁsuIt(TlD=N*, G, PSN=1)+data(length = 46)

Ack(TID=N, PSNR=1)

3>

>

SegmResult(TID=N*, T, PSN=2)+data(length = 111)

-

-

Ack(TID=N)

4

Upper layer call TR-Result.req
with user data 300 bytes

Because initiator’s
max group size is 200,
GTRis set

Figure 15 Option TPI(Maximum Group) usage

O 2001, Wireless Application Protocol Forum, Ltd.

All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 64 (73)

10.6.5. Basic Extended SAR

The exampleillustrates a class 2 transaction using extended SAR for the transmission of alarge result. The example
shows the beginning of the transaction. At the beginning of the transaction the negotiation of the extended SAR takes
place by using the NumGroups Option TPI. Each packet group contains 3 packets. Packet 4 getslost so the receiver
sends a Nack containing this missing packet and the sender retransmitsit.

Sender Receiver

I I

Invoke(NumGroups=2)

oUps=2)

Result(PSN=0)

Segmented Repult(PSN=1)

Segmented Reslilt(PSN=2, GTR)

Segmented ResulifPSN=3)

Ack PDU(P

esult(PSN=4)

Result(PSN=5, GTR)

Segmentefl Result(PSN=6)

Nack (list=4, H

Segmented Result(PSN=7)

Segmented Resuf(PSN=4)

Retransmission due to Nack

Segmented Redult(PSN=8, GTR)

AC

| (I ——
Figure 16 Sample Flow in a Transaction using Extended SAR

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 65 (73)

10.6.6. Example of Re-transmission Hold-off

For example, assume a sender transmits 2 groups of 2 packets each, numbered 1, 2, 3, and 4 (packets 2 and 4 will have
GTR set). If packet 1islost, the receiver will first see packet 2, with GTR set, and will start a Nack delay timer (in case
packet 1 shows up out of order). When the Nack delay timer expires, the receiver will send a Nack for packet 1 (note
that if packets 3 and/or 4 arrive prior to Nack delay timer expiration, the Nack sent in response to packet 2 should not
include Nack information about packets 3 or 4). When the sender receives this Nack, it will immediately retransmit
packet 1, and mark packet 1 as being in retransmission hold-off with atimestamp. When packets 3 and 4 arrive at the
receiver, since the entire second group has been received and no reordering needs to be accounted for, it will
immediately send a Nack for packet 1 again (an Ack would only be sent if there were no missing packets at all). When
the sender receives this Nack, it will ignore the packet 1 information as long as packet 1 is still in retransmission hold-
off. When packet 1 arrives at the receiver, it will send an Ack for packet 4.

— X

G
O

/

Start NACK Timer

i/

NACK Timer Expires
CK 1, PSN=2

NA
#1 enters retry hold-off
CK 1, PSN=4
#1 still in retry hold-off LRy

ACK PSNF4

/

|

Figure 17 Elimination of Retransmission using Hold-off Timer

Notethat if the retransmission hold-off period were too short, or not implemented, packet 1 would have been
retransmitted twice, once more than necessary. Note also that if packets 3 and 4 had been delivered out of order, and the
first Nack sent included information about packets 3 and 4, packet 3 would have been retransmitted unnecessarily as
well. Thisiswhy aNack generated for agroup of packets should only include information about packets missing from
that and previous groups.

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 66 (73)

10.6.7. Another Example of Re-transmission Hold-off

The following example demonstrates how the hold off period worksin a class 2 transaction when the initiator isthe
sender.

Sender Receiver
Invoke PDU, GTR
(PSN=0)

SSI PDU
PSN=1

SSI PDU
PSN=2, GTR

SSIPDU
PSN=3

SSIPDU
PSN=4, GTR

Hold-off started SSIPDU
Lvd PSN=1
= Ir
Nifg&i Note that PSN of 1
|:RTT:| _ I~ is included here as well
Hold-off startpd SSI PD Nack 3 We received packet 1
x =3 PSN=4 v
i but packet 3 is still
missing
This Nack falls into the
hold-off period so it is l—— ck 4
ignored.
[RTT]

Figure 18 Filtering of Nacks during Hold-off Period

Packet 1 and 3 are lost. Due to the first Nack packet 1 is started to be retransmitted. At this point the hold-off period for
approximately one RTT (see implementation above) is started. The Nack that lists packets 1 and 3 falls into the hold-off
period of packet 1 so only packet 3 is retransmitted and thus a hold-off period for packet 3 is started. The last Nack falls
into the hold-off period of packet 3 so no retransmission occurs due to that Nack. If the second Nack listing 1 and 3
had been lost the last Nack would have been very useful because it would have carried the information that packet 3is
missing.

Note that hold-off periods are started only for retransmitted packets. The first Nack for a packet must not be ignored
by the sender.

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 67 (73)

Appendix A. Default Timer and Counter Values (Normative)

Thetimersareinitial estimates and have not yet been verified.
Thetimer valuesin the tables below are expressed in seconds. The counters are expressed in times an event happens.

GSM SMS

The maximum round-trip time is assumed to be 40 seconds (while a median round-trip timeis about 10 seconds), and
the timer values are thus suggested to be:

Timer interval Type | Without User Ack. With User Ack.

Base Acknow. interval (A) B_A 10 10
- Short SA 0 5
- Long L_A 20 20
Base Retry interval (R) B R 60 60
- Short SR 35 40
- Long L_R 70 70
- Group G R 45 45
Wait timeout interval (W) W 300 300
Counter name Valuefor stack acks | Valuefor user acks
Max Retransmissions 4 4
Max Ack timer Expiration 4 4

GSM USSD

The maximum round-trip time is assumed to be 5 seconds, and the timer values are thus suggested to be:

Timer interval Type | Without User Ack. With User Ack.

Base Acknow. Interval (A) B_A 10 10
- Short SA 0 5
- Long LA 10 10
Base Retry Interval; B R 20 20
- Short SR 14 14
- Long L_R 20 20
- Group G R 10 10
Wait timeout interval (W) W 60 60
Counter name Valuefor stack acks | Valuefor user acks
Max Retransmissions 4 4
Max Ack timer Expiration 4 4

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 68 (73)

Bearers supporting | P (Circuit switched, CDPD...)

The maximum round-trip timeis assumed to be 3 seconds, and the timer values are thus suggested to be:

Timer interval Type | Without User Ack. With User Ack.

Base Acknow. interval (A) B_A 2 2
- Short SA 0 1
- Long LA 4 4
Base Retry interval (R) B R 5 5
- Short SR 3 4
- Long LR 7 7
- Group G R 3 3
Wait timeout interval (W) W 40 40
Counter name Valuefor stack acks | Valuefor user acks
Max Retransmissions 8 8
Max Ack timer Expiration 6 6

Timer Usage

There are anumber of timer interval with similar behaviour, but different values. These timers are defined to enable an

optimal use of the available bandwidth. Chapter 10 refers to the abstract timer intervals A and R. These are mapped to
thereal interval values as defined in this section.

M essagetype Class2 | Class1
Invoke message B R SR
Hold on acknowledgement B_A -
Result message LR -

Last acknowledgement L_A S A

L ast packet of packet group G R G R

For Class 0 no timer values are applicable.

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 69 (73)

Appendix B. Implementation Notes (Informative)

The following implementation notes are provided to identify areas where implementation choices may impact the
performance and effectiveness of the WTP protocol. These notes provide guidance to implementers of the protocol.

B.1. Extended Timers for Large Messages

The Wireless Transaction Protocol is using Retransmission timers both to ensure reliable delivery of datato the receiver
aswell asto create a predictable behaviour in alossy environment. The default timers are defined for relatively small
transmissions. The protocol can manage also large data amounts, but then the timer values need to be adjusted. This
implementation note suggests a scheme for recal culation of the timer intervals.

When large messages are transmitted from sender to receiver the transmission time for the compl ete message (or group)
can become larger than the default value for the retransmission timer. The value thus has to be recalculated in order to
avoid unnecessary retransmissions.

The new timer value to be used with both large datagrams as well as segmented transactions can be (implementation
dependent) cal culated according to the algorithm below:

n=T+n*M

where

rt — recal culated retransmission timer value

T — Original timer value

n — estimated number of fragments (estimate made by protocol layer implementation)

M — bearer dependent value of ¥median roundtrip (estimate defined below)
The same algorithm is used both for large datagrams that will be fragmented at alower protocol layer, such asin the
WDP protocol, aswell as for segmented messages where the WTP layer divides a group/message into multiple
segments. The factor n is estimated in the former case and calculated in the latter case.

The following values for M can be used

Bearer Median ¥roundtrip in seconds
SMS 5
USSD 3
IP 0.2

The value for IP represents a unit of 1 Kbyte. However, the timer value can be rounded to the nearest smaller integer.

B.2. Data Handling with Extended SAR

The WTP Invoke and Result primitives have a Frame Boundary parameter in order to provide applications with the
ability to define their own data framing. This means that a single application data ‘frame’ may span across multiple
primitives. Thus some WTP implementations may accept partial data frames from the user for transmission; similarly a
WTP receiver may choose to buffer datatill acomplete frameisreceived or may passit up to the user in smaller pieces.

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 70 (73)

B.3. Nack Generation and Interpretation

When multiple groups of packets are outstanding, more than one NACK may be received containing similar
information. This could cause the sender to unnecessarily retransmit a packet. The retransmission hold-off period and
NACK delay timer features are intended to mitigate this possibility.

B.3.1. Recommendations for Nack Generation

Whenever the receiver must generate a Nack PDU, a Nack delay timer should be started. The value of this timer should
be either ¥of the median round trip time, or twice the estimated round trip time mean deviation (RTTMDEV). A Nack
packet should be generated for a group of packets when this Nack delay timer expires, or when the GTR packet for a
following group of packets arrives. Thiswill allow an implementation to use asingle Nack delay timer, but requires the
group size parameter to be large enough to account for the expected reordering. Note that if a Nack is sent before
expiration of the Nack delay timer (due to reception of a GTR packet for afollowing group of packets), the Nack should
not include information about packets that arrived later than the timer has been started unless there are no missing
packetsin the following group.

B.3.2. Recommendations for Nack Interpretation

Round trip times should be measured and used to drive around trip time estimate (RTT_E), and round trip time mean
deviation (RTT_MDEV). Each packet buffered by a sender for possible retransmission should have a retransmission
hold-off timestamp (RHO_STAMP) associated with it.

When a Nack packet arrives, for each packet not acknowledged by the Nack the following procedure should be
followed:

1. If the packet has not been retransmitted once aready (i.e., RID clear), it should be retransmitted immediately with
RID set, and the current time of day plus RTT_E plus 2 times RTT_MDEYV should be recorded in the packet’s
retransmission hold-off timestamp, RHO_STAMP.

2. If the packet has been retransmitted once already (i.e., RID set), and the current time of day is earlier than the
packet’'sRHO_STAMP, no action should be taken for this packet.

3. If the packet has been retransmitted once already (i.e., RID set), and the current time of day islater than the
packet’s RHO_STAMP, it should be retransmitted immediately, and the current time of day plus RTTE plus 2
times RTTMDEYV should be recorded in the packet' sRHO_STAMP.

O 2001, Wireless Application Protocol Forum, Ltd.
All rights reserved

WAP-224-WTP-20010710-a, Version 10-Jul-2001 Page 71 (73)

Appendix C. Static Conformance Requirements (Normative)

The notation used in this appendix is specified in[CREQ].

Item Function Reference Status | Requirement

WTP-C-001 Transaction Class O Initiator 6.1.3 M WDP:MCF

WTP-C-002 Transaction Class 0 Responder 6.1.3 M WDP:MCF

WTP-C-003 Transaction Class 1 Initiator 6.2.4 M WTP-C-022 AND
WTP-C-015

WTP-C-004 Transaction Class 1 Responder 6.2.4 M WTP-C-022

WTP-C-005 Transaction Class 2 I nitiator 6.3.4 M WTP-C-022 AND
WTP-C-015

WTP-C-006 Transaction Class 2 Responder 6.34 o] WTP-C-022

WTP-C-007 User Acknowledgement 7.3 0]

WTP-C-008 Concatenation 41,75 (@) WDP:MCF

WTP-C-009 Separation 7.5 M WDP:MCF

WTP-C-010 Retransmission until Acknowledgement 7.2 0]

WTP-C-011 Transaction Abort 46,77,712 | O WDP.MCF

WTP-C-012 Error Handling 7.12 o] WTP-C-011

WTP-C-013 Information in Last Acknowledgement 7.4,7.10 @) WTP-C-018

WTP-C-014 Asynchronous Transactions 7.6 @]

WTP-C-015 Initiator response to TID Verification 7.15.2 0] WDP:MCF

WTP-C-016 Initiation of TID Verification by Responder 7152781 | O WDP:MCF

WTP-C-017 Error Transport Information Item 7.10,8.4.2 @]

WTP-C-018 Info Transport Information ltem 7.10, 8.4.3 O

WTP-C-019 Option Transport Information Item 7.10,8.4.4 0]

WTP-C-020 PSN Transport Information Item 7.10, 8.4.5 @]

WTP-C-021 Segmentation and Re-assembly with Selective | 7.14 o] WTP-C-020

Retransmission and Packet Groups

WTP-C-022 Reliable transaction 7 o] WDP:MCF AND
WTP-C-007 AND
WTP-C-010 AND
WTP-C-011 AND
WTP-C-012

WTP-C-023 Extended Segmentation and Re-assembly with | 7.15 0] WTP-C-020 AND

Selective Retransmission and Packet Groups WTP-C-019 AND

WTP-C-024 AND
WTP-C-025

WTP-C-024 Frame Boundary Transport Information Item | 7.15.2,84.7 | O

WTP-C-025 SDU Boundary Transport Information Item 7152,846 | O

WTP-C-026 Support sliding window with ESAR 7.153,7154 | O

O 2001, Wireless Application Protocol Forum, Ltd.

All rights reserved

WAP-224\WTP-20010710-a, Version 10-Jul-2001

Page 72 (73)

Item Function Reference Status | Requirement

WTP-S-001 Transaction Class O Initiator 6.1.3 M WDP:MSF

WTP-S-002 Transaction Class 0 Responder 6.1.3 M WDPMSF

WTP-S-003 Transaction Class 1 Initiator 6.2.4 M WTP-S-022 AND
WTP-S-015

WTP-S-004 Transaction Class 1 Responder 6.2.4 M WTP-S-022

WTP-S-005 Transaction Class 2 I nitiator 6.3.4 o] WTP-S-022 AND
WTP-S-015

WTP-S-006 Transaction Class 2 Responder 6.3.4 M WTP-S-022

WTP-S-007 User Acknowledgement 7.3 0]

WTP-S-008 Concatenation 41,75 0] WDP:MSF

WTP-S-009 Separation 7.5 M WDP:MSF

WTP-S-010 Retransmission until Acknowledgement 7.2 0]

WTP-S-011 Transaction Abort 46,77,712 | O WDP:MSF

WTP-S-012 Error Handling 7.12 o] WTP-S-011

WTP-S-013 Information in Last Acknowledgement 7.4,7.10 @) WTP-S-018

WTP-S-014 Asynchronous Transactions 7.6 o]

WTP-S-015 Initiator response to TID Verification 7.15.2 0] WDP:MSF

WTP-S-016 Initiation of TID Verification by Responder 7152781 | O WDP:MSF

WTP-S-017 Error Transport Information Item 7.10,8.4.2 o]

WTP-S-018 Info Transport Information ltem 7.10, 8.4.3 O

WTP-S-019 Option Transport Information Item 7.10,8.4.4 0]

WTP-S-020 PSN Transport Information ltem 7.10, 8.4.5 o]

WTP-S-021 Segmentation and Re-assembly with Selective | 7.14 o] WTP-S-020

Retransmission and Packet Groups

WTP-S-022 Reliable transaction 7 o] WDP:MSF AND
WTP-S-007 AND
WTP-S-010 AND
WTP-S-011 AND
WTP-S-012

WTP-S-023 Extended Segmentation and Re-assembly with | 7.15 0] WTP-S-020 AND

Selective Retransmission and Packet Groups WTP-S-019 AND

WTP-S-024 AND
WTP-S-025

WTP-S-024 Frame Boundary Transport Information Item | 7.15.2,8.4.7 | O

WTP-5-025 SDU Boundary Transport Information Item 7152,846 | O

WTP-S-026 Support sliding window with ESAR 7.153,7154 | O

O 2001, Wireless Application Protocol Forum, Ltd.

All rights reserved

WAP-224\WTP-20010710-a, Version 10-Jul-2001

Page 73 (73)

Appendix D. Change History

(Informative)

Typeof Change Date Section Description

WAP-201-WTP-20000219-a 19-Feb-2000 The used basdline specification

WAP-201_001-WTP-20001212-a 12-Dec-2000 10.6 Small correctionsto TID handling in responder state tables.

WAP-201_002-WTP-20001213-a 13-Dec-2000 2.1,4.6, AppA | New SCR table format.

Class0 08-Feb-2001 Mechanismsfor large data transfer.

WAP-224-WTP-20010208-p 08-Feb-2001 Published asproposed version

WAP-224_001-WTP-20010710-p 10-Jul-2001 21,7153, Update CREQ reference. Clarify meaning of window closing
7.15.4,8.4.4, and exponential back-off. Define default for Maximum Group

9.4.1, option. Permit use of long Option TPIs. Fix garbled sentence.

App A, App C | Expose diding window in SCR tables.

WAP-224-WTP-20010710-a 10-Jul-2001 Editorial roll-up of SIN into base specification.

O 2001, Wireless Application Protocol Forum, Ltd.

All rights reserved

