
 

 2001, Wireless Application Protocol Forum, Ltd. All Rights Reserved. Terms and conditions of us e are available from 
the WAP Forum  Web site (http://www.wapforum.org/what/copyright.htm ). 

Specification Information Note 
WAP-231_100-EFI-20011001-a 

Version 18-October-2001 

for 
 
 

Wireless Application Protocol 
WAP-231-EFI-20010511-a 

EFI Framework 
Version 11-May-2001 

 

 

A list of errata and updates to this document is available from the WAP Forum™ Web site, http://www.wapforum.org/, 
in the form of SIN documents, which are subject to revision or removal without notice. 



WAP-231_100-EFI-20011001-a, Version 18-October-2001 Page 2 (19)

 

   2001, Wireless Application Protocol Forum, Ltd.  
All rights reserved 

 

© 2001, Wireless Application Forum, Ltd. All rights reserved. 

Terms and conditions of use are available from the WAP Forum Web site at 
http://www.wapforum.org/what/copyright.htm. 

You may use this document or any part of the document for internal or educational purposes only, provided you do not 
modify, edit or take out of context the information in this document in any manner. You may not use this document in 
any other manner without the prior written permission of the WAP Forum™. The WAP Forum authorises you to copy 
this document, provided that you retain all copyright and other proprietary notices contained in the original materials on 
any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute 
an endorsement of the products or services offered by you. 
The WAP Forum™ assumes no responsibility for errors or omissions in this document. In no event shall the WAP 
Forum be liable for any special, indirect or consequential damages or any damages whatsoever arising out of or in 
connection with the use of this information. 

WAP Forum™ members have agreed to use reasonable endeavors to disclose in a timely manner to the WAP Forum the 
existence of all intellectual property rights (IPR's) essential to the present document. The members do not have an 
obligation to conduct IPR searches. This information is publicly available to members and non-members of the WAP 
Forum and may be found on the "WAP IPR Declarations" list at http://www.wapforum.org/what/ipr.htm. Essential IPR 
is available for license on the basis set out in the schedule to the WAP Forum Application Form. 

No representations or warranties (whether express or implied) are made by the WAP Forum™ or any WAP Forum 
member or its affiliates regarding any of the IPR's represented on this list, including but not limited to the accuracy, 
completeness, validity or relevance of the information or whether or not such rights are essential or non-essential. 

This document is available online in PDF format at http://www.wapforum.org/. 

Known problems associated with this document are published at http://www.wapforum.org/. 

Comments regarding this document can be submitted to the WAP Forum™ in the manner published at 
http://www.wapforum.org/. 



WAP-231_100-EFI-20011001-a, Version 18-October-2001 Page 3 (19)

 

   2001, Wireless Application Protocol Forum, Ltd.  
All rights reserved 

 

Contents 
1. SCOPE........................................................................................................................................................................................... 4 
2. NOTATION ................................................................................................................................................................................. 4 
3. FIX SCR TABLE........................................................................................................................................................................ 5 

3.1 CHANGE CLASSIFICATION ....................................................................................................................................................5 
3.2 CHANGE SUMMARY...............................................................................................................................................................5 
3.3 CHANGE DESCRIPTION..........................................................................................................................................................5 

4. MAKE WML API A GENERIC MARKUP API....................................................................................................... 1015 
4.1 CHANGE CLASSIFICATION .............................................................................................................................................1015 
4.2 CHANGE SUMMARY........................................................................................................................................................1015 
4.3 CHANGE DESCRIPTION...................................................................................................................................................1015 
 

 



WAP-231_100-EFI-20011001-a, Version 18-October-2001 Page 4 (19)

 

   2001, Wireless Application Protocol Forum, Ltd.  
All rights reserved 

 

1. Scope 
This document provides changes and corrections to the following document files: 

- WAP-231-EFI-20010511-a 

It includes changes from the following change requests: 

- CR-WAP-231-EFI-MOT-20010928-fixSCRs  

- CR-WAP-231-EFI-MOT-20010928-WMLAPI 

2. Notation 
In the subsections describing the changes new text is underlined. Removed text has strikethrough marks. The presented 
text is copied from the specification. Text that is not presented is not affected at all. The change descriptions may also 
include editor’s notes similar to the one below. The notes are not part of the actual changes and must not be included in 
the changed text. 

Editor's note: Framed notes like these only clarify where and how the changes shall be applied.  

 



WAP-231_100-EFI-20011001-a, Version 18-October-2001 Page 5 (19)

 

   2001, Wireless Application Protocol Forum, Ltd.  
All rights reserved 

 

3. Fix SCR Table 

3.1 Change Classification 
Class 3  – Clerical Corrections 

3.2 Change Summary 
Fix SCR Table in the EFI Framework specification in response to the email “WAP 2.0 SCR review comments” sent 
Wednesday, Sept 12th to the WAP-EDITORS mailing list by Risto Kurki. 

3.3 Change Description 
References will be corrected when the changes are made to the EFI spec. 

A.1. Script Encoder Options 
Item Function Refere

nce 
Page Status Requirements 

EFIFRM -
SEFIFRM-LIB-S-1 

Encoding of set() 7.2.1 23 M  

EFIFRM -
SEFIFRM-LIB-S-2 

Encoding of get() 7.2.2 24 M  

EFIFRM -
SEFIFRM-LIB-S-3 

Encoding of getFirstName() 7.2.3 24 M  

EFIFRM -
SEFIFRM-LIB-S-4 

Encoding of getNext Name() 7.2.4 25 M  

EFIFRM -
SEFIFRM-LIB-S-5 

Encoding of getAllAttributes() 7.3.1 26 M  

EFIFRM -
SEFIFRM-LIB-S-6 

Encoding of getAttribute() 7.3.2 27 M  

EFIFRM -
SEFIFRM-LIB-S-7 

Encoding of getClassProperty() 7.4.1 28 M  

EFIFRM -
SEFIFRM-LIB-S-8 

Encoding of getUnits() 7.5.1 29 M  

EFIFRM -
SEFIFRM-LIB-S-9 

Encoding of query() 7.5.2 30 M  

EFIFRM -
SEFIFRM-LIB-S-
10 

Encoding of invoke() 7.6.1 35 M  

EFIFRM -
SEFIFRM-LIB-S-
11 

Encoding of call() 7.6.2 35 M  

EFIFRM -
SEFIFRM-LIB-S-
12 

Encoding of status() 7.6.3 36 M  

EFIFRM -
SEFIFRM-LIB-S-
13 

Encoding of control() 7.6.4 36 M  



WAP-231_100-EFI-20011001-a, Version 18-October-2001 Page 6 (19)

 

   2001, Wireless Application Protocol Forum, Ltd.  
All rights reserved 

 

EFIFRM -
SEFIFRM-LIB-S-
14 

Encoding of library ID 7 22 M  

 

A.2. Client Options 

A.2.1. APIs 
Item Function Refere

nce 
Page Status Requirements 

EFIFRM -APIAPI-
C-1 

WMLS 7 22 M WMLScript:MCF 

EFIFRM -APIAPI-
C-2 

WML 8 40 M WML2:MCF OR  
(WML1:MCF AND 
XHTMLMP:MCF) 

 

A.2.2. Broker 
Item Function Refere

nce 
Page Status Requirements 

EFIFRM -BRBR-C-
1 

The user is informed, when 
communicating with the EFI 
implementation. Either WMLS 
or WML API is used 

7, 8 22, 
40 

M  

EFIFRM -BRBR-C-
2 

The Broker supports EFI 
scheme. 

5 16 M  

EFIFRM -BRBR-C-
3 

Broker allows server both, to be 
visible through service 
discovery or not. Broker 
exposes the names of all visible 
servers. 

7.5 28 M  

EFIFRM -BRBR-C-
4 

Every instance return its 
instance number which is the 
non-negative integer. 

7.6 34 M  

EFIFRM -BRBR-C-
5 

If it is not possible to invoke a 
particular service, the 
application is notified by the 
proper return code. 

7.6 34 M  

EFIFRM -BRBR-C-
6 

The instance identifier returned 
by the broker is unique within 
all the instances of the services 
that are maintained by EFI at 
any time. 

7.6 34 M  

EFIFRM -BRBR-C-
7 

All suspended applications, 
waiting for one service, are 
resumed and receive the 
identical copy of the result data. 

7.6 34 M  



WAP-231_100-EFI-20011001-a, Version 18-October-2001 Page 7 (19)

 

   2001, Wireless Application Protocol Forum, Ltd.  
All rights reserved 

 

EFIFRM -BRBR-C-
8 

The instance of a service retain 
its result data until at all 
suspended applications have 
been resumed. 

7.6 34 M  

EFIFRM -BRBR-C-
9 

If no application waits for the 
completion of the instance, the 
instance retain its result data and 
the number is not re-used. 

7.6 34 M  

 

A.2.3. Scheme 
Item Function Refe-

rence 
Page Status Requirements 

EFIFRM -SCH-
SCH-C-1 

Scheme -element in WML-
Script API is omitted. 

7.1 22 M  

EFIFRM -SCH-
SCH-C-2 

Scheme -element in WML API 
is used. 

8.1 40 M  

EFIFRM -SCH-
SCH-C-3 

The Scheme component is  
treated case-insensitive WML-
API. 

5.1.1 16 M  

EFIFRM -SCH-
SCH-C-4 

The Server component is treated 
as case-insensitive  

5.1.2 16 M  

EFIFRM -SCH-
SCH-C-5 

The Service component is 
treated as case-sensitive 

5.1.3 17 M  

EFIFRM -SCH-
SCH-C-6 

The Parameters component is 
treated as case-sensitive 

5.1.4 18 M  

EFIFRM -SCH-
SCH-C-7 

The Values of parameters are 
treated as case-sensitive 

5.1.4 18 M  

EFIFRM -SCH-
SCH-C-8 

A Segment of a servers name 
space is NOT one of the 
reserved names 

5.1.2, 
5.5 

16, 
19 

M  

EFIFRM -SCH-
SCH-C-9 

Unit identifiers are starting with 
the dot '.' character before the 
only segment. 

5.1.2 16 M  

 

A.2.4. EFI-Library Functions 
Item Function Refe-

rence 
Page Status Requirements 

EFIFRM -LIB-LIB-
C-1 

set() 5.1.1 16 M  

EFIFRM -LIB-LIB-
C-2 

get() 7.2.2 24 M  

EFIFRM -LIB-LIB-
C-3 

getFirstName() 7.2.3 24 M  

EFIFRM -LIB-LIB-
C-4 

getNextName() 7.2.4 25 M  



WAP-231_100-EFI-20011001-a, Version 18-October-2001 Page 8 (19)

 

   2001, Wireless Application Protocol Forum, Ltd.  
All rights reserved 

 

EFIFRM -LIB-LIB-
C-5 

getAllAttributes() 7.3.1 26 M  

EFIFRM -LIB-LIB-
C-6 

getAttribute() 7.3.2 27 M  

EFIFRM -LIB-LIB-
C-7 

getClassProperty() 7.4.1 28 M  

EFIFRM -LIB-LIB-
C-8 

getUnits() 7.5.1 29 M  

EFIFRM -LIB-LIB-
C-9 

query() 7.5.2 30 M  

EFIFRM -LIB-LIB-
C-10 

invoke() 7.6.1 35 M  

EFIFRM -LIB-LIB-
C-11 

call() 7.6.2 35 M  

EFIFRM -LIB-LIB-
C-12 

status() 7.6.3 36 M  

EFIFRM -LIB-LIB-
C-13 

control() 7.6.4 36 M  

EFIFRM -LIB-LIB-
C-14 

Interpreting library ID 7 22 M  

 

A.2.5. Attributes, Properties 
Item Function Refe-

rence 
Page Status Requirements 

EFIFRM -ATTR-
ATTR-C-1 

Broker VersionMajor 7.3 26 M  

EFIFRM -ATTR-
ATTR-C-2 

 VersionMinor 7.3 26 M  

EFIFRM -ATTR-
ATTR-C-3 

 Manufacturer 7.3 26 O  

EFIFRM -ATTR-
ATTR-C-4 

 ManVersionMajor 7.3 26 O  

EFIFRM -ATTR-
ATTR-C-5 

 ManVersionMinor 7.3 26 O  

EFIFRM -ATTR-
ATTR-C-6 

Unit or  VersionMajor 7.3 26 M  

EFIFRM -ATTR-
ATTR-C-7 

Class  VersionMinor 7.3 26 M  

EFIFRM -ATTR-
ATTR-C-8 

Agent Name 7.3 26 M  

EFIFRM -ATTR-
ATTR-C-9 

 Manufacturer 7.3 26 M  

EFIFRM -ATTR-
ATTR-C-10 

 ManVersionMajor 7.3 26 O  



WAP-231_100-EFI-20011001-a, Version 18-October-2001 Page 9 (19)

 

   2001, Wireless Application Protocol Forum, Ltd.  
All rights reserved 

 

EFIFRM -ATTR-
ATTR-C-11 

 ManVersionMinor 7.3 26 O  

EFIFRM -ATTR-
ATTR-C-12 

MinVersionMajor 7.4 27 M  

EFIFRM -ATTR-
ATTR-C-13 

MinVersionMinor 7.4 27 M  

EFIFRM -ATTR-
ATTR-C-14 

MaxVersionMajor 7.4 27 M  

EFIFRM -ATTR-
ATTR-C-15 

MaxVersionMinor 7.4 27 M  

 

A.2.6. Local Server 
Item Function Refe-

rence 
Page Status Requirements 

EFIFRM -
LSRVLSRV-C-1 

The request initiates the service 
that composes and returns a well-
formed document to the browser. 

8 40 M  

EFIFRM -
LSRVLSRV-C-2 

The EF Broker provides a no-
name service. 

8.2.1 41 O EFIFRM -LSRV-C-
3EFIFRM-LSRV-C-
3EFIFRM-LSRV-C-3 

EFIFRM -
LSRVLSRV-C-3 

The content of "efi:///" at least 
present the list of available 
servers in a readable format with 
the content equivalent to the 
getUnits() function. 

8.2.1 41 O  

EFIFRM -
LSRVLSRV-C-4 

The EF Class Agent provides a 
no-name service. 

8.2.1 41 O EFIFRM -LSRV-C-
5EFIFRM-LSRV-C-
5EFIFRM-LSRV-C-5 

EFIFRM -
LSRVLSRV-C-5 

The EF Class Agent provide at 
least present the name of the 
server within the WML-Deck.  

8.2.2 41 O  

EFIFRM -
LSRVLSRV-C-6 

The EF Unit provide a no-name 
service. 

8.2.2 41 O EFIFRM -LSRV-C-
7EFIFRM-LSRV-C-
7EFIFRM-LSRV-C-7 

EFIFRM -
LSRVLSRV-C-7 

The EF Unit provide at least 
present the name of the server. 
Within the WML-Deck. 

8.2.3 41 O  

EFIFRM -
LSRVLSRV-C-8 

Cache is NOT used for EFI 
services with WML-API 

8.7 44 M  

 

 



WAP-231_100-EFI-20011001-a, Version 18-October-2001 Page 10 (19)

 

   2001, Wireless Application Protocol Forum, Ltd.  
All rights reserved 

 

4. Make WML API a generic markup API 

4.1 Change Classification  
Class 2  – Bug Fixes  

4.2 Change Summary 
During the WAP Forum meeting in Anchorage, the WAP Forum Board of Directors determined that the “wml” 
namespace shall not be made available to content authors and that XHTML Mobile Profile is the markup language for 
WAP 2.0.   

To conform to this decision, the WML API examples in the EFI Framework specification must be changed from 
WML2 syntax to WML1 syntax.  Furthermore, the WML API itself must be changed to a more generic Markup API 
that can be used by WML or XHTML Mobile Profile. 

4.3 Change Description 
Editor's note: change to last paragraph in Scope 

This document defines the EFI Framework. The document starts with the requirements and principles that the EFI 
Framework is built upon. Next, the conceptual architecture of EFI is presented and the terminology is introduced. The 
definition of the Framework follows, addressing issues such as naming convention and version control. The following 
chapters show how the Framework can be accessed via a markup language (WML and XHTML Mobile Profile) 
mapped onto two major APIs that are accessible to an application: WML and WMLScript. The Framework requires the 
mobile client to support both WMLScript and the markup language specified by the Wireless Application Environment 
[WAE]. 

Add normative reference in section 2.1 

[XHTMLMP] “XHTML Mobile Profile”, WAP Forum, WAP-277-XHTMLMP. 
http://www.wapforum.org/  

Add definition for XHTML MP in section 3.2 

XHTML Mobile Profile A language which extends the syntax of XHTML Basic as specified in [XHTMLMP] 

Add abbreviation in section 3.3 

XHTML eXtensible HyperText Markup Language 

Change “WML API” to “Markup API” in section 5.3 

5.3  API 
The namespace is an abstract concept that may be used differently by different APIs. Specifically, the WML Markup 
and WMLScript APIs may make use of the namespace in different ways.  

Change section 8 from a WML API to a more generic Markup API, and change examples to use WML syntax.  
Changes are scattered throughout the section. 

8. Markup APIWML API 
To use the WML APIMarkup API, the mobile client supports the markup language specified by [WAE].  



WAP-231_100-EFI-20011001-a, Version 18-October-2001 Page 11 (19)

 

   2001, Wireless Application Protocol Forum, Ltd.  
All rights reserved 

 

The WML APIMarkup API maps available services into the namespace and makes them available through the 
architectural concept where EFI namespace co-exists with other namespaces so that the browser can direct requests that 
start from 'efi:' to the local broker rather than sending them out. The concept positions EFI as a server, located at the 
mobile client rather than at the other end of the wireless link. The implementation MAY integrate EFI and the WAP 
stack on different levels and by different means. However, the application uses both regular WAP stack and EFI in the 
same way. 

The interaction model that is provided by WML APIMarkup API is significantly different from the model that is 
provided by WMLScript API. 

The interaction follows the simplified Web model and consists of the browser's request-response pairs. The invocation 
of the service is interpreted as a request to retrieve the contents  of a certain URI. The request initiates the service which 
MUST compose and return the document in the markup language that is accepted by the User Agent, as defined by 
[WAE]. The browser renders and displays the retrieved document to the user. The service may be also capable of 
directing the browser to display a particular fragment of section (card) from the document. Future releases of the 
framework may include mechanisms that allow EFI services to return content other than markup language that is 
acceptable to the User Agent. 

The EFI service SHOULD honour preferences of the User Agent when it comes to the preferred markup language and it 
SHOULD NOT send the document in a markup language that the User Agent does not support. The method to discover 
the preferred markup language is not within the scope of the EFI Framework. 

The exact definition of services is provided by the Class Specification. The Framework does not define any specific 
service. The Framework defines only the method to invoke services through WML APIMarkup API. 

When the documentcard generated by the service is presented to the user, the user MUST be informed that the 
interaction is with the EFI implementation. 

8.1 Behaviour of the WAP client 
The implementation of EFI AI as WML APIMarkup API makes extensive use of the namespace. The service is actually 
accessible only through the URI name scheme. The scheme is identical with the one defined by the Framework with the 
exception that the scheme prefix MUST be always present. The general format of URI is as follows: 

Scheme "//" Server "/" [Service] ["?" Parameters]  

The proper usage of the namespace allows access to services that are provided by different servers, including access to 
services that have no name. 

Services may be initialised by using the "href" attribute in the WML and XHTML navigational elementsentity in the 
"wml:go" and "a" elements in WML. For example, using the WML <go> element: 

<wml:go href="efi://location/displaypos"/> 

or the <a> element from WML or XHTML: 

<a href="efi://location/displaypos"> 

    Current position 

</a> 

Parameters (if any) are passed to the service through the URI name=value format or through the wml.postfield structure 
or through a mix of both methods. For example 

<wml:go href=”efi://wallet/pay?value=200&currency=USD" > 

or 

<wml:go href=” efi://wallet/pay”> 



WAP-231_100-EFI-20011001-a, Version 18-October-2001 Page 12 (19)

 

   2001, Wireless Application Protocol Forum, Ltd.  
All rights reserved 

 

    <wml:postfield name="value" value="200"/> 

    <wml:postfield name="currency" value="USD"/> 

</wml:go> 

Note that EFI makes it possible to access services standardised by WAP and vendor-specific services. In both cases the 
same notation applies. 

8.2 Servers 
Following is the detailed discussion of the name scheme and the behaviour of the WAP client when different servers are 
accessed. 

8.2.1 EF Broker 
To access the EF Broker, the following general notation is used: 

"efi:///" Service ["?" Parameters] 

There are no services currently defined by the Framework that can be requested from the Broker through WML 
APIMarkup API, except the service with no name. The EF Broker SHOULD provide a service with no name. The exact 
contents of the documentdeck returned depends on EF Broker implementation, but the content of the documentdeck 
MUST present the list of available servers in a readable format with content equivalent to the getUnits() function in the 
WMLScript interface, including also class agent if it exists. Note that some servers may elect not to be visible to 
getUnits() and query(). This election applies also to this service. If the EF Broker does not provide the no-name service, 
the 404 service code ("Not Found") is returned. 

8.2.2 EF Class Agent 
In order to access the class agent one of the following general notation is used 

"efi://" Classagent-Spec-Class "/" Service ["?" Parameters] 

"efi://" Classagent-Vnd-Class "/" Service ["?" Parameters] 

The EF Class Agent SHOULD provide a service with no name. The contents of the EF Class Agent documentWML 
deck that is returned by this service depends on upon the EFI Class specification, but the content of the documentdeck 
MUST present the name of the server. If the EF Class Agent does not provide the no-name service, the 404 service code 
("Not Found") is returned. 

The Class Specification defines details of the no-name service for its Class Agent. 

8.2.3 EF Unit 
In order to access the unit, one of the following notation is used. 

"efi://" Identified-Unit "/" Service ["?" Parameters] 

"efi://" Def-Unit-Spec-Class "/" Service ["?" Parameters] 

"efi://" Def-Unit-Vnd-Class "/" Service ["?" Parameters] 

In the first case the specified unit is accessed. In the latter two cases the default unit of the specific class realisation is 
accessed.  

The EF Unit SHOULD provide a service with no name. The contents of the EF Unit documentWML deck that is 
returned by this service depends on upon the EFI Class specification, but the content of the documentdeck MUST 
present the name of the server. If the EF Unit does not provide the no-name service, the 404 service code ("Not Found") 
is returned. 



WAP-231_100-EFI-20011001-a, Version 18-October-2001 Page 13 (19)

 

   2001, Wireless Application Protocol Forum, Ltd.  
All rights reserved 

 

The Class Specification defines details of the no-name service for its Units. 

8.3 Discontinuous mode 
The EFI service, once started, takes control and generates its own decks that are processed by the browser. At this point 
the application effectively releases control and must rely on the service to carry on the functionality and the control 
flow as expected. 

This discontinuity may be seen as disadvantageous for some applications. In order to partly alleviate the shortcomings 
of the discontinuous mode, the class specification may require services to support some of the concepts described 
below, namely the 'continuation documentcard' concept. 

8.3.1 Continuation documentcard 
The continuation card document is used to allow the user to navigate from the EFI-generated document to a new 
document, or a document fragment, as specified by the content author. This prevents users from getting “stuck” in the 
EFI-generated document and having to back out of the generated document.  refers to the card within the current deck 
where control should be passed upon completion of the service. The continuation card may provide a reference to a new 
deck to be loaded upon completion of the service. 

The service does not protect the current context. Specifically, another deck may become current when the service 
terminates.  

The concept of a continuation cards document does not require any specification within the Framework. Application 
developers may specify the continuation document card as one of the parameters that are passed to the service, for 
example: 

<wml:go href=" efi://music/play"> 

    <wml:postfield name="dest" value="example.wml2#done"/> 

</wml:go> 

Names of the parameters that hold a reference to the continuation documentcard, the number of continuation cards and 
circumstances upon which the service chooses the specific continuation documentcard should be defined in Class 
Specification. 

8.3.2 Return variable 
In order to return values back to the application the service can use browser variables. Return variables may be set by 
the service at one or more of its cards and passed back to the application as a part of the context. 

Note that the use of return variables is restricted to WML.  Also noteNote that the implementation of the service may 
not protect the context of the current deckWML document. Specifically, another deck document may become current 
when the service terminates. 

The concept of return variable does not require any specification within the Framework. Application developers may 
specify the name of the return variable as one of the parameters that are passed to the service, for example: 

<wml:go href="efi://picture/take"> 

    <wml:postfield name="ret" value="retvar"/> 

</wml:go> 

Names of the parameters that hold the name of the return variable and the meaning of particular variables should be 
defined in Class Specification. 



WAP-231_100-EFI-20011001-a, Version 18-October-2001 Page 14 (19)

 

   2001, Wireless Application Protocol Forum, Ltd.  
All rights reserved 

 

8.3.3Example 
Assume that there is a class 'music' that defines various playback/recording functionality. A service 'play' plays back the 
given song. The service accepts the following three parameters: 

title - the title of the given song, 

dest - name of the continuation card where control is transferred upon completion of the playback, 

result - name of the variable in which the duration of actual playback (in seconds) is stored. 

These three parameters can be passed to the EFI service by including them in the URI itself 

<wml:go href="efi://music/play 
 ?title=banana&result=time&dest=example.wml2%23result"/> 

or by composing the URI using the <wml:postfield> tag 

<wml:go href="efi://music/play"> 
    <wml:postfield name="title" value="banana"/> 
    <wml:postfield name="result" value="time"/> 
    <wml:postfield name="dest" value="example.wml2#result"/> 
</wml:go> 

Following is the example that shows the first invocation within the context of the deck of cards. 

<!-- example.wml2 --> 
<html> 
  <wml:card id="play"> 
   <wml:do type="accept" label="Start">  
    <wml:go href="efi://music/play 
    
 ?title=banana&result=time&dest=example.wml2%23result"/> 
   </wml:do> 
  <p> 
    Select 'Start' to play the banana 
   </p>  
 </wml:card> 
  <wml:card id="result"> 
    That's it, $time seconds of pleasure 
 </wml:card> 
</html> 

In this example, the EFI service might generate the following WML deck to give the user a visual indication that 
the music is playing. The EFI-generated deck also assigns the duration to the return variable and provides a soft 
key so the user can navigate to the continuation card. 

<!-- EFI generated deck --> 
<html> 
<wml:card> 
<wml:do type="accept" label="OK"> 
<!-- EFI service gets ‘example.wml2#result’ from $dest --> 
<wml:go href="example.wml2#result"> 
<!-- EFI service gets ‘time’ from $result --> 
<!-- EFI service calculates duration of the music --> 
<wml:setvar name="time" value="10"/> 
</wml:go> 
</wml:do> 
<p>  
<!-- EFI service gets ‘banana’ from $title --> 



WAP-231_100-EFI-20011001-a, Version 18-October-2001 Page 15 (19)

 

   2001, Wireless Application Protocol Forum, Ltd.  
All rights reserved 

 

Playing banana 
</p> 
</wml:card> 
</html> 

 

8.4 Context management 
When accessed from a WML document, tThe service is generally executed within the context of a browser and makes 
use of the context of the caller. No new context is created unless the service decides to create one. An application has no 
control over the context. 

The service may interfere with the context of the caller by incidentally overwriting WML variables used by the 
application if they are identical with variables used internally by the service. Note that the service does not protect the 
current WML context. 

8.5 Status codes 
As the WML APIMarkup API makes use of URL request/response protocol, the service may report one of the return 
codes as defined in [WSP] in accordance with [RFC2616]. 

The fact that the EFI server is local to the browser influences the interpretation of some of the codes. The following 
table summarises codes, their names and their meaning within EFI. The implementation of EFI uses only status codes 
that are not marked below as '(not used)'. 

 

Code Name Meaning 

100 Continue as in [RFC2616] 
101 Switch Protocols  (not used) 

200 OK as in [RFC2616] 

201 Created (not used) 
202 Accepted (not used) 

203 Non-Authoritative Information  (not used) 

204 No Content  (not used) 
205  Reset Content  (not used) 

206  Partial Content  (not used) 

300  Multiple Choices  (not used) 
301  Moved Permanently  (not used) 

302  Found  (not used) 

303  See Other  (not used) 
304  Not Modified  (not used) 

305  Use Proxy  (not used) 

306  (Unused)  (not used) 
307  Temporary Redirect  (not used) 

400  Bad Request  as in [RFC2616]; to be used for ill-formed names, requests 
and parameter errors 

401  Unauthorised  (not used) 

402  Payment Required  (not used) 
403  Forbidden  (not used) 

404  Not Found  as in [RFC2616]; SHOULD be used for non-existing class 



WAP-231_100-EFI-20011001-a, Version 18-October-2001 Page 16 (19)

 

   2001, Wireless Application Protocol Forum, Ltd.  
All rights reserved 

 

realisations, server or services 
405  Method Not Allowed  (not used) 

406  Not Acceptable  (not used) 

407  Proxy Authentication Required  (not used) 
408  Request Timeout  as in [RFC2616]; SHOULD be used when the processing 

of the request takes more than the specified time. 
409  Conflict  as in [RFC2616]; SHOULD be used when EFI cannot 

access all the required resources or devices due to possible 
access conflicts that may be removed later 

410  Gone  (not used) 
411  Length Required  (not used) 

412  Precondition Failed  (not used) 

413  Request Entity Too Large  as in [RFC2616] 
414  Request-URI Too Long  as in [RFC2616] 

415  Unsupported Media Type  as in [RFC2616] 

416  Requested Range Not Satisfied  (not used) 
417  Expectation Failed  (not used) 

500  Internal Server Error  as in [RFC2616]; SHOULD be used for all broker errors 
and all internal errors 

501  Not Implemented  as in [RFC2616]; SHOULD be used if the request is not 
supported 

502  Bad Gateway  (not used) 

503  Service Unavailable  as in [RFC2616]; SHOULD be used if there are not 
enough resources to handle the request or if the request has 
been called in the context where it cannot be handled 

504  Gateway Timeout  (not used) 

505  HTTP Version Not Supported  as in [WSP]; SHOULD be used if the encoding version of 
the request cannot be handled by the server 

Table 1. Status codes  

8.6 UAProf 
The User Agent Profiling mechanism for WAP is defined in [UAProf]. 

As a side effect of the architecture, the EFI service generates cards and decksdocuments that are displayed by the 
browser. This information does not pass through the gateway so that the User Agent Profile information cannot be 
utilised. The application and the service cannot assume that the UAProf information can be applied. 

This may lead to certain inconsistencies in user experience where similar contents are rendered differently depending on 
whether they arrive from the origin server or from EFI service.  

EFI Framework recommends that the mobile client SHOULD minimise those inconsistencies without changes to the 
current WAP architecture. 

8.7 Cache 
The WAP cache mechanism [CACHE] MUST NOT be used when EFI services are accessed through the WML 
APIMarkup API, regardless of information in the header.  



WAP-231_100-EFI-20011001-a, Version 18-October-2001 Page 17 (19)

 

   2001, Wireless Application Protocol Forum, Ltd.  
All rights reserved 

 

8.8 Example 
The following example shows how an EFI service might be invoked from a WML document.  When invoked, the EFI 
service performs some action and returns a new WML document.  WML is used only for explanatory purposes; other 
markup languages supported by the WAE may also be used to invoke EFI services.  Some of the constructs in this 
example, such as the continuation document and return variables are discussed in Section 8.3. 

For this example, assume that there is a class 'music' that defines various playback/recording functionality. A service 
'play' plays back the given song. The service accepts the following three parameters: 

title - the title of the given song, 

dest - name of the continuation document where control is transferred upon completion of the playback, 

result - name of the variable in which the duration of actual playback (in seconds) is stored. 

These three parameters can be passed to the EFI service by including them in the URI itself 

<go href="efi://music/play 
 ?title=banana&result=time&dest=example.wml%23result"/> 

or by composing the URI using the postfield tag 

<go href="efi://music/play"> 
    <postfield name="title" value="banana"/> 
    <postfield name="result" value="time"/> 
    <postfield name="dest" value="example.wml#result"/> 
</go> 

Following is the example that shows the first invocation within the context of the document. 

<!-- example.wml --> 
<wml> 
 <card id="play"> 
  <do type="accept" label="Start">  
   <go href="efi://music/play 
    ?title=banana&result=time&dest=example.wml%23result"/> 
  </do> 
  <p> 
   Select 'Start' to play the banana 
  </p>  
 </card> 
 <card id="result"> 
  That's it, $time seconds of pleasure 
 </card> 
</wml> 

In this example, the EFI service might generate the following WML document to give the user a visual 
indication that the music is playing. The EFI-generated document also assigns the duration to the return variable 
and provides a soft key so the user can navigate to the continuation document. 

<!-- EFI generated document --> 
<wml> 
 <card> 
  <do type="accept" label="OK"> 
   <!-- EFI service gets ‘example.wml#result’ from $dest --> 
   <go href="example.wml#result"> 
    <!-- EFI service gets ‘time’ from $result --> 
    <!-- EFI service calculates duration of the music --> 
    <setvar name="time" value="10"/> 



WAP-231_100-EFI-20011001-a, Version 18-October-2001 Page 18 (19)

 

   2001, Wireless Application Protocol Forum, Ltd.  
All rights reserved 

 

   </go> 
  </do> 
  <p>  
   <!-- EFI service gets ‘banana’ from $title --> 
   Playing banana 
  </p> 
 </card> 
</wml> 

 

Change wording in SCRs from WML to Markup.  Only the affected SCRs are shown. 

This section does not reflect the changes to the SCRs from section 3 “Fix SCR Table” above.  Changes from both of 
these sections will be preserved in the rollup specification. 

A.2.1. APIs 
Item Function Refere

nce 
Page Status Requirements 

EFIFRM -API-1 WMLScript APIWMLS 7 22 M  

EFIFRM -API-2 Markup APIWML 8 40 M  

 

A.2.2. Broker 
Item Function Refere

nce 
Page Status Requirements 

EFIFRM -BR-1 The user is informed, when 
communicating with the EFI 
implementation. Either 
WMLScript or WML Markup 
API is used 

7, 8 22, 
40 

M  

A.2.3. Scheme 
Item Function Refe-

rence 
Page Status Requirements 

EFIFRM -SCH-2 Scheme -element in WML 
Markup API is used. 

8.1 40 M  

EFIFRM -SCH-3 The Scheme component is 
treated case-insensitive WML-
in Markup API. 

5.1.1 16 M  

A.2.6. Local Server 
EFIFRM -LSRV-5 The EF Class Agent provide at 

least present the name of the 
server within the WML-
Deckgenerated document.  

8.2.2 41 O  

EFIFRM -LSRV-7 The EF Unit provide at least 
present the name of the server. 
Within the in the generated 
documentWML-Deck. 

8.2.3 41 O  



WAP-231_100-EFI-20011001-a, Version 18-October-2001 Page 19 (19)

 

   2001, Wireless Application Protocol Forum, Ltd.  
All rights reserved 

 

EFIFRM -LSRV-8 Cache is NOT used for EFI 
services with WML-Markup API 

8.7 44 M  

 


