
 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20080101-I]

HTTP State Management
Approved Version 1.1 – 31 Mar 2008

Open Mobile Alliance
OMA-TS-HTTPSM-V1_1-20080331-A

OMA-TS-HTTPSM-V1_1-20080331-A Page 2 (17)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20080101-I]

Use of this document is subject to all of the terms and conditions of the Use Agreement located at
http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an
approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not
modify, edit or take out of context the information in this document in any manner. Information contained in this document
may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior
written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided
that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials
and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products
or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely
manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification.
However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available
to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at
http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of
this document and the information contained herein, and makes no representations or warranties regarding third party IPR,
including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you
must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in
the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN
MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF
THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE
ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT
SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT,
PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN
CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

http://www.openmobilealliance.org/ipr.html
http://www.openmobilealliance.org/UseAgreement.html

OMA-TS-HTTPSM-V1_1-20080331-A Page 3 (17)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20080101-I]

Contents
1. SCOPE..4
2. REFERENCES ..5

2.1 NORMATIVE REFERENCES..5
2.2 INFORMATIVE REFERENCES...5

3. TERMINOLOGY AND CONVENTIONS..6
3.1 CONVENTIONS ...6
3.2 DEFINITIONS..6
3.3 ABBREVIATIONS ..6

4. INTRODUCTION ...7
5. HTTP STATE MANAGEMENT HEADERS ...8

5.1 COOKIE..8
5.2 SET-COOKIE..8

6. WAP SPECIFIC HTTP STATE MANAGEMENT HEADERS ...9
6.1 X-WAP-PROXY-COOKIE...9
6.2 X-WAP-PROXY-SET-COOKIE ...9

7. WAP GATEWAY RESPONSIBILITIES..11
8. COOKIE PROXY RESPONSIBILITIES ...12

8.1 PASS THROUGH COOKIE PROXY ..12
8.2 COOKIE MANAGEMENT AND STORAGE ...12
8.3 ASSOCIATING COOKIE STORAGE WITH CLIENTS ...13
8.4 MANAGING PROXY COOKIES ...13

9. USER AGENT RESPONSIBILITIES ...14
9.1 HTTP STATE MANAGEMENT ...14
9.2 COOKIE PROXY MANAGEMENT ...14

APPENDIX A. CHANGE HISTORY (INFORMATIVE)..15
A.1 APPROVED VERSION 1.1 HISTORY ...15

APPENDIX B. STATIC CONFORMANCE REQUIREMENTS (NORMATIVE) ...16
B.1 SCR FOR USER AGENT FEATURES ...16
B.2 SCR FOR COOKIE PROXY FEATURES...16

OMA-TS-HTTPSM-V1_1-20080331-A Page 4 (17)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20080101-I]

1. Scope
Wireless Application Protocol (WAP) is a result of work by the WAP Forum, now continued by the Open Mobile Alliance
(OMA), to define an industry-wide specification for developing applications that operate over wireless communication
networks. The scope of OMA is to define a set of specifications to be used by service applications for wireless
communication devices. The wireless market is growing very quickly and reaching new customers and services. To enable
operators and manufacturers to meet the challenges in advanced services, differentiation and fast/flexible service creation,
WAP defines a set of protocols in transport, session and application layers. For additional information on the WAP
architecture, refer to "Wireless Application Protocol Architecture Specification" [WAP].

This specification defines the HTTP state management model for the WAP architecture. The WAP HTTP state management
model is an implementation of the HTTP State Management Mechanism, also known as "cookie management", as defined in
[RFC2109]. On the World Wide Web, the HTTP State Management mechanism stores state information in a file ("cookie")
on the client, as defined in [RFC2109]. The same mechanism can also be used over the WAP protocols, as HTTP headers are
used to convey all state and state manipulation information.

Some WAP user agents may have motivation to store and manage cookies locally, as defined in [RFC2965]. This
functionality follows precisely the current World Wide Web model, where cookies are typically stored and managed by
regular web browsers.

This specification defines an additional mechanism to let an intermediate proxy store and manage cookies on behalf of the
WAP client, as an alternative to client-local storage and management. Storing cookies in the network has many advantages.
WAP user agents may have a limited storing capacity. When cookies are stored in the proxy, they do not have to be
transmitted across the air, for every request/response transaction. In case the user changes device, and cannot move the
cookies from the old device to the new one, the user can still access the cookies in the proxy via the new device. On the other
hand, storing and managing cookies in the client allows the user to gain the benefit of the same cookies independent of the
access point used. This aspect becomes more important in the future in conjunction with WAP gateway roaming architecture.
Some users may prefer storing private information in the client, instead of depending on the security of the network. Because
both models are complementary, this specification defines a dual approach to WAP HTTP state management, while still
maintaining full interoperability between the implementations and RFC2965.

OMA-TS-HTTPSM-V1_1-20080331-A Page 5 (17)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20080101-I]

2. References

2.1 Normative References
[RFC2119] “Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997,

URL:http://www.ietf.org/rfc/rfc2119.txt

[RFC2234] “Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell. November
1997, URL:http://www.ietf.org/rfc/rfc2234.txt

[RFC2616] "Hypertext Transfer Protocol - HTTP/1.1", R. Fielding, et al., June 1999. URL:
http://www.ieft.org/rfc/rfc2616.txt

[RFC2109] "HTTP State Management Mechanism", D. Kristol, et al, February 1997. URL:
http://www.ietf.org/rfc/rfc2109.txt

[RFC2965] "HTTP State Management Mechanism", D. Kristol, et al, October 2000. URL:
http://www.ietf.org/rfc/rfc2965.txt

[SCRRULES] “SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-
SCR_Rules_and_Procedures, URL:http://www.openmobilealliance.org/

[WAE] "Wireless Application Environment Specification", WAP Forum, 04-November-1999. URL:
http://www.wapforum.org/

2.2 Informative References
[WAP] "Wireless Application Protocol Architecture Specification", WAP Forum, 30-April-1998.

URL: http://www.wapforum.org/

[WSP] "Wireless Session Protocol", WAP Forum, 30-April-1998. URL: http://www.wapforum.org/

http://www.wapforum.org/
http://www.openmobilealliance.org/
http://www.ietf.org/rfc/rfc2965.txt
http://www.ietf.org/rfc/rfc2109.txt
http://www.ieft.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2234.txt
http://www.ietf.org/rfc/rfc2119.txt

OMA-TS-HTTPSM-V1_1-20080331-A Page 6 (17)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20080101-I]

3. Terminology and Conventions

3.1 Conventions
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be
informative.

3.2 Definitions
Client a device (or application) that initiates a request for a connection with a server.

Cookie Proxy an intermediate program that acts as a user agent for the purpose of managing cookies and cookie storage
on behalf of other user agents.

Origin Server the server, on which a given resource resides or is to be created, often referred to as a web server or an
HTTP server. (also referred to as a "server" in this specification.)

Proxy an intermediate program that acts as both a server and a client for the purpose of making requests on
behalf of other clients ([RFC2616]).

Server see "origin server".

User a person, who interacts with a user agent to view, hear or otherwise use a resource.

User Agent a user agent is any software or device that interprets WML, WMLScript or other content. This may
include textual browsers, voice browsers and search engines.

User Agent Session a session which begins when user agent is activated and ends when it exits.

3.3 Abbreviations
OMA Open Mobile Alliance

HTTP Hypertext Transfer Protocol [RFC2616]

RFC Request For Comments

URI Universal Resource Identifier

URL Universal Resource Locator

W3C World Wide Web Consortium

WAE Wireless Application Environment [WAE]

WAP Wireless Application Protocol [WAP]

WSP Wireless Session Protocol [WSP]

OMA-TS-HTTPSM-V1_1-20080331-A Page 7 (17)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20080101-I]

4. Introduction
The HTTP State Management Mechanism is defined in [RFC2965]. In short, RFC2965 defines a means whereby an origin
server can request that a small unit of state (a "cookie") is stored in the user agent, and included in subsequent requests to the
origin server. A variety of controls are available to the origin server, allowing it to control when the "cookie" is included in
subsequent requests, when the "cookie" expires as well as other state management and transport controls.

As defined in [RFC2965], the user agent is responsible for cookie management. In this model, the WAP gateway conveys
state information between the user agents and the origin servers. It is then the responsibility of the user agent to manage and
store the cookies and to offer the user means for control over these functions.

Although RFC2965 puts cookie management in the user agent, it may, in some cases be convenient to take advantage of an
architecture, which enables network elements to manage and store cookies. The WAP HTTP State Management Architecture
defines the concept of a Cookie Proxy. The cookie proxy is an HTTP proxy or proxy equivalent (e.g., WAP Gateway) that
manages cookies on behalf of WAP user agents that do not implement the HTTP state function directly. The cookie proxy is
responsible for managing and storing cookies on behalf of the user agents, and modifies HTTP requests and responses to and
from the user agent to implement this function.

This architecture supports clients with and without local cookie storage, and enables the user agent to control whether proxy
cookie storage is enabled. In addition to this, WAP specific HTTP state management headers allow a simple synchronization
scheme for user agent and proxy-based cookies. User agents can indicate if they rely on having cookies stored in the Cookie
Proxy for a specific user agent session, and Cookie Proxy can notify the user agent if it has problems with their management.

The cookie proxy operation has three stages:
• Enabling or disabling the storage of cookies on the proxy. The user agent controls this function with an HTTP header.
• Origin server request for a cookie to be stored for the duration of the user agent session or for a certain predefined period

of time. This is performed via the HTTP Set-Cookie header.
• Delivery of the cookie to the origin server in subsequent requests. This is performed via the HTTP Cookie header.

OMA-TS-HTTPSM-V1_1-20080331-A Page 8 (17)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20080101-I]

5. HTTP State Management Headers

5.1 Cookie
Cookie header is defined in [RFC2109]

NOTE: RFC2965 obsoletes RFC2109. However, for the definition of the Cookie header reference should be made to RFC
2109.

5.2 Set-Cookie
Set-Cookie header is defined in [RFC2109].

NOTE: RFC2965 obsoletes RFC2109. However, for the definition of the Set-Cookie header reference should be made to
RFC 2109.

OMA-TS-HTTPSM-V1_1-20080331-A Page 9 (17)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20080101-I]

6. WAP Specific HTTP State Management Headers

6.1 X-Wap-Proxy-Cookie
This header is sent in the request from the user agent to indicate whether the Cookie Proxy should store cookies from origin
servers or not. X-Wap-Proxy-Cookie header is also used to send status information from user agent to the Cookie Proxy.

x-wap-proxy-cookie = "X-Wap-Proxy-Cookie:" choice
Choice = "cache" | "cache-has-state" | "delete" |

"none" | "session" | "session-has-state"

The choices are introduced briefly as follows:
• When the value is "cache" or "cache-has-state", the Cookie Proxy caches cookies and sends them to the

origin server on behalf of the user agent. Requests and responses between the Cookie Proxy and the origin server
include Cookie and Set-Cookie headers (see section 5). User agent appends cache-has-state value
instead of cache in case it has received at least one X-Wap-Proxy-Set-Cookie header during the ongoing
user agent session. This mechanism enables simple method for synchronization between user agents and Cookie
Proxy. On account of this information Cookie Proxy can e.g. detect if the user agent session based cookies from the
previous usage time should be discarded.

• When the value is "delete", the Cookie Proxy does not send any cookies to the origin server or store any received

cookies. That is, the proxy acts as a filter ("cookie monster") and deletes all cookies before they are sent to the user
agent.

• If the header is not present, or has a value of "none", the proxy passes all HTTP cookie headers through between

the user agent and the origin server without interception. In this document, a Cookie Proxy executing this function is
known as a Pass-Through Cookie Proxy. This is the default condition.

• When the value is "session", or "session-has-state", Cookie Proxy and user agent functionalities are

combined. If Cookie Proxy receives a response containing a Set-Cookie header from the origin server, it decides
the place for cookie storage according to the presence of the Max-Age attribute in the Set-Cookie header. This
method can be used to separate session-based cookies from long-lived ones. The difference between session and
session-has-state values is similar to the difference between cache and cache-has-state values,
which is described above.

Note that status of the session is bound to the user agent session, which begins when the user agent starts and ends when it
exits. Status is not related to a certain cookie-derived session, but it simply tells if the user agent has cookies managed by the
Cookie Proxy during a particular user agent session. The user agent session is not related to the concept of session defined in
[WSP].

6.2 X-Wap-Proxy-Set-Cookie
This header is sent in the response to the user agent from the Cookie Proxy to indicate that one or more cookies were
received in a response from an origin server and stored in the cookie proxy and/or at least one cookie was sent in the
corresponding request. In addition to this, Cookie Proxy uses X-Wap-Proxy-Set-Cookie header to report an erroneous
status to the user agents.

OMA-TS-HTTPSM-V1_1-20080331-A Page 10 (17)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20080101-I]

x-wap-proxy-set-
cookie

= "X-Wap-Proxy-Set-Cookie:
choice"

choice = "state" | "error"

The choices are introduced briefly as follows:
• When value is "state", the user-agent is able to detect that a stateful session is in progress. Cookie Proxy sends

this value in the response to the user agent when it receives a Set-Cookie header from the origin server and
chooses to manage the cookie. This header is also sent when the Cookie Proxy has added a Cookie header in the
related HTTP request.

• When the value is "error", Cookie Proxy has detected a mismatch between the status of the user agent and the

Cookie Proxy (i.e. Cookie Proxy has lost the cookies during a particular user agent session).

OMA-TS-HTTPSM-V1_1-20080331-A Page 11 (17)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20080101-I]

7. WAP Gateway Responsibilities
The WAP gateway is responsible for delivering state management information between the user agent and the origin server.
Header encoding for HTTP state management headers and WAP specific state management headers are defined in [WSP].

OMA-TS-HTTPSM-V1_1-20080331-A Page 12 (17)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20080101-I]

8. Cookie Proxy Responsibilities

8.1 Pass Through Cookie Proxy
The Cookie Proxy MUST implement Pass Through Cookie Proxy functionality, i.e. passing the HTTP headers between the
user agent and the origin server without interference. If HTTP state management is not implemented in the client user agent,
then the actions taken by the Cookie Proxy are undefined in this specification.

8.2 Cookie Management And Storage
The Cookie Proxy MAY be responsible for managing and storing cookies on behalf of user agents. If this functionality is
implemented, the X-Wap-Proxy-Cookie and X-Wap-Proxy-Set-Cookie headers MUST be used for
communication between the client and the proxy. The proxy emulates user agent functionality when communicating with
origin servers. User agent role in HTTP state management mechanism is defined in RFC2965.

The user agent MAY control the cookie management in the Cookie Proxy with X-Wap-Proxy-Cookie header. The
Cookie Proxy MUST enforce the following rules when receiving WAP specific HTTP headers from the client (precondition:
Cookie Proxy has identified and authenticated the client and chosen to manage cookies on behalf of the user agents)
1. If the choice in X-Wap-Proxy-Cookie header equals cache or cache-has-state, Cookie Proxy MUST

cache cookies and send them to the origin server on behalf of the user agent. In addition to this, when Cookie Proxy
receives X-Wap-Proxy-Cookie: cache header, it MUST discard all the current user agent session -based cookies
(i.e. cookies which were sent from the origin server without Max-Age –attribute).

2. If the choice in X-Wap-Proxy-Cookie header equals delete, Cookie Proxy MUST NOT send cookies to the
origin server or store any received cookies. In addition to this, Cookie Proxy MUST NOT send any received cookies to
the client. Cookie Proxy MUST NOT delete any cookies stored prior to receiving the delete header.

3. If the choice in X-Wap-Proxy-Cookie header equals none or the header is missing from the request, Cookie Proxy
MUST act as a Pass Through Cookie Proxy.

4. If the choice in X-Wap-Proxy-Cookie header equals session or session-has-state, Cookie Proxy
MUST include cookies in the requests to the origin servers. If the Cookie Proxy receives a response containing the Set-
Cookie header from the origin server, it MUST decide the place for cookie storage according to the presence of the
Max-Age attribute in the Set-Cookie header. If Max-Age attribute is present, cookie MUST be transmitted to the
user agent without interception. Otherwise it MUST be stored by the Cookie Proxy until it receives a subsequent X-
Wap-Proxy-Cookie: session (or X-Wap-Proxy-Cookie: cache) header from the user agent.
Similarly to X-Wap-Proxy-Cookie: cache header, X-Wap-Proxy-Cookie: session effectively
indicates that user agent does not have any cookies bound to the current user agent session and thus all stored cookies
without Max-Age attribute MUST be discarded.

The Cookie Proxy MUST NOT perform any cookie management, including storage or filtering, without the receipt of an X-
Wap-Proxy-Cookie: cache, X-Wap-Proxy-Cookie: cache-has-state, X-Wap-Proxy-Cookie:
session or X-Wap-Proxy-Cookie: session-has-state header from the user agent, indicating that cookie
management is desired.

The Cookie Proxy MUST be prepared to receive Cookie headers from the user agent, regardless of the presence of an X-
Wap-Proxy-Cookie header. If this situation occurs, the Cookie Proxy MUST transmit the state present in the Cookie
header to the origin server, with the following criteria:
1. If a cookie proxy receives both Cookie and X-Wap-Proxy-Cookie: cache/cache-has-state or X-Wap-

Proxy-Cookie: session/session-has-state headers, the Cookie Proxy may append other cookies to the
Cookie header prior to performing the subsequent HTTP request. In the case where a user agent and a Cookie Proxy
have an identical cookie to send, i.e. both cookies have identical values for path, domain and NAME attributes, the
cookie MUST be delivered to the origin server as it is specified by the user agent. Cookies MUST be ordered in the
Cookie header as specified in [RFC2965].

OMA-TS-HTTPSM-V1_1-20080331-A Page 13 (17)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20080101-I]

2. If cookie proxy receives both Cookie and X-Wap-Proxy-Cookie: delete or X-Wap-Proxy-Cookie:
none headers, it MUST deliver the cookie header to the origin server without interception.

Cookie Proxy MUST include X-Wap-Proxy-Set-Cookie: state header in the response to the client, if it has
received a cookie in the response from the origin server and chosen to manage it or it has sent a Cookie header in the
associated HTTP request. . This header MUST NOT be sent if neither of the Cookie and Set-Cookie headers was
present in the HTTP request and response, or if the cookie proxy has not cached any cookie information.

Cookie Proxy MUST include X-Wap-Proxy-Set-Cookie: error header in the response if user agent sends status
information which is conflicting with the status recorded by the Cookie Proxy. This will happen when a user agent sends a
request with X-Wap-Proxy-Cookie: cache-has-state or X-Wap-Proxy-Cookie: session-has-
state header, but the Cookie Proxy does not have any cookies in storage for this particular user agent.

Cookie Proxy MUST NOT store the received cookie, if Set-Cookie header includes secure attribute. If secure
attribute is present, Cookie Proxy MUST deliver the cookie to the client without interception. This attribute MAY be used by
content authors to indicate that a specific cookie contains private or confidential information, and that the preferred storage is
in the client.

If a cookie proxy receives an X-Wap-Proxy-Cookie header from a client and chooses to manage and store cookies on its
behalf, it MUST remove the X-Wap-Proxy-Cookie header from the request and thus prevent it from going further to the
network. If Cookie Proxy chooses not to manage cookies on behalf of the client, it MUST let the headers pass without
interception.

8.3 Associating Cookie Storage With Clients
The Cookie Proxy MUST associate cookies with a single client and prevent another client from gaining access to the cookies.
This may be achieved by associating the cookies with an authenticated client identifier. Content authors should be advised
that different user agents located in the same client may use the same Cookie Proxy facilities and the same cookie storage.

The Cookie Proxy MUST NOT provide cookie proxy facilities to anonymous clients.

8.4 Managing Proxy Cookies
The Cookie Proxy SHOULD provide a Web application to let the user browse and control the stored cookies.

OMA-TS-HTTPSM-V1_1-20080331-A Page 14 (17)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20080101-I]

9. User Agent Responsibilities

9.1 HTTP State Management
The user agent MUST implement HTTP State Management, as specified in [RFC2965]. User agents with non-conforming
implementations (i.e. no support) have undefined semantics.

In order to ensure support for an interoperable set of directives for cookie expiration, user agents MUST support at minimum
both the Max-Age and Expires attributes of the Set-Cookie response header. Note that [RFC2965] does not include Expires
as a Set-Cookie attribute, but mentions that the Expires attribute may be supported for compatibility with Netscape’s cookie
implementation. It is included here as a requirement since its use is common practice on the Web.

User agents MUST use the HTTP Date header, if available, when cookie freshness lifetime is calculated based on the Expires
attribute.

When available, user agents SHOULD support use of a network-based time source, to ensure correct cookie/cache expiration
in the event that the HTTP Date header is not provided in a response.

User agents MUST support a minimum cookie size of 2048 octets each, including the fully-qualified host name, cookie
name, and cookie data.

User agents MUST support a minimum of 4 cookies.

User agents MUST support a cookie storage that is capable to store the minimal required number of cookies at the required
minimal size.

The behaviour of user agents MUST be consistent each time maximum cookie limitations are exceeded, e.g. discarding the
oldest cookie or applying a max cookies per domain limit.

9.2 Cookie Proxy Management
Support for use of Cookie Proxy functionality in the user agent is optional. User agent MAY include WAP Specific HTTP
State Management Headers in requests to utilize Cookie Proxy facilities.

If Cookie Proxy functionality is supported, end-user MUST have an opportunity to elect to use either cookie proxy facilities
or their own local cookie management or both.

User agent MUST send X-Wap-Proxy-Cookie: cache-has-state header instead of X-Wap-Proxy-Cookie:
cache and X-Wap-Proxy-Cookie: session-has-state header instead of X-Wap-Proxy-Cookie:
session in case it has received at least one X-Wap-Proxy-Set-Cookie header during the ongoing user agent session.
When user agent receives X-Wap-Proxy-Set-Cookie: error header, it MAY notify the user that inconsistent service
behavior might occur. WAP user agents MUST be prepared to receive Set-Cookie HTTP headers even when they have
requested Cookie Proxy functionality alone, and must act in accordance with [RFC2109] in this situation (e.g., the user agent
should make a best effort attempt to manage the cookie (See section 10.2)).

OMA-TS-HTTPSM-V1_1-20080331-A Page 15 (17)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20080101-I]

Appendix A. Change History (Informative)
A.1 Approved Version 1.1 History

Reference Date Description
WAP-223-HTTPSM-20001213-a 13 Dec 2000 Latest WAP Forum released version
OMA-TS-HTTPSM-V1_1 31 Mar 2008 Status changed to Approved by TP

 OMA-TP-2008-0090-INP_Browsing_V2_3_ERP_for_Final_Approval

OMA-TS-HTTPSM-V1_1-20080331-A Page 16 (17)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20080101-I]

Appendix B. Static Conformance Requirements (Normative)
The notation used in this appendix is specified in [SCRRULES].

B.1 SCR for User Agent Features
Item Function Reference Status Requirement

HSM_C001 User agent support for HTTP State
Management Mechanism

9.1 M

HSM_C002 User agent support at minimum
both the Max-Age and Expires
attributes of the Set-Cookie
response header

9.1 M

HSM_C003 User agent support for the HTTP
Date header, if available, when
cookie freshness lifetime is
calculated based on the Expires
attribute.

9.1 M

HSM_C004 User agent support for a network-
based time source to ensure correct
cookie/cache expiration

9.1 O

HSM_C005 User agent support for a minimum
cookie size of 2048 octets each

9.1 M

HSM_C006 User agent support for a minimum
of 4 cookies

9.1 M

HSM_C007 User agent support for storage of
the minimal required number of
cookies at of the required minimal
size.

9.1 M

HSM_C008 User agent support for consistent
behaviour when the maximum
cookie limitation is exceeded

9.1 M

HSM_C009 User agent support for use of
Cookie Proxy functionality

9.2 O

HSM_C010 User agent support for WAP
specific HTTP State management
headers

9.2 C:HSM_C004

B.2 SCR for Cookie Proxy Features
Item Function Reference Status Requirement

HSM_S001 Cookie Proxy support for passing of
HTTP headers between the user
agent and the origin server without
interference.

8.1 M

HSM_S002 Cookie Proxy support for Cookie
Management and Storage

8.2 O

OMA-TS-HTTPSM-V1_1-20080331-A Page 17 (17)

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20080101-I]

Item Function Reference Status Requirement
functionality.

HSM_S003 Cookie Proxy support for user agent
role in HTTP State Management
Mechanism.

8.2 C:HSM_S002

HSM_S004 Cookie Proxy support for WAP
specific HTTP State Management
headers and mechanisms.

8.2 C:HSM_S002

HSM_S005 Cookie Proxy does not store the
cookie if origin server includes
secure attribute in Set-Cookie
header.

8.2 C:HSM_S002

HSM_S006 Cookie Proxy associates HTTP state
with a particular client, and does not
provide cookie management or
storage for anonymous clients.

8.3 C:HSM_S002

HSM_S007 Cookie Proxy support for WAP
HTTP State Management user
interface

8.4 O

	1. Scope
	2. References
	2.1 Normative References
	2.2 Informative References

	3. Terminology and Conventions
	3.1 Conventions
	3.2 Definitions
	3.3 Abbreviations

	4. Introduction
	5. HTTP State Management Headers
	5.1 Cookie
	5.2 Set-Cookie

	6. WAP Specific HTTP State Management Headers
	6.1 X-Wap-Proxy-Cookie
	6.2 X-Wap-Proxy-Set-Cookie

	7. WAP Gateway Responsibilities
	8. Cookie Proxy Responsibilities
	8.1 Pass Through Cookie Proxy
	8.2 Cookie Management And Storage
	8.3 Associating Cookie Storage With Clients
	8.4 Managing Proxy Cookies

	9. User Agent Responsibilities
	9.1 HTTP State Management
	9.2 Cookie Proxy Management

