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Introduction 
Connecting devices to the Internet provides a range of advantages, including remote control, 
monitoring, fault diagnosis and the ability to collect data for analysis.  It may seem that 
connecting devices equipped with modern microcontrollers is a trivial task with today’s Internet 
protocols. Unfortunately, this is far from true since the pure data transport is only one part of the 
story. In fact, the pure data transport (without security) is frequently the goal of hackathons and 
other hands-on IoT workshops. Embedded development with the available libraries, real-time 
operating systems and IDEs has made it easy to build prototypes within hours.   
  
To interact with such IoT devices securely, the communication protocol between the device and 
any other communication partners needs integrity and confidentiality protection, otherwise 
messages can be modified in transit or eavesdropped. To prevent man-in-the-middle attacks, 
authentication is required between the communication endpoints. There are various 
communication patterns, as described in [1] and [2]. This whitepaper explores the Device-to-
Cloud Communication Pattern (as described in Section 2.2 of [2]) since it illustrates the use of 
IoT devices well and is frequently used in today’s deployments. 
  
The three security services (authentication, confidentiality and integrity) counter common 
security vulnerabilities found in today’s IoT devices, particularly when provided by state-of-the-
art security protocols. However, one big challenge remains: credentials have to be available on 
these devices for any communication security protocol to provide their service. Consequently, 
this leads to an additional requirement, to securely provision credentials to the IoT device. A 
credential typically consists of keying material, algorithm specific parameters, and a list of 
entities the credentials can be used with. Each credential also has an identifier associated with it 
and a lifetime.   
 
Information stored with a credential varies with the type of credential, for example, an 
asymmetric credential also requires trust anchors [3] to be stored with the credential. A 
credential is unique to a specific device, and to enhance privacy, there may also be additional 
credentials for different services, offering unlinkability properties. ”This also lowers the risk that 
the exposure of a credential may open an attack against a number of services. Sharing the 
same credential across a number of devices or an entire product family is a security oversight, 
since it allows an adversary to mount an offline, physical attack on a device and then use it in a 
remote, online attack. Such attacks are beneficial to the adversary since they can scale to a 
large number of devices with little additional overhead; refer to [4] for an example. Note that the 
details of such an attack vary with the type of credential being used. Table 1 shows three types 
of credentials that are commonly used. Often, security protocols combine different credential 
types for performance reasons. For example, the Datagram Transport Layer Security (DTLS) 
handshake may use a certificate (as a device credential) and turn it into short lived pre-shared 
secret credentials (as a session ticket) as part of the handshake.   
  
  



3 

Table 1: Credential Types. 

 Pre-shared keys 
(PSK) 

Raw public keys 
(RPK) 

Certificates 

Message Size Small Medium  
(for transfer of raw 
public key) 

Large 
(dependent on the 
length of the 
certificate chain) 

Cryptographic 
Overhead 

Minimal cryptographic 
overhead 

Large (for Diffie-
Hellman and 
signature operations) 

Large (for Diffie-
Hellman and 
signature operations)  

RAM Requirements Low  Large 
(for asymmetric 
crypto computations) 

Largest  
(due to the additional 
certificate processing) 

Code Size 
Requirements 

Minimal Medium since it still 
requires a bignum 
library. 
 

Large due to the 
requirement for a 
bignum library and 
ASN.1 code for 
certificate and 
certificate chain 
parsing.  

Note: The use of passwords in IoT devices is discouraged due to their low entropy. Passwords are only used in 
combination with a strong password-based authenticated key exchange protocol. Hence, passwords are not listed in 
this table. There are also credential types defined that combine PSKs with public key cryptography either in form of 
strong-password-based authenticated key exchanges, such as the Secure Remote Password (SRP) protocol or with 
the use of PSK augmented Diffie-Hellman exchanges. We do not consider those in this whitepaper since the main 
benefits of PSKs become void. 
 
A single IoT device typically stores multiple credentials since there may be a number of 
credentials in use from different parties, established during the phases of the device lifecycle, 
such as:  

1. Manufacturer credentials: credentials provisioned during manufacturing,  
2. operational credentials: credentials established during commissioning, first-time use, 

ownership change, service change,etc.  
 
Note that credential provisioning during manufacturing covers provisioning during all phases of 
manufacturing (from the chip, to module and finally device) and includes the system integration 
phase that typically follows manufacturing. Note also, however, that the term manufacturer 
credential does not require the device to connect to the manufacturer. Instead, the manufacturer 
credentials on the device, for example, can be used within an enterprise for device local 
communication.  
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Once these credentials are available on the IoT device, they can be used as input to a 
communication security protocol, such as DTLS. The device can then securely communicate 
with the parties the credentials are intended for.  
 
A device may need more than one credential, and not all credentials can be provisioned to the 
device during manufacturing. For example, a device may need credentials to connect to a 
cloud-based server to report sensor readings, but it also needs credentials for accessing the 
local WiFi, or to utilize a cellular connection in order to access the Internet. The type of 
credentials used for connectivity heavily depends on the underlying technology, but this is not 
further discussed in this document. Instead, this whitepaper focusses on the IoT credentials 
needed to securely access application services, such as cloud services for uploading sensor 
readings, for remote maintenance of the IoT device, or for providing software updates.  
 
Note that credentials generated during manufacturing may, in some cases, only be used for 
commissioning and are then replaced by other long-lived credentials with similar role. Such a 
credential may be generated by the device following commissioning or by the device owner. The 
exchange of manufacturer credentials is not discussed further in this whitepaper.  
 
Unlike manufacturer credentials, which may last for the lifetime of the physical device, 
operational credentials are typically created with a shorter lifetime. To distribute these 
operational credentials to IoT devices, a new entity is introduced, called the key distribution 
center (KDC). Other terms instead of KDC are used in standards, as illustrated with the example 
protocols below. The KDC has several functions, such as: 

• authenticating IoT devices that connect to it,  
• making sure that the devices are authorized to receive the appropriate information,  
• distributing operational credentials to devices, 
•  providing an appropriate user interface to administrators or even end users.  

 
The introduction of the KDC also allows IoT devices to be managed with ease and at scale. An 
architecture that includes the KDC is shown in Figure 1. 
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Figure 1: Architecture with a KDC. 
 
Note: While credential management may happen through this central KDC, the actual data 
transmission still happens peer-to-peer. 
 
The KDC itself is not necessarily a standalone device; it is a logical function that can be 
combined with other entities. For example, it can be bundled within a larger device management 
solution. 
 
While the manufacturer credentials are long-lived or have no expiry date, the operational 
credentials are typically shorter-lived and for use with dedicated communicating parties. Unlike 
other computing devices, such as smart phones, IoT devices only have a small number of 
communication parties, which conveniently limits the number of operational credentials they 
have to store. It is common for IoT devices to connect to a server infrastructure offered by the 
manufacturer of the device and/or another cloud-based service. On-premise solutions for a KDC 
are also a viable deployment option in enterprise environments. However, other IoT 
communication patterns may require some functions of the KDC service to be run on a home 
gateway or, in some cases in the smartphone acting as a gateway. 
 
Luckily, systems that standardize the KDC architecture have existed for a long time and have 
been tailored for use with IoT devices. The following sections explore different implementations 
of these systems, including:  

• the Lightweight Machine-to-Machine (LwM2M) protocol [5] standardized by the Open 
Mobile Alliance (OMA) 

• the Open Connectivity Foundation (OCF) [6], 
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•  ACE-OAuth from the IETF ACE working group [7].  

Lightweight Machine-to-Machine (LwM2M) 
Figure 2 shows the client-server architecture of LwM2M version 1.0 [5] with an IoT device acting 
as an LwM2M Client and the IoT service acting as the LwM2M Server. The LwM2M 
specification uses the Constrained Application Protocol (CoAP) [8] over UDP and optionally 
over SMS. DTLS [9] provides the state-of-the-art communication security infrastructure. The 
LwM2M Bootstrap Server plays the role of the KDC. 

 

Figure 2: LwM2M v1.0 Architecture. 
 

LwM2M supports a number of ways of provisioning the IoT device with operational credentials 
(the three types listed in Table 1). While the specification does not mandate how to store the 
credentials on the IoT device, it defines a data model that is a combination of a RESTful API 
and a description of objects and resources being manipulated. The RESTful API allows 
interaction between the LwM2M client and server. The LwM2M specification assumes that the 
credentials, either pre-shared secrets, raw public keys, or certificates, are pre-provisioned on 
the device during manufacturing, or by commissioning for use with a Bootstrap Server. The 
LwM2M Bootstrap Server authenticates the LwM2M client using the manufacturer credentials 
and provisions operational credentials to the device. Therefore, manufacturer credentials as well 
as operational credentials are maintained in the LwM2M Security object. The list of all defined 
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objects can be found in the core objects, which are contained in Appendix E of the technical 
specification [1]. While the LwM2M Security object is one of the most important objects in 
context of this whitepaper, there are some other important objects: 

● The LwM2M Server object dictates which LwM2M and bootstrap server the IoT device is 
allowed to interact with. 

● The Access Control object controls access to objects and resources (such as sensors 
and actuators) by LwM2M servers. 

 

There are several questions that arise in the context of provisioning operational credentials to 
the device, namely: 

● Who initiates the provisioning? The LwM2M Client on the IoT device (in the form of 
client-initiated bootstrapping) or the LwM2M Bootstrap Server (so-called server-initiated 
bootstrapping) 

● What types of credentials are used with the bootstrap server? pre-shared secret, raw 
public keys or certificates 

● Who creates the private keys? LwM2M Client on the IoT device or the LwM2M Bootstrap 
Server (In LwM2M version 1.0, the server always creates symmetric keys and provisions 
them to the client and hence we focus only on asymmetric keys in this question.)  

● What types of credentials are created by the LwM2M Bootstrap Server for use with the 
LwM2M servers? pre-shared secrets, raw public keys or certificates 

 

The pre-shared key, raw public key, and certificate credentials can be generated by the LwM2M 
Bootstrap Server and then provisioned to the LwM2M Client on the IoT device. For certificates, 
there is also an option to allow IoT devices to generate their own public / private key pair. The 
public key is then sent to the LwM2M Bootstrap Server as part of a Certificate Signing Request 
(CSR). The types of credentials cover a range of use cases, and the type of credential to use is 
determined by: 

• the operational context,  
• preferences,  
• threat model,  
• deployment environment.  

The lifetime of the generated keys also varies, as shown in Table 2.  
 
There is a qualitative difference between the two main credentials, namely the manufacturer 
credential and the operational credentials. 
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Table 2: Credential Lifecycle Management in LwM2M. 

 LwM2M Client ⇔ LwM2M Bootstrap 
Server 

LwM2M Client ⇔ LwM2M Server  

Credential Type Manufacturer Credential  
 

Operational credentials - 
asymmetric or symmetric keys  

Created By Device manufacturer LwM2M Bootstrap Server or, in 
case of asymmetric keys jointly 
with the LwM2M device  

Lifetime Long-lived Medium-lived. 

Refreshed By Device manufacturer/OEM (optional) LwM2M Bootstrap Server 

Covered by 
LwM2M  
Specifications  

No (outside the scope) Yes 

Open Connectivity Foundation (OCF) 
Figure 3 shows the client-server architecture of OCF version 1.0, with an IoT device acting as 
an OCF Client and another IoT device acting as the OCF Server. The OCF specification uses 
CoAP and DTLS. The Device Owner Transfer Service (DOXS) performs device onboarding / 
commissioning operations such as, configuring device settings for connecting to a production 
IoT network. Additionally, credentials and ACLs needed to securely connect to a Credential 
Management Service (CMS) and Access Management Service (AMS) are provisioned by the 
DOXS service. Both the DOXS and CMS play the role of the KDC. OCF devices can play the 
role of both Client and Server in the context of device management, allowing devices to 
proactively seek credentials, authorization and setup. 
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Figure 3: OCF v1.0 Architecture. 

 

OCF supports a number of techniques to provision the IoT device with credentials and in 
addition supports the three credential types listed in Table 1. While the OCF specification does 
not mandate a specific way to store the credentials at the IoT device, in order to allow the 
provisioning of data to that device, it specifies a data model that supports a RESTful API. It also 
standardizes methods for onboarding / commissioning devices into an IoT network. Onboarding 
includes an exchange of values and credentials that establishes device ownership known as 
Owner Transfer Methods (OTM). OTMs may differ, but play an important role in defining the 
basis for trust in a device.  

The OCF specification assumes that the long-term manufacturing credentials, either in form of 
pre-shared secrets, raw public keys, or certificates, are pre-provisioned to the device during 
manufacturing or by supply chain processes. The DOXS provider authenticates the OCF Device 
using manufacturing credentials and establishes owner credentials that are local to the IoT 
network into which the device is being commissioned. Manufacturing credentials, as well as 
owner credentials, are maintained in the OCF Security Resources. The list of all defined 
resources can be found in the OCF Security technical specification [9]. While the Security 
Resources are some of the most important resources in context of this whitepaper, there are 
some other important resources: 

● The OCF resource discovery resource is used to discover devices that are not yet 
claimed by an IoT network. 

● The device owner transfer resource is used to establish device ownership properties 
including which IoT network claims it, which owner transfer method was used to 
establish trust and which DOXS service to contact for device lifecycle support. 
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● The provisioning status resource is used to maintain device provisioning and operational 
status. OCF devices have well-defined operational modes where some aspects of the 
device capabilities are disabled while others are enabled. For example, a device that has 
not been onboarded will not, under normal conditions, be able to perform any other 
operation except onboarding. Operational modes contribute to the security and safety of 
the device. 

● The credential resource is used to establish the set of credentials and trust anchors the 
device will use when establishing secure sessions with peer devices. It also identifies the 
Credential Management Service (CMS) that is authorized to maintain the credential 
resource. 

● The access control resources are used to define finer grained access semantics to 
resources hosted by a device. It also identifies the Access Management Service (AMS) 
that is authorized to maintain the ACL resources. 

 

There are several issues in provisioning credentials to OCF devices: 

● Who initiates the provisioning? An OCF Service (the authorized OCF Client) that 
connects to an OCF Server device (in the form of client-initiated provisioning) or the 
OCF Server that connects to an authorized OCF Client (server-initiated provisioning).  

● What types of credentials are supported and for what tasks? Table 3 identifies three 
classes of credential used in OCF, namely  manufacturer, owner, and operational 
credentials  

○ OTMs define the type of credentials needed to establish trust in the device. 
There are a number of techniques available to device manufacturers to facilitate 
the transfer of the device through a supply chain and to attest to device integrity 
and hardening properties. An OTM must construct a secure channel over which 
the remainder of the ownership transfer and onboarding exchange occurs. 

○ Owner credentials are local to the IoT network that claims the new device. Owner 
credentials may be symmetric or asymmetric, according to the policy of the 
network operator. The OTM session provides a secure context within which the 
owner credentials are provisioned or derived. 

○ Operational credentials may be symmetric or asymmetric, according to the policy 
of the CMS (aka network operator). The CMS provisions credentials directly over 
a DTLS session using the CMS credential provisioned during onboarding or 
indirectly using certificates issued locally by the CMS acting as a Certificate 
Authority (CA) or an existing local CA service. 

○ Session keys are generated as part of a DTLS handshake involving Operational 
credentials. Session keys protect data between the session endpoints. The OCF 
framework is required to be the session endpoint. 

● Who creates the private keys? OCF devices generate asymmetric private keys and 
enroll the corresponding public key with the CMS (acting as CA).    

● What types of credentials are created by the CMS for use with the OCF devices? Pre-
shared secrets, raw public keys or certificates. 
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Table 3: Credential Lifecycle Management in OCF. 

 OCF Device ⇔ DOXS & Credential 
Management Service   

OCF Client ⇔ OCF Server  

Credential Type Manufacturer 
Credential  
(for use between 
the DOXS 
Service to 
onboard / 
commission the 
device). 

Owner 
Credential - 
asymmetric or 
symmetric keys 
established 
between OCF 
Device and 
DOXS Server. 

Operational credentials - 
asymmetric or symmetric keys 
established between OCF Client 
and OCF Server. 

Created By Device 
manufacturer. 

OCF Device & 
DOXS Server 
during Owner 
Transfer Method 
(OTM). 

CMS (CMS credential is created by 
DOXS). 

Lifetime Long-lived. Long-lived. Medium-lived. 

Refreshed By Device 
manufacturer 
(optional) 

DOXS Server CMS (CMS credential is refreshed 
by DOXS) 

Covered by 
OCF 
Specifications  

No (outside the 
scope) 

Yes Yes 

 
There is a qualitative difference among the three credential types in OCF where the longest 
lived keys (which are potentially slowest computationally) are used less frequently than the 
shortest lived keys (which are potentially fastest computationally). The OCF credential hierarchy 
consists primarily of the manufacturer credential, which attests to trust properties of the device 
at the time of onboarding / commissioning into the IoT network, but have no significant role 
thereafter unless the device is re-onboarded / re-commissioned. A primary function of 
onboarding is execution of an Owner Transfer Method (OTM) that performs a key exchange 
protocol whereby the owner credentials are established. Owner credentials facilitate secure 
provisioning (and re-provisioning) of the local device and security management service 
providers.  
 
In summary, OCF service providers, clients and servers are OCF devices. All secure 
interactions between OCF devices rely on operational credentials. Operational credentials are 
used in conjunction with DTLS.  
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ACE-OAuth 
Complementing the work on LwM2M and OCF, the IETF ACE working group tackles use cases 
that require user identity management, consent of the user, and user authentication. This 
solution is referred to as ACE-OAuth since it represents a profile of the widely deployed OAuth 
technology. The classical scenario is a physical access control solution in an enterprise where 
existing enterprise identity management infrastructure is re-used for controlling access to 
facilities, like office rooms and labs. To involve an end user in the interaction often requires their 
smartphone, wearable, or tablet, and it starts with user authentication where the user logs into 
their regular identity management system (unless already logged in for other purposes) and 
then solicits access to whatever protected resources, such as access to a meeting room. The 
owner of the resource, such as the facility manager or IT manager, needs to provide consent 
(unless done in advance). In this case, the resource requestor and the party granting consent 
are often two different entities.  
 
Once consent has been granted, the app on the smart phone obtains an access token (and a 
refresh token) for use with the access control system, such as for a door lock. Note, however, 
that this exchange also involves the ACE-OAuth client, which needs to authenticate itself to the 
authorization server using client secrets (in case of a confidential client at least). These client 
secrets need to be pre-established between the ACE-OAuth client and the authorization server. 
This access token is then used in future interactions unless revoked or expired. A refresh token 
is used to request further access tokens once they are expired without involving humans again 
in the process.  
 
To evaluate requests to protected resources requires authorization policies to be present at the 
authorization server. These policies can be created on the fly, as part of the consent process, or 
can be pre-populated. Which approach is suitable for a given scenario often depends on the 
preferences of those deploying these services.  
 
This solution aligns better with approaches used today on smartphones by native apps, allows 
cross domain identity management, independent user authentication mechanisms, and fine-
grained access control techniques.  
 
The architecture of ACE-OAuth, shown in Figure 4, intentionally aligns with the OAuth 
framework. To support constrained IoT devices, the ACE working group introduces the use of 
CoAP (either instead of, or in addition to the use of HTTP, as used in classical OAuth) and 
Concise Binary Object Representation (CBOR) encoding of access tokens. This architecture 
also uses proof-of-possession (PoP) tokens that are tied to a key, instead of bearer tokens 
which are used on the web and on smart phones. PoP tokens provide better security against 
token leakage than bearer token, when keys are properly protected.  
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Figure 4: ACE-OAuth Architecture. 
 
An example instantiation of the architecture shown in Figure 4 is to run an OAuth Client on a 
smartphone bundled with another app and to interface with the resource server (such as a door 
lock) via Bluetooth Low Energy. The authorization server in OAuth issues access tokens in 
accordance with the authorization policies and the consent of the user.  Due to the nature of 
PoP tokens, the authorization server also becomes a KDC.  
 
More details about the ACE-OAuth architecture can be found in [7]. A standardized format for 
the access token is available with the CBOR Web Token (CWT) [10]. Information about 
implementing OAuth on native apps securely can be found in [11] and the CWT PoP token 
functionality is available with [12].  
 
ACE-OAuth augments a device management solution like LwM2M since the IoT device, which 
plays the role of a resource server, still needs to be managed. It is important to note that the 
ACE-OAuth architecture assumes there is a credential provisioned at the participating parties. In 
this architecture, the: 

• resource server needs to verify access tokens created by the authorization server and 
needs to be in possession of credentials,  

• client needs to be authenticated by the authorization server,  
• authorization server needs to authenticate itself to the client and needs to possess 

keying material to protect the access token.  
 
Credentials for use by the IoT devices may be provisioned with a standard such as LwM2M.  

 

There are several issues for provisioning credentials to ACE-OAuth devices: 

● Who initiates the provisioning? The user and, in terms of the protocol entities, the client.  
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● What types of credentials are used with the Authorization Server? pre-shared secret, 
raw public keys or certificates. 

● Who creates the private keys? The client creates private keys related to PoP tokens and 
gets the Authorization Server to sign the corresponding public keys by having them 
included into the PoP token.  

● What types of credentials are created by the Authorization for use with the Resource 
Servers? pre-shared secrets, raw public keys or certificates. 

 
Since ACE-OAuth also uses credentials itself, Table 4 provides further details about their 
purpose and properties. 
 
Table 4: Credential Lifecycle Management in ACE-OAuth. 
 Authorization 

Server ⇔ 
Resource Server 

Client ⇔ Authorization Server User ⇔ 
Authorization 

Server 
Credential Name Access Token 

(or PoP token) 
Client Secret 
(mandatory for 
confidential 
clients) 

Refresh Token 
(optional) 

 

Credential Type Operational 
Credential 
representing 
delegated 
access rights 
(similar to owner 
credential) 

Manufacturer 
Credential 

Operational 
Credential 

User Credential 
(such as 
username and 
password or 
more secure 
technology like 
FIDO) 

Created By Authorization 
Server 

Manufacturer Authorization 
Server 

User Identity 
Management 
System 

Lifetime Short lived Long lived Medium lived  Long lived 
Refreshed By Authorization 

Server 
Manufacturer 
(optional) 

Authorization 
Server 

User Identity 
Management 
System 

Covered by 
ACE-OAuth 
Specifications  

Yes No Yes No 

 
The Role of DTLS in Key Management 
Manufacturer and operational credentials are typically not used directly to protect application 
data, at least not in the protocols presented in this whitepaper. Instead, they are used as input 
to a security protocol, like DTLSi. DTLS itself, like other mature security protocols, adds another 
layer of credentials for performance reasons. Since all three architectures presented in this 
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whitepaper make use of DTLS, it is worthwhile to highlight its role in the context of key 
management.  
 
The long term credentials, which authenticate the communicating parties, are used as input to 
the DTLS handshake. In IoT scenarios, this will typically be mutual authentication, so that the 
client authenticates to the server and vice versa. These credentials are used during the full 
handshake. Subsequently, credentials are created for use with session resumption. As these 
session resumption credentials are based on symmetric cryptography, they avoids the 
cryptographic overhead of a full handshake.  
 
Finally, with the completion of a successful DTLS handshake credentials are established for 
confidentiality and integrity protection of application data. They , are also based on symmetric 
cryptography. 

Conclusion 
The key points in this whitepaper are: 

● The ability to dynamically provision operational credentials to IoT devices is important for 
manageability, scale, security and convenience. Offering automatic key management 
without involving humans is an important step in improving security of IoT devices. One 
important commonality in all three presented solutions (LwM2M, OCF and ACE-OAuth) 
is that they make use of manufacturer credentials to provision operational credentials on 
IoT devices. 

● Since the KDC architecture is a well understood concept, it is now applied to the IoT 
environment in a way that suits the constraints of these devices and networks. Three 
instantiations of this architecture have been presented with LwM2M, OCF and ACE-
OAuth.  

● Authorization management and key management are closely related. LwM2M, OCF, and 
ACE-OAuth have RESTful models that allow for flexible key management using 
Bootstrap Server, Credential Management Service (CMS) and an Authorization Server, 
respectfully. OAuth-based authorization exchanges can be implemented over the top of 
IoT frameworks leveraging their object model(s) to define token contents and semantics. 
Nevertheless, the OAuth message orchestration offers a context for message 
exchanges that aligns with several accepted models for dynamic authorization 
management. 

 
The presented solutions use a number of credentials, in a pseudo hierarchical manner, that 
offer trade-offs between computationally intensive functions (such trust establishment and 
authentication across an ecosystem), and less resource intensive functions (such as localized 
authentications and short term data protection). The authors believe a key management 
architecture that incorporates such trade-offs is necessary to effectively optimize for constrained 
devices. While there may be significant performance costs paid up front, at device onboarding / 
commissioning, the amount of time spent onboarding / commissioning is relatively small 
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compared to the time spent on short term symmetric key operations performed over the lifetime 
of the device.  
 
All the presented solutions offer a distinction between manufacturer credentials, for establishing 
attestable trust in the device (in terms of hardware, software and manufacturer) and operational 
credentials, for device-to-device authentication and negotiation of session keys. Symmetric 
session keys are used for protection of application data using protocols like DTLS to offer 
confidentiality, integrity and data-origin authentication. 
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