

SyncML Data Sync Protocol, version 1.1.2
Approved Version 12-June-2003

Open Mobile Alliance
OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A

Continues the Technical Activities
Originated in the SyncML Initiative

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 2 (63)

Use of this document is subject to all of the terms and conditions of the Use Agreement located at
http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an
approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not
modify, edit or take out of context the information in this document in any manner. Information contained in this
document may be used, at your sole risk, for any purposes. You may not use this document in any other manner
without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy
this document, provided that you retain all copyright and other proprietary notices contained in the original materials on
any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute
an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or
omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a
timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published
specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is
publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR
Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an
independent IPR review of this document and the information contained herein, and makes no representations or
warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This
document may contain inventions for which you must obtain licenses from third parties before making, using or selling
the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN
MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY
OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED
TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR
WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT,
PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR
IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE
DOCUMENTS.

© 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

http://www.openmobilealliance.org/UseAgreement.html
http://www.openmobilealliance.org/ipr.html

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 3 (63)

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 4 (63)

1. Contents
1. SCOPE ...6
2. REFERENCES..7

2.1 NORMATIVE REFERENCES ...7
2.2 INFORMATIVE REFERENCES ..7

3. TERMINOLOGY AND CONVENTIONS ...8
3.1 CONVENTIONS ..8
3.2 DEFINITIONS...8
3.3 ABBREVIATIONS ...9

4. INTRODUCTION...10
5. SYNCML INTRODUCTION...11

5.1 SYNCML FRAMEWORK ...11
5.2 DEVICE ROLES ...11
5.3 SYNC TYPES..12

6. PROTOCOL FUNDAMENTALS ...14
6.1 CHANGE LOG INFORMATION...14

6.1.1 Multiple devices ..14
6.2 USAGE OF SYNC ANCHORS...14

6.2.1 Sync Anchors for Databases ...14
6.2.2 Sync Anchors for Data Items ..15

6.3 ID MAPPING OF DATA ITEMS ..15
6.3.1 Caching of Map Operations ..16

6.4 CONFLICT RESOLUTION...17
6.5 SECURITY..17
6.6 ADDRESSING ...17

6.6.1 Device and Service Addressing...17
6.6.2 Usage of RespURI and Re-direction Status Codes ...17
6.6.3 Database Addressing...18
6.6.4 Addressing of Data Items..18

6.7 EXCHANGE OF DEVICE CAPABILITIES...18
6.8 DEVICE MEMORY MANAGEMENT ...18
6.9 MULTIPLE MESSAGES IN PACKAGE ..19
6.10 LARGE OBJECT HANDLING..20
6.11 SYNC WITHOUT SEPARATE INITIALIZATION ...21

6.11.1 Robustness and Security Considerations...22
6.12 BUSY SIGNALING ..22

6.12.1 Busy Status from Server..22
6.12.2 Result Alert from Client ..23

7. AUTHENTICATION ...25
7.1 AUTHENTICATION CHALLENGE...25
7.2 AUTHORIZATION ..25
7.3 SERVER LAYER AUTHENTICATION..25
7.4 AUTHENTICATION OF DATABASE LAYER ..26
7.5 AUTHENTICATION EXAMPLES ...26

7.5.1 Basic authentication with a challenge ...26
7.5.2 MD5 digest access authentication with a challenge ..27

8. SYNC INITIALIZATION..30
8.1 INITIALIZATION REQUIREMENTS FOR CLIENT ...30

8.1.1 Example of Sync Initialization Package from Client ..32
8.2 INITIALIZATION REQUIREMENTS FOR SERVER...33

8.2.1 Example of Sync Initialization Package from Server..35
8.3 ERROR CASE BEHAVIORS ..37

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 5 (63)

8.3.1 No Packages from Server..37
8.3.2 No Initialization Completion from Client ...37
8.3.3 Initialization Failure ..37

9. TWO-WAY SYNC..38
9.1 CLIENT MODIFICATIONS TO SERVER ..38

9.1.1 Example of Sending Modifications to Server ...40
9.2 SERVER MODIFICATIONS TO CLIENT ..41

9.2.1 Example of Sending Modifications to Client ..42
9.3 DATA UPDATE STATUS FROM CLIENT...43

9.3.1 Example of Data Update Status to Server ...44
9.4 MAP ACKNOWLEDGEMENT FROM SERVER...45

9.4.1 Example of Map Acknowledge...45
9.5 SLOW SYNC...46
9.6 ERROR CASE BEHAVIORS ..46

9.6.1 No Packages from Server after Initialization ..46
9.6.2 No Data Update Status from Client...46
9.6.3 No Data Map Acknowledge from Server..46
9.6.4 Errors with Defined Error Codes...47

10. ONE-WAY SYNC FROM CLIENT ONLY ...48
10.1 CLIENT MODIFICATIONS TO SERVER ..48
10.2 STATUS FROM SERVER ...48
10.3 REFRESH SYNC FROM CLIENT ONLY ..49
10.4 ERROR CASES BEHAVIOR ..49

10.4.1 No Packages from Server after Initialization ..49
10.4.2 Errors with Defined Error Codes...49

11. ONE-WAY SYNC FROM SERVER ONLY ..50
11.1 SYNC ALERT TO SERVER..50
11.2 SERVER MODIFICATIONS TO CLIENT ..50
11.3 DATA UPDATE STATUS FROM CLIENT...50
11.4 MAP ACKNOWLEDGE FROM SERVER ..51
11.5 REFRESH SYNC FROM SERVER ONLY..51
11.6 ERROR CASES...51

11.6.1 No Packages from Server..51
11.6.2 No Data Update Status from Client...51
11.6.3 No Map Ack from Server..51
11.6.4 Errors with Defined Error Codes...51

12. SERVER ALERTED SYNC ..52
12.1 SYNC ALERT ...52
12.2 ERROR CASES BEHAVIOR ..53

12.2.1 No Packages from Client...53
12.2.2 Errors with Defined Error Codes...53

13. PROTOCOL VALUES AND ALERT CODES..54
13.1 PROTOCOL VALUES..54
13.2 ALERT CODES...54

14. EXAMPLES ..56
14.1 WBXML EXAMPLE ...56
14.2 EXAMPLE OF SYNC WITHOUT SEPARATE INITIALIZATION...59

APPENDIX A. STATIC CONFORMANCE REQUIREMENTS (NORMATIVE) ..62
Conformance Requirements for SyncML Server ..62
Conformance Requirements for SyncML Client...62

APPENDIX B. CHANGE HISTORY (INFORMATIVE) ...63

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 6 (63)

2. Scope
The SyncML Initiative, Ltd. was a not-for-profit corporation formed by a group of companies who co-operated to
produce an open specification for data synchronization. Prior to SyncML, data synchronization and device management
had been based on a set of different, proprietary protocols, each functioning only with a very limited number of devices,
systems and data types. These non-interoperable technologies have complicated the tasks of users, manufacturers,
service providers, and developers. Further, a proliferation of different, proprietary data synchronization protocols has
placed barriers to the extended use of mobile devices, has restricted data access and delivery and limited the mobility of
the users.

SyncML Components

SyncML is a data synchronization specification that contains the following main components:

• An XML-based representation protocol

• A synchronization protocol

• Transport bindings for the synchronization protocol

The data representation specifies an XML DTD that allows the representation of all the information required to perform
synchronization, including data, metadata and commands. The synchronization protocols specifies how SyncML
messages conforming to the DTD are exchanged in order to allow a SyncML client and server to exchange additions,
deletes, updates and other status information.

The synchronization protocol supports both two-way and one-way synchronization.

There are also DTDs which define the representation of information about the device such as memory capacity, and the
representation of various types of meta information such as security credentials.

Although the SyncML specification defines transport bindings that specify how to use a particular transport to exchange
messages and responses, the SyncML representation, and synchronization protocols are transport-independent. Each
SyncML package is completely self-contained, and could in principle be carried by any transport. The initial bindings
specified are HTTP, WSP and OBEX, but there is no reason why SyncML could not be implemented using email or
message queues, to list only two alternatives. Because SyncML messages are self-contained, multiple transports may be
used without either the server or client devices having to be aware of the network topology. Thus, a short-range OBEX
connection could be used for local connectivity, with the messages being passed on via HTTP to an Internet-hosted
synchronization server.

Either the client or the server may initiate a synchronization session, and both one and two-way synchronization are
supported. Both linear (point-to-point) and star (one-to-many) synchronization topologies may be implemented using
SyncML.

To reduce the data size, a binary coding of SyncML based on the WAP Forum’s WBXML is defined. Messages may
also be passed in clear text if required. In this and other ways SyncML addresses the bandwidth and resource limitations
imposed by mobile devices.

SyncML is both data type and data store independent. SyncML can carry any data type which can be represented as a
MIME object. To promote interoperability between different implementations of SyncML, the specification includes
the representation formats used for common PIM data

This document specifies the message flows between data synchronization client and server in order to ensure an inter-
operable solution across all devices.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 7 (63)

3. References
3.1 Normative References
[DSREPU] “SyncML Representation Protocol, Data Synchronization Usage”, Open Mobile Alliance,

OMA-SyncML-DataSyncRepInformation-V1_1_2,
URL:http:www.openmobilealliance.org/tech/docs.

[IMCVCAL] “vCalendar – The electronic calendaring and scheduling exchange format – Version 1.0”,
URL:http://www.imc.org/pdi/vcal-10.doc

[IMEI] “Digital cellular telecommunications system (Phase 2+) (GSM); Universal Mobile
Telecommunications System (UMTS); Numbering, addressing and identification” (3G TS 23.003
Version 3.4.0 Release 1999),
URL:http://webapp.etsi.org/action/PU/20000523/ts_123003v030400p.pdf

[META] “SyncML Meta Information protocol specification”, Open Mobile Alliance, OMA-SyncML-
MetaInformation-V1_1_2, URL:http:www.openmobilealliance.org/tech/docs

[REPPRO] “SyncML Representation Protocol”, Open Mobile Alliance, OMA-SyncML-RepPro-V1_1_2,
URL:http:www.openmobilealliance.org/tech/docs

[RFC1321] “The MD5 Message-Digest Algorithm“, URL:http://www.ietf.org/rfc/rfc1321.txt

[RFC2045] “Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies”,
N. Freed & N. Borenstein, November 1966, URL:http://www.ietf.org/rfc/rfc2045.txt

[RFC2119] “Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997,
URL:http://www.ietf.org/rfc/rfc2119.txt

[RFC2396] “Uniform Resource Identifiers (URI): Generic Syntax”, T. Berners-Lee, et al., August 1998,
URL:http://www.ietf.org/rfc/rfc2396.txt

[SYNCRTK] “SyncML Reference Toolkit Manual”, (included in toolkit_4.1.zip, the initial open source
release of SyncML C Toolkit),
URL:http://sourceforge.net/project/showfiles.php?group_id=58216

[WBXML] “WAP Binary XML Content Format Specification”, WAP Forum, WAP-240-WBXML,
URL:http://www.openmobilealliance.org/tech/docs

[XML] “Extensible Markup Language (XML) 1.0”, World Wide Web Consortium Recommendation,
URL:http://www.w3.org/TR/REC-xml

3.2 Informative References
None.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

http:www.openmobilealliance.org/tech/docs
http://www.imc.org/pdi/vcal-10.doc
http://webapp.etsi.org/action/PU/20000523/ts_123003v030400p.pdf
http:www.openmobilealliance.org/tech/docs
http:www.openmobilealliance.org/tech/docs
http://www.ietf.org/rfc/rfc1321.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2396.txt
http://sourceforge.net/project/showfiles.php?group_id=58216
http://www.openmobilealliance.org/tech/docs
http://www.w3.org/TR/REC-xml

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 8 (63)

4. Terminology and Conventions
4.1 Conventions
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except Scope and Introduction, are normative, unless they are explicitly indicated to be
informative.

Any reference to components of the SyncML DTD or XML snippets is specified in this typeface.

4.2 Definitions
Application - A SyncML application that supports the SyncML protocol. The application can either be the originator or
recipient of the SyncML protocol commands. The application can act as a SyncML client or a SyncML server.
Capabilities exchange - The SyncML capability that allows a client and server to exchange what device, user and
application features they each support.
Client - A SyncML Client refers to the protocol role when the application issues SyncML “request” messages. For
example in data synchronization, the Sync SyncML Command in a SyncML Message.

Client Modification – A modification of an item, which occurs in a client database before the modification is
synchronized to the server database.
Command - A SyncML Command is a protocol primitive. Each SyncML Command specifies to a recipient an
individual operation that is to be performed. For example, the SyncML Commands supported by this specification
include Add, Alert, Atomic, Copy, Delete, Exec, Get, Map, Replace, Search, Sequence and Sync.
Data - A unit of information exchange, encoded for transmission over a network.
Data collection - A data element which acts as a container of other data elements, (e.g., {c {{i1, data1}, ... {in,
datan}}}). In SyncML, data collections are synchronized with each other. See data element.
data element -A piece of data and an associated identifier for the data, (e.g., {i, data}).
Data element equivalence -When two data elements are synchronized. The exact semantics is defined by a given data
synchronization model.
Data exchange - The act of sending, requesting or receiving a set of data elements.
Data format - The encoding used to format a data type. For example, characters or integers or character encoded binary
data.
Data synchronization - The act of establishing an equivalence between two data collections, where each data element
in one item maps to a data item in the other, and their data is equivalent.
Data synchronization protocol - The well-defined specification of the “handshaking” or workflow required to
accomplish synchronization of data elements on an originator and recipient data collection. The SyncML specification
forms the basis for specifying an open data synchronization protocol.

Data type - The schema used to represent a data object (e.g., text/calendar MIME content type for an iCalendar
representation of calendar information or text/directory MIME content type for a vCard representation of contact
information).
GUID (Global Unique Identifier) – A number assigned to an object in a database. GUID values are never reused.
Note that in practice, numbers do not have to be unique forever, they MUST only be unique as long as they exist in
some mapping table (also see LUID).
LUID (Locally Unique Identifier) – A number assigned to an object in a database. LUID values are only unique
locally, i.e., to a particular SyncML client database, but MAY be present on other SyncML client databases. In this
protocol, the SyncML client device assigns to each object a locally unique, non-reusable identifier, or LUID. They are
unique per device and per application.
Message - A SyncML Message is the primary contents of a SyncML Package. It contains the SyncML Commands, as
well as the related data and meta-information. The SyncML Message is an XML document.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 9 (63)

Operation - A SyncML Operation refers to the conceptual transaction achieved by the SyncML Commands specified
by a SyncML Package. For example in the case of data synchronization, “synchronize my personal address book with a
public address book”.
Originator - The network device that creates a SyncML request.
Package - A SyncML Package is the complete set of commands and related data elements that are transferred between
an originator and a recipient. The SyncML package can consist of one or more SyncML Messages.
Parser - Refers to an XML parser. An XML parser is not absolutely required to support SyncML. However, a SyncML
implementation that integrates an XML parser may be easier to enhance.
This document assumes that the reader has some familiarity with XML syntax and terminology.
Recipient - The network device that receives a SyncML request, processes the request and sends any resultant SyncML
response.
Representation protocol - A well-defined format for exchanging a particular form of information. SyncML is a
representation protocol for conveying data synchronization and device management operations.
Request – A message or a command sent from a device to another.
Server - A SyncML Server refers to the protocol role when an application issues SyncML “response” messages. For
example in the case of data synchronization, a Results Command in a SyncML Message.
Server Modification – A modification of an item, which occurs in the server database before the modification is
synchronized to the client database.
Slow Synchronization – When a data set is synchronized for the first time, or state relating to the synchronization has
been lost, the whole data set MUST be copied from one device to the other. Since this can be a time-consuming
operation, this is known as slow synchronization.
Synchronization Anchor – A string representing a synchronization event. The format of the string will typically be
either a sequence number or an ISO 8601-formatted extended representation, basic format date/time stamp.
Synchronization Data - Refers to the data elements within a SyncML Command. In a general reference, can also refer
to the sum of the data elements within a SyncML Message or SyncML Package.
Synchronization Engine – The portion of a SyncML server that can analyze a data set and modifications to that data
set made by both SyncML server and SyncML client. The synchronization engine will implement policies to enable the
detection and resolution of conflicting changes.
SyncML request message - An initial SyncML Message that is sent by an originator to a recipient network device.
SyncML response message - A reply SyncML Message that is sent by a recipient of a SyncML Request back to the
originator of the SyncML Request.
Temporary GUID – A temporary number assigned by the server to an object in a database (See also GUID.).
Temporary GUID values are valid till the map operation for the items, with which the temporary GUIDs are associated,
has been received from the client. After that the temporary GUID can be erased.

4.3 Abbreviations
DTD Document Type Definition
GUID Global Unique IDentifier
HTTP HyperText Transfer Protocol
IMEI International Mobile Equipment Identifier
LUID Local Unique Identifier
MSC Message Sequence Chart
MSG Message
OBEX OBject Exchange protocol
URI Uniform Resource Identifier [RFC2396]
URL Uniform Resource Locator [RFC2396]

WAP Wireless Application Protocol
WSP Wireless Session Protocol
XML Extensible Markup Language

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 10 (63)

5. Introduction
This specification defines synchronization protocol between a SyncML client and server in form of message sequence
charts. It specifies how to use the SyncML Representation protocol so that interoperating SyncML client and server
solutions are accomplished.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 11 (63)

6. SyncML Introduction
The purpose of this specification is to define a synchronization protocol using the SyncML Representation protocol
[REPPRO]. This protocol is called the SyncML Sync Protocol. This specification defines the protocol for different sync
procedures, which can occur between a SyncML client and a SyncML server, in the form of message sequence charts
(MSC’s). The specification covers the most useful and common synchronization cases (Chapters 9 - 13).

6.1 SyncML Framework
This specification can be implemented by using the SyncML interface from the SyncML Framework (See Figure 1).
Not all the features of the SyncML Interface are required to comply with this specification.

6.1.1.1 Figure 1 SyncML Framework
The application “A” depicts a networked service that provides data synchronization service for other applications, in
this case application “B”, on some networked device. The service and device are connected over some common
network transport, such as HTTP.

In the figure above, the ‘Sync Engine’ functionality is completely placed onto the SyncML server side even if some
SyncML client implementations may in practice provide some sync engine functionality, too. The ‘Sync Server Agent’
and the ‘Sync Client Agent’ use the protocol defined in this specification and the representation protocol [DSREPU]
offered by the SyncML interface (‘SyncML I/F’) [SYNCRTK] to communicate with each other.

6.2 Device Roles
Figure 2 depicts a synchronization example in which a mobile phone acts as a SyncML client and a server acts as a
SyncML server. The SyncML client sends SyncML message including the data modifications made in the client to the
SyncML server. The server synchronizes the data (including possible additions, replaces, and deletions) within the
SyncML messages with data stored in the server. After that, the SyncML server returns its modifications back to the
SyncML client.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 12 (63)

SyncML message, client modifications

SyncML client SyncML server

SyncML message, server modifications

6.2.1.1 Figure 2 Synchronization Example with Mobile Phone and Server
The example presented the figure above is very simple. However, this example describes the roles of the devices in this
specification. That is:

SyncML Client – This is the device that contains a sync client agent and that sends first its modifications to the server.
The client must also be able to receive responses from the SyncML server. Although the SyncML client has always the
role to send its modifications first, in some cases the server may have a role to initiate synchronization. The SyncML
client is typically a mobile phone, PC, or PDA device.

SyncML Server – This is the device, which contains a sync server agent and sync engine, and which usually waits that
the SyncML client starts synchronization and sends the clients modification to the server. The server is responsible for
processing the sync analysis when it has received the client modifications. In addition, it may be able to initiate
synchronization if unsolicited commands from the server to the client are supported on the transport protocol level.
Typically, the SyncML server is a server device or PC.

6.3 Sync Types
This specification defines seven different sync types. These are introduced in Table 1.

Table 1 SyncML Sync Types

Sync Scenario Description Reference

Two-way sync A normal sync type in which the client and the server exchange
information about modified data in these devices. The client sends
the modifications first.

Chapter 10

Slow sync A form of two-way sync in which all items are compared with each
other on a field-by-field basis. In practice, this means that the client
sends all its data from a database to the server and the server does
the sync analysis (field-by-field) for this data and the data in the
server.

Chapter 10.5

One-way sync
from client only

A sync type in which the client sends its modifications to the server
but the server does not send its modifications back to the client.

Chapter 11

Refresh sync
from client only

A sync type in which the client sends all its data from a database to
the server (i.e., exports). The server is expected to replace all data in
the target database with the data sent by the client.

Chapter 11.3

One-way sync
f l

A sync type in which the client gets all modifications from the server
b t th li t d t d it difi ti t th

Chapter 12

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 13 (63)

from server only but the client does not send its modifications to the server.

Refresh sync
from server only

A sync type in which the server sends all its data from a database to
the client. The client is expected to replace all data in the target
database with the data sent by the server.

Chapter 12.5

Server Alerted
Sync

A sync type in which the server to alerts the client to perform sync.
That is, the server informs the client to starts a specific type of sync
with the server.

Chapter 13

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 14 (63)

7. Protocol Fundamentals
In this chapter, the common features and requirements for all sync types are defined.

7.1 Change Log Information
This protocol requires that devices (the client and server) are able to keep tracks of changes that have happened between
synchronizations. I.e., they are responsible for maintaining the change log information about the modifications
associated with data items of a database. The types of the modifications can be e.g., replace, addition, and deletion. This
protocol does not specify in which format this change log information is maintained inside devices. However, when
synchronization is started, the devices MUST be able to specify, which data items have changed. To specify the
changed data items, the unique identifiers are used (See also Chapter 7.3). To indicate the type of a modification, the
different operations (e.g., Replace) are used.

7.1.1 Multiple devices
If a device synchronizes with multiple devices, the change log information MUST be able to indicate all modifications
related to a previous synchronization with each device.

7.2 Usage of Sync Anchors
7.2.1 Sync Anchors for Databases
To enable sanity checks of synchronization, this protocol uses sync anchors (See Definitions) associated with databases
(e.g., a calendar database). There are two sync anchors, Last and Next (See [META]), which are always sent at the
initialization of sync. The Last sync anchor describes the last event (e.g., time) when the database was synchronized
from the point of sending device and the Next sync anchor describes the current event of sync from the point of sending
device. Thus, both the client and the server send their own anchors to each other. The sync anchors are sent within the
Meta information of an Alert operation by using the Meta Information DTD as defined by the SyncML Initiative. The
receiving device MUST echo the Next sync anchor back to the transmitting device in the Status for the Alert command
(Data of the Item element inside Status).

The utilization of sync anchors is implementation specific but in order to enable the utilization, the Next sync anchor of
another device needs to be stored until the next synchronization. The SyncML server MUST store the Next sync anchor
sent by the client to enable this utilization.

If the device stores the Next sync anchor, it is able to compare during the next synchronization whether the sync anchor
is the same as the Last sync anchor sent by another device. If they are matching, the device is able to conclude that no
failures have happened since last sync. If they are not matching, the device can request a special action from another
device (e.g., slow sync).

The stored sync anchors must not be updated before the synchronization session is finished.

The synchronization session is finished after a device is not going to send and is not expecting to receive any SyncML
messages from other device, and the synchronization was successful on the Sync command level (i.e. no other than 200-
class statuses has been returned for Sync commands). Also the transport level (directly under SyncML level)
communication has to be properly ended before synchronization can be seen as finished. If the communication between
synchronizing devices is not ended properly according to transport level specification, devices MUST NOT update their
sync anchors.

7.2.1.1 Example of Database Sync Anchor Usage
In this example, a sync client and server synchronize twice (sync sessions #1 and #2) with each other. After the sync
session #1, the persistent memory of the sync client is reset. Because of that, the database anchors do not match at the
sync session #2, the sync server notifies this, and it initiates the slow sync with the client.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 15 (63)

The sync session #1 is started at 10:10:10 AM on the 10th of October 2001. The previous synchronization (before the
sync session #1) was started at 09:09:09 AM on the 9th of September 2001. At this synchronization session, the slow
sync is not initiated because the sync anchors match. I.e., the sync server has the sync event (09:09:09 AM on the 9th of
September, 2001).

The sync session #2 is started at 11:11:11 AM on the 11th of November 2001. Because the memory of the sync client
was reset after the sync session #2, the sync server initiates the slow sync.

In the figure below, both the sync sessions are depicted. Only the initialization phases and the client sync anchors are
shown in the figure.

SyncML Client SyncML Server

Pkg #1: Last (20010909T090909Z), Next(20011010T101010Z)

Pkg #2: OK

Sync Session #1

The Sync Server
has stored the client
sync event
(09:09:09 AM,
9/9/2001).

…

Sync Session #1 completed, the sync server updates the sync anchor.

The Sync Server
has stored the client
sync event
(10:10:10 AM,
10/10/2001).

The persistent storage of the client is reset.

Sync Session #2

Pkg #1: Last (00000000T000000Z), Next(20011111T111111Z)

Pkg #2: Refresh required ('508')

…

The sent and the
stored anchors
do not match.

Figure 3 Example of Sync Anchor Usage

7.2.2 Sync Anchors for Data Items
This protocol does not specify the functionality to transfer the sync anchors associated with individual data items. If this
functionality is desired, it MUST be provided inside the data items if it is included. An example is the Sequence
Number property of vCalendar, the electronic calendaring and scheduling exchange format [IMCVCAL].

7.3 ID Mapping of Data Items
This protocol is based on the principle that the client and the server can have their own ID’s for data items in their
databases. These ID’s MAY or MAY NOT match with each other. Because the ID’s can be different, the server MUST
maintain the ID mapping table for items. That is, the server knows which client ID (LUID) and which server ID (GUID)
points to the same data item.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 16 (63)

Figure 4 shows an example of an ID mapping table after synchronization. In this example the mapping table in the
server is depicted as a separate from the actual database.

 Client Device

 Client Database:

LUID Data
11 Car
22 Bike
33 Truck
44 Shoes

Server Device

Server Database:

GUID Data
1010101 Car
2121212 Bike
3232323 Truck
4343434 Shoes

Server Mapping Table:

GUID LUID
1010101 11
2121212 22
3232323 33
4343434 44

Figure 4 Example: ID Mapping of Data Items

The LUID’s are always assigned by the client device. This means that even if the server adds an item to the client
device, the client assigns a LUID for this item. In this case, the client returns the LUID of the new item to the server.
The Map operation is used for this. After the Map operation is sent by the client, the server is able to update its mapping
table with the client LUID.

When a server is adding a new item to a client, it must not send its actual GUID if the size of the actual GUID is
exceeding the maximum size of the temporary GUID defined by the client. If size of the actual GUID’s exceeds the
maximum size, the server MUST use a smaller temporary GUID when adding an item to the client. The maximum size
of the temporary GUID is defined in the device information document of the client.

If the server has modified an existing item (i.e., an item which is on both the devices), the server MUST identify the
item by using the client LUID for this item, when the modification (e.g., replace or deletion) is synchronized with the
client. In the case of the client modifications, items are also identified with LUID’s, when the modifications are sent to
the server. The server can map a LUID to its own GUID by utilizing the mapping table.

7.3.1 Caching of Map Operations
After a SyncML server has requested one or more additions to be done by the SyncML client, and the client has
completed these additions to its database and allocated LUID’s for them, the client has a possibility to cache the Map
operations associated with these LUID’s. The client MAY cache the Map operations, if the server has explicitly
indicated that it does not require a response to its sync message. However, the client is always allowed to send the Map
operations back to the server immediately after adding the items to the client database. This is the case even if the server
has indicated that it does not require a response.

If the map items are cached, the Map operations are sent back to the server at the beginning of a subsequent
synchronization session (in Pkg #3 from the client to the server). That is, the server MUST receive the Map operations
before it is able to process any client updates related to the items with which the Map operations are associated.

If the SyncML server has the control of a transport protocol (e.g., acting as a OBEX client), it MUST always request a
response to the Sync command, which it has sent to the client. Thus, the server MUST NOT disconnect before it has got
a response to the Sync command from the client.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 17 (63)

7.4 Conflict Resolution
Conflicts, which happen because of modifications on the same items on the server and the client databases, are in
general resolved by a sync engine SW on the server device. This protocol with the SyncML Representation protocol
provides the functionality to notify the SyncML client about the resolved conflicts.

Although the SyncML server is in general assumed to include the sync engine functionality, the possibility that the
client would also provide some sync engine functionality is not excluded. In this case, the client MAY also resolve
conflicts. Then, the server only returns back to the client a notification that a conflict or conflicts have happened and the
client can resolve the conflicts.

There are multiple policies to resolve the conflicts and the SyncML Representation protocol provides the status codes
(See Chapter 11 in REPPRO) for some common policies. Thus, if the sync engine of the server resolves a conflict, it
can send information about the conflict and how the conflict was resolved. This notification happens by using the Status
elements. The example below depicts a case that the server sends a status to the client.
<Status>
<CmdID>1</CmdID>
<MsgRef>1</MsgRef>
<CmdRef>2</CmdRef>
<Cmd>Replace</Cmd>
<SourceRef>1212</SourceRef>
<Data>208</Data> <!-- Conflict, originator wins -->
</Status>

The administration, and how the conflict resolution policy is configured, is out of the scope of this protocol and the
SyncML Representation protocol.

7.5 Security
This protocol requires the support for the basic authentication and the MD5 digest access authentication on the server
layer (i.e., in SyncHdr). Both the sync client and the server can challenge for the authentication and the device receiving
the authentication challenge must be able to send the authorization credentials back.

The authentication procedure used by this protocol is defined in Chapter 8.

7.6 Addressing
7.6.1 Device and Service Addressing
The device or service addressing within the SyncML SyncHdr element is done by using the URI scheme defined in the
SyncML representation specification. Devices connected to the Internet constantly, MAY refer to the URI-based
addressing. E.g., the source would be:
<Source>
<LocURI>http://www.syncml.org/sync-server</LocURI>
</Source>

Devices, which are, for example, connected temporarily, MAY prefer to identify themselves with an own identification
mechanism. E.g., the Source element of a mobile phone device could be:
<Source>
<LocURI>IMEI:493005100592800</LocURI>
</Source>

The addressing scheme on the transport level (e.g., HTTP) does not match with the device or server address, if this type
of scheme is used.

7.6.2 Usage of RespURI and Re-direction Status Codes
This protocol requires that the devices support receiving the RespURI element as specified in the SyncML
Representation Protocol specification, but the support of the re-direction status codes (3XX) is not required.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 18 (63)

7.6.3 Database Addressing
The database addressing within the SyncML operations is done by using the URI scheme defined in the SyncML
Representation protocol. Absolute or relative URI’s can be used for the server and client databases. E.g., the source
elements for a server database in these two cases can look like:
<Sync>...
<Target>
<LocURI>./calendar/james_bond</LocURI>
</Target>
...</Sync>
<Sync>
<Target>
<LocURI>http://www.syncml.org/sync-server/calendar/james_bond</LocURI>
</Target>
...</Sync>

7.6.4 Addressing of Data Items
The addressing of data items within the SyncML Item elements is done by using the URI-based scheme defined in the
SyncML representation specification. Relative URI’s can be used. E.g., the source element for one item can look like:
<Item>...
<Source>
<LocURI>101</LocURI>
</Source>

...</Item>

7.7 Exchange of Device Capabilities
This protocol provides the functionality exchange the device capabilities during the initialization (See Chapter 9). The
exchange can be requested by the sync client or the sync server.

The sync client MUST send its device information to the server when the first synchronization is done with a server or
when the static device information has been updated in the client. The client MUST also be able to transmit its device
information if it is asked by the server. The client SHOULD also support the receiving of the server device information.

The sync server MUST be able to send its device information if requested by the client. The server MUST support the
functionality of receiving and processing the client device information when sent by the client or requested by the
server itself.

Implementation consideration. The exchange of the device information can require that a quite large amount of data is
transferred over the air. Thus, the devices should avoid requesting the exchange at every time when sync is initialized.
In addition, the devices should consider whether they need to send all device specific data if it is clear that another
device cannot utilize it. E.g., if the client indicates that it does not support the vCard3.0 content format, the server
SHOULD NOT send the supported properties of vCard3.0 if it supports it.

7.8 Device Memory Management
This protocol with the Meta Information DTD provides possibility to specify the dynamic memory capabilities for
databases of a device or for persistent storage on a device. The capabilities specify how much memory there is left for
usage. The dynamic capabilities can be specified every time when the synchronization is done. The static memory
capabilities are exchanged when the sync initialization is done (See Chapter 7.7 and Chapter 9).

Although the sending of persistent memory capabilities is optional for both the sync clients and servers, the sync clients
SHOULD send those and the sync servers MAY.

The usage of different types of memory capabilities is dependent on the persistent storage model on a device. Below
there is an example how the dynamic memory capabilities of a calendar database on a device are represented, when the
Sync command is sent.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 19 (63)

<Sync>
<CmdID>1</CmdID>
<Target><LocURI>./calendar/james_bond</LocURI></Target>
<Source><LocURI>./dev-calendar</LocURI></Source>
<Meta>
<Mem xmlns=’syncml:metinf’>
<FreeMem>8100</FreeMem>
<!--Free memory (bytes) in Calendar database on a device -->
<FreeId>81</FreeId>
<!--Number of free records in Calendar database-->
</Mem>
</Meta>
<Replace>
...
</Replace>
...
</Sync>

The database-specific memory elements in the Meta element of the Sync command MUST be associated with the
source database specified in the Source element of the Sync command. Thus, the database is specified inside the Meta
element anymore.

7.9 Multiple Messages in Package
This protocol provides the functionality to transfer one SyncML package in multiple SyncML messages. This may be
necessary if one SyncML package is too large to be transferred in one SyncML message. This limitation may be caused
e.g., by the transport protocol or by the limitations of a small footprint device.

If a SyncML package is transferred in multiple SyncML messages, the last message in the package MUST include the
Final element (See REPPRO). Other messages belonging to the package MUST NOT include the Final element. The
Final element must only be included when all necessary commands belonging to a specific package have been sent. The
final element must not be included if the other end has not closed the preceding package. E.g., if the server is still
sending the package #4 to the client, the client must not close the package #5 prior to receiving the last message
belonging to the package #4. The exclusion of the Final element must not be used to indicate that a logical phase is not
completed if an error occurs.

If a device receives a message in which the Final flag is missing and a Sync element for a database is included, the
device MUST be able to handle the case that in the next message, there is another Sync element for the same database.

The device, which receives the SyncML package containing multiple messages, MUST be able to ask more messages.
This happens by sending an Alert command with a specific alert code, 222 back to the originator of the package, or if
there are other SyncML commands to be sent as a response, the Alert command with the 222 alert code MAY be
omitted. After receiving the message containing the Final element, the Alert command MUST NOT be used anymore.

More messages may not be desired if errors, which prevent the continuation of synchronization, have occurred.

The receiver of a package may start to send its next package at the same time when asking more messages from the
originator if this makes sense. Thus, in Chapters 9 - 13, it is specified which commands or elements are allowed to be
sent before receiving the final message belonging to a package.

Below, there is depicted an example that the sync client is sending Package #3 in multiple messages (2 messages) and
the server also sends Package #4 in multiple messages (2 messages).

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 20 (63)

SyncML Client SyncML Server

Pkg #3, Msg #1: Status for Init, Some of client modifications

Pkg #4, Msg #1: Status for client mod's, Alert for next msg

Pkg #3, Msg #2: Rest of client mod's, Alert for next msg, Final

Pkg #4, Msg #2: Status for client mod's, Server mod's, Final

Pkg #5, Msg #1: Status for server mod's, (Map operation)

…

…

Figure 5 Example of Sending Multiple Messages in a Package

7.10 Large Object Handling
The protocol provides a means to synchronize an object whose size exceeds that which can be transmitted within one
message. This is achieved by splitting the object into chunks that will fit within the message and using the <MoreData/>
element to signal to the recipient that the data item is incomplete and has further chunks to come.

On receipt of a data object with the <MoreData/> element, the recipient MUST respond with a status response “213 –
Chunked item accepted and buffered” and, if there are no other commands to be sent, ask for the next message using the
Alert 222 mechanism defined in section 7.9.

On receipt of the last chunk of the data object the recipient reconstructs the data object from its constituent chunks and
applies the requested command. The appropriate status MUST then be sent to the originator. A command on a chunked
object MUST implicitly be treated as atomic; i.e. the recipient must only commit the object once all chunks have been
successfully received and reassembled.

Data objects that fit within a single message MUST NOT be followed by the <MoreData/> element. Data objects that
span multiple messages MUST have the <MoreData/> element after all chunks except the last chunk.

A new data object MUST NOT be added by a sender to any message until the previous data object has been completed.
If a data object is chunked across multiple messages the chunks MUST be sent in contiguous messages. New Sync
commands (i.e. Add, Replace, Delete, Copy, Atomic or Sequence) or new Items MUST NOT be placed between chunks
of a data object.

Meta and Item information SHOULD be repeated on each subsequent message containing chunks of the same data
object. Authentication details related to the data object may vary between messages bearing chunks of the same data
object as defined in the section 8.

If a device supports Large Object Handling, it MUST declare the maximum size of object it is capable of receiving as
Meta information within the Alert or Sync command, as specified in [META].

Servers and clients SHOULD use knowledge of their own and the recipient’s MaxMsgSize to determine at what size
segmentation must occur. If an item is chunked across multiple messages, the <Size> element of the Meta information
MUST be used to signal to the recipient the overall size of the data object. The <Size> element MUST only be specified
in the first chunk of the item.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 21 (63)

On receipt of the last chunk, the recipient MUST validate that the size of re-constituted chunks match the object <Size>
supplied in the Meta information by the sender. If the size does not match then error status 424 – “Size mismatch”. The
recipient MUST NOT commit the command. The sender MAY attempt to retransmit the entire data object.

If the recipient detects a new data object or command before the previous item has been completed (by the chunk
without the <MoreData/> Element), the recipient MUST respond with an Alert 223 – “End of Data for chunked object
not received”. The Alert should contain the source and/or target information from the original command to enable the
sender to identify the failed command. Note: a Status would not suffice here because there would not necessarily be a
command ID to refer to. The recipient MUST NOT commit the command. The sender MAY attempt to retransmit the
entire data object.

Below is an example segment of message exchange in which a large object is added:
<Add>
<CmdID>15</CmdID>
<Meta>
<Type>text/x-vcard</Type>
<size>3000</size>
</Meta>
<Item>
<Source>
<LocURI>2</LocURI>
</Source>
<Data>BEGIN:VCARD
VERSION:2.1
FN:Bruce Smith
N:Smith;Bruce
TEL;WORK;VOICE:+1-919-555-1234
TEL;WORK;FAX:+1-919-555-9876
NOTE: here starts a huge note field, or icon etc...
</Data>
<MoreData/>
</Item>
</Add>

Recipient would send back its command(s) or an alert 222.
...
<Add>
<CmdID>28</CmdID>
<Item>
<Source>
<LocURI>2</LocURI>
</Source>
<Data>here is the rest of the huge field.....
blah, blah, blah.....
END:VCARD
</Data>
</Item>
</Add>
...

7.11 Sync without Separate Initialization
Synchronization can be started without a separate initialization (See the initialization in Chapter 9). This means that the
initialization is done simultaneously with sync. This can be done to decrease the number of SyncML messages to be
sent over the air.

If the sync is done without the initialization, the Alert command(s) (from the client) in Packet #1 is sent within Packet
#3, in which the Sync command(s) are also placed. Also, the Alert command(s) (from Server) in Packet #2 is sent
within Packet #4, in which the Sync command(s) are also placed.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 22 (63)

The sync server MUST be able to handle both the cases; sync with a separate initialization or sync without a separate
initialization.

See the example in Examples.

7.11.1 Robustness and Security Considerations
If the client implementation decides to use sync without a separate initialization, the following considerations should be
taken into account:

- The client sends its modifications to the server before the server gets the sync anchors from the client. Because
of this, the client may need to send all data again if the server has a need to request a slow sync.

- Server sync anchor are not received before sending the client modifications. Thus, if the client needs to request
a slow sync, earlier data, which was sent in Package #3 to the server, was unnecessarily sent and all data needs
to be sent to server.

- The client sends its modifications to the server before there is any possibility for the server to send its
credentials (if required) to the client. I.e., the client cannot be sure whether it is communicating with the
correct server.

7.12 Busy Signaling
If the server is able to receive the data from the client but it is not able to process the request(s) at a reasonable time1
after receiving the modifications from the client, the server SHOULD send information about that to the client. This
happens by sending the Busy Status package back to the client.

After the client has received a busy signal from the server, the client MAY ask for the sync results later or start the
synchronization from the beginning. If the client starts the synchronization from the beginning its ‘Last’ sync anchor
MUST not be updated.

If the server has sent the busy status to the client and it does not get a request from the client (i.e., Retry Alert), the
server MUST assume that the client has stopped the synchronization and start he synchronization from the beginning.
The server MUST NOT update its ‘Last’ sync anchor. The server MUST NOT either update the client Next sync
anchor.

7.12.1 Busy Status from Server
Informing the client that the server is busy happens by sending the Busy Status package to the client. This can be sent
before any package is completely received. The Busy Status package MUST NOT be used to return status information
related any individual data items or command which are in SyncBody of the client request.

The requirements for the elements within the Busy Status package are:

1. Requirements for the elements within the SyncHdr element.

- The value of the VerDTD element MUST be ‘1.1’.

- The value of the VerProto element MUST be ‘SyncML/1.1’.

- Session ID MUST be included to indicate the ID of a sync session.

- MsgID MUST be used to unambiguously identify the message belonging a sync session and traveling
from the server to the client.

- The Target element MUST be used to identify the target device.

1 This time is dependent e.g. on the transport protocol transferring SyncML messages.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 23 (63)

- The Source element MUST be used to identify the source device and service.

2. The Status element for the SyncHdr MUST be included in SyncBody.

- The status code (101, in progress) MUST be returned within the Status for the command sent by the
client. The status is returned for the SyncHdr command.

3. The Final element MUST NOT be used for the message.

7.12.1.1 Example of Busy Status

<SyncML>
<SyncHdr>
<VerDTD>1.1</VerDTD>
<VerProto>SyncML/1.1</VerProto>
<SessionID>1</SessionID>
<MsgID>2</MsgID>
<Target><LocURI>IMEI:493005100592800</LocURI></Target>
<Source><LocURI>http://www.syncml.org/sync-server</LocURI></Source>
</SyncHdr>
<SyncBody>
<Status>
<CmdID>1</CmdID>
<MsgRef>2</MsgRef><CmdRef>0</CmdRef><Cmd>SyncHdr</Cmd>
<TargetRef>http://www.syncml.org/sync-server</TargetRef>
<SourceRef>IMEI:493005100592800</SourceRef>
<Data>101</Data> <!--Statuscode for Busy-->
</Status>
</SyncBody>
</SyncML>

7.12.2 Result Alert from Client
The result alert is sent to ask results to the last message which was sent to the server. This is done by sending a Result
Alert package from the client to the server. A message within this package has the following requirements.

1. Requirements for the elements within the SyncHdr element.

- The value of the VerDTD element MUST be ‘1.1’.

- The value of the VerProto element MUST be ‘SyncML/1.1’.

- Session ID MUST be included to indicate the ID of a sync session.

- MsgID MUST be used to unambiguously identify the message belonging a sync session and traveling
from the client to the server.

- The Target element MUST be used to identify the target device and service.

- The Source element MUST be used to identify the source device.

2. The Alert element MUST be included in SyncBody. There are the following requirements for this Alert
element.

- CmdID is required.

- The Item element is used to specify the server and the client device.

- The Data element is used to include the Alert code. The alert code is ‘221’ (See Alert Codes).

3. The Final element MUST NOT be used for the message.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 24 (63)

If the server is still busy, when it receives this Result Alert from the client, it MUST again return the Busy Status with
the ‘101’ status code back to client. The status code is associated with the SyncHdr and the Alert command sent by the
client.

7.12.2.1 Example of Result Alert

<SyncML>
<SyncHdr>
<VerDTD>1.1</VerDTD>
<VerProto>SyncML/1.1</VerProto>
<SessionID>1</SessionID>
<MsgID>3</MsgID>
<Target><LocURI>http://www.syncml.org/sync-server</LocURI></Target>
<Source><LocURI>IMEI:493005100592800</LocURI></Source>
</SyncHdr>
<SyncBody>
<Alert>
<CmdID>1</CmdID>
<Data>221</Data>
<Item>
<Target><LocURI>http://www.syncml.org/sync-server</LocURI></Target>
<Source><LocURI>IMEI:493005100592800</LocURI></Source>
</Item>
</Alert>
</SyncBody>

7.12.2.1.1.1.1. </SyncML>

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 25 (63)

8. Authentication
In this chapter, the authentication procedures are defined for the basic and MD5 digest access authentication. Both of
them MUST be supported by the devices conforming to this specification.

8.1 Authentication Challenge
If the response code to a request (message or command) is 401 (‘Unauthorized’) or 407 (Authentication required), the
request requires authentication. In this case, the Status command to the request MUST include a Chal element (See
[DSREPU]). The Chal contains a challenge applicable to the requested resource. The device MAY repeat the request
with a suitable Cred element (See [DSREPU]). If the request already included the Cred element, then the 401 response
indicates that authorization has been refused for those credentials.

Both, the sync client and the sync server can challenge for authentication.

If the 401 response (i.e., Status) contains the same challenge as the prior response, and the user agent has already
attempted authentication at least once, then the user SHOULD be presented the entity that was given in the response,
since that entity might include relevant diagnostic information.

If the response code to a request is 212 (‘Authentication accepted’), no further authentication is needed for the
remainder of the synchronization session. In the case of the MD5 digest access authentication, the Chal element can
however be returned. Then, the next nonce in Chal MUST used for the digest when the next sync session is started.

If a request includes security credentials and the response code to the request is 200, the same credentials MUST be sent
within the next request. If the Chal element is included and the MD5 digest access authentication is required, a new
digest must be created by using the next nonce. In the case of the MD5 digest access authentication, the Chal element
can however be returned. The next nonce in Chal MUST used when the next request is sent.

Once authentication has occurred, the authentication type for a security layer MUST be kept same for the whole
session.

In case of authentication failure (either the userid and/or password was wrong or authentication was required)
requirements are:

- The response message indicating the authentication failure on server layer (see chapter 8.3) must contain only
Status commands (i.e. Put, Get etc. commands MUST NOT be specified in the response). A Status command
MUST be provided for every command received in the request.

- In case the session is continued, the next message containing the proper credentials MUST contain a Status for
the SyncHdr, MUST have the same SessionID than the previous messages and the message MUST be sent to
the RespURI, if it was specified in the response indicating the authentication failure.

8.2 Authorization
The Cred element MUST be included in requests (message or command), which are sent after receiving the 401 or 407
response if the request is repeated. In addition, it can be sent in the first request from a device if the authentication is
pre-configured to be required. The content of the Cred element is specified in [DSREPU]. The authentication type is
dependent on the challenge (See the previous chapter) or the pre-configuration.

8.3 Server Layer Authentication
When the authentication is considered, this protocol mandates only the support for the authentication on the server layer
(in the SyncHdr element). I.e., the authentication of the server layer MUST be supported by the device complying with
this specification.

The authentication on the server layer is accomplished by using the Cred element in SyncHdr and the Status command
associated with SyncHdr. Within the Status command, the challenge for the authentication is carried as defined earlier.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 26 (63)

The authentication can happen both directions, i.e., the sync client can authenticate itself to the sync server and the sync
server can authenticate itself to the client.

8.4 Authentication of Database Layer
The authentication of the database layer SHOULD be supported by the device complying with this specification. The
authentication on the database layer is accomplished by using the Cred element in the Alert and Sync commands (See
the [DSREPU].) and the Status command associated with these commands. Within the Status command, the challenge
for the authentication is carried as defined earlier. The authentication can happen both directions, i.e., the sync client
can authenticate itself to the sync server and the sync server can authenticate itself to the client (Alert and Sync
command are sent both directions).

8.5 Authentication Examples
8.5.1 Basic authentication with a challenge
At this example, the client tries to initiate sync with the server without any credentials (Pkg #1). The server challenges
the client (Pkg #2) for the server layer authentication. The client must send Pkg #1 again with the credentials. The
server accepts the credentials and the session is authenticated (Pkg #2). In the example, commands in SyncBody are not
shown although in practice, they would be there.

Pkg #1 from Client
<SyncML>
<SyncHdr>
<VerDTD>1.1</VerDTD>
<VerProto>SyncML/1.1</VerProto>
<SessionID>1</SessionID>
<MsgID>1</MsgID>
<Target><LocURI>http://www.syncml.org/sync-server</LocURI></Target>
<Source><LocURI>IMEI:493005100592800</LocURI></Source>
</SyncHdr>
<SyncBody>
...
</SyncBody>
</SyncML>

Pkg #2 from Server
<SyncML>
<SyncHdr>
<VerDTD>1.1</VerDTD>
<VerProto>SyncML/1.1</VerProto>
<SessionID>1</SessionID>
<MsgID>1</MsgID>
<Target><LocURI>IMEI:493005100592800</LocURI></Target>
<Source><LocURI>http://www.syncml.org/sync-server</LocURI></Source>
</SyncHdr>
<SyncBody>
<Status>
<CmdID>1</CmdID>
<MsgRef>1</MsgRef><CmdRef>0</CmdRef><Cmd>SyncHdr</Cmd>
<TargetRef>http://www.syncml.org/sync-server</TargetRef>
<SourceRef>IMEI:493005100592800</SourceRef>
<Chal>
<Meta>
<Type xmlns=’syncml:metinf’>syncml:auth-basic</Type>
<Format xmlns=’syncml:metinf’>b64</Format>
</Meta>
</Chal>

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 27 (63)

<Data>407</Data> <!--Credentials missing-->
</Status>
...
</SyncBody>
</SyncML>

Pkg #1 (with credentials) from Client
<SyncML>
<SyncHdr>
<VerDTD>1.1</VerDTD>
<VerProto>SyncML/1.1</VerProto>
<SessionID>1</SessionID>
<MsgID>2</MsgID>
<Target><LocURI>http://www.syncml.org/sync-server</LocURI></Target>
<Source><LocURI>IMEI:493005100592800</LocURI></Source>
<Cred>
<Meta><Type xmlns=’syncml:metinf’>syncml:auth-basic</Type></Meta>
<Data>QnJ1Y2UyOk9oQmVoYXZl</Data> <!—base64 formatting of “userid:password”-->
</Cred>
</SyncHdr>
<SyncBody>
...
</SyncBody>
</SyncML>

Pkg #2 from Server
<SyncML>
<SyncHdr>
<VerDTD>1.1</VerDTD>
<VerProto>SyncML/1.1</VerProto>
<SessionID>1</SessionID>
<MsgID>2</MsgID>
<Target><LocURI>IMEI:493005100592800</LocURI></Target>
<Source><LocURI>http://www.syncml.org/sync-server</LocURI></Source>
</SyncHdr>
<SyncBody>
<Status>
<CmdID>1</CmdID>
<MsgRef>1</MsgRef><CmdRef>0</CmdRef><Cmd>SyncHdr</Cmd>
<TargetRef>http://www.syncml.org/sync-server</TargetRef>
<SourceRef>IMEI:493005100592800</SourceRef>
<Data>212</Data> <!--Authenticated for session-->
</Status>
...
</SyncBody>
</SyncML>

8.5.2 MD5 digest access authentication with a challenge
At this example, the client tries to initiate sync with the server without any credentials (Pkg #1). The server challenges
the client (Pkg #2) for the server layer authentication. The authentication type I is now the MD5 digest access
authentication. The client must send Pkg #1 again with the credentials. The server accepts the credentials and the
session is authenticated (Pkg #2). Also, the server sends the next nonce to the client, which the client must use when the
next sync session is started. In the example, commands in SyncBody are not shown although in practice, they would be
there.

Pkg #1 from Client
<SyncML>

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 28 (63)

<SyncHdr>
<VerDTD>1.1</VerDTD>
<VerProto>SyncML/1.1</VerProto>
<SessionID>1</SessionID>
<MsgID>1</MsgID>
<Target><LocURI>http://www.syncml.org/sync-server</LocURI></Target>
<Source>

<LocURI>IMEI:493005100592800</LocURI>
<LocName>Bruce2</LocName> <!-- userId -->

</Source>
</SyncHdr>
<SyncBody>
...
</SyncBody>
</SyncML>

Pkg #2 from Server
<SyncML>
<SyncHdr>
<VerDTD>1.1</VerDTD>
<VerProto>SyncML/1.1</VerProto>
<SessionID>1</SessionID>
<MsgID>1</MsgID>
<Target><LocURI>IMEI:493005100592800</LocURI></Target>
<Source><LocURI>http://www.syncml.org/sync-server</LocURI></Source>
</SyncHdr>
<SyncBody>
<Status>
<CmdID>1</CmdID>
<MsgRef>1</MsgRef><CmdRef>0</CmdRef><Cmd>SyncHdr</Cmd>
<TargetRef>http://www.syncml.org/sync-server</TargetRef>
<SourceRef>IMEI:493005100592800</SourceRef>
<Chal>
<Meta>
<Type xmlns=’syncml:metinf’>syncml:auth-md5</Type>
<Format xmlns=’syncml:metinf’>b64</Format>
 <NextNonce xmlns=’syncml:metinf’>Tm9uY2U=</NextNonce>
 </Meta>
 </Chal>
 <Data>407</Data> <!--Credentials missing-->
 </Status>
...
</SyncBody>
</SyncML>

Pkg #1 (with credentials) from Client
<SyncML>
<SyncHdr>
<VerDTD>1.1</VerDTD>
<VerProto>SyncML/1.1</VerProto>
<SessionID>1</SessionID>
<MsgID>2</MsgID>
<Target><LocURI>http://www.syncml.org/sync-server</LocURI></Target>
<Source><LocURI>IMEI:493005100592800</LocURI></Source>
<Cred>
<Meta><Type xmlns=’syncml:metinf’>syncml:auth-md5</Type></Meta>
<Data> Zz6EivR3yeaaENcRN6lpAQ==</Data>
<!-- Base64 coded MD5 for user “Bruce2”, password “OhBehave”, nonce “Nonce” -->
</Cred>
</SyncHdr>
<SyncBody>
...

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 29 (63)

</SyncBody>
</SyncML>

Pkg #2 from Server
<SyncML>
<SyncHdr>
<VerDTD>1.1</VerDTD>
<VerProto>SyncML/1.1</VerProto>
<SessionID>1</SessionID>
<MsgID>2</MsgID>
<Target><LocURI>IMEI:493005100592800</LocURI></Target>
<Source><LocURI>http://www.syncml.org/sync-server</LocURI></Source>
</SyncHdr>
<SyncBody>
<Status>
<CmdID>1</CmdID>
<MsgRef>1</MsgRef><CmdRef>0</CmdRef><Cmd>SyncHdr</Cmd>
<TargetRef>http://www.syncml.org/sync-server</TargetRef>
<SourceRef>IMEI:493005100592800</SourceRef>
<Chal>
<Meta>
<Type xmlns=’syncml:metinf’>syncml:auth-md5</Type>
<Format xmlns=’syncml:metinf’>b64</Format>
<NextNonce xmlns=’syncml:metinf’>LG3iZQhhdmKNHg==</NextNonce>
<!—This nonce is used at the next session.-->
</Meta>
</Chal>
<Data>212</Data> <!—Authenticated for session-->
</Status>
...
</SyncBody>

</SyncML>

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 30 (63)

9. Sync Initialization
The sync initialization is required that the actual synchronization (See Chapters 10-12), i.e., the sync commands, can
also be transmitted and processed. Prior to the sync initialization, the SyncML server may alert the client to trigger
synchronization with it (See Chapter 13) but this does not remove the need for the initialization. The sync initialization
has the following purposes:

- To process the authentication between the client and the server on the SyncML level.

- To indicate which databases are desired to be synchronized and which protocol type is used.

- To enable the exchange of service and device capabilities.

The two first ones are done by using the Alert command of the SyncML Representation protocol. These must be
supported by the client and the server.

The exchange of service capabilities is done by utilizing the Put and Get commands of the SyncML Representation
protocol and the Device Information DTD (See also Chapter 7.7).

The initialization procedure is depicted in the figure below. Some parts of the procedure (some responses) can be
included in the actual synchronization messages if it is necessary.

SyncML Client SyncML Server

Client and server configured properly to enable communication with each other

User

Sync order

Pkg #1: Client Initialization package to server

Pkg #2: Server Initialization package to client

Sync will continue according for the sync type(s) defined in the Alert commands.

Pkg #3: Sync package including the completition of the Sync
initialization.

Figure 6 MSC of Synchronization Initialization

The arrows in all figures in this document represent SyncML packages, which can include one or more messages. The
package flow presented above is one SyncML session that means that all messages have the same SyncML session ID.

The purpose and the requirements for each of the packages in the figure above are considered in the next sections.

9.1 Initialization Requirements for Client
As described in the previous chapter, the client needs to inform the server which databases it wants to synchronize and
which type synchronization is desired. Optionally, the client can also include the authentication information and the
service capabilities information into this initialization.

The databases, which are desired to be synchronized, are indicated in the separate Alert commands. I.e., for each
database, a separate Alert command MUST be included in the SyncBody. In addition, the Alert command is used to
exchange the sync anchors.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 31 (63)

The synchronization type is indicated in the Alert command. See the alert codes in Alert Codes.

The authentication information, if it is included, MUST be placed inside the Cred element in the SyncHdr. Either the
Basic or the MD5 Digest credential type can be used.

The service capabilities can be sent by using the Put command in the SyncBody element. The client MUST include
service and device information, which is applicable from the Device Information DTD, in the data to be sent to the
server. The client can also ask the service capabilities of the server. The Get command is used for this operation.

The detailed requirements for the sync initialization package (Pkg #1 in Figure 6) from the client to the server are:

1. Requirements for the elements within the SyncHdr element.

- The value of the VerDTD element MUST be ‘1.1’.

- The VerProto element MUST be included to specify the sync protocol and the version of the protocol. The
value MUST be ‘SyncML/1.1’ when complying with this specification.

- Session ID MUST be included to indicate the ID of a sync session.

- MsgID MUST be used to unambiguously identify the message belonging a sync session and traveling
from the client to the server.

- The Target element MUST be used to identify the target device and service.

- The Source element MUST be used to identify the source device.

- The Cred element MUST be included if the authentication is needed.

2. The Alert element(s) for each database to be synchronized MUST be included in SyncBody and the following
requirements exist.

- CmdID is required.

- The response SHOULD be required for the Alert command.

- The Data element is used to include the Alert code. The alert code is one of the codes used at the
initialization. See the alert codes in Alert Codes.

- Target in the Item element is used to specify the target database.

- Source in the Item element is used to specify the source database.

- The sync anchors of the client MUST be included to specify the previous and current (Last and Next) sync
anchors (See also Chapter 7.2.1). The sync anchors are carried inside the Meta element in the Item
element.

3. If the service capabilities are sent from the client to the server, the following requirements for the Put
command in the SyncBody exist.

- CmdID is required.

- The Type element of the MetaInf DTD MUST be included in the Meta element of the Put command to
indicate that the type of the data is the type of the Device Information DTD.

- The Source element in the Item element MUST have a value ‘./devinf11’.

- The Data element is used to carry the device and service information data.

4. If the service capabilities are requested from the server, the following requirements for the Get command in the
SyncBody exist.

- CmdID is required.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 32 (63)

- The Type element of the MetaInf DTD MUST be included in the Meta element of the Get command to
indicate that the type of the data is the type of the Device Information DTD.

- The Target element in the Item element MUST have a value ‘./devinf11’.

5. The Final element MUST be used for the message, which is the last in this package.

9.1.1 Example of Sync Initialization Package from Client

<SyncML>
<SyncHdr>
<VerDTD>1.1</VerDTD>
<VerProto>SyncML/1.1</VerProto>
<SessionID>1</SessionID>
<MsgID>1</MsgID>
<Target><LocURI>http://www.syncml.org/sync-server</LocURI></Target>
<Source><LocURI>IMEI:493005100592800</LocURI></Source>
<Cred> <!--The authentication is optional.-->
<Meta><Type xmlns=’syncml:metinf’>syncml:auth-basic</Type></Meta>
<Data>QnJ1Y2UyOk9oQmVoYXZl</Data> <!--base64 formatting of “userid:password”-->
</Cred>
<Meta> <!--The Meta is now used to indicate the maximum SyncML message size, which client
can receive.-->
<MaxMsgSize xmlns=’syncml:metinf’>5000</MaxMsgSize>
</Meta>
</SyncHdr>
<SyncBody>
<Alert>
<CmdID>1</CmdID>
<Data>200</Data> <!-- 200 = TWO_WAY_ALERT -->
<Item>
<Target><LocURI>./contacts/james_bond</LocURI></Target>
<Source><LocURI>./dev-contacts</LocURI></Source>
<Meta>
<Anchor xmlns=’syncml:metinf’>
<Last>234</Last>
<Next>276</Next>
</Anchor>
</Meta>
</Item>
</Alert>
<Put>
<CmdID>2</CmdID>
<Meta><Type xmlns=’syncml:metinf’>application/vnd.syncml-devinf+xml</Type></Meta>
<Item>
<Source><LocURI>./devinf11</LocURI></Source>
<Data>
 <DevInf xmlns=’syncml:devinf’>
 <Man>Big Factory, Ltd.</Man>
 <Mod>4119</Mod>
 <OEM>Jane’s phones</OEM>
 <FwV>2.0e</FwV>
 <SwV>2.0</SwV>
 <HwV>1.22I</HwV>
 <DevId>1218182THD000001-2</DevId>
 <DevTyp>phone</DevTyp>
 <DataStore>
 <SourceRef>./contacts</SourceRef>
 <DisplayName>Phonebook</DisplayName>
 <MaxGUIDSize>32</MaxGUIDSize>

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 33 (63)

 <Rx-Pref>
 <CTType>text/x-vcard </CTType>
 <VerCT>2.1</VerCT>
 </Rx-Pref>
 <Tx-Pref>
 <CTType>text/x-vcard</CTType>
 <VerCT>2.1</VerCT>
 </Tx-Pref>
 </DataStore>
 <CTCap>
 <CTType>text/x-vcard</CTType>
 <PropName>BEGIN</PropName>
 <ValEnum>VCARD</ValEnum>
 <PropName>END</PropName>
 <ValEnum>VCARD</ValEnum>
 <PropName>VERSION</PropName>
 <ValEnum>2.1</ValEnum>
 <PropName>N</PropName>
 <PropName>TEL</PropName>
 <ParamName>VOICE</ParamName>
 <ParamName>CELL</ParamName>
 </CTCap>
 <SyncCap>
 <SyncType>01</SyncType>
 <SyncType>02</SyncType>
 </SyncCap>
 </DevInf>
 </Data>
 </Item>
 </Put>
 <Get>
 <CmdID>3</CmdID>
 <Meta><Type xmlns=’syncml:metinf’>application/vnd.syncml-devinf+xml</Type></Meta>
 <Item>
 <Target><LocURI>./devinf11</LocURI></Target>
 </Item>
 </Get>
 <Final/>
 </SyncBody>
</SyncML>

9.2 Initialization Requirements for Server
When the server has received the Initialization package from the client, it completes the initialization phase by
responding to the client from the server perspective. To complete the initialization, the server sends its authentication
information, sync anchors, and device information back to the client. Also, the server MUST accept the sync type.

The detailed requirements for the sync initialization package (Pkg #2 in Figure 4) from the server to the client are:

1. Requirements for the elements within the SyncHdr element.

- The value of the VerDTD element MUST be ‘1.1’.

- The VerProto element MUST be included to specify the sync protocol and the version of the protocol. The
value MUST be ‘SyncML/1.1’ when complying with this specification.

- Session ID MUST be included to indicate the ID of a sync session.

- MsgID MUST be used to unambiguously identify the message belonging a sync session and traveling
from the server to the client.

- The Target element MUST be used to identify the target device and service.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 34 (63)

- The Source element MUST be used to identify the source device.

- The Cred element MUST be included if the authentication is needed.

2. The Status MUST be returned for the Alert command sent by the client if the client requested the response.
This can be sent before Package #1 is completely received (See Chapter 7.9).

- If the client is not authenticated to use the service, the sync type is wrong (e.g., slow sync needed), or
some other error occurs, the server MUST return an error for that.

- The next sync anchor of the client MUST be included in the Data element of Item (See 7.2.1).

3. If the client sent the device information to the server, the server MUST be able to retrieve them and the Status
MUST be returned for that command. This can be sent before Package #1 is completely received.

4. If the client requested the device information of the server, the Results element MUST be returned. This can be
sent before Package #1 is completely received.

- The Type element of the MetaInf DTD MUST be included in the Meta element in the Results element to
indicate that the type of the data is the type of the Device Information DTD.

- The Source element in the Item element MUST have a value ‘./devinf11’.

- The Data element is used to carry the device and service information of the server.

5. The Alert element(s) for each database to be synchronized MUST be included in SyncBody and the following
requirements exist.

- CmdID is required.

- The response SHOULD be required for the Sync command.

- The Data element is used to include the alert code. If this is different that the alert code sent by the client,
the client SHOULD follow this when synchronization is continued.

- Target is used to specify the target database.

- Source is used to specify the source database.

- The sync anchors of the server MUST be included to specify the previous and current (Last and Next)
sync anchors of the server (See also Chapter 7.2.1).

6. If the service capabilities were not asked by the client, the server MAY send them to the client by using the Put
command. The following requirements for the Put command in the SyncBody exist.

- CmdID is required.

- The Type element of the MetaInf DTD MUST be included in the Meta element of the Put command to
indicate that the type of the data is the type of the Device Information DTD.

- The Source element in the Item element MUST have a value ‘./devinf11’.

- The Data element is used to carry the device and service information data of the server.

7. If the client did not send its service capabilities and the server needs to receive them, the server can request
those by using the Get command. The following requirements for the Get command in the SyncBody exist.

- CmdID is required.

- The Type element of the MetaInf DTD MUST be included in the Meta element of the Get command to
indicate that the type of the data is the type of the Device Information DTD.

- The Target element in the Item element MUST have a value ‘./devinf11’.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 35 (63)

8. The Final element MUST be used for the message, which is the last in this package.

To complete the sync initialization from the client side, the client MUST respond to the commands (Alert, possible Put
and Get) sent by the server. The Status elements and the Result element associated with the commands can be returned
in the first package occurring in actual synchronization (Refer Package #3 in Two-way synchronization and One-way
synchronizations.

9.2.1 Example of Sync Initialization Package from Server

<SyncML>
<SyncHdr>
<VerDTD>1.1</VerDTD>
<VerProto>SyncML/1.1</VerProto>
<SessionID>1</SessionID>
<MsgID>1</MsgID>
<Target><LocURI>IMEI:493005100592800</LocURI></Target>
<Source><LocURI>http://www.syncml.org/sync-server</LocURI></Source>
<Cred> <!--The authentication is optional.-->
<Meta><Type xmlns=’syncml:metinf’>syncml:auth-basic</Type></Meta>
<Data>QnJ1Y2UyOk9oQmVoYXZl</Data> <!--base64 formatting of “userid:password”-->
</Cred>
</SyncHdr>
<SyncBody>
<Status>
<CmdID>1</CmdID>
<MsgRef>1</MsgRef><CmdRef>0</CmdRef><Cmd>SyncHdr</Cmd>
<TargetRef>http://www.syncml.org/sync-server</TargetRef>
<SourceRef>IMEI:493005100592800</SourceRef>
<Data>212</Data> <!--Statuscode for OK, authenticated for session-->
</Status>
<Status>
<CmdID>2</CmdID>
<MsgRef>1</MsgRef><CmdRef>1</CmdRef><Cmd>Alert</Cmd>
<TargetRef>./contacts/james_bond</TargetRef>
<SourceRef>./dev-contacts</SourceRef>
<Data>200</Data> <!--Statuscode for OK-->
<Item>
<Data><Anchor xmlns=’syncml:metinf’><Next>276</Next></Anchor></Data>
</Item>
</Status>
<Status>
<CmdID>3</CmdID>
<MsgRef>1</MsgRef><CmdRef>2</CmdRef><Cmd>Put</Cmd>
<SourceRef>./devinf11</SourceRef>
<Data>200</Data> <!--Statuscode for OK-->
</Status>
<Results>
<CmdID>4</CmdID>
<MsgRef>1</MsgRef><CmdRef>3</CmdRef>
<Meta><Type xmlns=’syncml:metinf’>application/vnd.syncml-devinf+xml</Type></Meta>
<Item>
<Source><LocURI>./devinf11</LocURI></Source>
<Data>
 <DevInf xmlns=’syncml:devinf’>
 <Man>Small Factory, Ltd.</Man>
 <Mod>Tiny Server</Mod>
 <OEM>Tiny Shop</OEM>
 <DevId>485749KR</DevId>
 <DevTyp>Server</DevTyp>
 <DataStore>
 <SourceRef>./contacts</SourceRef>
 <DisplayName>Addressbook</DisplayName>
 <Rx-Pref>

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 36 (63)

 <CTType>text/x-vcard </CTType>
 <VerCT>2.1</VerCT>
 </Rx-Pref>
 <Rx>
 <CTType>text/vcard </CTType>
 <VerCT>3.0</VerCT>
 </Rx>
 <Tx-Pref>
 <CTType>text/x-vcard</CTType>
 <VerCT>2.1</VerCT>
 </Tx-Pref>
 <Tx>
 <CTType>text/vcard</CTType>
 <VerCT>3.0</VerCT>
 </Tx>
 </DataStore>
 <CTCap>
 <CTType>text/x-vcard</CTType>
 <PropName>BEGIN</PropName>
 <ValEnum>VCARD</ValEnum>
 <PropName>END</PropName>
 <ValEnum>VCARD</ValEnum>
 <PropName>VERSION</PropName>
 <ValEnum>2.1</ValEnum>
 <PropName>N</PropName>
 <PropName>TEL</PropName>
 <ParamName>VOICE</ParamName>
 <ParamName>CELL</ParamName>
 <CTType>text/vcard</CTType>
 <PropName>BEGIN</PropName>
 <ValEnum>VCARD</ValEnum>
 <PropName>END</PropName>
 <ValEnum>VCARD</ValEnum>
 <PropName>VERSION</PropName>
 <ValEnum>3.0</ValEnum>
 <PropName>N</PropName>
 <PropName>TEL</PropName>
 <ParamName>VOICE</ParamName>
 <ParamName>FAX</ParamName>
 <ParamName>CELL</ParamName>
 <CTType>text/vcard</CTType>
 <PropName>BEGIN</PropName>
 <ValEnum>VCARD</ValEnum>
 <PropName>END</PropName>
 <ValEnum>VCARD</ValEnum>
 <PropName>VERSION</PropName>
 <ValEnum>3.0</ValEnum>
 <PropName>N</PropName>
 <PropName>TEL</PropName>
 <ParamName>VOICE</ParamName>
 <ParamName>FAX</ParamName>
 <ParamName>CELL</ParamName>
 </CTCap>
 <SyncCap>
 <SyncType>01</SyncType>
 <SyncType>02</SyncType>
 <SyncType>07</SyncType>
 </SyncCap>
 </DevInf>
 </Data>
 </Item>
 </Results>
 <Alert>
 <CmdID>5</CmdID>

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 37 (63)

 <Data>201</Data> <!-- 201 = TWO_WAY_ALERT -->
 <Item>
 <Target><LocURI>./dev-contacts</LocURI></Target>
 <Source><LocURI>./contacts/james_bond</LocURI></Source>
 <Meta>
 <Anchor xmlns=’syncml:metinf’>
 <Last>200005021T081812Z </Last>
 <Next>200005022T093223Z </Next>
 </Anchor>
 </Meta>
 </Item>
 </Alert>
 <Final/>
</SyncBody>
</SyncML>

9.3 Error Case Behaviors
In this chapter, the recommended behaviors are defined in the cases of different error types, which can occur during the
sync initialization.

9.3.1 No Packages from Server
If the client has sent its sync initialization package to the server and it does not get any complete response to it, the
client MUST assume that the server has not received the sync initialization package of the client. The client MUST send
its sync initialization package again later.

9.3.2 No Initialization Completion from Client
If the server has sent its sync initialization package to the client and it does not get any complete response to it (Refer
Pkg #3), the server MUST assume that the client has not received the sync initialization package of the server. The
server can drop the session and the sync initialization MUST be started from the beginning when synchronization is
started at the next time.

9.3.3 Initialization Failure
If the initialization fails, a defined error code [DSREPU] is sent, the devices MUST act according that error type.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 38 (63)

10. Two-Way Sync
Two-way sync is a normal synchronization type in which the client and the server are required to exchange information
about the modified data in these devices. The client is always the device which first sends the modifications. According
to the information from the client, the server processes the synchronization request and the data from the client is
compared and unified with the data in the server. After that, the server sends its modified data to the client device,
which is then able to update its database with the data from the server.

In Figure 7, there is depicted the MSC of the client initiated two-way sync scenario.

SyncML Client SyncML Server

Client and server have processed the sync initialization for two-way sync.

User

Client device prepares the data needed to be sent to the server.

Pkg #3: Sync package from client to server

Server processes sync analysis.

Pkg #4: Status and Sync package

Sync result

Client makes data update for its databases.

Pkg #5: Data Update Status package to server

Pkg #6: Map Acknowledgement to client

Figure 7 MSC of Two-Way Sync

The arrows in all figures in this document represent SyncML packages, which can include one or more messages. The
package flow presented above is one SyncML session that means that all messages have the same SyncML session ID.
The Session ID is same as used at the initialization.

The purpose and the requirements for each of the packages in the figure above are considered in the next sections.

Note. If the sync is done without a separate initialization (See Chapter 7.10), the number of a package in the figure may
not describe the actual atomic number of a package in a synchronization session.

10.1 Client Modifications to Server
To enable sync, the client needs to inform the server about all client data modifications, which have happened since the
previous sync package with modifications has been sent from the client to the server2 (Refer to the sync package, Pkg
#3 in Figure 7). Any client modification, which is done after sending this package, MUST be reported to the server
during the next sync session. It is not allowed to put them inside subsequent packages from the client to the server. The
requirements for the sync package from the client to the server are following.

2 These modifications include also modifications which have happened during the previous sync session after the client
has sent its modifications to the server.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 39 (63)

1. Requirements for the elements within the SyncHdr element.

- The value of the VerDTD element MUST be ‘1.1’.

- The VerProto element MUST be included to specify the sync protocol and the version of the protocol. The
value MUST be ‘SyncML/1.1’ when complying with this specification.

- Session ID MUST be included to indicate the ID of a sync session.

- MsgID MUST be used to unambiguously identify the message belonging a sync session and traveling
from the client to the server.

- The Target element MUST be used to identify the target device and service.

- The Source element MUST be used to identify the source device.

2. The Status MUST be returned for the Alert command sent by the client if requested by the server. This can be
sent before Package #2 is completely received.

- If the server is not authenticated to use the service, the sync type is wrong (e.g., slow sync needed), or
some other error occurs, the client MUST return an error for that.

- The next sync anchor of the server MUST be included in the Data element of Item (See 7.2.1).

3. If the server sent the device information to the client, the client SHOULD process the transmitted device
information and the Status MUST be returned for that command if requested by the server. This can be sent
before Package #2 is completely received.

4. If the server requested the device information of the client, the Results element MUST be returned. This can be
sent before Package #2 is completely received.

- The Type element of the MetaInf DTD MUST be included in the Meta element in the Results element to
indicate that the type of the data is the type of the Device Information DTD.

- The Source element in the Results element MUST have a value ‘./devinf11’.

- The Data element MUST be used to carry the device and service information of the client.

5. The Sync element MUST be included in SyncBody and the following requirements exist.

- CmdID is required.

- The response SHOULD be required for the Sync command.

- Target is used to specify the target database.

- Source is used to specify the source database.

- The free memory SHOULD be specified inside the Meta element. The free memory can be either the free
memory amount in the source database or the free memory amount on the client device (See Chapter 7.7).
This information can only be sent at the first message belonging this package.

6. If there are modifications in the client, there are following requirements for the operational elements (e.g.,
Replace, Delete, and Add3) within the Sync element.

- CmdID is required.

3 It is not required that the SyncML clients support the Add operation when sending modifications. They may use the
Replace operation for additions and then, the receiving device must make addition if the UID of an object does not
exist.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 40 (63)

- The response SHOULD be required for all these operations.

- The Source element MUST be included to indicate the LUID (See Definitions) of the data item within the
Item element.

- The Type element of the MetaInf DTD MUST be included in the Meta element to indicate the type of the
data item (E.g., MIME type). The Meta element inside an operation or inside an item can be used.

- Data element MUST be used to carry data itself if the operation is not a deletion.

7. The Final element MUST be used for the message, which is the last in this package. After the server has
received the final message of the package, it can complete the sync analysis and send its modifications back to
client.

10.1.1 Example of Sending Modifications to Server

<SyncML>
<SyncHdr>
<VerDTD>1.1</VerDTD>
<VerProto>SyncML/1.1</VerProto>
<SessionID>1</SessionID>
<MsgID>2</MsgID>
<Target><LocURI>http://www.syncml.org/sync-server</LocURI></Target>
<Source><LocURI>IMEI:493005100592800</LocURI></Source>
</SyncHdr>
<SyncBody>
<Status>
<CmdID>1</CmdID>
<MsgRef>1</MsgRef><CmdRef>0</CmdRef><Cmd>SyncHdr</Cmd>
<TargetRef>IMEI:493005100592800</TargetRef>
<SourceRef> http://www.syncml.org/sync-server </SourceRef>
<Data>212</Data> <!--Statuscode for OK, authenticated for session-->
</Status>
<Status>
<CmdID>2</CmdID>
<MsgRef>1</MsgRef><CmdRef>5</CmdRef><Cmd>Alert</Cmd>
<TargetRef>./dev-contacts</TargetRef>
<SourceRef>./contacts/james_bond</SourceRef>
<Data>200</Data> <!--Statuscode for Success-->
<Item>
<Data>
<Anchor xmlns=’syncml:metinf’><Next>200005022T093223Z </Next></Anchor>
</Data>
</Item>
</Status>
<Sync>
<CmdID>3</CmdID>
<Target><LocURI>./contacts/james_bond</LocURI></Target>
<Source><LocURI>./dev-contacts</LocURI></Source>
<Meta>
<Mem xmlns=’syncml:metinf’>
<FreeMem>8100</FreeMem>
<!--Free memory (bytes) in Calendar database on a device -->
<FreeId>81</FreeId>
<!--Number of free records in Calendar database-->
</Mem>
</Meta>
<Replace>
<CmdID>4</CmdID>
<Meta><Type xmlns=’syncml:metinf’>text/x-vcard</Type></Meta>
<Item>
<Source><LocURI>1012</LocURI></Source>

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

http://www.syncml.org/sync-server

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 41 (63)

<Data><!--The vCard data would be placed here.--></Data>
</Item>
</Replace>
</Sync>
<Final/>
</SyncBody>
</SyncML>

10.2 Server Modifications to Client
The sync package (Refer Pkg #4 in Figure 7) to the client has the following purposes:

- To inform the client about the results of sync analysis.

- To inform about all data modifications, which have happened in the server since the previous time when the
server has sent the modifications to the client.

Any server modifications, which are done after sending this package, MUST be reported to the client during the next
sync session. It is not allowed to put them inside subsequent packages from the server to the client.

The requirements for messages within this sync package are following.

1. Requirements for the elements within the SyncHdr element.

- The value of the VerDTD element MUST be ‘1.1’.

- The value of the VerProto element MUST be ‘SyncML/1.1’.

- Session ID MUST be included to indicate the ID of a sync session.

- MsgID MUST be used to unambiguously identify the message belonging a sync session and traveling
from the server to the client.

- The Target element MUST be used to identify the target device.

- The Source element MUST be used to identify the source device and service.

2. The Status element MUST be included in SyncBody if requested by the client. It is now used to indicate the
general status of the sync analysis and the status information related to data items sent by the client (e.g., a
conflict has happened.). Status information for data items can be sent before Package #3 is completely
received.

3. The Sync element MUST be included in SyncBody, if earlier there were no occurred errors, which could
prevent the server to process the sync analysis and to send its modifications back to the client. For the Sync
element, there are the following requirements.

- CmdID is required.

- The response can be required for the Sync command. (See the Caching of Map Item, Chapter 7.3.1)

- Target is used to specify the target database.

- Source is used to specify the source database.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 42 (63)

4. If there is any modification in the server after the previous sync, there are following requirements for the
operational elements (e.g., Replace, Delete, and Add4) within the Sync element.

- CmdID is required.

- The response can be required for these operations.

- Source MUST be used to define the temporary GUID (See Definitions) of the data item in the server if the
operation is an addition. If the operation is not an addition, Source MUST NOT be included.

- Target MUST be used to define the LUID (See Definitions) of the data item if the operation is not an
addition. If the operation is an addition, Target MUST NOT be included.

- The Data element inside Item is used to include the data itself if the operation is not a deletion.

- The Type element of the MetaInf DTD MUST be included in the Meta element to indicate the type of the
data item (E.g., MIME type). The Meta element inside an operation or inside an item can be used.

5. The Final element MUST be used for the message, which is the last in this package.

10.2.1 Example of Sending Modifications to Client

<SyncML>
<SyncHdr>
<VerDTD>1.1</VerDTD>
<VerProto>SyncML/1.1</VerProto>
<SessionID>1</SessionID>
<MsgID>2</MsgID>
<Target><LocURI>IMEI:493005100592800</LocURI></Target>
<Source><LocURI>http://www.syncml.org/sync-server</LocURI></Source>
</SyncHdr>
<SyncBody>
<Status>
<CmdID>1</CmdID>
<MsgRef>2</MsgRef><CmdRef>0</CmdRef><Cmd>SyncHdr</Cmd>
<TargetRef>http://www.syncml.org/sync-server</TargetRef>
<SourceRef>IMEI:493005100592800</SourceRef>
<Data>200</Data>
</Status>
<Status><!--This is a status for the client modifications to the server.-->
<CmdID>2</CmdID>
<MsgRef>2</MsgRef><CmdRef>3</CmdRef><Cmd>Sync</Cmd>
<TargetRef>./contacts/james_bond</TargetRef>
<SourceRef>./dev-contacts</SourceRef>
<Data>200</Data> <!--Statuscode for Success-->
</Status>
<Status>
<CmdID>3</CmdID>
<MsgRef>2</MsgRef><CmdRef>4</CmdRef><Cmd>Replace</Cmd>
<SourceRef>1012</SourceRef>
<Data>200</Data> <!--Statuscode for Success-->
</Status>
<Sync>
<CmdID>4</CmdID>
<Target><LocURI>./dev-contacts</LocURI></Target>

4 It is not required that the devices support the Add operation. They may use the Replace operation for additions and
then, the receiving device must make addition if the UID of an object does not exist.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 43 (63)

<Source><LocURI>./contacts/james_bond</LocURI></Source>
<Replace>
<CmdID>5</CmdID>
<Meta><Type xmlns=’syncml:metinf’>text/x-vcard</type></Meta>
<Item>
<Target><LocURI>1023</LocURI></Target>
<Data><!--The vCard data would be placed here.--></Data>
</Item>
</Replace>
<Add>
<CmdID>6</CmdID>
<Meta><Type xmlns=’syncml:metinf’>text/x-vcard</type></Meta>
<Item>
<Source><LocURI>10536681</LocURI></Source>
<Data><!--The vCard data would be placed here.--></Data>
</Item>
</Add>
</Sync>
<Final/>
</SyncBody>
</SyncML>

10.3 Data Update Status from Client
The data update status package from the client to the server is needed to transport the information about the result of the
data update on the client side. In addition, it is used to indicate the LUID’s of the new data items, which have been
added in the client, i.e., the Map operation for mapping LUID’s and temporary GUID’s is sent to the server.

Note. This package MAY NOT be sent if the server has indicated that it does not require a response to its last package
to the client. If the client decides that it does not send this message, it MUST be able to cache the Map operations until
the next synchronization will happen, when these Map operations can be sent to the server (See also Chapter 7.3.1).
However, the client is always allowed to send this Data Update Status package to the server, even if the server has not
requested a response.

The messages in this package have the following requirements.

1. Requirements for the elements within the SyncHdr element.

- The value of the VerDTD element MUST be ‘1.1’.

- The value of the VerProto element MUST be ‘SyncML/1.1’.

- Session ID MUST be included to indicate the ID of a sync session.

- MsgID MUST be used to unambiguously identify the message belonging a sync session and traveling
from the client to the server.

- The Target element MUST be used to identify the target device and service.

- The Source element MUST be used to identify the source device.

2. The Status element MUST be in SyncBody if requested by the server. It is used to indicate the results of data
update in the client. Also, the status information related to the individual data items is transferred to the server.
The status information for data items can be sent before Package #4 is completely received.

3. The Map element MUST be included in the SyncBody element if the client has processed any server additions
to its database. For each database being synchronized, a separate Map operation or operations MUST be sent if
any additions to a database is carried out. This command can be sent before Package #4 is completely received.

- CmdID is required.

- The Source and Target elements are required in the Map element.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 44 (63)

- The response is required to the Map operation.

- The client has to return the client side IDs, i.e., LUID’s and the server side IDs (temporary GUID’s) for
the data items within MapItem elements.

4. The Final element MUST be used for the message, which is the last in this package.

10.3.1 Example of Data Update Status to Server

<SyncML>
<SyncHdr>
<VerDTD>1.1</VerDTD>
<VerProto>SyncML/1.1</VerProto>
<SessionID>1</SessionID>
<MsgID>3</MsgID>
<Target><LocURI>http://www.syncml.org/sync-server</LocURI></Target>
<Source><LocURI>IMEI:493005100592800</LocURI></Source>
</SyncHdr>
<SyncBody>
<Status>
<CmdID>1</CmdID>
<MsgRef>2</MsgRef><CmdRef>0</CmdRef><Cmd>SyncHdr</Cmd>
<TargetRef>IMEI:493005100592800</TargetRef>
<SourceRef> http://www.syncml.org/sync-server </SourceRef>
<Data>200</Data>
</Status>
<Status>
<CmdID>2</CmdID>
<MsgRef>2</MsgRef><CmdRef>4</CmdRef><Cmd>Sync</Cmd>
<TargetRef>./dev-contacts</TargetRef>
<SourceRef>./contacts/james_bond</SourceRef>
<Data>200</Data>
</Status>
<Status>
<CmdID>3</CmdID>
<MsgRef>2</MsgRef><CmdRef>5</CmdRef><Cmd>Replace</Cmd>
<TargetRef>1023</TargetRef>
<Data>200</Data>
</Status>
<Status>
<CmdID>4</CmdID>
<MsgRef>2</MsgRef><CmdRef>6</CmdRef><Cmd>Add</Cmd>
<SourceRef>10536681</SourceRef>
<Data>200</Data>
</Status>
<Map>
<CmdID>5</CmdID>
<Target><LocURI>./contacts/james_bond</LocURI></Target>
<Source><LocURI>./dev-contacts</LocURI></Source>
<MapItem>
<Target><LocURI>10536681</LocURI></Target>
<Source><LocURI>1024</LocURI></Source>
</MapItem>
</Map>
<Final/>
</SyncBody>
</SyncML>

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

http://www.syncml.org/sync-server

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 45 (63)

10.4 Map Acknowledgement from Server
The Map Acknowledgement from the server to the client is needed to inform the client that the server has received the
mapping information of the data items. This acknowledgement is sent back to the client even if there were no Map
operations in last package from the client to the server.

The messages in this package have the following requirements.

1. Requirements for the elements within the SyncHdr element.

- The value of the VerDTD element MUST be ‘1.1’.

- The value of the VerProto element MUST be ‘SyncML/1.1’.

- Session ID MUST be included to indicate the ID of a sync session.

- MsgID MUST be used to unambiguously identify the message belonging a sync session and traveling
from the server to the client.

- The Target element MUST be used to identify the target device.

- The Source element MUST be used to identify the source device and service.

- The response MUST NOT be required for this message.

2. The Status element(s) MUST be included in SyncBody. It is now used to indicate the status of the Map
operation(s). This or these can be sent before Package #5 is completely received.

3. The Final element MUST be used for the message, which is the last in this package.

10.4.1 Example of Map Acknowledge

<SyncML>
<SyncHdr>
<VerDTD>1.1</VerDTD>
<VerProto>SyncML/1.1</VerProto>
<SessionID>1</SessionID>
<MsgID>3</MsgID>
<Target><LocURI>IMEI:493005100592800</LocURI></Target>
<Source><LocURI>http://www.syncml.org/sync-server</LocURI></Source>
</SyncHdr>
<SyncBody>
<Status>
<CmdID>1</CmdID>
<MsgRef>3</MsgRef><CmdRef>0</CmdRef><Cmd>SyncHdr</Cmd>
<TargetRef>http://www.syncml.org/sync-server</TargetRef>
<SourceRef>IMEI:493005100592800</SourceRef>
<Data>200</Data>
</Status>
<Status>
<CmdID>1</CmdID>
<MsgRef>3</MsgRef><CmdRef>5</CmdRef><Cmd>Map</Cmd>
<TargetRef>./contacts/james_bond </TargetRef>
<SourceRef>./dev-contacts</SourceRef>
<Data>200</Data>
</Status>
<Final/>
</SyncBody>
</SyncML>

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 46 (63)

10.5 Slow Sync
The slow sync can be desired for many reasons, e.g., the client or the server has lost its change log information, the
LUID’s have wrapped around in the client, or the sync anchors mismatch. The slow sync is a form of the two-way
synchronization in which all items in one or more databases are compared with each other on a field-by-field basis. In
practice, the slow sync means that the client sends all its data in a database to the server and the server does the sync
analysis (field-by-field) for this data and the data in the server. After the sync analysis, the server returns all needed
modifications back to the client. Also, the client returns the Map items for all data items, which were added by the
server.

Because of many reasons to process the slow sync, it can be either the client or the server, which indicates a need for
this. If the client does this, it specifies in the Alert command that the sync type is the slow sync. The Alert command
MAY be the same as at the sync initialization or the similar Alert command MAY be included when Package #3 is sent.
The value of the Alert code is 201.

If there is a need for the server to initiate the slow sync, it happens by including the Alert operation with the 201 alert
code. This alert operation MUST be the Alert operation at the Sync Initialization (Refer Package #2). After the client
has received the status and the Alert operation for the slow sync, sync can be thought to start as if the client were
initiating the slow sync in Package #3. However, the client MUST NOT include the Alert command anymore if it was
the server, which alerted the slow sync.

If the client or the server needs to initiate the slow sync after receiving the alert for the normal synchronization, they
need to send back an error status for that Alert in addition the slow sync alert. The error code, which is used in this case,
MUST be 508 (Refresh required). If the client has not used a separate synchronization initialization, as specified in
Chapter 2.10, it MUST send all updates in the next message to the server after receiving the error status and the Alert
for a slow sync.

After the server has sent the Sync Alert, and if the client does not agree with the sync anchor in that Alert, then the
Client MUST start a slow sync. This is done by sending back a Status on that Alert with Refresh Required (508). In this
same message, the client should start the slow sync. In this case, the client MUST NOT send another Alert to start the
slow sync. Note that it is not necessary for the client to compare the sync anchor from the server.

If the devices are synchronizing with each other at the first time, the slow sync MUST be initiated.

10.6 Error Case Behaviors
In this chapter, the recommended behaviors are defined in the cases of different error types.

10.6.1 No Packages from Server after Initialization
If the client has sent its modifications to the server and it does not get the status associated with those modifications, the
client MUST assume that the server has not received those client modifications. At the next time when synchronization
is started, the modifications, to which the status was not received, MUST be sent to the server again.

10.6.2 No Data Update Status from Client
If the server has sent its modifications to the client and it does not get the status associated with those server
modifications, the server MUST assume that the client has not received those server modifications. Thus, at the next
time when synchronization is started, the server modifications in addition to new ones MUST be sent to the client.

10.6.3 No Data Map Acknowledge from Server
If the client has sent the Map operation(s) and it does not get any complete response to it, the client SHOULD assume
that the server has not received the Map operation(s). Thus, the client SHOULD try to send the Map operation(s) again
or at the next time when synchronization is started.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 47 (63)

10.6.4 Errors with Defined Error Codes
If the device receives a defined error code [DSREPU], it MUST act according that error type.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 48 (63)

11. One-Way Sync from Client Only
The one-way sync from the client only is the sync type in which the client sends all modifications to the server but the
server does not send its modifications back to the client. Thus, after this type of sync, the server includes all modified
data from the client but the client does not know about modifications in the server. In Figure 8, there is depicted the
MSC for this scenario.

SyncML Client SyncML Server

Client and server have processed the sync initialization for one-way sync from client.

User

Client device prepares the data needed to be sent to the server.

Pkg #3: Sync package from client to server

Server processes sync analysis.

Pkg #4: Status package
Sync result

Figure 8 MSC of One-Way Sync from Client only

The package flow presented above is one SyncML session that means that all messages have the same SyncML session
ID. The Session ID is same as used at the initialization.

The purpose and the requirements for each of package in the figure above are considered in the next sections.

Note. If the sync is done without a separate initialization (See Chapter 7.10), the number of a package in the figure may
not describe the actual atomic number of a package in a synchronization session.

11.1 Client Modifications to Server
To initiate the sync, the client needs to inform the server about all client data modifications, which have happened since
the previous sync5 (Refer to the sync package, Pkg #3 in Figure 8). Any client modification, which is done after sending
this package, MUST be reported to the server during the next sync session. It is not allowed to put them inside
subsequent packages from the client to the server. The requirements for the sync package from the client to the server
are the same as in Chapter 10.1.

11.2 Status from Server
The Status package (Refer Pkg #4) has a purpose of informing the client about the results of sync analysis. The
requirements for the status package are following.

1. Requirements for the elements within the SyncHdr element.

- The value of the VerDTD element MUST be ‘1.1’.

- The value of the VerProto element MUST be ‘SyncML/1.1’.

5 These modifications include also modifications which have happened during the previous sync session after the client
has sent its modifications to the server.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 49 (63)

- Session ID MUST be included to indicate the ID of a sync session.

- MsgID MUST be used to unambiguously identify the message belonging a sync session and traveling
from the server to the client.

- Final MUST be used for the message, which is the last in this package.

- The Target element MUST be used to identify the target device.

- The Source element MUST be used to identify the source device and service.

2. The Status element MUST be included in SyncBody if requested by the client. It is now used to indicate the
general status of the sync analysis and the status information related to data items sent by the client if this is
necessary (e.g., a conflict has happened.). The status information for data items can be sent before Package #1
is completely received.

11.3 Refresh Sync from Client Only
The ‘refresh sync from client only’ is a synchronization type in which the client sends all its data from a database to the
server (i.e., exports). The server is expected to replace all data in the target database with the data sent by the client. I.e.,
this means that the client overwrites all data in the server database.

This refresh sync is treated as a special case of the ‘one-way sync from client only’. The only differences between this
case and the normal ‘one-way sync from client only’ are:

1. At the initialization, the sync type (Alert code) MUST be used to indicate that the ‘one-way refresh sync from
client only’ is required. The Alert code is 203.

2. In Package #3, the Sync element (Pkg #3) from the client to the server is required to include all data from the
source database (client database).

11.4 Error Cases Behavior
In this chapter, the recommended behaviors of devices are defined in the cases of different error types.

11.4.1 No Packages from Server after Initialization
See Chapter 10.6.1.

11.4.2 Errors with Defined Error Codes
See Chapter 10.6.4.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 50 (63)

12. One-Way Sync from Server only
This sync type is the case in which the client gets all modifications from the server but the client does not send its
modifications to the server. Thus, after this type of sync, the client includes all modified data from the server but the
server does not know about modifications in the client. In Figure 9, there is depicted the MSC for this scenario.

SyncML Client SyncML Server

Client and server have processed the sync initialization for one-way sync from server.

User

Pkg #3: Sync Alert from client to server

Server processes sync analysis.

Pkg #4: Sync package

Sync result

Client makes data update for its databases.

Pkg #5: Data Update Status package to server

Pkg #6: Map Acknowledge to client

Figure 9 MSC of Sync from Server Only

The package flow presented above is one SyncML session that means that all messages have the same SyncML session
ID. The Session ID is same as used at the initialization.

The purpose and the requirements for each of package in the figure above are considered in the next sections.

Note. If the sync is done without a separate initialization (See Chapter 7.10), the number of a package in the figure may
not describe the actual atomic number of a package in a synchronization session.

12.1 Sync Alert to Server
The sync package (Pkg #3 in Figure 9) is very much similar to the package #3 in the two-way sync but any client
modifications are not ever sent to server and the server is only asked to send its modifications to the client. The only
difference from the requirements defined in Chapter 10.1 is:

Any client modifications are not included into the Sync element. It must be empty.

12.2 Server Modifications to Client
See Chapter 10.2.

12.3 Data Update Status from Client
See Chapter 10.3.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 51 (63)

12.4 Map Acknowledge from Server
See Chapter 10.4.

12.5 Refresh Sync from Server Only
The ‘refresh sync from server only’ is a synchronization type in which the server sends all its data from a database to
the client. The client is expected to replace all data in the target database with the data sent by the server. I.e., this
means that the server overwrites all data in the client database.

This refresh sync is treated as a special case of the ‘one-way sync from server only’. The differences between this case
and the normal ‘one-way sync from server only’ are:

1. At the Sync Initialization (See Chapter 12.1), the value for the Alert code is 205.

2. In the Server Modifications package to the client (See Chapter 12.2), the Sync element is required to include
all data from the source database.

3. The client MUST store all data items to its database (i.e., overwrites old data) and the client MUST return the
map items for all stored data items back to the server.

12.6 Error Cases
In this chapter, the recommended behaviors of devices are defined in the cases of different error types.

12.6.1 No Packages from Server
If the client has sent the empty sync command to the server, it does not get any complete response to it (new
modifications), the client SHOULD drop the SyncML session and try to get the modifications later by starting the sync
from the beginning.

12.6.2 No Data Update Status from Client
See Chapter 10.6.2.

12.6.3 No Map Ack from Server
See Chapter 10.6.3.

12.6.4 Errors with Defined Error Codes
See Chapter 10.6.4.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 52 (63)

13. Server Alerted Sync
This sync case is intended to provide a possibility for the server to alert the client to perform sync. That is, the server
informs the client to starts sync with the server. When the server alerts the client, it also tells it which type of sync is
initiated. Figure 10 shows the MSC, how sync is alerted by the server.

SyncML Client SyncML Server

Client and server configured properly to enable communication with each other

User

Sync order

Pkg #0: Sync Alert to Client

User

Sync will continue according the sync type which is indicated by the Alert message.

Synchronization is completed.

Sync result

. . .

Figure 10 MSC of Server Alerted Sync

In the server alerted sync, the sent packages are the same as in any sync types except the alert message, which is sent
from the server to client.

The package flow presented above is one SyncML session that means that all messages have the same SyncML session
ID. The same Session ID used here MUST also be used at the synchronization initialization.

13.1 Sync Alert
The sync alert is sent from the server when the server wants the client to start synchronization. This message MUST
indicate which type of sync the server wants. The requirements for the elements within this sync alert package are:

1. Requirements for the elements within the SyncHdr element.

- The value of the VerDTD element MUST be ‘1.1’.

- The value of the VerProto element MUST be ‘SyncML/1.1’.

- Session ID MUST be included to indicate the ID of a sync session.

- MsgID MUST be used to unambiguously identify the message belonging a sync session and traveling
from the server to the client.

- The Target element MUST be used to identify the target device. The character ‘/’ MUST be used when
there is no sync relationship between the server and the client.

- The Source element MUST be used to identify the source device.

- The Cred element MUST be included if the authentication is needed.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 53 (63)

2. The Alert element MUST be included in SyncBody.

- CmdID is required.

- The response SHOULD be required for the Alert command.

- The Item element SHOULD include the target database. Note, if this is the alert for the first time sync, the
target database may not be included but the sync client determines it according the meta information sent
within the alert.

- The Item element MUST BE used to specify the source database.

- Within the Item element, the Type element of the MetaInf DTD MUST be included in the Meta element to
indicate the type of the data (e.g., MIME type) to be synchronized.

- The Data element is used to include the Alert code. The alert code is one of the alert codes used by the
server (Values 206-210.). See the alert codes in Alert Codes.

3. Final MUST be used for the message, which is the last in this package.

When the client receives this message, it continues according to the sync type indicated by the Alert element. The status
element is also included in the first package from the client to the server. If the error occurs, the error status is returned
and the defined error codes are used.

13.2 Error Cases Behavior
In this chapter, the recommended behaviors of devices are defined in the cases of different error types.

13.2.1 No Packages from Client
If the server has sent an alert to the client and it does not get any complete response to, the server SHOULD try to alert
the client later.

13.2.2 Errors with Defined Error Codes
See Chapter 10.6.4.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 54 (63)

14. Protocol Values and Alert Codes
14.1 Protocol Values
Here are listed all protocol values (string values), which can be used in the VerProto element. The
protocol version 1.1 is used by the implementations complying with this specification

VerProto Codes Description

SyncML/1.0 Indicates that this SyncML message uses the sync
protocol 1.0 defined by the SyncML Initiative.

SyncML/1.1 Indicates that this SyncML message uses the sync
protocol 1.1 defined by the SyncML Initiative.

14.2 Alert Codes
Here are listed all Alert codes and values, which are used in the Type element of Meta when the
Alert command is sent.

Alert Code Value Name Description

Alert Codes used for user alerts

100 DISPLAY Show. The Data element type contains content
information that should be processed and displayed
through the user agent.

101-150 - Reserved for future SyncML usage.

Alert Codes used at the synchronization initialization

200 TWO-WAY Specifies a client-initiated, two-way sync.

201 SLOW SYNC Specifies a client-initiated, two-way slow-sync.

202 ONE-WAY FROM
CLIENT

Specifies the client-initiated, one-way only sync from the
client to the server.

203 REFRESH FROM
CLIENT

Specifies the client-initiated, refresh operation for the one-
way only sync from the client to the server.

204 ONE-WAY FROM
SERVER

Specifies the client-initiated, one-way only sync from the
server to the client.

205 REFRESH FROM
SERVER

Specifies the client-initiated, refresh operation of the one-
way only sync from the server to the client.

Alert Codes used by the server when alerting the sync.

206 TWO-WAY BY SERVER Specifies a server-initiated, two-way sync.

207 ONE-WAY FROM
CLIENT BY SERVER

Specifies the server-initiated, one-way only sync from the
client to the server.

208 REFRESH FROM
CLIENT BY SERVER

Specifies the server-initiated, refresh operation for the
one-way only sync from the client to the server.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 55 (63)

209 ONE-WAY FROM
SERVER BY SERVER

Specifies the server-initiated, one-way only sync from the
server to the client.

210 REFRESH FROM
SERVER BY SERVER

Specifies the server-initiated, refresh operation of the one-
way only sync from the server to the client.

211-220 - Reserved for future SyncML usage.

Special Alert Codes

221 RESULT ALERT Specifies a request for sync results.

222 NEXT MESSAGE Specifies a request for the next message in the package.

223 NO END OF DATA End of Data for chunked object not received.

224-250 - Reserved for future SyncML usage.

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 56 (63)

15. Examples
15.1 WBXML Example
Here is an example of Package #3 (as defined in) in tokenized form (numbers in hexadecimal). This example uses
opaque data and inline strings. The example also assumes that the character encoding is UTF-8.
02 00 00 6A 1E ”-” ”/” ”/” ”S” ”Y” ”N” ”C” ”M” ”L” ”/” ”/” ”D” ”T” ”D” ” ” ”S” ”y” ”n”
”c” ”M” ”L” ” “ ”1” ”.” ”1” ”/” ”/” ”E” ”N” 00 6D 6C 71 C3 03 “1” “.” “1” 01 72 C3 0A “S”
“y” “n” “c” “M” “L” “/” “1” “.” “1” 01 65 C3 01 “1” 01 5B C3 01 “2” 01 6E 57 C3 20 “h”
“t” “t” “p” “:” “/” “/” “w” “w” “w” “1” “.” “d” “a” “t” “a” “s” “y” “n” “c” “.” “o” “r”
“g” “/” “s” “e” “r” “v” “l” “e” “t” 01 01 67 57 C3 12 “I” “M” “E” “I” “:” “1” “5” “6” “4”
“4” “6” “9” “2” “1” “0” “9” “4” “8” 01 01 01 6B 69 4B C3 01 “1” 01 5C C3 01 “1” 01 4C C3
01 “0” 01 4A C3 07 “S” “y” “n” “c” “H” “d” “r” 01 6F C3 12 “I” “M” “E” “I” “:” “1” “5”
“6” “4” “4” “6” “9” “2” “1” “0” “9” “4” “8” 01 68 C3 20 “h” “t” “t” “p” “:” “/” “/” “w”
“w” “w” “1” “.” “d” “a” “t” “a” “s” “y” “n” “c” “.” “o” “r” “g” “/” “s” “e” “r” “v” “l”
“e” “t” 01 4F C3 3 “2” “0” “0” 01 01 69 4B C3 01 “2” 01 5C C3 01 “1” 01 4C C3 01 “1” 01
4A C3 05 “A” “l” “e” “r” “t” 01 6F C3 0E “.” “\” “d” “e” “v” “-“ “c” “a” “l” “e” “n” “d”
“a” “r” 01 68 C3 0A “.” “/” “c” “a” “l” “e” “n” “d” “a” “r” 01 4F C3 03 “2” “0” “0” 01 54
4F 00 02 4A C3 11 “2” “0” “0” “0” “0” “5” “0” “2” “2” “T” “0” “9” “3” “2” “2” “3” “Z” 01
00 00 01 01 01 6A 4B C3 01 “3” 01 6E 57 C3 0A “.” “/” “c” “a” “l” “e” “n” “d” “a” “r” 01
01 67 57 C3 0E “.” “\” “d” “e” “v” “-“ “c” “a” “l” “e” “n” “d” “a” “r” 01 01 60 4B C3 01
“4” 01 5A 00 02 4D 03 “t” “e” “x” “t” “/” “x” “-“ “v” “c” “a” “l” “e” “n” “d” “a” “r” 00
01 00 00 01 54 67 57 C3 02 “2” “6” 01 01 4F C3 02 04 “C” “A” “L” “1” 01 01 01 01 12 01 01
01

In an expanded and annotated form:

Token Stream Description
02 Version number – WBXML v1.2
00 FPI for DTD in string table
00 index into string table for

the identifier
6A Charset is UTF-8
1E String table length
”-” ”/” ”/” ”S” ”Y” ”N” ”C” ”M” ”L” ”/” ”/” ”D” ”T” ”D”
” ” ”S” ”y” ”n” ”c” ”M” ”L” ” “ ”1” ”.” ”1” ”/” ”/” ”E”
”N” 0x00

-//SYNCML//DTD SyncML 1.1//EN

6D <SyncML>
6C <SyncHdr>
71 <VerDTD>
C3 Opaque data follows
03 Length of opaque data
“1” “.” “1” String ‘1.1’
01 </VerDTD>
72 <VerProto>
C3 Opaque data follows
0A Length of opaque data
“S” “y” “n” “c” “M” “L” “/” “1” “.” “1” String ‘SyncML/1.1’
01 </VerProto>
65 <SessionID>
C3 Opaque data follows
01 Length of opaque data
“1” String ‘1’
01 </SessionID>
5B <MsgID>
C3 Opaque data follows
01 Length of opaque data
“2” String ‘2’
01 </MsgID>
6E <Target>

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 57 (63)

57 <LocURI>
C3 Opaque data follows
20 Length of opaque data
“h” “t” “t” “p” “:” “/” “/” “w” “w” “w” “1” “.” “d” “a”
“t” “a” “s” “y” “n” “c” “.” “o” “r” “g” “/” “s” “e” “r”
“v” “l” “e” “t”

String
‘http://www1.datasync.org/serv
let”

01 </LocURI>
01 </Target>
67 <Source>
57 <LocURI>
C3 Opaque data follows
12 Length of opaque data
“I” “M” “E” “I” “:” “1” “5” “6” “4” “4” “6” “9” “2” “1”
“0” “9” “4” “8”

String ‘IMEI:1564469210948’

01 </LocURI>
01 </Source>
01 </SyncHdr>
6B <SyncBody>
69 <Status>
4B <CmdID>
C3 Opaque data follows
01 Length of opaque data
“1” String ‘1’
01 </CmdID>
5C <MsgRef>
C3 Opaque data follows
01 Length of opaque data
“1” String ‘1’
01 </MsgRef>
4C <CmdRef>
C3 Opaque data follows
01 Length of opaque data
“0” String ‘0’
01 </CmdRef>
4A <Cmd>
C3 Opaque data follows
07 Length of opaque data
“S” “y” “n” “c” “H” “d” “r” String ‘SyncHdr’
01 </Cmd>
6F <TargetRef>
C3 Opaque data follows
12 Length of opaque data
“I” “M” “E” “I” “:” “1” “5” “6” “4” “4” “6” “9” “2” “1”
“0” “9” “4” “8”

String ‘IMEI:1564469210948’

01 </TargetRef>
68 <SourceRef>
C3 Opaque data follows
20 Length of opaque data
“h” “t” “t” “p” “:” “/” “/” “w” “w” “w” “1” “.” “d” “a”
“t” “a” “s” “y” “n” “c” “.” “o” “r” “g” “/” “s” “e” “r”
“v” “l” “e” “t”

String
‘http://www1.datasync.org/serv
let”

01 </LocURI>
4F <Data>
C3 Opaque data follows
3 Length of opaque data
“2” “0” “0” String ‘200’
01 </Data>
01 </Status>
69 <Status>
4B <CmdID>
C3 Opaque data follows
01 Length of opaque data

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 58 (63)

“2” String ‘2’
01 </CmdID>
5C <MsgRef>
C3 Opaque data follows
01 Length of opaque data
“1” String ‘1’
01 </MsgRef>
4C <CmdRef>
C3 Opaque data follows
01 Length of opaque data
“1” String ‘0’
01 </CmdRef>
4A <Cmd>
C3 Opaque data follows
05 Length of opaque data
“A” “l” “e” “r” “t” String ‘Alert’
01 </Cmd>
6F <TargetRef>
C3 Opaque data follows
0E Length of opaque data
“.” “\” “d” “e” “v” “-“ “c” “a” “l” “e” “n” “d” “a” “r” String ‘.\dev-calendar’
01 </TargetRef>
68 <SourceRef>
C3 Opaque data follows
0A Length of opaque data
“.” “/” “c” “a” “l” “e” “n” “d” “a” “r” String ‘./calendar’
01 </LocURI>
4F <Data>
C3 Opaque data follows
03 Length of opaque data
“2” “0” “0” String ‘200’
01 </Data>
54 <Item>
4F <Data>
00 Switch codepage
01 Codepage 01 (MetInf)
4F <Next>
C3 Opaque data follows
11 Length of opaque data
“2” “0” “0” “0” “0” “5” “0” “2” “2” “T” “0” “9” “3” “2”
“2” “3” “Z”

String ‘200005022T093223Z ‘

01 </Next>
00 Switch codepage
00 Codepage 00
01 </Data>
01 </Item>
01 </Status>
6A <Sync>
4B <CmdID>
C3 Opaque data follows
01 Length of opaque data
“3” String ‘3’
01 </CmdID>
6E <Target>
57 <LocURI>
C3 Opaque data follows
0A Length of opaque data
“.” “/” “c” “a” “l” “e” “n” “d” “a” “r” String ‘./calendar’
01 </LocURI>
01 </Target>
67 <Source>

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 59 (63)

57 <LocURI>
C3 Opaque data follows
0E Length of opaque data
“.” “\” “d” “e” “v” “-“ “c” “a” “l” “e” “n” “d” “a” “r” String ‘.\dev-calendar’
01 </LocURI>
01 </Source>
60 <Replace>
4B <CmdID>
C3 Opaque data follows
01 Length of opaque data
“4” String ‘4’
01 </CmdID>
5A <Meta>
00 Codepage switch
01 Codepage 01 (MetInf)
4D <Type>
03 Inline string follows
“t” “e” “x” “t” “/” “x” “-“ “v” “c” “a” “l” “e” “n” “d”
“a” “r” 00

String ‘text/x-vcalendar’

01 </Type>
00 Codepage switch
00 Codepage 00
01 </Meta>
54 <Item>
67 <Source>
57 <LocURI>
C3 Opaque data follows
02 Length of opaque data
“2” “6” String ‘26’
01 </LocURI>
01 </Source>
4F <Data>
C3 Opaque data follows
02 Length of opaque data
04 Legnth of string table
“C” “A” “L” “1” Actual data
01 </Data>
01 </Item>
01 </Replace>
01 </Sync>
12 <Final>
01 </Final>
01 </SyncBody>
01 </SyncML>

15.2 Example of Sync without Separate Initialization
Here is shown an example, how the client starts sync without a separate sync initialization. Only two packets are shown
here (combination of Packages #1 and #3 and the combination of Packages #2 and #4). Package #5 and #6 can follow as
defined in the specification.

Combination of Package #1 and #3
<SyncML>
<SyncHdr>
<VerDTD>1.1</VerDTD>
<VerProto>SyncML/1.1</VerProto>
<SessionID>1</SessionID>
<MsgID>1</MsgID>

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 60 (63)

<Target><LocURI>http://www.syncml.org/sync-server</LocURI></Target>
<Source><LocURI>IMEI:493005100592800</LocURI></Source>
<Cred> <!--The authentication is optional.-->
<Meta><Type xmlns=’syncml:metinf’>syncml:auth-basic</Type></Meta>
<Data>QnJ1Y2UyOk9oQmVoYXZl</Data> <!--base64 formatting of “userid:password”-->
</Cred>
</SyncHdr>
<SyncBody>
<Alert>
<CmdID>1</CmdID>
<Data>200</Data> <!-- 200 = TWO_WAY_ALERT -->
<Item>
<Target><LocURI>./contacts/james_bond</LocURI></Target>
<Source><LocURI>./dev-contacts</LocURI></Source>
<Meta>
<Anchor xmlns=’syncml:metinf’>
<Last>234</Last>
<Next>276</Next>
</Anchor>
</Meta>
</Item>
</Alert>
<Sync>
<CmdID>2</CmdID>
<Target><LocURI>./contacts/james_bond</LocURI></Target>
<Source><LocURI>./dev-contacts</LocURI></Source>
<Meta>
<Mem xmlns=’syncml:metinf’>
<FreeMem>8100</FreeMem>
<!--Free memory (bytes) in Calendar database on a device -->
<FreeId>81</FreeId>
<!--Number of free records in Calendar database-->
</Mem>
</Meta>
<Replace>
<CmdID>3</CmdID>
<Meta><Type xmlns=’syncml:metinf’>text/x-vcard</Type></Meta>
<Item>
<Source><LocURI>1012</LocURI></Source>
<Data><!--The vCard data would be placed here.--></Data>
</Item>
</Replace>
</Sync>
<Final/>
</SyncBody>
</SyncML>

Combination of Package #2 and #4
<SyncML>
<SyncHdr>
<VerDTD>1.1</VerDTD>
<VerProto>SyncML/1.1</VerProto>
<SessionID>1</SessionID>
<MsgID>1</MsgID>
<Target><LocURI>IMEI:493005100592800</LocURI></Target>
<Source><LocURI>http://www.syncml.org/sync-server</LocURI></Source>
</SyncHdr>
<SyncBody>
<Status>
<CmdID>1</CmdID>
<MsgRef>1</MsgRef><CmdRef>0</CmdRef><Cmd>SyncHdr</Cmd>
<TargetRef>http://www.syncml.org/sync-server</TargetRef>
<SourceRef>IMEI:493005100592800</SourceRef>
<Data>212</Data> <!--Statuscode for OK, authenticated for session-->

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 61 (63)

</Status>
<Status>
<CmdID>2</CmdID>
<MsgRef>1</MsgRef><CmdRef>1</CmdRef><Cmd>Alert</Cmd>
<TargetRef>./contacts/james_bond</TargetRef>
<SourceRef>./dev-contacts</SourceRef>
<Data>200</Data> <!--Statuscode for OK-->
<Item>
<Data><Anchor xmlns=’syncml:metinf’><Next>276</Next></Anchor></Data>
</Item>
</Status>
<Status>
<CmdID>3</CmdID>
<MsgRef>1</MsgRef><CmdRef>2</CmdRef><Cmd>Sync</Cmd>
<TargetRef>./contacts/james_bond</TargetRef>
<SourceRef>./dev-contacts</SourceRef>
<Data>200</Data> <!--Statuscode for Success-->
</Status>
<Status>
<CmdID>4</CmdID>
<MsgRef>1</MsgRef><CmdRef>3</CmdRef><Cmd>Replace</Cmd>
<SourceRef>1012</SourceRef>
<Data>200</Data> <!--Statuscode for Success-->
</Status>
<Alert>
<CmdID>5</CmdID>
<Data>200</Data> <!-- 200 = TWO_WAY_ALERT -->
<Item>
<Target><LocURI>./dev-contacts</LocURI></Target>
<Source><LocURI>./contacts/james_bond</LocURI></Source>
<Meta>
<Anchor xmlns=’syncml:metinf’>
<Last>200005021T081812Z </Last>
<Next>200005022T093223Z </Next>
</Anchor>
</Meta>
</Item>
</Alert>
<Sync>
<CmdID>6</CmdID>
<Target><LocURI>./dev-contacts</LocURI></Target>
<Source><LocURI>./contacts/james_bond</LocURI></Source>
<Replace>
<CmdID>7</CmdID>
<Meta><Type xmlns=’syncml:metinf’>text/x-vcard</Type></Meta>
<Item>
<Target><LocURI>1023</LocURI></Target>
<Data><!--The vCard data would be placed here.--></Data>
</Item>
</Replace>
<Add>
<CmdID>8</CmdID>
<Meta><Type xmlns=’syncml:metinf’>text/x-vcard</Type></Meta>
<Item>
<Source><LocURI>10536681</LocURI></Source>
<Data><!--The vCard data would be placed here.--></Data>
</Item>
</Add>
</Sync>
<Final/>
</SyncBody>
</SyncML>

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 62 (63)

Appendix A. Static Conformance Requirements (Normative)
This section defines static conformance requirements for SyncML servers and client conforming to this specification.
Also, the requirements for supporting SyncML commands are defined.

Conformance Requirements for SyncML Server
Table 2 Conformance requirements for devices acting as SyncML server

Feature Reference Status

Support of ‘two-way sync’ sync type Chapter 9 MUST

Support of ‘slow two-way sync’ sync type Chapter 10.5 MUST

Support of ‘one-way sync from client only’ sync type Chapter 11 MAY

Support of ‘refresh sync from client only’ sync type Chapter 11.3 MAY

Support of ‘one-way sync from server only’ sync type Chapter 12 MAY

Support of ‘refresh sync from server only’ sync type Chapter 12.5 MAY

Support of ‘sync alert’ Chapter 13 MAY

Support of ‘Large Objects’ Chapter 7.10 MUST

Support of ‘busy signaling’ Chapter 7.12 SHOULD

Conformance Requirements for SyncML Client
Table 3 Conformance requirements for devices acting as SyncML client

Sync Type Reference Status

Support of ‘two-way sync’ sync type Chapter 9 MUST

Support of ‘slow two-way sync’ sync type Chapter 10.5 MUST

Support of ‘one-way sync from client only’ sync type Chapter 11 MAY

Support of ‘refresh sync from client only’ sync type Chapter 11.3 MAY

Support of ‘one-way sync from server only’ sync type Chapter 12 MAY

Support of ‘refresh sync from server only’ sync type Chapter 12.5 MAY

Support of ‘sync alert’ Chapter 13 MAY

Support of ‘Large Objects’ Chapter 7.10 SHOULD

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

OMA-SyncML-DataSyncProtocol–V1_1_2-20030612-A Page 63 (63)

Appendix B. Change History (Informative)

A.1 Approved Version History
Reference Date Description

OMA-SyncML-DataSyncProtocol–V1_1_2-
20030612-A

12 June 2003 Approved by TP. TP ref# OMA-TP-2003-0264R1

 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document. [OMA-Template-Spec-20030824]

	Contents
	Scope
	References
	Normative References
	Informative References

	Terminology and Conventions
	Conventions
	Definitions
	Abbreviations

	Introduction
	SyncML Introduction
	SyncML Framework
	
	Figure 1 SyncML Framework

	Device Roles
	
	Figure 2 Synchronization Example with Mobile Phone and Server

	Sync Types

	Protocol Fundamentals
	Change Log Information
	Multiple devices

	Usage of Sync Anchors
	Sync Anchors for Databases
	Example of Database Sync Anchor Usage

	Sync Anchors for Data Items

	ID Mapping of Data Items
	Caching of Map Operations

	Conflict Resolution
	Security
	Addressing
	Device and Service Addressing
	Usage of RespURI and Re-direction Status Codes
	Database Addressing
	Addressing of Data Items

	Exchange of Device Capabilities
	Device Memory Management
	Multiple Messages in Package
	Large Object Handling
	Sync without Separate Initialization
	Robustness and Security Considerations

	Busy Signaling
	Busy Status from Server
	Example of Busy Status

	Result Alert from Client
	Example of Result Alert
	
	
	</SyncML>

	Authentication
	Authentication Challenge
	Authorization
	Server Layer Authentication
	Authentication of Database Layer
	Authentication Examples
	Basic authentication with a challenge
	MD5 digest access authentication with a challenge

	Sync Initialization
	Initialization Requirements for Client
	Example of Sync Initialization Package from Client

	Initialization Requirements for Server
	Example of Sync Initialization Package from Server

	Error Case Behaviors
	No Packages from Server
	No Initialization Completion from Client
	Initialization Failure

	Two-Way Sync
	Client Modifications to Server
	Example of Sending Modifications to Server

	Server Modifications to Client
	Example of Sending Modifications to Client

	Data Update Status from Client
	Example of Data Update Status to Server

	Map Acknowledgement from Server
	Example of Map Acknowledge

	Slow Sync
	Error Case Behaviors
	No Packages from Server after Initialization
	No Data Update Status from Client
	No Data Map Acknowledge from Server
	Errors with Defined Error Codes

	One-Way Sync from Client Only
	Client Modifications to Server
	Status from Server
	Refresh Sync from Client Only
	Error Cases Behavior
	No Packages from Server after Initialization
	Errors with Defined Error Codes

	One-Way Sync from Server only
	Sync Alert to Server
	Server Modifications to Client
	Data Update Status from Client
	Map Acknowledge from Server
	Refresh Sync from Server Only
	Error Cases
	No Packages from Server
	No Data Update Status from Client
	No Map Ack from Server
	Errors with Defined Error Codes

	Server Alerted Sync
	Sync Alert
	Error Cases Behavior
	No Packages from Client
	Errors with Defined Error Codes

	Protocol Values and Alert Codes
	Protocol Values
	Alert Codes

	Examples
	WBXML Example
	Example of Sync without Separate Initialization
	Conformance Requirements for SyncML Server
	Conformance Requirements for SyncML Client

