LPP Extensions Specification
Candidate Version 2.0 – 04 Aug 2020

Open Mobile Alliance
OMA-TS-LPPe–V2_0-20200804-C
Contents

1. SCOPE ... 15

2. REFERENCES .. 16
 2.1 NORMATIVE REFERENCES ... 16
 2.2 INFORMATIVE REFERENCES ... 17

3. TERMINOLOGY AND CONVENTIONS .. 19
 3.1 CONVENTIONS ... 19
 3.2 DEFINITIONS ... 19
 3.3 ABBREVIATIONS ... 19

4. INTRODUCTION ... 22
 4.1 VERSION 1.0 ... 22
 4.2 VERSION 1.1 ... 22
 4.3 VERSION 2.0 ... 22
 4.4 VERSION NEGOTIATION (NORMATIVE) .. 22

5. LPPE FUNCTIONALITY (NORMATIVE) ... 24
 5.1 INTEGRATION WITH 3GPP-LPP ... 24
 5.2 LPPE PROCEDURES ... 25
 5.2.1 Periodic/Triggered Assistance Data Transfer with Update ... 25
 5.2.1.1 Initiating and Terminating the Procedure ... 25
 5.2.1.2 Target Update .. 26
 5.2.1.3 Server Update .. 28
 5.2.1.4 Delivery via Broadcast (version 1.1) ... 29
 5.2.2 Periodic/Triggered Location Information Transfer with Update ... 30
 5.2.2.1 Initiating and Terminating the Procedure ... 30
 5.2.2.2 Server Update .. 32
 5.2.2.3 Target Update .. 33
 5.2.3 Segmented Assistance Data Transfer .. 34
 5.2.3.1 Basic Procedure .. 34
 5.2.3.2 Procedure with Resume Capability ... 36
 5.2.4 Segmented Location Information Transfer .. 37
 5.2.4.1 Basic Procedure .. 37
 5.2.4.2 Procedure with Resume Capability ... 39
 5.2.5 Broadcast of Assistance Data (version 1.1) .. 40
 5.2.5.1 Broadcast Assistance Data Messages ... 40
 5.2.5.2 Broadcast Procedure .. 41
 5.2.5.3 Ciphering of Assistance Data ... 43
 5.2.5.4 Authentication of Assistance Data .. 44
 5.2.6 Crowdsourcing (version 2.0) .. 45
 5.2.6.1 Crowdsourcing Principles .. 45
 5.2.6.2 Crowdsourcing Procedure .. 46
 5.2.6.3 Basic and Advanced Crowdsourcing .. 48
 5.2.6.4 Measurement Sets and Measurement Subsets .. 50

5.3 LPPE MODE ... 51

6. INFORMATION ELEMENT ABSTRACT SYNTAX DEFINITION (NORMATIVE) 53
 6.1 GENERAL ... 53
 6.2 LPPE MESSAGE EXTENSION ... 53
 6.2.1 LPP data type imports ... 53
 6.2.2 Message extension definitions .. 53
 6.2.2.1 Extension of LPP .. 53
 6.2.2.2 Broadcast Message Extension (version 1.1) ... 54

6.3 MESSAGE EXTENSION IES ... 56
 6.3.1 Request Capabilities .. 56
 6.3.2 Provide Capabilities .. 57
 6.3.3 Request Assistance Data ... 57
 6.3.4 Provide Assistance Data ... 58
6.3.5 Request Location Information ... 58
6.3.6 Provide Location Information .. 58
6.3.7 Abort ... 59
6.3.8 Error .. 59

6.4 LPPE COMMON IEs .. 59

6.4.1 LPPe Common low level IEs ... 59
- OMA-LPPE-AssistanceContainer-DataSerialNumber 59
- OMA-LPPE-AssistanceContainerID .. 60
- OMA-LPPE-AssistanceContainerProvideList .. 60
- OMA-LPPE-AssistanceContainerRequestList .. 62
- OMA-LPPE-CellLocalIdGERAN ... 63
- OMA-LPPE-CellNonUniqueIIdGERAN ... 63
- OMA-LPPE-CharArray ... 63
- OMA-LPPE-CivicLocation .. 64
- OMA-LPPE-Duration ... 64
- OMA-LPPE-FixedAccessTypes ... 66
- OMA-LPPE-ver1-1-GroundMorphologyModel ... 66
- OMA-LPPE-HighAccuracy3Dposition .. 69
- OMA-LPPE-HighAccuracy3Dvelocity .. 73
- OMA-LPPE-LocationInformationContainerID .. 75
- OMA-LPPE-LocationInformationContainer .. 76
- OMA-LPPE-LocationInformationContainerRequest 76
- OMA-LPPE-MapDataReference .. 77
- OMA-LPPE-Orientation ... 77
- OMA-LPPE-ReferencePoint ... 78
- OMA-LPPE-ReferencePointUniqueID .. 80
- OMA-LPPE-RelativeLocation ... 80
- OMA-LPPE-Session-ID ... 83
- OMA-LPPE-Uri .. 83
- OMA-LPPE-ver1-1-BroadcastSystemID ... 83
- OMA-LPPE-ver1-1-BroadcastSystemType ... 84
- OMA-LPPE-ver1-1-AccessNetworkID .. 85
- OMA-LPPE-ver1-1-AuthenticationSet .. 86
- OMA-LPPE-ver1-1-AuthenticationSet .. 86
- OMA-LPPE-ver1-1-CipherSetID .. 87
- OMA-LPPE-ver1-1-CipherSet ... 87
- OMA-LPPE-ver1-1-ServerID ... 87
- OMA-LPPE-ValidityArea .. 98
- OMA-LPPE-ValidityPeriod .. 98
- OMA-LPPE-VendorOrOperatorAssistanceDataIdentifier 99
- OMA-LPPE-VendorOrOperatorID ... 99
- OMA-LPPE-WirelessAccessTypes .. 100
- OMA-LPPE-WLAN-AP-ID .. 100
- OMA-LPPE-WLAN-AP-Type ... 101
- OMA-LPPE-WLAN-AP-Type-List ... 101
- OMA-LPPE-WLAN-FemtoCoverageArea .. 101

6.4.2 LPPe Common Positioning IEs .. 103
- OMA-LPPE-CommonIEsRequestCapabilities ... 103
- OMA-LPPE-CommonIEsProvideCapabilities ... 105
- OMA-LPPE-CommonIEsRequestAssistanceData 111
- OMA-LPPE-CommonIEsProvideAssistanceData 116
- OMA-LPPE-CommonIEsRequestLocationInformation 121
- OMA-LPPE-CommonIEsProvideLocationInformation 124
- OMA-LPPE-CommonIEsAbort .. 130
- OMA-LPPE-CommonIEsError .. 130

6.5 POSITIONING METHOD IEs ... 130

6.5.1 AGNSS Positioning ... 130

6.5.1.1 AGNSS Assistance Data ... 130
- OMA-LPPE-AGNSS-ProvidedAssistanceData ... 130
- OMA-LPPE-AGNSS-CommonAssistData ... 131
- OMA-LPPE-AGNSS-GenericAssistData .. 131

6.5.1.2 AGNSS Assistance Data Elements .. 132
- OMA-LPPE-AGNSS-IsosphericModel ... 132
6.5.2 OTDOA Positioning .. 178
 6.5.2.1 OTDOA Assistance Data 178
 OMA-LPpe-OTDOA-ProvideAssistanceData 178
 6.5.2.2 OTDOA Assistance Data Elements 178
 OMA-LPpe-OTDOA-ReferenceCellInfo 178
 OMA-LPpe-OTDOA-PositionCalculationInfoRef 179
 OMA-LPpe-OTDOA-NeighbourCellInfoElement-eNB 180
 OMA-LPpe-OTDOA-NeighbourCellInfoElement-HeNB 181
 OMA-LPpe-OTDOA-CellData 181
 OMA-LPpe-OTDOA-RTDquality 182
 6.5.2.3 OTDOA Assistance Data Request 182
 OMA-LPpe-OTDOA-RequestAssistanceData 182
 6.5.2.4 OTDOA Location Information 183
 OMA-LPpe-OTDOA-ProvideLocationInformation 183
 6.5.2.5 OTDOA Location Information Elements 183
 OMA-LPpe-OTDOA-LocationInformation ..
 OMA-LPpe-OTDOA-RequestLocationInformation 184
 6.5.2.6 OTDOA Capability Information 184
 OMA-LPpe-OTDOA-ProvideCapabilities
 OMA-LPpe-OTDOA-RequestCapabilities
 6.5.2.7 OTDOA Capability Information Request 185
 OMA-LPpe-OTDOA-RequestCapabilities
 6.5.2.8 OTDOA Error Elements ... 185
 OMA-LPpe-OTDOA-Error ..
 OMA-LPpe-OTDOA-LocationServerErrorCauses 185
 OMA-LPpe-OTDOA-TargetDeviceErrorCauses

6.5.3 EOTD Positioning ... 186
 6.5.3.1 EOTD Assistance Data ... 186
 OMA-LPpe-EOTD-ProvideAssistanceData 186
 6.5.3.2 EOTD Assistance Data Elements 186
 OMA-LPpe-EOTD-ReferenceBTSForAssistance 186
 OMA-LPpe-EOTD-MsrAssistDataList
 OMA-LPpe-EOTD-SystemInfoAssistDataList 188
 OMA-LPpe-EOTD-CalcAssistanceBTS
 6.5.3.3 EOTD Assistance Data Request 190
 OMA-LPpe-EOTD-RequestAssistanceData 190
 6.5.3.4 EOTD Location Information 190
 OMA-LPpe-EOTD-ProvideLocationInformation 190
 6.5.3.5 EOTD Location Information Elements 190
 OMA-LPpe-EOTD-MsrElement 190
 OMA-LPpe-EOTD-MsrElement 190
 6.5.3.6 EOTD Location Information Request 194
 OMA-LPpe-EOTD-RequestLocationInformation 194
 6.5.3.7 EOTD Capability Information 194
 OMA-LPpe-EOTD-ProvideCapabilities
 6.5.3.8 EOTD Capability Information Request 195
 OMA-LPpe-EOTD-RequestCapabilities
 6.5.3.9 EOTD Error Elements .. 195
 OMA-LPpe-EOTD-Error ..
 OMA-LPpe-EOTD-LocationServerErrorCauses 195
 OMA-LPpe-EOTD-TargetDeviceErrorCauses
6.5.3.10 EOTD Common Information ... 196
 – OMA-LPpe-EOTD-TimeSlotScheme ... 196
 – OMA-LPpe-EOTD-MultiFrameOffset .. 196
 – OMA-LPpe-EOTD-OffsetRTD .. 197
 – OMA-LPpe-EOTD-ExpectedOTD ... 197
 – OMA-LPpe-EOTD-ModuleTimeSlot .. 198

6.5.4 OTDOA-UTRA Positioning ... 198
 6.5.4.1 OTDOA-UTRA Assistance Data .. 198
 – OMA-LPpe-OTDOA-UTRA-ProvideAssistanceData 198
 6.5.4.2 OTDOA-UTRA Assistance Data Elements 199
 – OMA-LPpe-OTDOA-UTRA-ReferenceCellInfo 199
 – OMA-LPpe-OTDOA-UTRA-NeighborCellList 200
 – OMA-LPpe-OTDOA-UTRA-IPDL-parameters 202
 6.5.4.3 OTDOA-UTRA Assistance Data Request 203
 – OMA-LPpe-OTDOA-UTRA-RequestAssistanceData 203
 6.5.4.4 OTDOA-UTRA Location Information .. 203
 – OMA-LPpe-OTDOA-UTRA-ProvideLocationInformation 203
 – OMA-LPpe-OTDOA-UTRA-Measurement ... 204
 – OMA-LPpe-OTDOA-UTRA-TimeStampData .. 206
 6.5.4.5 OTDOA-UTRA Location Information Elements 206
 – OMA-LPpe-OTDOA-UTRA-RequestLocationInformation 206
 6.5.4.6 OTDOA-UTRA Location Information Request 206
 – OMA-LPpe-OTDOA-UTRA-RequestCapabilities 207
 6.5.4.7 OTDOA-UTRA Capability Information ... 207
 – OMA-LPpe-OTDOA-UTRA-ProvideCapabilities 207
 6.5.4.8 OTDOA-UTRA Capability Information Request 207
 – OMA-LPpe-OTDOA-UTRA-RequestCapabilities 207
 6.5.4.9 OTDOA-UTRA Error Elements ... 207
 – OMA-LPpe-OTDOA-UTRA-Error .. 207
 – OMA-LPpe-OTDOA-UTRA-LocationServerErrorCauses 208
 – OMA-LPpe-OTDOA-UTRA-TargetDeviceErrorCauses 208
 6.5.4.10 OTDOA-UTRA Common Elements .. 208
 – OMA-LPpe-OTDOA-UTRA-PrimaryCPICH-Info 208
 – OMA-LPpe-OTDOA-UTRA-PrimaryScramblingCode 208
 – OMA-LPpe-OTDOA-UTRA-CellAndChannelIdentity 209

6.5.5 LTE Enhanced Cell ID Positioning .. 209
 6.5.5.1 LTE ECID Assistance Data ... 209
 – OMA-LPpe-ECID-LTE-ProvideAssistanceData 209
 6.5.5.2 LTE ECID Assistance Data Elements .. 209
 – OMA-LPpe-ECID-LTE-NetworkData .. 209
 – OMA-LPpe-ECID-LTE-eNodeBData .. 210
 – OMA-LPpe-ECID-LTE-HeNBData .. 211
 – OMA-LPpe-ECID-LTE-CellData ... 211
 6.5.5.3 LTE ECID Assistance Data Request ... 212
 – OMA-LPpe-ECID-LTE-RequestAssistanceData 212
 6.5.5.4 LTE ECID Location Information .. 213
 – OMA-LPpe-ECID-LTE-ProvideLocationInformation 213
 6.5.5.5 LTE ECID Location Information Elements 214
 – OMA-LPpe-ECID-LTE-LocationInformation 214
 6.5.5.6 LTE ECID Location Information Request 215
 – OMA-LPpe-ECID-LTE-RequestLocationInformation 215
 6.5.5.7 LTE ECID Capability Information ... 215
 – OMA-LPpe-ECID-LTE-ProvideCapabilities 215
 6.5.5.8 LTE ECID Capability Information Request 217
 – OMA-LPpe-ECID-LTE-RequestCapabilities 217
 6.5.5.9 LTE ECID Error Element ... 217
 – OMA-LPpe-ECID-LTE-Error .. 217
 – OMA-LPpe-ECID-LTE-LocationServerErrorCauses 217
 – OMA-LPpe-ECID-LTE-TargetDeviceErrorCauses 218

6.5.6 GSM Enhanced Cell ID Positioning .. 219
 6.5.6.1 GSM ECID Assistance Data ... 219
 – OMA-LPpe-ECID-GSM-ProvideAssistanceData 219
 6.5.6.2 GSM ECID Assistance Data Elements .. 219
 – OMA-LPpe-ECID-GSM-NetworkData .. 219
6.5.7 UTRA Enhanced Cell ID Positioning

6.5.7.1 UTRA ECID Assistance Data

6.5.7.2 UTRA ECID Assistance Data Elements

6.5.7.3 UTRA ECID Assistance Data Request

6.5.7.4 UTRA ECID Location Information

6.5.7.5 UTRA ECID Location Information Elements

6.5.7.6 UTRA ECID Location Information Request

6.5.7.7 UTRA ECID Capability Information

6.5.7.8 UTRA ECID Capability Information Request

6.5.7.9 UTRA ECID Error Element

6.5.8 WLAN Enhanced Cell ID Positioning

6.5.8.1 WLAN AP Assistance Data

6.5.8.2 WLAN AP Assistance Data Elements

6.5.8.3 WLAN AP Assistance Data Request

6.5.8.4 WLAN AP Location Information

6.5.8.5 WLAN AP Location Information Elements

6.5.8.6 WLAN AP Location Information Request

6.5.8.7 WLAN AP Capability Information

6.5.8.8 WLAN AP Capability Information Request
<table>
<thead>
<tr>
<th>Clause</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5.9</td>
<td>WiMax Enhanced Cell ID Positioning</td>
</tr>
<tr>
<td>6.5.9.1</td>
<td>WiMax ECID Location Information</td>
</tr>
<tr>
<td>6.5.9.2</td>
<td>WiMax ECID Location Information Elements</td>
</tr>
<tr>
<td>6.5.9.3</td>
<td>WiMax ECID Location Information Request</td>
</tr>
<tr>
<td>6.5.9.4</td>
<td>WiMax ECID Capability Information</td>
</tr>
<tr>
<td>6.5.9.5</td>
<td>WiMax ECID Capability Information Request</td>
</tr>
<tr>
<td>6.5.9.6</td>
<td>WiMax ECID Error Element</td>
</tr>
<tr>
<td>6.5.10</td>
<td>Sensor Positioning</td>
</tr>
<tr>
<td>6.5.10.1</td>
<td>Sensor Assistance Data</td>
</tr>
<tr>
<td>6.5.10.2</td>
<td>Sensor Assistance Data Elements</td>
</tr>
<tr>
<td>6.5.10.3</td>
<td>Sensor Assistance Data Request</td>
</tr>
<tr>
<td>6.5.10.4</td>
<td>Sensor Assistance Data Request Elements</td>
</tr>
<tr>
<td>6.5.10.5</td>
<td>Sensor Location Information</td>
</tr>
<tr>
<td>6.5.10.6</td>
<td>Sensor Location Information Elements</td>
</tr>
<tr>
<td>6.5.10.7</td>
<td>Sensor Location Information Request</td>
</tr>
<tr>
<td>6.5.11</td>
<td>Short Range Node Positioning</td>
</tr>
<tr>
<td>6.5.11.1</td>
<td>Short Range Node Assistance Data</td>
</tr>
<tr>
<td>6.5.11.2</td>
<td>Short Range Node Assistance Data Elements</td>
</tr>
<tr>
<td>6.5.11.3</td>
<td>Short Range Node Assistance Data Request</td>
</tr>
<tr>
<td>6.5.11.4</td>
<td>Short Range Node Assistance Data Request Elements</td>
</tr>
</tbody>
</table>

Note: This is a partial listing, and the full document contains many more elements and capabilities related to WiMax Enhanced Cell ID Positioning and Sensor Positioning.
6.5.12 Pedestrian Dead Reckoning Positioning ... 299
 6.5.12.1 PDR Assistance Data .. 299
 – OMA-LPPe-ver2-0-PDR-ProvideAssistanceData .. 299
 6.5.12.2 PDR Assistance Data Elements ... 299
 – OMA-LPPe-ver2-0-PDR-StepLengthEstimationModelList 299
 – OMA-LPPe-ver2-0-PDR-StepFrequencyHeightModelList 300
 – OMA-LPPe-ver2-0-PDR-LinearSensorCombinationModelList 300
 6.5.12.3 PDR Assistance Data Request ... 302
 – OMA-LPPe-ver2-0-PDR-RequestAssistanceData ... 302
 6.5.12.4 PDR Assistance Data Request Elements .. 302
 – OMA-LPPe-ver2-0-PDR-StepLengthEstimationModelAD 302
 6.5.12.5 PDR Location Information ... 302
 – OMA-LPPe-ver2-0-PDR-ProvideLocationInformation 302
 6.5.12.6 PDR Location Information Elements ... 303
 – OMA-LPPe-ver2-0-PDR-MeasurementList ... 303
 6.5.12.7 PDR Location Information Request .. 306
 – OMA-LPPe-ver2-0-PDR-RequestLocationInformation 306
 6.5.12.8 PDR Capability Information ... 307
 – OMA-LPPe-ver2-0-PDR-ProvideCapabilities .. 307
 6.5.12.9 PDR Capability Information Elements .. 308
 6.5.12.10 PDR Capability Information Request .. 308
 – OMA-LPPe-ver2-0-PDR-RequestCapabilities .. 309
 6.5.12.11 PDR Error Elements .. 308
 – OMA-LPPe-ver2-0-PDR-Error ... 308
 6.5.12.12 Common PDR Information Elements .. 309
 – OMA-LPPe-ver2-0-PDR-SensorCategory .. 309
 – OMA-LPPe-ver2-0-PDR-SensorId ... 310
 – OMA-LPPe-ver2-0-PDR-SensorTechnologies .. 311
 6.5.13 Image Recognition Based Positioning (Version 2.0) .. 311
 6.5.13.1 IRB Assistance Data .. 311
 – OMA-LPPe-ver2-0-IRB-ProvideAssistanceData ... 311
 6.5.13.2 IRB Assistance Data Request ... 311
 – OMA-LPPe-ver2-0-IRB-RequestAssistanceData .. 311
 6.5.13.3 IRB Location Information .. 312
 – OMA-LPPe-ver2-0-IRB-ProvideLocationInformation 312
 6.5.13.4 IRB Location Information Elements ... 312
 – OMA-LPPe-ver2-0-IRB-MeasurementElement .. 312
 6.5.13.5 IRB Location Information Request .. 313
 – OMA-LPPe-ver2-0-IRB-RequestLocationInformation 313
 6.5.13.6 IRB Capability ... 314
 6.5.13.7 IRB Capability Request ... 316
APPENDIX B.

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.14</td>
<td>Crowdsourcing (version 2.0)</td>
<td>318</td>
</tr>
<tr>
<td>6.14.1</td>
<td>Crowdsourcing Location Information</td>
<td>318</td>
</tr>
<tr>
<td>6.14.2</td>
<td>Crowdsourcing Location Information Request</td>
<td>321</td>
</tr>
<tr>
<td>6.14.3</td>
<td>Crowdsourcing Location Information Elements</td>
<td>332</td>
</tr>
<tr>
<td>6.14.4</td>
<td>Crowdsourcing Capability Information</td>
<td>352</td>
</tr>
<tr>
<td>6.14.5</td>
<td>Crowdsourcing Capability Information Request</td>
<td>355</td>
</tr>
<tr>
<td>6.14.6</td>
<td>Crowdsourcing Capability Information Elements</td>
<td>355</td>
</tr>
<tr>
<td>6.14.7</td>
<td>Crowdsourcing Abort</td>
<td>358</td>
</tr>
<tr>
<td>6.14.8</td>
<td>Crowdsourcing Cause Elements</td>
<td>358</td>
</tr>
</tbody>
</table>

6.6 (End of ASN.1 Definition)

6.6.1 End of LPPE-PDU-Definitions

APPENDIX A. CHANGE HISTORY (INFORMATIVE)

A.1 APPROVED VERSION HISTORY

A.2 DRAFT/CANDIDATE VERSION 2.0 HISTORY

APPENDIX B. STATIC CONFORMANCE REQUIREMENTS (NORMATIVE)

B.1 SCR FOR LPPE CLIENT

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.1.1</td>
<td>LPPe messages</td>
<td>362</td>
</tr>
<tr>
<td>B.1.2</td>
<td>LPPe procedures</td>
<td>362</td>
</tr>
<tr>
<td>B.1.3</td>
<td>LPPe Assistance Data</td>
<td>363</td>
</tr>
<tr>
<td>B.1.4</td>
<td>LPPe Location Information</td>
<td>366</td>
</tr>
</tbody>
</table>

B.2 SCR FOR LPPE SERVER

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.2.1</td>
<td>LPPe messages</td>
<td>370</td>
</tr>
<tr>
<td>B.2.2</td>
<td>LPPe procedures</td>
<td>372</td>
</tr>
<tr>
<td>B.2.3</td>
<td>LPPe assistance data</td>
<td>372</td>
</tr>
<tr>
<td>B.2.4</td>
<td>LPPe location information</td>
<td>375</td>
</tr>
</tbody>
</table>

APPENDIX C. USE OF INFORMATION ELEMENTS (INFORMATIVE)

C.1 USE OF VALIDITY AREA PARAMETERS

C.2 USE OF IONOSPHERIC STORM INDICATIONS

C.3 USE OF PERIODIC WIDE AREA IONOSPHERE CORRECTIONS

C.4 TROPOSPHERE DELAY MODEL

<table>
<thead>
<tr>
<th>Subsubsection</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.4.1</td>
<td>Mapping Zenith Delays to Target Altitude</td>
<td>382</td>
</tr>
<tr>
<td>C.4.1.1</td>
<td>Gradient Parameters</td>
<td>382</td>
</tr>
<tr>
<td>C.4.2</td>
<td>Mapping Function</td>
<td>383</td>
</tr>
</tbody>
</table>

C.5 SATELLITE BODY-FIXED COORDINATE FRAME

C.6 NAVIGATION DEGRADATION MODELS

<table>
<thead>
<tr>
<th>Subsubsection</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.6.1</td>
<td>Clock model Degradation Model</td>
<td>384</td>
</tr>
<tr>
<td>C.6.2</td>
<td>Orbit Model Degradation Model</td>
<td>385</td>
</tr>
</tbody>
</table>

C.7 SOLAR RADIATION PRESSURE

C.8 CRC16-IBM

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.9.1</td>
<td>Antenna reference frame</td>
<td>386</td>
</tr>
<tr>
<td>C.9.2</td>
<td>Euler angles</td>
<td>387</td>
</tr>
</tbody>
</table>

C.10 USE OF STEP LENGTH ESTIMATION MODELS

C.11 PROPAGATION MODEL DESCRIPTIONS

<table>
<thead>
<tr>
<th>Subsubsection</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.11.1</td>
<td>Circular Contour with Applicability area</td>
<td>389</td>
</tr>
</tbody>
</table>

APPENDIX D. EXAMPLE FLOWS (INFORMATIVE)

D.1 EXEMPLARY PERIODIC DATA FLOWS

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.1.1</td>
<td>CCP Assistance Data Transfer procedure – nominal case</td>
<td>392</td>
</tr>
<tr>
<td>D.1.2</td>
<td>CCP Assistance Data Transfer procedure – session abort by target/server</td>
<td>394</td>
</tr>
<tr>
<td>D.1.3</td>
<td>CCP Assistance Data Transfer procedure - session modification (target)</td>
<td>395</td>
</tr>
<tr>
<td>D.1.4</td>
<td>CCP Assistance Data Transfer procedure - session modification (server)</td>
<td>397</td>
</tr>
</tbody>
</table>
D.2 PERIODIC HIGH ACCURACY GNSS EXAMPLES ... 404
D.2.1 Nominal case ... 404
D.2.2 Server-side session modification .. 406
D.2.3 Target/server-side abort ... 407
D.3 PERIODIC WIDE AREA IONOSPHERE CORRECTIONS PROCEDURE 408

APPENDIX E. BROADCAST RESTRICTIONS AND LABELLING (NORMATIVE) – VERSION 1.1 410
E.1 LPP RESTRICTIONS AND LABELS ... 410
E.2 LPPE RESTRICTIONS AND LABELS ... 412

APPENDIX F. BROADCAST CIPHERING (INFORMATIVE) – VERSION 1.1 416

APPENDIX G. ENCODING OF RF HEAT MAPS (NORMATIVE) – VERSION 2.0 417
G.1 REFERENCE GRID AND HEAT MAP AREA .. 417
G.2 ENCODING OF HEAT MAP VALUES WITHOUT COMPRESSION 418
G.3 ENCODING OF A HEAT MAP WITH COMPRESSION ... 419
G.4 NON-RECTANGULAR HEAT MAPS ... 420
G.4.1 Reorientation of a Heat Map .. 420
G.4.2 Arbitrary Shaped Heat Maps using Run Length Encoding 421
G.5 ENCODING OF UPDATE-REQUIRED POINTS OF A HEAT MAP 422
G.6 RSSI CALIBRATION MODEL ... 423
G.7 GEOMAGNETIC FIELD INFORMATION FOR A HEAT MAP 424
G.7.1 Declination and Inclination Angle ... 424
G.7.2 Geomagnetic Field w.r.t true north navigation frame 425

APPENDIX H. CROWDSOURCING WITH SUPL 2.X (INFORMATIVE) – VERSION 2.0 426

Figures

Figure 1: LPPe Periodic/Triggered Assistance Data transfer procedure with Update 25
Figure 2: LPPe Periodic/Triggered Assistance Data transfer procedure with Target Update 27
Figure 3: LPPe Periodic/Triggered Assistance Data transfer procedure with Server Update 28
Figure 4: LPPe Periodic/Triggered Assistance Data transfer procedure with Broadcast 29
Figure 5: LPPe Periodic/Triggered Location Information transfer procedure with Update 31
Figure 6: LPPe Periodic/Triggered Location Information transfer procedure with Server Update 32
Figure 7: LPPe Periodic/Triggered Location Information transfer procedure with Target Update 33
Figure 8: LPPe Segmented Assistance Data Transfer ... 35
Figure 9: LPPe Segmented Assistance Data Transfer with Resume Capability 36
Figure 10: LPPe Segmented Location Information Transfer ... 38
Figure 11: LPPe Segmented Location information Transfer with Resume Capability 39
Figure 12: An encapsulated LPP(LPPe) Broadcast Message with Mandatory (M) and Optional (O) portions ... 41
Figure 13: Broadcast of LPP/LPPe Assistance Data ... 42
Figure 14: LPPe Crowdsourcing Procedure ... 47
Figure 15: LPP/LPPe Message Structure for Crowdsourcing (where steps refer to Figure 14) 49
Figure 16: Example mapping of applicability bits for 4x4 rectangle ... 248
Figure 17: Run length encoding .. 380
Figure 18: Run length encoding – example 2 .. 381
Figure 19: Ionosphere storm region .. 382
Figure 20: Satellite-fixed coordinate system .. 384
Figure 21: Antenna reference frame .. 387
Figure 22: Euler Angles .. 388
Figure 23: Usage of Propagation and applicability area parameters ... 390
Figure 24: Usage of Propagation and applicability area parameters (corner x,y values defining direction only) 391
Figure 25: Assistance data transfer – nominal case .. 392
Figure 26: CCP assistance data transfer – session stop ... 394
Figure 27: CCP assistance data transfer – session parameter modification (target) ... 395
Figure 28: CCP assistance data transfer – session parameter modification (server) ... 397
Figure 29: CCP assistance data transfer – change of reference station .. 399
Figure 30: CCP assistance data transfer – failure in the change of reference station ... 401
Figure 31: CCP assistance data transfer – unsolicited ... 403
Figure 32: Periodic HA GNSS – nominal case ... 404
Figure 33: Periodic HA GNSS – nominal case ... 406
Figure 34: Periodic HA GNSS – abort .. 407
Figure 35: Periodic procedure in the context of wide area ionosphere surface corrections 408
Figure 36: Illustration of Block Ciphering with Counter Mode ... 416
Figure 37: Reference Grid with an RF Heat Map Area ... 417
Figure 38: RF Heat Map Area including grid points .. 418
Figure 39: Scanning order of grid points within a Heat Map Area .. 419
Figure 40: Example Heat map Encoding .. 419
Figure 41: Reorientation of a Heat Map Area with Rows shifted in the Positive X Direction 420
Figure 42: Reorientation of a Heat Map Area with Columns shifted in the Positive Y Direction 421
Figure 43: Application of Run Length Encoding to an Arbitrary Area ... 422
Figure 44: Example Heat Map Update Required Point Encoding .. 423
Figure 45: Geomagnetic Field w.r.t true north navigation frame .. 425

Tables
Table 1: LPPe Compatibility Levels and Major Versions ... 23
Table 2: Applicable Authentication Procedures and Options ... 44
Table 3: Summary of LPP/LPPe Message Containers applicable to Basic and Advanced Crowdsourcing 50
Table 4: LPPe Modes .. 51
Table 5: Restriction on use of an LPP/LPPe Request Location Information in Reversed Mode 52
Table 6: Restriction on use of an LPP/LPPe Provide Location Information in Reversed Mode 52
Table 7: LPP Assistance Data Restrictions and Labels ... 412
Table 8: LPPe Assistance Data Restrictions and Labels .. 415
1. **Scope**

The present document specifies OMA LPP Extensions (LPe) Release 2.0.
2. References

2.1 Normative References

[45.001] 3GPP TS 45.001, “Physical layer on the radio path; General description” URL: http://www.3gpp.org/ftp/specs/html-info/45001.htm

[EGM96] “Earth Gravitational Model 96 (EGM96),” National Geospatial-Intelligence Agency, NASA.

[IEEE 802.15.1] Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Wireless Personal Area Networks (WPANs)

2.2 Informative References

[GPS-ICD-200D] Navstar Global Positioning System Interface Control Specification 200-D

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

<table>
<thead>
<tr>
<th>Baseline</th>
<th>Vector between antenna reference points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative Position</td>
<td>See baseline</td>
</tr>
<tr>
<td>Relative Velocity</td>
<td>First time derivative of the baseline</td>
</tr>
<tr>
<td>Server</td>
<td>Termination point of LPP</td>
</tr>
<tr>
<td>Target</td>
<td>Termination point of LPP</td>
</tr>
</tbody>
</table>

3.3 Abbreviations

<table>
<thead>
<tr>
<th>AD</th>
<th>Assistance Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>Access Point</td>
</tr>
<tr>
<td>ARFCN</td>
<td>Absolute Radio Frequency Channel Number</td>
</tr>
<tr>
<td>BCCH</td>
<td>Broadcast Control Channel</td>
</tr>
<tr>
<td>BSIC</td>
<td>Base Station Identity Code</td>
</tr>
<tr>
<td>BSSID</td>
<td>Basic Service Set Identifier</td>
</tr>
<tr>
<td>BT</td>
<td>Bluetooth</td>
</tr>
<tr>
<td>BT LE</td>
<td>Bluetooth Low Energy</td>
</tr>
<tr>
<td>BTS</td>
<td>Base Transceiver System</td>
</tr>
<tr>
<td>CCP</td>
<td>Continuous Carrier Phase</td>
</tr>
<tr>
<td>CCPCH</td>
<td>Common Control Pilot Channel</td>
</tr>
<tr>
<td>CPICH</td>
<td>Common Pilot Channel</td>
</tr>
<tr>
<td>DL-AoD</td>
<td>Downlink Angle-of-Departure</td>
</tr>
<tr>
<td>DL-TDOA</td>
<td>Downlink Time Difference Of Arrival</td>
</tr>
<tr>
<td>DSL</td>
<td>Digital Subscriber Line</td>
</tr>
<tr>
<td>EARFCN</td>
<td>EUTRA Absolute Radio Frequency Channel Number</td>
</tr>
<tr>
<td>ECID</td>
<td>Enhanced Cell ID</td>
</tr>
<tr>
<td>EDGE</td>
<td>Enhanced Data rates for Global Evolution</td>
</tr>
<tr>
<td>EGM</td>
<td>Earth Gravity Model</td>
</tr>
<tr>
<td>E-OTD</td>
<td>Enhanced Observed Time Difference</td>
</tr>
<tr>
<td>EPDU</td>
<td>External Protocol Data Unit</td>
</tr>
<tr>
<td>EPRE</td>
<td>Energy Per Resource Element</td>
</tr>
<tr>
<td>E-UTRAN</td>
<td>Evolved UTRAN</td>
</tr>
<tr>
<td>FDD</td>
<td>Frequency-Division Duplex</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>GERAN</td>
<td>GSM/EDGE RAN</td>
</tr>
<tr>
<td>GNSS</td>
<td>Global Navigation Satellite System, collective name for a variety of satellite positioning systems including GPS, Galileo and GLONASS</td>
</tr>
<tr>
<td>GSM</td>
<td>Global System for Mobile communications</td>
</tr>
<tr>
<td>HA GNSS</td>
<td>High Accuracy GNSS. Refers to using continuous carrier phase measurements to deduce the accurate location of the target device.</td>
</tr>
<tr>
<td>HeNB</td>
<td>Home eNodeB</td>
</tr>
<tr>
<td>HNB</td>
<td>Home Node B</td>
</tr>
<tr>
<td>ICI</td>
<td>Indirect Code Identifier</td>
</tr>
<tr>
<td>IPDL</td>
<td>Idle Period Downlink</td>
</tr>
<tr>
<td>LAN</td>
<td>Local Area Network</td>
</tr>
<tr>
<td>LBS</td>
<td>Location-Based Services</td>
</tr>
<tr>
<td>LCS</td>
<td>Location Services</td>
</tr>
<tr>
<td>LPP</td>
<td>LTE Positioning Protocol, defined in 3GPP TS 37.355</td>
</tr>
<tr>
<td>LPPe</td>
<td>OMA LPP Extensions</td>
</tr>
<tr>
<td>LTE</td>
<td>Long Term Evolution</td>
</tr>
<tr>
<td>MBS</td>
<td>Metropolitan Beacon System</td>
</tr>
<tr>
<td>NAT</td>
<td>Network Address Translation</td>
</tr>
<tr>
<td>NFC</td>
<td>Near Field Communications</td>
</tr>
<tr>
<td>NR</td>
<td>New Radio</td>
</tr>
<tr>
<td>OMA</td>
<td>Open Mobile Alliance</td>
</tr>
<tr>
<td>OTD</td>
<td>Observed Time Difference</td>
</tr>
<tr>
<td>OTDOA</td>
<td>Observed Time Difference of Arrival</td>
</tr>
<tr>
<td>P-CPICH</td>
<td>Primary Control Pilot Channel</td>
</tr>
<tr>
<td>pdf-lo</td>
<td>Presence Information Data Format Location Object</td>
</tr>
<tr>
<td>QoR</td>
<td>Quality of Reference station</td>
</tr>
<tr>
<td>RAN</td>
<td>Radio Access Network</td>
</tr>
<tr>
<td>RLE</td>
<td>Run-Length Encoding</td>
</tr>
<tr>
<td>RS</td>
<td>Reference Signal</td>
</tr>
<tr>
<td>RSSI</td>
<td>Received Signal Strength Indicator</td>
</tr>
<tr>
<td>RTD</td>
<td>Real Time Difference</td>
</tr>
<tr>
<td>SLP</td>
<td>SUPL Location Platform</td>
</tr>
<tr>
<td>SRN</td>
<td>Short Range Node</td>
</tr>
<tr>
<td>SSID</td>
<td>Service Set Identifier</td>
</tr>
<tr>
<td>SUPL</td>
<td>Secure User Plane Location</td>
</tr>
<tr>
<td>SV</td>
<td>Space Vehicle</td>
</tr>
<tr>
<td>TA</td>
<td>Timing Advance</td>
</tr>
<tr>
<td>TDD</td>
<td>Time-Division Duplex</td>
</tr>
<tr>
<td>TEC</td>
<td>Total Electron Content</td>
</tr>
<tr>
<td>TECU</td>
<td>TEC Unit, 10^{16} electrons per square meter</td>
</tr>
<tr>
<td>TOA</td>
<td>Time Of Arrival</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>UARFCN</td>
<td>UTRA Absolute Radio Frequency Channel Number</td>
</tr>
<tr>
<td>UE</td>
<td>User Equipment</td>
</tr>
<tr>
<td>UMTS</td>
<td>Universal Mobile Telecommunication System</td>
</tr>
<tr>
<td>URI</td>
<td>Uniform Resource Identifier [#B073]</td>
</tr>
<tr>
<td>UTC</td>
<td>Universal Time Coordinated</td>
</tr>
<tr>
<td>UTRA</td>
<td>UMTS Terrestrial Radio Access</td>
</tr>
<tr>
<td>UTRAN</td>
<td>UMTS Terrestrial RAN</td>
</tr>
<tr>
<td>WA</td>
<td>Wide Area</td>
</tr>
<tr>
<td>WGS</td>
<td>World Geodetic System</td>
</tr>
<tr>
<td>WLAN</td>
<td>Wireless Local Area Network</td>
</tr>
</tbody>
</table>
4. Introduction

4.1 Version 1.0

LTE Positioning Protocol LPP is a positioning protocol for E-UTRAN control plane. However, LPP has been designed in such a way that it can also be utilized outside the control plane domain such as in the user plane in the context of SUPL.

LPP elementary messages (Request and Provision of Capabilities and Location Information and Assistance Data) each include a container, an EPDU, which can be used by standardization fora outside 3GPP to define their own extensions to LPP messages. OMA LPP Extensions take advantage of this option.

A variety of known and emerging positioning technologies are not in the scope of 3GPP work. This is natural, because control plane deployments are bandwidth-constrained and limited to access types that are part of the control plane system. However, the user plane does not have any such limitations and, hence, new positioning technologies improving accuracy, availability and integrity can be realized in the user plane.

The advantages resulting from OMA building LPPe on top of the 3GPP-defined LPP include the convergence of control and user plane positioning protocols, reduced work load and being able to use the same LPP and LPPe protocol stack both in the control and user plane.

4.2 Version 1.1

LPPe Version 1.1 supports the following capabilities additional to those in Version 1.0:

- Broadcast of unsolicited LPP/LPPe Provide Assistance Data messages
- Request and provision of assistance data point to point related to LPP/LPPe broadcast support

Receipt of broadcast LPP/LPPe Provide Assistance Data messages can be backward compatible with a target that supports version 1.0 of LPPe in the sense that such messages may be provided (e.g. by a broadcast process in the target) to an LPPe process in the target without causing errors or rejection of the contained assistance data. This backward compatibility applies to unencapsulated LPP/LPPe messages but not to encapsulated messages (see section 5.2.5.1).

4.3 Version 2.0

LPPe Version 2.0 supports the following capabilities additional to those in Version 1.0 and 1.1:

- Support of new positioning methods
- Support for Indoor location
- Support for Crowd Sourcing

4.4 Version Negotiation (Normative)

Each LPPe message segment indicates the version of the LPPe protocol that was used to encode it. The version includes a major version number (0-255) and a minor version number (0-255). Later major versions of LPPe should be backward compatible at both a procedural level and an encoding level with earlier versions. Later minor versions SHALL be backward compatible with previous minor versions for the same major version number.

To allow for possible non-backward compatibility between different major LPPe versions, an LPPe message segment also carries a compatibility level (0-15). The compatibility level for this version of LPPe is zero. The compatibility level SHALL be increased in any new major version of LPPe that is non-backward compatible with the previous major version. A receiver SHALL discard any received LPPe message that indicates a compatibility level different to all those supported and may return an LPP/LPPe Error message indicating the highest LPPe compatibility level supported.
If a receiver supports the LPPe compatibility level indicated in a received LPPe message but supports a higher major and/or minor version of LPPe than indicated in the message, it may either use the higher major/minor version in subsequent LPPe messages that it sends and allow for the possibility that not all information will be understood or fallback to the lower major/minor version. If a receiver supports the compatibility level indicated in a received LPPe message but supports only a lower major and/or minor version of LPPe than indicated, it SHALL use the highest major/minor version of LPPe that it supports in subsequent LPPe messages. Once either end has sent an LPPe message to the other end, it SHALL continue to use the same major/minor version of LPPe in subsequent messages belonging to the same LPP session. Version adaptation is thus applicable only to a receiver that has not yet sent an LPPe message on any new session.

Table 1: shows the association between compatibility levels and major LPPe versions.

<table>
<thead>
<tr>
<th>Compatibility Level</th>
<th>Major Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 1: LPPe Compatibility Levels and Major Versions
5. LPPe functionality (Normative)

The LPPe protocol functionality builds on the 3GPP LPP procedure and transaction handling.

5.1 Integration with 3GPP LPP

The extension of 3GPP LPP messages is based on the EPDU-Sequence (External Protocol Data Unit) included in the following 3GPP messages:

- LPP Provide / Request Capabilities (from 3GPP Rel-9 or later)
- LPP Provide / Request Assistance Data (from 3GPP Rel-9 or later)
- LPP Provide / Request Location Information (from 3GPP Rel-9 or later)
- LPP Abort (from 3GPP Rel-9 or later)
- LPP Error (from 3GPP Rel-9 or later)

The LPP transaction control is handled by the LPP messaging and, thus, LPPe message extensions do not need to carry a LPP transaction ID.

EPDU is defined in Chapter 6.4.1 of [LPP]:

```
EPDU-Sequence ::= SEQUENCE (SIZE (1..maxEPDU)) OF EPDU
maxEPDU INTEGER ::= 16

EPDU ::= SEQUENCE {
  ePDU-Identifier            EPDU-Identifier,
  ePDU-Body                  EPDU-Body
}

EPDU-Identifier ::= SEQUENCE {
  ePDU-ID                   EPDU-ID,
  ePDU-Name                 EPDU-Name OPTIONAL,
  ...                       
}

EPDU-ID ::= INTEGER (1..256)

EPDU-Name ::= VisibleString (SIZE (1..32))

EPDU-Body ::= OCTET STRING
```

EPDU-Sequence field descriptions

<table>
<thead>
<tr>
<th>EPDU-ID</th>
<th>This field provides a unique ID for the external positioning method.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPDU-Name</td>
<td>This field provides an optional character encoding which can be used to provide a quasi-unique name for an external PDU – e.g., by containing the name of the defining organization and/or the name of the associated public or proprietary standard for the EPDU.</td>
</tr>
<tr>
<td>EPDU-Body</td>
<td>The content and encoding of this field are defined externally to LPP.</td>
</tr>
</tbody>
</table>
External PDU Identifier Definition

<table>
<thead>
<tr>
<th>EPDU-ID</th>
<th>EPDU Defining entity</th>
<th>Method name</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OMA LOC</td>
<td>OMA LPP extensions (LPPe)</td>
<td>OMA-TS-LPPe_V1_0</td>
</tr>
</tbody>
</table>

LPpe specifies an extension to each of the eight LPP messages as shown at the beginning of this section. When encoding the LPP/LPPe message, it is expected that the LPPe extension for the message is first parsed and the resulting ASN.1-coded binary stream is included in the EPDU-Body of the EPDU in the appropriate message.

Duplication of information in LPP and LPpe layer within an “LPP Request” message SHOULD be avoided. If contradicting information is received in LPP and LPpe layer within an “LPP Provide” message the recipient SHALL use the information in LPpe layer.

5.2 LPpe Procedures

Procedures defined in [LPP] carry over to use of LPP with LPpe. The additional procedures defined in this section apply to LPpe only and extend the LPP procedures defined in [LPP].

5.2.1 Periodic/Triggered Assistance Data Transfer with Update

This procedure enables a target to request a server to send assistance data periodically either at defined intervals or when specific triggering criteria are met. The procedure also allows a target or a server to modify the type of assistance data and/or the periodicity and triggering criteria while the delivery procedure is ongoing. The procedure SHALL NOT be combined with the support of any other assistance data and SHALL thus use LPP transactions that are dedicated to starting, transferring or updating one specific type of Periodic/Triggered Assistance Data.

5.2.1.1 Initiating and Terminating the Procedure

Figure 1 shows how a Periodic/Triggered Assistance Data Transfer with Update may be initiated and terminated.

![Figure 1: LPpe Periodic/Triggered Assistance Data transfer procedure with Update](image-url)
1. The target sends an LPP RequestAssistanceData message to the server using some available transaction ID T1. The message contains a periodic/triggered session ID S (different to any other LPPe periodic/triggered session ID currently in use between the target and server), an indication that this is an initial request for a Periodic/Triggered Assistance Data transfer and LPPe control parameters identifying the type of assistance data being requested, the triggering or periodicity conditions for sending it and either a duration or other specific conditions for ending the assistance data transfer.

2. The server responds with an LPP ProvideAssistanceData message to the target. The message uses the transaction ID T1 in step 1 and indicates the end of this transaction. The message contains the periodic/triggered session ID S, an indication that this is a response to an initial request, and LPPe control parameters indicating whether or not the request in step 1 can be supported. If the request can be supported, the LPPe control parameters may explicitly confirm or redefine the type of assistance data, the triggering or periodicity parameters and the duration or other conditions for ending the assistance data transfer. Further characteristics of the assistance data to be delivered may also be provided. If the procedure cannot be supported, an error reason SHALL be provided at the LPPe level and remaining steps are then not performed.

3. When the first triggering or periodicity condition occurs, the server sends an unsolicited LPP ProvideAssistanceData message to the target containing the periodic/triggered session ID S, an indication that this is a periodic/triggered assistance data delivery, and LPPe data parameters containing the assistance data confirmed or defined in step 2. The message uses some available transaction ID T2 that may be different to T1.

 NOTE: LPPe control parameters and LPPe data parameters applicable to this procedure SHALL be explicitly distinguished from one another in the message encoding definitions in section 6.

4. The server may continue to send further LPP ProvideAssistanceData messages to the target containing the assistance data confirmed or redefined in step 2 when each additional triggering or periodicity condition occurs.

5. If an error condition occurs at the target that requires the session to end, the target sends an LPP Abort to the server for transaction T2 that may optionally include LPP and/or LPPe error codes. Remaining steps are then omitted. Error conditions that may induce an abort include an attempt by either end to update the assistance data transfer, as described in sections 5.2.1.2 and 5.2.1.3, where the final control parameters provided by the server are not acceptable to the target.

6. If an error condition occurs at the server that requires the session to end without the delivery of further assistance data, the server sends an LPP Abort to the target for transaction T2 that may optionally include LPP and/or LPPe error codes. Remaining steps are then omitted.

7. When the duration or other conditions for ending the assistance data transfer occur, the last LPP ProvideAssistanceData message transferred indicates the end of transaction T2. Terminating the transfer as in this step is preferred over the use of an abort (as in step 6) where possible, since additional termination information specific to the assistance data transfer may then be included.

5.2.1.2 Target Update

Figure 2: shows how the target may update an ongoing a Periodic/Triggered Assistance Data Transfer that was started according to section 5.2.1.1.
1. Steps 1 and 2 of Figure 1 are performed to start an LPPe Periodic/Triggered Assistance Data transfer procedure with Update and using a periodic/triggered session ID S.

2. The server may send zero, one or more LPPe ProvideAssistanceData messages to the target containing the assistance data agreed in step 1 and using a transaction ID T2.

3. If, before the delivery of assistance data has terminated, the target needs to update the type of assistance data and/or the triggering and periodicity conditions and/or the duration or conditions for termination, the target sends an LPPe RequestAssistanceData message to the server using some available transaction ID T3. The ID T3 SHALL be different to T2 (if T2 has been started). The message contains the periodic/triggered session ID S, an indication that this is an update request for a Periodic/Triggered Assistance Data transfer and LPPe control parameters identifying any new type of assistance data being requested, any new triggering or periodicity conditions for sending it and any new duration or specific conditions for ending the assistance data transfer. The request also indicates whether the previous assistance data delivery SHALL continue or be aborted if the new request cannot be supported.

4. The server responds with an LPPe ProvideAssistanceData message to the target. The message uses the transaction ID T3 and indicates the end of this transaction. The message contains the periodic/triggered session ID S and an indication that this is a response to an update request. The message also contains LPPe control parameters indicating whether or not the update request in step 3 can be supported. If the request can be supported, the control parameters may explicitly confirm or redefine any new type of assistance data, and new triggering or periodicity parameters and any new duration or other conditions for ending the assistance data transfer. Further characteristics of the assistance data to be delivered may also be provided. If the request in step 3 cannot be supported, then, if requested in step 3, the earlier request agreed in step 1 SHALL continue via further repetitions of step 2 until it ends normally or is modified by a repetition of step 3 or is aborted. But if requested otherwise in step 3, the earlier request (including transaction T2) SHALL be aborted at the server without the sending of any further assistance data to the target. In either case, steps 5 and 6 are then omitted.

5. If the server can support the request in step 3, it ceases to support the request in step 1 following step 4. Note that due to race conditions, one or more repetitions of step 2 may be perceived to occur by the target following step 3 and prior to step 4. When the first updated triggering or periodicity condition occurs following step 4, the server sends an unsolicited LPPe ProvideAssistanceData message to the target containing the session ID S, an indication that this is periodic/triggered assistance data and LPPe data parameters containing the new assistance data confirmed or defined.

Figure 2: LPPe Periodic/Triggered Assistance Data transfer procedure with Target Update
in step 4. The message continues to use transaction ID T2.

6. The server may continue to send further LPP *ProvideAssistanceData* messages to the target containing the session ID S and LPPe data parameters containing the new assistance data confirmed or redefined in step 4 when each additional triggering or periodicity condition occurs. If the duration or other conditions for ending the assistance data transfer occur, the last LPP *ProvideAssistanceData* message transferred indicates the end of transaction T2. If before this occurs the target needs to update the type of assistance data, triggering or periodicity conditions and/or duration or other conditions for terminating the transfer, steps 3 and 4 are repeated.

5.2.1.3 Server Update

Figure 3: shows how the server may update an ongoing a Periodic/Triggered Assistance Data Transfer that was started according to section 5.2.1.1.

![Diagram](image)

Figure 3: LPPe Periodic/Triggered Assistance Data transfer procedure with Server Update

1. Steps 1 and 2 of Figure 1 are performed to start an LPPe Periodic/Triggered Assistance Data transfer procedure with Update and using a periodic/triggered session ID S.

2. The server may send zero, one or more LPP *ProvideAssistanceData* messages to the target containing the assistance data agreed in step 1 and using a transaction ID T2.

3. If, before the delivery of assistance data has terminated, the server needs to update the type of assistance data and/or the triggering and periodicity conditions and/or the duration or conditions for termination, the server sends an unsolicited LPP *ProvideAssistanceData* message to the target using some available transaction ID T3. The ID T3 SHALL be different to T2. The message contains the periodic/triggered session ID S, an indication this is a server update for a Periodic/Triggered Assistance Data transfer and LPPe control parameters identifying any new type of assistance data to be provided, any new triggering or periodicity conditions for sending it and any new duration or specific conditions for ending the assistance data transfer. After sending this message, the server ceases to transfer assistance data according to step 2.

4. When the first updated triggering or periodicity condition occurs (as defined in step 3) following step 3, the server sends an unsolicited LPP *ProvideAssistanceData* message to the target containing the periodic/triggered session ID S, an indication that this is periodic/triggered assistance data and LPPe data parameters containing the new assistance data defined in step 3. The message continues to use transaction ID T2.

5. The server may continue to send further LPP *ProvideAssistanceData* messages to the target containing the periodic/triggered session ID S and LPPe data parameters containing the new assistance data defined in step 3 when
each additional triggering or periodicity condition occurs. If the duration or other conditions for ending the assistance data transfer occur, the last LPP ProvideAssistanceData message transferred indicates the end of transaction T2. If before this the server needs to update the type of assistance data, triggering or periodicity conditions and/or duration or other conditions for terminating the transfer, step 3 is repeated.

5.2.1.4 Delivery via Broadcast (version 1.1)

Figure 4 shows how a Periodic/Triggered Assistance Data Transfer may be initiated and terminated in the case that assistance data is transferred via broadcast. The purpose of this procedure is to enable the same assistance that would normally be transferred according to the point to point procedures shown in Figure 1, Figure 2 and Figure 3 to be transferred using broadcast. The procedure is mainly a degenerate version of that described in Figure 1 in section 5.2.1.1.

![Figure 4: LPPe Periodic/Triggered Assistance Data transfer procedure with Broadcast](image)

1. The server broadcasts an LPP ProvideAssistanceData message using the procedure described in section 5.2.5. The message uses an arbitrary transaction ID T1 and indicates the end of this transaction. The message contains a periodic/triggered session ID S chosen by the server, an indication that this is a response to an initial request (for compatibility with LPpe version 1.0 ASN.1), and LPpe control parameters identifying the type of assistance data to be transferred in later steps, the triggering or periodicity conditions for sending this data and either a duration or other specific conditions for ending the assistance data transfer. No other assistance data SHALL be included in the message. The server SHALL ensure that the session ID S is not used for any other periodic/triggered assistance data transfer in any geographic area at the same time as the procedure in Figure 4 is ongoing and for a period of at least 24 hours after this procedure terminates. The server may periodically re-broadcast the message in step 1 to reach additional targets. A target device that receives the message in step 1 via broadcast may identify it as belonging to this procedure from inclusion of the session ID S and the indication that this is a response to an initial request for periodic/triggered assistance data transfer. If a target receives a subsequent message via broadcast that is identified as belonging to step 1 and carries the same session ID S as that for an ongoing procedure of this type and if the message cannot be identified as a duplicate of the message that initiated this procedure (e.g. from use of the same version 1.1 message ID), then the target SHALL abort reception for the ongoing procedure and may instigate reception for a new procedure based on the control parameters included in the message.

2. When the first triggering or periodicity condition occurs, the server sends via broadcast (using the procedure in section 5.2.5) an unsolicited LPP ProvideAssistanceData message containing the periodic/triggered session ID S assigned in step 1, an indication that this is a periodic/triggered assistance data delivery, and LPpe data parameters containing the assistance data indicated in step 1. The message carries an arbitrary transaction ID T2 and indicates the end of a transaction. No other assistance data SHALL be included other than that indicated in step 1.
NOTE: LPPe control parameters and LPPe data parameters applicable to this procedure are explicitly distinguished from one another in the message encoding definitions in section 6.

3. The server may continue to broadcast further LPP ProvideAssistanceData messages containing new assistance data conforming to what was indicated in step 1 when each additional triggering or periodicity condition occurs. Each subsequent message carries the session ID S, an arbitrary transaction ID T3 and an end of transaction indication. The session may be terminated by the server at any time after which the session ID S SHALL NOT be used again for a period of at least 24 hours. A target that is receiving the messages in steps 1, 2 and 3 should assume the procedure has terminated if step 2 or a repetition of step 3 is not observed for a period of one hour.

4. When the session is terminated, a server may optionally broadcast an LPP ProvideAssistanceData message to indicate this. The message SHALL contain an arbitrary transaction ID T4, an indication that this is the end of a transaction, the periodic/triggered session ID S and an indication that this is a server update for a Periodic/Triggered Assistance Data transfer. The message SHALL also contain LPPe control parameters indicating either a zero or minimal duration (depending on what is defined for the associated assistance data) and a zero or minimal applicable geographic region. The message may be periodically re-broadcast to reach more targets. Targets that follow the rules in step 1 will replace the old control parameters with the new ones and thereby end or soon end the session.

NOTE: Step 4 SHALL NOT be used to modify the control parameters for an ongoing session with a view to continuing the session. This is because the message in step 4 may not be received by all targets, who would then continue using the old control parameters. A server wishing to modify an ongoing session SHALL instead terminate the session and start a new session using a different session ID.

5.2.2 Periodic/Triggered Location Information Transfer with Update

This procedure enables a server to request a target to send location information periodically either at defined intervals or when specific triggering criteria are met. The procedure also allows a target or a server to modify the type of location information and/or the periodicity and triggering criteria while the delivery procedure is ongoing. The procedure SHALL NOT be combined with the support of any other location information and SHALL thus use LPP transactions that are dedicated to starting, transferring or updating one specific type of Periodic/Triggered Location Information.

5.2.2.1 Initiating and Terminating the Procedure

Figure 5: shows how a Periodic/Triggered Location Information Transfer with Update may be initiated and terminated.
The server sends an LPP RequestLocationInformation message to the target using some available transaction ID T1. The message contains a periodic/triggered session ID S (different to any other LPPe periodic/triggered session ID currently in use between the target and server), an indication that this is an initial request for a Periodic/Triggered Location Information transfer and LPPe control parameters identifying the type of location information being requested, the triggering or periodicity conditions for sending it and either a duration or other specific conditions for ending the location information transfer.

The target responds with an LPP ProvideLocationInformation message to the server. The message uses the transaction ID T1 in step 1 and indicates the end of this transaction. The message contains the periodic/triggered session ID S, an indication that this is a response to an initial request, and LPPe control parameters indicating whether or not the request in step 1 can be supported. If the request can be supported, the control parameters may explicitly confirm or redefine the type of location information, the triggering or periodicity parameters and the duration or other conditions for ending the location information transfer. Further characteristics of the location information to be delivered may also be provided. If the procedure cannot be supported, an error reason SHALL be provided at the LPPe level and remaining steps are then not performed.

When the first triggering or periodicity condition occurs, the target sends an unsolicited LPP ProvideLocationInformation message to the server containing the periodic/triggered session ID S, an indication that this is a periodic/triggered location information delivery, and LPPe data parameters containing the location information confirmed or defined in step 2. The message uses some available transaction ID T2 that may be different to T1.

The target may continue to send further LPP ProvideLocationInformation message to the server containing the location information confirmed or redefined in step 2 when each additional triggering or periodicity condition occurs.

If an error condition occurs at the server that requires the session to end, the server sends an LPP Abort to the target for transaction T2 that may optionally include LPP and/or LPPe error codes. Remaining steps are then omitted. Error conditions that may induce an abort include an attempt by either end to update the location information transfer, as described in sections 5.2.2.2 and 5.2.2.3, where the final control parameters provided by the target are not acceptable to the server.

If an error condition occurs at the target that requires the session to end without the delivery of further location information, the target sends an LPP Abort to the server for transaction T2 that may optionally include LPP and/or LPPe error codes.

Figure 5: LPPe Periodic/Triggered Location Information transfer procedure with Update
LPPe error codes. Remaining steps are then omitted.

7. When the duration or other conditions for ending the location information transfer occur, the last LPP `ProvideLocationInformation` message transferred indicates the end of transaction T2. Terminating the transfer as in this step is preferred over the use of an abort (as in step 6) where possible, since additional termination information specific to the location information transfer may then be included.

5.2.2.2 Server Update

Figure 6: shows how the server may update an ongoing Periodic/Triggered Location Information Transfer that was started according to section 5.2.2.1.

Figure 6: LPPe Periodic/Triggered Location Information transfer procedure with Server Update

1. Steps 1 and 2 of Figure 5 are performed to start an LPPe Periodic/Triggered Location Information transfer procedure with Update and using a session ID S.

2. The target may send zero, one or more LPP `ProvideLocationInformation` messages to the server containing the location information agreed in step 1 and using a transaction ID T2.

3. If, before the delivery of location information has terminated, the server needs to update the type of location information and/or the triggering and periodicity conditions and/or duration or conditions for termination, the server sends an LPP `RequestLocationInformation` message to the target using some available transaction ID T3. The ID T3 SHALL be different to T2 (if T2 has been started). The message contains the periodic/triggered session ID S, an indication that this is an update request for a Periodic/Triggered Location Information transfer and LPPe control parameters identifying any new type of location information being requested, any new triggering or periodicity conditions for sending it and any new duration or specific conditions for ending the location information transfer. The control parameters SHALL also indicate whether the previous location information delivery SHALL continue or be aborted if the new request cannot be supported.

4. The target responds with an LPP `ProvideLocationInformation` message to the server. The message uses the transaction ID T3 and indicates the end of this transaction. The message contains the periodic/triggered session ID S and an indication that this is a response to an update request. The message also contains LPPe control parameters indicating whether or not the update request in step 3 can be supported. If the request can be supported, the control parameters may explicitly confirm or redefine any new type of location information, and new triggering or periodicity parameters.
and any new duration or other conditions for ending the location information transfer. Further characteristics of the location information to be delivered may also be provided. If the request in step 3 cannot be supported, then, if requested in step 3, the earlier request in step 1 SHALL continue via further repetitions of step 2 until it ends normally or is modified by a repetition of step 3 or is aborted. But if requested otherwise in step 3, the earlier request (including transaction T2) SHALL be aborted at the target without the sending of any further location information to the server. In either case, steps 5 and 6 are then omitted.

5. If the target can support the request in step 3, it ceases to support the request in step 1 following step 4. Note that due to race conditions, one or more repetitions of step 2 may be perceived to occur by the server following step 3 and prior to step 4. When the first updated triggering or periodicity condition occurs following step 4, the target sends an unsolicited LPP ProvideLocationInformation message to the server containing the periodic/triggered session ID S, an indication that this is periodic/triggered location information and LPPe data parameters containing the new location information confirmed or defined in step 4. The message continues to uses transaction ID T2.

6. The target may continue to send further LPP ProvideLocationInformation messages to the server containing the periodic/triggered session ID S and LPPe data parameters containing the new location information confirmed or redefined in step 4 when each additional triggering or periodicity condition occurs. If the duration or other conditions for ending the location information transfer occur, the last LPP ProvideLocationInformation message transferred indicates the end of transaction T2. If before this occurs the server needs to update the type of location information, triggering or periodicity conditions and/or duration or other conditions for terminating the transfer, steps 3 and 4 are repeated.

5.2.2.3 Target Update

Figure 7 shows how the target may update an ongoing a Periodic/Triggered Location Information Transfer that was started according to section 5.2.2.1.

Figure 7 : LPPe Periodic/Triggered Location Information transfer procedure with Target Update

1. Steps 1 and 2 of Figure 5 are performed to start an LPPe Periodic/Triggered Location Information transfer procedure with Update and using a session ID S.

2. The target may send zero, one or more LPP ProvideLocationInformation messages to the server containing the location information agreed in step 1 and using a transaction ID T2.

3. If, before the delivery of location information has terminated, the target needs to update the type of location information or any new duration or other conditions for ending the location information transfer. Further characteristics of the location information to be delivered may also be provided. If the request in step 3 cannot be supported, then, if requested in step 3, the earlier request in step 1 SHALL continue via further repetitions of step 2 until it ends normally or is modified by a repetition of step 3 or is aborted. But if requested otherwise in step 3, the earlier request (including transaction T2) SHALL be aborted at the target without the sending of any further location information to the server. In either case, steps 5 and 6 are then omitted.

5. If the target can support the request in step 3, it ceases to support the request in step 1 following step 4. Note that due to race conditions, one or more repetitions of step 2 may be perceived to occur by the server following step 3 and prior to step 4. When the first updated triggering or periodicity condition occurs following step 4, the target sends an unsolicited LPP ProvideLocationInformation message to the server containing the periodic/triggered session ID S, an indication that this is periodic/triggered location information and LPPe data parameters containing the new location information confirmed or defined in step 4. The message continues to uses transaction ID T2.

6. The target may continue to send further LPP ProvideLocationInformation messages to the server containing the periodic/triggered session ID S and LPPe data parameters containing the new location information confirmed or redefined in step 4 when each additional triggering or periodicity condition occurs. If the duration or other conditions for ending the location information transfer occur, the last LPP ProvideLocationInformation message transferred indicates the end of transaction T2. If before this occurs the server needs to update the type of location information, triggering or periodicity conditions and/or duration or other conditions for terminating the transfer, steps 3 and 4 are repeated.
information and/or the triggering and periodicity conditions and/or duration or conditions for termination, the target sends an unsolicited LPP \textit{ProvideLocationInformation} message to the server using some available transaction ID T3. The ID T3 \textbf{SHALL} be different to T2 (if T2 has been started). The message contains the periodic/triggered session ID S, an indication that this is a target update for a Periodic/Triggered Location Information transfer and LPPe control parameters identifying any new type of location information to be provided, any new triggering or periodicity conditions for sending it and any new duration or specific conditions for ending the location information transfer. After sending this message, the target ceases to transfer location information according to step 2.

4. When the first updated triggering or periodicity condition occurs (as defined in step 3) following step 3, the target sends an unsolicited LPP \textit{ProvideLocationInformation} message to the server containing the periodic/triggered session ID S, an indication that this is periodic/triggered location information and LPPe data parameters containing the new location information defined in step 3. The message continues to uses transaction ID T2. The target may continue to send further LPP \textit{ProvideLocationInformation} messages to the server containing the periodic/triggered session ID S and LPPe data parameters containing the new location information defined in step 3 when each additional triggering or periodicity condition occurs. If the duration or other conditions for ending the location information transfer occur, the last LPP \textit{ProvideLocationInformation} message transferred indicates the end of transaction T2. If before this occurs the target needs to update the type of location information, triggering or periodicity conditions and/or duration or other conditions for terminating the transfer, step 3 is repeated.

\subsection{5.2.3 Segmented Assistance Data Transfer}

This procedure enables a server to transfer a large volume of assistance data (e.g. several Mbytes or more) in separate LPP/LPPe messages at a rate convenient to both the server and target. The procedure may be used to avoid target and server congestion including avoiding interference with other location activities being performed by the target and server. The procedure may be optionally used by a server to transfer any type of assistance data to a target and applies to both solicited and unsolicited transfer. The procedure may be used to transfer assistance data when the amount of assistance data would otherwise result in an LPPe message too large to transfer using the underlying transport protocol or location protocol. For example, the maximum message size for SUPL is restricted to less than 65535 octets. The maximum positioning payload carried within a SUPL message is limited to a size of 60,000 octets. For an LPP/LPPe message larger than this and to be transferred in a SUPL message, segmented assistance data transfer can be used. The procedure makes use of the LPP reliable transport capabilities defined in \cite{LPP}.

\subsubsection{5.2.3.1 Basic Procedure}

The basic procedure supports transfer of assistance data using a connection and, where applicable, a location session between the target and server that remain established during the whole transfer procedure.
1. Optionally, the target sends an LPP request for assistance data to the server as part of a new transaction with transaction ID T. The target may include a preference to transfer the assistance data in a segmented form. Note that such a preference is not mandatory on the server (i.e. can be ignored).

2. The server divides the assistance data to be transferred to the target into n portions. If step 1 was performed, the assistance data comprises everything requested by the target that is available to the server. Each portion of assistance data MUST be capable of being transferred in a well formed LPP/LPPe Provide Assistance Data message (i.e. a message that can be decoded and interpreted independently of any other message). Assistance data that is part of an octet string can be split between consecutive messages with the target required to concatenate the different portions received into a single octet string. Some assistance data may be duplicated in two or more messages if portions of assistance data that are transferred in different messages MUST be accompanied by the same mandatory parameters. In that case all appearances of the same mandatory parameter MUST contain identical data. Optional parameters that appear in more than one segment SHALL include the same values in each appearance. Other assistance data may need to be split into different messages carrying the same parameters but with different data – e.g. assistance data related to different GNSS SVs. The server sends the first portion of assistance data in an LPP message carrying a reliable transport sequence number S1. The message includes a transaction ID T that is the same as in step 1 if step 1 occurred and does not indicate that transaction T is ended. The message requests an LPP reliable transport acknowledgment.

3. The target recognizes that the assistance data will be transferred in a sequence of LPP messages from the indication in step 2 that the transaction T is not ended. The target acknowledges receipt of the message in step 2 by returning an LPP reliable transport acknowledgment (which SHALL NOT be piggybacked on a normal LPP message). The target may use the LPP acknowledgment to flow control the server – e.g. may delay sending the acknowledgment until the target is ready to receive the next message. Note, that the LPP acknowledgment only confirms receipt of the message in step 2 and does not confirm that the message was necessarily correct (e.g. decodable).

4. After and only after receiving the acknowledgment in step 3, the server sends the second portion of assistance data in an LPP message carrying a new sequence number S2 and requesting acknowledgment. If the server does not receive the acknowledgment in step 3 after some timeout period, the server may retransmit the LPP message in step 2 as described in [LPP]. The target discards any duplicate LPP messages (recognized by use of the same sequence number) but still returns an acknowledgment.

Figure 8: LPPe Segmented Assistance Data Transfer
5. The target acknowledges receipt of the message in step 4 with an LPP acknowledgment.

6. The server transfers and the target acknowledges assistance data contained in LPP messages with sequence numbers S3 to Sn-1 by repeating steps 4 and 5. At any time during the transfer, either end may abort the transfer by sending an LPP Abort message to the other end. If the target detects an error in any received LPP message from the server, it may return an LPP Error message indicating the error. This SHALL also terminate the transfer.

7. The server transfers the last (nth) portion of assistance data in an LPP message with sequence number Sn and requesting an acknowledgment. The server includes an indication that this message ends transaction T.

8. The target acknowledges the message in step 7.

5.2.3.2 Procedure with Resume Capability

With the resume capability, segmented assistance data transfer can be successful even when the connection and/or session between the target and server are released and later reestablished before the transfer is complete.

![Diagram](Figure 9: LPPe Segmented Assistance Data Transfer with Resume Capability)

1. Optionally, the target sends an LPP request for assistance data to the server as part of a new transaction with transaction ID T. The target may include a preference to transfer the assistance data in a segmented form with resume capability.
2. This step is the same as step 2 for Figure 8 except that the server assigns a unique session ID S and includes this in the first LPP Provide Assistance Data message together with an indication that this is the first segment of assistance data.

3. This step is the same as step 3 for Figure 8.

4. The server continues to transfer more assistance data to the target as described for Figure 8. The server SHALL include the session ID S and the segment number in each subsequent Provide Assistance Data message. The server sends segments 2 to i-1. Note that if retransmission occurs, message contents remain the same as for the first transmission (including the sequence number and segment number).

5. The connection (e.g. secure IP connection) and/or session (e.g. SUPL session) between the target and server are released or fail prematurely. The connection and/session are later re-established – e.g. in order to complete the assistance data transfer or for other reasons.

6. When the target recognizes that the session and/or connection have been restored, it sends an LPP Request Assistance Data message to the server containing the session ID S and the segment number i of the next expected LPP Provide Assistance Data message. The message SHALL contain no request for other assistance data. The transaction ID U for this message need not be the same as the previous transaction ID T.

7. The server resumes the assistance data transfer interrupted by step 5 by sending the i.-th portion of assistance data in an LPP Provide Assistance Data message carrying the transaction ID U, a sequence number Si, the session ID S and an indication that this is the i.-th segment. The message also requests an acknowledgment. If the server does not receive the request in step 6 (e.g. because the target is not aware that the connection and/or session have been restored to the same server), it may resume the assistance transfer unsolicited. In that case, the server SHALL begin by sending or resending either LPP message i if message i-1 was acknowledged before step 5 or message i-1 if the acknowledgment for i-1 did not reach the server before step 5. If the server had aborted the transfer (e.g. due to a long timeout period during step 5), it returns an LPP Error message instead of the next assistance data segment and the remaining steps are omitted. If steps 6 and 7 occur in parallel, the server returns an LPP Error for step 6 and the target continues from step 7.

8. The target returns an acknowledgment for the message in step 7 and discards the message if this was already received just before step 5. If the target had aborted the transfer (e.g. due to a long timeout period in step 5), it instead returns an LPP Error message to the server and the remaining steps are omitted.

9. The server transfers segments i+1 to n-1 to the target as in step 4.

10. This step is the same as step 7 for Figure 8 except that the server may include the session ID S and the segment number n.

11. The target acknowledges the message in step 10.

5.2.4 Segmented Location Information Transfer

This procedure enables a target to transfer a large volume of location information in separate LPP/LPPe messages at a rate convenient to both the target and server. The procedure may be used to avoid server and target congestion including avoiding interference with other location activities being performed by the server and target. The procedure may be optionally used by a target to transfer any type of location information to a server and applies to both solicited and unsolicited transfer. The procedure may be used to transfer location information when the amount of location information would otherwise result in an LPPe message too large to transfer using the underlying transport protocol or location protocol. For example, the maximum message size for SUPL is restricted to less than 65335 octets. For an LPP/LPPe message larger than this and to be transferred in a SUPL message, segmented location information transfer can be used. The procedure makes use of the LPP reliable transport capabilities defined in [LPP].

5.2.4.1 Basic Procedure

The basic procedure supports transfer of Location information using a connection and, where applicable, a location session between the server and target that remain established during the whole transfer procedure.
1. Optionally, the server sends an LPP request for Location information to the target as part of a new transaction with transaction ID T. The server may include a preference to transfer the location information in a segmented form. Note that such a preference is not mandatory on the target (i.e. can be ignored).

2. The target divides the location information to be transferred to the server into n portions. If step 1 was performed, the location information comprises everything requested by the server that is available to the target. Each portion of location information MUST be capable of being transferred in a well formed LPP/LPPe Provide Location information message (i.e. a message that can be decoded and interpreted independently of any other message). Location information that is part of an octet string can be split between consecutive messages with the server required to concatenate the different portions received into a single octet string. Some location information may be duplicated in two or more messages if portions of location information that are transferred in different messages MUST be accompanied by the same mandatory parameters. In that case all appearances of the same mandatory parameter MUST contain identical data. Optional parameters that appear in more than one segment SHALL include the same values in each appearance. Other location information may need to be split into different messages carrying the same parameters but with different data – e.g. location information related to different GNSS SVs. The target sends the first portion of location information in an LPP message carrying a reliable transport sequence number S1. The message includes a transaction ID T that is the same as in step 1 if step 1 occurred and does not indicate that transaction T is ended. The message requests an LPP reliable transport acknowledgment.

3. The server recognizes that the location information will be transferred in a sequence of LPP messages from the indication in step 2 that the transaction T is not ended. The server acknowledges receipt of the message in step 2 by returning an LPP reliable transport acknowledgment (which SHALL NOT be piggybacked on a normal LPP message). The server may use the LPP acknowledgment to flow control the target – e.g. may delay sending the acknowledgment until the server is ready to receive the next message. Note, that the LPP acknowledgment only confirms receipt of the message in step 2 and does not confirm that the message was necessarily correct (e.g. decodable).

4. After and only after receiving the acknowledgment in step 3, the target sends the second portion of location information in an LPP message carrying a new sequence number S2 and requesting acknowledgment. If the target does not receive the acknowledgment in step 3 after some timeout period, the target may retransmit the LPP message in step 2 as described in [LPP]. The server discards any duplicate LPP messages (recognized by use of the same

Figure 10: LPPe Segmented Location Information Transfer
5. The server acknowledges receipt of the message in step 4 with an LPP acknowledgment.

6. The target transfers and the server acknowledges location information contained in LPP messages with sequence numbers S3 to Sn-1 by repeating steps 4 and 5. At any time during the transfer, either end may abort the transfer by sending an LPP Abort message to the other end. If the server detects an error in any received LPP message from the target, it may return an LPP Error message indicating the error. This SHALL also terminate the transfer.

7. The target transfers the last (nth) portion of location information in an LPP message with sequence number Sn and requesting an acknowledgment. The target includes an indication that this message ends transaction T.

8. The server acknowledges the message in step 7.

5.2.4.2 Procedure with Resume Capability

With the resume capability, segmented location information transfer can be successful even when the connection and/or session between the server and target are released and later reestablished before the transfer is complete.

![Diagram of LPP Segmented Location information Transfer with Resume Capability](image)

Figure 11: LPPe Segmented Location information Transfer with Resume Capability

1. Optionally, the server sends an LPP request for location information to the target as part of a new transaction with transaction ID T. The server may include a preference to transfer the location information in a segmented form with sequence number) but still returns an acknowledgment.
2. This step is the same as step 2 for Figure 10 except that the target assigns a unique session ID S and includes this in the first LPP Provide Location information message together with an indication that this is the first segment of location information.

3. This step is the same as step 3 for Figure 10.

4. The target continues to transfer more location information to the server as described for Figure 10. The target SHALL include the session ID S and the segment number in each subsequent Provide Location information message. The target sends segments 2 to i-1. Note that if retransmission occurs, message contents remain the same as for the first transmission (including the sequence number and segment number).

5. The connection (e.g. secure IP connection) and/or session (e.g. SUPL session) between the server and target are released or fail prematurely. The connection and/session are later re-established — e.g. in order to complete the location information transfer or for other reasons.

6. When the server recognizes that the session and/or connection have been restored, it sends an LPP Request Location information message to the target containing the session ID S and the segment number i of the next expected LPP Provide Location information message. The message SHALL contain no request for other location information. The transaction ID U for this message need not be the same as the previous transaction ID T.

7. The target resumes the location information transfer interrupted by step 5 by sending the i.th portion of location information in an LPP Provide Location information message carrying the transaction ID U, a sequence number Si, the session ID S and an indication that this is the i.th segment. The message also requests an acknowledgment. If the target does not receive the request in step 6 (e.g. because the server is not aware that the connection and/or session have been restored to the same target), it may resume the location information transfer unsolicited. In that case, the target SHALL begin by sending or resending either LPP message i if message i-1 was acknowledged before step 5 or message i-1 if the acknowledgment for i-1 did not reach the target before step 5. If the target had aborted the transfer (e.g. due to a long timeout period during step 5), it returns an LPP Error message instead of the next location information segment and the remaining steps are omitted. If steps 6 and 7 occur in parallel, the target returns an LPP Error for step 6 and the server continues from step 7.

8. The server returns an acknowledgment for the message in step 7 and discards the message if this was already received just before step 5. If the server had aborted the transfer (e.g. due to a long timeout period in step 5), it instead returns an LPP Error message to the target and the remaining steps are omitted.

9. The target transfers segments i+1 to n-1 to the server as in step 4.

10. This step is the same as step 7 for Figure 10 except that the target includes the session ID S and the segment number n.

11. The server acknowledges the message in step 10.

5.2.5 Broadcast of Assistance Data (version 1.1)

5.2.5.1 Broadcast Assistance Data Messages

A broadcast assistance data message may comprise any one of the following messages:

(a) An unencapsulated and unciphered LPP Provide Assistance Data message

(b) An unencapsulated and unciphered LPP/LPPe Provide Assistance Data message

(c) An encapsulated LPP Provide Assistance Data message that may optionally be ciphered and/or digitally signed

(d) An encapsulated LPP/LPPe Provide Assistance Data message that may optionally be ciphered and/or digitally signed

An unencapsulated message consists of either an LPP message without an LPPe extension in case (a) or an LPP message with an LPPe extension in case (b). Uncapsulated broadcast messages are not ciphered or digitally signed and do not contain the additional message portions shown in Figure 12. An encapsulated LPP or LPP/LPPe message may or may not be ciphered and may or may not be digitally signed and contains additional message portions as illustrated in Figure 12.
Figure 12: An encapsulated LPP (/LPPe) Broadcast Message with Mandatory (M) and Optional (O) portions

The broadcast control parameters enable detection of an already received broadcast message and contain information on the geographic and time applicability of the message and the types of assistance data included. The cipher key ID and counter value are included when ciphering is used. The message portion contains an LPP or LPP/LPPe Provide Assistance Data message and may be ciphered. A digital signature may be included and, if so, is computed over the entire succeeding message content. The digital signature portion contains the associated public key identifier and appears at the beginning of the message so that a target can determine as soon as reception begins whether it has the correct public key and, if so, can begin the authentication process while message reception is in progress.

A particular broadcast system should, if possible, offer either the unencapsulated variant (cases (a) and (b)) or the encapsulated variant (cases (c) and (d)) but not both over its entire coverage area to enable targets to employ the correct decoding in a consistent manner. LPPe 1.1 capable targets can be informed of the variant being used by a server. Any LPe 1.0 capable but not LPPe 1.1 capable targets which support broadcast reception will assume the unencapsulated variant and will encounter decoding errors if the encapsulated variant is used. It is expected that a reasonably robust LPPe 1.0 implementation would cease making use of a particular broadcast system once a certain number of consecutive decoding errors were encountered.

5.2.5.2 Broadcast Procedure

Figure 13 shows how the server may broadcast location assistance data to one or more targets. Details of the Broadcast Subsystem including whether it comprises a single entity or multiple entities and its interfaces to the Target and Server are outside the scope of this specification.
Figure 13: Broadcast of LPP/LPPE Assistance Data

5.2.5.2.1 Preparation Phase

During the preparation phase, LPP/LPPE assistance data is transferred from the server to the Broadcast Subsystem. Depending on the Broadcast Subsystem, the preparation phase may include additional steps not shown in Figure 13 – e.g. exchange of broadcast capabilities between the Broadcast Subsystem and server, a request for specific assistance data from the Broadcast Subsystem to the server, an indication from the Broadcast Subsystem to the server on the current or future available broadcast capacity, an acknowledgment for assistance data successfully transferred to the Broadcast Subsystem from the server. Such additional steps are outside the scope of this specification.

1. The server packages the assistance data to be broadcast into one or more LPP/LPPE Provide Assistance Data messages which may or may not be encapsulated, ciphered and digitally signed as described above. Each LPP/LPPE Provide Assistance Data message is well formed (i.e. can be decoded by a target independently of other messages). The content of each message may be location and/or time specific – i.e. may be applicable to a specific geographic area and/or to a specific period of time. Each message includes an end of transaction indication. Different messages may or may not carry different transaction IDs. Messages SHALL NOT include an LPP sequence number or LPP acknowledgment request. The server may include in each message a unique message ID and the valid time and/or the validity area for the included assistance data. The server may optionally cipher some or all messages.

2. The server transports an LPP/LPPE Provide Assistance Data message to the Broadcast Subsystem. The server may include additional information such as broadcast triggering conditions (e.g. periodicity), priority, applicable geographic area and time period. This additional information and the means of transport are outside the scope of this specification.
3. The server may repeat step 2 to transport one or more additional LPP/LPPe Provide Assistance Data messages to the Broadcast Subsystem. Depending on the interface to the Broadcast Subsystem, some or all of the messages in steps 2 and 3 may be sent together as a single package.

5.2.5.2.2 Rendering Phase

During the rendering phase, LPP/LPPe assistance data is broadcast to the target audience. Depending on the Broadcast Subsystem, the rendering phase may include additional steps not shown in Figure 13 – e.g. advance notification by the Broadcast Subsystem to the target audience of the type or types of assistance data to be later broadcast together with scheduling information, requests by interested targets to the Broadcast Subsystem for information to enable subsequent broadcast reception. Such additional steps are outside the scope of this specification.

4. The Broadcast Subsystem broadcasts the LPP/LPPe Provide Assistance Data message received in step 2 without modification. The broadcast may occur from multiple nodes (e.g. multiple base stations) and may be accompanied by additional information identifying, for example, the type of assistance data and use of ciphering. The broadcasting may also employ segmentation with reassembly at the target. Such additional information and use of segmentation is outside the scope of this specification. A target that is both able to and chooses to receive the broadcast may decipher the message if ciphering was employed and decode the message contents. If the message includes a message ID, the target SHALL discard the message if a broadcast message with the same message ID was received and stored within a period either less than the validity time if a validity time was included or less than 24 hours otherwise. Otherwise, the target should store the assistance data within the message, overwriting any previous assistance data of the same type if needed. The target may use the assistance data to support positioning until such time as the validity time (if included) has expired or the target recognizes it is no longer in the validity area (if included).

NOTE 1: The server is responsible for ensuring that any message ID assigned to an LPPe message A is not reused for a new LPPe message B before the message validity time for the message A, if included, or 24 hours otherwise have expired since the final broadcast of the message A.

NOTE 2: Detection of message duplication using a unique message ID does not apply to unencapsulated LPP/LPPe messages. However, message duplication may be recognized in other ways (e.g. via a CRC on the message contents). In the event that message duplication is not recognized, the same assistance data will be re-stored which is inefficient but should not harm target operation.

5. The Broadcast Subsystem broadcasts the one or more additional LPP/LPPe Provide Assistance Data messages received in step 3 in a similar manner to step 4.

6. Broadcast of each message in steps 4 and 5 may be repeated and the periodicity or other triggering conditions for broadcasting may be the same or different for each message.

5.2.5.2.3 Termination Phase

During the termination phase, LPP/LPPe assistance data that no longer needs to be broadcast is removed from the Broadcast Subsystem. Depending on the Broadcast Subsystem, the termination phase may include additional steps not shown in Figure 13 – e.g. notification by the Broadcast Subsystem to the server concerning the actual number of broadcasts for each LPP/LPPe Provide Assistance Data message, the areas in which and/or nodes from which the broadcasts occurred and, if known, the size of the target audience. Such additional steps are outside the scope of this specification.

1. The Broadcast Subsystem ceases broadcasting any message received in step 2 or 3 and deletes it either when instructed by the server or when dictated by scheduling information originally received in step 2 or step 3.

5.2.5.3 Ciphering of Assistance Data

Assistance data that is broadcast may be optionally ciphered using the Advanced Encryption Standard (AES) algorithm [AES] with a 128 bit key and using Counter mode [NIST-800-38A]. An informative description of these algorithms is provided in Appendix F.

The algorithms require specific conventions for bit ordering. The convention followed here is that the bit order applicable to ciphering for an ASN.1 BIT STRING is the bit order defined by ASN.1 (e.g. ITU X.680) where the first bit is the leading bit number zero, the second bit is bit one etc. The bit order applicable to ciphering for an OCTET STRING starts with the highest order bit of the first octet and follows the bit ordering in each octet (high followed by low bits) and the octet ordering
in the OCTET STRING (first octet to last octet). These conventions align with those used in [AES]. The bit ordering applicable to ciphering for a PER encoded LPP/LPPe message is the bit ordering produced by the PER encoding. The same conventions for bit ordering also apply to authentication in section 5.2.5.4.

The initial counter C_1 used to cipher an entire LPP/LPPe message is provided to a target by a server in two portions. The first portion, denoted C_0, is provided using point to point mode along with the 128 bit ciphering key and an identifier for both of these values. The second portion, denoted D_0, is provided in unciphered form as part of the overall encapsulated message as shown in Figure 11A. A target then obtains C_1 as:

$$C_1 = (C_0 + D_0) \mod 2^{128}$$

(where all values are treated as non-negative integers)

To obtain any subsequent counter C_i from the previous counter C_{i-1} for any message, the following operation is used:

$$C_i = (C_{i-1} + 1) \mod 2^{128}$$

The value for D_0 SHALL be different for different broadcast messages and SHALL ensure that the counters derived from C_1 for any message are different to the counters for any other message.

5.2.5.4 Authentication of Assistance Data

Assistance data that is broadcast may be optionally digitally signed using the RSASSA-PSS variant of the PKCS#1 v.2.1 RSA method defined in [PKCS#1] and [RFC3447] where [RFC3447] takes precedence in case of any conflict. These references define a set of fixed procedures and some options. The method for LPPe uses as input the procedures and options shown in Table 2.

<table>
<thead>
<tr>
<th>Authentication Input</th>
<th>Procedure or Option Used</th>
<th>[PKCS#1] and [RFC3447] section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encoding method</td>
<td>EMSA-PSS</td>
<td>9.1</td>
</tr>
<tr>
<td>Hash Function</td>
<td>SHA-256 [NIST 180-4]</td>
<td>9.1.1, 9.1.2</td>
</tr>
<tr>
<td>Mask Generation Function</td>
<td>MGF1 with SHA-1 [NIST 180-4]</td>
<td>B.2.1</td>
</tr>
<tr>
<td>Encoding salt length</td>
<td>0 to 32 octets (exact value is provided by the server)</td>
<td>9.1</td>
</tr>
<tr>
<td>RSA modulus n (and signature length)</td>
<td>2048 bits</td>
<td>8.1</td>
</tr>
<tr>
<td>Signature Generation</td>
<td>RSASSA-PSS-SIGN</td>
<td>8.1.1</td>
</tr>
<tr>
<td>Signature Verification</td>
<td>RSASSA-PSS-VERIFY</td>
<td>8.1.2</td>
</tr>
</tbody>
</table>

| Table 2: Applicable Authentication Procedures and Options |

At a server, a digital signature is computed over an entire broadcast message (that has already been ciphered if ciphering is used) by first hashing and masking the message to yield a message representation of length 2047 bits and then generating a signature of length 2048 bits for the message representation using an RSA private key. At a target, the signature is converted to an expected message representation using the RSA public key and then compared to the actual message representation derived from the received message.

The public key and salt length are provided to a target by a server and assigned a unique ID. This transfer occurs using point to point LPPe before the target begins to receive broadcast assistance data. The server identifies the public key and salt length to be used to authenticate any received broadcast LPPe message by including the unique identifier that was sent earlier point to point.

A target SHALL authenticate any broadcast message received that contains a digital signature if the target already has the
identified public key and salt length. If a server has earlier indicated by point to point means that authentication SHALL be used for a particular broadcast system, a target SHALL ignore any broadcast message received that does not contain a digital signature. Broadcast messages that fail authentication SHALL also be discarded and a target may cease using the associated broadcast system for some implementation dependent time period. When receiving a new broadcast message, a target should perform verification and decoding in the following order.

1. Verification from broadcast control parameters that the message is not a duplicate and has a valid time and geographic area applicability.
2. Verification from broadcast control parameters that the message contains (or may contain) types of assistance data of interest to the target.
3. Verification that the target has the correct key or keys to perform authentication and deciphering when either or both of these are required.
4. Verification of any digital signature if included.
5. Deciphering of message content if ciphering was used.
6. ASN.1 decoding of message content.

5.2.6 Crowdsourcing (version 2.0)

5.2.6.1 Crowdsourcing Principles

Crowdsourcing involves instigating and subsequently receiving measurements at a server from one or more target devices for one or more types of terrestrial transmitter. A server (or a surrogate to which the measurements may be forwarded) may subsequently use the measurements for one or more purposes outside the scope of LPPe. For example, a server may determine location related information (e.g. estimated locations and/or transmission characteristics) for terrestrial transmitters which may be used at the server to support positioning and/or may be sent to target devices as assistance data. In another example, the measurements may be used for network optimization – e.g. to help plan deployment or redeployment of transmitters and/or adjust transmission capabilities of existing transmitters.

The crowdsourcing procedures enable a server to request a target to send crowdsourcing measurements for a limited or unlimited period to a designated data server. The server instigating the crowdsourcing is referred to as the control server and may differ from the data server to which measurements are sent in order to limit the influx of data at the control server, loadshare crowdsourcing data over several data servers and/or provide the measurement data to a server dedicated to processing of crowdsourcing data. The control server provides control parameters to the target defining when the measurements are to be obtained and when they are to be returned to the data server. The control parameters are divided into four groups comprising activation triggers, measurement triggers, reporting triggers and duration parameters. Activation triggers define the conditions for activating and deactivating crowdsourcing measurements and may be used to avoid obtaining measurements in conditions where measurements may be difficult or not needed, thereby saving on target resource usage (e.g. battery, memory, signaling) and reducing load on the data server. When crowdsourcing is deactivated, a target does not obtain new crowdsourcing measurements but continues to report any previously obtained measurements, if not already sent, according to the reporting triggers. Measurement triggers define when and how often measurements should be made when crowdsourcing measurements have been activated. Reporting triggers define when and how often measurements should be returned and include a reporting mode which may be any of: real time where measurements are sent as soon as they are made or are discarded otherwise; quasi-real time where measurements are sent in real time if possible but in batch mode otherwise; and batch where measurements are sent infrequently in batches.

A target is enabled to confirm whether or not it will fulfil a crowdsourcing request from the control server and may include agreed control parameters and agreed measurement types that may each be the same as those requested by the server or may each differ. In the latter case, a target SHALL employ a subset policy in which agreed measurements are a subset of those requested and agreed control parameters either omit requested control parameters or include requested parameters set to values that will reduce the frequency and/or duration of crowdsourcing deactivation, measurements and/or reporting. In the case of the reporting mode (real time, quasi-real time and batch reporting), a target SHALL NOT change the mode requested by the server.

A control server or data server may query a target at a later time to verify whether crowdsourcing is still active in the target and what are the measurements and control parameters assumed by the target. This may enable detection of conditions where crowdsourcing has stopped at a target before a designated end time – e.g. due to user intervention, a power off or lack of
resources (e.g. low battery level). A query may also enable a control server or data server to periodically poll targets regarding crowdsourcing when a control server or data server does not maintain records of the crowdsourcing ongoing in targets. Targets for which crowdsourcing is not active may then be requested by the server to start crowdsourcing.

A control server or data server may abort an ongoing crowdsourcing session in a particular target – e.g. because measurements are no longer needed or to reduce load on the data server. A target may also abort an ongoing crowdsourcing session – e.g. due to user intervention or because a target has insufficient resources (e.g. battery level is low). A server abort is always signaled to the target. A target abort is not signaled to either the control server or data server. However, a target may indicate the end of crowdsourcing when reporting crowdsourcing measurements to the data server in the case that crowdsourcing is stopped in a controlled manner,

Crowdsourcing may be identified or may be anonymous. With identified crowdsourcing, crowdsourcing reports carry a unique session ID assigned by the control server. With anonymous crowdsourcing, a reserved session ID of zero is included in crowdsourcing reports which may prevent tracking of the target and thereby ensure user privacy. A target has the ability to set the session ID to zero to indicate that crowdsourcing will be anonymous when confirming crowdsourcing to the control server if the control server had assigned a unique session ID.

Only one crowdsourcing session is allowed to be ongoing for any target with respect to any server regardless of whether the server acts as a control server or data server. This restriction simplifies crowdsourcing and reduces the possibility of loss of synchronization between a server and a target with respect to ongoing crowdsourcing sessions. If a control server that is already the control server or data server for an ongoing crowdsourcing session with a target requests a new crowdsourcing session from the target, the target SHALL abort the ongoing session and then process the request for the new session. Should the new session be rejected, the previous session is still aborted. This can help overcome loss of synchronization between a server and a target. If a control server that is neither the control server nor data server for an ongoing crowdsourcing session with a target requests a new crowdsourcing session from the target and specifies a data server for which there is an ongoing crowdsourcing session, the target SHALL reject the request. This prevents a control server from interfering with crowdsourcing invoked by another control server. Within the limits of these restrictions, a target may support multiple crowdsourcing sessions for different control and data servers.

Mixing of crowdsourcing and positioning support in the same LPP Request Location Information and Provide Location Information messages is not allowed. Thus, LPP messages related to crowdsourcing SHALL NOT contain location information related to positioning. However, crowdsourcing capabilities may be requested and provided in the same LPP Request Capabilities and LPP Provide Capabilities messages used to request and provide positioning capabilities. The LPP Request Assistance Data and LPP Provide Assistance Data messages are not used directly for crowdsourcing although assistance data may be requested by a target and provided by a server to support crowdsourcing without indicating this explicitly.

Since crowdsourcing relies on receipt of measurement data from a large number of different target devices, there is no especial premium on ensuring that all requested crowdsourcing measurements are made and successfully transferred to the server. It is thus allowable for a congested target or a target with reduced battery charge to miss some measurements and not to expend excessive resources in reconnecting to a server when radio conditions or network support are faulty. Furthermore, a target may choose not to send measurements to a server if the user will be charged for this by a network operator – e.g. if a cellular network is being used instead of say a WiFi network. In this case, any withheld measurements may be sent later if batch or quasi-real time reporting was agreed.

Please note that a target measurement system (e.g. WLAN AP) may indicate that some measurements should not be crowdsourced. If so, then this SHALL be respected.

5.2.6.2 Crowdsourcing Procedure

Figure 14 illustrates and provides more details for the crowdsourcing procedure.
1. The control server sends an *LPP RequestLocationInformation* message to the target using some available transaction ID T1. The message contains a crowdsourcing session ID S which may either be unique to the target or may be set to an anonymous value of zero, an indication that this is a request for crowdsourcing and an indication of the crowdsourcing measurements requested and the control parameters for obtaining and reporting the measurements. The message may also contain the address of a data server to which crowdsourcing measurements are to be sent. If a data server is not indicated, the data server is the same as the control server.

2. The target responds with an LPP ProvideLocationInformation message to the control server. The message uses the transaction ID T1 in step 1 and indicates the end of this transaction. The message contains a session ID S which SHALL either be the same as in step 1 or zero to indicate anonymous reporting, an indication that this is a confirmation of crowdsourcing, and an indication of the measurements to be crowdsourced and the control parameters for obtaining and reporting the measurements. The indicated measurements and control parameters SHALL either be the same as in step 1 or a subset of those in step 1 where a subset of control parameters omits certain parameters in step 1 and/or contains certain parameters from step 1 indicating a lower frequency and/or lower duration of measurement and/or reporting than in step 1. If the crowdsourcing procedure cannot be supported, an indication of a rejection of crowdsourcing is included instead in the LPP ProvideLocationInformation message in step 2 as well as an error reason and an indication of measurements and control parameters is not included. In this case, subsequent steps are not performed.

3. The target obtains crowdsourcing measurements as defined by the control and measurement parameters in step 2. When the first set of measurements needs to be sent as determined by the control parameters, the target assembles the measurement data into one or more LPP ProvideLocationInformation messages. If there is one message, the target proceeds to step 4. Otherwise, the target sends the first batch of measurement data to the data server indicated in step 1 in an LPP ProvideLocationInformation message which SHALL indicate crowdsourcing data and comprise measurement data obtained at the earliest time(s). The message SHALL include an available transaction ID T2 which may differ from T1 and the session ID S in step 2. The target SHALL repeat step 3 to send each successive set of measurement data, except for the last, as obtained at progressively later times to the data server.

4. For the last set of measurement data, the target SHALL send an LPP ProvideLocationInformation message to the data server as in step 3 but with an end of transaction also indicated. In addition, the target may indicate the end of the
crowdsourcing session if any duration agreed in step 2 has ended or if the target needs to end the session for other reasons (e.g. lack of resources or user intervention). Steps 3 and 4 are repeated at later reporting times to send subsequent sets of measurements as determined by the control parameters in step 2. If a session or connection between the target and the data server fails or is released while crowdsourcing transfer according to step 3 and 4 is still in progress, the target should attempt to re-establish the session or connection and resume the transfer. In this case, the target SHALL NOT resend any LPP ProvideLocationInformation message that was previously completely sent in step 3 or step 4 even if there was no confirmation of receipt at the transport level but SHALL instead resume sending of LPP messages that were not yet sent or not completely sent to the server. This may result in the loss of one LPP ProvideLocationInformation message but avoids undetected message duplication which may occur with anonymous crowdsourcing or where a server does not maintain a record of crowdsourcing messages that were received from each target.

5. If an error related condition occurs at the control server that requires the session to end, the control server sends an LPP Abort to the target using any available transaction ID T3 and includes the session ID S from step 2.

6. If an error related condition occurs at the data server that requires the session to end, the data server sends an LPP Abort to the target using any available transaction ID T4 and includes the session ID S received in step 3 or step 4.

7. If the control server or data server needs to query the status of crowdsourcing in the target, the control server or data server sends an LPP RequestLocationInformation message to the target using some available transaction ID T5. The message may contain a crowdsourcing session ID S if the control server or data server is aware of an active session with the target. Otherwise, the session ID S is omitted.

8. If the target is able to match an included session ID S in step 7 to an active crowdsourcing session for this control server or data server or, if that is not possible, if the target is able to determine an active crowdsourcing session for this control server or data server with any session ID, the target returns an LPP ProvideLocationInformation message to the control server or data server. The message uses the transaction ID T5 in step 7 and indicates the end of this transaction. The message indicates a crowdsourcing status response and contains the session ID S for the active crowdsourcing session with the control server or data server which may not be the same as the session ID S received in step 7. The message SHALL also indicate the measurements being obtained and the control parameters in use as returned in step 2. The message SHALL also provide statistics on the crowdsourcing session if available to the target. If the target is unable to find an active crowdsourcing session for this control server or data server, the target returns an LPP ProvideLocationInformation message to the control server or data server with the transaction ID T5 from step 7, an end of transaction indication, an indication of a crowdsourcing status response and an indication that no active session was found.

In the case of a receiver detecting protocol errors where a transaction related to crowdsourcing is still open, the receiver SHALL return an LPP ERROR message and consider the transaction as closed. The message that caused the error SHALL be discarded and any request contained in it SHALL be ignored except in the case of an abort or termination request where any ongoing crowdsourcing session SHALL be terminated. Except for the latter case, any crowdsourcing session to which the message in error may have referred SHALL continue.

5.2.6.3 Basic and Advanced Crowdsourcing

Two types of crowdsourcing are supported in LPPe version 2.0: “basic crowdsourcing” using request location information and provide location information parameters for positioning methods normally used to locate a target and “advanced crowdsourcing” using separate parameters applicable only to crowdsourcing. Basic crowdsourcing reuses existing LPP and LPPe positioning parameters and thus may reduce implementation but is not efficient for a large number of measurements. Advanced crowdsourcing uses parameters dedicated to crowdsourcing and can be more efficient particularly for batch reporting. Only one type of crowdsourcing (basic or advanced) may be requested by a server and used by a target throughout a crowdsourcing session. It is recommended that basic crowdsourcing only be used for coarse infrequent data acquisition with a server or target that cannot support advanced crowdsourcing and that advanced crowdsourcing be used for any precise or frequent data acquisition if supported by both a server and target.

Figure 15 summarizes the different portions of an LPP/LPPe message and their applicability to basic versus advanced crowdsourcing.
LPPe Message Portion

The common container is not used. OTDOA and ECID may be included for basic crowdsourcing in steps 1, 3, 4.

OTDOA Container

Not included for advanced crowdsourcing. For basic crowdsourcing, these containers may be included in step 1 to request measurements and in steps 3 and 4 to report measurements.

WLAN AP Container

Included in all crowdsourcing messages (e.g. steps 1-8). Contains control and measurement parameters for steps 1, 2, 8 and advanced and some basic measurement data for steps 3 and 4.

Crowdsourcing Container

Figure 15: LPP/LPPe Message Structure for Crowdsourcing (where steps refer to Figure 14)

For basic crowdsourcing, control parameters (e.g. as used in steps 1, 2 and 8 in Figure 14) are contained in an LPPe crowdsourcing parameter container. An indication of the basic crowdsourcing measurements requested (e.g. in step 1 in Figure 14) is contained in the same parameters used to request these measurements when used for positioning of a target. These parameters appear in LPP and LPPe parameter containers associated with different positioning methods as illustrated in Figure 15. Basic crowdsourcing measurement data (e.g. for steps 3 and 4 in Figure 14) is mainly contained in the same LPP and LPPe parameters that are used to report these measurements in the case of positioning. These parameters thus appear in the LPP and LPPe parameter containers for LPP and LPPe positioning methods. For basic crowdsourcing, a detailed confirmation of the measurements to be crowdsourced by a target is not provided to a server (e.g. in steps 2 and 8 of Figure 14). Instead, a summary indication is provided of the position methods for which measurements will be provided.

For advanced crowdsourcing, requested measurements (for step 1 of Figure 14), confirmed measurements (for steps 2 and 8 of Figure 14) and measurement data (for steps 3 and 4 of Figure 14) are all provided using the LPPe crowdsourcing parameter container as shown in Figure 15. For advanced crowdsourcing, LPP and LPPe parameter containers associated with normal positioning methods are not included.

Table 3 summarizes the different parts of an LPP and LPPe message that are applicable to basic and advanced crowdsourcing.
Table 3: Summary of LPP/LPPe Message Containers applicable to Basic and Advanced Crowdsourcing

5.2.6.4 Measurement Sets and Measurement Subsets

A crowdsourcing measurement set comprises all measurements that were obtained by a target as a result of a particular instigation of measurements by measurement triggers (e.g. a particular timeout instance of a 20 minute periodic measurement timer). A measurement set may need to be obtained over a short period of time (e.g. a few seconds or even a few minutes) depending on the number of measurements and the time needed for each one. During this period, the target may move in which case a precise single location cannot be reported for all measurements. Therefore, it is allowed to divide each measurement set into a sequence of subsets obtained at successively later times where each subset contains measurements that were obtained by a target at the same location or almost the same location.

If a target is not required to obtain any measurements when a particular measurement set is triggered in the case of advanced crowdsourcing, the target does not provide any information to the server concerning the measurement set. If a target is required to but is unable to obtain any measurements when a particular measurement set is triggered, the target may either send no information to the server concerning the measurement set or send error information. It is recommended to send error information only sparingly – e.g. when an inability to obtain measurements persists over many measurement sets.

For basic crowdsourcing, each measurement subset (or each measurement set that comprises just one subset) is contained in a separate LPP Provide Location Information message. For advanced crowdsourcing, a single LPP Provide Location Information message may contain up to 512 separate measurement subsets which may all belong to the same measurement set or to two or more consecutive measurement sets. Optionally, a server may indicate the maximum distance that a target is allowed to move while obtaining crowdsourcing measurements to be included in the same measurement subset as a means of controlling the precision of the reported target location for each measurement subset. If the target moves while a measurement set is being obtained (e.g. moves by more than any maximum distance allowed by the server), the measurement set should be reported using more than one subset. Each measurement subset should indicate the time or relative time at which the included measurements were obtained and the target location. Target location can be provided as an absolute location and/or as a location relative to a previous measurement subset. Certain measurement subsets, preferably those for which an absolute location is provided, can be designated as anchor points and used to provide relative locations for one or more subsequent measurement subsets, thereby allowing the absolute locations for the subsequent measurement subsets to be obtained from any absolute locations provided or derivable for the anchor points.

In addition to allowing measurements for the same measurement set that were made at different locations to be reported, multiple measurement subsets may also be used to increase the number of measurements that can be reported by a target when a single measurement subset cannot include them all. As an example, this may be used to enable a target to report measurements for multiple channels for the same WLAN AP or to report measurements for multiple frequencies for the same cell.
5.3 LPPe Mode

According to 3GPP TS 36.355 [LPP], LPP is always used between a target device and a server and supports three types of procedures each with a specific directionality. Thus, capabilities may only be requested by a server from a target and are only sent from the target to the server; assistance data may only be requested by a target from a server and is only sent from a server to a target; and location information may only be requested by a server from a target and is only sent from a target to a server. These limitations are compatible with a control plane solution between a network server and wireless terminal device but become restrictive for a user plane solution between arbitrary end points. In order to retain compliance to the procedures in [LPP] but enable wider flexibility among LPPe supporting endpoints, a mode is introduced that qualifies how a particular LPP/LPPe procedure is being used. In this version of LPPe, the following modes are supported.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
<th>Applicable LPP Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal (default)</td>
<td>The server and target roles are as defined in the LPP transaction ID</td>
<td>All</td>
</tr>
<tr>
<td>Reversed</td>
<td>The server and target roles are temporarily reversed in the LPP transaction. Thus, the real server indicates it is the target in the LPP transaction ID and the real target indicates it is the server. Normal LPP rules are then followed concerning the directionality of transactions – e.g. the real server may send an LPP Provide Capabilities to the real target because at an LPPe level the real server appears to be the target for which such a transfer is allowed.</td>
<td>Solicited and Unsolicited Provide Capabilities. Solicited and Unsolicited Provide Location Information</td>
</tr>
</tbody>
</table>

Table 4: LPPe Modes

In this version of LPPe, the reversed mode is applicable to a solicited or unsolicited provision of capabilities from a real server to a real target and to a solicited or unsolicited provision of location information from a real server to a real target. In the first case, the capabilities being requested or provided are those of the server to support the corresponding capabilities in the target (e.g. if the real server indicates a capability C, it means the target can make use of C if the target supports C). In the second case, the location being requested or provided is that of the real target device. Since in LPP and LPPe, the Request and Provide Location Information messages can indicate measurements as well as a location estimate, some restrictions are needed for reversed mode usage as shown in Table 5 and Table 6.

<table>
<thead>
<tr>
<th>LPP/LPPe Parameter Type</th>
<th>Parameter(s)</th>
<th>Restrictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPP Position Method Parameters (A-GNSS, OTDOA, ECID)</td>
<td>All</td>
<td>Not Allowed</td>
</tr>
<tr>
<td>LPP Common Parameters</td>
<td>Location Information Type</td>
<td>Shall indicate "Location Estimate Required"</td>
</tr>
<tr>
<td></td>
<td>QoS</td>
<td>Allowed (if not included server may assume any QoS unless high accuracy AGNSS is requested)</td>
</tr>
<tr>
<td></td>
<td>Location Coordinate Types</td>
<td>Allowed</td>
</tr>
<tr>
<td></td>
<td>Velocity Types</td>
<td>Allowed</td>
</tr>
<tr>
<td>LPP/LPPe Parameter Type</td>
<td>Parameter(s)</td>
<td>Restrictions</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>LPP Position Method Parameters (A-GNSS, OTDOA, ECID)</td>
<td>All</td>
<td>Not Allowed</td>
</tr>
<tr>
<td>LPP Common Parameters</td>
<td>Location Estimate</td>
<td>Allowed</td>
</tr>
<tr>
<td></td>
<td>Velocity Estimate</td>
<td>Allowed</td>
</tr>
<tr>
<td></td>
<td>Location Error</td>
<td>Allowed</td>
</tr>
<tr>
<td></td>
<td>All other parameters</td>
<td>Not Allowed</td>
</tr>
<tr>
<td>LPPe Position Method Parameters</td>
<td>All</td>
<td>Not Allowed</td>
</tr>
<tr>
<td>LPPe Common Parameters</td>
<td>High Accuracy Location Estimate</td>
<td>Allowed</td>
</tr>
<tr>
<td></td>
<td>High Accuracy Velocity Estimate</td>
<td>Allowed</td>
</tr>
<tr>
<td></td>
<td>All other parameters</td>
<td>Not Allowed</td>
</tr>
</tbody>
</table>

Table 5: Restriction on use of an LPP/LPPe Request Location Information in Reversed Mode

An endpoint may only use the Reversed mode when it is known that the other end also supports LPPe. This is to avoid LPP errors for an endpoint receiver that supports LPP but not LPPe.
6. Information Element Abstract Syntax Definition (Normative)

6.1 General

The contents of each LPPe payload and message extensions are specified in Chapters 6.2 and 6.3, respectively, using ASN.1 to specify the syntax and using tables, when needed, to provide information on the fields and parameters in the message. The information elements carried within the message extensions are specified as type definitions in Chapters 6.4 and 6.5.

When necessary, appendices are used to provide further information, such as formulae, on the usage of the data content. LPPe re-uses as far as possible the data definitions from [LPP] in order to avoid duplication.

The ASN.1 in this section uses the same format and coding conventions as described in [LPP].

New ASN.1 data types and new parameters within LPPe 1.0 data types that are added in LPPe 1.1 are identified by including a “ver1-1” tag in their names. New ASN.1 data types and new parameters within LPPe 1.0 and LPPe 1.1 data types that are added in LPPe 2.0 are identified by including a “ver2-0” tag in their names. Parameters applicable to LPPe 1.1 or LPPe 2.0 that are included within LPPe 1.1 or LPPe 2.0 data types, respectively, do not include such a tag as they implicitly apply to LPPe 1.1 or LPPe 2.0, respectively from their context. It should be noted that some parameters within LPPe 1.1 and LPPe 2.0 data types may be defined using data types from a previous version of LPPe or from LPP.

6.2 LPPe Message Extension

6.2.1 LPP data type imports

LPPe uses as far as possible the data definitions from the [LPP] in order to avoid duplication. This ASN.1 snippet defines the imports from [LPP].

```asn1
-- ASN1START
OMA-LPPE DEFINITIONS AUTOMATIC TAGS ::==
BEGIN
IMPORTS GNSS-ID, GNSS-SignalID, GNSS-SignalIDs, GNSS-SystemTime, SV-ID,
ECID=SignalMeasurementInformation, CellGlobalIdGERAN, CellGlobalIdEUTRA-AndUTRA,
OTDOA-ReferenceCellInfo, OTDOA-NeighbourCellInfoElement, maxFreqLayers, ARFCN-ValueEUTRA,
Ellipsoid-Point, EllipsoidPointWithAltitude, EllipsoidPointWithAltitudeAndUncertaintyEllipsoid,
NetworkTime, GNSS-ID-Bitmap, ARFCN-ValueUTRA, GNSS-ReferenceTime, LPP-Message,
EllipsoidPointWithUncertaintyCircle, EllipsoidPointWithUncertaintyEllipse, EllipsoidArc, Polygon,
ARFCN-ValueEUTRA-v9a0, Velocity
FROM LPP-PDU-Definitions;
-- ASN1STOP
```

6.2.2 Message extension definitions

6.2.2.1 Extension of LPP

The IE OMA-LPPe-MessageExtension carries version information and the actual data carried in the extension. A single OMA-LPPe-MessageExtension carries one extension message and all the LPPe information associated with that type. One OMA-LPPe-MessageExtension data type is carried within one EPDU-Body OCTET STRING parameter in an LPP message. Note that PER encoding rules in ITU X.691 [X.691] ensure that the encoded data type will be an integer number of octets.
-- ASN1START

OMA-LPPe-MessageExtension ::= SEQUENCE {
 lppeCompatibilityLevel OMA-LPPe-LPPeCompatibilityLevel,
 lppeVersion OMA-LPPe-LPPeVersion,
 lppeMode OMA-LPPe-LPPeMode,
 messageExtensionBody OMA-LPPe-MessageExtensionBody,
 ...
}

OMA-LPPe-LPPeCompatibilityLevel ::= INTEGER (0..15)

OMA-LPPe-LPPeVersion ::= SEQUENCE {
 majorVersion INTEGER(0..255),
 minorVersion INTEGER(0..255)
}

OMA-LPPe-LPPeMode ::= ENUMERATED {
 normal, reversed,
 ...
}

OMA-LPPe-MessageExtensionBody ::= CHOICE {
 requestCapabilities OMA-LPPe-RequestCapabilities,
 provideCapabilities OMA-LPPe-ProvideCapabilities,
 requestAssistanceData OMA-LPPe-RequestAssistanceData,
 provideAssistanceData OMA-LPPe-ProvideAssistanceData,
 requestLocationInformation OMA-LPPe-RequestLocationInformation,
 provideLocationInformation OMA-LPPe-ProvideLocationInformation,
 error OMA-LPPe-Error,
 abort OMA-LPPe-Abort,
 ...
}

-- ASN1STOP

LPPe-Message Extension field descriptions

lppeCompatibilityLevel
This field provides the compatibility level of the OMA LPP Extensions Release. The compatibility level in this version of LPPe is zero.

lppeVersion
This field provides the version of OMA LPPe Release that includes majorVersion and minorVersion
- majorVersion is x element in the x,y version notation. The major version in this LPPe release is 2
- minorVersion is y element in the x,y version notation. The minor version in this LPPe release is 0

messageExtensionBody
This parameter provides the body of the message extension for all LPP messages

lppeMode
This field qualifies the server and target roles defined in the LPP transaction ID.

6.2.2.2 Broadcast Message Extension (version 1.1)

The IE OMA-LPPe-ver1-1-BroadcastContainer is used to encapsulate ciphered or unciphered LPP and LPP/LPPe Provide Assistance Data messages for delivery via broadcast. The use of this container enables transfer of information needed for ciphering support (e.g. cipher key identifier), message authentication (e.g. public key identifier and digital signature) and information that a target can use to quickly identify the types of information being broadcast, the applicable area and time period and whether the data duplicates data already received. A target that identifies a duplicate broadcast message or
assistance data that is not of interest, not applicable or not supported can cease reception without the need to receive, decipher, decode and possibly authenticate the encapsulated LPP or LPP/LPPe message. Except for the encapsulated LPP or LPP/LPPe message, the parameters in an OMA-LPPe-ver1-1-Broadcast-Container are not ciphered.

```asn1
OMA-LPPe-ver1-1-BroadcastContainer ::= SEQUENCE {
  digitalSignature OMA-LPPe-ver1-1-DigitalSignature OPTIONAL,
  messageContents OCTET STRING,
  ...}
-- the messageContents octet string contains the encoded content of data type OMA-LPPe-ver1-1-BroadcastMessage

OMA-LPPe-ver1-1-BroadcastMessage ::= SEQUENCE {
  broadcastControlIEs OMA-LPPe-ver1-1-BroadcastControlIEs OPTIONAL,
  cipheringIEs OMA-LPPe-ver1-1-CipheringIEs OPTIONAL,
  broadcastMessage OCTET STRING,
  ...}
-- broadcastMessage contains an unciphered LPP-Message as defined in [LPP] or a ciphered LPP-Message

OMA-LPPe-ver1-1-BroadcastControlIEs ::= SEQUENCE {
  serverID OMA-LPPe-ver1-1-ServerID,
  messageId OCTET STRING (SIZE (4)) OPTIONAL,
  validity-time OMA-LPPe-ValidityPeriod OPTIONAL, --Cond DigitalSignature
  validity-area OMA-LPPe-ValidityArea OPTIONAL,
  broadcastADTypes OMA-LPPe-ver1-1-BroadcastADTypes OPTIONAL,
  ...}

OMA-LPPe-ver1-1-CipheringIEs ::= SEQUENCE {
  cipherSetID OMA-LPPe-ver1-1-CipherSetID,
  d0 BIT STRING (SIZE (1..128)),
  ...}

OMA-LPPe-ver1-1-DigitalSignature ::= SEQUENCE {
  authenticationSetID OMA-LPPe-ver1-1-AuthenticationSetID,
  signature BIT STRING (SIZE (2048)),
  ...}
```

Conditional presence

<table>
<thead>
<tr>
<th>DigitalSignature</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>The field is mandatory present if the IE digitalSignature is included in order to protect against replay attacks. Otherwise, the field is optional.</td>
<td></td>
</tr>
</tbody>
</table>

OMA-LPPe-ver1-1-Broadcast-Container field descriptions

digitalSignature

This parameter applies to LPPe version 1.1 and contains a digital signature for the octet string composing the messageContents. This parameter is optional and is included only when a target needs to authenticate the message contents. The parameter contains the following fields:

- authenticationSetID identifies the public key authentication set to be used to authenticate the signature
- signature the digital signature to be authenticated
OMA-LPPe-ver1-1-Broadcast-Container field descriptions

messageContents
This parameter applies to LPPe version 1.1 and contains the broadcast assistance data and control parameters in the form of an octet string.

broadcastControlIEs
This parameter applies to LPPe version 1.1 and provides the following parameters applicable to broadcast of an LPP or LPP/LPPe Provide Assistance Data message.

- **serverID**
 - Defines the server that broadcast the message. This parameter is mandatory.
- **messageID**
 - A message ID unique to the server. This parameter is optional and when included can be used together with the serverID to identify receipt of a duplicate message.
- **validity-time**
 - The validity time for the broadcast assistance data. This parameter is conditional.
- **validity-area**
 - The valid geographic area for the broadcast assistance data. This parameter is optional.
- **broadcastADTypes**
 - Provides a list of the assistance data types in the message referred to by their labels. This parameter is optional.

Assistance data that is associated with its own validity time and /or validity area SHALL be considered as no longer valid when either this validity time/area or the validity time/area for the whole message no longer apply.

cipheringIEs
This parameter applies to LPPe version 1.1 and SHALL be included if and only if ciphering is used. The parameter contains the following fields:

- **cipherSetID**
 - This field identifies a cipher set comprising a cipher key value and the first component C0 of the initial counter C1

- **d0**
 - This field provides the second component for the initial ciphering counter C1. This field is defined as a bit string with a length of 1 to 128 bits. A target SHALL first pad out the bit string if less than 128 bits with zeroes in more significant bit positions to achieve 128 bits. C1 is then obtained from D0 and C0 (defined by the cipherSetID) as:

 $$ C1 = (D0 + C0) \mod 2^{128} $$

 (with all values treated as non-negative integers)

broadcastMessage
This parameter applies to LPPe version 1.1 and is encoded as an octet string that contains either a ciphered or unciphered LPP or LPP/LPPe Provide Assistance Data message. Ciphering is used when and only when the parameter cipheringIEs is included.

When ciphering is not used, broadcastMessage contains either an unciphered LPP Provide Assistance Data message as defined in [LPP] or an unciphered LPP/LPPe Provide Assistance Data message as defined in this specification. The LPP or LPP/LPPe Provide Assistance Data message is coded using the LPP-Message definition in [LPP].

When ciphering is used, broadcastMessage contains a ciphered LPP or LPP/LPPe Provide Assistance Data message in the form of an octet string with the bit and octet order corresponding to the output bit order from the ciphering operation as described in section 5.2.5.3. The message that is ciphered corresponds to a complete message as defined by the data type LPP-Message in [LPP].

6.3 Message extension IEs

The present chapter details the message extensions provided by LPPe for the 3GPP-defined LPP.

6.3.1 Request Capabilities

The OMA-LPPe-RequestCapabilities message extension requests capability information on LPPe-defined assistance data and individual positioning methods.

© Open Mobile Alliance. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
6.3.2 Provide Capabilities

The OMA-LPPe-ProvideCapabilities message extension provides capability information on LPPe-defined assistance data and individual positioning methods.

```
OMA-LPPe-ProvideCapabilities ::= SEQUENCE {
    commonIESProvideCapabilities OMA-LPPe-CommonIESProvideCapabilities OPTIONAL,
    agnss-ProvideCapabilities     OMA-LPPe-AGNSS-ProvideCapabilities  OPTIONAL,
    otdoa-ProvideCapabilities      OMA-LPPe-OTDOA-ProvideCapabilities   OPTIONAL,
    eotd-ProvideCapabilities       OMA-LPPe-EOTD-ProvideCapabilities   OPTIONAL,
    otdoa-utra-ProvideCapabilities OMA-LPPe-OTDOA-UTRA-ProvideCapabilities OPTIONAL,
    ecid-lte-ProvideCapabilities   OMA-LPPe-ECID-LTE-ProvideCapabilities OPTIONAL,
    ecid-gsm-ProvideCapabilities   OMA-LPPe-ECID-GSM-ProvideCapabilities OPTIONAL,
    ecid-utra-ProvideCapabilities  OMA-LPPe-ECID-UTRA-ProvideCapabilities OPTIONAL,
    wlan-ap-ProvideCapabilities    OMA-LPPe-WLAN-AP-ProvideCapabilities OPTIONAL,
    sensor-ProvideCapabilities     OMA-LPPe-Sensor-ProvideCapabilities  OPTIONAL,
    srn-ProvideCapabilities        OMA-LPPe-SRN-ProvideCapabilities    OPTIONAL,
    ...
    -- version 2.0 extension elements
    ver2-0-pdr-ProvideCapabilities OMA-LPPe-ver2-0-PDR-ProvideCapabilities OPTIONAL,
    ver2-0-irb-ProvideCapabilities  OMA-LPPe-ver2-0-IRB-ProvideCapabilities OPTIONAL,
    ver2-0-crowdsourcing-ProvideCapabilities OMA-LPPe-ver2-0-Crowdsourcing-ProvideCapabilities OPTIONAL
}
```

6.3.3 Request Assistance Data

The OMA-LPPe-RequestAssistanceData message extension requests assistance data for the individual positioning methods.

```
OMA-LPPe-RequestAssistanceData ::= SEQUENCE {
    commonIESRequestAssistanceData OMA-LPPe-CommonIESRequestAssistanceData OPTIONAL,
    agnss-RequestAssistanceData    OMA-LPPe-AGNSS-RequestAssistanceData  OPTIONAL,
    otdoa-RequestAssistanceData    OMA-LPPe-OTDOA-RequestAssistanceData   OPTIONAL,
    eotd-RequestAssistanceData     OMA-LPPe-EOTD-RequestAssistanceData   OPTIONAL,
    otdoa-utra-RequestAssistanceData OMA-LPPe-OTDOA-UTRA-RequestAssistanceData OPTIONAL,
    ecid-lte-RequestAssistanceData OMA-LPPe-ECID-LTE-RequestAssistanceData OPTIONAL,
    ecid-gsm-RequestAssistanceData OMA-LPPe-ECID-GSM-RequestAssistanceData OPTIONAL,
    ecid-utra-RequestAssistanceData OMA-LPPe-ECID-UTRA-RequestAssistanceData OPTIONAL,
    wlan-ap-RequestAssistanceData  OMA-LPPe-WLAN-AP-RequestAssistanceData OPTIONAL,
    sensor-RequestAssistanceData   OMA-LPPe-Sensor-RequestAssistanceData  OPTIONAL,
    srn-RequestAssistanceData      OMA-LPPe-SRN-RequestAssistanceData    OPTIONAL,
    ...
    -- version 2.0 extension elements
    ver2-0-pdr-RequestAssistanceData OMA-LPPe-ver2-0-PDR-RequestAssistanceData OPTIONAL,
    ver2-0-irb-RequestAssistanceData OMA-LPPe-ver2-0-IRB-RequestAssistanceData OPTIONAL,
    ver2-0-crowdsourcing-RequestAssistanceData OMA-LPPe-ver2-0-Crowdsourcing-RequestAssistanceData OPTIONAL
}
```
6.3.4 Provide Assistance Data

The OMA-LPPe-ProvideAssistanceData message extension provides assistance data for the individual positioning methods.

```asn1
OMA-LPPe-ProvideAssistanceData ::= SEQUENCE {
  commonIEsProvideAssistanceData OMA-LPPe-CommonIEsProvideAssistanceData OPTIONAL,
  agnss-ProvideAssistanceData OMA-LPPe-AGNSS-ProvideAssistanceData OPTIONAL,
  otdoa-ProvideAssistanceData OMA-LPPe-OTDOA-ProvideAssistanceData OPTIONAL,
  eotd-ProvideAssistanceData OMA-LPPe-EOTD-ProvideAssistanceData OPTIONAL,
  ecid-lte-ProvideAssistanceData OMA-LPPe-ECID-LTE-ProvideAssistanceData OPTIONAL,
  ecid-gsm-ProvideAssistanceData OMA-LPPe-ECID-GSM-ProvideAssistanceData OPTIONAL,
  wlan-AP-ProvideAssistanceData OMA-LPPe-WLAN-AP-ProvideAssistanceData OPTIONAL,
  sensor-ProvideAssistanceData OMA-LPPe-Sensor-ProvideAssistanceData OPTIONAL,
  srn-ProvideAssistanceData OMA-LPPe-SRN-ProvideAssistanceData OPTIONAL,
}
```

6.3.5 Request Location Information

The OMA-LPPe-RequestLocationInformation requests position estimates and measurements.

```asn1
OMA-LPPe-RequestLocationInformation ::= SEQUENCE {
  commonIEsRequestLocationInformation OMA-LPPe-CommonIEsRequestLocationInformation OPTIONAL,
  agnss-RequestLocationInformation OMA-LPPe-AGNSS-RequestLocationInformation OPTIONAL,
  otdoa-RequestLocationInformation OMA-LPPe-OTDOA-RequestLocationInformation OPTIONAL,
  eotd-RequestLocationInformation OMA-LPPe-EOTD-RequestLocationInformation OPTIONAL,
  ecid-lte-RequestLocationInformation OMA-LPPe-ECID-LTE-RequestLocationInformation OPTIONAL,
  ecid-gsm-RequestLocationInformation OMA-LPPe-ECID-GSM-RequestLocationInformation OPTIONAL,
  wlan-AP-RequestLocationInformation OMA-LPPe-WLAN-AP-RequestLocationInformation OPTIONAL,
  sensor-RequestLocationInformation OMA-LPPe-Sensor-RequestLocationInformation OPTIONAL,
  srn-RequestLocationInformation OMA-LPPe-SRN-RequestLocationInformation OPTIONAL,
}
```

6.3.6 Provide Location Information

The OMA-LPPe-ProvideLocationInformation provides position estimates and measurements.

```asn1
OMA-LPPe-ProvideLocationInformation ::= SEQUENCE {
  ...,
  ver2-0-pdr-RequestLocationInformation OMA-LPPe-ver2-0-PDR-RequestLocationInformation OPTIONAL,
  ver2-0-irb-RequestLocationInformation OMA-LPPe-ver2-0-IRB-RequestLocationInformation OPTIONAL,
  ...,
}
```
6.3.7 Abort

The OMA-LPPe-Abort carries a request to abort the on-going LPPe procedure.

```asn1
-- ASN1START
OMA-LPPe-Abort ::= SEQUENCE {
  commonIEsAbort   OMA-LPPe-CommonIEsAbort OPTIONAL,
  AgnssAbort       OMA-LPPe-AGNSS-Aabort OPTIONAL,
  ...,
  -- version 2.0 extension elements
  ver2-0-irb-Abort   OMA-LPPe-ver2-0-IRB-Abort OPTIONAL,
  ver2-0-pdr-Abort   OMA-LPPe-ver2-0-PDR-Abort OPTIONAL,
  ver2-0-crowdsourcing-Abort   OMA-LPPe-ver2-0-Crowdsourcing-Abort OPTIONAL
}
-- ASN1STOP
```

6.3.8 Error

The OMA-LPPe-Error carries information regarding the error in the received LPPe message.

```asn1
-- ASN1START
OMA-LPPe-Error ::= SEQUENCE {
  commonIEsError   OMA-LPPe-CommonIEsError OPTIONAL,
  ...,
}
-- ASN1STOP
```

6.4 LPPe common IEs

The present chapter defines common IEs that are applicable to more than one LPP positioning methods.

6.4.1 LPPe Common low level IEs

- **OMA-LPPe-AssistanceContainer-DataSerialNumber**

The OMA-LPPe-AssistanceContainer-DataSerialNumber is used to identify the version of the vendor/operator-specific assistance data.
OMA-LPPe-AssistanceContainerID

The **OMA-LPPe-AssistanceContainerID** is used to identify vendor/operator-specific assistance data.

```asn1
OMA-LPPe-AssistanceContainerID ::= SEQUENCE {
  containerID INTEGER (0..65535),
  ... }
```

OMA-LPPe-AssistanceContainerProvideList

The **OMA-LPPe-AssistanceContainerProvideList** is a black-box data container meant for carrying vendor/operator-specific assistance data.

```asn1
OMA-LPPe-AssistanceContainerProvideList ::= SEQUENCE (SIZE(1.. maxAssistanceContainerList)) OF
  OMA-LPPe-AssistanceContainerProvide
```

```asn1
maxAssistanceContainerList INTEGER ::= 16
```

```asn1
OMA-LPPe-AssistanceContainerProvide ::= SEQUENCE {
  dataIdentifier      OMA-LPPe-VendorOperatorAssistanceDataIdentifier,
  checkOrUpdateOrError ENUMERATED {
    targetHasLatestData,
    targetDataNotLatest,
    targetDataNotLatestButServerCannotProvideLatestData,
    targetHasValidData,
    targetDataInvalidButServerCannotProvideValidData,
    serverHasRequestedDataButUnableToProvideTemporarily,
    serverDoesNotHaveRequestedData,
    serverDoesNotRecognizeRequestedData,
    undefined,
    ... } OPTIONAL, -- Cond CheckOrUpdate
  dataResult          CHOICE {
    simulationResult    INTEGER (0..5000),
    data                OMA-LPPe-AssistanceContainerData,
    ... } OPTIONAL,
  errorCode           OMA-LPPe-AssistanceContainerProvideError OPTIONAL,
  ... }
```

```asn1
OMA-LPPe-AssistanceContainerData ::= SEQUENCE {
  dataSerialNumber    OMA-LPPe-AssistanceContainer-DataSerialNumber OPTIONAL,
  data                OCTET STRING,
  validityPeriod      OMA-LPPe-ValidityPeriod OPTIONAL,
  validityArea        OMA-LPPe-ValidityArea OPTIONAL,
  ... }
```

```asn1
OMA-LPPe-AssistanceContainerProvideError ::= SEQUENCE {
  serverError         ENUMERATED {
    assistanceContainerUnknownDataIdentifier,
    assistanceContainerUnknownDataSerialNumber,
    assistanceContainerDataTemporarilyUnavailable,
    assistanceContainerDataNoLongerSupported,
    assistanceContainerVendorOrOperatorNotSupported,
    ... }
```

```asn1
asn1stop
```
```plaintext
...

{ OPTIONAL,
}

-- ASN1STOP

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CheckOrUpdate</td>
<td>The field is mandatory present if the target requested CheckOrUpdate, otherwise it is not present.</td>
</tr>
</tbody>
</table>

**OMA-LPPe-AssistanceContainerProvideList field descriptions**

**dataIdentifier**  
This field identifies the data being provided.

**checkOrUpdateOrError**  
This field is used to carry the result of comparison between the dataSerialNumber of the target’s data and of the server’s data.

In case updated data SHALL be provided to the target, the field SHALL be set either to “targetDataNotLatest” or “targetDataInvalid” depending upon the request parameters.

**dataResult**  
This field carries either the size of data (in simulated case) or the actual data (in data-request case).

In case of simulated case, the approximate size of the payload rounded upwards is returned. The scale factor is 1024 OCTETS. Thus in case the payload size is \( x \) octets, the number to be returned is \( \text{ceil}(x/1024) \). A value 5000 means \( \geq 5120000 \) OCTETS.

In case simulation was requested together with Check-Or-Update, the ‘simulationResult’ parameter is used to carry information on the payload size in case the check-or-update request would be fulfilled. Thus, for instance in case the target has the latest data, then the checkOrUpdate field indicates ‘targetHasLatestData’ and the payload size is 0 octets. On the other hand, for example, in case the target data is invalid, the checkOrUpdate field indicates ‘targetDataInvalid’ and the ‘simulationResult’ indicates the would-be payload size.

In a special case that the target requests for updated data and the target data is not the latest, but the server only knows that the data is not the latest but does not have it, the server SHALL indicate ‘targetDataNotLatestButServerCannotProvideLatestData’ in checkOrUpdate field and does not provide dataResult.

Similarly, in case the target requests for updated data in case the target data is invalid, but the server only knows the data is invalid but does not have valid data, the server SHALL indicate ‘targetDataInvalidButServerCannotProvideValidData’ in checkOrUpdate field and does not provide dataResult.

**dataSerialNumber**  
This field is used to indicate the version of the assistance data. When the server updates the assistance data, it labels the data with a new serial number. The combination of OMA-LPPe-VendorOrOperatorID, dataIdentifier and dataSerialNumber should uniquely and precisely identify the assistance data.

**data**  
This field contains the actual data.

**validityPeriod**  
This field is used to indicate when (in time) the assistance data is valid.

**validityArea**  
This field is used to indicate the geographical area where the assistance data is valid. If this field is missing, the validity area is either self-evident from the data (e.g. a local map) or the data is global.
-- **OMA-LPPe-AssistanceContainerRequestList**

The **OMA-LPPe-AssistanceContainerRequestList** is used by the target to request for vendor-/operator-specific assistance data.

```asn1
OMA-LPPe-AssistanceContainerRequestList ::= SEQUENCE (SIZE(1..maxAssistanceContainerList)) OF
 OMA-LPPe-AssistanceContainerRequest
```

```asn1
OMA-LPPe-AssistanceContainerRequest ::= SEQUENCE {
 dataIdentifier OMA-LPPe-VendorOrOperatorAssistanceDataIdentifier,
 simulatedReq BOOLEAN,
 checkOrUpdateReq OMA-LPPe-AssistanceContainerCheckOrUpdateReq OPTIONAL,
 validityTimeRequest OMA-LPPe-ValidityPeriod OPTIONAL,
 proprietaryRequestParameters OCTET STRING OPTIONAL,
 ...
}
```

```asn1
OMA-LPPe-AssistanceContainerCheckOrUpdateReq ::= SEQUENCE {
 dataSerialNumber OMA-LPPe-AssistanceContainer-DataSerialNumber,
 checkLatest ENUMERATED {returnLatestIfCurrentNotLatest,
 returnUpdateOnlyIfCurrentInvalid, ...
 },
 ...
}
```

**OMA-LPPe-AssistanceContainerRequestList field descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dataIdentifier</td>
<td>This field identifies the data being requested.</td>
</tr>
<tr>
<td>simulatedReq</td>
<td>This field is used for indicating if the target only requests information of the approximate size of the generic assistance data instead of requesting the actual data set. TRUE means request for data size and FALSE means request for the actual data.</td>
</tr>
<tr>
<td>checkOrUpdateReq</td>
<td>This field can be used to request comparison of the <strong>dataSerialNumber</strong> of the target’s current data with the <strong>dataSerialNumber</strong> of the server’s data.</td>
</tr>
<tr>
<td>validityTimeRequest</td>
<td>This field can be used for requesting the desired validity period for the data. This field may only be included for assistance data that has limited validity (e.g. SHALL NOT be included for a map data request).</td>
</tr>
<tr>
<td>proprietaryRequestParameters</td>
<td>This field can be used to carry non-standardized extensions to the request parameters. These are vendor/operator-specific and are associated with the <strong>dataIdentifier</strong>.</td>
</tr>
<tr>
<td>dataSerialNumber</td>
<td>This field is used to indicate the version of the assistance data. When the server updates the assistance data, it labels the data with a new serial number. The combination of OMA-LPPe-VendorOrOperatorID, dataIdentifier and dataSerialNumber should uniquely and precisely identify the assistance data.</td>
</tr>
<tr>
<td>checkLatest</td>
<td>This field can be used to indicate action when comparing the data version of the target’s current data with the server’s data. The target can choose the option <strong>ReturnLatestIfCurrentNotLatest</strong> to indicate that if there is more recent data available than that of the target’s, that latest data SHALL be returned. On the other hand, option <strong>ReturnUpdateOnlyIfCurrentInvalid</strong> indicates that if the target’s data is still valid, no update should be returned, even if the server would have a new issue of the data.</td>
</tr>
</tbody>
</table>
— **OMA-LPPe-CellLocalIdGERAN**

The IE *OMA-LPPe-CellLocalIdGERAN* specifies the local identity of a cell in GERAN.

```
OMA-LPPe-CellLocalIdGERAN ::= SEQUENCE {
 locationAreaCode BIT STRING (SIZE (16)),
 cellIdentity BIT STRING (SIZE (16)),
 ...
}
```

**OMA-LPPe-CellLocalIdGERAN field descriptions**

- **locationAreaCode**
  This field is a fixed length code identifying the location area within a PLMN.

- **cellIdentity**
  This field specifies the cell identifier which is unique within the context of the GERAN location area.

— **OMA-LPPe-CellNonUniqueIdGERAN**

The IE *OMA-LPPe-CellNonUniqueIdGERAN* specifies a non-unique Cell Identifier for GERAN.

```
OMA-LPPe-CellNonUniqueIdGERAN ::= SEQUENCE {
 bsic INTEGER (0..63),
 bcch INTEGER (0..1023),
 ...
}
```

**OMA-LPPe-CellNonUniqueIdGERAN field descriptions**

- **bsic**
  This field identifies the Base Station Identity Code of the cell.

- **bcch**
  This field identifies the Absolute Radio Frequency Channel Number (ARFCN) for the Broadcast Control Channel of the cell.

— **OMA-LPPe-CharArray**

The IE *OMA-LPPe-CharArray* is used to specify a character array.

```
OMA-LPPe-CharArray ::= VisibleString(FROM ("a".."z" | "A".."Z" | "0".."9" | "."))(SIZE (1..31))
```
### OMA-LPPe-CharArray IE field descriptions

<table>
<thead>
<tr>
<th>Character Array</th>
</tr>
</thead>
<tbody>
<tr>
<td>This type defines a character array.</td>
</tr>
</tbody>
</table>

---

### OMA-LPPe-CivicLocation

The IE **OMA-LPPe-CivicLocation** provides a civic location based on [RFC4776].

```asn1
OMA-LPPe-CivicLocation ::= SEQUENCE {
 countryCode OCTET STRING (SIZE (2)),
 civicAddressElementList OMA-LPPe-CivicAddressElementList,
 ...
}
```

**OMA-LPPe-CivicAddressElementList** ::= SEQUENCE (SIZE (1..128)) OF OMA-LPPe-CivicAddressElement

```asn1
OMA-LPPe-CivicAddressElement ::= SEQUENCE {
 caType INTEGER(0..511),
 caValue OCTET STRING (SIZE (1..256)),
 ...
}
```

---

### OMA-LPPe-CivicLocation field descriptions

<table>
<thead>
<tr>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>countryCode</td>
</tr>
<tr>
<td>This parameter provides the two-letter ISO 3166 country code in capital ASCII letters, e.g., DE or US.</td>
</tr>
<tr>
<td>caType</td>
</tr>
<tr>
<td>This field defines the civic address type. Values 0 to 255 are defined in [RFC4776], and values greater than 255 are OMA defined civic address types.</td>
</tr>
<tr>
<td>caValue</td>
</tr>
<tr>
<td>This field defines the civic address value, as described in [RFC4776]. As defined in [RFC4776], this SHALL be encoded as UTF-8 and may employ mixed case.</td>
</tr>
</tbody>
</table>

---

### OMA-LPPe-CivicLocation-pidf-lo

The IE **OMA-LPPe-CivicLocation-pidf-lo** provides a civic location based on a UTF-8 encoded PIDF-LO XML document.

```asn1
OMA-LPPe-CivicLocation-pidf-lo ::= SEQUENCE {
 civicLocation OCTET STRING,
 ...
}
```

---

### OMA-LPPe-CivicLocation-pidf-lo field descriptions

<table>
<thead>
<tr>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>civicLocation</td>
</tr>
</tbody>
</table>

---

### OMA-LPPe-Duration

The **OMA-LPPe-Duration** is used to provide information on / request the duration.
-- ASN1START

OMA-LPPe-Duration ::= SEQUENCE {
  duration       INTEGER (1..63),
  durationLSB    INTEGER (1..89) OPTIONAL,
  ...
}

-- ASN1STOP
**OMA-LPpe-Duration field descriptions**

*duration*
The scale factor is 15 min. Range [15, 945 min], i.e. upto 16 hours.

*durationLSB*
Finer granularity duration.
The scale factor is 10 seconds. Range [10, 890] seconds.

---

**OMA-LPpe-FixedAccessTypes**
The IE *OMA-LPpe-FixedAccessTypes* provides a list of fixed access types.

```asn1
OMA-LPpe-FixedAccessTypes ::= BIT STRING {
 cable (0),
 dsl (1),
 lan (2),
 pstn (3),
 other (4) } (SIZE(1..16))
```

---

**OMA-LPpe-FixedAccessTypes field descriptions**

*OMA-LPpe-FixedAccessTypes* This field provides a list of one or more fixed access types. A type is present if the associated bit is set one and absent if set to zero.

---

**OMA-LPpe-ver1-1-GroundMorphologyModel**
The *OMA-LPpe-ver1-1-GroundMorphologyModel* is used to provide models for ground altitude and buildings height. Altitude model and buildings height model are encoded in a grid of points, one grid for each kind of information.

```asn1
OMA-LPpe-ver1-1-GroundMorphologyModel ::= SEQUENCE {
 altitudeModel OMA-LPpe-ver1-1-AltitudeModel OPTIONAL,
 buildingsProfileModel OMA-LPpe-ver1-1-BuildingsHeightModel OPTIONAL,
...
}

OMA-LPpe-ver1-1-AltitudeModel ::= SEQUENCE {
 northWestCorner Ellipsoid-Point, -- coordinates of North West corner of rectangle
 northWestCornerAltitude INTEGER (-500..9000), -- altitude of North West corner of rectangle
 nrows INTEGER (2..1012), -- number of rows along West-East direction
 ncols INTEGER (2..1012), -- number of columns along North-South direction
 spanX INTEGER (6..14),
 spanY INTEGER (6..14),
 deltaAltUnits INTEGER (1..128), -- units in meter
 altitudeGrid SEQUENCE SIZE (1..10000) OF DeltaAltitudes,
...
}

OMA-LPpe-ver1-1-BuildingsHeightModel ::= SEQUENCE {
 northWestCorner Ellipsoid-Point, -- coordinates of North West corner of rectangle
 northWestCornerHeight INTEGER (0..500), -- height of North West corner of rectangle
 nrows INTEGER (2..1012), -- number of rows along West-East direction
 ncols INTEGER (2..1012), -- number of columns along North-South direction
 spanX INTEGER (6..14),
```
OMA-LPp-ver1-1-GroundMorphologyModelReq field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>altitudeModel</strong></td>
<td>This structure describes the behavior of ground altitude information in the selected area.</td>
</tr>
<tr>
<td><strong>buildingsHeightModel</strong></td>
<td>This structure describes the behavior of buildings height information in the selected area.</td>
</tr>
<tr>
<td><strong>northWestCorner</strong></td>
<td>This field specifies the coordinates of the North-West corner of the rectangular grid of points.</td>
</tr>
<tr>
<td><strong>northWestCornerAltitude</strong></td>
<td>This field specifies the altitude [in meters above sea level] of the North-West corner of the rectangular grid of points.</td>
</tr>
<tr>
<td><strong>northWestCornerHeight</strong></td>
<td>This field specifies the building height [in meters above street level] of the North-West corner of the rectangular grid of points.</td>
</tr>
<tr>
<td><strong>spanX, spanY</strong></td>
<td>These fields specify the width of the rectangular grid for which ground morphology assistance data (altitude or building height) is provided: The grid is oriented according to W-E and N-S directions, spanX defines the width in W-E direction, spanY defines the width in N-S direction, The North West corner of the grid is centered in northWestCorner point. The width of the rectangular grid in both directions expressed in meters is given by the expression $\dim_x[m] = 2^{spanX} m$ $\dim_y[m] = 2^{spanY} m$ Admitted values of the grid sides width are comprised between 64 m and 16384 m</td>
</tr>
</tbody>
</table>

DeltaAltitudes ::= SEQUENCE {
  deltaAlt    INTEGER (-15..16), -- in units of deltaAltUnits
  numGridPoints INTEGER (0..255),
  ...
}

DeltaHeight ::= SEQUENCE {
  deltaHeight INTEGER (-15..16), -- in units of deltaHeightUnits
  numGridPoints INTEGER (0..255),
  ...
}

-- ASN1STOP
**nrows, ncols**
The *nrows* and *ncols* fields define the number of points of the ground morphology grid (altitude or building height). Columns of the ground morphology grids are evenly spaced straight lines in a N-S direction and rows are evenly spaced straight lines in an E-W direction with the most extreme east and west columns and the most extreme north and south rows aligned with the perimeter of the rectangle defined by *northWestCorner*, *spanX* and *spanY*. Grid points are then defined by the intersection of rows and columns.
The resolution in N-S and W-E directions of the grid is given, in meters, by dividing the width of the rectangle by (*ncols* - 1) and the height of the rectangle by (*nrows* - 1), respectively.
The range of values for *nrows* and *ncols* is between 2 and 1012.

**deltaAltUnits**
This field represents the units of deltaAlt in meters. The value range is from 1 to 128.

**deltaHeightUnits**
This field represents the units of deltaHeight in meters. The value range is from 1 to 16.

**altitudeGrid, deltaAlt, numGridPoints**
The *altitudeGrid* structure contains altitude information for the defined grid of points. In the proposed encoding scheme the points are ordered from west to east along rows followed by north to south along columns.
For such ordered points, altitude information is encoded with a sequence of pairs (D,N) (*deltaAlt*, *numGridPoints*), where:
- *deltaAlt* represents the increment of altitude expressed in multiples of *deltaAltUnits* with respect to the previous (or initial) altitude value, admitted multiple values are integer numbers in the interval between -15 and 16.
- *numGridPoint* represents the number of consecutive points of the grid with the same defined altitude value; admitted value for *numGridPoint* are integer number in the interval between 0 and 255.

For the first grid point of the grid (i.e., the north-west corner), the altitude is defined by the value of *northWestCornerAltitude*. Within each row of the grid, the altitude values for the point sequence in the interval [n, n + NumGridPoints-1] are given by the expression

\[ a_{t[n,n+\text{NumGridPoint}-1]} = a_{t[n-1]} + \text{deltaAltUnits} \times \text{deltaAlt} \]

A new (D,N) pair is provided at the beginning (most westerly grid point) of each row, the *deltaAlt* for the initial pair in each row is relative to the altitude of the first point in the row just above. In the case of the first row, the first increment value is relative to the NW corner altitude value and it provides information starting from the second point of the first row (as the first one is provided by *northWestCornerAltitude* field).
If the difference between two consecutive points is greater than the maximum allowed increment value, then one or more pairs (+16/-15, 0), with maximum incremental value for a sequence of zero points, is added before the final pair (D,N). If the number of point in the sequence, assuming the same value, is greater than 255 one or more pairs (0, 255), with increment value equal to zero and number of points D equal to 255, is added before the final pair (N,D).
**buildingHeightGrid, deltaHeight, numGridPoints**

Building height is defined relative to ground level where a height of zero means the absence of a building at that point. Ground level altitude is given by OMA-LPPe-ver1-1-AltitudeModel when this is provided. The buildingHeightGrid structure contains buildings height information for the defined grid of points. In the proposed encoding schema the points are ordered from west to east along rows followed by north to south along columns. For such ordered points, building height information is encoded with a sequence of pairs (D,N) (deltaHeight, numGridPoints), where:

- **deltaHeight** represents the increment of building height expressed in multiples of deltaHeightUnits with respect to the previous (or initial) altitude value, admitted multiple values are integer numbers in the interval between -15 and 16
- **numGridPoint** represents the number of consecutive points of the grid with the same defined altitude value; Admitted value for numGridPoint are integer number in the interval between 0 and 255.

For the first grid point of the grid (i.e., the north-west corner), the building height is defined by the value of northWestCornerHeight. Within each row of the grid, the height values for the point sequence in the interval [n, n +NumGridPoints-1] are given by expression

\[ \text{height}_{[n,n+\text{numGridPoint}-1]} = \text{height}_{n-1} + \text{deltaHeightUnits} \times \text{deltaHeight} \]

A new (D,N) pair is provided at the beginning (most westerly grid point) of each row, this deltaHeight for the initial pair of each row is relative to the building height for the first point in the row just above. In the case of the first row, the first increment value is relative to the NW corner height value and it provides information starting from the second point of the first row (as the first one is provided by northWestCornerHeight field). If the jump between two consecutive points is grater then the maximum allowed increment value, then one or more pairs (+16/-15, 0), with maximum incremental value for a sequence of zero points, is added before the final pair (D,N). If the number of point in the sequence, assuming the same value, is greater than 255 one or more pairs (0, 255), with increment value equal to zero and number of points D equal to the maximum value, is added before the final pair (N,D).

### OMA-LPpe-ver1-1-CellGlobalID

The IE **OMA-LPpe-ver1-1-CellGlobalID** applies only to LPPe 1.1 and provides a global cell ID for GSM, WCDMA or LTE.

```asn1
OMA-LPpe-ver1-1-CellGlobalID ::= CHOICE {
 eUTRA CellGlobalIdEUTRA-AndUTRA,
 uTRA CellGlobalIdEUTRA-AndUTRA,
 gSM CellGlobalIdGERAN,
 ...
}
```

**OMA-LPpe-CellGlobalID field descriptions**

**OMA-LPpe-CellGlobalID**

This parameter provides a global cell ID for a GSM, WCDMA or LTE cell.

### OMA-LPpe-HighAccuracy3Dposition

The **OMA-LPpe-HighAccuracy3Dposition** provides the IE to carry high accuracy 3D position information.

```asn1
OMA-LPpe-HighAccuracy3Dposition ::= SEQUENCE {
 latitude INTEGER(-2147483648..2147483647),
}
```
longitude INTEGER(-2147483648..2147483647),
cap INTEGER(0..255) OPTIONAL, --Cond NoEllipse
uncertainty-semimajor INTEGER(0..255) OPTIONAL, --Cond NoCEP
uncertainty-semiminor INTEGER(0..255) OPTIONAL, --Cond NoCEP
offset-angle INTEGER(0..179) OPTIONAL, --Cond NoCEP
confidenceHorizontal INTEGER(0..255) OPTIONAL,
altitude INTEGER(-64000..1280000),
uncertainty-altitude INTEGER(0..255),
confidenceVertical INTEGER(0..99) OPTIONAL,
...,
extUncertRange BOOLEAN OPTIONAL
}

-- ASN1STOP

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>NoEllipse</td>
<td>The field is mandatory present, if no uncertainty ellipse is present. The field SHALL NOT be present, if uncertainty ellipse present.</td>
</tr>
<tr>
<td>NoCEP</td>
<td>The field is mandatory present, if no CEP is present. The field SHALL NOT be present, if CEP present.</td>
</tr>
</tbody>
</table>

**OMA-LPPe-HighAccuracy3Dposition field descriptions**

**latitude**
Latitude based on WGS84 [GPS-ICD-200D] datum. The relation between the latitude X in range [-90°, 90°] and the coded number N is

\[ N = \text{floor}(\frac{X}{90}2^{31}), \]

where value N=2^{31} is coded as N=2^{31}-1. Resolution 4.7 mm.

**longitude**
Longitude based on WGS84 [GPS-ICD-200D] datum. The relation between the longitude X in range [-180°, 180°] and the coded number N is

\[ N = \text{floor}(\frac{X}{180}2^{31}). \]

Worst-case resolution (at the Equator) 9.3 mm.
**OMA-LPPe-HighAccuracy3Dposition** field descriptions

*cep*

**Default** uncertainty range:

Horizontal uncertainty expressed as Circular Error Probable expressed as the coded number \( N \) (with \( N \) from 0..255). The relation between the CEP and \( N \) is given by:

\[
\text{CEP} = 0.3 \times (1 + 0.02)^{N-1} \text{ meters}
\]

with \( N=255 \) meaning CEP > 45.6. Range \([0, 45.6)\) meters. The following table shows exemplary mappings from the coded number \( N \) to the component:

<table>
<thead>
<tr>
<th>( N )</th>
<th>component-value, m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0.006</td>
</tr>
<tr>
<td>2</td>
<td>0.121</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>100</td>
<td>1.8734</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>200</td>
<td>15.4455</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>254</td>
<td>45.6</td>
</tr>
<tr>
<td>255</td>
<td>&gt;45.6</td>
</tr>
</tbody>
</table>

**Extended** uncertainty range:

Horizontal uncertainty expressed as Circular Error Probable expressed as the coded number \( N \) (with \( N \) from 0..255). The relation between the CEP and \( N \) is given by:

\[
\text{CEP} = 0.3 \times (1 + 0.02594)^{N-1} \text{ meters}
\]

with \( N=255 \) meaning CEP > 200m. Range \([0, 200)\) meters. The following table shows exemplary mappings from the coded number \( N \) to the component:

<table>
<thead>
<tr>
<th>( N )</th>
<th>component-value, m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0.008</td>
</tr>
<tr>
<td>2</td>
<td>0.016</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>100</td>
<td>3.58</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>200</td>
<td>50.0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>254</td>
<td>200</td>
</tr>
<tr>
<td>255</td>
<td>&gt; 200</td>
</tr>
</tbody>
</table>
### OMA-LPPe-HighAccuracy3Dposition field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>uncertainty-semimajor</strong></td>
<td></td>
</tr>
<tr>
<td>Default uncertainty range:</td>
<td></td>
</tr>
</tbody>
</table>
| The semi-major axis of the horizontal uncertainty ellipse expressed as the coded number N (with N from 0..255). The relation between the semi-major axis and N is given by: | \[
\text{semi-major axis} = 0.3 \times (1 + 0.02)^N - 1 \text{ meters with N=255 meaning semi-major axis uncertainty > 45.6m, Range [0, 45.6] meters.}
\]
| Extended uncertainty range: |                                                                             |
| The semi-major axis of the horizontal uncertainty ellipse expressed as the coded number N (with N from 0..255). The relation between the semi-major axis and N is given by: | \[
\text{semi-major axis} = 0.3 \times (1 + 0.02)^N - 1 \text{ meters with N=255 meaning semi-major axis uncertainty > 200m, Range [0, 200] meters.}
\]
| **uncertainty-semiminor** |                                                                             |
| Default uncertainty range: |                                                                             |
| The semi-minor axis of the horizontal uncertainty ellipse expressed as the coded number N (with N from 0..255). The relation between the semi-minor axis and N is given by: | \[
\text{semi-minor axis} = 0.3 \times (1 + 0.02)^N - 1 \text{ meters with N=255 meaning semi-minor axis uncertainty > 45.6m, Range [0, 45.6] meters.}
\]
| Extended uncertainty range: |                                                                             |
| The semi-minor axis of the horizontal uncertainty ellipse expressed as the coded number N (with N from 0..255). The relation between the semi-minor axis and N is given by: | \[
\text{semi-minor axis} = 0.3 \times (1 + 0.02)^N - 1 \text{ meters with N=255 meaning semi-minor axis uncertainty > 200m, Range [0, 200] meters.}
\]
| **offset-angle** | The angle of semi-major axis measured clockwise with respect to True North in steps of 1 degree. |
| **confidenceHorizontal** | This field specifies the horizontal confidence percentage associated with the CEP or Uncertainty Ellipse depending upon which is included. |
| In case horizontal confidence is not included, the confidence is either 68% (in case of CEP) or 39% (in case of ellipse). Note that in case the ellipse represents Gaussian 2D error distribution, 39% corresponds to $1\sigma$ confidence. |
| Confidence is encoded as a truncated percentage. An encoded value of 0 therefore represents a confidence C where $0\% \leq C < 1\%$ percent. An encoded value of 1 represents a confidence C where $1\% \leq C < 2\%$, and so on. An encoded value of 99 represents a confidence C where $99\% \leq C < 100\%$. |
| **altitude** | Altitude with respect to WGS84 [GPS-ICD-200D] ellipsoid. Scale factor $2^7$ meters. Range [-500, 10000] meters, |
**OMA-LPPe-HighAccuracy3Dposition field descriptions**

**uncertainty-altitude**

Default uncertainty range:

The altitude uncertainty expressed as the coded number N (with N from 0..255). The relation between the altitude uncertainty and N is given by:

\[
\text{altitude uncertainty} = 0.3 \times (1 + 0.02)^N - 1 \text{ meters}
\]

Range [0, 45.6] meters.

Extended uncertainty range:

The altitude uncertainty expressed as the coded number N (with N from 0..255). The relation between the altitude uncertainty and N is given by:

\[
\text{altitude uncertainty} = 0.3 \times (1 + 0.02594)^N - 1 \text{ meters},
\]

Range [0, 200] meters.

**confidenceVertical**

This field specifies the confidence percentage associated with the altitude uncertainty. In case vertical confidence is not included, the confidence is 68% corresponding to 1σ value in case of 1D Gaussian error distribution.

Confidence is encoded as a truncated percentage. An encoded value of 0 therefore represents a confidence C where 0% \(<= C < 1%\) percent. An encoded value of 1 represents a confidence C where 1% \(<= C < 2%\), and so on. An encoded value of 99 represents a confidence C where 99% \(<= C < 100%\).

**extUncertRange**

This field indicates whether the extended uncertainty range is used (TRUE). This field is optional. Absence of this field indicates that the default uncertainty range is used.

---

**OMA-LPPe-HighAccuracy3Dvelocity**

The **OMA-LPPe-HighAccuracy3Dvelocity** provides the IE to carry high accuracy 3D velocity information.

```asn1
OMA-LPPe-HighAccuracy3Dvelocity ::= SEQUENCE {
 enu-origin OMA-LPPe-HighAccuracy3Dposition OPTIONAL,
 east-component INTEGER(0..511), OPTIONAL, --Cond West
 negative-sign-east NULL OPTIONAL, --Cond South
 north-component INTEGER(0..511), OPTIONAL, --Cond East
 negative-sign-north NULL OPTIONAL, --Cond North
 up-component INTEGER(0..511), OPTIONAL, --Cond Up
 negative-sign-up NULL OPTIONAL, --Cond Down
 cep INTEGER(0..255) OPTIONAL, --Cond NoEllipse
 uncertainty-semimajor INTEGER(0..255) OPTIONAL, --Cond NoCEP,
 uncertainty-semiminor INTEGER(0..255) OPTIONAL, --Cond NoCEP,
 offset-angle INTEGER(0..179) OPTIONAL, --Cond NoCEP,
 confidenceHorizontal INTEGER(0..99) OPTIONAL,
 uncertainty-up-component INTEGER(0..255), OPTIONAL,
 confidenceUp INTEGER(0..99) OPTIONAL,
...
}
```

---
<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>West</strong></td>
<td>The field is mandatory present, if the speed component is towards West.</td>
</tr>
<tr>
<td><strong>South</strong></td>
<td>The field is mandatory present, if the speed component is towards South.</td>
</tr>
<tr>
<td><strong>Down</strong></td>
<td>The field is mandatory present, if the speed component is down.</td>
</tr>
<tr>
<td><strong>NoEllipse</strong></td>
<td>The field is mandatory present, if no uncertainty ellipse is present. The field SHALL NOT be present, if uncertainty ellipse present.</td>
</tr>
<tr>
<td><strong>NoCEP</strong></td>
<td>The field is mandatory present, if no CEP is present. The field SHALL NOT be present, if CEP present.</td>
</tr>
</tbody>
</table>

**OMA-LPpe-HighAccuracy3DVelocity field descriptions**

**enu-origin**
Origin of the east-north-up coordinate system, in which the velocity is represented.

**east-component**
Eastward-speed expressed as the coded number N. The relation between the component and the coded number is given by

\[
\text{component} = 0.04 \times (1 + 0.016)^N - 1) \text{ m/s},
\]

Range [0, 133.24) m/s. The following table shows exemplary mappings from the coded number N to the speed component:

<table>
<thead>
<tr>
<th>N</th>
<th>component-value, m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0.00064</td>
</tr>
<tr>
<td>2</td>
<td>0.0013</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>100</td>
<td>0.1556</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>200</td>
<td>0.9168</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>300</td>
<td>4.6392</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>400</td>
<td>22.8446</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>500</td>
<td>111.8816</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>509</td>
<td>129.0692</td>
</tr>
<tr>
<td>510</td>
<td>131.1350</td>
</tr>
<tr>
<td>511</td>
<td>133.2338</td>
</tr>
</tbody>
</table>

**north-component**
Northward-speed expressed as the coded number N. The relation between the component and the coded number is given by

\[
\text{component} = 0.04 \times (1 + 0.016)^N - 1) \text{ m/s},
\]

Range [0, 133.24) m/s.

**up-component**
Upward-speed expressed as the coded number N. The relation between the component and the coded number is given by

\[
\text{component} = 0.04 \times (1 + 0.016)^N - 1) \text{ m/s},
\]

Range [0, 133.24) m/s.
### OMA-LPPe-HighAccuracy3Dvelocity field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Formula</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>cep</td>
<td>Uncertainty of the horizontal speed expressed as Circular Error Probable expressed as the coded number N. The relation between the CEP and the coded number is given by</td>
<td>CEP = 0.02*( (1+0.025)^N-1) m/s,</td>
<td>[0, 10.84) m/s</td>
</tr>
<tr>
<td>uncertainty-semimajor</td>
<td>The semi-major axis of the horizontal speed uncertainty ellipse expressed as the coded number N. The relation between the semi-major axis and the coded number is given by</td>
<td>semi-major axis =0.02*( (1+0.025)^N-1) m/s,</td>
<td>[0, 10.84) m/s</td>
</tr>
<tr>
<td>uncertainty-semiminor</td>
<td>The semi-minor axis of the horizontal speed uncertainty ellipse expressed as the coded number N. The relation between the semi-minor axis and the coded number is given by</td>
<td>semi-minor axis =0.02*( (1+0.025)^N-1) m/s,</td>
<td>[0, 10.84) m/s</td>
</tr>
<tr>
<td>offset-angle</td>
<td>The clock-wise angle of the semi-major axis with respect to True North in steps of 1 degree.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>confidenceHorizontal</td>
<td>This field specifies the horizontal confidence percentage associated with the speed CEP or Velocity Uncertainty Ellipse depending upon which is included.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>In case horizontal confidence is not included, the confidence is either 68% (in case of CEP) or 39% (in case of ellipse). Note that in case the ellipse represents Gaussian 2D error distribution, 39% corresponds to 1σ confidence.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Confidence is encoded as a truncated percentage. An encoded value of 0 therefore represents a confidence C where 0% ≤ C &lt;1% percent. An encoded value of 1 represents a confidence C where 1% ≤ C &lt;2%, and so on. An encoded value of 99 represents a confidence C where 99% ≤ C &lt;100%.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>uncertainty-upcomponent</td>
<td>The upward speed uncertainty expressed as the coded number N. The relation between the uncertainty and the coded number is given by</td>
<td>uncertainty=0.02*( (1+0.025)^N-1) m/s,</td>
<td>[0, 10.84) m/s</td>
</tr>
<tr>
<td>confidenceUp</td>
<td>This field specifies the confidence percentage associated with the upward speed uncertainty. In case upward confidence is not included, the confidence is 68% corresponding to 1σ value in case of 1D Gaussian error distribution.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Confidence is encoded as a truncated percentage. An encoded value of 0 therefore represents a confidence C where 0% ≤ C &lt;1% percent. An encoded value of 1 represents a confidence C where 1% ≤ C &lt;2%, and so on. An encoded value of 99 represents a confidence C where 99% ≤ C &lt;100%.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

#### OMA-LPPe-LocationInformationContainerID

The **OMA-LPPe-LocationInformationContainerID** is used to identify vendor-/operator-specific location information.

```
-- ASN1START
OMA-LPPe-LocationInformationContainerID ::= SEQUENCE {
 containerID INTEGER (0..65535),
 ...
}
-- ASN1STOP
```
**OMA-LPPe-LocationInformationContainer**

The *OMA-LPPe-LocationInformationContainer* is a black-box data container meant for carrying vendor/operator-specific location information.

```
-- ASN1START
OMA-LPPe-LocationInformationContainer ::= SEQUENCE {
 vendorOrOperatorID OMA-LPPe-VendorOrOperatorID,
 locationInformationContainerDataList OMA-LPPe-LocationInformationContainerDataList,
 ...
}
OMA-LPPe-LocationInformationContainerDataList ::= SEQUENCE
(SIZE(1..maxLocationInformationContainerDataList)) OF OMA-LPPe-LocationInformationContainerData
OMA-LPPe-LocationInformationContainerData ::= SEQUENCE {
 containerID OMA-LPPe-LocationInformationContainerID,
 containerData OCTET STRING,
 ...
}
-- ASN1STOP
```

**OMA-LPPe-LocationInformationContainer field descriptions**

<table>
<thead>
<tr>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>vendorOrOperatorID</strong></td>
</tr>
<tr>
<td>This field defines the vendor/operator providing the location data definition.</td>
</tr>
<tr>
<td><strong>locationInformationContainerDataList</strong></td>
</tr>
<tr>
<td>This parameter specifies a list of location information containers for the specified vendor or operator containing proprietary location information.</td>
</tr>
<tr>
<td><strong>containerID</strong></td>
</tr>
<tr>
<td>This field defines the vendor/operator specific location data.</td>
</tr>
<tr>
<td><strong>containerData</strong></td>
</tr>
<tr>
<td>This field contains proprietary location information.</td>
</tr>
</tbody>
</table>

**OMA-LPPe-LocationInformationContainerRequest**

The *OMA-LPPe-LocationInformationContainerRequest* is used by the server to request for vendor/operator-specific location information.

```
-- ASN1START
OMA-LPPe-LocationInformationContainerRequest ::= SEQUENCE {
 vendorOrOperatorID OMA-LPPe-VendorOrOperatorID,
 locationInformationContainerRequestList OMA-LPPe-LocationInformationContainerRequestList,
 ...
}
OMA-LPPe-LocationInformationContainerRequestList ::= SEQUENCE
(SIZE (1.. maxLocationInformationContainerDataList)) OF OMA-LPPe-LocationInformationContainerRequestItem
maxLocationInformationContainerDataList INTEGER ::= 10
OMA-LPPe-LocationInformationContainerRequestItem ::= SEQUENCE {
 containerID OMA-LPPe-LocationInformationContainerID,
 additionalInformation OCTET STRING OPTIONAL,
 ...
}
-- ASN1STOP
```
**OMA-LPPe-LocationInformationContainerRequest field descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>vendorOrOperatorID</strong></td>
<td>This field defines the vendor/operator providing the location data definition.</td>
</tr>
<tr>
<td><strong>containerID</strong></td>
<td>This field defines the vendor/operator specific location data.</td>
</tr>
<tr>
<td><strong>additionalInformation</strong></td>
<td>This field contains optional additional and proprietary positioning instructions.</td>
</tr>
</tbody>
</table>

---

**OMA-LPPe-MapDataReference**

The IE **OMA-LPPe-Map-Data-Reference** provides a reference to map data that can be obtained from the server using the **OMA-LPPe-AssistanceContainerRequest**.

```asn1
OMA-LPPe-MapDataReference ::= SEQUENCE {
 dataID OMA-LPPe-AssistanceContainerID,
 mapReference OCTET STRING (SIZE (1..64)),
 mapSize INTEGER (1..5000) OPTIONAL,
 ...
}
```

**OMA-LPPe-MapDataReference field descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>dataID</strong></td>
<td>This field provides the value for the assistanceDataID parameter in <strong>OMA-LPPe-VendorOrOperatorAssistanceDataIdentifier</strong>. The value may be used to indicate that map data is being requested.</td>
</tr>
<tr>
<td><strong>mapReference</strong></td>
<td>This field indicates the precise map data being requested and provides either the entire content or the first set of octets in the proprietaryRequestParameters field in the <strong>OMA-LPPe-AssistanceContainerRequest</strong>.</td>
</tr>
<tr>
<td><strong>mapSize</strong></td>
<td>This field indicates the total size of the map data in units of 1024 octets after rounding up to a multiple of 1024. This field SHALL be provided if available. Value 5000 denotes that the data size ≥ 5 120 000 octets.</td>
</tr>
</tbody>
</table>

---

**OMA-LPPe-Orientation**

The **OMA-LPPe-Orientation** is used to provide information on the object orientation in space.

```asn1
OMA-LPPe-Orientation ::= CHOICE {
 eulerAngles SEQUENCE {
 alpha INTEGER (0..359),
 beta INTEGER (0..180),
 gamma INTEGER (0..359),
 ...
 },
 ...
}
```

---
**OMA-LPpe-Orientation** field descriptions

*alpha, beta, gamma*

The three Euler angles specifying the object orientation with respect to the global coordinate system. See Appendix C.9 for further information.

---

**OMA-LPpe-ReferencePoint**

The IE **OMA-LPpe-ReferencePoint** provides a well defined location and set of associated attributes relative to which other locations may be defined both in indoor and outdoor environments.

```asn1
OMA-LPpe-ReferencePoint ::= SEQUENCE {
 referencePointUniqueID OMA-LPpe-ReferencePointUniqueID OPTIONAL,
 referencePointGeographicLocation
 CHOICE {
 location3D EllipsoidPointWithAltitude,
 location3DwithUncertainty EllipsoidPointWithAltitudeAndUncertaintyEllipsoid,
 locationwithhighaccuracy OMA-LPpe-HighAccuracy3Dposition,
 ...
 } OPTIONAL,
 referencePointCivicLocation OMA-LPpe-CivicLocation OPTIONAL,
 referencePointFloorLevel INTEGER (-20..235) OPTIONAL,
 relatedReferencePoints SEQUENCE (SIZE (1..8)) OF OMA-LPpe-ReferencePointRelationship OPTIONAL,
 mapDataInformation OMA-LPpe-MapDataInformation OPTIONAL,
 ...
}

OMA-LPpe-MapDataInformation ::= SEQUENCE (SIZE (1..16)) OF OMA-LPpe-MapDataReferenceElement

OMA-LPpe-MapDataReferenceElement ::= SEQUENCE {
 mapDataUrl CHOICE {
 mapDataUrl OMA-LPpe-Uri,
 mapDataRef OMA-LPpe-MapDataReference
 },
 mapProvider CHOICE {
 sameAsRefPointProvider NULL,
 notSameAsRefPointProvider OMA-LPpe-VendorOrOperatorID,
 ...
 } OPTIONAL,
 mapAssociation CHOICE {
 referencePointUniqueID NULL,
 otherID VisibleString (SIZE (1..64)),
 mapOffset OMA-LPpe-RelativeLocation,
 origin NULL,
 ...
 },
 mapHorizontalOrientation INTEGER (0..359) OPTIONAL,
 ...
}

OMA-LPpe-ReferencePointRelationship ::= SEQUENCE {
 referencePointUniqueID OMA-LPpe-ReferencePointUniqueID,
 relativeLocation OMA-LPpe-RelativeLocation,
 ...
}
```

---

2020 Open Mobile Alliance. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
### OMA-LPPe-ReferencePoint field descriptions

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>referencePointUniqueID</strong></td>
<td>This field provides a unique ID for the reference point, which allows reference points to be referred to in different messages and different parts of the same message without repeating the complete definition. This also allows target devices and servers to reliably indicate the same reference point (e.g. when several reference points have almost the same location).</td>
</tr>
<tr>
<td><strong>referencePointGeographicLocation</strong></td>
<td>This field provides the geodetic location of the reference point. Either referencePointGeographicLocation or referencePointCivicLocation or both SHALL be present unless either referencePointUniqueID or relatedReferencePoints is present and can be used to determine location (e.g. using a separate definition provided or available for the referencePointUniqueID or by making use of information provided for another reference point in relatedReferencePoints).</td>
</tr>
<tr>
<td><strong>referencePointCivicLocation</strong></td>
<td>This field provides a civic location information description of the reference point. Either referencePointGeographicLocation or referencePointCivicLocation or both SHALL be present unless either referencePointUniqueID or relatedReferencePoints is present and can be used to determine location (e.g. using a separate definition provided or available for the referencePointUniqueID or by making use of information provided for another reference point in relatedReferencePoints).</td>
</tr>
<tr>
<td><strong>referencePointFloorLevel</strong></td>
<td>This field provide the floor level or basement level of a reference point that is inside a building or other man made structure (e.g. parking garage) that has well defined floor levels. A value of zero corresponds to ground level, positive values are above ground level and negative values below ground level. Note that this information may duplicate part of referencePointCivicLocation (if this is provided) for the benefit of a recipient unable to decode the latter.</td>
</tr>
<tr>
<td><strong>relatedReferencePoints</strong></td>
<td>This parameter provides a list of other reference points that are related to the reference point being defined. For each related reference point, the unique ID is provided and the relative location with respect to the location of the reference point being defined. Related reference points can be used to relate different sets of assistance data that are each provided in association with a distinct reference point or points.</td>
</tr>
<tr>
<td><strong>mapDataInformation</strong></td>
<td>This field provides a map reference for the reference point. The reference can include one or more URLs.</td>
</tr>
<tr>
<td><strong>mapDataUrl</strong></td>
<td>This field is formatted in accordance with [RFC3986] and provides a reference to map data information. The map data information could be an image or dataset that represents a map, floor plan, layout of a building or buildings, layout of a town or city, or any other form of representation/data understood by both the sender and recipient. Map data may be 2D or 3D.</td>
</tr>
<tr>
<td><strong>mapDataRef</strong></td>
<td>This field provides a map reference specific to a particular map provider that may be used to obtain the map directly from the LPPe server.</td>
</tr>
<tr>
<td><strong>mapProvider</strong></td>
<td>This parameter identifies the map provider which may be the same as the provider of the reference point or not the same. This parameter is optional. If absent, the map provider is not explicitly defined – e.g. but may be provided as part of the map data or may be inferred from the mapDataUrl.</td>
</tr>
<tr>
<td><strong>mapAssociation</strong></td>
<td>This parameter provides an exact association between the reference point and a particular location on the map. The choices are:   - <strong>referencePointUniqueID</strong>: a location identified by the unique ID is defined within the map. Note that the conventions for such identification may be specific to the map provider   - <strong>otherID</strong>: a location corresponding to the provided visible string is defined within the map. The conventions for such identification may be specific to the map provider.   - <strong>mapOffset</strong>: the relative location is provided of the origin of the map coordinate system from the reference point.   - <strong>origin</strong>: the reference point coincides with the map origin.</td>
</tr>
<tr>
<td><strong>mapHorizontalOrientation</strong></td>
<td>This field specifies the orientation (in degrees clockwise from North) of the map coordinate system with respect to North. If this field is absent, the North direction at the reference point coincides with the North direction of the map coordinate system.</td>
</tr>
</tbody>
</table>
-- **OMA-LPpe-ReferencePointUniqueID**

The IE *OMA-LPpe-ReferencePointUniqueID* provides a unique ID for a reference point.

```asn1
OMA-LPpe-ReferencePointUniqueID ::= SEQUENCE {
 providerID OMA-LPpe-VendorOrOperatorID,
 providerAssignedID OCTET STRING,
 version INTEGER (1..64),
 ...
}
```

**OMA-LPpe-ReferencePointUniqueID field descriptions**

**providerID**
This field identifies the vendor or operator or other service provider with jurisdiction over the reference point.

**providerAssignedID**
This field provides a unique ID relative to the particular provider.

**version**
This field provides the version of the reference point. The initial version of any reference point SHALL be 1. In case data associated with a given reference point is updated, the version SHALL be incremented by 1. A target device SHALL delete all data associated with any previous version of a particular reference point when receiving data associated with a more recent version. For reference points without a unique ID, versioning is not applicable and the reference point cannot be uniquely referred to in any context where it is not completely defined.

-- **OMA-LPpe-RelativeLocation**

The *OMA-LPpe-RelativeLocation* IE provides a location, referred to here as the subject location, relative to some known reference location. This can be used to define any of the following:

(a) a fixed location (e.g. of a base station) relative to some other known fixed location

(b) a temporary location (e.g. of a target device) relative to a known fixed or known temporary location (e.g. of another target device)

(c) the change in location of a target device in moving from an initial known reference location to a new subject location.

```asn1
OMA-LPpe-RelativeLocation ::= SEQUENCE {
 units ENUMERATED {cm, dm, m10, ...} OPTIONAL,
 arc-second-units ENUMERATED {as0-0003, as0-003, as0-3, ...} OPTIONAL,
 relativeNorth INTEGER (-524288..524287),
 relativeEast INTEGER (-524288..524287),
 relativeAltitude OMA-LPpe-RelativeAltitude OPTIONAL,
 horizontalUncertainty OMA-LPpe-HorizontalUncertaintyAndConfidence OPTIONAL,
 ...
}
```

**OMA-LPpe-HorizontalUncertaintyAndConfidence**

```asn1
OMA-LPpe-HorizontalUncertaintyAndConfidence ::= SEQUENCE {
 uncShape CHOICE {
 circle INTEGER (0..127),
 ellipse SEQUENCE {
 semimajor INTEGER (0..127),
 semiminor INTEGER (0..127),
 offsetAngle INTEGER (0..179)
 },
 ...
 },
}.
```
confidence INTEGER (0..99) OPTIONAL,
...
}

OMA-LPPe-RelativeAltitude ::= SEQUENCE {
  geodeticRelativeAltitude OMA-LPPe-GeodeticRelativeAltitude OPTIONAL,
  civicRelativeAltitude OMA-LPPe-CivicRelativeAltitude OPTIONAL,
  ...
}

OMA-LPPe-GeodeticRelativeAltitude ::= SEQUENCE {
  geodeticHeight-depth INTEGER (-32768..32767),
  geodetic-uncertainty-and-confidence OMA-LPPe-GeodeticUncertaintyAndConfidence OPTIONAL,
  ...
}

OMA-LPPe-GeodeticUncertaintyAndConfidence ::= SEQUENCE {
  uncertainty INTEGER (0..127),
  confidence INTEGER (0..99) OPTIONAL,
  ...
}

OMA-LPPe-CivicRelativeAltitude ::= SEQUENCE {
  civicFloors INTEGER (-255..256),
  civic-uncertainty-and-confidence OMA-LPPe-CivicUncertaintyAndConfidence OPTIONAL,
  ...
}

OMA-LPPe-CivicUncertaintyAndConfidence ::= SEQUENCE {
  uncertainty INTEGER (0..127),
  confidence INTEGER (0..99) OPTIONAL,
  ...
}

== ASN1STOP

### OMA-LPPe-RelativeLocation field descriptions

#### units

This field specifies the units for vertical and optionally horizontal distances. The choices are 1 cm, 1 dm, 1 meter and 10 meters. This field is optional. A unit of 1 meter is specified by the absence of the field.

#### arc-second-unit

If arc-second-units is present, this field provides the difference in the latitude coordinates of the reference and subject locations. Otherwise, the field provides the equivalent distance along any line of longitude over the surface of the WGS 84 ellipsoid between the reference and subject latitude circles. Note that for distances less than 20 kilometers, a straight line approximation may be used since the error will be less than 2 centimeters. A positive value indicates the subject is north of the reference.

#### relativeNorth

If arc-second-units is present, this field provides the difference in the latitude coordinates of the reference and subject locations. Otherwise, the field provides the equivalent distance along any line of longitude over the surface of the WGS 84 ellipsoid between the reference and subject latitude circles. Note that for distances less than 20 kilometers, a straight line approximation may be used since the error will be less than 2 centimeters. A positive value indicates the subject is north of the reference.

#### relativeEast

If arc-second-units is present, this field provides the difference in the longitude coordinates of the reference and subject locations. Otherwise, the field provides the equivalent distance along the line of latitude for the reference location over the surface of the WGS 84 ellipsoid between the reference and subject longitude circles. Note that for distances less than 10 kilometers, a straight line approximation may be used except near the poles (e.g. greater than 80º latitude). A positive value indicates the subject is east of the reference.
### OMA-LPPe-RelativeLocation field descriptions

#### units
This field specifies the units for vertical and optionally horizontal distances. The choices are 1 cm, 1 dm, 1 meter and 10 meters. This field is optional. A unit of 1 meter is specified by the absence of the field.

#### arc-second-unit
If arc-second-units is present, this field provides the difference in the latitude coordinates of the reference and subject locations. Otherwise, the field provides the equivalent distance along any line of longitude over the surface of the WGS 84 ellipsoid between the reference and subject latitude circles. Note that for distances less than 20 kilometers, a straight line approximation may be used since the error will be less than 2 centimeters. A positive value indicates the subject is north of the reference.

**OMA-LPPe-horizontalUncertaintyAndConfidence**

This parameter provides the uncertainty in the relative horizontal location and is expressed either as a circle with given radius or as an ellipse with given semi major axis, semi minor axis and offset angle (0-179 degrees) subtended clockwise from North to the semi major axis. The center of the circle or ellipse is given by a location with the provided relative location to the reference location and the area enclosed defines possible values of the actual subject location. The encoded value N for the length L of the radius of the circle or the semi major axis of the ellipse satisfies:

\[ L = 5^*(1.1^N-1) \text{ units (range is 0-903314 units for N in the range 0-127)} \]

For example:
- (N=1, L=0.5m), (N=2, L=1.05m), (N=10, L=8.0m), (N=20, L=28.6m), (N=40, L=221m), (N=60, L=1517m)

Associated with the uncertainty is an optional confidence parameter which gives the confidence that the actual subject location lies within the circle or ellipse defined by the horizontalUncertainty. The default value if confidence is absent is 68%.

Horizontal uncertainty and confidence SHALL be provided if available.

Confidence is encoded as a truncated percentage. An encoded value of 0 therefore represents a confidence C where 0% <= C < 1% percent. An encoded value of 1 represents a confidence C where 1% <= C < 2%, and so on. An encoded value of 99 represents a confidence C where 99% <= C < 100%.

**geodeticRelativeAltitude**

This parameter provides the difference in the altitude coordinates of the reference and subject locations and contains these fields.

- **geodetic-height-depth (GH):** altitude of subject less altitude of reference in the given units
- **uncertainty (U):** uncertainty in GH encoded as an integer N (0-127) with:
  \[ U = 10^*(1.05^N-1) \text{ units (range is 0-4900 units for N in the range 0-127)} \]
  
  For example:
  - (N=1, U=0.5m), (N=2, U=1.025m), (N=10, U=6.3m), (N=20, U=16.5m), (N=40, U=60.4m), (N=60, U=176.8m)

  Confidence: confidence that the actual difference GD of altitude is in the range \( \text{GH-U} \leq GD \leq \text{GH+U} \). The default if confidence is absent is 68%. A confidence value SHALL be provided if available.

Confidence is encoded as a truncated percentage. An encoded value of 0 therefore represents a confidence C where 0% <= C < 1% percent. An encoded value of 1 represents a confidence C where 1% <= C < 2%, and so on. An encoded value of 99 represents a confidence C where 99% <= C < 100%.

**civicRelativeAltitude**

This parameter provides the difference in the floor levels between the reference and subject locations and may only be present for a reference location that contains an explicit floor level (either as part of a civic location or as defined separately). It contains these fields.

- **civic-floors (CF):** floor level of subject less floor level of reference in the given units
- **uncertainty (U):** uncertainty in CF in units of floors
- **confidence:** confidence (1-99%) that the actual difference CD of floor level is in the range \( \text{CF-U} \leq CD \leq \text{CF+U} \). The default if confidence is absent is 68%. A confidence value SHALL be provided if available.
– **OMA-LPPe-Session-ID**

The **OMA-LPPe-Session-ID** is used to identify a Periodic/Triggered Assistance Data Transfer with Update procedure.

```asn1
OMA-LPPe-Session-ID ::= SEQUENCE {
 provider-ID OMA-LPPe-VendorOrOperatorID,
 server-ID OCTET STRING (SIZE(4)),
 session-ID OCTET STRING (SIZE(4)),
 ...
}
```

### **OMA-LPPe-Session-ID** field descriptions

- **provider-ID**
  Vendor or operator who owns or operates the server.
- **server-ID**
  Server ID unique to the provider.
- **session-ID**
  Session ID unique to the server.

– **OMA-LPPe-Uri**

The IE **OMA-LPPe-Uri** defines a Uniform Resource Identifier (URI) according to [RFC3986]

```asn1
OMA-LPPe-Uri ::= VisibleString {FROM ("a".."z" | "A".."Z" | "0".."9" | ":" | "/" | "?" | ":" | "[" | "]" | ":" | "!" | "@" | "#" | "'" | "(" | ")" | ":" | ":" | ":" | ":" | ":" | ":" | ":" | ":" | ":" | ":" | ":" |)}
```

– **OMA-LPPe-ver1-1-BroadcastSystemID**

The IE **OMA-LPPe-ver1-1-BroadcastSystemID** is used only in LPPe 1.1 and defines a specific broadcast system.

```asn1
OMA-LPPe-ver1-1-BroadcastSystemID ::= CHOICE {
 standardSystemID INTEGER (1..16),
 proprietarySystemID SEQUENCE {
 vendorOrOperator OMA-LPPe-VendorOrOperatorID,
 proprietarySystemID INTEGER (1..16)
 },
 ...
}
```

### **OMA-LPPe-ver1-1-BroadcastSystemID** field descriptions

- **standardSystemID**
  This field identifies a standardized broadcast system using an integer between 1 and 16. Assignments may be included in a later version of this specification and/or in specifications for particular broadcast systems. Assignments will be unique and will be be allocated by OMNA. The up-to-date allocations are available at [OMNA].
**OMA-LPPe-ver1-1-BroadcastSystemID** field descriptions

**proprietarySystemID**
This field identifies a broadcast system that is proprietary to a particular vendor or operator. Assignments will be made by the particular vendor or operator and will not be included in this specification.

---

**OMA-LPPe-ver1-1-BroadcastADTypes**

The IE `OMA-LPPe-ver1-1-BroadcastADTypes` is used only in LPPe 1.1 and defines a set S of assistance data types associated with delivery via broadcast. The assistance data types are defined using the labels and nesting levels defined in Appendix E. The set S is specified by providing a set of labels for LPP and another set of labels for LPPe referred to here as the LPP and LPPe label sets, respectively. Each label set is composed of one or more label subsets where each label subset contain labels with common initial elements and different final elements – e.g. a label subset such as `{L1.L2.X1, L1.L2.X2, L1.L2.X3}` where L1 and L2 are common initial elements and X1, X2 and X3 are different final elements. The assistance data items D referred to by the labels in any label subset may or may not contain data items at a deeper nesting level. In the former case, to avoid specifying these additional data items using additional label subsets, it is allowed as an option to indicate whether none or all of the additional data items contained within the data items in D are to be included in S. As an example and referring to the previous example above, if there are additional data items with labels `{L1.L2.X2.Y1, L1.L2.X2.Y2, L1.L2.X3.Y3}`, it can be specified whether none or all of these data items are to be included in S. As a further convention to reduce the number of label subsets that need to be provided, all assistance data items that are parents of assistance data items explicitly included in S are also included by default in S. As an example and referring to the first example above, data items with labels L1 and L1.L2 would then be included in S.

```asn1
-- ASN1START
OMA-LPPe-ver1-1-BroadcastADTypes ::= SEQUENCE {
 lppLabels SEQUENCE (SIZE (1..maxLPPLabelSets)) OF OMA-LPPe-ver1-1-LabelSet,
 lppeLabels SEQUENCE (SIZE (1..maxLPPeLabelSets)) OF OMA-LPPe-ver1-1-LabelSet,

OMA-LPPe-ver1-1-LabelSet ::= SEQUENCE {
 level1-element SEQUENCE {
 level1-element-value INTEGER (1..maxLevel1-element),
 level2-element SEQUENCE {
 level2-element-value INTEGER (1..maxLevel2-element),
 level3-element SEQUENCE {
 level3-element-value INTEGER (1..maxLevel3-element),

 ... } OPTIONAL,
 ... } OPTIONAL,
 ... } OPTIONAL,

 lastElements BIT STRING (SIZE (1..maxFinal-element)),
 additionalElements ENUMERATED { none, all, ... } OPTIONAL,

 maxLevel1-element INTEGER ::= 32
 maxLevel2-element INTEGER ::= 32
 maxLevel3-element INTEGER ::= 32
 maxFinal-element INTEGER ::= 32
 maxLPPLabelSets INTEGER ::= 64
 maxLPPeLabelSets INTEGER ::= 128

-- ASN1STOP
```
### OMA-LPPe-ver1-1-BroadcastADTypes field descriptions

**lppLabels**
This parameter defines the LPP label set representing assistance data types for LPP.

**lppeLabels**
This parameter defines the LPPe label set representing assistance data types for LPPe.

**OMA-LPPe-ver1-1-LabelSet**
This parameter defines a label subset containing labels that differ only in their last elements. This parameter contains the following fields:

- **Level1-element-value**
  defines the common first (level 1) element for each label in the label subset; this field SHALL only be included when defining labels at nesting level 2 or higher

- **Level2-element-value**
  defines the common second (level 2) element for each label in the label subset; this field SHALL only be included when defining labels at nesting level 3 or higher

- **Level3-element-value**
  defines the common third (level 3) element for each label in the label subset; this field SHALL only be included when defining labels at nesting level 4

- **lastElements**
  defines the final elements for the labels in the label subset using a bit string where a one value at bit position n (n = 1 to 32) indicates that element n is present and a zero value or absence of bit n indicates the element is absent. The nesting level for the final label elements is 1 if level1-element is not included and is otherwise 1 greater than highest level element (1, 2 or 3) included within label1-element.

- **additionalElements**
  in the case that the labels specified by the preceding fields can be suffixed with additional elements to create further valid labels, this field specifies whether none or all of these further labels are to be included in the final label set (and thus whether none or all of the associated data items are to be included in the set S). If this field is not included and if further label subsets do not indicate which of the further labels are to be included and not included, the inclusion of the further labels is undefined in any context where the associated assistance data types refer to target capabilities or broadcast system support. This field SHALL NOT be included when the further labels are specified in additional label subsets.

To enable forward compatibility with later versions of LPP and LPPe, a receiver SHALL ignore any labels containing elements values that it does not recognize and SHALL act as if these labels were not included.

--

### OMA-LPPe-ver1-1-AccessNetworkID

The IE **OMA-LPPe-ver1-1-AccessNetworkID** is used only in LPPe 1.1 and defines a particular access network.

```
-- ASN1START
OMA-LPPe-ver1-1-AccessNetworkID ::= CHOICE {
 gSMAccess OMA-LPPe-ver1-1-MCC-MNC,
 wCDMAAccess OMA-LPPe-ver1-1-MCC-MNC,
 lTEAccess OMA-LPPe-ver1-1-MCC-MNC,
 wiMaxAccess OMA-LPPe-ver1-1-BSID,
 wLANAccess OMA-LPPe-WLAN-AP-ID,
 ...
}
OMA-LPPe-ver1-1-MCC-MNC ::= SEQUENCE {
 mcc SEQUENCE (SIZE (3)) OF INTEGER (0..9),
 mnc SEQUENCE (SIZE (2..3)) OF INTEGER (0..9),
 ...
}
```

2020 Open Mobile Alliance. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
OMA-LPPe-ver1-1-BSID ::= SEQUENCE {
  bsID-MSB     BIT STRING (SIZE(24)),
  bsID-LSB     BIT STRING (SIZE(24)),
  ...  
}

-- ASN1STOP

OMA-LPPe-ver1-1-AccessNetworkID  field descriptions

gsmAccess
This parameter provides the operator MCC and MNC values for GSM access.

wCDMAAccess
This parameter provides the operator MCC and MNC values for WCDMA access.

LTEAccess
This parameter provides the operator MCC and MNC values for LTE access.

WiMaxAccess
This parameter provides the operator BSID value for WiMax access.

WLANAccess
This parameter provides the operator WLAN AP ID for WLAN access.

OMA-LPPe-ver1-1-AuthenticationSetID

The IE OMA-LPPe-ver1-1-AuthenticationSetID is used only in LPPe 1.1 and uniquely identifies an authentication set comprising an RSA public key value. A server SHALL NOT reuse a particular authentication set ID for a new authentication set for a period of at least 24 hours following usage for the last broadcast for a previous authentication set. Note that because authentication public-private key pairs can be expensive to establish, a small number of IDs can suffice.

-- ASN1START
OMA-LPPe-ver1-1-AuthenticationSetID ::= INTEGER (0..255)
-- ASN1STOP

OMA-LPPe-ver1-1-AuthenticationSetID  field descriptions

OMA-LPPe-ver1-1-AuthenticationSetID
This parameter provides an authentication set ID as an integer between 0 and 255.

OMA-LPPe-ver1-1-AuthenticationSet

The IE OMA-LPPe-ver1-1-AuthenticationSet is used only in LPPe 1.1 and defines an authentication set comprising an authentication ID, an RSA public key value and a salt length for encoding.

-- ASN1START
OMA-LPPe-ver1-1-AuthenticationSet ::= SEQUENCE {
  authenticationSetID  OMA-LPPe-ver1-1-AuthenticationSetID,
  rsaPublicKey        SEQUENCE {
    modulus          BIT STRING (SIZE (2048)),
    exponent         BIT STRING (SIZE (2..2048))  
  },
  saltLength         INTEGER (0..32),
  ...  
}
-- ASN1STOP
<table>
<thead>
<tr>
<th><strong>OMA-LPPe-ver1-1-CipherSetID</strong> field descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>authenticationSetID</strong></td>
</tr>
<tr>
<td>This parameter provides the authentication set ID.</td>
</tr>
</tbody>
</table>

| **rsaPublicKey** |
| This parameter provides an RSA public key consisting of a 2048 bit modulus and a 2 to 2048 bit exponent. Integer versions of the modulus and exponent are obtained by truncating any leading zero bits and treating the remaining bits as the binary representation of a positive integer. |

| **saltLength** |
| This parameter provides the length in octets of the salt value used for the EMSA-PSS encoding method defined in [PKCS#1]. |

---

**OMA-LPPe-ver1-1-CipherSetID**

The IE OMA-LPPe-ver1-1-CipherSetID is used only in LPPe 1.1 and uniquely identifies a cipher set comprising a ciphering key value and first component C0 for the initial ciphering counter C1. A server SHALL NOT reuse a particular cipher set ID for a new cipher set for a period of at least 24 hours following usage for the last broadcast for a previous cipher set.

```
-- ASN1START
OMA-LPPe-ver1-1-CipherSetID ::= INTEGER (0..65535)
-- ASN1STOP
```

---

**OMA-LPPe-ver1-1-CipherSetID  field descriptions**

**OMA-LPPe-ver1-1-CipherSetID**

This parameter provides a cipher set ID as an integer between 0 and 65535.

---

**OMA-LPPe-ver1-1-CipherSet**

The IE OMA-LPPe-ver1-1-CipherSet is used only in LPPe 1.1 and defines a cipher set comprising a cipher set ID, a ciphering key value and first component C0 for the initial ciphering counter C1.

```
-- ASN1START
OMA-LPPe-ver1-1-CipherSet ::= SEQUENCE {
 cipherSetID OMA-LPPe-ver1-1-CipherSetID,
 cipherKey BIT STRING (SIZE (128)),
 c0 BIT STRING (SIZE (1..128)),
 ...
}
-- ASN1STOP
```

---

**OMA-LPPe-ver1-1-CipherSet  field descriptions**

**cipherSetID**

This parameter provides the cipher set ID.

**cipherKey**

This parameter provides a cipher key as a bit string of size 128 bits.

**c0**

This parameter provides the first component of the initial ciphering counter C1. If less than 128 bits, c0 is padded out with zeroes in more significant bit positions to achieve 128 bits.
– **OMA-LPPe-ver1-1-ServerID**

The IE *OMA-LPPe-ver1-1-ServerID* is used only in LPPe 1.1 and defines the identity of a server.

```
-- ASN1START
OMA-LPPe-ver1-1-ServerID ::= SEQUENCE {
 provider-ID OMA-LPPe-VendorOrOperatorID,
 server-ID OCTET STRING (SIZE(4)),
 ...
}
-- ASN1STOP
```

**OMA-LPPe-ver1-1-ServerID field descriptions**

*provider-ID*

This parameter defines the vendor or operator ID.

*server-ID*

This parameter defines the server ID for the particular vendor or operator.

– **OMA-LPPe-ver2-0-XYZ-CoordinateFrame**

The IE *OMA-LPPe-ver2-0-XYZ-CoordinateFrame* is used only in LPPe 2.0 and defines a reference frame for providing X,Y,Z coordinates – e.g. for an indoor environment – where the Z coordinate is vertical and the X,Y coordinates are horizontal.

```
-- ASN1START
OMA-LPPe-ver2-0-XYZ-CoordinateFrame ::= SEQUENCE {
 origin Origin,
 orientation-y-axis SEQUENCE {
 integer-degrees INTEGER (0..359),
 fractional-degrees INTEGER (0..16383) OPTIONAL
 } OPTIONAL,
 ...
}

Origin ::= SEQUENCE {
 reference-point OMA-LPPe-ReferencePointUniqueID,
 relative-location OMA-LPPe-RelativeLocation OPTIONAL,
 ...
}
-- ASN1STOP
```

**OMA-LPPe-ver2-0-XYZ-CoordinateFrame field descriptions**

*Origin*

This parameter defines the origin of the X,Y,Z coordinate frame using a reference point and optional relative location. The location of the origin is given by the location of the reference point plus any relative location displacement if present. If an altitude for the origin is not included in the reference point definition, local ground level SHALL be assumed for the origin.
### OMA-LPPe-ver2-0-XYZ-CoordinateFrame field descriptions

**orientation-y-axis**
This parameter defines the clockwise angle at the origin from true North to the positive Y axis and contains the following fields:

- integer-degrees: integer number of degrees in the range 0-359
- fractional-degrees: fractional degrees in the range 0-16383 expressing a fraction n/16384 for an encoded value n.
  
  This field is optional.

### OMA-LPPe-ver2-0-ReferenceGrid

The IE `OMA-LPPe-ver2-0-ReferenceGrid` is used only in LPPe 2.0 and defines a horizontal 2-dimensional reference grid of points that may be used to provide RF heat map related information. A common reference grid may be used to provide RF heat map information for many RF transmitters (e.g. WiFi APs). The use of a common reference grid enables different RF heat maps to be aligned to the same set of grid points – e.g. enabling a target to obtain RSSI and/or RTT values for different transmitters at the same location points. Refer to Appendix G for more information concerning definition and encoding.

```asn1
OMA-LPPe-ver2-0-ReferenceGrid ::= SEQUENCE {
 xyz-coordinateframe OMA-LPPe-ver2-0-XYZ-CoordinateFrame,
 grid-spacing Grid-Spacing,
 ... }

Grid-Spacing ::= SEQUENCE {
 units ENUMERATED {decameters (0), meters (1), decimeters (2), centimeters (3), ...},
 value INTEGER (1..1024),
 ... }
```

### OMA-LPPe-ver2-0-ReferenceGrid field descriptions

**xyz-coordinateframe**
This parameter defines the X,Y,Z coordinate frame for the reference grid.

**grid-spacing**
This parameter defines the common unit of length for integer X and Y coordinates for the reference grid. The common unit is an integer number, in the range 1 to 1024, of decameters, meters, decimeters or centimeters.

### OMA-LPPe-ver2-0-RF-HeatMap

The IE `OMA-LPPe-ver2-0-RF-HeatMap` is used only in LPPe 2.0 and provides RF heat map information for a single transmitter. Refer to Appendix G for more information.

```asn1
OMA-LPPe-ver2-0-RF-HeatMap ::= SEQUENCE {
 heatMap-ID OMA-LPPe-ver2-0-RF-HeatMap-ID, OPTIONAL,
 validity-period OMA-LPPe-ValidityPeriod, OPTIONAL,
 referenceGrid OMA-LPPe-ver2-0-ReferenceGrid, OPTIONAL,
 heatMap-Source OMA-LPPe-ver2-0-HeatMap-Source, OPTIONAL,
 x-offset INTEGER (-32768..32767), OPTIONAL,
 y-offset INTEGER (-32768..32767), OPTIONAL,
 ... }
```
**OMA-LPPe-ver2-0-RF-HeatMap** field descriptions

**heatmap-ID**
This parameter provides a unique ID for the heat map.

**validity-period**
This parameter defines the validity period for a heat map and, if present, overrides any other validity period provided by a server for any assistance data that may contain the heat map. A target that receives a heat map should only make use of the heat map during the validity period. This parameter is optional.

**referenceGrid**
This parameter defines the origin, orientation and grid spacing for a reference grid relative to which the heat map is defined. This parameter is optional. If included, the provided reference grid overrides any default reference grid provided by means of common group parameters (e.g. for a WLAN AP or SRN AP). If absent, a reference grid is taken from common group parameters (e.g. for a WLAN AP or SRN AP).

**heatMap-Source**
This parameter defines the source of the heat map and may provide information associated with the source. This parameter is optional. If absent, the source is undefined.

**x-offset**
This parameter provides the x coordinate offset relative to the reference frame origin for the corner of the heat map rectangular area that has minimum X and Y coordinates. This parameter is encoded as an integer with range -32768 to 32767 which expresses a length in units of the grid spacing. This parameter is optional. If not present, the x-offset is zero.

**y-offset**
This parameter provides the y coordinate offset relative to the reference frame origin for the corner of the heat map rectangular area that has minimum X and Y coordinates. This parameter is encoded as an integer with range -32768 to 32767 which expresses a length in units of the grid spacing. This parameter is optional. If not present, the y-offset is zero.

**x-length**
This parameter defines the length of the rectangular area for the heat map in the X direction in units of the grid spacing. This is encoded as an integer in the range 1 to 4096.
### OMA-LPpe-ver2-0-RF-HeatMap field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y-length</td>
<td>This parameter defines the length of the rectangular area for the heat map in the Y direction in units of the grid spacing. This is encoded as an integer in the range 1 to 4096.</td>
</tr>
<tr>
<td>compression</td>
<td>This parameter defines the method used to compress the included heat maps. Possible values are none (meaning no compression) and JPEG (meaning JPEG compression).</td>
</tr>
</tbody>
</table>
| reorientation | This parameter enables a heat map area to be reoriented at an angle $\theta$ ($-90^\circ \leq \theta \leq 90^\circ$) to the local Y axis as described in Appendix G.4.1. The reorientation is defined by the following fields:  
  - orientation-angle gives the angle $\theta$ in units of one tenth of a degree  
  - shifting defines whether rows of grid points are shifted in the positive X direction or columns of grid points are shifted in the positive Y direction as defined in Appendix G.4.1 |
| run-lengths   | This parameter enables a heat map area to fit an arbitrary shape by defining alternating run lengths of excluded and included grid points as defined in Appendix G.4.2. The parameter contains a sequence of integers $I_1, I_2, I_3, I_4$ etc. with values between 0 and 255 where integers in odd positions ($I_1, I_3, I_5$ etc.) define a consecutive sequence of excluded grid points and integers in even positions ($I_2, I_4$ etc.) define a consecutive sequence of included grid points. The total number of all included and excluded grid points SHALL be less than or equal to the total number of original grid points. When the former is less than the latter, all remaining grid points (not so far included or excluded) SHALL be assumed by a receiver to be excluded. This parameter is optional and SHALL only be included when run lengths are used to create an arbitrary heat map area. |
| updateReqGridPoints | This parameter provides a set of grid points for triggering a request for new transmitter assistance data from a target if the target estimates its position near to one of these grid points. This parameter is optional, but if this parameter is provided by the server, the server may send this information only for one of the grouped transmitter heat maps (and not for all of the heap maps). The parameter contains a sequence of integers $I_1, I_2, I_3, I_4$ etc. with values between 0 and 255 where integers in odd positions ($I_1, I_3, I_5$ etc.) define a consecutive sequence of grid points that do not trigger updates and integers in even positions ($I_2, I_4$ etc.) define a consecutive sequence of grid points that do trigger updates. The total number of all included and excluded grid points SHALL be less than or equal to the total number of original grid points. When the former is less than the latter, all remaining grid points (not so far included or excluded) SHALL be assumed by a receiver to not trigger an update. The selection of update grid points is out-of-scope of this specification. Refer to Appendix G.5 for more information. |
### OMA-LPPE-ver2.0-RF-HeatMap field descriptions

**rssi-map**

This parameter provides a sequence of mean signal strength values and an optional sequence of signal strength standard deviations for successive included grid points within the heat map area as defined in Appendix G. Mean signal strength values are encoded as integers in the range 0 to 255 as follows:

- encoded value = 0: mean signal strength <= rssi-minimum
- encoded value = 1-254: mean signal strength = (rssi-minimum + (encoded value / 255)*rssi-range)
- encoded value = 255: mean signal strength >= (rssi-minimum + rssi-range)

where:
- rssi-minimum = minimum RSSI in units of dBm (default is -117.5 dBm for WLAN and -128 dBm for SRN)
- rssi-range = range of RSSI in units of dB (default is 127.5 dB for WLAN and 148 dB for SRN)

Signal strength standard deviations are encoded as integers in the range 0 to 255 as follows:

signal strength standard deviation = (encoded value / 2) dBm (note: the standard deviation applies to the signal strength level on a linear scale and is then converted to dBm)

Note that signal strength refers to the expected Received Channel Power of a Beacon frame, probe response frame or measurement pilot frame in the case of WLAN, or the RSSI of the received signal from the SRN in dBm, as defined by the specifications applicable to the particular SRN.

Successive RSSI values appear according to a scan order of grid points as defined in Appendix G. When JPEG compression is used, this parameter contains an octet string that results from JPEG compression of the original encoded RSSI values. When JPEG compression is used with run-lengths, dummy RSSI values are included for all grid points defined to be excluded by the run-lengths parameter.

**rtt-map**

This parameter provides a sequence of mean RTT values and an optional sequence of RTT standard deviations for successive included grid points within the heat map area as defined in Appendix G. RTT values define round trip propagation time between any grid point and a particular transceiver (e.g. WLAN AP). Mean RTT values and RTT standard deviations are each encoded as integers in the range 0 to 255 in units of 5 ns, 10 ns, 20 ns or 50 ns. Use of JPEG compression is as defined for the rssi-map parameter.

---

### OMA-LPPE-ver2.0-HeatMap-Source

The IE OMA-LPPE-ver2.0-HeatMap-Source is used only in LPPE 2.0 and provides information concerning the source of a particular RF heat map.

```asn1
OMA-LPPE-ver2-0-HeatMap-Source ::= CHOICE {
 propagationModel OMA-LPPE-ver2-0-PropagationModel-HeatMap,
 measurements OMA-LPPE-ver2-0-Measurements-HeatMap,
 ...
}

OMA-LPPE-ver2-0-PropagationModel-HeatMap ::= SEQUENCE {
 ...
}

OMA-LPPE-ver2-0-Measurements-HeatMap ::= SEQUENCE {
 measurementSource BIT STRING {crowdsourcing (0),
 driveBy (1),
 propagationModel (2) } (SIZE {1..8}),
 referenceDevice OMA-LPPE-ver2-0-DeviceType OPTIONAL,
 rssiCalibrationModel SEQUENCE {
 rssi-calibration-slope-param INTEGER {-4096..4095},
 rssi-calibration-constant-param INTEGER {-4096..4095},
 ...
 } OPTIONAL,
 ...
}
```
**OMA-LPPe-ver2-0-HeatMap-Source** field descriptions

**propagationModel**
This parameter indicates that a heat map was computed based on known map information (e.g. floorplan, building plan, street map) using a hypothetical reference transmitter with 10 dBm transmission power, 0 dBi antenna gain and 0 internal contribution to RTT.

**measurements**
This parameter indicates that a heat map was obtained from measurements of RSSI and/or RTT from one or more collection devices.

**measurementSource**
This parameter indicates the measurement source or sources for a heat map derived using measurements. The sources are indicated using a bit string where a binary one indicates that a particular measurement source was used and a binary zero indicates a measurement source was not used. The possible sources comprise the following:

<table>
<thead>
<tr>
<th>Source</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>crowdsourcing</td>
<td>indicates multiple target devices supplied measurements</td>
</tr>
<tr>
<td>driveBy</td>
<td>indicates measurements were obtained from one or just a few collection devices</td>
</tr>
<tr>
<td>propagationModel</td>
<td>indicates measurements were validated, corrected and/or extrapolated using a propagation model</td>
</tr>
</tbody>
</table>

**referenceDevice**
This parameter provides information about a reference device or collection device used or assumed for a heat map derived from measurements. A target device may assume that the RSSI and/or RTT values provided in the heatmap would be those measured by the indicated reference device in the absence of any calibration. This parameter is optional.

**rssiCalibrationModel**
This parameter identifies parameters for an RSSI calibration model as defined in Appendix G.6. This model enables signal strength values measured by a target device to be recalibrated to correspond to signal strength values in the RF heatmap associated with specific reference device. The following fields are included:

- rssi-calibration-slope-param: describes the slope of a linear function which transforms RSSI from a target device into RSSI for a reference device (scale factor : 0.01)
- rssi-calibration-constant-param describes the constant of a linear function which transforms RSSI from a target device into RSSI for a reference device (scale factor : 0.01).

This parameter is optional.

---

**OMA-LPPe-ver2-0-RF-HeatMap-ID**

The IE **OMA-LPPe-ver2-0-RF-HeatMap-ID** is used only in LP Pe 2.0 and provides a unique ID for an RF heat map.
### OMA-LPPe-ver2-0-RF-HeatMap-ID field descriptions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vendorOrOperator</td>
<td>This parameter defines the vendor or operator who has assigned the heat map ID. This parameter is mandatory.</td>
</tr>
<tr>
<td>heatmap-ID</td>
<td>This parameter defines the heat map ID for the particular vendor or operator. The heat map ID may identify a particular transmitter (e.g. a WLAN or SRN AP) and may contain a version or timestamp using proprietary encoding. The heatmap-ID should change whenever a heatmap is updated and should differ for different transmitters. The heatmap-ID is encoded as an octet string of length 1 to 16 octets. This parameter is mandatory.</td>
</tr>
</tbody>
</table>

---

### OMA-LPPe-ver2-0-WLAN-Group-Data

The IE OMA-LPPe-ver2-0-WLAN-Group-Data is used only in LPPe 2.0 and provides common data for a group of WLAN APs.

```asn1
OMA-LPPe-ver2-0-WLAN-Group-Data ::= SEQUENCE {
 group-ID OMA-LPPe-ver2-0-WLAN-GroupID,
 version INTEGER (0..255),
 validity-period OMA-LPPe-ValidityPeriod OPTIONAL,
 groupType CHOICE {
 referenceGrid OMA-LPPe-ver2-0-ReferenceGrid,
 location-area OMA-LPPe-ver2-0-LocationAreaData,
 wlan-properties OMA-LPPe-ver2-0-Transmitter-Properties,
 ... }
}
```

### OMA-LPPe-ver2-0-WLAN-Group-Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>group-ID</td>
<td>This parameter defines a unique ID for the group data.</td>
</tr>
<tr>
<td>version</td>
<td>This parameter defines the version of group data. The provider of group data may increment the version (modulo 256) each time that group data (for a given group ID) is updated. The version is encoded as an integer in the range 0 to 255.</td>
</tr>
<tr>
<td>validity-period</td>
<td>This parameter defines the validity period for group data and overrides any validity period provided for any broader set of WLAN data that includes the group data. This parameter is optional.</td>
</tr>
<tr>
<td>groupType</td>
<td>This parameter indicates the type of group data and provides data specific to this type. The following mutually exclusive types are allowed:</td>
</tr>
</tbody>
</table>

  - `referenceGrid`: group data comprises a common reference grid applicable to RF heat maps
  - `location-area`: group data comprises common location characteristics
  - `wlan-properties`: group data comprises common properties of WLAN APs

A WLAN AP may belong to multiple groups. However, a server **SHALL** ensure that each WLAN AP belongs to at most one referenceGrid group and at most one wlan-properties group. For any WLAN AP, a target may ignore any group data that violates this restriction.
The IE OMA-LPPe-ver2-0-WLAN-GroupID is used only in LPPe 2.0 and identifies particular group data for a number of WLAN APs.

```
OMA-LPPe-ver2-0-WLAN-GroupID ::= SEQUENCE {
 vendorOrOperator OMA-LPPe-VendorOrOperatorID,
 groupID INTEGER (0..65535),
 ...}
```

**vendorOrOperator**
This parameter defines the vendor or operator who assigns the group data.

**groupID**
This parameter defines a group ID assigned by the vendor or operator.

The IE OMA-LPPe-ver2-0-LocationAreaData is used only in LPPe 2.0 and provides common location characteristics for transmitters in the same local area and whose coverage areas may overlap with one another. A server should ensure that transmitters identified as being in the same location area group share a common altitude or common floor level.

A transmitter that is a WLAN AP may belong to more than one location area group – e.g. if location areas partially overlap. A target and server may each use location area groups to help determine when assistance data for additional WLAN APs needs to be sent to a target. For example, if a target reports visible APs belonging to certain location groups, a server may provide assistance data for these APs and other APs in the same location area groups. If a target detects APs that do not belong to any known location groups, the target may request assistance data for these APs and may expect to receive data for these APs and possibly for other APs in the same location groups as these APs.

```
OMA-LPPe-ver2-0-LocationAreaData ::= SEQUENCE {
 geographicLocationArea CHOICE {
 circle Ellipsoid-PointWithUncertaintyCircle,
 ellipse EllipsoidPointWithUncertaintyEllipse,
 ...}
 civicLocationArea OMA-LPPe-CivicLocation OPTIONAL,
 locationAreaType OMA-LPPe-ver2-0-LocationAreaType OPTIONAL,
 horizontalCoverage INTEGER (1..100) OPTIONAL,
 verticalCoverage INTEGER (1..100) OPTIONAL,
 ...}
OMA-LPPe-ver2-0-LocationAreaType ::= SEQUENCE {
 areaType ENUMERATED {undefined (0), walled-rooms (1), cubicle-office (2), high-ceiling-large-area (3), parking-garage (4), outdoor (5), ...},
 exterior-Access ENUMERATED {yes (1), no (2), ...} OPTIONAL,
 altitude-change ENUMERATED {yes (1), no (2), ...} OPTIONAL,
 ...}
```
### OMA-LPPe-ver2-0-LocationAreaData field descriptions

**geographicLocationArea**

This parameter defines the location area geographically. The area may approximately coincide with certain well defined features (e.g., the exterior of a building, a terminal in an airport). The geographic area should encompass the locations of all transmitters that belong to the location area group and should minimize the number of transmitters whose locations are encompassed that do not belong to the group. This parameter contains the following choices:

- **circle**: the area is defined by the uncertainty area for an ellipsoid point with uncertainty circle; the altitude is assumed to be local ground level
- **ellipse**: the area is defined by the uncertainty area for an ellipsoid point with uncertainty ellipse; the altitude is assumed to be local ground level; the confidence value is ignored

**civicLocationArea**

This parameter provides a civic address for the location area (e.g. the address or name of a building and a floor level). This parameter is optional.

**locationAreaType**

This parameter provides characteristics of the location area of significance to RF propagation.

**areaType**

This parameter defines the type of location area. The following choices are available.

- **undefined**: the type of location area is unknown or includes several different types
- **walled-rooms**: describes a building with separate walled rooms such as offices, hotel rooms, apartments
- **cubicle-office**: describes an office building with predominantly cubicle offices
- **high-ceiling-large-area**: describes an auditorium, shopping mall, airport or other large area with a high ceiling
- **parking-garage**: describes an indoor parking structure
- **outdoor**: describes an area where WLAN APs can typically be received outdoors as well as indoors – e.g. an open air shopping mall or suburban housing area

**exterior-Access**

This parameter defines whether an indoor location area has exterior access – e.g. via a doorway, opening or bridge to another building. The choices are yes (exterior access exists) or no (exterior access does not exist).

**altitude-change**

This parameter defines whether an indoor location area contains means (e.g. stairs, an elevator, an escalator or ramp) by which a user can exit the location area by changing altitude (e.g. floor level). The choices are yes (altitude change is possible) and no (altitude change is not possible).

**horizontalCoverage**

This parameter provides the size of the location area as a percentage of the total contiguous horizontal area (e.g. a floor in a building) of which this location area is a part and for which the server has assistance data. A target may use this parameter to determine the likelihood of needing and being able to obtain additional assistance data for transmitters from the server when the user moves outside the location area. This parameter is provided as an integer in the range 1 to 100 where a value of n indicates coverage in the range n-1% to n%.

**verticalCoverage**

This parameter provides the reciprocal, expressed as a percentage, of the total number of floors or levels in a building or structure (including sub levels) of which this location area is a part and for which the server has assistance data. A target may use this parameter to determine the likelihood of needing and being able to obtain additional assistance data for transmitters from the server when a user moves up or down to another floor or level. This parameter is provided as an integer in the range 1 to 100 where a value of n indicates coverage in the range n-1% to n%. 
### OMA-LPPe-ver2-0-Transmitter-Properties

The IE `OMA-LPPe-ver2-0-Transmitter-Properties` is used only in LPPe 2.0 and provides common properties for a group of transmitters.

```asn1
OMA-LPPe-ver2-0-Transmitter-Properties ::= SEQUENCE {
 ap-deviceType OMA-LPPe-ver2-0-DeviceType OPTIONAL,
 ...}
```

- **ap-deviceType**
  This parameter defines one or more of the vendor and model for a transmitter and the vendor and model for each wireless baseband chip in the transmitter.

### OMA-LPPe-ver2-0-DeviceType

The IE `OMA-LPPe-ver2-0-DeviceType` is used only in LPPe 2.0 and provides information about a wireless device.

```asn1
OMA-LPPe-ver2-0-DeviceType ::= SEQUENCE {
 vendor OMA-LPPe-VendorOrOperatorID,
 model OMA-LPPe-CharArray OPTIONAL,
 version OMA-LPPe-CharArray OPTIONAL,
 chip SEQUENCE (SIZE (1..5)) OF OMA-LPPe-Chip OPTIONAL,
 ...}
OMA-LPPe-Chip ::= SEQUENCE {
 vendor OMA-LPPe-VendorOrOperatorID,
 model OMA-LPPe-CharArray OPTIONAL,
 version OMA-LPPe-CharArray OPTIONAL,
 ...}
```

- **vendor**
  This parameter defines the vendor for a device.
- **model**
  This parameter defines the device model or type.
- **version**
  This parameter defines the version for a particular model or type.
- **chip**
  This parameter defines the vendor and optionally the model or type and the version of the model or type for each wireless baseband chip in the device. More than one chip may be applicable for a device that supports more than one type of wireless interface.
OMA-LPpe-ValidityArea

The IE **OMA-LPpe-ValidityArea** is used to define the area in which the given data (e.g. a local troposphere model or a local ionosphere model) are valid. The validity area is constructed with grid regions using Run-Length Encoding as specified in Appendix C.1. The parameters *areaWidth* and *rleList* are optional. If these parameters are left out, the validity area gets its simplest form: a rectangle in spherical coordinates.

```asn1
OMA-LPpe-ValidityArea ::= SEQUENCE {
 regionSizeInv INTEGER (1..255),
 areaWidth INTEGER (2..9180) OPTIONAL,
 codedLatOfNWCorner INTEGER (0..4589),
 codedLonOfNWCorner INTEGER (0..9179),
 rleList OMA-LPpe-RleList OPTIONAL,
 ...
}

OMA-LPpe-RleList ::= SEQUENCE (SIZE(1..65535)) OF INTEGER (0..255)
```

**OMA-LPpe-ValidityArea** field descriptions

- **regionSizeInv**
  This field specifies the inverse of the size of each side of the region in degrees. For value N the size is 10/N degrees.

- **areaWidth**
  This field specifies the number of regions in the area in East-West direction. If the field is not present, the value is 1.

- **codedLatOfNWCorner**
  This field specifies the latitude of the North-West corner of the area, encoded as explained in Appendix C.1.

- **codedLonOfNWCorner**
  This field specifies the longitude of the North-West corner of the area, encoded as explained in Appendix C.1.

- **rleList**
  This field lists the regions in which the data is valid. If the field is not present, the data is valid in all the regions in the area. The field is not valid (not included or ignored), when the IE **OMA-LPpe-ValidityArea** is included in the IE **OMA-LPpe-AGNSS-IonoStormIndication**.

OMA-LPpe-ValidityPeriod

The IE **OMA-LPpe-ValidityPeriod** is used to define the validity time of the given assistance data.

```asn1
OMA-LPpe-ValidityPeriod ::= SEQUENCE {
 beginTime GNSS-SystemTime,
 beginTimeAlt INTEGER (0..2881) OPTIONAL,
 duration INTEGER (1..2881),
 ...
}
```

**OMA-LPpe-ValidityPeriod** field descriptions

- **beginTime**
  This field specifies the start time of the validity period.

- **beginTimeAlt**
  This field specifies the alternative start time. It may be used by target if it lacks information of the current GNSS-SystemTime. The start time is relative the time the message was received. The scale factor is 15 min. Range from 0 minutes to 43215 min = 30 days.
OMA-LPpe-ValidityPeriod field descriptions

duration
This field specifies the duration of the validity period after the beginTime.
The scale factor is 15 min. Range from 15 minutes to 43215 min = 30 days.

OMA-LPpe-VendorOrOperatorAssistanceDataIdentifier

The OMA-LPpe-VendorOrOperatorAssistanceDataIdentifier is used to identify vendor-/operator-specific assistance data.

-- ASN1START
OMA-LPpe-VendorOrOperatorAssistanceDataIdentifier ::= SEQUENCE {
  vendorOrOperatorID OMA-LPpe-VendorOrOperatorID,
  assistanceDataID OMA-LPpe-AssistanceContainerID,
  ...
}
-- ASN1STOP

OMA-LPpe-VendorOrOperatorAssistanceDataIdentifier field descriptions

vendorOrOperatorID
This field specifies the identification of the vendor/operator of the proprietary data.

assistanceDataID
This field identifies the proprietary data. Data IDs are managed by the vendor/operator.

OMA-LPpe-VendorOrOperatorID

The OMA-LPpe-VendorOrOperatorID is used to identify the vendor/operator using the proprietary data content. Two methods are provided. The first is a method, in which the vendor/operator identifier is standardized. The alternative method is not to use the standardized vendor/operator identifier, but the generalized method based on the CRC sum of the vendor/operator name.

-- ASN1START
OMA-LPpe-VendorOrOperatorID ::= CHOICE {
  standard-VendorOrOperatorID INTEGER{1..1024},
  nonStandard-VendorOrOperatorID OMA-LPpe-NonStandard-VendorOrOperatorID,
  ...
}
-- version 2.0 extension elements
ver2-0-extended-VendorOrOperatorID OMA-LPpe-extended-VendorOrOperatorID

OMA-LPpe-NonStandard-VendorOrOperatorID ::= SEQUENCE {
  encodedID INTEGER{0..65535},
  visibleIdentification OMA-LPpe-CharArray OPTIONAL,
  ...
}

OMA-LPpe-extended-VendorOrOperatorID ::= SEQUENCE {
  extended-standard-VendorOrOperatorID INTEGER{1..4096},
  venueID INTEGER{1..16384} OPTIONAL,
  ...
}
-- ASN1STOP
### OMA-LPPe-VendorOrOperatorID field descriptions

**standard-VendorOrOperatorID**
This field identifies the vendor/operator of the proprietary data. The ID allocations are maintained by OMNA [OMNA] and the up-to-date allocations are available at http://www.openmobilealliance.org/Tech/OMNA/OMNA-vendor-operator-ID.aspx

**nonStandard-VendorOrOperatorID**
This field provides one method of identifying the vendor/operator in the absence of the standard ID.

**encodedID**
This field specifies the CRC-16 IBM encoded name of the vendor written in lower case. CRC-16 IBM is described in Appendix C.8.

**visibleIdentification**
This field specifies the vendor/operator visible identification.

**ver2-0-extended-VendorOrOperatorID**
This parameter applies only to LPPe 2.0 and identifies the vendor or operator using an extension of the standard-VendorOrOperatorID that may include the following fields:

- **extended-standard-VendorOrOperatorID:** this field identifies a vendor or operator using the standard ID allocations maintained by OMNA. The field allows for IDs in the range 1 to 4096.
- **venueID:** this field identifies an optional venue or site for a particular vendor or operator and allows a venue or operator to distinguish assistance data used at different venues and sites. This field is an integer in the range 1 to 16384 and may be encoded by each vendor and operator in a proprietary manner. This field is optional.

### OMA-LPPe-WirelessAccessTypes

The IE **OMA-LPPe-WirelessAccessTypes** provides a list of wireless access types.

```
-- ASN1START
OMA-LPPe-WirelessAccessTypes ::= BIT STRING {
gsm (0),
utra (1),
lte (2),
wimax (3),
wifi (4),
other (5),
rnr (6) } (SIZE(1..16))
-- ASN1STOP
```

### OMA-LPPe-WirelessAccessTypes field descriptions

**OMA-LPPe-WirelessAccessTypes**
This field provides a list of one or more wireless access types. A type is present if the associated bit is set to one and absent if set to zero.

### OMA-LPPe-WLAN-AP-ID

The IE **OMA-LPPe-WLAN-AP-ID** defines the identity of a WLAN access point.

```
-- ASN1START
OMA-LPPe-WLAN-AP-ID ::= SEQUENCE {
apMacAddress BIT STRING (SIZE (48)),
...}
-- ASN1STOP
```

---

2020 Open Mobile Alliance. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
**OMA-LPpE-WLAN-AP-ID field descriptions**

**apMacAddress**
This field provides the 48-bit MAC address of the WLAN AP.

---

**OMA-LPpE-WLAN-AP-Type**
The IE *OMA-LPpE-WLAN-AP-Type* defines the type of a particular WLAN access point.

```asn1
OMA-LPpE-WLAN-AP-Type ::= ENUMERATED {
 ieee802-11a,
 ieee802-11b,
 ieee802-11g,
 ieee802-11n,
 ...,
 ieee802-11ac,
 ieee802-11ad
}
```

---

**OMA-LPpE-WLAN-AP-Type-List**
The IE *OMA-LPpE-WLAN-AP-Type-List* provides a list of one or more WLAN AP types.

```asn1
OMA-LPpE-WLAN-AP-Type-List ::= BIT STRING {
 ieee802-11a (0),
 ieee802-11b (1),
 ieee802-11g (2),
 ieee802-11n (3),
 ieee802-11ac (4),
 ieee802-11ad (5) } (SIZE (1..16))
```

---

**OMA-LPpE-WLAN-AP-Type-List field descriptions**

**OMA-LPpE-WLAN-AP-Type-List**
This field provides a list of one or more WLAN AP types. A type is present if the associated bit is set one and absent if set to zero.

---

**OMA-LPpE-WLAN-FemtoCoverageArea**
The IE *OMA-LPpE-WLAN-FemtoCoverageArea* provides information on the coverage area of a WLAN AP or Femto. The coverage area may be the coverage area of radio signals from the WLAN AP or Femto or may be defined according to the expected distribution of users within the coverage area.

```asn1
OMA-LPpE-WLAN-FemtoCoverageArea ::= SEQUENCE {
 truncation INTEGER(-127..128) OPTIONAL,
 areaType ENUMERATED { gaussian, binaryDistribution, ... } OPTIONAL,
}
```
### OMA-LPPe-WLANFemtoCoverageArea field descriptions

#### truncation
This field specifies if the coverage area is truncated using a specified signal strength level (i.e. with any point within the area experiencing a signal level greater than or equal to the truncation level). This field SHALL be included if a truncation condition has been used.

Scale factor 1 dBm.

#### areaType
This field specifies, if the coverage area is described in terms of a bivariate (gaussian) distribution or as a hard boundary (binary) for which no particular distribution of signal strength can be assumed. The default value (if missing) is a uniform binary distribution.

#### confidence
This field gives the confidence level as a percentage that a target device that can detect signals from the WLAN AP or Femto is within the defined coverage area.

Confidence is encoded as a truncated percentage. An encoded value of 0 therefore represents a confidence C where 0% <= C <1% percent. An encoded value of 1 represents a confidence C where 1% <= C <2%, and so on. An encoded value of 99 represents a confidence C where 99% <= C <100%.

#### componentList
This field specifies the coverage area components. Each coverage area component is a 2 dimensional area. Different coverage area components may have the same or different altitudes.

#### refPointAndArea
This field provides the coverage area component description in terms of a relative location and area

- **referenceLocation** indicates if location is relative to the WLAN AP or Femto antenna or relative to a reference point
- **referencePoint** provides a reference point for location relative to a reference point; if absent, the reference point is the same one used to define the WLAN AP or Femto location
- **locationAndArea** provides the location of a center point for the area relative to the reference point. The area is defined by the horizontal uncertainty in OMA-LPPe-RelativeLocation; horizontal confidence, uncertainty of altitude and confidence of altitude SHALL NOT be included.

#### type
This field specifies if the coverage area component is indoors, outdoors or mixed. This field SHALL be included if available.
**OMA-LPPe-WLANFemtoCoverageArea** field descriptions

<table>
<thead>
<tr>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>This field specifies the weight of the coverage area component in percent and provides the probability that a target is within the area component given that it is within one of the area components. The sum of the weights over all the coverage area components for a given AP must be 100%. A weight of 0% signifies a probability of &lt;1% and a weight of 99% signifies a probability of &gt;99%. If weight is missing, an equal weight is assumed for all the components.</td>
</tr>
</tbody>
</table>

### 6.4.2 LPPe Common Positioning IEs

Common positioning information elements are IEs that are included in the corresponding message extensions.

**OMA-LPPe-CommonIEsRequestCapabilities**

The **OMA-LPPe-CommonIEsRequestCapabilities** carries common IEs for a Request Capabilities message extension.

```asn1
OMA-LPPe-CommonIEsRequestCapabilities ::= SEQUENCE {
 ip-Address-RequestCapabilities OMA-LPPe-IP-Address-RequestCapabilities OPTIONAL,
 assistanceContainerSupportReq OMA-LPPe-AssistanceContainerSupportReq OPTIONAL,
 locationInformationContainerSupportReq OMA-LPPe-LocationInformationContainerSupportReq OPTIONAL,
 relativeLocationChange-RequestCapabilities OMA-LPPe-RelativeLocationChange-RequestCapabilities OPTIONAL,
 highAccuracyFormatCapabilitiesReq OMA-LPPe-HighAccuracyFormatCapabilitiesReq OPTIONAL,
 segmentedAssistanceData-ReqCapabilities OMA-LPPe-SegmentedAssistanceData-ReqCapabilities OPTIONAL,
 referencePointCapabilitiesReq OMA-LPPe-ReferencePointCapabilitiesReq OPTIONAL,
 scheduledLocation-RequestCapabilities OMA-LPPe-ScheduledLocation-RequestCapabilities OPTIONAL,
 accessCapabilitiesReq OMA-LPPe-AccessCapabilitiesReq OPTIONAL,
 segmentedLocationInformation-ReqCapabilities OMA-LPPe-SegmentedLocationInformation-ReqCapabilities OPTIONAL,
...
-- version 1.1 extension elements
 ver1-1-localCellInformation-ReqCapabilities OMA-LPPe-ver1-1-localCellInformation-ReqCapabilities OPTIONAL,
 ver1-1-broadcast-ReqCapabilities OMA-LPPe-ver1-1-broadcast-ReqCapabilities OPTIONAL,
-- version 2.0 extension elements
 ver2-0-deviceType-Request OMA-LPPe-ver2-0-deviceType-Request OPTIONAL
}

OMA-LPPe-IP-Address-RequestCapabilities ::= SEQUENCE {
 ...
}

OMA-LPPe-AssistanceContainerSupportReq ::= SEQUENCE {
 vendorOrOperatorIDList OMA-LPPe-VendorOrOperatorIDList OPTIONAL,
 ...
}

OMA-LPPe-LocationInformationContainerSupportReq ::= SEQUENCE {
 vendorOrOperatorIDList OMA-LPPe-VendorOrOperatorIDList OPTIONAL,
 ...
}

OMA-LPPe-VendorOrOperatorIDList ::= SEQUENCE (SIZE(1..maxVendorOrOperatorIDList)) OF OMA-LPPe-VendorOrOperatorID

maxVendorOrOperatorIDList INTEGER ::= 32

OMA-LPPe-RelativeLocationChange-RequestCapabilities ::= SEQUENCE {
 ...
}
```
OMA-LPPe-HighAccuracyFormatCapabilitiesReq ::= SEQUENCE {
    ...  
}

OMA-LPPe-SegmentedAssistanceData-ReqCapabilities ::= SEQUENCE {
    ...  
}

OMA-LPPe-ReferencePointCapabilitiesReq ::= SEQUENCE {
    referencePointProviderSupportListReq  SEQUENCE (SIZE (1..128)) OF
        OMA-LPPe-VendorOrOperatorID  OPTIONAL,
    ...  
}

OMA-LPPe-ScheduledLocation-ReqCapabilities ::= SEQUENCE {
    ...  
}

OMA-LPPe-AccessCapabilitiesReq ::= SEQUENCE {
    ...  
}

OMA-LPPe-SegmentedLocationInformation-ReqCapabilities ::= SEQUENCE {
    ...  
}

OMA-LPPe-ver1-1-localCellInformation-ReqCapabilities ::= SEQUENCE {
    ... 
}

OMA-LPPe-ver1-1-broadcast-ReqCapabilities ::= SEQUENCE {
    broadcastSystems  SEQUENCE (SIZE (1..16)) OF OMA-LPPe-ver1-1-BroadcastSystemID  OPTIONAL,
    ... 
}

OMA-LPPe-ver2-0-deviceType-Request ::= SEQUENCE {
    ... 
}

-- ASN1STOP

**OMA-LPPe-CommonIEsRequestCapabilities field descriptions**

**iP-Address-RequestCapabilities**

This parameter is included by the server to request the target capabilities to report its local IP address(es).

**assistanceContainerSupportReq**

This field is used to request for the proprietary data capabilities. The following parameters may be optionally included with this request:

**vendorOrOperatorIDList**

This parameter provides a list of vendor or operators IDs. If present, the target SHALL only report its capabilities to support assistance containers associated with these vendors and operators. If absent, the target SHALL report its capabilities to support assistance containers for all vendors and operators.
### OMA-LPPe-CommonIEsRequestCapabilities field descriptions

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>iP-Address-RequestCapabilities</strong></td>
<td>This parameter is included by the server to request the target capabilities to report its local IP address(es).</td>
</tr>
<tr>
<td><strong>locationInformationContainerSupportReq</strong></td>
<td>This presence of this parameter indicates a request for the level of support by the target for the Location Information Container. The following parameters may be optionally included with this request:</td>
</tr>
<tr>
<td><strong>vendorOrOperatorIDList</strong></td>
<td>This parameter provides a list of vendor or operators IDs. If present, the target SHALL only report its capabilities to support location information containers associated with these vendors and operators. If absent, the target SHALL report its capabilities to support location information containers for all vendors and operators.</td>
</tr>
<tr>
<td><strong>relativeLocationChange-RequestCapabilities</strong></td>
<td>This parameter is included by the server to request the target capabilities to report relative change of location.</td>
</tr>
<tr>
<td><strong>highAccuracyFormatCapabilitiesReq</strong></td>
<td>This parameter is included by the server to request the target capabilities to report position in high accuracy or civic format.</td>
</tr>
<tr>
<td><strong>segmentedAssistanceData-ReqCapabilities</strong></td>
<td>This parameter is included by the server to request the target capabilities to support segmented transfer of assistance data.</td>
</tr>
<tr>
<td><strong>referencePointCapabilitiesReq</strong></td>
<td>This parameter is included by the server to request the reference point capabilities of the target.</td>
</tr>
<tr>
<td><strong>scheduledLocation-RequestCapabilities</strong></td>
<td>This parameter is included by the server to request the target capabilities to support scheduled location.</td>
</tr>
<tr>
<td><strong>accessCapabilitiesReq</strong></td>
<td>This parameter is included by the server to request the access type capabilities of the target.</td>
</tr>
<tr>
<td><strong>segmentedLocationInformation-ReqCapabilities</strong></td>
<td>This parameter is included by the server to request the target capabilities to support segmented transfer of location information.</td>
</tr>
<tr>
<td><strong>vendorOrOperatorIDList</strong></td>
<td>This parameter is used to request vendor-/operator-specific assistance data / location information capabilities.</td>
</tr>
<tr>
<td><strong>referencePointProviderSupportListReq</strong></td>
<td>This field lists the reference point provider IDs for which the support indication is requested. If absent, a support indication is requested for all reference point provider IDs that are supported by the target.</td>
</tr>
<tr>
<td><strong>ver1-1-localCellInformation-ReqCapabilities</strong></td>
<td>This parameter applies only to LPPe 1.1 and is included by the server to request the target capabilities to support assistance data containing information for local cells.</td>
</tr>
<tr>
<td><strong>ver1-1-broadcast-ReqCapabilities</strong></td>
<td>This parameter applies only to LPPe 1.1 and is included by a server to request the target capabilities to support reception of assistance data via broadcast. A server may indicate that it wishes to receive capabilities for certain broadcast systems. In this case, a target SHALL return its capabilities only for the requested broadcast systems. If the server does not indicate particular broadcast systems, a target should report its capabilities for standard broadcast systems and may report its capabilities for proprietary broadcast systems.</td>
</tr>
<tr>
<td><strong>ver2-0-deviceType-Request</strong></td>
<td>This parameter applies only to LPPe 2.0 and is included by a server to request information about the OEM and chip vendor for a target device.</td>
</tr>
</tbody>
</table>

### OMA-LPPe-CommonIEsProvideCapabilities

The **OMA-LPPe-CommonIEsProvideCapabilities** carries common IEs for a Provide Capabilities message extension.

```asn1
OMA-LPPe-CommonIEsProvideCapabilities ::= SEQUENCE {
 iP-Address-Capabilities OMA-LPPe-IP-Address-Capabilities OPTIONAL,
 assistanceContainerSupport OMA-LPPe-AssistanceContainerSupport OPTIONAL,
 locationInformationContainerSupport OMA-LPPe-LocationInformationContainerSupport OPTIONAL,
}
```
relativeLocationChange-Capabilities ::= OPTIONAL, CMA-LPPe-RelativeLocationChange-Capabilities
highAccuracyFormatCapabilities ::= OPTIONAL, CMA-LPPe-HighAccuracyFormatCapabilities
segmentedAssistanceData-ProvideCapabs ::= OPTIONAL, CMA-LPPe-SegmentedAssistanceData-ProvideCapabs
referencePointCapabilities ::= OPTIONAL, CMA-LPPe-ReferencePointCapabilities
scheduledLocation-Capabilities ::= OPTIONAL, CMA-LPPe-ScheduledLocation-Capabilities
accessCapabilities ::= OPTIONAL, CMA-LPPe-AccessCapabilities
segmentedLocationInformation-ProvideCapabs ::= OPTIONAL, CMA-LPPe-SegmentedLocationInformation-ProvideCapabs

...,

-- version 1.1 extension elements
ver1-localCellInformation-ProvideCapabilities ::= CMA-LPPe-ver1-l-localCellInformation-ProvideCapabilities OPTIONAL,
ver1-broadcast-ProvideCapabilities ::= CMA-LPPe-ver1-l-broadcast-ProvideCapabilities

-- version 2.0 extension elements
ver2-deviceType ::= CMA-LPPe-ver2-0-DeviceType OPTIONAL

CMA-LPPe-IP-Address-Capabilities ::= SEQUENCE {
  iP-Address-support BIT STRING {
    ipv4 (0),
    ipv6 (1),
    nat (2) } (SIZE(1..8)) OPTIONAL,
  ...}

CMA-LPPe-AssistanceContainerSupport ::= SEQUENCE (SIZE(1..maxVendorOrOperatorIDList)) OF CMA-LPPe-VendorOrOperatorAssistanceContainerList

CMA-LPPe-VendorOrOperatorAssistanceContainerList ::= SEQUENCE {
  vendorOrOperatorID CMA-LPPe-VendorOrOperatorID,
  assistanceContainerList CMA-LPPe-AssistanceContainerSupport,
  ...}

CMA-LPPe-AssistanceContainerList ::= SEQUENCE (SIZE(1..maxAssistanceContainerList)) OF CMA-LPPe-AssistanceContainerID

CMA-LPPe-LocationInformationContainerSupport ::= SEQUENCE (SIZE(1..maxVendorOrOperatorIDList)) OF CMA-LPPe-VendorOrOperatorLocationInformationContainerList

CMA-LPPe-VendorOrOperatorLocationInformationContainerList ::= SEQUENCE {
  vendorOrOperatorID CMA-LPPe-VendorOrOperatorID,
  locationInformationContainerList CMA-LPPe-LocationInformationContainerSupport,
  ...}

CMA-LPPe-LocationInformationContainerList ::= SEQUENCE (SIZE(1..maxLocationInformationContainerList)) OF CMA-LPPe-LocationInformationContainerID

maxLocationInformationContainerList INTEGER ::= 64
CMA-LPPe-RelativeLocationChange-Capabilities ::= SEQUENCE {
  numberOfChanges INTEGER (1..5) OPTIONAL,
  ...}

CMA-LPPe-HighAccuracyFormatCapabilities ::= BIT STRING { hAposition(0), hAvelocity(1), pidf-lo (2) } (SIZE(1..8))

CMA-LPPe-SegmentedAssistanceData-ProvideCapabs ::= SEQUENCE {
  maxSegments INTEGER (2..4096) OPTIONAL,
  maxSize INTEGER (1..5000) OPTIONAL,
  minSize INTEGER (1..5000) OPTIONAL,
  resume NULL OPTIONAL,
  ...}

CMA-LPPe-ReferencePointCapabilities ::= SEQUENCE {
  relativeLocationReportingSupport BIT STRING { geo (0),
                                           civic (1),
                                           ...}
otherProviders {2} (SIZE (1..8)),
referencePointProviderSupportList SEQUENCE (SIZE (1..128)) OF
OMA-LPPe-ReferencePointProviderSupportElement OPTIONAL,
...
}

OMA-LPPe-ReferencePointProviderSupportElement ::= SEQUENCE {
referencePointProvider OMA-LPPe-VendorOrOperatorID,
mapDataSupport SEQUENCE {
  mapDataFormat OCTET STRING OPTIONAL,
  ... OPTIONAL,
  ...
}

OMA-LPPe-ScheduledLocation-Capabilities ::= SEQUENCE {
  minimumWindow INTEGER (1..1024) OPTIONAL,
  gnssTimeReference GNSS-ID-Bitmap OPTIONAL,
  networkTimeReference ENUMERATED {serving,
    servingOrNonServing,
    ... } OPTIONAL,
  ...
}

OMA-LPPe-AccessCapabilities ::= SEQUENCE {
  accessTypeUnknown NULL OPTIONAL,
  fixedAccessTypes OMA-LPPe-FixedAccessTypes OPTIONAL,
  wirelessAccessTypes OMA-LPPe-WirelessAccessTypes OPTIONAL,
  ...
}

OMA-LPPe-SegmentedLocationInformation-ProvideCapabs ::= SEQUENCE {
  maxSegments INTEGER (2..4096) OPTIONAL,
  maxSize INTEGER (1..5000) OPTIONAL,
  minSize INTEGER (1..5000) OPTIONAL,
  resume NULL OPTIONAL,
  ...
}

OMA-LPPe-ver1-l-localCellInformation-ProvideCapabilities ::= SEQUENCE {
  localCellInformation-Support BIT STRING {gnssTiming (0),
    networkTiming (1),
    coverage (2),
    coordinates (3),
    frequencyAccuracy (4)} (SIZE (1..16)),
  ...
}

OMA-LPPe-ver1-l-broadcast-ProvideCapabilities ::= SEQUENCE (SIZE (1..16)) OF OMA-LPPe-ver1-l-BroadcastSystem-Capabs

OMA-LPPe-ver1-l-BroadcastSystem-Capabs ::= SEQUENCE {
  broadcastSystemID OMA-LPPe-ver1-l-BroadcastSystemID,
  broadcastADTypes OMA-LPPe-ver1-l-BroadcastADTypes OPTIONAL,
  point2pointAD OMA-LPPe-ver1-l-point2pointAD OPTIONAL,
  ciphering OMA-LPPe-ver1-l-Ciphering OPTIONAL,
  authentication OMA-LPPe-ver1-l-Authentication OPTIONAL,
  ...
}

OMA-LPPe-ver1-l-point2pointAD ::= SEQUENCE {
  ...
}

OMA-LPPe-ver1-l-Ciphering ::= SEQUENCE {
  ...
}

OMA-LPPe-ver1-l-Authentication ::= SEQUENCE {
  ...
**OMA-LPPe-CommonIEsProvideCapabilities field descriptions**

### iP-Address-Capabilities
This parameter is included to report the capabilities of a target to provide its local IP addresses. The parameter is not included if the target does not support IP address reporting. The parameter contains a bit string, with a one-value at any bit position meaning a particular capability is supported and a zero-value meaning not supported. The assigned bits and corresponding capabilities are as follows.

- **IPv4**: the target supports and can report IPv4 addresses
- **IPv6**: the target supports and can report IPv6 addresses
- **nat**: the target may be able to determine and then report whether an IP address is subject to NAT

### assistanceContainerSupport
This field lists the vendor-/operator-specific data IDs for the vendor-/operator-specific assistance data sets that the target supports.

### locationInformationContainerSupport
This field lists the vendor-/operator-specific data IDs for the vendor-/operator-specific location information types that the target supports.
<table>
<thead>
<tr>
<th><strong>OMA-LPPe-CommonIEsProvideCapabilities</strong> field descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>relativeLocationChange-Capabilities</strong></td>
</tr>
<tr>
<td>This parameter is included by the target to indicate its capabilities to report relative change of location.</td>
</tr>
<tr>
<td><strong>highAccuracyFormatCapabilities</strong></td>
</tr>
<tr>
<td>This parameter is included by the target to provide the target capabilities to report position in high accuracy or civic format. The assigned bits and corresponding capabilities are:</td>
</tr>
<tr>
<td>- hAposition: the target supports and can report <em>OMA-LPPe-HighAccuracy3Dposition</em></td>
</tr>
<tr>
<td>- hAvelocity: the target supports and can report <em>OMA-LPPe-HighAccuracy3Dvelocity</em></td>
</tr>
<tr>
<td>pidf-lo: the target supports and can report <em>OMA-LPPe-CivicLocation-pidf-lo</em></td>
</tr>
<tr>
<td>A bit is set to one to indicate support and is set to zero or omitted to indicate lack of support.</td>
</tr>
<tr>
<td><strong>segmentedAssistanceData-ProvideCaps</strong></td>
</tr>
<tr>
<td>This parameter is included by the target to indicate support of segmented transfer of assistance data. The target may optionally include the following fields:</td>
</tr>
<tr>
<td>- maxSegments: maximum number of separate LPP messages into which assistance data should be segmented by the server</td>
</tr>
<tr>
<td>- maxSize: maximum overall size of all assistance data that is transferred for segmented transfer that is supported by the target in multiples of 1024 octets after rounding up to a multiple of 1024. A value of 5000 for maxSize indicates that the maximum overall size is not limited.</td>
</tr>
<tr>
<td>- minSize: minimum overall size of all assistance data for which segmented assistance data transfer should be used by the server in preference to sending all assistance data in a single LPP message</td>
</tr>
<tr>
<td>- resume: included if the target can support segmented transfer with the resume capability</td>
</tr>
<tr>
<td><strong>referencePointCapabilities</strong></td>
</tr>
<tr>
<td>This parameter is included if the target supports assistance data or location reporting relative to a reference point.</td>
</tr>
<tr>
<td><strong>scheduledLocation-Capabilities</strong></td>
</tr>
<tr>
<td>This parameter is included by the target to indicate its capabilities to schedule location at a requested time. The following fields can be provided:</td>
</tr>
<tr>
<td>- minimumWindow: minimum time window in units of 10 ms within which the target is capable of scheduling location measurements</td>
</tr>
<tr>
<td>- gnssTimeReference: indicates the target can use GNSS time to schedule location measurements and provides the GNSS IDs that can be supported for this</td>
</tr>
<tr>
<td>- networkTimeReference: indicates the target can use network time to schedule location measurements and indicates whether network time can be supported only relative to a serving cell or relative to a serving or non-serving cell</td>
</tr>
<tr>
<td><strong>accessCapabilities</strong></td>
</tr>
<tr>
<td>This parameter provides the access capabilities of the target device. The following fields can be included:</td>
</tr>
<tr>
<td>- accessTypeUnknown: this field SHALL be included if the target cannot determine the access types it supports – e.g. if the target is using a separate wireless or wireline modem of unknown type.</td>
</tr>
<tr>
<td>- fixedAccessTypes: this field indicates the fixed access types supported by the target and SHALL be included if the target can support one or more fixed access types.</td>
</tr>
<tr>
<td>- wirelessAccessTypes: this field indicates the wireless access types supported by the target and SHALL be included if the target can support one or more wireless access types.</td>
</tr>
<tr>
<td>Note that the capabilities refer to access types that can be supported by the target device as opposed to access types that may currently be in use.</td>
</tr>
</tbody>
</table>
OMA-LPPE-CommonIEsProvideCapabilities field descriptions

**segmentedLocationInformation-ProvideCaps**
This parameter is included by the target to indicate support of segmented transfer of location information. The target may optionally include the following fields:

- **maxSegments**: maximum number of separate LPP messages into which location information can be segmented
- **maxSize**: maximum overall size of all location information that can be transferred using segmented transfer in multiples of 1024 octets after rounding up to a multiple of 1024. A value of 5000 for maxSize indicates that the maximum overall size is not limited.
- **minSize**: minimum overall size of all location information for which segmented transfer is preferred by the target in preference to sending all location information in a single LPP message included if the target can support segmented transfer with the resume capability.

**assistanceContainerList**
This parameter provides a list of the assistance data containers that a target supports for a particular vendor or operator. Each location assistance data container is identified by an integer in the range 0 to 65535. The identification is vendor or operator specific and may refer to a particular type of assistance data, a particular version of assistance data or to a combination of these or to some other characteristics.

**locationInformationContainerList**
This parameter provides a list of the location information containers that a target supports for a particular vendor or operator. Each location information container is identified by an integer in the range 0 to 65535. The identification is vendor or operator specific and may refer to a particular type of location information, a particular version of location information or to a combination of these or to some other characteristics.

**numberOfChanges**
This field indicates the maximum number of relative changes of location that can be reported by the target. The default if absent is one.

**relativeLocationReportingSupport**
This parameter indicates that the target supports location reporting relative to a reference point. The bit map indicates the reference point location type (geographic, or civic) supported for relative location reporting and whether the target is able to support location reporting relative to other reference point providers not listed in referencePointProviderSupportList. A one value at the bit position indicates support and a zero value no support.

NOTE: location reporting relative to other providers includes the ability to report information associated with a reference point that is not dependent on proprietary assistance data from the provider of the reference point (e.g. includes an ability to use a reference point simply to report relative location).

**referencePointProviderSupportList**
This parameter provides a list of reference point provider IDs that the target supports for location reporting and associated attributes that the target supports within reference point assistance data for these provider IDs. This parameter SHALL NOT be included if no reference point provider IDs are specifically supported.

**mapDataSupport**
This field, if present, indicates whether the target supports map data information for this reference point provider and may include additional information specific to the provider in mapDataFormat about the supported map data format(s). If this field is absent, no map data information is supported for this reference point provider.
### OMA-LPPe-CommonIEsProvideCapabilities field descriptions

**ver1-1-localCellInformation-ProvideCapabilities**

This parameter applies only to LPPe 1.1 and provides the target capabilities to support assistance data containing information for local cells. This is signified using a bit string with the following bit assignments. A bit value of one indicates a capability is supported and a bit value of zero indicates it is not supported.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gnssTiming</td>
<td>indicates whether the target supports receipt of cell GNSS timing information without network timing</td>
</tr>
<tr>
<td>networkTiming</td>
<td>indicates whether the target supports receipt of cell GNSS timing information with network timing</td>
</tr>
<tr>
<td>coverage</td>
<td>indicates whether the target supports receipt of cell coverage area</td>
</tr>
<tr>
<td>coordinates</td>
<td>indicates whether the target supports receipt of cell coordinates</td>
</tr>
<tr>
<td>frequencyAccuracy</td>
<td>indicates whether the target supports receipt of cell frequency accuracy</td>
</tr>
</tbody>
</table>

**ver1-1-broadcast-ProvideCapabilities**

This parameter applies only to LPPe 1.1 and is included by a target to provide its capabilities to receive assistance data via broadcast.

**broadcastSystemID**

This parameter applies only to LPPe 1.1 and specifies a particular broadcast system that is supported by a target.

**broadcastADTypes**

This parameter applies only to LPPe 1.1 and specifies the types of assistance data a target can receive via broadcast using a particular broadcast system.

**point2pointAD**

This parameter applies only to LPPe 1.1 and is included when a target can support receipt of assistance data sent point to point that provides information on a broadcast system used by the server.

**ciphering**

This parameter applies only to LPPe 1.1 and SHALL be included when the target supports ciphering of LPP/LPPe broadcast messages. The absence of this parameter implies that a target does not support ciphering.

**authentication**

This parameter applies only to LPPe 1.1 and SHALL be included when the target supports authentication of LPP/LPPe broadcast messages. The absence of this parameter implies that a target does not support authentication.

**ver2-0-deviceType**

This parameter applies only to LPPe 2.0 and provides information about a target device OEM and chip vendor. The parameter SHALL be included if available when requested by a server and should be included if available when a target sends its capabilities unsolicited.

### OMA-LPPe-CommonIEsRequestAssistanceData

The OMA-LPPe-CommonIEsRequestAssistanceData carries common IEs for a Request Assistance Data message extension.

```asn1
OMA-LPPe-CommonIEsRequestAssistanceData ::= SEQUENCE {
 approximate-location EllipsoidPointWithAltitudeAndUncertaintyEllipsoid OPTIONAL,
 assistanceContainerRequestList OMA-LPPe-AssistanceContainerRequestList OPTIONAL,
 requestPeriodicADwithUpdate OMA-LPPe-RequestPeriodicADwithUpdate OPTIONAL,
```

2020 Open Mobile Alliance. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
OMA-LPPe-RequestPeriodicADwithUpdate ::= SEQUENCE {
  periodicAD-session-ID OCTET STRING (SIZE(4)),
  typeOfADRequest typeOfADRequest,
  ...
}

TypeOfADRequest ::= ENUMERATED {
  initialRequest, initialRequest,
  updateAndContinueIfUpdateFails, updateAndContinueIfUpdateFails,
  updateAndAbortIfUpdateFails, updateAndAbortIfUpdateFails,
  ...
}

OMA-LPPe-SegmentedADResume ::= SEQUENCE {
  segmentedAD-session-ID OMA-LPPe-Session-ID,
  next-segment-number INTEGER (1..4096)
}

OMA-LPPe-ReferencePointAssistanceReq ::= SEQUENCE {
  referencePointReq SEQUENCE (SIZE (1..16)) OF OMA-LPPe-ReferencePointAssistanceReqElement,
  ...
}

OMA-LPPe-ReferencePointAssistanceReqElement ::= SEQUENCE {
  referencePointProvider OMA-LPPe-VendorOrOperatorID,
  mapDataReq OCTET STRING OPTIONAL,
  ...
}

OMA-LPPe-ver1-1-GroundMorphologyModelReq ::= SEQUENCE {
  modelsReq BIT STRING {altitude(0), buildings(1)} (SIZE (1..8)),
  refAreaParam SEQUENCE {
    northWestCorner Ellipsoid-Point OPTIONAL, northWestCorner Ellipsoid-Point OPTIONAL,
    spanX INTEGER (6..14), spanX INTEGER (6..14),
    ...
  } OPTIONAL,
  ...
}

OMA-LPPe-ver1-1-LocalCellInformationReq ::= SEQUENCE {
  localCellInformationReq BIT STRING {gnssTiming (0),
    networkTiming (1),
    coverage (2),
    coordinates (3),
    frequencyAccuracy (4) (SIZE (1..16))},
  localCellID OMA-LPPe-ver1-1-CellGlobalID OPTIONAL,
  cellVisible numberOfCells INTEGER (0..7) OPTIONAL,
  ...
}

OMA-LPPe-ver1-1-BroadcastAssistanceDataReq ::= SEQUENCE {
  broadcastSystem OMA-LPPe-ver1-1-BroadcastSystem OPTIONAL,
OMA-LPPe-ver1-1-BroadcastSystem ::= SEQUENCE {
  broadcastSystemID OMA-LPPe-ver1-1-BroadcastSystemID,
  cipherSets SEQUENCE (SIZE (1..16)) OF OMA-LPPe-ver1-1-CipherSetID OPTIONAL,
  authenticationSets SEQUENCE (SIZE(1..4)) OF OMA-LPPe-ver1-1-AuthenticationSetID OPTIONAL,
  ...
}

Conditional presence

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RequestPeriodicADWithUpdate</td>
<td>The parameter SHALL be present in a new request or modified request for Periodic/Triggered Assistance Data Transfer with Target Update. The field SHALL be omitted in other cases.</td>
</tr>
<tr>
<td>segmentedTransferResume</td>
<td>This parameter SHALL be included when the target requests resumption of a segmented transfer of assistance data. No other assistance data SHALL then be requested.</td>
</tr>
<tr>
<td>ver1-1-cellVisible</td>
<td>This parameter SHALL be included when the target has a serving cell, or is able to receive and decode signals in a cell, that is either GSM, WCDMA or LTE.</td>
</tr>
</tbody>
</table>

OMA-LPPe-CommonIEsRequestAssistanceData field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>approximate-location</td>
<td>This parameter provides an approximate location for the target device.</td>
</tr>
<tr>
<td>assistanceContainerRequestList</td>
<td>This field is used by the target to request proprietary assistance data.</td>
</tr>
</tbody>
</table>
### OMA-LPpe-CommonIEsRequestAssistanceData field descriptions

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>requestPeriodicADwithUpdate</td>
<td>This field is used to request periodic/triggered assistance data session (accompanied by the request for the actual data).</td>
</tr>
<tr>
<td>periodicAD-session-ID</td>
<td>This field provides the periodic/triggered session ID assigned to the Periodic/Triggered Assistance Data Transfer with Update procedure.</td>
</tr>
<tr>
<td>segmentedADpreference</td>
<td>This field SHALL be included if the target prefers the server to use segmented transfer of assistance data. Values can indicate &quot;use the basic method&quot; or &quot;use the basic method with resume capability&quot;.</td>
</tr>
<tr>
<td>segmentedADResume</td>
<td>The parameter is used to request resumption of an LPpe segmented transfer of assistance data following release or failure and later restoration of the connection and any location session between the server and the target. The parameter includes the following fields:</td>
</tr>
<tr>
<td></td>
<td>- segmentedAD-session-ID: session ID assigned by the server for the segmented transfer of assistance data.</td>
</tr>
<tr>
<td></td>
<td>- next-segment-number: segment number of next expected LPP Provide Assistance Data.</td>
</tr>
<tr>
<td>referencePointAssistanceReq</td>
<td>This field is used by the target to specify the target preference for particular types of reference point in any subsequent assistance data sent by the server that includes one or more reference points.</td>
</tr>
<tr>
<td>typeOfADRequest</td>
<td>This field indicates whether this is an initial request for a new procedure, an update request where the previously agreed assistance delivery will continue if the request cannot be supported or an update request where the previously agreed assistance data delivery will be aborted if the request cannot be supported.</td>
</tr>
<tr>
<td>referencePointReq</td>
<td>This field provides a list of reference point types, in the order of preference. The first reference point type in the list is the most preferred type, etc.</td>
</tr>
<tr>
<td>referencePointProvider</td>
<td>This field defines the preferred reference point provider.</td>
</tr>
<tr>
<td>mapDataReq</td>
<td>This field, if present, indicates that map data is requested for any reference point assistance data provided later by the server to the target for the indicated provider. The content of the field is specific to the reference point provider and may indicate additional information on the map format or data requested.</td>
</tr>
</tbody>
</table>
### OMA-LPpe-CommonIEsRequestAssistanceData field descriptions

#### ver1-1-localCellInformationReq
This parameter applies only to LPpe 1.1 and is included by the target to request information for local cells. The requested types of information are indicated using a bit string with the following bit assignments. A bit value of one indicates the information type is requested and a bit value of zero indicates it is not requested.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gnsTiming</td>
<td>indicates whether the target requests receipt of GNSS timing information without network timing</td>
</tr>
<tr>
<td>networkTiming</td>
<td>indicates whether the target requests receipt of GNSS timing information with cell network timing. Note that when gnsTiming and networkTiming are both requested, a server SHALL provide network timing if available and supported.</td>
</tr>
<tr>
<td>coverage</td>
<td>indicates whether the target requests receipt of cell coverage area</td>
</tr>
<tr>
<td>coordinates</td>
<td>indicates whether the target requests receipt of cell coordinates</td>
</tr>
<tr>
<td>frequencyAccuracy</td>
<td>indicates whether the target requests receipt of cell frequency accuracy</td>
</tr>
</tbody>
</table>

Other fields that may be included in this parameter are:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>localCellID</td>
<td>this field provides the global cell ID for the serving cell or primary serving cell for the target if this is GSM, WCDMA or LTE. If the target is not served by a GSM, WCDMA or LTE network, the field provides the global cell ID of the GSM, WCDMA or LTE cell with the strongest signal that the target can receive and decode. This field SHALL be omitted when the target cannot receive and decode signals from a local GSM, WCDMA or LTE cell.</td>
</tr>
<tr>
<td>numberOfCells</td>
<td>number of cells for which information is requested coded as an exponent N in the range 0 to 7, where the number of cells is 2**N. Information is always assumed to be requested for the cell identified by localCellID when included.</td>
</tr>
</tbody>
</table>

#### ver1-1-BroadcastAssistanceDataReq
This parameter applies only to LPpe 1.1 and is included by the target to request assistance data associated with broadcast of (other) assistance data. The target may include information related to a particular broadcast system of interest in which case the server SHALL return information for this broadcast system if supported including an updated list of cipher sets for any target that supports ciphering and that the target is authorized to receive according to any subscription or service agreement. If the target does not specify a broadcast system, the server may return information for any supported broadcast system consistent with the target capabilities, location and serving network.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>broadcastSystem</td>
<td>This parameter applies only to LPpe 1.1 and identifies a particular broadcast system. A target SHALL include in this parameter the IDs for the most recent list of cipher sets and/or authentication sets previously received from the server for this broadcast system if any of the cipher sets and/or authentication sets, respectively, are currently being used (e.g. have not yet expired). A server may use the list to deduce service previously provided to the target without the need to keep records which may assist charging.</td>
</tr>
</tbody>
</table>

#### ver1-1-AccessNetwork
This parameter applies only to LPpe 1.1. and provides the identity of the access network that the target is currently using or wishes to be associated with the assistance data being requested.
**OMA-LPpe-CommonIEsRequestAssistanceData** field descriptions

**ver1-1-groundMorphologyModelReq**
This field is used to request ground morphology model assistance. Ground morphology information includes ground altitude and building heights information; this information can be used to increase accuracy of position estimation. The morphology information is provided for a 2D grid of points.

**refAreaParam**
This structure is used by the target to define the rectangular area for which ground morphology assistance data is requested. This field may be omitted if the target has no information on its reference location.

**northWestCorner**
This field specifies the North-West corner of the rectangular area for which the morphology information is requested. If the target does not know its reference location this parameter is not included.

**spanX, spanY**
These fields specify the width of the rectangular area for which ground morphology assistance is requested: The rectangle is oriented according to W-E and N-S directions, *spanX* defines the width in W-E direction, *spanY* defines the width in N-S direction. The North West corner of the rectangle is centered in *northWestCorner* point.

The width of the rectangle in both directions expressed in meters is given by the expression

\[
\text{dim}_x [m] = 2^{\text{spanX}} m \\
\text{dim}_y [m] = 2^{\text{spanY}} m
\]

Admitted values of the grid width in both dimensions are comprised between 64 m and 16384 m.

---

**OMA-LPpe-CommonIEsProvideAssistanceData**

The **OMA-LPpe-CommonIEsProvideAssistanceData** carries common IEs for a ProvideAssistance Data message extension.

```asn1
OMA-LPpe-CommonIEsProvideAssistanceData ::= SEQUENCE {
 assistanceContainerList OMA-LPpe-AssistanceContainerProvideList OPTIONAL,
 providePeriodicADwithUpdate OMA-LPpe-ProvidePeriodicADwithUpdate OPTIONAL,
 segmentedADTransfer OMA-LPpe-SegmentedADTransfer OPTIONAL,
 default-reference-point OMA-LPpe-ReferencePoint OPTIONAL,
...
-- version 1.1 extension element
 ver1-1-localCellInformation OMA-LPpe-ver1-1-LocalCellInformation OPTIONAL,
 ver1-1-BroadcastAssistanceData OMA-LPpe-ver1-1-BroadcastAssistanceData OPTIONAL,
 ver1-1-groundMorphologyModel OMA-LPpe-ver1-1-GroundMorphologyModel OPTIONAL
}
OMA-LPpe-ProvidePeriodicADwithUpdate ::= SEQUENCE {
 periodicAD-session-ID OCTET STRING (SIZE(4)),
 typeOfADProvide OMA-LPpe-TypeOfADProvide,
...}
OMA-LPpe-TypeOfADProvide ::= ENUMERATED {
 responseToInitialRequest,
 providePeriodicAD,
 responseToTargetUpdateRequest,
 serverUpdate,
...}
OMA-LPpe-SegmentedADTransfer ::= SEQUENCE {
 segmentedAD-session-ID OMA-LPpe-Session-ID,
 segment-number INTEGER (1..4096),
...}
```
OMA-LPPe-ver1-1-LocalCellInformation ::= SEQUENCE {
  ver1-1-timingInformation SEQUENCE (SIZE (1..maxCellSets)) OF GNSS-ReferenceTime OPTIONAL,
  ver1-1-other-CellInformation SEQUENCE (SIZE (1..maxCells)) OF OMA-LPPe-ver1-1-CellInformation OPTIONAL,
  ...
}

maxCellSets INTEGER ::= 8

maxCells INTEGER ::= 128

OMA-LPPe-ver1-1-CellInformation ::= SEQUENCE {
  cellID OMA-LPPe-ver1-1-CellGlobalID,
  coverage CHOICE {
    circle EllipsoidPointWithUncertaintyCircle,
    ellipse EllipsoidPointWithUncertaintyEllipse,
    arc EllipsoidArc,
    polygon Polygon,
    ...
  } OPTIONAL,
  coordinates EllipsoidPointWithAltitudeAndUncertaintyEllipsoid OPTIONAL,
  frequencyAccuracy INTEGER (1..6) OPTIONAL,
  ...
}

OMA-LPPe-ver1-1-BroadcastAssistanceData ::= SEQUENCE {
  broadcastSystem OMA-LPPe-ver1-1-BroadcastSystemID,
  accessNetworks SEQUENCE (SIZE (1..16)) OF OMA-LPPe-ver1-1-AccessNetworkID,
  coverageArea CHOICE {
    circle EllipsoidPointWithUncertaintyCircle,
    ellipse EllipsoidPointWithUncertaintyEllipse,
    polygon Polygon,
    ...
  } OPTIONAL,
  broadcastADTypes OMA-LPPe-ver1-1-BroadcastADTypes OPTIONAL,
  broadcastMode CHOICE {
    unencapsulated NULL,
    encapsulated OMA-LPPe-ver1-1-EncapsulatedMode,
    ...
  },
  ...
}

OMA-LPPe-ver1-1-EncapsulatedMode ::= SEQUENCE {
  serverID OMA-LPPe-ver1-1-ServerID,
  cipherSets SEQUENCE (SIZE (1..16)) OF OMA-LPPe-ver1-1-CipherSet OPTIONAL,
  authentication SEQUENCE (SIZE (1..4)) OF OMA-LPPe-ver1-1-AuthenticationSet OPTIONAL,
  ...
}

Conditional presence	Explanation
ProvidePeriodicADWith Update | The parameter SHALL be present in a Provide Assistance Data for Periodic/Triggered Assistance Data Transfer with Update. The field SHALL be omitted in other cases.
segmentedTransferWithResume | This parameter SHALL be present in each LPP Provide Assistance Data message sent to a target when a segmented transfer of assistance data with resume capability is either started or resumed.
### OMA-LPPe-CommonIEsProvideAssistanceData field descriptions

**assistanceContainerList**

This field is used to deliver the requested vendor-/operator-specific assistance data.
**OMA-LPPe-CommonIESProvideAssistanceData field descriptions**

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>providePeriodicADwithUpdate</strong></td>
<td>This field is used in the periodic/triggered assistance data procedure to provide the session ID and the reason for providing the assistance data.</td>
</tr>
<tr>
<td><strong>segmentedADTransfer</strong></td>
<td>This parameter provides the following fields to support segmented transfer of assistance data with a resume capability.</td>
</tr>
<tr>
<td></td>
<td><strong>segmentedAD-session-ID</strong> session ID assigned by the server which should be unique across all servers</td>
</tr>
<tr>
<td></td>
<td><strong>segment-number</strong> segment number starting from 1 and incremented by 1 in each successive LPP Provide Assistance Data message</td>
</tr>
<tr>
<td><strong>default-reference-point</strong></td>
<td>This field includes a default reference point applicable to other assistance data for which a reference point is associated. Usage of the default reference point is specified in the description of other applicable assistance data. The default reference point can also be provided to support location reporting relative to a reference point.</td>
</tr>
<tr>
<td><strong>periodicAD-session-ID</strong></td>
<td>This field provides the session ID assigned to the Periodic/Triggered Assistance Data Transfer with Update procedure.</td>
</tr>
<tr>
<td><strong>typeOfADProvide</strong></td>
<td>This field indicates whether this is a response to an initial request for a new procedure, normal delivery of periodic/triggered assistance data, a response to an update request from the target or an unsolicited server update.</td>
</tr>
<tr>
<td><strong>ver1-1-localCellInformation</strong></td>
<td>This field applies only to LPPe 1.1 and provides timing and other information for up to 128 GSM, WCDMA and/or LTE cells.</td>
</tr>
<tr>
<td><strong>ver1-1-timingInformation</strong></td>
<td>This field applies only to LPPe 1.1 and provides either GNSS timing information alone or GNSS timing associated with network timing for up to 8 sets of cells. For each set of cells in the latter case, GNSS timing information is provided for up to 16 individual cells according to the data type GNSS-ReferenceTime defined for LPP [LPP].</td>
</tr>
<tr>
<td><strong>ver1-1-other-cellInformation</strong></td>
<td>This field applies only to LPPe 1.1 and provides the following information for one cell:</td>
</tr>
<tr>
<td></td>
<td><strong>cellID</strong> Global Cell ID and cell type (GSM, WCDMA or LTE)</td>
</tr>
<tr>
<td></td>
<td><strong>coverage</strong> Engineered coverage area of the cell as given by the location uncertainty area for a particular geographic shape. Confidence if included for a geographic shape SHALL be ignored</td>
</tr>
<tr>
<td></td>
<td><strong>coordinates</strong> Location coordinates and accuracy for the cell tower antenna</td>
</tr>
<tr>
<td></td>
<td><strong>frequencyAccuracy</strong> Frequency accuracy for the cell encoded as follows:</td>
</tr>
<tr>
<td></td>
<td>1: &lt;= 25 ppb</td>
</tr>
<tr>
<td></td>
<td>2: 50 ppb</td>
</tr>
<tr>
<td></td>
<td>3: 100 ppb</td>
</tr>
<tr>
<td></td>
<td>4: 250 ppb</td>
</tr>
<tr>
<td></td>
<td>5: 500 ppb</td>
</tr>
<tr>
<td></td>
<td>6: &gt;=1000 ppb</td>
</tr>
</tbody>
</table>
### OMA-LPPe-CommonIEsProvideAssistanceData field descriptions

**OMA-LPPe-ver1-1-BroadcastAssistanceData**

This parameter applies only to LPPe 1.1 and provides information on assistance data available via broadcast for a particular broadcast system. The following information can be included.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>broadcastSystem</td>
<td>the broadcast system for which information is provided</td>
</tr>
<tr>
<td>accessNetworks</td>
<td>the access network or networks supporting this broadcast system in the vicinity of the target</td>
</tr>
<tr>
<td>coverageArea</td>
<td>a continuous broadcast coverage area that includes or is close to the location of the target</td>
</tr>
<tr>
<td>broadcastADTypes</td>
<td>the types of assistance data being broadcast</td>
</tr>
<tr>
<td>broadcastMode</td>
<td>identifies whether unencapsulated or encapsulated LPP and LPP/LPPe messages are broadcast</td>
</tr>
</tbody>
</table>

**cipherSets**

This parameter applies only to LPPe 1.1 and to encapsulated mode and provides a list of 1 to 16 cipher sets each containing information relevant to ciphering for some or all assistance data being broadcast using a particular broadcast system. A target SHALL replace any previous cipher sets from a particular server with any new sets from the same server. A cipher set may refer to ongoing ciphering or to ciphering that is scheduled for a later time as well as to ciphering applicable to the target location or to other locations. A target that supports ciphering should request new assistance data from a server when it detects use of a cipher set by the server that it does not possess. To help avoid periods when a target does not have the right cipher set, a target may request new broadcast assistance data once it detects that a particular cipher set used previously has not been used for a period of one hour. A server should, if possible, use a cipher set over the entire area supported by the server for a period of at least 2 hours and should stagger the change to a new cipher set by introducing the new set over the entire area a piece at a time in order to avoid all targets in the area requesting new assistance data all at the same time. When this parameter is not included, a target may continue to use any cipher sets previously received from the server.

**authentication**

This parameter applies only to LPPe 1.1 and is included when a server requires a target to authenticate every assistance data broadcast message received via the indicated broadcast system. Any broadcast assistance data message received via the indicated broadcast system that cannot be authenticated (e.g. does include a digital signature) or that fails authentication or that is received after the end of its validity period SHALL be discarded by a target. This parameter provides protection to a target against broadcast messages that may be unauthorized or fraudulent.

This parameter provides a list of 1 to 4 authentication sets each containing information relevant to authentication for some or all assistance data being broadcast using a particular broadcast system. A target SHALL replace any previous authentication sets from a particular server with any new sets from the same server. An authentication set may refer to ongoing authentication or to authentication that is scheduled for a later time as well as to authentication applicable to the target location or to other locations. A target that supports authentication should request new assistance data from a server for any broadcast system for which authentication has been mandated when it detects use of an authentication set by the server that it does not possess. To help avoid periods when a target does not have the right authentication set, a target may request new broadcast assistance data once it detects that a particular authentication set used previously has not been used for a period of one hour. A server should, if possible, use an authentication set over the entire area supported by the server for a period of at least 24 hours and should stagger the change to a new cipher set by introducing the new set over the entire area a piece at a time in order to avoid all targets in the area requesting new assistance data all at the same time. When this parameter is not included, a target may continue to use any authentication sets previously received from the server.
The **OMA-LPpe-CommonIESRequestLocationInformation** carries common IEs for a Request Location Information message extension.

```asn1
OMA-LPpe-CommonIESRequestLocationInformation ::= SEQUENCE {
 iP-Address-Request OMA-LPpe-IP-Address-Request OPTIONAL,
 locationInformationContainerRequest OMA-LPpe-LocationInformationContainerRequest OPTIONAL,
 requestPeriodicLocInfoWithUpdate OMA-LPpe-RequestPeriodicLocInfoWithUpdate OPTIONAL,
 relativeLocationChange-Request OMA-LPpe-RelativeLocationChange-Request OPTIONAL,
 localPositionRequest OMA-LPpe-LocalPositionRequest OPTIONAL,
 scheduledLocation-Request OMA-LPpe-ScheduledLocation-Request OPTIONAL,
 accessTypeRequest OMA-LPpe-AccessTypeRequest OPTIONAL,
 segmentedLI-preference ENUMERATED {useBasic, useResume, ...} OPTIONAL,
 segmentedLIResume OMA-LPpe-SegmentedLIResume OPTIONAL,
 ...,
 civicLocation-Request OMA-LPpe-CivicLocation-Request OPTIONAL
}

OMA-LPpe-IP-Address-Request ::= SEQUENCE {
 ...}

OMA-LPpe-RequestPeriodicLocInfoWithUpdate ::= SEQUENCE {
 session-ID OCTET STRING (SIZE(4)),
 typeOfLocInfoRequest OMA-LPpe-TypeOfLocInfoRequest,
 ...}

OMA-LPpe-TypeOfLocInfoRequest ::= ENUMERATED {
 initialRequest,
 updateAndContinueIfUpdateFails,
 updateAndAbortIfUpdateFails,
 ...
}

OMA-LPpe-RelativeLocationChange-Request ::= SEQUENCE {
 numberOfChanges INTEGER (1..5) OPTIONAL,
 ...}

OMA-LPpe-LocalPositionRequest ::= SEQUENCE {
 typeOfRequest ENUMERATED {
 localOptional, localMandatory, localOnly, ... },
 referencePointReq SEQUENCE (SIZE (1..8)) OF OMA-LPpe-ReferencePointUniqueID OPTIONAL,
 ...}

OMA-LPpe-ScheduledLocation-Request ::= SEQUENCE {
 gnssTime GNSS-SystemTime OPTIONAL, --Cond AtLeastOne
 networkTime NetworkTime OPTIONAL, --Cond AtLeastOne
 relativeTime INTEGER (1..1024) OPTIONAL, --Cond AtLeastOne
 windowSize INTEGER (1..1024) OPTIONAL,
 ...}

OMA-LPpe-AccessTypeRequest ::= SEQUENCE {
 ...}

OMA-LPpe-SegmentedLIResume ::= SEQUENCE {
 segmentedLI-session-ID INTEGER (1..256),
 next-segment-number INTEGER (1..4096),
 ...,
 format ENUMERATED {pidf-lo, ...},
```
### Conditional presence

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
</table>
| *RequestPeriodicLocInfo*  
*WithUpdate* | The parameter *SHALL* be present in a new request or modified request for Periodic/Triggered Location Information Transfer with Target Update. The field *SHALL* be omitted in other cases. |
| *AtLeastOne*  
*segmentedTransferResume* | At least one of these parameters *SHALL* be present. This parameter *SHALL* be included when the server requests resumption of a segmented transfer of location information. No other location information *SHALL* then be requested. |

### OMA-LPPe-CommonIEsRequestLocationInformation  field descriptions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>iP-Address-Request</em></td>
<td>This parameter is included by the server to request the target to report its local IP addresses.</td>
</tr>
<tr>
<td><em>locationInformationContainerRequest</em></td>
<td>This parameter specifies the list of location information containers for a specified vendor or operator that the target should provide.</td>
</tr>
</tbody>
</table>
### OMA-LPPe-CommonIEsRequestLocationInformation field descriptions

#### requestPeriodicLocInfoWithUpdate
This field is used to request periodic/triggered location information session (accompanied by the request for the actual location information).

#### relativeLocationChange-Request
This parameter is included by the server to request the target to report its relative change of location.

#### localPositionRequest
This field is included by the server to request or permit the target to report its location relative to a reference point. This request only applies when the target has information on one or more reference points and is reporting a location estimate and SHALL be ignored by the target when the target has no information on reference points or reports location measurements but not a location estimate.

#### scheduledLocation-Request
This parameter is included by the server to request the target to perform all requested location measurements and obtain any other requested location information (except for information that can be computed from other information) within a scheduled time window (see note) defined by the following parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gnssTime</td>
<td>absolute GNSS time of the start of the time window</td>
</tr>
<tr>
<td>networkTime</td>
<td>network time of the start of the time window</td>
</tr>
<tr>
<td>relativeTime</td>
<td>relative Time in seconds from current time to the start of the time window. Current time is defined as the time the message was received.</td>
</tr>
<tr>
<td>windowSize</td>
<td>width of the time window in units of 10 ms; absence of this parameter implies best effort to perform all measurements as close to the start time as possible</td>
</tr>
</tbody>
</table>

This parameter should not be included by the server and SHALL if present be ignored by the target if other LPP or LPPe parameters are present that require repeated (e.g. periodic or triggered) location information reporting by the target or if qos is present containing responseTime in CommonIEsRequestLocationInformation in the LPP Request Location Information. When gnssTime and networkTime are both present, the target SHALL give precedence to gnssTime if the referenced GNSS time is known to within 1 ms but SHALL other otherwise give precedence to networkTime. The target SHALL give lowest preference to relativeTime when another start time is present that can be used (e.g. gnssTime is present and the target knows the associated GNSS time).

**NOTE:** it is required that measurement time be within the scheduled window. Measurement time refers to the time or times at which a measurement is valid – e.g. the time a measurement was completed or the time to which a measurement can reliably and accurately be adjusted.

#### accessTypeRequest
This parameter is included by the server to request the access type or types currently in use by the target device.

#### segmentedLIpreference
This field SHALL be included if the server prefers the target to use segmented transfer of location information. Values can indicate "use the basic method" or "use the basic method with resume capability".

#### segmentedLIResume
The parameter is used to request resumption of an LPPe segmented transfer of location information following release or failure and later restoration of the connection and any location session between the server and the target. The parameter includes the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>segmentedLI-session-ID</td>
<td>session ID assigned by the target for the segmented transfer</td>
</tr>
<tr>
<td>next-segment-number</td>
<td>segment number of next expected LPP Provide Location Information</td>
</tr>
</tbody>
</table>

#### session-ID
This field provides the periodic/triggered session ID assigned to the Periodic/Triggered Location information Transfer with Update procedure.

#### typeOfLocInfoRequest
This field indicates whether this is an initial request for a new procedure, an update request where the previously agreed location information delivery will continue if the request cannot be supported or an update request where the previously agreed location information delivery will be aborted if the request cannot be supported.

#### numberOfChanges
This field indicates the number of relative changes of location to be reported by the target. The default if absent is one. The target SHALL report the indicated number of changes if available or, if not available, the number of changes that are available.
### OMA-LPPe-CommonIEsRequestLocationInformation field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>typeOfRequest</strong></td>
<td>This field indicates whether local position reporting is an optional addition to reporting of absolute location, a mandatory addition to reporting of absolute location, or a mandatory alternative to absolute location (which SHALL then not be reported).</td>
</tr>
<tr>
<td><strong>referencePointReq</strong></td>
<td>This field, if included, specifies a list of desired reference points relative to which the subject location is requested in the order of preference. The first reference point in the list is the most preferred reference point, etc. Details of the reference points would have been provided to the target in previous assistance data. If no reference points are specified, the target may report its location using any available reference point.</td>
</tr>
<tr>
<td><strong>civicLocation-Request</strong></td>
<td>This field, if included, indicates a request for the civic location of the target. The format field indicates the requested format as follows: pidf-lo the requested format is OMA-LPPe-CivicLocation-pidf-lo</td>
</tr>
</tbody>
</table>

#### OMA-LPPe-CommonIEsProvideLocationInformation

The OMA-LPPe-CommonIEsProvideLocationInformation carries common IEs for a Provide Location Information message extension.

```asn1
-- ASN1START
OMA-LPPe-CommonIEsProvideLocationInformation ::= SEQUENCE {
 highAccuracy3Dposition OMA-LPPe-HighAccuracy3Dposition OPTIONAL, --Cond HighAccuracy
 localPosition OMA-LPPe-LocalPosition OPTIONAL, --Cond HighAccuracy
 highAccuracy3Dvelocity OMA-LPPe-HighAccuracy3Dvelocity OPTIONAL, --Cond HighAccuracy
 iP-Address-List OMA-LPPe-IP-Address-List OPTIONAL, --Cond HighAccuracy
 locationInformationContainer OMA-LPPe-LocationInformationContainer OPTIONAL, --Cond HighAccuracy
 providePeriodicLocInfoWithUpdate OMA-LPPe-ProvidePeriodicLocInfoWithUpdate OPTIONAL, --Cond HighAccuracy
 relativeLocationChangeList OMA-LPPe-RelativeLocationChangeList OPTIONAL, --Cond HighAccuracy
 scheduledLocation OMA-LPPe-ScheduledLocation OPTIONAL, --Cond HighAccuracy
 accessTypes OMA-LPPe-AccessTypes OPTIONAL, --Cond HighAccuracy
 segmentedLITransfer OMA-LPPe-SegmentedLITransfer OPTIONAL, --Cond HighAccuracy
 locationInformationTimeStamp OMA-LPPe-TimeStamp OPTIONAL, --Cond HighAccuracy
 locationSource OMA-LPPe-LocationSource OPTIONAL, --Cond HighAccuracy
 civicLocation-pidf-lo OMA-LPPe-CivicLocation-pidf-lo OPTIONAL, --Cond CivicLocationRequest-pidf-lo
}

OMA-LPPe-LocalPosition ::= SEQUENCE {
 referencePoint OMA-LPPe-ReferencePointUniqueID, --Cond HighAccuracy
 subjectLocation OMA-LPPe-RelativeLocation OPTIONAL, --Cond HighAccuracy
 ...
}

OMA-LPPe-IP-Address-List ::= SEQUENCE (SIZE (1..maxIPAddress)) OF OMA-LPPe-IP-Address

maxIPAddress INTEGER ::= 5

OMA-LPPe-IP-Address ::= SEQUENCE {
 local-IP-Address CHOICE {
 ipv4 BIT STRING (SIZE(32)),
 ipv6 BIT STRING (SIZE(128)),
 ...
 },
 bearer OMA-LPPe-Bearer, --Cond HighAccuracy
 nat BOOLEAN OPTIONAL, --Cond HighAccuracy
 ...
-- ASN1END
```
OMA-LPPe-Bearer ::= ENUMERATED {
  unknown,
  gsm,
  utran,
  lte,
  wlan,
  wimax,
  dsl,
  pktcable,
  other,
  ....
  nr
}

OMA-LPPe-ProvidePeriodicLocInfowithUpdate ::= SEQUENCE {
  session-ID OCTET STRING (SIZE(4)),
  typeOfLocInfoProvide OMA-LPPe-TypeOfLocInfoProvide,
  ...
}

OMA-LPPe-TypeOfLocInfoProvide ::= ENUMERATED {
  responseToInitialRequest,
  providePeriodicLocInfo,
  responseToServerUpdateRequest,
  targetUpdate,
  ...
}

OMA-LPPe-RelativeLocationChangeList ::= SEQUENCE (SIZE (1..maxRelativeLocation)) OF
  OMA-LPPe-RelativeLocationChange

OMA-LPPe-RelativeLocationChange ::= SEQUENCE {
  relativeTime INTEGER (0..65535) OPTIONAL,
  transactionID INTEGER (0..255) OPTIONAL,
  relativeLocation OMA-LPPe-RelativeLocation,
  ...
}

maxRelativeLocation INTEGER ::= 5

OMA-LPPe-ScheduledLocation ::= SEQUENCE {
  disposition ENUMERATED {
    withinWindow,
    outsideWindowOrNoWindow,
    notSupportedDueToNoCapability,
    notSupportedDueToNoTimeReference,
    notSupportedDueToConflictWithAnotherRequest,
    notSupportedForOtherReasons,
    ...
  },
  actualWindow SEQUENCE {
    start INTEGER (-512..511),
    duration INTEGER (0..2047)
  } OPTIONAL,
  ...
}

OMA-LPPe-AccessTypes ::= SEQUENCE {
  accessTypeUnknown NULL OPTIONAL,
  fixedAccessTypes OMA-LPPe-FixedAccessTypes OPTIONAL,
  wirelessAccessTypes OMA-LPPe-WirelessAccessTypes OPTIONAL,
  ...
}

OMA-LPPe-SegmentedLITransfer ::= SEQUENCE {
  segmentedLI-session-ID INTEGER (1..256),
  segment-number INTEGER (1..4096),
  ...
}

OMA-LPPe-TimeStamp ::= CHOICE {
  gnssTime GNSS-SystemTime,
  networkTime NetworkTime,
relativeTime INTEGER {0..1024},
...

OMA-LPPe-LocationSource ::= SEQUENCE {
    agnss NULL OPTIONAL,
    otdoa NULL OPTIONAL,
    eotd NULL OPTIONAL,
    otdoaUTRA NULL OPTIONAL,
    ecidLTE NULL OPTIONAL,
    ecidGSM NULL OPTIONAL,
    ecidUTRA NULL OPTIONAL,
    wlanAP NULL OPTIONAL,
    srn NULL OPTIONAL,
    sensors NULL OPTIONAL,
    ...
    nr-dl-tdoa NULL OPTIONAL,
    nr-dl-aod NULL OPTIONAL,
    ecidNR NULL OPTIONAL,
    bt NULL OPTIONAL,
    mbs NULL OPTIONAL,
    baro-sensor NULL OPTIONAL,
    motion-sensor NULL OPTIONAL
}
-- ASN1STOP

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>HighAccuracy</td>
<td>This field SHALL be present, when providing high accuracy position/velocity, i.e. when the highAccuracyMethodRequested is set true in AGNSS-PositioningInstructions.</td>
</tr>
<tr>
<td>ProvidePeriodicLocInfoWithUpdate</td>
<td>The parameter SHALL be present in a Provide Location Information for Periodic/Triggered Assistance Data Transfer with Target Update. The field SHALL be omitted in other cases.</td>
</tr>
<tr>
<td>ScheduledLocationRequested</td>
<td>The parameter SHALL be present in the first or only response to an LPP Request Location Information if scheduledLocationRequest was included by the server in OMA-LPPe-CommonIESRequestLocationInformation.</td>
</tr>
<tr>
<td>segmentedTransferWithResume</td>
<td>This parameter SHALL be present in each LPP Provide Location Information message sent to a server when a segmented transfer of location information with resume capability is either started or resumed.</td>
</tr>
<tr>
<td>LocationSource</td>
<td>This parameter SHALL be present in each LPP Provide Location Information message sent to a server when a location estimate is sent in either low accuracy format in LPP (as part of LPP CommonIESProvideLocationInformation) or in high accuracy format in LPPe (as part of LPPe OMA-LPPe-CommonIESProvideLocationInformation).</td>
</tr>
<tr>
<td>CivicLocationRequest-pidf-lo</td>
<td>This parameter shall be present if available when the civic location of the target is requested by the server with the format pidf-lo. This parameter is optional in other cases.</td>
</tr>
</tbody>
</table>
### OMA-LPPe-CommonIEsProvideLocationInformation field descriptions

**highaccuracy3Dposition**

This field provides a high accuracy location estimate. This field **SHALL** be used to deliver the location estimate in case the server requested high accuracy GNSS method.

**localPosition**

This field provides a subject location in a local coordinate system, whose origin is defined by a reference point. This field may only be included when a target provides a location estimate (e.g. **SHALL NOT** be provided when a target provides location measurements). The field may be provided in addition to or instead of an absolute location estimate as specified in an **OMA-LPPe-CommonIEsRequestLocationInformation** message in the case of a solicited response.

**highaccuracy3DVelocity**

This field provides a high accuracy velocity estimate. This field **SHALL** be used to deliver the velocity estimate in case the server requested high accuracy GNSS method.

**iP-Address-List**

This parameter provides a list of one or more local IP addresses assigned to the target for a particular bearer.

**locationInformationContainer**

This parameter carries vendor-/operator-specific location information.

**providePeriodicLocInfoWithUpdate**

This field is used to provide periodic/triggered location information session (accompanied by the provide for the actual data).

**relativeLocationChangeList**

This parameter provides a list of one or more consecutive relative changes in the location of the target device. The changes are relative to the times T0, T1, T2, T3 etc. when the target previously sent LPP Provide Location Information messages to the server. Here T0 represents the time of sending of the most recent LPP Provide Location Information message – i.e. the one carrying the relative changes in location; T1 represents the time of sending of the previous LPP Provide Location Information message – i.e. the one sent by the target immediately prior to T0; T2 represents the time of sending of the LPP Provide Location message sent by the target immediately prior to T1 etc. A segmented series of LPP Location Information messages sent by the target at almost the same time counts as one message and one time. The list of location changes sent by the target is ordered with the first change giving the target location at T0 relative to the reference location of the target at T1, the second change giving the target location at T1 relative to the reference location of the target at T2 etc. This information can be used by the server to obtain or improve the absolute location of the target – e.g. when the target is unable to provide other location information for some temporary duration.

\[
\text{LocChangeList} = (\text{LocChange (T0-T1), LocChange (T1-T2), \ldots})
\]

![Diagram of relativeLocationChangeList](image.png)
**OMA-LPPe-Common1EsProvideLocationInformation field descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>scheduledLocation</strong></td>
<td>This parameter indicates the degree to which a scheduled location request was supported and contains the following fields.</td>
</tr>
<tr>
<td>disposition</td>
<td>Indicates whether all returned location information was obtained within the requested time window or was obtained outside the window (including the case where no window was provided) or whether the request could not be supported due to no capability, no available time reference, conflict with another request or for some other reason.</td>
</tr>
<tr>
<td>actualWindow</td>
<td>Indicates the precise window within which all measurements and location were actually obtained when a disposition value of &quot;outsideWindowOrNoWindow&quot; is provided. The window is defined by a start time relative to the requested start time in units of 10 ms and a duration rounded up to a multiple of 10 ms with zero indicating interpolation or extrapolation to the exact start time. This field SHALL be provided if applicable and available and if the actual window can be accurately encoded. The field SHALL be omitted if the window start time or duration falls outside the allowed range.</td>
</tr>
<tr>
<td><strong>accessTypes</strong></td>
<td>This parameter provides the access type or types currently being used by the target device. The following fields can be included:</td>
</tr>
<tr>
<td>accessTypeUnknown</td>
<td>This field SHALL be included if the target cannot determine the access type in use – e.g. if the target is using a separate wireless or wireline modem of unknown type.</td>
</tr>
<tr>
<td>fixedAccessType</td>
<td>This field indicates the fixed access type or types currently in use by the target and SHALL be included if the target is using one or more fixed access types.</td>
</tr>
<tr>
<td>wirelessAccessType</td>
<td>This field indicates the wireless access type or types currently in use by the target and SHALL be included if the target is using one or more wireless access types.</td>
</tr>
<tr>
<td><strong>segmentedLITransfer</strong></td>
<td>This parameter provides the following fields to support segmented transfer of location information with a resume capability.</td>
</tr>
<tr>
<td>segmentedLI-session-ID</td>
<td>Session ID assigned by the target which should be unique within the target.</td>
</tr>
<tr>
<td>segment-number</td>
<td>Segment number starting from 1 and incremented by 1 in each successive LPP Provide Location Information message.</td>
</tr>
<tr>
<td><strong>referencePoint</strong></td>
<td>This field identifies the reference point for the subject location.</td>
</tr>
<tr>
<td><strong>subjectLocation</strong></td>
<td>This field defines the subject location relative to the reference point. If this field is absent, the subject location coincides with the reference point location.</td>
</tr>
<tr>
<td><strong>local-IP-Address</strong></td>
<td>This parameter provides a local IPv4 or IPv6 address assigned to the target.</td>
</tr>
<tr>
<td><strong>bearer</strong></td>
<td>This parameter provides the bearer associated with a particular IP address.</td>
</tr>
<tr>
<td>nat</td>
<td>This parameter indicates whether Network Address Translation (NAT) is used or may be used for a particular IP address (TRUE) or whether NAT is not used (FALSE). The default if not included is FALSE.</td>
</tr>
<tr>
<td><strong>session-ID</strong></td>
<td>This field provides the periodic/triggered session ID assigned to the Periodic/Triggered Location Information Transfer with Update procedure.</td>
</tr>
<tr>
<td><strong>typeOfLocInfoProvide</strong></td>
<td>This field indicates whether this is a response to an initial request for a new procedure, normal delivery of periodic/triggered location information, a response to an update request from the server or a unsolicited target update.</td>
</tr>
<tr>
<td><strong>relativeTime</strong></td>
<td>This field indicates the timespan in units of 0.1 seconds over which a reported relative change in location is measured. When multiple relative changes in location are reported, the corresponding timespans SHALL be contiguous (i.e. each time span SHALL begin at the instant that the previous timespan ends).</td>
</tr>
</tbody>
</table>
### OMA-LPPe-CommonIEsProvideLocationInformation field descriptions

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>transactionID</strong></td>
<td>This field provides the LPP transaction ID that was used for the first or only LPP Provide Location Information message that was sent by the target when it occupied the reference location for a reported relative change in location. The indicated LPP Provide Location Information may have provided the server with the absolute value of this reference location (either directly or via measurements). Providing the transaction ID may help the server identify the particular Provide Location Information message (and hence the reference location) if there may otherwise be ambiguity. This parameter is optional and SHALL be provided if available.</td>
</tr>
<tr>
<td><strong>relativeLocation</strong></td>
<td>This parameter provides the relative change in location.</td>
</tr>
<tr>
<td><strong>locationInformationTimestamp</strong></td>
<td>This parameter provides the time or, when a time period is applicable, the most recent time for which the provided measurements or location estimate are valid. The parameter allows the following alternatives listed in priority order (highest priority first) with the highest priority alternative that is available being provided:</td>
</tr>
<tr>
<td>gnsstime</td>
<td>absolute GNSS time</td>
</tr>
<tr>
<td>networkTime</td>
<td>network time for network known by the target to be associated with the server. In all other cases network time SHALL have lowest priority.</td>
</tr>
<tr>
<td>relativeTime</td>
<td>time interval in seconds between the measurement(s) and the transmission of this information by the target</td>
</tr>
<tr>
<td><strong>locationSource</strong></td>
<td>This parameter indicates the positioning technologies involved in calculating a UE-based position estimate sent by the target to the server. The parameter is encoded as a bitmap and lists the following positioning technologies:</td>
</tr>
<tr>
<td>agnss:</td>
<td>Assisted-GNSS</td>
</tr>
<tr>
<td>otdoa:</td>
<td>OTDOA on LTE</td>
</tr>
<tr>
<td>eotd:</td>
<td>E-OTD (GSM)</td>
</tr>
<tr>
<td>otdoaUTRA:OTDOA on UTRA</td>
<td></td>
</tr>
<tr>
<td>ecidLTE:</td>
<td>E-CID on LTE</td>
</tr>
<tr>
<td>ecidGSM:</td>
<td>E-CID on GSM</td>
</tr>
<tr>
<td>ecidUTRA: E-CID on UTRA</td>
<td></td>
</tr>
<tr>
<td>wlanAP:</td>
<td>WLAN AP</td>
</tr>
<tr>
<td>snr:</td>
<td>SRN</td>
</tr>
<tr>
<td>sensors:</td>
<td>Sensors</td>
</tr>
<tr>
<td>nr-dl-tdoa:</td>
<td>DL-TDOA for NR</td>
</tr>
<tr>
<td>nr-dl-aod:</td>
<td>DL-AoD for NR</td>
</tr>
<tr>
<td>ecidNR:</td>
<td>E-CID on NR</td>
</tr>
<tr>
<td>bt:</td>
<td>BT</td>
</tr>
<tr>
<td>mbs:</td>
<td>MBS</td>
</tr>
<tr>
<td>baro-sensor:</td>
<td>Barometric sensor</td>
</tr>
<tr>
<td>motion-sensor:</td>
<td>Motion sensor</td>
</tr>
</tbody>
</table>

This parameter should not be included when all the included measurements and/or location estimate include their own timestamp(s). If the parameter is included and an included measurement or location estimate has its own timestamp, the latter SHALL have precedence. If the parameter is not included and an included measurement or location estimate does not have its own timestamp, the timestamp SHALL be assumed to be the time of location information transmission from the target.

**locationSource**

This parameter indicates the positioning technologies involved in calculating a UE-based position estimate sent by the target to the server. The parameter is encoded as a bitmap and lists the following positioning technologies:

- agnss: Assisted-GNSS
- otdoa: OTDOA on LTE
- eotd: E-OTD (GSM)
- otdoaUTRA:OTDOA on UTRA
- ecidLTE: E-CID on LTE
- ecidGSM: E-CID on GSM
- ecidUTRA: E-CID on UTRA
- wlanAP: WLAN AP
- snr: SRN
- sensors: Sensors
- nr-dl-tdoa: DL-TDOA for NR
- nr-dl-aod: DL-AoD for NR
- ecidNR: E-CID on NR
- bt: BT
- mbs: MBS
- baro-sensor: Barometric sensor
- motion-sensor: Motion sensor

If more than one positioning technology is indicated, the target calculated a final position result reported to the server by appropriately combining individual position results (hybrid positioning).

**NOTE:** sensors can refer to barometric sensors and motion sensors for backward compatibility and should be included whenever baro-sensor, motion-sensor or both are included.

**civicLocation-pidf-lo**

This parameter provides the civic location of the target with the format pidf-lo.
### OMA-LPPe-CommonIESAbort

The *OMA-LPPe-CommonIESAbort* carries common IEs for an Abort message extension.

```asn1
OMA-LPPe-CommonIESAbort ::= SEQUENCE {
 abortCause ENUMERATED {periodicADsessionStop,
 periodicADprocedureNotSupported,
 periodicADprocedureNotAccepted,
 periodicLocInfoSessionStop,
 periodicLocInfoProcedureNotSupported,
 periodicLocInfoProcedureNotAccepted,
 ... }
 periodicSessionIDtoAbort OCTET STRING (SIZE(4)) OPTIONAL, --Cond periodicWithUpdate
 ...
}
```

#### Conditional presence

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>periodicWithUpdate</td>
<td>The parameter SHALL be present when a procedure for either Periodic/Triggered Transfer of Assistance Data with Update or Periodic/Triggered Transfer of Location Information with Update is aborted.</td>
</tr>
</tbody>
</table>

### OMA-LPPe-CommonIESError

The *OMA-LPPe-CommonIESError* carries common IEs for an Error message extension.

```asn1
OMA-LPPe-CommonIESError ::= SEQUENCE {
 ...
}
```

### 6.5 Positioning method IEs

Positioning method information elements are IEs included in the positioning method specific IEs in the corresponding messages.

#### 6.5.1 AGNSS Positioning

#### 6.5.1.1 AGNSS Assistance Data

---

### OMA-LPPe-AGNSS-ProvideAssistanceData

The *OMA-LPPe-AGNSS-ProvideAssistanceData* is used to provide assistance for UE-based and UE-assisted AGNSS-based methods.

```asn1
OMA-LPPe-AGNSS-ProvideAssistanceData ::= SEQUENCE {
 commonAssistData OMA-LPPe-AGNSS-CommonAssistData OPTIONAL,
 genericAssistData OMA-LPPe-AGNSS-GenericAssistData OPTIONAL,
 ...
}
```
– **OMA-LPpe-AGNSS-CommonAssistData**

The **OMA-LPpe-AGNSS-CommonAssistData** is used to provide GNSS-independent assistance for UE-based and UE-assisted AGNSS-based methods.

```asn1
OMA-LPpe-AGNSS-CommonAssistData ::= SEQUENCE {
 ionosphericModel OMA-LPpe-AGNSS-IonosphericModel OPTIONAL,
 troposphereModel OMA-LPpe-AGNSS-TroposphereModel OPTIONAL,
 altitudeAssistance OMA-LPpe-AGNSS-AltitudeAssistanceList OPTIONAL,
 solarRadiation OMA-LPpe-AGNSS-SolarRadiation OPTIONAL,
 ccpAssistCommonProvide OMA-LPpe-AGNSS-CCPassistCommonProvide OPTIONAL,
 ...
}
```

-- ASN1STOP

– **OMA-LPpe-AGNSS-GenericAssistData**

The **OMA-LPpe-AGNSS-GenericAssistanceData** is used to provide GNSS-dependent assistance for UE-based and UE-assisted AGNSS-based methods.

```asn1
OMA-LPpe-AGNSS-GenericAssistanceData ::= SEQUENCE (SIZE (1..16)) OF OMA-LPpe-AGNSS-GenericAssistDataElement

OMA-LPpe-AGNSS-GenericAssistDataElement ::= SEQUENCE {
 gnss-ID GNSS-ID,
 wideAreaIonoSurfacePerSVlist OMA-LPpe-AGNSS-WideAreaIonoSurfacePerSVlist OPTIONAL,
 mechanicsForAllSVs OMA-LPpe-AGNSS-MechanicsForAllSVs OPTIONAL,
 dcbsForAllSVs OMA-LPpe-AGNSS-DCBsForAllSVs OPTIONAL,
 navModelDegradationModel OMA-LPpe-AGNSS-NavModelDegradationModelList OPTIONAL,
 ccpAssistProvide OMA-LPpe-AGNSS-CCPassistGenericProvide OPTIONAL, --Cond CCP
 navModelList OMA-LPpe-AGNSS-NavModelList OPTIONAL,
 ...
}
```

-- ASN1STOP

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCP</td>
<td>The field is mandatory present, when providing continuous carrier phase assistance and reference time is included in the IE AGNSS-CCPassistCommonProvide. Otherwise the field SHALL NOT be present.</td>
</tr>
</tbody>
</table>

**OMA-LPpe-AGNSS-GenericAssistData field descriptions**

**gnss-ID**

This field specifies the GNSS ID of the satellite system for which data is being provided.
6.5.1.2 AGNSS Assistance Data Elements

– **OMA-LPPe-AGNSS-IonosphericModel**

The IE **OMA-LPPe-AGNSS-IonosphericModel** is used by the location server to provide local parameters to model the propagation delay of the GNSS signals through the ionosphere. Proper use of these fields allows a single-frequency GNSS receiver to remove parts of the ionospheric delay from the pseudorange measurements. The well-known Klobuchar ionospheric model is supported with the fields for the spatial and temporal validity. The parameters of the model can be localized where appropriate. The ionospheric storm indication reports the level of ionospheric activity in the region.

Periodic models, on the other hand, are based on the real-time GNSS observations and thus updated frequently to the target. The supported models include Wide Area Ionosphere Surface corrections that are provided to the target using the periodic AD procedure.

```asn1
OMA-LPPe-AGNSS-IonosphericModel ::= CHOICE {
 staticModels SEQUENCE {
 localKlobucharModelList OMA-LPPe-AGNSS-LocalKlobucharModelList OPTIONAL,
 ionoStormIndication OMA-LPPe-AGNSS-IonoStormIndication OPTIONAL,
 ...,
 },
 waIono CHOICE {
 controlParameters OMA-LPPe-AGNSS-WideAreaIonoSurfaceControlParametersProvide,
 commonProvide OMA-LPPe-AGNSS-WideAreaIonoSurfaceCommon,
 ...,
 },
 ...
}
```

**OMA-LPPe-AGNSS-IonosphericModel** field descriptions

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>localKlobucharModelList</td>
<td>This field carries parameters related to localized Klobuchar model.</td>
</tr>
<tr>
<td>ionoStormIndication</td>
<td>This field carries information on the ionosphere conditions in the area.</td>
</tr>
<tr>
<td>waIono</td>
<td>This field carries the periodic wide area ionosphere corrections. The field</td>
</tr>
<tr>
<td></td>
<td>carries controlParameters: Control parameters of the periodic wide area ionosphere correction surface. This is a response to the IE <em>OMA-LPPe-AGNSS-WideAreaIonoSurfaceControlParametersRequest</em> or a server-side update to the control parameters.</td>
</tr>
<tr>
<td></td>
<td>commonProvide: Common part of the WA Iono assistance data</td>
</tr>
</tbody>
</table>

– **OMA-LPPe-AGNSS-LocalKlobucharModelList**

The **OMA-LPPe-AGNSS-LocalKlobucharModelList** consists of multiple local Klobuchar models. The list can consist of up to 16 models. For instance, seven subsequent models, each with validity time of one hour, would result in totally seven hours of valid ionospheric model.

The local ionospheric model is given for the last known location of the target. It’s possible that there are several valid models for the target location, or that the target location uncertainty area is so large that the area includes more than one model. In this case, the server can provide the target with multiple models, and the target makes the decision which model to use.
OMA-LPPe-AGNSS-LocalKlobucharModelElement ::= SEQUENCE {
  validityArea OMA-LPPe-ValidityArea,
  klobucharModel SEQUENCE (SIZE(1..8)) OF OMA-LPPe-AGNSS-LocalKlobucharModel,
  ...
}

OMA-LPPe-AGNSS-LocalKlobucharModel ::= SEQUENCE {
  validityPeriod OMA-LPPe-ValidityPeriod,
  alfa0 INTEGER (-128..127),
  alfa1 INTEGER (-128..127),
  alfa2 INTEGER (-128..127),
  alfa3 INTEGER (-128..127),
  beta0 INTEGER (-128..127),
  beta1 INTEGER (-128..127),
  beta2 INTEGER (-128..127),
  beta3 INTEGER (-128..127),
  ...
}

--- ASN1STOP

**OMA-LPPe-AGNSS-LocalKlobucharModel field descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>validityArea</strong></td>
<td>This field specifies the validity area of the local Klobuchar model parameters. Representation of the validity area is described in Appendix C.1. The interpretation of the validity area is such that in case the target is within the validity area, the target may utilize the model.</td>
</tr>
<tr>
<td><strong>validityPeriod</strong></td>
<td>This field specifies the start time and duration of the model validity period.</td>
</tr>
<tr>
<td><strong>alpha0</strong></td>
<td>This field specifies the $\alpha_0$ parameter of the Klobuchar model. Scale factor $2^{-30}$ seconds.</td>
</tr>
<tr>
<td><strong>alpha1</strong></td>
<td>This field specifies the $\alpha_1$ parameter of the Klobuchar model. Scale factor $2^{-27}$ seconds/semi-circle.</td>
</tr>
<tr>
<td><strong>alpha2</strong></td>
<td>This field specifies the $\alpha_2$ parameter of the Klobuchar model. Scale factor $2^{-24}$ seconds/semi-circle$^2$.</td>
</tr>
<tr>
<td><strong>alpha3</strong></td>
<td>This field specifies the $\alpha_3$ parameter of the Klobuchar model. Scale factor $2^{-24}$ seconds/semi-circle$^3$.</td>
</tr>
<tr>
<td><strong>beta0</strong></td>
<td>This field specifies the $\beta_0$ parameter of the Klobuchar model. Scale factor $2^{11}$ seconds.</td>
</tr>
<tr>
<td><strong>beta1</strong></td>
<td>This field specifies the $\beta_1$ parameter of the Klobuchar model. Scale factor $2^{14}$ seconds/semi-circle.</td>
</tr>
<tr>
<td><strong>beta2</strong></td>
<td>This field specifies the $\beta_2$ parameter of the Klobuchar model. Scale factor $2^{16}$ seconds/semi-circle$^2$.</td>
</tr>
<tr>
<td><strong>beta3</strong></td>
<td>This field specifies the $\beta_3$ parameter of the Klobuchar model. Scale factor $2^{16}$ seconds/semi-circle$^3$.</td>
</tr>
</tbody>
</table>
The IE OMA-LPPe-AGNSS-IonoStormIndication provides the capability to carry ionospheric activity warnings to the target. In the IE OMA-LPPe-AGNSS-IonoStormIndication the area is given as a grid, coded in the same way as the IE OMA-LPPe-ValidityArea, but instead of valid/non-valid –indications for the regions, the level of ionospheric activity in the region is indicated. The usage and the NOAA scale are explained in Appendix C.2. The ionospheric storm indication should be given for a sufficiently large area around the target.

In case the server provides several models, each for a different time period, the validity area stays the same.

```
-- ASN1START
OMA-LPPe-AGNSS-IonoStormIndication ::= SEQUENCE {
 area OMA-LPPe-ValidityArea,
 --rleList SHALL NOT be included and is replaced by the stormList below
 stormList OMA-LPPe-AGNSS-StormList,
 ...
}
OMA-LPPe-AGNSS-StormList ::= SEQUENCE {SIZE(1..16)} OF OMA-LPPe-AGNSS-StormElement
OMA-LPPe-AGNSS-StormElement ::= SEQUENCE {
 validityPeriod OMA-LPPe-ValidityPeriod,
 rleListIono OMA-LPPe-AGNSS-RleListIono,
 ...
}
OMA-LPPe-AGNSS-RleListIono ::= SEQUENCE {SIZE(1..65535)} OF OMA-LPPe-AGNSS-RleIonoElement
OMA-LPPe-AGNSS-RleIonoElement ::= SEQUENCE {
 regionCount INTEGER (0..255),
 ionoIndex CHOICE {
 noaaScales OMA-LPPe-AGNSS-NoaaScales,
 ...
 },
 ...
}
OMA-LPPe-AGNSS-NoaaScales ::= ENUMERATED{ g1,g2, g3, g4, g5, unknown, none, ... }
-- ASN1STOP
```

**OMA-LPPe-AGNSS-IonoStormIndication** field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>area</td>
<td>This field specifies the area for which ionosphere storm indications are given. See Appendix C.1. and C.2 for further information.</td>
</tr>
<tr>
<td>stormList</td>
<td>This field provides information on the ionospheric activity in the area defined by area.</td>
</tr>
<tr>
<td>validityPeriod</td>
<td>This field specifies the time interval over which the storm data is valid.</td>
</tr>
<tr>
<td>rleListIono</td>
<td>This field specifies the ionospheric activity in the region.</td>
</tr>
<tr>
<td>ionoIndex</td>
<td>This field specifies the level of ionospheric activity as explained in Appendix C.2.</td>
</tr>
<tr>
<td>regionCount</td>
<td>This field indicates the number of subsequent regions with the same level of ionospheric activity. See Appendix C.2 for further information.</td>
</tr>
</tbody>
</table>

---

**OMA-LPPe-AGNSS-WideAreaIonoSurfaceControlParametersProvide**

The IE OMA-LPPe-AGNSS-WideAreaIonoSurfaceControlParametersProvide carries the control parameters of the periodic Wide Area ionosphere surface corrections.
Wide Area Ionosphere correction surface is another approach for providing ionosphere correction data to the target. Here real time ionosphere corrections are estimated by, say, a wide area reference station network. Ionosphere delay is calculated for each satellite by all the stations and a second-order interpolation model is estimated. The model is exploited by the target to estimate the ionosphere delay at the target position. The wide area corrections approach reduces the ionospheric residual to the decimetre-level.

The wide area ionosphere corrections are provided using the periodic AD framework. The framework handles the periodic AD session control by the inclusion of periodic AD session ID in each LPpe provide/request AD message that carries periodic AD. The WA Iono level control, on the other hand, provides the request mechanism as well the provision of the duration of the session, rate of the deliveries, the model reference position and the validity area.

The model is provided to the vicinity of the target so that the model reference position is as close to the last known location of the target as possible. The target location MUST at least lie within the validity area of the model. In case the target is moving out of the validity area, the target may update its location to the server, in which case the server may update the WA Iono model control parameters to the target using the update procedure.

```
-- ASN1START
OMA-LPpe-AGNSS-WideAreaIonoSurfaceControlParametersProvide ::= SEQUENCE {
 duration OMA-LPpe-Duration OPTIONAL, --Cond FirstOrDurModify
 rate INTEGER(1..64) OPTIONAL, --Cond FirstOrRateModify
 referencePosition Ellipsoid-Point OPTIONAL, --Cond FirstOrPosModify
 validityArea OMA-LPpe-ValidityArea OPTIONAL, --Cond FirstOrAreaModify
...
}
-- ASN1STOP
```

### Conditional presence

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>FirstOrDurModify</td>
<td>This field is mandatory present, when providing a first message of a new WA Iono AD session or when providing the modification of the duration. Otherwise it is not present.</td>
</tr>
<tr>
<td>FirstOrRateModify</td>
<td>This field is mandatory present, when providing a first message of a new WA Iono AD session or when providing the modification of the rate. Otherwise it is not present.</td>
</tr>
<tr>
<td>FirstOrPosModify</td>
<td>This field is mandatory present, when providing a first message of a new WA Iono AD session or when providing the modification of the reference position. Otherwise it is not present.</td>
</tr>
<tr>
<td>FirstOrAreaModify</td>
<td>This field is mandatory present, when providing a first message of a new WA Iono AD session or when providing the modification of the validity area. Otherwise it is not present.</td>
</tr>
</tbody>
</table>

### OMA-LPpe-AGNSS-WideAreaIonoSurfaceControlParametersProvide field description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>duration</td>
<td>This field specifies the length of the continuous periodic assistance session.</td>
</tr>
<tr>
<td>rate</td>
<td>This field specifies the interval between the assistance data deliveries in seconds.</td>
</tr>
<tr>
<td>referencePosition</td>
<td>This field specifies the reference position of ionospheric delay model according to WGS84 coordinates system</td>
</tr>
<tr>
<td>validityArea</td>
<td>This field specifies the validity area of the ionospheric interpolation model estimated by a wide area reference network. The interpretation of the validity area is such that in case the target is within the validity area, the target may utilize the model.</td>
</tr>
</tbody>
</table>

---

**OMA-LPpe-AGNSS-WideAreaIonoSurfaceCommon**

The IE **OMA-LPpe-AGNSS-WideAreaIonoSurfaceCommon** carries the common parameters of the periodic Wide Area ionosphere surface AD.
OMA-LPPe-AGNSS-WideAreaIonoSurfaceCommon field description

validityPeriod
This field defines the validity period of the wide area ionosphere correction.

OMA-LPPe-AGNSS-WideAreaIonoSurfacePerSVlist

The OMA-LPPe-AGNSS-WideAreaIonoSurfacePerSVlist consist of second order correction surface coefficients for each visible SV. The use of the model is explained in Appendix C.3. For more information on the usage, refer to OMA-LPPe-AGNSS-WideAreaIonoSurfaceControlParametersProvide. Calculating the delay using the parameters and the formula presented in Appendix C.3, yields the slant delay directly, i.e. there is no need to apply further scaling factors.

Wide Area Ionosphere Correction Surface is provided for each visible SV in each GNSS constellation for which corrections are requested. Visible in this context means an SV that can be observed within the validity area of the correction surface.

This IE is always accompanied by the IE OMA-LPPe-AGNSS-WideAreaIonoSurfaceCommon in the common part of the AGNSS AD delivery.

OMA-LPPe-AGNSS-WideAreaIonoSurfacePerSVelement field description

svID
This field specifies the SV for which correction is applicable.
a0
This parameter specifies the ionospheric delay for the SV at the reference position. Scale factor 0.1 TECU.

Conditional presence	Explanation
SecondOrder | The field is mandatory present if the 2nd-order model is being provided, otherwise it is not present.
### **OMA-LPPe-AGNSS-WideAreaIonoSurfacePerSVElement** field description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Scale factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>e1</td>
<td>This parameter describes the ionosphere first order dependency eastward from the origin.</td>
<td>0.001 TECU/km.</td>
</tr>
<tr>
<td>n1</td>
<td>This parameter describes the ionosphere first order dependency northward from the origin.</td>
<td>0.001 TECU/km.</td>
</tr>
<tr>
<td>e2</td>
<td>This parameter describes the ionosphere second order dependency eastward from the origin.</td>
<td>$10^{-5}$ TECU/km²</td>
</tr>
<tr>
<td>n2</td>
<td>This parameter describes the ionosphere second order dependency northward from the origin.</td>
<td>$10^{-5}$ TECU/km²</td>
</tr>
<tr>
<td>en</td>
<td>This parameter describes the ionosphere second order dependency cross-term.</td>
<td>$10^{-5}$ TECU/km²</td>
</tr>
</tbody>
</table>

---

### **OMA-LPPe-AGNSS-TroposphereModel**

The IE **OMA-LPPe-AGNSS-TroposphereModel** is used by the location server to provide local parameters to model the propagation delay of the GNSS signals through the troposphere. Proper use of these fields allows a GNSS receiver to remove parts of the tropospheric delay from the pseudorange measurements.

There are two different parameter set options: One that provides the zenith troposphere delay components determined in a given location and the needed parameters to adjust the delay to the target’s altitude. The other parameter set provides the surface pressure and optionally temperature that allow the target to compute the tropospheric delay using one of the known atmosphere models, such as the Hopfield or Saastamoinen model. Both parameter sets include the mapping function parameters that are used to map the zenith delay into the slant delay according to the satellite elevation angle.

Up to 64 parameter sets can be provided. For instance, if the target indicates that it supports multiple grid points, data can be provided for four different grid points around the target, and for four different time periods for each of the locations. If only one grid point is provided, it SHALL be the grid point that is closest to the last known position of the target. For the case of multiple grid points, the server chooses the points in the order of growing distance from the last known position.

```asn1
OMA-LPPe-AGNSS-TroposphereModel ::= SEQUENCE {
 troposphereDelayList OMA-LPPe-AGNSS-LocalTroposphereDelayList OPTIONAL,
 surfaceParametersList OMA-LPPe-AGNSS-LocalSurfaceParametersList OPTIONAL,
 ...}
```

---

### **OMA-LPPe-AGNSS-LocalTroposphereDelayList**

The IE **OMA-LPPe-AGNSS-LocalTroposphereDelayList** is used to remove the troposphere delay from the pseudorange measurements. The main component of the local troposphere delay is the hydrostatic zenith delay. Optionally, also wet zenith delay and parameters to adjust these delay components to the user level can be given to provide a higher accuracy. Also gradients to North- and East- directions can be provided to compensate for azimuthal asymmetry of the tropospheric delay. The use of the parameters and of the mapping function are explained in Appendix C.4.

```asn1
OMA-LPPe-AGNSS-LocalTroposphereDelayList ::= SEQUENCE (SIZE(1..8)) OF
 OMA-LPPe-AGNSS-LocalTroposphereDelayAreaElement
OMA-LPPe-AGNSS-LocalTroposphereDelayAreaElement ::= SEQUENCE {
```
### OMA-LPPe-AGNSS-LocalTroposphereDelayList field descriptions

**validityArea**

This field specifies the geographical validity area of the local troposphere model parameters.

**refAltitude**

This field specifies the reference altitude (from nominal sea level, [EGM96EGM96EGM96EGM96EGM96]) at which the delay measurements are made. The field is optional, and if it is not included, the reference altitude is the zero nominal sea level.

The scale factor is 1m.

**gradientReferencePosition**

This field specifies the origin for the spatial gradients gN and gE. If absent, the origin is taken as the middle point of the validity area.

**delayList**

This field specifies the troposphere delays.

**validityPeriod**

This field specifies the start time and duration of the local troposphere parameters validity period.

**zh0**

Parameter Z₀₀ is the hydrostatic zenith delay (meters), measured at the reference altitude level.

The scale factor is 2⁻¹⁰ m.

**eh**

Parameter eₜ is the exponential fit parameter (1/m) for scaling Z₀₀ to the target altitude.

The scale factor is 2⁻²⁰ (1/m).

**zw₀**

Parameter Z₀₀ is the wet zenith delay (meters), measured at the reference altitude level.

The scale factor is 2⁻¹⁰ m.

**ew**

Parameter eₜ is the exponential fit parameter (1/m) for scaling Z₀₀ to the target altitude.

The scale factor is 2⁻²⁰ (1/m).

**gN**

Gₙ is the gradient parameter (m) in North direction of the azimuthally asymmetric part of the tropospheric slant delay.

The scale factor is 2⁻⁷ m.

**gE**

Gₑ is the gradient parameter (m) in East direction of the azimuthally asymmetric part of the tropospheric slant delay.

The scale factor is 2⁻⁷ m.

**mappingFunctionParameters**

Coefficients of the mapping functions.
The IE `OMA-LPpe-AGNSS-LocalSurfaceParametersList` is used for providing the target with the surface atmospheric pressure and optionally temperature at a location close to the target. These parameters are the input to a chosen troposphere delay model, such as the Hopfield or Saastamoinen model, to calculate the zenith tropospheric delay. The mapping function parameters are used as described in Appendix C.4.

```asn1
OMA-LPpe-AGNSS-LocalSurfaceParametersList ::= SEQUENCE (SIZE(1..8)) OF
 OMA-LPpe-AGNSS-LocalSurfaceParametersListAreaElement

OMA-LPpe-AGNSS-LocalSurfaceParametersListAreaElement ::= SEQUENCE {
 validityArea OMA-LPpe-ValidityArea,
 refAltitude INTEGER (-1000..8192) OPTIONAL,
 gradientReferencePosition Ellipsoid-Point OPTIONAL,
 parameterList SEQUENCE (SIZE(1..8)) OF
 OMA-LPpe-AGNSS-LocalSurfaceParametersTimeElement,
 ...
}

OMA-LPpe-AGNSS-LocalSurfaceParametersTimeElement ::= SEQUENCE {
 validityPeriod OMA-LPpe-ValidityPeriod,
 pressure INTEGER (-1024..1023),
 pressureRate INTEGER (-128..127) OPTIONAL,
 gN-pressure INTEGER (-128..127) OPTIONAL,
 gE-pressure INTEGER (-128..127) OPTIONAL,
 temperature INTEGER (-64..63) OPTIONAL,
 temperatureRate INTEGER (-16..16) OPTIONAL,
 gN-temperature INTEGER (-8..7) OPTIONAL,
 gE-temperature INTEGER (-8..7) OPTIONAL,
 mappingFunctionParameters OMA-LPpe-AGNSS-MappingFunctionParameters,
 ...
}
```

**OMA-LPpe-AGNSS-LocalSurfaceParametersList field descriptions**

- **validityArea**
  This field specifies the geographical validity area of the local troposphere model parameters.

- **refAltitude**
  This field specifies the reference altitude (from nominal sea level, [EGM96]) at which the surface measurements are made. The field is optional, and if it is not included, the reference altitude is the zero nominal sea level [EGM96]. The scale factor is 1m.

- **gradientReferencePosition**
  This field specifies the origin for the spatial gradients gN and gE. If absent, the origin is taken as the middle point of the validity area.

- **parameterList**
  This field specifies the surface parameters.

- **validityPeriod**
  This field specifies the start time and duration of the surface parameter validity period.

- **pressure**
  Local atmospheric pressure measurement (hPa) at the altitude given by `refAltitude`. The scale factor is 0.1 hPa. The value is added to the nominal pressure of 1013hPa.

- **pressureRate**
  Rate of change of pressure. When calculating the pressure, the origin of time is the begin time of the validity period. The scale factor is 10 Pa/hour.
### OMA-LPPE-AGNSS-LocalSurfaceParametersList field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Scale Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>gN-pressure</td>
<td>This field specifies the northward gradient of the atmospheric pressure. If this field is present, but ( g_E ) is not given, the eastward gradient is zero.</td>
<td>10 Pa/km.</td>
</tr>
<tr>
<td>gE-pressure</td>
<td>This field specifies the eastward gradient of the atmospheric pressure. If this field is present, but ( g_N ) is not given, the northward gradient is zero.</td>
<td>10 Pa/km.</td>
</tr>
<tr>
<td>temperature</td>
<td>Local temperature measurement at the reference altitude ( \text{refAltitude} ). The scale factor 1 K. The value is added to 273 K.</td>
<td></td>
</tr>
<tr>
<td>temperatureRate</td>
<td>Local temperature change rate. The scale factor 1 K/hour.</td>
<td></td>
</tr>
<tr>
<td>gN-temperature</td>
<td>This field specifies the northward gradient of the temperature. If this field is present, but ( g_E ) is not given, the eastward gradient is zero.</td>
<td>1 K/km.</td>
</tr>
<tr>
<td>gE-temperature</td>
<td>This field specifies the eastward gradient of the temperature. If this field is present, but ( g_N ) is not given, the northward gradient is zero.</td>
<td>1 K/km.</td>
</tr>
</tbody>
</table>

### mappingFunctionParameters

Coefficients of the mapping functions.

### OMA-LPPE-AGNSS-MappingFunctionParameters

The IE OMA-LPPE-AGNSS-MappingFunctionParameters is used for scaling the tropospheric zenith delay to the slant delay given by the satellite elevation angle. The mapping function parameters are used as described in Appendix C.4.2.

```asn1
-- ASN1START
OMA-LPPE-AGNSS-MappingFunctionParameters ::= SEQUENCE {
 ah INTEGER (0..16383),
 bh INTEGER (0..16383) OPTIONAL,
 ch INTEGER (0..16383) OPTIONAL,
 aw INTEGER (0..16383) OPTIONAL,
 bw INTEGER (0..16383) OPTIONAL,
 cw INTEGER (0..16383) OPTIONAL,
 ...}

-- ASN1STOP
```

### OMA-LPPE-AGNSS-MappingFunctionParameters field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Scale Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ah</td>
<td>( a_h ) is the a-coefficient of the hydrostatic mapping function.</td>
<td>( 2^{-14} ).</td>
</tr>
<tr>
<td>bh</td>
<td>( b_h ) is the b-coefficient of the hydrostatic mapping function.</td>
<td>( 2^{-14} ).</td>
</tr>
<tr>
<td>ch</td>
<td>( c_h ) is the c-coefficient of the hydrostatic mapping function.</td>
<td>( 2^{-14} ).</td>
</tr>
</tbody>
</table>
### OMA-LPpE-AGNSS-MappingFunctionParameters field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(aw)</td>
<td>(a_w) is the a-coefficient of the wet mapping function. Scale factor (2^{14}).</td>
</tr>
<tr>
<td>(bw)</td>
<td>(b_w) is the b-coefficient of the wet mapping function. Scale factor (2^{14}).</td>
</tr>
<tr>
<td>(cw)</td>
<td>(c_w) is the c-coefficient of the wet mapping function. Scale factor (2^{14}).</td>
</tr>
</tbody>
</table>

### OMA-LPpE-AGNSS-AltitudeAssistanceList

The IE `OMA-LPpE-AGNSS-AltitudeAssistanceList` is used for providing the target device with the surface atmospheric pressure and reference altitude measured in a location close to the target. A target device equipped with a barometer can use these values to deduce its own altitude. When multiple Area Elements are provided, they SHALL all have different validity areas (overlap of validity areas is allowed, though) or SHALL carry pressure assistance for different validity periods.

```asn1
OMA-LPpE-AGNSS-AltitudeAssistanceList ::= SEQUENCE (SIZE(1..8)) OF
 OMA-LPpE-AGNSS-AltitudeAssistanceAreaElement

OMA-LPpE-AGNSS-AltitudeAssistanceAreaElement ::= SEQUENCE {
 validityArea OMA-LPpE-ValidityArea,
 gradientReferencePosition EllipsoidPointWithAltitudeAndUncertaintyEllipsoid OPTIONAL,
 refAltitude INTEGER (-1000..8192) OPTIONAL,
 pressureAssistanceList SEQUENCE (SIZE(1..16)) OF OMA-LPpE-AGNSS-PressureAssistanceElement,
 ...
}

OMA-LPpE-AGNSS-PressureAssistanceElement ::= SEQUENCE {
 validityPeriod OMA-LPpE-ValidityPeriod,
 pressure INTEGER (-1024..1023) OPTIONAL,
 pressureRate INTEGER (-128..127) OPTIONAL,
 gN INTEGER (-128..127) OPTIONAL,
 gE INTEGER (-128..127) OPTIONAL,
 ...
}
```

### OMA-LPpE-AGNSS-AltitudeAssistanceList field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>validityArea</td>
<td>This field specifies the geographical validity area of the altitude assistance.</td>
</tr>
<tr>
<td>gradientReferencePosition</td>
<td>This field specifies the origin for the spatial gradients gN and gE. If absent, the origin is taken as the middle point of the validity area.</td>
</tr>
<tr>
<td>refAltitude</td>
<td>This field specifies the reference altitude (from nominal sea level, [EGM96]) at which the surface measurements are made. The field is optional, and if it is left out, the reference altitude is the zero nominal sea level. The scale factor is 1m.</td>
</tr>
<tr>
<td>pressureAssistanceList</td>
<td>This field specifies the set of pressure assistance elements for different periods of time.</td>
</tr>
<tr>
<td>validityPeriod</td>
<td>This field specifies the start time and duration of the altitude assistance validity period.</td>
</tr>
<tr>
<td>pressure</td>
<td>Local atmospheric pressure measurement (hPa) at the altitude given by refAltitude. The scale factor is 10 Pa. The value is added to the nominal pressure of 1013hPa.</td>
</tr>
</tbody>
</table>
**OMA-LPpe-AGNSS-AltitudeAssistanceList field descriptions**

---

**pressureRate**
Rate of change of pressure. When calculating the pressure, the origin of time is the begin time of the validity period.

The scale factor is 10 Pa/hour.

---

**gN**
This field specifies the northward gradient of the atmospheric pressure.

Scale factor 10 Pa/km.

---

**gE**
This field specifies the eastward gradient of the atmospheric pressure.

Scale factor 10 Pa/km.

---

**OMA-LPpe-AGNSS-SolarRadiation**

The IE *OMA-LPpe-AGNSS-SolarRadiation* is used to provide information on the solar radiation intensity.

---

```
OMA-LPpe-AGNSS-SolarRadiation ::= SEQUENCE {
 solarRadiation INTEGER(1000..2000),
 ...
}
```

---

**OMA-LPpe-AGNSS-SolarRadiation field descriptions**

---

**solarRadiation**
This field specifies the solar radiation at one AU from the Sun. Scale factor 1 Wm$^{-2}$.

---

**OMA-LPpe-AGNSS-MechanicsForAllSVs**

The *OMA-LPpe-AGNSS-MechanicsForAllSVs* information element lists the satellite antenna phase center offsets for each of the SVs in the GNSS defined by *GNSS-ID*. Information on the use of phase center offsets can be found in Appendix C.5. The SV mass and effective combined reflectivity-area may be used for the orbit prediction purposes. Further information can be found in Appendix C.7.

---

```
OMA-LPpe-AGNSS-MechanicsForAllSVs ::= SEQUENCE (SIZE(1..64)) OF OMA-LPpe-AGNSS-MechanicsElement

OMA-LPpe-AGNSS-MechanicsElement ::= SEQUENCE {
 svid SV-ID,
 mass INTEGER(1..4095) OPTIONAL,
 effectiveReflectivityArea INTEGER(1..511) OPTIONAL,
 pco OMA-LPpe-AGNSS-PCOelement OPTIONAL,
 svInfo SEQUENCE {
 svType OMA-LPpe-AGNSS-SvType,
 svNumber INTEGER(0..1000),
 ...
 } OPTIONAL,
 ...
}

OMA-LPpe-AGNSS-PCOelement ::= SEQUENCE{
 xOffsetSBF INTEGER(-30000..30000),
 yOffsetSBF INTEGER(-30000..30000),
 zOffsetSBF INTEGER(-30000..30000),
 ...
}```
OMA-LPPe-AGNSS-SVtype ::= ENumerated {
 gpsIIR, gpsIIRM, gpsIIF, gpsIII,
 glonassM, glonassK1, glonassK2, glonassKM,
 unknown,
 ...
}

OMA-LPPe-AGNSS-MechanicsForAllSVs field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>svid</td>
<td>This field indicates the satellite id for which the information provided applies.</td>
</tr>
<tr>
<td>mass</td>
<td>This field specifies the SV mass. Scale factor 1 kg. See Appendix C.7 for further information.</td>
</tr>
<tr>
<td>effectiveReflectivityArea</td>
<td>This field specifies the effective combined SV solar panel reflectivity and area. Scale factor 0.1 m². See Appendix C.7 for further information.</td>
</tr>
<tr>
<td>pco</td>
<td>This field specifies the SV phase center offset. See Appendix C.5 for further information.</td>
</tr>
<tr>
<td>svInfo</td>
<td>This field carries information on the satellite.</td>
</tr>
<tr>
<td>svType</td>
<td>This field carries information on the satellite type.</td>
</tr>
<tr>
<td>svNumber</td>
<td>This field carries information on the SV number. The change in the number is interpreted as the change of satellite. For GPS SVs the number is the SVN (SV Number). For GLONASS SVs the number is the GLONASS Number.</td>
</tr>
<tr>
<td>xOffsetSBF</td>
<td>This field specifies the x-coordinate offset from the SV center of mass to the SV antenna phase center in satellite body fixed coordinate frame. The coordinate frame is described in Appendix C.5. The scale factor is 0.0001 m.</td>
</tr>
<tr>
<td>yOffsetSBF</td>
<td>This field specifies the y-coordinate offset from the SV center of mass to the SV antenna phase center in satellite body fixed coordinate frame. The coordinate frame is described in Appendix C.5. The scale factor is 0.0001 m.</td>
</tr>
<tr>
<td>zOffsetSBF</td>
<td>This field specifies the z-coordinate offset from the SV center of mass to the SV antenna phase center in satellite body fixed coordinate frame. The coordinate frame is described in Appendix C.5. The scale factor is 0.0001 m.</td>
</tr>
</tbody>
</table>

OMA-LPPe-AGNSS-DCBsForAllSVs

The **OMA-LPPe-AGNSS-DCBsForAllSVs** lists the differential code biases for each of the SVs in the GNSS. For each satellite, one of the signals is chosen as a reference, and the differential code biases are given with respect to this reference.
OMA-LPPe-AGNSS-DCBlist ::= SEQUENCE (SIZE(1..16)) OF OMA-LPPe-AGNSS-DCBelement

OMA-LPPe-AGNSS-DCBelement ::= SEQUENCE {
 signal GNSS-SignalID,
 pd ENUMERATED{ pilot, data, notapplicable, ... },
 dcb INTEGER (-4096..4095),
 ... }

OMA-LPPe-AGNSS-DCBListForAllSVs field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>svid</td>
<td>This field indicates the satellite id for which the information provided applies.</td>
</tr>
<tr>
<td>reference</td>
<td>The signal with respect to which the differential code biases of the other signals are given.</td>
</tr>
<tr>
<td>dcbList</td>
<td>The list of differential code biases of the signals with respect to the reference signal.</td>
</tr>
<tr>
<td>signal</td>
<td>This field indicates the signal id. The interpretation of the signal id depends on the GNSS as explained in 3GPP TS 36.355.</td>
</tr>
<tr>
<td>pd</td>
<td>This field indicates whether the signal is pilot signal, data signal or if this indication is not applicable in this case.</td>
</tr>
<tr>
<td>dcb</td>
<td>This field specifies the differential code bias of the signal with respect to the reference signal. The scale factor is 2^{-35} seconds.</td>
</tr>
</tbody>
</table>

OMA-LPPe-AGNSS-NavModelDegradationModelList

The OMA-LPPe-AGNSS-NavModelDegradationModelList information element contains a list of elements that each have two degradation models: clock model degradation model and orbit model degradation model. Each of the elements is related to a specific SV. Navigation model degradation model is requested and provided only if the LPP message GNSS-NavigationModel is also requested. The degradation models are provided to the same set of satellites for which navigation models are provided in the LPP proper in the IE GNSS-NavigationModel. These degradation models are applicable to the navigation models delivered in the LPP simultaneously with the degradation models. The degradation models characterize the 1-sigma error.
OMA-LPPe-AGNSS-NavModelDegradationModelList field descriptions

svd
Specifies the SV for which degradation models are provided.

clockDegradationModel
This field provides the degradation model for the clock model.

orbitDegradationModel
This field provides the degradation model for the orbit model.

clockRMS0
This field specifies the constant term of the clock model degradation model by

\[cRMS_0 = (1 + 0.1) \times \text{clockRMS}_0 \text{ meters}, \]

where \(\text{clockRMS}_0 = 31 \) denotes ‘Use At Own Risk’. The range is \([0, 16.45)\) meters. Exemplary values:

<table>
<thead>
<tr>
<th>clockRMS0</th>
<th>cRMS0 (meters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0.10</td>
</tr>
<tr>
<td>2</td>
<td>0.21</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>5</td>
<td>0.61</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>10</td>
<td>1.59</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>20</td>
<td>5.73</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>30</td>
<td>16.45</td>
</tr>
<tr>
<td>31</td>
<td>N/A</td>
</tr>
</tbody>
</table>

The clock model polynomial is described in Appendix C.6.1.

The clock model degradation polynomial is used as described in Appendix C.6.1.

clockRMS1
This field specifies the first order term of the clock model degradation model, \(cRMS_1 \).

Scale factor \(2^{-14} \text{ m/s} \). Range \([0, 4.3e-4)\) m/s.

The clock model degradation polynomial is used as described in Appendix C.6.1.

orbitRMS0
This field specifies the constant term of the orbit model degradation model by

\[oRMS_0 = (1 + 0.1) \times \text{orbitRMS}_0 \text{ meters}, \]

where \(\text{orbitRMS}_0 = 31 \) denotes ‘Use At Own Risk’. The range is \([0, 16.45)\) meters.

The orbit model degradation polynomial is used as described in Appendix C.6.2.

orbitRMS1
This field specifies the first order term of the orbit model degradation model, \(oRMS_1 \).

Scale factor \(2^{-14} \text{ m/s} \). Range \([0, 4.3e-4)\) m/s.

The orbit model degradation polynomial is used as described in Appendix C.6.2.
OMA-LPPe-AGNSS-CCPassistCommonProvide

The OMA-LPPe-AGNSS-CCPassistCommonProvide is used to provide information that is common to the CCP assistance data for all the GNSSs. This includes alternatively the CCP AD reference time (provided always together with CCP Generic AD) or CCP Control Parameters.

The CCP support area may be provided to the target based on the request or based on the server decision unsolicitedly, in case the CCP is not supported in the target area. Similarly to the neighbour list, it may be provided upon request or unsolicitedly. Before requesting the neighbour list the target should update its location to the server using unsolicited LPP Provide Location Information -procedure.

The CCP Reference Station list carries information on all the reference stations for which CCP assistance is provided. The server SHALL provide an updated reference station list, whenever there is a change to the set of reference stations for which AD is being provided for.

```
-- ASN1START
OMA-LPPe-AGNSS-CCPassistCommonProvide ::= CHOICE {
  ccpProvideCommonParameters      OMA-LPPe-AGNSS-CCPprovideCommonParameters,
  ccpProvideControlParameters     OMA-LPPe-AGNSS-CCPprovideControlParameters,

  ...
}

OMA-LPPe-AGNSS-CCPprovideCommonParameters ::= SEQUENCE {
  ccpReferenceTime               GNSS-SystemTime,
  ...
}

OMA-LPPe-AGNSS-CCPprovideControlParameters ::= SEQUENCE {
  ccpSupportArea                 OMA-LPPe-AGNSS-CCPsupportArea             OPTIONAL,
  ccpNeighborList                OMA-LPPe-AGNSS-CCPrefenceStationList Optional,
  duration                       OMA-LPPe-Duration                      OPTIONAL, --Cond FirstOrDurModify
  rate                           INTEGER(1..64)                          OPTIONAL, --Cond FirstOrRateModify
  ccpReferenceStationList        OMA-LPPe-AGNSS-CCPrefenceStationList Optional, --Cond FirstOrRefModify

  ...
}
-- ASN1STOP
```

Conditional presence

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>FirstOrDurModify</td>
<td>This field is mandatory present, when initiating a new CCP AD session or when modifying the duration. Otherwise it is not present.</td>
</tr>
<tr>
<td>FirstOrRateModify</td>
<td>This field is mandatory present, when initiating a new CCP AD session or when modifying the rate. Otherwise it is not present.</td>
</tr>
<tr>
<td>FirstOrRefModify</td>
<td>This field is mandatory present, when initiating a new CCP AD session or when modifying the list of the active reference stations (new reference stations or after stopping CCP AD for a set of reference stations). This field is included always, when there are changes to the active set of reference stations for which CCP AD is provided. Otherwise it is not present.</td>
</tr>
</tbody>
</table>
OMA-LPPe-AGNSS-CCPassistCommonProvide field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ccpProvideCommonParameters</td>
<td>This field defines the CCP-specific common parameters.</td>
</tr>
<tr>
<td>ccpProvideControlParameters</td>
<td>This field defines the CCP-specific control parameters.</td>
</tr>
<tr>
<td>ccpReferenceTime</td>
<td>This field defines the reference time for the CCP assistance data delivery. This field SHALL be accompanied by ccpAssistProvide in the generic part of the AGNSS AD for at least one GNSS.</td>
</tr>
<tr>
<td>ccpSupportArea</td>
<td>This field provides information on the area, in which CCP is supported.</td>
</tr>
<tr>
<td>ccpNeighborList</td>
<td>This field provides information on the possible neighbour reference stations.</td>
</tr>
<tr>
<td>duration</td>
<td>This field specifies the length of the continuous periodic assistance session.</td>
</tr>
<tr>
<td>rate</td>
<td>This field specifies the interval between the assistance data deliveries in seconds.</td>
</tr>
<tr>
<td>ccpReferenceStationList</td>
<td>This field provides the locations of the reference stations for which CCP assistance is being provided. The set of reference stations SHALL be static during the CCP AD session unless the target explicitly requests for new reference stations or requests removing stations from the active set. The reference stations SHALL be static.</td>
</tr>
</tbody>
</table>

OMA-LPPe-AGNSS-CCPsupportArea

The **OMA-LPPe-AGNSS-CCPsupportArea** is used to provide information on the area to which CCP assistance can be provided and for which GNSS signals in the area the assistance can be provided.

```
-- ASN1START
OMA-LPPe-AGNSS-CCPsupportArea ::= SEQUENCE {
  areaDescription OMA-LPPe-ValidityArea,
  signalSupport  SEQUENCE (SIZE (1..8)) OF OMA-LPPe-AGNSS-CCPsignalSupport,
  ...
}
OMA-LPPe-AGNSS-CCPsignalSupport ::= SEQUENCE {
  gnss  GNSS-ID,
  signals  GNSS-SignalIDs,
  ...
}
-- ASN1STOP
```

OMA-LPPe-AGNSS-CCPsupportArea field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>areaDescription</td>
<td>This field provides the description of the area.</td>
</tr>
<tr>
<td>signalSupport</td>
<td>This field provides the GNSS signal support information.</td>
</tr>
<tr>
<td>gnss</td>
<td>This field specifies the GNSS.</td>
</tr>
<tr>
<td>signals</td>
<td>This field specifies the GNSS signal types for which CCP assistance can be provided in the area. This is represented by a bit string in GNSS-SignalIDs, with a one-value at the bit position means CCP assistance for the particular GNSS signal type is supported; a zero-value means not supported.</td>
</tr>
</tbody>
</table>
OMA-LPPe-AGNSS-CCPreferenceStationList

The OMA-LPPe-AGNSS-CCPreferenceStationList is used to provide the locations and ID numbers of the reference stations for which CCP assistance is provided or information on the nearby reference stations for the purposes of reference station change.

In order to receive a valid neighbour list the target should update its location to the server in case the target moves. The server SHALL generate the neighbour list based on the last known location of the target.

Note that the empty neighbour list does not imply the server being unable to change the reference station (there might not be neighbour list in case the server generates reference stations dynamically). Neither does the non-empty neighbour list imply the server being able to provide CCP AD for multiple reference station to the target simultaneously (required for the reference station change).

OMA-LPPe-AGNSS-CCPreferenceStationList field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>referenceStationID</td>
<td>This field defines the ID of the reference station.</td>
</tr>
<tr>
<td>referenceStationLocation</td>
<td>This field defines the location of the reference station, of which ID is referenceStationID.</td>
</tr>
<tr>
<td>antennaDescription</td>
<td>This field specifies the antenna type used at the reference station.</td>
</tr>
</tbody>
</table>

OMA-LPPe-AGNSS-CCPassistGenericProvide

The IE OMA-LPPe-AGNSS-CCPassistGenericProvide is used by the location server to provide continuous carrier phase reference measurement assistance to the target device for a specific GNSS. Reference assistance can be provided for multiple reference stations (for the purposes of multi-baseline solution or reference station change, see Appendix D.1.5) and for up to 8 signals per GNSS and for up to 64 SVs in each constellation. CCP Assistance is provided only for the visible satellites. The IE supports a straightforward mapping from RTCM 10403.1.
OMA-LPpe-AGNSS-CCPerSignalElement ::= SEQUENCE {
 signalID GNSS-SignalID,
 ccpPerSVlist SEQUENCE (SIZE(1..64)) OF OMA-LPpe-AGNSS-CCPperSVelement,
 ...
}

OMA-LPpe-AGNSS-CCPperSVelement ::= SEQUENCE {
 svID SV-ID,
 integerCodePhase INTEGER(0..255), OPTIONAL, --Cond IfAvailable
 codePhase INTEGER(0..14989622),
 codePhaseError OMA-LPpe-AGNSS-CodePhaseError OPTIONAL, --Cond IfAvailable
 phaseRangeDelta INTEGER(-524288..524287),
 phaseRangeRMSerror INTEGER(0..127), OPTIONAL, --Cond IfAvailable
 lockIndicator BOOLEAN,
 ...
}

OMA-LPpe-AGNSS-CodePhaseError ::= CHOICE {
 codePhaseRMSError INTEGER(0..63),
 cnr INTEGER(0..255),
 ...
}

== ASN1STOP

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>IfAvailable</td>
<td>The server SHALL make the best effort to include the information.</td>
</tr>
</tbody>
</table>

OMA-LPpe-AGNSS-CCPassistGenericProvide field descriptions

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>referenceStationID</td>
<td>This field defines the ID of the reference station to which the CCP assistance is provided. The ID SHALL match with one of the reference station IDs provided in ccpReferenceStationList in OMA-LPpe-AGNSS-CCPassistCommonProvide.</td>
</tr>
<tr>
<td>svID</td>
<td>This field identifies the SV for which CCP assistance is being provided.</td>
</tr>
<tr>
<td>integerCodePhase</td>
<td>This field indicates the integer milli-second part of the code phase.</td>
</tr>
<tr>
<td>codePhase</td>
<td>This field contains the sub-millisecond part of the code phase observation for the particular satellite signal at the reference time (in AGNSS-CCPassistCommonProvide). Scale factor 0.02 meters. Range [0, 299792.44] meters,</td>
</tr>
<tr>
<td></td>
<td>The target SHALL reconstruct the full pseudorange by Pseudorange = (Integer Code Phase) + (Code Phase) after the appropriate scaling. If (Integer Code Phase) is not available, the target SHALL reconstruct the integer code phase using the knowledge on the reference station location.</td>
</tr>
<tr>
<td>phaseRangeDelta</td>
<td>This field defines the (Phase Range – Pseudorange). Scale factor 0.5 mm. Range [-262.144, 262.1435] meters.</td>
</tr>
<tr>
<td>phaseRangeRMSerror</td>
<td>This field contains the RMS error of the continuous carrier phase. Scale factor 2^{-10} meters, in the range [0, 0.12403) meters.</td>
</tr>
<tr>
<td>lockIndicator</td>
<td>This field is set to true if the carrier phase tracking has been continuous between the previous and the current assistance data delivery. If false, a cycle slip has occurred.</td>
</tr>
<tr>
<td>codePhaseRMSerror</td>
<td>This field contains the pseudorange RMS error value. This parameter is specified according to a floating-point representation defined in the corresponding table in 3GPP TS 36.355 in section “GNSS-MeasurementList”</td>
</tr>
</tbody>
</table>
OMA-LPpe-AGNSS-CCPassistGenericProvide field descriptions

<table>
<thead>
<tr>
<th>cnr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier-to-noise ratio. Scale factor 0.25 dB-Hz. Range [0, 63.75] dB-Hz.</td>
</tr>
</tbody>
</table>

OMA-LPpe-AGNSS-NavModelList

The IE **OMA-LPpe-AGNSS-NavModelList** provides navigation models for SVs.

```
-- ASN1START
OMA-LPpe-AGNSS-NavModelList ::= SEQUENCE {
  coordinateBased  OMA-LPpe-AGNSS-NavModel-COordinateBased OPTIONAL, --Cond ModelId=1
  ...
} -- ASN1STOP
```

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ModelId=1</td>
<td>This field SHALL be included, if the target requests Navigation Model with ID=1 and the server can provide that. Otherwise it is not present.</td>
</tr>
</tbody>
</table>

OMA-LPpe-AGNSS-NavModel-COordinateBased

The **OMA-LPpe-AGNSS-NavModel-COordinateBased** is used to provide the SV position, velocity and clock information at discrete points in time. The format supports a straightforward mapping from [RFC3986]. Up to 97 discrete PVT records may be provided – given 15-minute spacing between the records, 97 records are sufficient for providing information for 24 hours. The server SHALL provide velocity and clock rate records to the target, if the server has the records available. However, the availability cannot be guaranteed and, thus, the target MUST also be capable of autonomously deriving the velocity and clock rate information from the position and clock records.

```
-- ASN1START
OMA-LPpe-AGNSS-NavModel-COordinateBased ::= SEQUENCE {
  fixedInterval  SEQUENCE {
    beginTime  GNSS-SystemTime,
    interval   INTEGER(1..30),
    ...
  } OPTIONAL, --Cond FixedInterval
  bases  SEQUENCE {
    baseForPosVel  INTEGER(-100000000..100000000) OPTIONAL,
    baseForCcRate  OMA-LPpe-AGNSS-NavModel-BigInteger OPTIONAL,
    ...
  } OPTIONAL, --Cond DefaultsNotApplicable
  referencedTo  ENUMERATED { centerOfMass, antennaPhaseCenter, ... },
  pointList  SEQUENCE (SIZE (1..97)) OF OMA-LPpe-AGNSS-NavModel-COordinateBasedElement,
  ...
} -- ASN1STOP
```

```
OMA-LPpe-AGNSS-NavModel-COordinateBasedElement ::= SEQUENCE {
  time-of-record  GNSS-SystemTime OPTIONAL, --Cond NoFixedInterval
  svIdList  SEQUENCE (SIZE (1..64)) OF OMA-LPpe-AGNSS-NavModel-PVTelement,
  ...
} -- ASN1STOP
```

```
OMA-LPpe-AGNSS-NavModel-PVTelement ::= SEQUENCE {
  svId  SV-ID,
  svClockOffset  OMA-LPpe-AGNSS-NavModel-BigInteger,
  ecefPositionX  OMA-LPpe-AGNSS-NavModel-BigInteger,
  ecefPositionY  OMA-LPpe-AGNSS-NavModel-BigInteger,
  ecefPositionZ  OMA-LPpe-AGNSS-NavModel-BigInteger,
} -- ASN1STOP
```
clockPosSTD CMA-LPPe-AGNSS-NavModel-STDmatrix,
rateRecord SEQUENCE {
 svClockRate CMA-LPPe-AGNSS-NavModel-BigNumber,
 ecefVelocityX CMA-LPPe-AGNSS-NavModel-BigNumber,
 ecefVelocityY CMA-LPPe-AGNSS-NavModel-BigNumber,
 ecefVelocityZ CMA-LPPe-AGNSS-NavModel-BigNumber,
 clockRateVelSTD CMA-LPPe-AGNSS-NavModel-STDmatrix,
 ...
} OPTIONAL, --Cond RateAvailable

OMA-LPPE-AGNSS-NavModel-BigNumber ::= SEQUENCE {
 msb INTEGER(-1000000000..1000000000),
 lsb INTEGER(1..100) OPTIONAL,
 ...
}

OMA-LPPE-AGNSS-NavModel-STDmatrix ::= SEQUENCE {
 e11 INTEGER(0..1000),
 e22 INTEGER(0..1000),
 e33 INTEGER(0..1000),
 e44 INTEGER(0..1000000),
 e12 INTEGER(0..10000000) OPTIONAL, --Cond CrossTermAvailable
 e13 INTEGER(0..10000000) OPTIONAL, --Cond CrossTermAvailable
 e14 INTEGER(0..10000000) OPTIONAL, --Cond CrossTermAvailable
 e23 INTEGER(0..10000000) OPTIONAL, --Cond CrossTermAvailable
 e24 INTEGER(0..10000000) OPTIONAL, --Cond CrossTermAvailable
 e34 INTEGER(0..10000000) OPTIONAL, --Cond CrossTermAvailable
 ...
}

-- ASN1STOP

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>FixedInterval</td>
<td>This field SHALL be included, when the records are distributed evenly in time. Otherwise it is not present.</td>
</tr>
<tr>
<td>NoFixedInterval</td>
<td>This field SHALL be included, when the records are not distributed evenly in time. Otherwise it is not present.</td>
</tr>
<tr>
<td>DefaultsNotApplicable</td>
<td>This field SHALL be included, in case the default scaling factors need to be overridden. Otherwise it is not present.</td>
</tr>
<tr>
<td>RateAvailable</td>
<td>This field SHALL be included, in case the server can provide velocity and clock rate records to the target. Otherwise it is not present.</td>
</tr>
<tr>
<td>CrossTermAvailable</td>
<td>This field SHALL be included, in case the server can provide the non-diagonal components. Otherwise it is not present.</td>
</tr>
</tbody>
</table>

OMA-LPPe-AGNSS-NavigationModelCoordinateBased field descriptions
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>beginTime</td>
<td>In case the position-velocity records have constant intervals, this field is used to provide the time of the first record.</td>
</tr>
<tr>
<td>interval</td>
<td>In case the position-velocity records have constant intervals, this field is used to provide the interval between the records. Scale factor 1 minute.</td>
</tr>
</tbody>
</table>
| | In case the records are given at fixed temporal intervals, the time of the record can be deduced by
| |
| |
| | time-of-record = begin time + (index of the record in the point list sequence) * interval, where it has been assumed that the indexing begins from zero. |
| **baseForPosVel** | The default scaling factors for position and velocity are 10^{-6} km (mm) and 10^{-6} dm/s, respectively. This field can be used to override the default scaling factors. In case the field is included, scaling the value with 10^7 results in the scaling factor for position records in millimetres. Likewise scaling the value with 10^7 results in the scaling factor for velocity records in the units of 10^6 dm/s. For instance, if the value in the **baseForPosVel** field is 1250000, scaling the value with 10^7 results in 1.25. Thus the scaling factor for position records will be 1.25 mm and 1.25 * 10^{-6} dm/s for the velocity records, respectively. |
| **baseForCcRate** | The default scaling factors for clock and clock rate are 10^6 μs (ps) and 10^{10} μs/s (10^4 ps/s), respectively. This field can be used to override the default scaling factors. In case the field is included, the new scaling factors for clock and clock rate are given by
| |
| | clock: (value_MSB * 10^{-7} + value_LSB * 10^{-9}) 10^6 μs (ps)
| | clock rate: (value_MSB *10^{-7} + value_LSB * 10^{-9}) 10^{10} μs/s (10^4 ps/s)
| | For instance, if the value in the **baseForCcRate** field is 1250000 (only MSB part used), scaling the value with 10^7 results in 1.25. Thus the scaling factor for the clock record will be 1.25 ps and 1.25 * 10^4 ps/s for the clock rate record, |
| **referencedTo** | Indicated, if the navigation model is referenced to the SV center-of-mass or the antenna phase center. |
| **time-of-record** | In case the records do not have constant intervals, this field is used to indicate the epoch time. |
| **svID** | Identifies the satellite for which data is being provided. |
| **svClockOffset** | This field specifies the SV clock offset. The default scaling factor for the MSB part is 10^4 μs and for the LSB part 10^6 μs. The total clock offset is given by
| | value_MSB * 10^4 μs + value_LSB * 10^6 μs.
| | The scaling factors are affected by **baseForCcRate**. |
| **ecefPositionX**, **ecefPositionY**, **ecefPositionZ** | This field specifies the satellite position in the WGS84 ECEF system. The default scaling factor for the MSB part is 10^4 km and for the LSB part 10^6 km. The position is given by
| | value_MSB * 10^4 km + value_LSB * 10^6 km.
| | The scaling factors are affected by **baseForPosVel**. |
OMA-LPPe-AGNSS-NavigationModelCoordinateBased field descriptions

clockPosSTD
This field specifies the Clock-Position STD Matrix in the following manner:

\[
\begin{bmatrix}
 x \text{ pos} & y \text{ pos} & z \text{ pos} & \text{clock} \\
 e_{11} & e_{12} & e_{13} & e_{14} \\
 e_{12} & e_{22} & e_{23} & e_{24} \\
 e_{13} & e_{23} & e_{33} & e_{34} \\
 e_{14} & e_{24} & e_{34} & e_{44}
\end{bmatrix}
\]

Scaling factor for positioning components is mm and for clock component ps. The scaling factor for the cross-components is mm*ps, respectively. Scaling factors are not affected by `baseForPosVel` and `baseForCcRate`.

svClockRate
This field specifies the rate of the SV clock offset. The default scaling factor for the MSB part is \(10^{-8} \mu s/s\) and for the LSB part \(10^{-10} \mu s/s\). The total clock offset is given by

\[
\text{value}_{\text{MSB}} * 10^{-8} \mu s/s + \text{value}_{\text{LSB}} * 10^{-10} \mu s/s.
\]

The scaling factors are affected by `baseForCcRate`.

ecefVelocityX, ecefVelocityY, ecefVelocityZ
This field specifies the satellite position in the WGS84 ECEF system. The default scaling factor for the MSB part is \(10^{-4} \text{ dm/s}\) and for the LSB part \(10^{-6} \text{ dm/s}\). The velocity is given by

\[
\text{value}_{\text{MSB}} * 10^{-4} \text{ dm/s} + \text{value}_{\text{LSB}} * 10^{-6} \text{ dm/s}.
\]

The scaling factors are affected by `baseForPosVel`.

clockRateVelSTD
This field specifies the Clock Rate - Velocity STD Matrix in the following manner:

\[
\begin{bmatrix}
 x \text{ vel} & y \text{ vel} & z \text{ vel} & \text{clock rate} \\
 e_{11} & e_{12} & e_{13} & e_{14} \\
 e_{12} & e_{22} & e_{23} & e_{24} \\
 e_{13} & e_{23} & e_{33} & e_{34} \\
 e_{14} & e_{24} & e_{34} & e_{44}
\end{bmatrix}
\]

Scaling factor for velocity components is \(10^{-4} \text{ mm/s}\) and for clock component \(10^{-4} \text{ ps/s}\). The scaling factor for the cross-components is \(10^{-4} \text{ mm/s} * 10^{-4} \text{ ps/s}\), respectively. Scaling factors are not affected by `baseForPosVel` and `baseForCcRate`.

6.5.1.3 AGNSS Assistance Data Request

OMA-LPPe-AGNSS-RequestAssistanceData

The **OMA-LPPe-AGNSS-RequestAssistanceData** is used to request assistance for UE-based and UE-assisted AGNSS-based methods.
-- OMA-LPPe-AGNSS-CommonAssistanceDataReq

The OMA-LPPe-AGNSS-CommonAssistanceDataReq is used to request GNSS-independent assistance for UE-based and UE-assisted AGNSS-based methods.

-- ASN1START
OMA-LPPe-AGNSS-CommonAssistanceDataReq ::= SEQUENCE {
 ionosphericModelReq OMA-LPPe-AGNSS-IonosphericModelReq OPTIONAL,
 troposphereModelReq OMA-LPPe-AGNSS-TroposphereModelReq OPTIONAL,
 altitudeAssistanceReq OMA-LPPe-AGNSS-AltitudeAssistanceReq OPTIONAL,
 solarRadiationRequest OMA-LPPe-AGNSS-SolarRadiationReq OPTIONAL,
 ccpRequestControlParameters OMA-LPPe-AGNSS-CCPrequestControlParameters OPTIONAL,
 ...
}
-- ASN1STOP

OMA-LPPe-AGNSS-CommonAssistanceDataReq field descriptions

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ionosphereModelReq</td>
<td>This field is used to request for ionosphere models.</td>
</tr>
<tr>
<td>troposphereModelReq</td>
<td>This field is used to request troposphere models.</td>
</tr>
<tr>
<td>altitudeAssistanceReq</td>
<td>This field is used to request altitude assistance for improved availability.</td>
</tr>
<tr>
<td>solarRadiationReq</td>
<td>This field is used to request for solar radiation intensity.</td>
</tr>
<tr>
<td>ccpRequestControlParameters</td>
<td>This field is used to request for the control parameters of the CCP AD session. The field SHALL be accompanied by the field ccpAssistGenericReq in the generic part of the AGNSS request.</td>
</tr>
</tbody>
</table>

-- OMA-LPPe-AGNSS-GenericAssistanceDataReq

The OMA-LPPe-AGNSS-GenericAssistanceDataReq is used to request GNSS-dependent assistance for UE-based and UE-assisted AGNSS-based methods.

-- ASN1START
OMA-LPPe-AGNSS-GenericAssistanceDataReq ::= SEQUENCE (SIZE (1..16)) OF
OMA-LPPe-AGNSS-GenericAssistDataReqElement

OMA-LPPe-AGNSS-GenericAssistDataReqElement ::= SEQUENCE {
 gnss-ID GNSS-ID,
 waIonoSurfaceReq OMA-LPPe-AGNSS-WaIonoSurfaceRequest OPTIONAL, --Cond WAIono
 mechanicsReq OMA-LPPe-AGNSS-MechanicsReq OPTIONAL,
 dcbReq OMA-LPPe-AGNSS-DCBreq OPTIONAL,
 navModelDegradationModelReq OMA-LPPe-AGNSS-NavModelDegradationModelReq OPTIONAL,
 ccpAssistGenericReq OMA-LPPe-AGNSS-CCPassistGenericReq OPTIONAL, --Cond CCPreq
 navigationModelReq OMA-LPPe-AGNSS-NavigationModelReq OPTIONAL,
 ...
}
-- ASN1STOP
Conditional presence | Explanation
---|---
WAIono | The field **SHALL** be present only, when initiating the periodic AD session for WA Iono Corrections, i.e. it is not possible to change the GNSSs for which corrections are provided intra-session.

CCPreq | The field **SHALL** be present, when requesting a new CCP assistance data session, i.e. when requesting a reference station (based on position or ID) for the first time during the AD session. The field **SHALL NOT** be present, when requesting an update to the AD session or CCP control parameters, i.e. it is not possible to change the requested GNSSs and signals during the CCP session.

OMA-LPPe-AGNSS-GenericAssistanceDataReq field descriptions

waIonoSurfaceReq | This field specifies, if wide area ionosphere correction surface is requested for the SVs of this GNSS. The GNSS-independent request parameters for the wide area model are carried in **OMA-LPPe-AGNSS-IonosphericModelReq**.

mechanicsReq | This field is used for requesting the SV mechanics information.

debReq | This field is used for requesting the differential code biases to gain higher accuracy.

navModelDegradationModelReq | This field is used for requesting the accuracy models for the SV orbit and clock models to get a better understanding of the accuracy of the computed position.

ccpAssistGenericReq | This field is used to request for the CCP reference assistance data for high accuracy.

navigationModelReq | This field is used to request for the navigation models defined in LPPe.

6.5.1.4 AGNSS Assistance Data Request Elements

OMA-LPPe-AGNSS-IonosphericModelReq

The IE **OMA-LPPe-AGNSS-IonosphericModelReq** is used by the target device to request for the ionospheric model from the location server.

```asn1
OMA-LPPe-AGNSS-IonosphericModelReq ::= CHOICE {
  staticModels SEQUENCE {
    ionoreq BIT STRING {klobucharModel (0),
      ionoStormWarning (1)} (SIZE {1..8}),
    requestBeginTime GNSS-SystemTime OPTIONAL,
    duration OMA-LPPe-Duration,
    ... },
  periodicModels SEQUENCE {
    waIonoSurface OMA-LPPe-AGNSS-WideAreaIonoSurfaceControlParametersRequest,
    ... }
}

OMA-LPPe-AGNSS-IonosphericModelReq field descriptions

**staticModels**

This field is used to request for the one-shot ionosphere models.
### ionoreq

This field specifies, which ionosphere models are being requested for. If bit 0 is set, the local Klobuchar model, as specified in *OMA-LPPe-AGNSS-LocalKlobucharModel*, is requested. If bit 1 is set, ionosphere storm warnings, as specified in *OMA-LPPe-AGNSS-IonoStormIndication*, are requested.

### requestBeginTime

This field specifies the first time instant when an ionosphere model is needed. The field is optional, and if it is missing, the begin time is the current time.

### duration

This field specifies for how long period the ionospheric model is requested.

### periodicModels

This field is used to request for periodic ionosphere models. These ionosphere model types utilizes the periodic AD procedure and thus their use mandates the inclusion of periodic AD control parameters in the common part of the AD request.

### walonoSurface

This field is used for requesting Wide Area ionosphere surface corrections as specified in Appendix C.3. When initiating the WA Iono session, the field is accompanied by the corrections request for specific GNSSs in the generic part of the AGNSS AD request. WA Iono AD is periodic AD type and is thus also accompanied by periodic/triggered session ID in the common AD request parameters.

---

### OMA-LPPe-AGNSS-WideAreaIonoSurfaceControlParametersRequest

The IE *OMA-LPPe-AGNSS-WideAreaIonoSurfaceControlParametersRequest* is used by the target device to request for the periodic ionosphere corrections from the location server.

```
-- ASN1START
OMA-LPPe-AGNSS-WideAreaIonoSurfaceControlParametersRequest ::= SEQUENCE {
 duration OMA-LPPe-Duration OPTIONAL, --Cond FirstOrDurModify
 rate INTEGER(1..64) OPTIONAL, --Cond FirstOrRateModify
 ...
}
-- ASN1STOP
```

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>FirstOrDurModify</strong></td>
<td>This field is mandatory present, when initiating a new WA Iono AD session or when requesting for the modification of the duration. Otherwise it is not present.</td>
</tr>
<tr>
<td><strong>FirstOrRateModify</strong></td>
<td>This field is mandatory present, when initiating a new WA Iono AD session or when requesting for the modification of the rate. Otherwise it is not present.</td>
</tr>
</tbody>
</table>

### OMA-LPPe-AGNSS-WideAreaIonoSurfaceControlParametersRequest field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>duration</td>
<td>This field specifies the length of the continuous periodic assistance session.</td>
</tr>
<tr>
<td>rate</td>
<td>This field specifies the interval between the assistance data deliveries in seconds.</td>
</tr>
</tbody>
</table>

---

### OMA-LPPe-AGNSS-TroposphereModelReq

The IE *OMA-LPPe-AGNSS-TroposphereModelReq* is used by the target device to request the local *OMA-LPPe-AGNSS-TroposphereModel* assistance from the location server.

```
-- ASN1START
```
OMA-LPpe-AGNSS-TroposphereModelReq ::= SEQUENCE {
    troposphereModelReq          BIT STRING (delay (0),
                                      surface (1)) (SIZE (1..8)),
    supportForMultipleGridPoints BOOLEAN,
    requestBeginTime             GNSS-SystemTime OPTIONAL,
    duration                     OMA-LPpe-Duration,
    ...}

-- ASN1STOP

**OMA-LPpe-AGNSS-TroposphereModelReq** field descriptions

**troposphereModelReq**
This bit string field specifies the desired model or models. One-value at bit position 0 indicates that the OMA-LPpe-AGNSS-TroposphereDelayList model is requested, and one-value at bit position 1 indicates the request for the OMA-LPpe-AGNSS-LocalSurfaceParameterList model.

**supportForMultipleGridPoints**
This field indicates if the target is requesting parameter sets originating from multiple locations around it (value 1). Value 0 means that only the nearest grid point parameters are requested.

**requestBeginTime**
This field specifies the first time instant when a valid troposphere model is needed. The field is optional, and if it is missing, the begin time is the current time.

**duration**
This field specifies how long time the tropospheric model is requested for.

---

**OMA-LPpe-AGNSS-AltitudeAssistanceReq**

The IE OMA-LPpe-AGNSS-AltitudeAssistanceReq is used by the target device to request the local OMA-LPpe-AGNSS-AltitudeAssistanceList from the location server.

-- ASN1START

OMA-LPpe-AGNSS-AltitudeAssistanceReq ::= SEQUENCE {
    requestBeginTime             GNSS-SystemTime OPTIONAL,
    duration                     OMA-LPpe-Duration OPTIONAL,
    ...}

-- ASN1STOP

**OMA-LPpe-AGNSS-AltitudeAssistanceReq** field descriptions

**requestBeginTime**
This field specifies the first time instant when altitude assistance is needed. The field is optional, and if it is missing, the begin time is the current time.

**duration**
This field specifies how long time the altitude assistance is requested for. In case the parameter is omitted, altitude assistance is requested for the current moment.

---

**OMA-LPpe-AGNSS-SolarRadiationReq**

The IE OMA-LPpe-AGNSS-SolarRadiation is used by the target device to request the Solar radiation intensity.

-- ASN1START
OMA-LPPe-AGNSS-SolarRadiationReq ::= SEQUENCE {
    ... 
} -- ASN1STOP

- **OMA-LPPe-AGNSS-WaIonoSurfaceRequest**

The IE **OMA-LPPe-AGNSS-WaIonoSurfaceRequest** is used by the target device to request the wide area ionosphere correction surface.

```
-- ASN1START
OMA-LPPe-AGNSS-WaIonoSurfaceRequest ::= SEQUENCE {
 ...
} -- ASN1STOP
```

- **OMA-LPPe-AGNSS-NavModelDegradationModelReq**

The IE **OMA-LPPe-AGNSS-NavModelDegradationModelReq** is used by the target device to request the navigation model degradation models for the SVs.

```
-- ASN1START
OMA-LPPe-AGNSS-NavModelDegradationModelReq ::= SEQUENCE {
 ...
} -- ASN1STOP
```

- **OMA-LPPe-AGNSS-DCBreq**

The **OMA-LPPe-AGNSS-DCBreq** is used to request differential code bias assistance.

```
-- ASN1START
OMA-LPPe-AGNSS-DCBreq ::= SEQUENCE {
 referenceSEQUENCE{
 signal GNSS-SignalID,
 pd ENUMERATED { pilot, data, notapplicable, ... },
 ...
 } OPTIONAL,
 ...
} -- ASN1STOP
```

**OMA-LPPe-AGNSS-DCBreq** field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>reference</td>
<td>The signal with respect to which the differential code biases of the other</td>
</tr>
<tr>
<td></td>
<td>signals are requested.</td>
</tr>
<tr>
<td>signal</td>
<td>This field indicates the signal id. The interpretation of the signal id</td>
</tr>
<tr>
<td></td>
<td>depends on the GNSS as explained in 3GPP TS 36.355 [LPP].</td>
</tr>
<tr>
<td>pd</td>
<td>This field indicates whether the signal is pilot signal, data signal or</td>
</tr>
<tr>
<td></td>
<td>if this indication is not applicable in this case.</td>
</tr>
</tbody>
</table>
The OMA-LPPe-AGNSS-MechanicsReq is used to request SV mechanical information including phase-center offset, mass and effective area-reflectivity information. The SVs mechanics information can be used for extending the orbit information applicability in the target. See Appendix C.7 for further information.

-- ASN1START
OMA-LPPe-AGNSS-MechanicsReq ::= SEQUENCE {
  massRequest BOOLEAN,
  effectiveReflectivityAreaRequest BOOLEAN,
  pcoRequest BOOLEAN,
  svInfoRequest BOOLEAN,
  ...
}
-- ASN1STOP

**OMA-LPPe-AGNSS-MechanicsReq field descriptions**

- **massRequest**: This field is used to request for the mass information for all the SVs.
- **effectiveReflectivityAreaRequest**: This field is used to request for the effective combined reflectivity-area information for all the SVs.
- **pcoRequest**: This field is used to request for the phase-center offset information for all the SVs.
- **svInfoRequest**: This field is used to request for the satellite type information for all the SVs.

The OMA-LPPe-AGNSS-CCPrequestControlParameters is used to request continuous carrier phase assistance or an update to the CCP control parameters. Continuous carrier phase information together with the knowledge on the reference station position allows for deducing the high accuracy baseline between the target and the reference station by solving the full cycle integer ambiguities. Using the control parameters the target may request for the information on the area, in which CCP is supported, information on the neighbouring reference stations and request for a new reference station or stopping a CCP assistance data delivery to a given reference station.

The periodic AD procedures related to the CCP AD are illustrated in Appendix D.1 for reference.

-- ASN1START
OMA-LPPe-AGNSS-CCPrequestControlParameters ::= SEQUENCE {
  ccpSupportAreaRequest NULL OPTIONAL,
  ccpNeighborListRequest NULL OPTIONAL,
  ccpCommonRequest SEQUENCE {
    duration OMA-LPPe-Duration OPTIONAL, --Cond FirstOrDurModify
    rate INTEGER(1..64) OPTIONAL, --Cond FirstOrRateModify
    refStation CHOICE {
      posBasedReferenceStationRequest SEQUENCE {
        requestedReferenceStationLocation OMA-LPPe-HighAccuracy3Dposition,
        qor OMA-LPPe-AGNSS-QoR,
        ...
      },
      idBasedReferenceStationRequest OMA-LPPe-AGNSS-ReferenceStationIDlist,
      referenceStationKillList OMA-LPPe-AGNSS-ReferenceStationIDlist,
      ...
    } OPTIONAL, --Cond FirstOrRefModify
    ...
  }
}
-- ASN1STOP
Conditional presence | Explanation
--- | ---
FirstOrDurModify | This field is mandatory present, when initiating a new CCP AD session or when requesting for the modification of the duration. Otherwise it is not present.
FirstOrRateModify | This field is mandatory present, when initiating a new CCP AD session or when requesting for the modification of the rate. Otherwise it is not present.
FirstOrRefModify | This field is mandatory present, when initiating a new CCP AD session or when requesting for the modification of the active reference station list (new reference stations or stopping CCP AD for a set of reference stations). Otherwise it is not present.

OMA-LPPe-AGNSS-CCPassistGenericReq

The OMA-LPPe-AGNSS-CCPassistGenericReq is used to request Continuous Carrier Phase assistance for the set of signals for a specified GNSS.
OMA-LPpe-AGNSS-CCPassistGenericReq field descriptions

ccpAssist-SignalsReq
This field specifies the GNSS signal types for which the CCP assistance is requested by the target device. This is represented by a bit string in `GNSS-SignalIDs`, with a one-value at the bit position means CCP assistance for the particular GNSS signal type is requested; a zero-value means not requested.

**OMA-LPpe-AGNSS-NavigationModelReq**

The `OMA-LPpe-AGNSS-NavigationModelReq` is used to request SV navigation models.

**OMA-LPpe-AGNSS-NavigationModelReq field descriptions**

`navModelID-PrefList`
This field is used to request the navigation models in the order of decreasing preference, i.e. the model-ID in the first slot is the most preferred one. The server SHALL respect the preference list.

<table>
<thead>
<tr>
<th>Model-ID</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Coordinate-based</td>
</tr>
</tbody>
</table>

In case preference lists are also included in the LPP proper, they SHALL be handled first. Only if the target cannot be served based on request in the LPP proper, the preference list in LPPe SHALL be considered. The LPPe side navigation model delivery SHALL also obey the list of the SVs, for which navigation models are being requested, in the LPP proper.

**6.5.1.5 AGNSS Location Information**

**OMA-LPpe-AGNSS-ProvideLocationInformation**

The `OMA-LPpe-AGNSS-ProvideLocationInformation` is used to provide AGNSS-based position estimate (UE-based) and measurements (UE-assisted).
### Conditional presence

<table>
<thead>
<tr>
<th>Condition</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>HighAccuracy</td>
<td>This field <strong>SHALL</strong> be present, when providing high accuracy position/velocity estimates. Otherwise it is not present.</td>
</tr>
</tbody>
</table>

**OMA-LPPe-AGNSS-ProvideLocationInformation field descriptions**

**highAccuracyReferenceTime**

This field indicates the GNSS system time at which the high accuracy position/velocity estimate provided in the IE **OMA-LPPe-CommonIEsProvideLocationInformation** is valid.

### 6.5.1.6 AGNSS Location Information Elements

**OMA-LPPe-AGNSS-HAgnssProvide**

The **OMA-LPPe-AGNSS-HAgnssProvide** is used to provide periodic high accuracy AGNSS measurements from the target device to the server. Unless otherwise instructed in LPP proper **CommonIEsRequestLocationInformation**, the target **SHALL** report its position and reference time information. However, in case the target is allowed to report only measurements (locationMeasurementsRequired and onlyReturnInformationRequested in LPP proper **CommonIEsRequestLocationInformation**), position and reference time are not included. Appendix D.1 shows a few examples of periodic HA GNSS sessions.
integerCodePhase INTEGER (0..255) OPTIONAL, --Cond IfAvailable
codePhase INTEGER (0..14989622),
codePhaseRMSerror INTEGER (0..63),
multipathDetection ENUMERATED {low, moderate, high, notMeasured, ...},
cnr INTEGER(0..255),
adr INTEGER (0..536870911),
adrrMSerror INTEGER (0..127),
lockIndicator BOOLEAN,
...
}
-- ASN1STOP

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAantenna</td>
<td>This field SHALL be included in case the server requested for the antenna description information in the HA GNSS measurement session request and antenna description information is supported. Otherwise it is not present.</td>
</tr>
<tr>
<td>NotForbidden</td>
<td>This field SHALL be present unless otherwise instructed in LPP proper.</td>
</tr>
<tr>
<td>HApressure</td>
<td>This field SHALL be included in case the server requested for pressure measurements in the HA GNSS measurement session request and pressure information is supported. Otherwise it is not present.</td>
</tr>
<tr>
<td>HAantOrientation</td>
<td>This field SHALL be present, if the server requests for the antenna orientation information and such can be provided. Otherwise the field SHALL NOT be present.</td>
</tr>
<tr>
<td>IfAvailable</td>
<td>This field SHALL be present, if the target has position fix and can report millisecond ambiguity. Otherwise the target SHALL NOT be present.</td>
</tr>
</tbody>
</table>

**OMA-LPPe-AGNSS-HAgnsProvide field descriptions**

- **controlParameters**
  - This field specifies the control parameters of the HA GNSS session
- **duration**
  - This field specifies the length of the HA GNSS measurement session.
- **rate**
  - This field specifies the rate of delivery of the HA GNSS measurements. Scale factor 1 second.
- **antennaDescription**
  - This field species the GNSS antenna in the target device.
- **measurements**
  - This field species the HA GNSS measurements.
- **position**
  - This field species the position of the target device.
- **referenceTime**
  - This field specifies the time, when the measurements included are applicable.
- **localPressure**
  - This field specifies the local atmospheric pressure measurement at the target’s altitude for improved altitude or delta-altitude performance.
- **pressure**
  - Local atmospheric pressure measurement (hPa) at the target’s altitude. The scale factor is 0.1 hPa. The value is added to the average pressure 1013hPa.
- **pressureUncertainty**
  - The 1-sigma standard deviation of the pressure measurement. The scale factor is 0.1 hPa.
- **antennaOrientation**
  - This field specifies the orientation of the antenna with respect to the earth-fixed coordinate system.
- **signalMeasurements**
  - This field carries the HA GNSS signal measurements.
**gnss-ID**
This field defines the ID of the GNSS for which measurements are being provided.

**haGNSSperSignalList**
This field carries the HA GNSS measurements for the given signals.

**signal-ID**
This field defines the ID of the GNSS signal for which measurements are being provided.

**haGNSSperSVList**
This field carries the HA GNSS measurements for specific satellites.

**svID**
This field identifies the SV for which HA GNSS measurements are provided.

**integerCodePhase**
This field indicates the integer milli-second part of the code phase.

**codePhase**
This field contains the sub-millisecond part of the code phase observation for the particular satellite signal at the reference time. The target SHALL reconstruct the full pseudorange by Pseudorange = (Integer Code Phase) + (Code Phase).

Scale factor 0.02 meters. Range [0, 299792.44] meters,

**codePhaseRMSerror**
This field contains the pseudorange RMS error value. This parameter is specified according to a floating-point representation defined in the corresponding table in 3GPP in section “GNSS-MeasurementList”.

**multipathDetection**
This field contains an estimate of the multipath environment.

**cnr**
This field contains an estimate of the carrier-to-noise ratio. Scale factor 0.25 dB-Hz. Range [0, 63.75] dB-Hz.

**adr**
This field contains the continuous carrier phase with direct data polarity.
Scale factor $2^{10}$ meters, in the range [0, 524287.999023438] meters.

**adrRMSerror**
This field contains the RMS error of the continuous carrier phase.
Scale factor $2^{10}$ meters, in the range [0, 0.12403] meters.

**lockIndicator**
This field is set to true if the carrier phase tracking has been continuous between the previous and the current measurement delivery. If false, a cycle slip has occurred.

---

**OMA-LPPE-AGNSS-IonosphereMeasurements**

The **OMA-LPPE-AGNSS-IonosphereMeasurements** is used by the target to deliver ionosphere measurements to the location server. The measurements may consist either of a set of TEC values towards each of the SVs seen by the target, or a single zenith TEC value at the target’s location. The location server can use the values collected from several targets to model the local ionospheric conditions.

```asn1
OMA-LPPE-AGNSS-IonosphereMeasurements ::= SEQUENCE {
 gnssTime GNSS-SystemTime,
 position EllipsoidPointWithAltitudeAndUncertaintyEllipsoid,
 tecPerSV OMA-LPPE-AGNSS-TECPerSV OPTIONAL, --Cond TecPerSV
 tecAtZenith OMA-LPPE-AGNSS-TECAtZenith OPTIONAL, --Cond ZenithTec
 ...
}

OMA-LPPE-AGNSS-TECPerSV ::= SEQUENCE (SIZE(1..64)) OF OMA-LPPE-AGNSS-TECPerSVElement

OMA-LPPE-AGNSS-TECPerSVElement ::= SEQUENCE {
 azimuth INTEGER(0..359),
 elevation INTEGER(0..90),
 tecValue INTEGER(0..511),
 tecUncertainty INTEGER(0..63),
}
OMA-LPpe-AGNSS-IonosphereMeasurements field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>gnssTime</code></td>
<td>This field indicates the measurement time.</td>
</tr>
<tr>
<td><code>position</code></td>
<td>This field indicates the measurement location.</td>
</tr>
<tr>
<td><code>tecPerSV</code></td>
<td>This field contains the list of TEC values from the target towards each of the SVs seen by the target.</td>
</tr>
<tr>
<td><code>tecAtZenith</code></td>
<td>This field contains the target’s estimate of the zenith TEC value at the target’s position.</td>
</tr>
<tr>
<td><code>azimuth</code></td>
<td>This field indicates the azimuth angle of the ionosphere measurement, i.e. the direction from the user where the TEC values are observed.</td>
</tr>
<tr>
<td><code>elevation</code></td>
<td>This field indicates the elevation angle of the ionosphere measurement, i.e. how high or low in the sky the TEC value is observed.</td>
</tr>
<tr>
<td><code>tecValue</code></td>
<td>This field indicates the measured TEC value towards the SV concerned.</td>
</tr>
<tr>
<td><code>tecUncertainty</code></td>
<td>This field indicates the 1-sigma standard deviation of the TEC measurement.</td>
</tr>
<tr>
<td><code>tecValueAtZenith</code></td>
<td>This field indicates the measured vertical TEC value.</td>
</tr>
<tr>
<td><code>tecUncertaintyAtZenith</code></td>
<td>This field indicates the 1-sigma standard deviation of the TEC measurement.</td>
</tr>
</tbody>
</table>

OMA-LPpe-AGNSS-LocalSurfaceMeasurements

The **OMA-LPpe-AGNSS-LocalSurfaceMeasurements** information element is used to deliver the target’s surface measurements to the server. Collecting the pressure-altitude measurement combinations allows the server to model the current local atmospheric circumstances and generate altitude assistance for targets equipped with a barometer.
gnssTime GNSS-SystemTime,
position EllipsoidPointWithAltitudeAndUncertaintyEllipsoid,
pressure INTEGER(-1024..1023),
pressureUncertainty INTEGER(0..127),
temperatureMeasurement SEQUENCE {
temperature INTEGER(-64..63) OPTIONAL,
temperatureUncertainty INTEGER(0..7) OPTIONAL,
...
} OPTIONAL, --Cond TemperatureAvailable

-- ASN1STOP

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>TemperatureAvailable</td>
<td>The field is mandatory present if the target is able to provide temperature measurement with the pressure measurement, otherwise it is not present.</td>
</tr>
</tbody>
</table>

OMA-LPpE-AGNSS-LocalSurfaceMeasurements field descriptions

- **gnssTime**
 This field indicates the measurement time.

- **position**
 This field indicates the measurement location.

- **pressure**
 Local atmospheric pressure measurement (hPa) at the target’s altitude.
 The scale factor is 0.1 hPa. The value is added to the nominal pressure of 1013hPa.

- **pressureUncertainty**
 The 1-sigma standard deviation of the pressure measurement.
 The scale factor is 0.1 hPa.

- **temperature**
 Local temperature measured by the target. The value is added to 273K.
 The scale factor is 1K.

- **temperatureUncertainty**
 The 1-sigma standard deviation of the temperature measurement.
 The scale factor is 1 K.

6.5.1.7 AGNSS Location Information Request

- **OMA-LPpE-AGNSS-RequestLocationInformation**
 The **OMA-LPpE-AGNSS-RequestLocationInformation** is used to request AGNSS-based position estimate (UE-based) and measurements (UE-assisted).

```asn1
OMA-LPpE-AGNSS-RequestLocationInformation ::= SEQUENCE {
  positioningInstructions OMA-LPpE-AGNSS-PositioningInstructions OPTIONAL,
  ionosphereMeasurementsReq BIT STRING {tecPerSV(0),
    zenithTEC(1)}{SIZE(1..8)} OPTIONAL,
  localSurfaceMeasurementReq OMA-LPpE-AGNSS-LocalSurfaceMeasurementReq OPTIONAL,
  ...
}
```

-- ASN1STOP
OMA-LPPe-AGNSS-RequestLocationInformation field descriptions

<table>
<thead>
<tr>
<th>ionosphereMeasurementsReq</th>
</tr>
</thead>
<tbody>
<tr>
<td>This field is used by the location server to request the target’s ionosphere measurements. This is represented by a bit string with a one value at bit position 0 meaning that a TEC value per each satellite is requested and a one value at bit position 1 meaning that a zenith TEC value at the target’s position is requested.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>localSurfaceMeasurementReq</th>
</tr>
</thead>
<tbody>
<tr>
<td>This field is used by the location server to request the target's local surface measurements such as atmospheric pressure and temperature.</td>
</tr>
</tbody>
</table>

6.5.1.8 AGNSS Location Information Request Elements

OMA-LPPe-AGNSS-PositioningInstructions

The **OMA-LPPe-AGNSS-PositioningInstructions** is used to provide AGNSS positioning and measuring instructions to the target device.

```asn1
OMA-LPPe-AGNSS-PositioningInstructions ::= SEQUENCE {
  highAccuracyMethodRequested BOOLEAN,
  haGNSSreq OMA-LPPe-AGNSS-HAgnssRequestControlParameters OPTIONAL, --Cond HAgnssReq
  ...,
  extUncertRange BOOLEAN OPTIONAL
}
```

Conditional presence

<table>
<thead>
<tr>
<th>HAgnssReq</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>This field SHALL be present, when requesting for continuous high accuracy GNSS measurements or an update to the currently ongoing periodic Location Information session. The request SHALL be accompanied by RequestPeriodicLocInfoWithUpdate in OMA-LPPe-CommonIESRequestLocationInformation. Otherwise the field is not present.</td>
<td></td>
</tr>
</tbody>
</table>
highAccuracyMethodRequested

This field indicates that the server requests the target to use UE-based high accuracy AGNSS method. Note that this implies using the CCP assistance and performing positioning in the UE-based mode. Thus, the highAccuracyMethodRequested SHALL be accompanied by the setting locationEstimateRequired in the 3GPP LPP proper in the LocationInformationType of CommonIEsRequestLocationInformation.

In case the high accuracy AGNSS method is requested, the target is expected to return the location information using the High Accuracy 3D Position information element. Likewise, in case velocity is requested (in the 3GPP LPP proper in the QoS information element in the CommonIEsRequestLocationInformation information element), the velocity SHALL be returned using the High Accuracy 3D Velocity information element. Thus locationCoordinateTypes and velocityTypes in the 3GPP LPP proper in the CommonIEsRequestLocationInformation information element are not applicable, when requesting High Accuracy AGNSS method.

Note that since high accuracy location estimate IE carry a full 3D representation, such full 3D information SHALL be returned even in case the vertical coordinate was not requested in the 3GPP LPP proper in the QoS information element in the CommonIEsRequestLocationInformation information element and providing additional information was forbidden in the 3GPP LPP proper in the additionalInformation information element in the CommonIEsRequestLocationInformation information element.

Response time defined in the 3GPP LPP proper in the QoS information element SHALL be obeyed, when the high accuracy AGNSS method has been requested. In case the requested response time cannot be met, the target SHALL report the failure using the appropriate error codes in the 3GPP LPP proper.

The target SHALL also obey the IE gnss-Methods, i.e. instructions to use only allowed GNSSs in positioning, in the GNSS-PositioningInstructions in A-GNSS-RequestLocationInformation in the 3GPP LPP proper.

In case the target does not support high accuracy method, the target SHALL return AGNSS Target Device Error “HighAccuracyMethodNotSupported”.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>haGNSSreq</td>
<td>This field is used by the server to request for the High Accuracy GNSS measurements for UE-assisted HA GNSS</td>
</tr>
<tr>
<td>extUncertRange</td>
<td>This field is used by the server to indicate whether a high accuracy position with extended uncertainty range is allowed (TRUE). This field is optional and if not present or set to FALSE, only the default uncertainty range is allowed.</td>
</tr>
</tbody>
</table>

OMA-LPPe-AGNSS-LocalSurfaceMeasurementsReq

The **OMA-LPPe-AGNSS-LocalSurfaceMeasurementsReq** is used to request local surface measurements (pressure, temperature) from the target.

```asn1
OMA-LPPe-AGNSS-LocalSurfaceMeasurementReq ::= SEQUENCE {
  ... }
```

OMA-LPPe-AGNSS-HAgnssRequestControlParameters

The **OMA-LPPe-AGNSS-HAgnssRequestControlParameters** is used to request for periodic high accuracy AGNSS measurements from the target device or to request modification to the session parameters of the on-going session. Note that the requested GNSSs and signals cannot be modified intra-session.

```asn1
```

OMA - All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
OMA-LPpe-AGNSS-HAgnssRequestControlParameters ::= SEQUENCE {
 duration OMA-LPpe-Duration OPTIONAL, --Cond FirstOrModify
 rate INTEGER(1..63) OPTIONAL, --Cond FirstOrModify
 antennaInformationReq ENUMERATED {antennaDescriptionOnly, antennaDescriptionAndOrientation, ...} OPTIONAL,
 pressureInformationReq BOOLEAN, --Cond FirstOrModify
 signalReqList SEQUENCE (SIZE(1..16)) OF OMA-LPpe-AGNSS-HAgnssSignalReqElement OPTIONAL, --Cond First
 ...}

OMA-LPpe-AGNSS-HAgnssSignalReqElement ::= SEQUENCE {
 gnssID GNSS-ID,
 signals GNSS-SignalIDs,
 ...}

=-- ASN1STOP

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>FirstOrModify</td>
<td>This field SHALL be present in the first message or when requesting for periodic HA GNSS measurements. Otherwise it SHALL NOT be present.</td>
</tr>
<tr>
<td>First</td>
<td>This field SHALL be present in the first message in the HA GNSS session. Otherwise it SHALL NOT be present.</td>
</tr>
</tbody>
</table>

OMA-LPpe-AGNSS-HAgnssRequestControlParameters field descriptions

duration
This field specifies the length of the HA GNSS measurement session.

rate
This field specifies the rate of delivery of the HA GNSS measurements. Scale factor 1 second.

antennaInformationReq
This field is used to request for the target antenna information.

pressureInformationReq
This field is used to request for the pressure information at the target site. TRUE means requested, FALSE means not requested.

signalReqList
This field is used to request HA GNSS measurements for specific GNSS signals.

gnssID
This field carries the ID of the GNSS for which HA GNSS measurements are requested.

signals
This field specifies the GNSS signal types for which HA GNSS measurements are requested by the server. This is represented by a bit string in GNSS-SignalIDs, with a one-value at the bit position means HA GNSS measurements for the particular GNSS signal type is requested; a zero-value means not requested.

6.5.1.9 AGNSS Capability Information

OMA-LPpe-AGNSS-ProvideCapabilities

The **OMA-LPpe-AGNSS-ProvideCapabilities** is used by the target to provide its LPpe AGNSS capabilities to the server.

=-- ASN1START

OMA-LPpe-AGNSS-ProvideCapabilities ::= SEQUENCE {
 assistanceDataSupportList OMA-LPpe-AGNSS-AssistanceDataSupportList OPTIONAL,
 environmentObservationSupportList OMA-LPpe-AGNSS-EnvironmentObservationSupportList OPTIONAL,
 haGNSSsupport OMA-LPpe-AGNSS-HAgnssSupport OPTIONAL,
 ...}

=-- ASN1STOP
6.5.1.10 AGNSS Capability Information Element

-- OMA-LPPe-AGNSS-EnvironmentObservationSupportList

The OMA-LPPe-AGNSS-EnvironmentObservationSupportList is used by the target to provide its environment observation capabilities to the server.

-- ASN1START

OMA-LPPe-AGNSS-EnvironmentObservationSupportList ::= SEQUENCE{
 ionosphereMeasurementSupport BIT STRING {tecPerSVsupport(0),
 zenithTecSupport(1) } (SIZE (1..8)),
 pressureMeasurementSupported BOOLEAN,
 temperatureMeasurementSupported BOOLEAN,
 ...}

-- ASN1STOP

-- OMA-LPPe-AGNSS-CommonAssistanceDataSupport

The OMA-LPPe-AGNSS-CommonAssistanceDataSupport is used by the target to provide its GNSS-independent LPPe AGNSS capabilities to the server.

-- ASN1START

OMA-LPPe-AGNSS-CommonAssistanceDataSupport ::= SEQUENCE {
 ionosphericModelSupport OMA-LPPe-AGNSS-IonosphericModelSupport OPTIONAL, --Cond IonoSupport
 troposphereModelSupport OMA-LPPe-AGNSS-TroposphereModelSupport OPTIONAL, --Cond TropoSupport
 altitudeAssistanceSupport OMA-LPPe-AGNSS-AltitudeAssistanceSupport OPTIONAL, --Cond AltAssistSupport
 solarRadiationSupport OMA-LPPe-AGNSS-SolarRadiationSupport OPTIONAL, --Cond SolarRadiationSupport
 ccpSupport OMA-LPPe-AGNSS-CCPsupport OPTIONAL, --CCPsupport
 ...}

-- ASN1STOP

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>IonoSupport</td>
<td>The field is mandatory present if the target supports LPPe ionosphere models, otherwise it is not present.</td>
</tr>
<tr>
<td>TropoSupport</td>
<td>The field is mandatory present if the target device supports LPPe troposphere models, otherwise it is not present.</td>
</tr>
<tr>
<td>AltAssistSupport</td>
<td>The field is mandatory present if the target device supports altitude assistance, otherwise it is not present.</td>
</tr>
<tr>
<td>SolarRadiationSupport</td>
<td>The field is mandatory present if the target device supports Solar Radiation information. Otherwise the field is not present.</td>
</tr>
<tr>
<td>CCPsupport</td>
<td>This field is mandatory present, if the target supports CCP. Otherwise it is not present.</td>
</tr>
</tbody>
</table>
OMA-LPPe-AGNNS-IonosphericModelSupport

The `OMA-LPPe-AGNNS-IonosphericModelSupport` information element is used by the target to specify to the server which ionospheric model or models the target supports.

```asn1
OMA-LPPe-AGNNS-IonosphericModelSupport ::= SEQUENCE {
  ionoModel BIT STRING {
    localKlobuchar (0),
    ionoStormWarning (1),
    wideAreaIonoSurface (2) } (SIZE (1..8)),
  ... }
```

OMA-LPPe-AGNNS-IonosphericModelSupport field descriptions

ionoModel

This field specifies the ionospheric model(s) supported by the target device. This is represented by a bit string, with a one-value at the bit position means the particular ionospheric model is supported; a zero-value means not supported.

If bit 2 for wide area ionosphere correction surface is set, the target SHALL support the corrections for all the supported GNSSs.

OMA-LPPe-AGNNS-TroposphereModelSupport

The `OMA-LPPe-AGNNS-TroposphereModelSupport` information element is used by the target to specify to the server which troposphere model or models the target supports.

```asn1
OMA-LPPe-AGNNS-TroposphereModelSupport ::= SEQUENCE {
  tropoModel BIT STRING { localTroposphereDelay (0),
    surfaceParameters (1) } (SIZE (1..8)),
  supportForMultipleGridPoints BOOLEAN,
  ... }
```

OMA-LPPe-AGNNS-TroposphereModelSupport field descriptions

tropoModel

This field specifies the troposphere model(s) supported by the target device. This is represented by a bit string, with a one-value at the bit position means the particular troposphere model is supported; a zero-value means not supported.

supportForMultipleGridPoints

This field specifies, if the target supports combining troposphere information from several grid points surrounding the target.

OMA-LPPe-AGNNS-AltitudeAssistanceSupport

The `OMA-LPPe-AGNNS-AltitudeAssistanceSupport` is used by the target to provide its altitude assistance capabilities to the server.
– **OMA-LPpe-AGNSS-SolarRadiationSupport**

The *OMA-LPpe-AGNSS-SolarRadiationSupport* is used by the target to provide its solar radiation assistance capabilities to the server.

```asn1
OMA-LPpe-AGNSS-SolarRadiationSupport ::= SEQUENCE {
    ... ...
}
```

– **OMA-LPpe-AGNSS-CCPsupport**

The *OMA-LPpe-AGNSS-CCPsupport* is used by the target to provide its CCP capabilities to the server.

```asn1
OMA-LPpe-AGNSS-CCPsupport ::= SEQUENCE {
    supportAreaAssistanceSupported BOOLEAN,
    multiReferenceStationSupported BOOLEAN,
    ... ...
}
```

OMA-LPpe-AGNSS-CCPsupport field descriptions

- **supportAreaAssistanceSupported**
 This field indicates, if the target supports the CCP Support Area assistance.

- **multiReferenceStationSupported**
 This field indicates, if the target supports multibaseline solution.

– **OMA-LPpe-AGNSS-GenericAssistanceDataSupport**

The *OMA-LPpe-AGNSS-GenericAssistanceDataSupport* is used by the target to provide its GNSS-dependent LPPe AGNSS assistance data capabilities to the server.

```asn1
OMA-LPpe-AGNSS-GenericAssistanceDataSupport ::= SEQUENCE (SIZE (1..16)) OF OMA-LPpe-AGNSS-GenericAssistDataSupportElement

OMA-LPpe-AGNSS-GenericAssistDataSupportElement ::= SEQUENCE {
    gnss-ID GNSS-ID,
    mechanicsSupport OMA-LPpe-AGNSS-MechanicsSupport OPTIONAL, --Cond MechSupport
    dcbSupport OMA-LPpe-AGNSS-DCBsupport OPTIONAL, --Cond DCBsupport
    navModelAccuracyModelDegradationSupport OMA-LPpe-AGNSS-NavModelAccuracyModelDegradationSupport OPTIONAL, --Cond NavModDegrSupport
    ccpAssistanceSupport GNSS-SignalIDs OPTIONAL, --Cond CCPsupport
    navModelSupport OMA-LPpe-AGNSS-NavModelSupport OPTIONAL, --Cond NavModSupport
    ... ...
}
```
Conditional presence	Explanation
MechSupport | The field is mandatory present if the target device supports SV mechanics assistance. Otherwise the field is not present.
DCBsupport | The field is mandatory present if the target device supports differential code bias assistance. Otherwise the field is not present.
NavModDegrSupport | The field is mandatory present if the target device supports navigation model degradation model assistance. Otherwise the field is not present.
CCPsupport | This field is mandatory present, if the target supports CCP assistance for at least one signal of the GNSS. Otherwise it is not present.
NavModSupport | This field SHALL be included, if the target supports one or more LPPe navigation model types. Otherwise it is not present.

OMA-LPPe-AGNSS-GenericAssistanceDataSupport field descriptions

ccpAssistanceSupport
This field specifies the GNSS signal types for which CCP assistance is supported by the target device. This is represented by a bit string in `GNSS-SignallIDs`, with a one-value at the bit position means CCP assistance for the particular GNSS signal type is supported; a zero-value means not supported.

OMA-LPPe-AGNSS-MechanicsSupport
The *OMA-LPPe-AGNSS-MechanicsSupport* is used by the target to provide its mechanics assistance capabilities to the server.

OMA-LPPe-AGNSS-DCBsupport
The *OMA-LPPe-AGNSS-MechanicsSupport* is used by the target to provide its Differential Code Bias assistance capabilities to the server.

OMA-LPPe-AGNSS-NavModelAccuracyModelDegradationSupport
The *OMA-LPPe-AGNSS-NavModelAccuracyModelDegradationSupport* is used by the target to provide its navigation model degradation model assistance capabilities to the server.
-- ASN1START
OMA-LPpe-AGNSS-NavModelAccuracyModelDegradationSupport ::= SEQUENCE {
 ...
}
-- ASN1STOP

OMA-LPpe-AGNSS-NavModelSupport

The *OMA-LPpe-AGNSS-NavModelSupport* is used by the target to provide its navigation model assistance capabilities to the server.

-- ASN1START
OMA-LPpe-AGNSS-NavModelSupport ::= SEQUENCE {
 navModelSupport SEQUENCE (SIZE(1..8)) OF INTEGER(1..8) OPTIONAL,
 ...
}
-- ASN1STOP

OMA-LPpe-AGNSS-NavModelSupport field descriptions

navModelSupport

This field is used to indicate the navigation model support to the server. The sequence carries within the Model-IDs of the supported navigation mode types. IDs are specified in the description of *OMA-LPpe-AGNSS-NavigationModelReq*.

-- ASN1START
OMA-LPpe-AGNSS-NavModelSupport ::= SEQUENCE {
 modeSupport BIT STRING {ueBased (0), ueAssisted (1) } (SIZE(2)),
 haGNSSpressureInformationSupport BOOLEAN,
 haGNSSantennaInformationSupport BIT STRING {
 antennaDescriptionSupported (0),
 antennaOrientationSupported (1)
 } (SIZE(8)),
 haGNSSperGNSSsupport SEQUENCE (SIZE(1..8)) OF OMA-LPpe-AGNSS-HAgnssPerGNSSsupport,
 ...
}
OMA-LPpe-AGNSS-HAgnssPerGNSSsupport ::= SEQUENCE {
 gnss-ID GNSS-ID,
 haGNSSsignalSupport GNSS-SignalIDs,
 ...
}
-- ASN1STOP

OMA-LPpe-AGNSS-HAgnssSupport

The *OMA-LPpe-AGNSS-HAgnssSupport* is used by the target to provide its HA GNSS capabilities to the server.
OMA-LPPe-AGNSS-HAgnssSupport field descriptions

modeSupport
This field is used to indicate
If bit 0 set, UE-based supported.
If bit 1 set, UE-assisted supported.

haGNSSpressureInformationSupport
This field is used to provide information, if the target is capable of providing absolute pressure information for improved delta-altitude performance.

haGNSSantennaInformationSupport
This field is used to carry the antenna information support.

haGNSSperGNSSsupport
This field is used to carry the HA GNSS signal measurement capabilities of the target.

gnss-ID
This field specifies the ID of the GNSS for which HA GNSS capabilities are provided.

haGNSSsignalSupport
This field specifies the GNSS signal types for which HA GNSS signal measurements are supported by the target device. This is represented by a bit string in `GNSS-SignalIDs`, with a one-value at the bit position means HA GNSS measurements for the particular GNSS signal type is supported; a zero-value means not supported.

6.5.1.11 AGNSS Capability Information Request

OMA-LPPe-AGNSS-RequestCapabilities

The IE *OMA-LPPe-AGNSS-RequestCapabilities* is used to request LPe AGNSS capabilities information from the target.

```asn1
OMA-LPPe-AGNSS-RequestCapabilities ::= SEQUENCE {
  assistanceDataSupportListReq NULL OPTIONAL,
  environmentObservationSupportListReq NULL OPTIONAL,
  haGNSSsupportReq NULL OPTIONAL,
  ...
}
```

OMA-LPPe-AGNSS-RequestCapabilities field descriptions

assistanceDataSupportListReq
This field is used to request the common and generic assistance data capabilities of the target.

environmentObservationSupportListReq
This field is used to request environment observation capabilities.

haGNSSsupportReq
This field is used to request HA GNSS capabilities of the target.

6.5.1.12 AGNSS Error Elements

OMA-LPPe-AGNSS-Error

The IE *OMA-LPPe-AGNSS-Error* is used by the target or server to provide GNSS Error Reasons.

```asn1
OMA-LPPe-AGNSS-Error ::= CHOICE {
  agnss-locationServerErrorCauses OMA-LPPe-AGNSS-LocationServerErrorCauses,
  agnss-targetDeviceErrorCauses OMA-LPPe-AGNSS-TargetDeviceErrorCauses,
  ...
}
```

2020 Open Mobile Alliance. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
– **OMA-LPpE-AGNSS-LocationServerErrorCauses**

The IE **OMA-LPpE-AGNSS-LocationServerErrorCauses** is used by the server to provide GNSS Error Reasons to the target. The IE **OMA-LPpE-AGNSS-LocationServerErrorCauses** is used, when the IE **OMA-LPpE-AGNSS-Error** is included in the LPP Provide Assistance Data message extension by the server.

```asn1
OMA-LPpE-AGNSS-LocationServerErrorCauses ::= SEQUENCE {
  waIonoErrorCauses ENUMERATED {
    undefined,
    waIonoNotSupportedByServer,
    waIonoNotSupportedInTargetArea,
    waIonoNotSupportedForAnyRequestedGNSS,
    ...
  } OPTIONAL,
  ccpErrorCauses ENUMERATED {
    undefined,
    ccpNotSupportedByServer,
    ccpNotSupportedInTargetArea,
    ccpNotSupportedForAnyRequestedSignal,
    ccpQorCannotBeMet,
    ccpUnableToModifyControlParameters,
    ccpMultiReferenceStationNotSupported,
    ccpNeighborListNotSupported,
    ccpSupportAreaAssistanceNotSupported,
    ...
  } OPTIONAL,
  ...
}
```

– **OMA-LPpE-AGNSS-TargetDeviceErrorCauses**

The IE **OMA-LPpE-AGNSS-TargetDeviceErrorCauses** is used by the target to provide GNSS Error Reasons to the server. In addition, the target may return an additional error reason in the LPP proper. The IE **OMA-LPpE-AGNSS-TargetDeviceErrorCauses** is used, when the IE **OMA-LPpE-AGNSS-Error** is included in the LPP Provide Location Information message extension by the target.

```asn1
OMA-LPpE-AGNSS-TargetDeviceErrorCauses ::= SEQUENCE {
  highAccuracyErrorCauses ENUMERATED {
    undefined,
    highAccuracyMethodNotSupported,
    ...
  } OPTIONAL,
  ionosphereMeasurementErrorCauses ENUMERATED {
    undefined,
    ionosphereMeasurementsNotSupported,
    ionosphereMeasurementsNotAvailable,
    ...
  } OPTIONAL,
  environmentObservationErrorCauses ENUMERATED {
    undefined,
    surfaceMeasurementsNotSupported,
    surfaceMeasurementsNotAvailable,
    ...
  } OPTIONAL,
  haGNSSerrorCauses ENUMERATED {
    undefined,
    haGNSSnotSupportedByTarget,
    haGNSSunavailableForAllRequestedSignals,
    haGNSSantennaInformationNotSupported,
    haGNSSantennaInformationNotAvailable,
    haGNSSpressureInformationNotSupported,
    haGNSSpressureInformationNotAvailable,
    haGNSSunableToModifyControlParameters,
    ...
  } OPTIONAL,
  ...
}
```
Common AGNSS Information Elements

- **OMA-LPPe-AGNSS-CCPreferenceStationID**

The OMA-LPPe-AGNSS-CCPreferenceStationID IE defines a GNSS reference station.

```asn1
OMA-LPPe-AGNSS-CCPreferenceStationID ::= SEQUENCE {
    stationID INTEGER(0..65535),
    ...,

    maxReferenceStations INTEGER ::= 8
}
```

OMA-LPPe-AGNSS-CCPreferenceStationID field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>stationID</td>
<td>Defines the ID of the reference station. Reference stations IDs are used to link the CCP assistance to the correct reference station. IDs are allocated by the server. One reference station SHALL have one ID. The ID SHALL NOT change during the CCP assistance session.</td>
</tr>
<tr>
<td>maxReferenceStations</td>
<td>This field species the maximum number of reference stations that can be provided to the target at a time.</td>
</tr>
</tbody>
</table>

- **OMA-LPPe-AGNSS-AntennaDescription**

The OMA-LPPe-AGNSS-AntennaDescription is used to provide the target information on the antenna at the reference station. The IE supports a straightforward mapping from RTCM 10403.1.

```asn1
OMA-LPPe-AGNSS-AntennaDescription ::= SEQUENCE {
    antennaDescription CHOICE {
        igsAntennaName  OMA-LPFe-CharArray,
        proprietaryName OMA-LPFe-CharArray,
        ...,

        antennaSetupID  INTEGER(0..255) OPTIONAL,
        antennaSerialNumber OMA-LPFe-CharArray OPTIONAL,
        ...,
    }
}
```

2020 Open Mobile Alliance. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
OMA-LPPe-AGNSS-AntennaDescription field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>igsAntennaName</td>
<td>This field specifies the antenna equipment name as specified in RTCM 10403.1.</td>
</tr>
<tr>
<td>proprietaryName</td>
<td>This field carries proprietary antenna information.</td>
</tr>
<tr>
<td>antennaSetupId</td>
<td>Antenna setup information as specified in RTCM 10403.1.</td>
</tr>
<tr>
<td>antennaSerialNumber</td>
<td>Antenna serial number as issued by the antenna manufacturer.</td>
</tr>
</tbody>
</table>

6.5.1.14 AGNSS Abort Elements

OMA-LPPe-AGNSS-Abort

The IE **OMA-LPPe-AGNSS-Abort** is used by the target or server to provide GNSS Abort Reasons.

```
OMA-LPPe-AGNSS-Abort ::= SEQUENCE {
  targetDeviceAbortCauses SEQUENCE {
    ccpAbort       ENUMERATED { undefined, ccpNotSupported, ...
                           } OPTIONAL,
    waIonoAbort    ENUMERATED { undefined, waIonoNotSupported, ...
                           } OPTIONAL,
    ... OPTIONAL,
    ...
  } OPTIONAL,
  ...
}
```

6.5.2 OTDOA Positioning

6.5.2.1 OTDOA Assistance Data

OMA-LPPe-OTDOA-ProvideAssistanceData

The IE **OMA-LPPe-OTDOA-ProvideAssistanceData** is used to provide assistance for UE-based OTDOA (E-UTRAN).

```
OMA-LPPe-OTDOA-ProvideAssistanceData ::= SEQUENCE {
  otdoa-ReferenceCellInfo OMA-LPPe-OTDOA-ReferenceCellInfo OPTIONAL,
  otdoa-NeighbourCellInfo OMA-LPPe-OTDOA-NeighbourCellInfoList OPTIONAL,
  otdoa-Error             OMA-LPPe-OTDOA-Error OPTIONAL,
  ...
}
```

6.5.2.2 OTDOA Assistance Data Elements

OMA-LPPe-OTDOA-ReferenceCellInfo

The IE **OMA-LPPe-OTDOA-ReferenceCellInfo** is used by the location server to provide reference cell information for OTDOA assistance data.
--- ASN1START

OMA-LPpe-OTDOA-ReferenceCellInfo ::= SEQUENCE {
 referenceCellInfo OTDOA-ReferenceCellInfo,
 positionCalculationInfoRef OMA-LPpe-OTDOA-PositionCalculationInfoRef,
 ...
}
--- ASN1STOP

--- ASN1START

OMA-LPpe-OTDOA-ReferenceCellInfo field descriptions

referenceCellInfo
This field provides OTDOA reference cell information as specified in [LPP].

positionCalculationInfoRef
This field provides position calculation assistance data for the reference cell.

--- ASN1START

OMA-LPpe-OTDOA-PositionCalculationInfoRef

The IE OMA-LPpe-OTDOA-PositionCalculationInfoRef is used by the location server to provide location and other information of the reference cell useful for UE-based OTDOA.

--- ASN1START

OMA-LPpe-OTDOA-PositionCalculationInfoRef ::= SEQUENCE {
 systemFrameNumber BIT STRING (SIZE(10)) OPTIONAL, --Cond driftRate
 rtdReferenceStd OMA-LPpe-OTDOA-RTDquality OPTIONAL,
 cellLocation SEQUENCE {
 reference-point OMA-LPPe-ReferencePoint OPTIONAL,
 relative-location OMA-LPPe-RelativeLocation OPTIONAL,
 ...
 },
 femtoCellInfo SEQUENCE {
 location-reliability INTEGER{1..100} OPTIONAL,
 ...
 } OPTIONAL, --Cond femto
 ...
}
--- ASN1STOP

Conditional presence	Explanation
driftRate | The field is mandatory present if fineRTDdriftRate is included in OMA-LPPe-OTDOA-NeighbourCellInfoList.
femto | This field is mandatory present if the reference cell is a HeNB femto cell; otherwise it is not present.

--- ASN1START

OMA-LPpe-OTDOA-PositionCalculationInfoRef field descriptions

systemFrameNumber
This field specifies the E-UTRA system frame number of the reference cell at which the rtdInfo included in OMA-LPpe-OTDOA-NeighbourCellInfoList is valid.

rtdReferenceStd
This field specifies the standard deviation of the timing of the reference cell, used to determine the RTD values provided in OMA-LPpe-OTDOA-NeighbourCellInfoList. This field SHALL be provided if available.

cellLocation
This field defines the antenna location of the reference cell.

reference-point
This field provides the reference point used to define the cell location. If this field is absent the reference point is the default reference point provided in LPPe common IEs.
OMA-LPPe-OTDOA-PositionCalculationInfoRef field descriptions

relative-location
This field provides the location of the cell relative to the reference point. If this field is absent the cell location coincides with the reference point location.

location-reliability
The field provides the reliability R of the HeNB location. The probability that the HeNB location has not changed is given as a percentage. R may be based on historic change or persistence of the HeNB location over a period of time and the time interval since the HeNB location was last provided to or verified by the server. Note that location reliability is distinct from location accuracy and refers to the possibility of an HeNB having been moved to a new location. This field SHALL be provided if available.

OMA-LPPe-OTDOA-NeighbourCellInfoList

The IE OMA-LPPe-OTDOA-NeighbourCellInfoList is used by the location server to provide neighbour cell information for OTDOA assistance data.

```as1
OMA-LPPe-OTDOA-NeighbourCellInfoList ::= SEQUENCE (SIZE (1..maxFreqLayers)) OF OMA-LPPe-OTDOA-NeighbourFreqCellInfoList

OMA-LPPe-OTDOA-NeighbourFreqCellInfoList ::= SEQUENCE {
  neighbourCellInfoList-eNB  SEQUENCE (SIZE (1..maxLTEeNBs)) OF OMA-LPPe-OTDOA-NeighbourCellInfoElement-eNB  OPTIONAL,
  neighbourCellInfoList-HeNB  SEQUENCE (SIZE (1..maxLTEHeNBs)) OF OMA-LPPe-OTDOA-NeighbourCellInfoElement-HeNB  OPTIONAL,
  ...
}
```

OMA-LPPe-OTDOA-NeighbourCellInfoList field descriptions

neighbourCellInfoList-eNB
This field provides OTDOA neighbour cell information for eNodeBs. Either neighbourCellInfoList-eNB or neighbourCellInfoList-HeNB or both SHALL be present.

neighbourCellInfoList-HeNB
This field provides OTDOA neighbour cell information for Home eNodeBs. Either neighbourCellInfoList-eNB or neighbourCellInfoList-HeNB or both SHALL be present.

OMA-LPPe-OTDOA-NeighbourCellInfoElement-eNB

The IE OMA-LPPe-OTDOA-NeighbourCellInfoElement-eNB is used by the location server to provide neighbour cell information for one eNodeB or several co-located eNodeBs as part of OTDOA assistance data.

```as1
OMA-LPPe-OTDOA-NeighbourCellInfoElement-eNB ::= SEQUENCE {
  relative-Location  OMA-LPPe-RelativeLocation,
  otdoa-eNB-CellDataList  SEQUENCE (SIZE (1..maxLTEMacroCells)) OF OMA-LPPe-OTDOA-CellData,
  ...
}
```

2020 Open Mobile Alliance. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
OMA-LPpe-OTDOA-NeighbourCellInfoElement-eNB field descriptions

<table>
<thead>
<tr>
<th>relative-Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>This field provides the location and optional uncertainty in location of the antenna of the eNodeB relative to the reference point used to define the location of the reference cell. For an eNodeB with multiple antennas or a set of co-located eNodeBs, the location may be averaged.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>otdoa-eNB-CellDataList</th>
</tr>
</thead>
<tbody>
<tr>
<td>This field provides OTDOA neighbour cell information for one or more eNodeBs sharing a common eNodeB antenna, or using antennas in close proximity to one another.</td>
</tr>
</tbody>
</table>

OMA-LPpe-OTDOA-NeighbourCellInfoElement-HeNB

The IE *OMA-LPpe-OTDOA-NeighbourCellInfoElement-HeNB* is used by the location server to provide neighbour cell information for one Home eNodeB as part of OTDOA assistance data.

```asn1
-- ASN1START
OMA-LPpe-OTDOA-NeighbourCellInfoElement-HeNB ::= SEQUENCE {  
  relative-Location OMA-LPpe-RelativeLocation,  
  location-reliability INTEGER (1..100) OPTIONAL,  
  otdoa-HeNB-CellDataList OMA-LPpe-OTDOA-CellData,  
  ... 
}  
-- ASN1STOP
```

OMA-LPpe-OTDOA-NeighbourCellInfoElement-HeNB field descriptions

<table>
<thead>
<tr>
<th>relative-Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>This field provides the location and optional uncertainty in location of the antenna of the Home eNodeB relative to the reference point used to define the location of the reference cell.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>location-reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>The field provides the reliability R of the HeNB location. The probability that the HeNB location has not changed is given as a percentage. R may be based on historic change or persistence of the HeNB location over a period of time and the time interval since the HeNB location was last provided to or verified by the server. Note that location reliability is distinct from location accuracy and refers to the possibility of an HeNB having been moved to a new location. This field SHALL be provided if available.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>otdoa-HeNB-CellDataList</th>
</tr>
</thead>
<tbody>
<tr>
<td>This field provides OTDOA neighbour cell information for the Home eNodeB.</td>
</tr>
</tbody>
</table>

OMA-LPpe-OTDOA-CellData

The IE *OMA-LPpe-OTDOA-CellData* is used by the location server to provide neighbour cell information for one eNodeB or Home eNodeB as part of OTDOA assistance data.

```asn1
-- ASN1START
OMA-LPpe-OTDOA-CellData ::= SEQUENCE {  
  otdoa-NeighbourCellInfoElement OTDOA-NeighbourCellInfoElement,  
  rtdInfo SEQUENCE {    
    subframeOffset INTEGER(0..10229) OPTIONAL,  
    finerRTD INTEGER(0..99999),  
    finerRTDstd OMA-LPpe-OTDOA-RTDquality,  
    finerRTDriftRate INTEGER(-100..100) OPTIONAL,  
    ...  
  },  
  ... 
}  
-- ASN1STOP
```
OMA-LPPe-OTDOA-NeighbourCellData field descriptions

otdoa-NeighbourCellInfoElement
This field provides OTDOA neighbour cell information as specified in [LPP].

rtfInfo
This field specifies the real time difference between this neighbour cell and the reference cell.

subframeOffset
This field specifies the subframe offset between this cell and the reference cell. Define T_{ref} as the time of beginning of frame with SFN$_{ref}$=0 of the reference cell; define T_{nc} as the time of beginning of frame with SFN$_{nc}$=0 of this neighbour cell occurring immediately after the time T_{ref}. Then $subframeOffset = T_{nc} - T_{ref}$ in units of 1-subframe (1ms). In other words, SFN$_{nc} = SFN_{ref} + (subframeOffset/10)$. This field SHALL be provided if available.

fineRTD
This field specifies the Real Time Difference between this cell and the reference cell in units of 10 ns. Define t_{ref} as the time of beginning of a subframe of the reference cell; define t_{nc} as the time of beginning of the subframe of this neighbour cell occurring immediately after the time t_{ref}. Then $fineRTD = t_{nc} - t_{ref}$ in units of 10 ns.

fineRTDstd
This field specifies the standard deviation of the fineRTD value.

fineRTDdriftRate
This field specifies the drift rate of the RTD between this cell and the reference cell in units of 1 nano-second per second. A positive value indicates that the reference cell clock is running at a greater frequency than the neighbouring cell clock. This field SHALL be provided if available.

OMA-LPPe-OTDOA-RTDquality

The IE OMA-LPPe-OTDOA-RTDquality is used by the location server to provide the quality of the Real Time Difference (RTD) information.

OMA-LPPe-OTDOA-RTDquality field descriptions

resolution
This field specifies the resolution of the provided quality field. Enumerated values correspond to 5, 10, 50, and 100 ns, respectively.

quality
This field specifies the standard deviation of the RTD (or of the timing of the reference cell).

6.5.2.3 OTDOA Assistance Data Request

OMA-LPPe-OTDOA-RequestAssistanceData

The OMA-LPPe-OTDOA-RequestAssistanceData is used to request assistance for UE-based OTDOA.
OMA-LPPe-OTDOA-RequestAssistanceData field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lteCell</td>
<td>This field specifies the Cell-ID of the serving or non-serving but visible LTE cell of the target device.</td>
</tr>
<tr>
<td>eARFCN</td>
<td>This parameter represents E-UTRA ARFCN. If the value of E-UTRA ARFCN is greater than 65535, this parameter SHALL be set to 65535. eARFCN range: (0..65535).</td>
</tr>
<tr>
<td>eARFCN-ext</td>
<td>This field specifies the value of E-UTRA ARFCN of the cell as defined in [36.101], if an extended value is used i.e., if the value of E-UTRA ARFCN is > 65535. In this case, this parameter SHALL be sent and set to the value of E-UTRA ARFCN. eARFCN-ext range: (65536..262143)</td>
</tr>
<tr>
<td>requestedCells</td>
<td>This field specifies whether OTDOA assistance data is requested for eNodeBs, Home eNodeBs, or both. A one value at the bit position means requested.</td>
</tr>
</tbody>
</table>

6.5.2.4 OTDOA Location Information

– OMA-LPPe-OTDOA-ProvideLocationInformation

The OMA-LPPe-OTDOA-ProvideLocationInformation is used to provide OTDOA-based position estimate (UE-based). It may also be used to provide UE-based OTDOA positioning specific error reason. The actual location estimate is provided in the LPP proper (CommonIEsProvideLocationInformation).

6.5.2.5 OTDOA Location Information Elements

– OMA-LPPe-OTDOA-LocationInformation

The IE OMA-LPPe-OTDOA-LocationInformation is used by the target device to provide OTDOA location information to the location server. Note that in the event that the target device is unable to calculate a location estimate using UE-based OTDOA, it may still return OTDOA measurements to the server using LPP if permitted by the server in the LPP common IEs in the Request Location Information message.
OMA-LPPe-OTDOA-LocationInformation ::= SEQUENCE {
 systemFrameNumber BIT STRING (SIZE (10)),
 physCellId INTEGER (0..503),
 cellGlobalId CellGlobalIdEUTRA-AndUTRA OPTIONAL,
 ...
}
-- ASN1STOP

OMA-LPPe-OTDOA-LocationInformation field descriptions

systemFrameNumber
This field specifies the SFN for which the location Estimate (provided in the LPP common IEs) is valid.

physCellId
This field specifies the physical cell identity of the cell for which the systemFrameNumber is provided.

cellGlobalId
This field specifies the ECGI, the globally unique identity of a cell in E-UTRA, of the cell for which the systemFrameNumber is provided.

6.5.2.6 OTDOA Location Information Request

– OMA-LPPe-OTDOA-RequestLocationInformation

The OMA-LPPe-OTDOA-RequestLocationInformation is used to request OTDOA-based position estimate (UE-based).

-- ASN1START
OMA-LPPe-OTDOA-RequestLocationInformation ::= SEQUENCE {
 assistanceAvailability BOOLEAN,
 ...
}
-- ASN1STOP

OMA-LPPe-OTDOA-RequestLocationInformation field descriptions

assistanceAvailability
This field indicates whether the target device may request additional OTDOA assistance data from the server. TRUE means allowed and FALSE means not allowed.

6.5.2.7 OTDOA Capability Information

– OMA-LPPe-OTDOA-ProvideCapabilities

The OMA-LPPe-OTDOA-ProvideCapabilities is used by the target to provide its OTDOA capabilities to the server.

-- ASN1START
OMA-LPPe-OTDOA-ProvideCapabilities ::= SEQUENCE {
 eNodeB-AD-sup SEQUENCE { ... } OPTIONAL,
 home-eNodeB-AD-sup SEQUENCE { ... } OPTIONAL,
 ...
}
-- ASN1STOP

OMA-LPPe-OTDOA-ProvideCapabilities field descriptions

eNodeB-AD-sup
This field, if present, indicates that the target supports OTDOA assistance data for eNodeBs.

home-eNodeB-AD-sup
This field, if present, indicates that the target supports OTDOA assistance data for Home eNodeBs.
6.5.2.8 OTDOA Capability Information Request

– OMA-LPPe-OTDOA-RequestCapabilities

The OMA-LPPe-OTDOA-RequestCapabilities is used to request OTDOA capabilities information from the target.

```
-- ASN1START
OMA-LPPe-OTDOA-RequestCapabilities ::= SEQUENCE {
  ...
}
-- ASN1STOP
```

6.5.2.9 OTDOA Error Elements

– OMA-LPPe-OTDOA-Error

The IE OMA-LPPe-OTDOA-Error is used by the location server or target device to provide OTDOA error reasons to the target device or location server, respectively.

```
-- ASN1START
OMA-LPPe-OTDOA-Error ::= CHOICE {
  locationServerErrorCauses  OMA-LPPe-OTDOA-LocationServerErrorCauses,
  targetDeviceErrorCauses   OMA-LPPe-OTDOA-TargetDeviceErrorCauses,
  ...
}
-- ASN1STOP
```

– OMA-LPPe-OTDOA-LocationServerErrorCauses

The IE OMA-LPPe-OTDOA-LocationServerErrorCauses is used by the location server to provide OTDOA error reasons to the target device.

```
-- ASN1START
OMA-LPPe-OTDOA-LocationServerErrorCauses ::= SEQUENCE {
  cause ENUMERATED { undefined,
                       locationCalculationAssistanceDataNotSupported,
                       locationCalculationAssistanceDataSupportedButCurrentlyNotAvailable,
                       ...
                       },
  ...
}
-- ASN1STOP
```

– OMA-LPPe-OTDOA-TargetDeviceErrorCauses

The IE OMA-LPPe-OTDOA-TargetDeviceErrorCauses is used by the target device to provide OTDOA error reasons to the location server.

```
-- ASN1START
OMA-LPPe-OTDOA-TargetDeviceErrorCauses ::= SEQUENCE {
  cause ENUMERATED { undefined,
                      there-were-not-enough-signals-received-for-ueBased-otdoa,
                      location-calculation-assistance-data-missing,
                      ...
                      },
  ...
}
-- ASN1STOP
```
6.5.3 EOTD Positioning

6.5.3.1 EOTD Assistance Data

-- OMA-LPPe-EOTD-ProvideAssistanceData

The IE OMA-LPPe-EOTD-ProvideAssistanceData is used to provide assistance for UE-based and UE-assisted EOTD-based methods.

--- ASN1START

OMA-LPPe-EOTD-ProvideAssistanceData ::= SEQUENCE {
 referenceBTS OMA-LPPe-EOTD-ReferenceBTSForAssistance OPTIONAL, --Cond NotError
 msrAssistDataList OMA-LPPe-EOTD-MsrAssistDataList OPTIONAL,
 systemInfoAssistDataList OMA-LPPe-EOTD-SystemInfoAssistDataList OPTIONAL,
 eotdError OMA-LPPe-EOTD-Error OPTIONAL,
 ...
}

--- ASN1STOP

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>NotError</td>
<td>The field is mandatory present unless the IE OMA-LPPe-EOTD-ProvideAssistanceData contains an error message.</td>
</tr>
</tbody>
</table>

OMA-LPPe-EOTD-ProvideAssistanceData field descriptions

referenceBTS
This field defines the reference BTS for EOTD positioning.

msrAssistDataList
This field identifies the BTSs that are used for EOTD positioning.

systemInfoAssistDataList
This field identifies the BTSs that are used for EOTD positioning. This field is used in dedicated mode, packet idle mode, packet transfer mode, or dual transfer mode.

eotdError
This field provides the EOTD assistance data error.

6.5.3.2 EOTD Assistance Data Elements

-- OMA-LPPe-EOTD-ReferenceBTSForAssistance

The IE OMA-LPPe-EOTD-ReferenceBTSForAssistance is used to define the reference BTS for EOTD positioning. The RTD and 51 multiframe offset values in the OMA-LPPe-EOTD-MsrAssistDataList IE and in the OMA-LPPe-EOTD-SystemInfoAssistDataList are calculated relative to the BTS indicated in this element.

Inclusion of this parameter is mandatory for EOTD since it is not possible to reliably default to the current serving BTS for the target, as there is a chance that the server does not know this. If the EOTD systemInfoAssistDataList in IE OMA-LPPe-EOTD-ProvideAssistanceData is present, the current serving cell MUST be the same as reference BTS identified in this element.

--- ASN1START

OMA-LPPe-EOTD-ReferenceBTSForAssistance ::= SEQUENCE {
 bsicAndCarrier OMA-LPPe-CellNonUniqueIDGERAN,
 timeSlotScheme OMA-LPPe-EOTD-TimeSlotScheme,
 btsPosition CHOICE {
 ellipsoidPoint Ellipsoid-Point,
 ellipsoidPointWithAltitudeAndUncertaintyEllipsoid EllipsoidPointWithAltitudeAndUncertaintyEllipsoid,
 }
}
Conditional presence	Explanation
UE-based | The field is mandatory present if the assistance is for UE-based E-OTD, otherwise it is not present.

OMA-LPPe-EOTD-MsrAssistDataList

This element identifies BTSs that are used for E-OTD measurements. This element helps the UE to make measurements from neighbor BTS (even below decoding level). This element is optional in the E-OTD assistance data. The presence of this element means that the UE should try to measure the E-OTD values between the reference BTS and the BTSs identified in this element.

This element is used to deliver E-OTD measurement assistance data for those BTSs, that are not included in the `systemInfoAssistDataList` of the reference BTS in the IE `OMA-LPPe-EOTD-ProvideAssistanceData`, if necessary.

The RTD and 51 multiframe offset values are calculated relative to the BTS indicated in the E-OTD Reference BTS in Provide Assistance Data.
OMA-LPPe-EOTD-MsrAssistDataList field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>multiFrameOffset</td>
<td>This field indicates the frame difference between the start of the 51 multiframes frames being transmitted from this BTS and the reference BTS.</td>
</tr>
<tr>
<td>timeSlotScheme</td>
<td>The time slot scheme field indicates the type of transmission scheme the reference BTS is using.</td>
</tr>
<tr>
<td>roughRTD</td>
<td>This field indicates the rough RTD value between this BTS and reference BTS.</td>
</tr>
<tr>
<td>expectedOTD</td>
<td>This field indicates the OTD value that the target is expected to measure between this BTS and reference BTS in the estimated location of the target.</td>
</tr>
<tr>
<td>calcAssistanceBTS</td>
<td>This field specifies the coordinates of the neighbour BTSs that are used for E-OTD measurements, and also fine RTD values. This information allows the target to calculate its own location. This IE is used for UE-based E-OTD positioning.</td>
</tr>
</tbody>
</table>

OMA-LPPe-EOTD-SystemInfoAssistDataList

This element identifies those BTSs in the System Information Neighbor List that are used for E-OTD measurements. This list is sent in the dedicated mode, packet idle mode, packet transfer mode, or dual transfer mode. This element helps the target to make measurements from those neighbour BTSs (even below decoding level). This element is optional. The presence of this element means that the target should use the BTSs identified here to the E-OTD measurements.

The RTD and 51 multiframe offset values are calculated relative to the reference BTS.

```asn1
OMA-LPPe-EOTD-SystemInfoAssistDataList ::= SEQUENCE (SIZE (1..32)) OF OMA-LPPe-EOTD-SystemInfoAssistBTS

OMA-LPPe-EOTD-SystemInfoAssistBTS ::= CHOICE{
  notPresent NULL,
  present OMA-LPPe-EOTD-AssistBTSData
}

OMA-LPPe-EOTD-AssistBTSData ::= SEQUENCE {
  bsic INTEGER(0..63),
  multiFrameOffset OMA-LPPe-EOTD-MultiFrameOffset,
  timeSlotScheme OMA-LPPe-EOTD-TimeSlotScheme,
  roughRTD OMA-LPPe-EOTD-RoughRTD,
  expectedOTD OMA-LPPe-EOTD-ExpectedOTD OPTIONAL,
  calcAssistanceBTS OMA-LPPe-EOTD-CalcAssistanceBTS OPTIONAL, --Cond UE-based
  ...
}
```

Conditional presence

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>UE-based</td>
<td>The field is mandatory present if the assistance is required for UE-based positioning.</td>
</tr>
</tbody>
</table>

OMA-LPPe-EOTD-SystemInfoAssistDataList field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>notPresent</td>
<td>This field indicates that assistance data related to the BTS corresponding to the current location in OMA-LPPe-EOTD-SystemInfoAssistDataList is not present.</td>
</tr>
<tr>
<td>present</td>
<td>This field contains the assistance data related to the BTS corresponding to the current location in OMA-LPPe-EOTD-SystemInfoAssistDataList.</td>
</tr>
<tr>
<td>bsic</td>
<td>This field indicates the BSIC (Base Station Identity Code) of the particular BTS.</td>
</tr>
</tbody>
</table>
OMA-LPpe-EOTD-SystemInfoAssistDataList field descriptions

multiFrameOffset
This field indicates the frame difference between the start of the 51 multiframes frames being transmitted from this BTS and the reference BTS.

timeSlotScheme
The time slot scheme field indicates the type of transmission scheme the reference BTS is using.

roughRTD
This field indicates the rough RTD value between this BTS and reference BTS.

expectedOTD
This field indicates the OTD value that UE is expected to measure between this BTS and reference BTS in its current estimated location.

calcAssistanceBTS
This field specifies the coordinates of neighbour BTSs that are used for E-OTD measurements, and also fine RTD values. This information allows the UE to calculate its own location. This field is used in UE-based E-OTD positioning.

OMA-LPpe-EOTD-CalcAssistanceBTS

The OMA-LPpe-EOTD-CalcAssistanceBTS tells the coordinates of neighbour BTSs that are used for E-OTD measurements, and also fine RTD values. This information allows the target to calculate its own location.

```plaintext
-- ASN1START
OMA-LPpe-EOTD-CalcAssistanceBTS ::= SEQUENCE {
    fineRTD  OMA-LPpe-EOTD-FineRTD,
    relativePos  OMA-LPpe-EOTD-relativePos,
    ...
}
OMA-LPpe-EOTD-relativePos ::= SEQUENCE {
    relativeNorth  OMA-LPpe-EOTD-RelDistance,
    relativeEast   OMA-LPpe-EOTD-RelDistance,
    relativeAlt    OMA-LPpe-EOTD-RelativeAlt  OPTIONAL,
    ...
}
OMA-LPpe-EOTD-FineRTD ::= INTEGER(0..255)
OMA-LPpe-EOTD-RelDistance ::= INTEGER(-200000..200000)
OMA-LPpe-EOTD-RelativeAlt ::= INTEGER(-4000..4000)
-- ASN1STOP
```

OMA-LPpe-EOTD-CalcAssistanceBTS field descriptions

fineRTD
This field indicates the fine RTD value between this BTS and reference BTS. It provides the 1/256 bit duration resolution to the value expressed in the corresponding Rough RTD field. This RTD value is the RTD value of TS0s (i.e. the difference in starting of TS0), not only the RTD between starts of bursts. The RTD is defined as T_{BTS} - T_{Ref}, where T_{BTS} is the time of the start of TS0 in the BTS in question, and T_{Ref} is the time of the start of the TS0 in the reference BTS.

Scale factor 1/256 GSM bits. Range \([0..2^{-8}]\) GSM bits.

relativePos
This field specifies the position of the cell with respect to the reference cell.

relativeNorth
This field indicates the distance of the neighbour BTS from the reference BTS in North (negative values mean South) direction. The used reference ellipsoid is WGS 84 ellipsoid.

Scale factor 0.03/3600 degrees, range \([-6000..6000]\) 1/3600 degrees.
OMA-LPpe-EOTD-CalcAssistanceBTS field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>relativeEast</td>
<td>This field indicates the distance of the neighbour BTS from the reference BTS in East (negative values mean West) direction. The used reference ellipsoid is WGS 84 ellipsoid. Scale factor 0.03/3600 degrees, range [-6000..6000] 1/3600 degrees.</td>
</tr>
<tr>
<td>relativeAlt</td>
<td>This field indicates the altitude of the neighbor BTS relative to the reference BTS in meters. This field is optional. Scale factor 1 m, range [-4000, 4000] meters.</td>
</tr>
</tbody>
</table>

6.5.3.3 EOTD Assistance Data Request

OMA-LPpe-EOTD-RequestAssistanceData

The OMA-LPpe-EOTD-RequestAssistanceData is used to request assistance for UE-based and UE-assisted EOTD-based methods.

```asn1
OMA-LPpe-EOTD-RequestAssistanceData ::= SEQUENCE {
  eotdAssistanceReq       BIT STRING { ueAssisted (0), ueBased (1) },
  ...                     }
```

6.5.3.4 EOTD Location Information

OMA-LPpe-EOTD-ProvideLocationInformation

The purpose of the OMA-LPpe-EOTD-ProvideLocationInformation element is to provide OTD measurements of signals sent from the reference and neighbor base stations. The length of this element depends on the number of neighbor cells for which OTD measurements have been collected. BTSs which cannot be measured or whose measurements are excessively inaccurate need not be reported. The target may include measurements for other BTSs not given in the assistance data by the server.

```asn1
OMA-LPpe-EOTD-ProvideLocationInformation ::= SEQUENCE {
  eotdMsrElement          OMA-LPpe-EOTD-MsrElement OPTIONAL,
  eotdError               OMA-LPpe-EOTD-Error OPTIONAL,
  ...                     }
```

6.5.3.5 EOTD Location Information Elements

OMA-LPpe-EOTD-MsrElement

The OMA-LPpe-EOTD-MsrElement consists of the EOTD location information measurements provided by the target to the server.
OMA-LPPe-EOTD-MsrElement field descriptions

refFrameNumber
This field indicates the frame number of the last measured burst from the reference BTS modulo 42432. This information can be used as a time stamp for the measurements.

Scale factor 1 frame.

referenceTimeSlot
Reference Time Slot indicates the time slot modulo 4 relative to which the target reports the reference BTS measurements.

NOTE: If target does not know timeslot scheme, the target reports the used timeslot. Target can only report results based on one time slot (N) or two time slots (N and N+4). If the target knows the timeslot scheme, it can make measurements from several timeslots and reports that the used timeslot is zero (and makes correction).

toaMeasurementsOfRef
This field consists of reference quality and number of measurements.

stdResolution
Std Resolution field includes the resolution used in Reference Quality field and Std of EOTD Measurements field. Encoding on 2 bits as follows:
- '00' 10 meters;
- '01' 20 meters;
- '10' 30 meters;
- '11' Reserved.

taCorrection
This field indicates the estimate of the time difference between the moment that the target uses to adjust its internal timing for reception and transmission (e.g. corresponding to maximum energy) and the estimate of the reception of the first arriving component from the serving BTS. This value can be used as a correction by the server to the Timing Advance (TA) value when the distance between the target and the serving BTS is estimated based on TA.

The value \(TACorrection \) in this field corresponds to the TA Correction in bit periods as follows:

- TA Correction in bit periods = \(TACorrection/64 \) -8.

Scale factor 1/64 bit period, range \([-8..+7]\) bit periods.

Negative TA Correction in bits indicates that the first signal component from the serving BTS is estimated to arrive before the moment used for communication.

otd-FirstSetMsrs
Measured neighbors in OTD measurements.
OMA-LPpe-EOTD-MsrElement field descriptions

refQuality
Reference Quality field includes the standard deviation of the TOA measurements from the reference BTS with respect to T_{Ref} (where T_{Ref} is the time of arrival of signal from the reference BTS used to calculate the OTD values). This field is optional. The Reference Quality field can be used to evaluate the reliability of E-OTD measurements in the server and in weighting of the E-OTD values in the location calculation.

Following linear 5 bit encoding is used:

<table>
<thead>
<tr>
<th>Encoding</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'00000'</td>
<td>0 - (R*1-1)</td>
</tr>
<tr>
<td>'00001'</td>
<td>R1 - (R2-1)</td>
</tr>
<tr>
<td>'00010'</td>
<td>R2 - (R3-1)</td>
</tr>
<tr>
<td>...</td>
<td>R*15 meters or more</td>
</tr>
</tbody>
</table>

where R is the resolution defined by Std Resolution field. For example, if R=20 meters, corresponding values are 0 - 19 meters, 20 - 39 meters, 40 - 59 meters, ..., 620+ meters.

numOfMeasurements
Number of Measurements for the Reference Quality field is used together with Reference Quality to define quality of the reference base site TOA. The field indicates how many measurements have been used in the target to define the standard deviation of the measurements. The following 3 bit encoding is used:

<table>
<thead>
<tr>
<th>Encoding</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'000'</td>
<td>2-4</td>
</tr>
<tr>
<td>'001'</td>
<td>5-9</td>
</tr>
<tr>
<td>'010'</td>
<td>10-14</td>
</tr>
<tr>
<td>'011'</td>
<td>15-24</td>
</tr>
<tr>
<td>'100'</td>
<td>25-34</td>
</tr>
<tr>
<td>'101'</td>
<td>35-44</td>
</tr>
<tr>
<td>'110'</td>
<td>45-54</td>
</tr>
<tr>
<td>'111'</td>
<td>55 or more</td>
</tr>
</tbody>
</table>

OMA-LPpe-EOTD-MeasurementWithID

The **OMA-LPpe-EOTD-MeasurementWithID** defines the EOTD measurement for BTS with known ID.

```asn1
OMA-LPpe-EOTD-MeasurementWithID ::= SEQUENCE {
  neighborIdentity  OMA-LPpe-EOTD-NeighborIdentity,
  nbrTimeSlot       OMA-LPpe-EOTD-ModuloTimeSlot,
  eotdQuality       OMA-LPpe-EOTD-EOTDQuality,
  otdValue          OMA-LPpe-EOTD-OTDValue,
...
}

OMA-LPpe-EOTD-NeighborIdentity ::= CHOICE {
  bsicAndCarrier    OMA-LPpe-CellNonUniqueIDGERAN,
  ci               OMA-LPpe-EOTD-CellID,
  multiFrameCarrier OMA-LPpe-EOTD-MultiFrameCarrier,
  requestIndex     OMA-LPpe-EOTD-RequestIndex,
  systemInfoIndex  OMA-LPpe-EOTD-SystemInfoIndex,
  ciAndLac         OMA-LPpe-CellLocalIdGERAN,
...
}

OMA-LPpe-EOTD-EOTDQuality ::= SEQUENCE {
  nbrOfMeasurements BIT STRING(SIZE(3)),
  stdOfEOTD        BIT STRING(SIZE(5)),
...
}
```
OMA-LPPe-EOTD-OTDValue ::= INTEGER (0..39999)

OMA-LPPe-EOTD-CellID ::= INTEGER (0..65535)

OMA-LPPe-EOTD-RequestIndex ::= INTEGER (1..16)

OMA-LPPe-EOTD-SystemInfoIndex ::= INTEGER (1..32)

OMA-LPPe-EOTD-MultiFrameCarrier ::= SEQUENCE {
 bcchCarrier OMA-LPPe-EOTD-BCCHCarrier,
 multiFrameOffset OMA-LPPe-EOTD-MultiFrameOffset,
 ...
}

OMA-LPPe-EOTD-BCCHCarrier ::= INTEGER (0..1023)

--- ASN1STOP

OMA-LPPe-EOTD-MeasurementWithID field descriptions

neighborIdentity
This field identifies the neighbour cell.

nborTimeSlot
Neighbor Time Slot indicates the time slot modulo 4 relative to which the UE reports the neighbor BTS measurements.
NOTE: If the UE does not know the timeslot scheme, the target reports the used timeslot. Target can only report a result based on one time slot (N) or two time slots (N and N+4). If the target knows the timeslot scheme, the target can make measurements from several timeslots and reports that the used timeslot is zero (and makes the correction).

eotdQuality
This field includes the number of measurements and the standard deviation of EOTD measurements.

otdValue
This field indicates the measured OTD value between the receptions of signals from the reference and the neighbour BTS. The OTD is defined as \(T_{Nbor} - T_{Ref} \pmod{\text{burst length}}\) where \(T_{Nbor}\) is the time of arrival of signal from the neighbour BTS, and \(T_{Ref}\) is the time of arrival of signal from the reference BTS.
The scale factor is 1/256 GSM bits. Range \([0..156.2461]\) GSM bits.

bsicAndCarrier
Cell identity is specified using BSIC and BCCH carrier.

ci
Cell identity is told using CI, and the LAC is the same as the current serving BTS.

multiFrameCarrier
Cell identity is specified using 51 Multiframe offset and BCCH carrier.

requestIndex
Cell identity is specified using an index referring to the BTS listed in the assistance data component *OMA-LPPe-EOTD-MsrAssistdDataList*.

systemInfoIndex
Cell identity is specified using an index referring to the BTS listed in the BCCH allocation list of the serving BTS, *OMA-LPPe-EOTD-SystemInfoAssistDataList* component of assistance data. This type of neighbor identity SHALL NOT be used by the target unless it has received the "E-OTD Measurement Assistance Data for System Information List Element" from the server for this cell.

ciAndLac
Cell identity is specified using CI and the LAC.
OMA-LPpe-EOTD-MeasurementWithID field descriptions

nbrOfMeasurements
Number of Measurements field is used together with Std of EOTD Measurements field to define quality of a reported EOTD measurement. The field indicates how many EOTD measurements have been used in the target to define the standard deviation of these measurements. The following 3 bit encoding is used.

- '000': 2-4;
- '001': 5-9;
- '010': 10-14;
- '011': 15-24;
- '100': 25-34;
- '101': 35-44;
- '110': 45-54;
- '111': 55 or more.

stdOfEOTD
Std of EOTD Measurements field includes standard deviation of EOTD measurements. It can be used to evaluate the reliability of EOTD measurements in the server and in weighting of the OTD values in location calculation.

Following linear 5 bit encoding is used:

- '00000' 0 - (R*1-1) meters;
- '00001' R*1 - (R*2-1) meters;
- '00010' R*2 - (R*3-1) meters;
- ...
- '11111' R*31 meters or more.

where R is the resolution defined by Std Resolution field. For example, if R=20 meters, corresponding values are 0 - 19 meters, 20 - 39 meters, 40 - 59 meters, ..., 620+ meters.

multiFrameOffset
This field indicates the frame difference between the start of the 51 multiframes frames arriving from this BTS and the reference BTS. The multiframe offset is defined as \(T_{BTS} - T_{Ref} \), where \(T_{BTS} \) is the time of the start of the 51 multiframe in the BTS in question, and \(T_{Ref} \) is the time of the start of the 51 multiframe in the reference BTS.

The scale factor is 1 frame.

6.5.3.6 EOTD Location Information Request

- **OMA-LPpe-EOTD-RequestLocationInformation**

The **OMA-LPpe-EOTD-RequestLocationInformation** is used to request EOTD-based position estimate (UE-based) and measurements (UE-assisted).

```asn1
-- ASN1START
OMA-LPpe-EOTD-RequestLocationInformation ::= SEQUENCE { ...

-- ASN1STOP
```

6.5.3.7 EOTD Capability Information

- **OMA-LPpe-EOTD-ProvideCapabilities**

The **OMA-LPpe-EOTD-ProvideCapabilities** is used by the target to provide its EOTD capabilities to the server.

```asn1
-- ASN1START
OMA-LPpe-EOTD-ProvideCapabilities ::= SEQUENCE {
    eotdSupport BIT STRING{ ueBased(0), ueAssisted(1) },

-- ASN1STOP
```
6.5.3.8 EOTD Capability Information Request

- **OMA-LPPe-EOTD-RequestCapabilities**

The **OMA-LPPe-EOTD-RequestCapabilities** is used to request EOTD capabilities information from the target.

```asn1
OMA-LPPe-EOTD-RequestCapabilities ::= SEQUENCE {
    ...
}
```

6.5.3.9 EOTD Error Elements

- **OMA-LPPe-EOTD-Error**

The **OMA-LPPe-EOTD-Errors** is used by the location server or target device to provide E-OTD error reasons to the target device or location server, respectively.

```asn1
OMA-LPPe-EOTD-Error ::= CHOICE {
    locationServerErrorCauses  OMA-LPPe-EOTD-LocationServerErrorCauses,
    targetDeviceErrorCauses    OMA-LPPe-EOTD-TargetDeviceErrorCauses,
    ...
}
```

- **OMA-LPPe-EOTD-LocationServerErrorCauses**

The **OMA-LPPe-EOTD-LocationServerErrorCauses** is used by the location server to provide E-OTD error reasons to the target device.

```asn1
OMA-LPPe-EOTD-LocationServerErrorCauses ::= SEQUENCE {
    cause ENUMERATED{ undefined,
                        assistanceDataForUEbasedEOTDnotAvailable,
                        assistanceDataForUEassistedEOTDnotAvailable,
                        ...},
    ...
}
```

- **OMA-LPPe-EOTD-TargetDeviceErrorCauses**

The **OMA-LPPe-EOTD-TargetDeviceErrorCauses** is used by the target device to provide E-OTD error reasons to the location server.
OMA-LPpe-EOTD-TargetDeviceErrorCauses ::= SEQUENCE {
 cause ENUMERATED{
 undefinedError,
 notEnoughBTsforEOTD,
 assistanceDataMissing,
 referenceCellNotServingCell,
 eotdMeasurementsNotSupported,
 eotdMeasurementsNotAvailable,
 uebasedEOTDnotSupported,
 ...
 },
 ...
}
-- ASN1STOP

6.5.3.10 EOTD Common Information

--- OMA-LPpe-EOTD-TimeSlotScheme

--- ASN1START

OMA-LPpe-EOTD-TimeSlotScheme ::= ENUMERATED {
 equalLength (0),
 variousLength (1)
}
-- ASN1STOP

OMA-LPpe-EOTD-TimeSlotScheme field descriptions

The time slot scheme field indicates the type of transmission scheme the reference BTS is using. If the target measures BTSs signals from time slots other than 0 or 4 and the target is informed about the burst length schemes used by BTSs, the target can compensate for the possible error. (This is necessary if the target averages bursts from different time slots, and the BTS uses varying lengths of bursts.)

'0' = all time slots are 156.25 bits long.
'1' = time slots 0 and 4 are 157 bits long and other time slots are 156 bits long.

--- OMA-LPpe-EOTD-MultiFrameOffset

--- ASN1START

OMA-LPpe-EOTD-MultiFrameOffset ::= INTEGER (0..51)
-- ASN1STOP
OMA-LPpe-EOTD-MultiFrameOffset field descriptions

OMA-LPpe-EOTD-MultiFrameOffset

This field indicates the frame difference between the start of the 51 multiframes frames being transmitted from this BTS and the reference BTS. The multiframe offset is defined as $T_{BTS} - T_{Ref}$, where T_{BTS} is the time of the start of the 51 multiframe in the BTS in question, and T_{Ref} is the time of the start of the 51 multiframe in the reference BTS. This field is mandatory. Multiframe Offset may be used to calculate the Expected Multiframe Offset (the Multiframe Offset value that the target is expected to measure between this BTS and reference BTS in its current estimated location).

$$
\text{Expected Multiframe Offset} = (\text{Multiframe Offset} + \text{Adjustment}) \mod 51
$$

Adjustment

- 1 if Rough RTD - Expected OTD ≥ 850
- -1 if Rough RTD - Expected OTD ≤ -850
- 0 if $-400 \leq \text{Rough RTD - Expected OTD} < 400$

If the Rough RTD - Expected OTD is not within any of the ranges above, an error has occurred and the Expected OTD should be ignored and no Expected Multiframe Offset can be calculated.

Usable range of Multiframe Offset value is 0 - 50. The Multiframe Offset value 51 SHALL NOT be encoded by the transmitting entity and SHALL be treated by the receiving entity as 0.

OMA-LPpe-EOTD-RoughRTD

** ASN1START

OMA-LPpe-EOTD-RoughRTD ::= INTEGER (0..1250)

** ASN1STOP

OMA-LPpe-EOTD-RoughRTD field descriptions

OMA-LPpe-EOTD-RoughRTD

This field indicates the rough RTD value between this BTS and reference BTS. The used resolution is 1 bit. This RTD value is the RTD value of TS0s (i.e. the difference in starting of TS0), not only the RTD between starts of bursts. The RTD is defined as $T_{BTS} - T_{Ref}$, where T_{BTS} is the time of the start of TS0 in the BTS in question, and T_{Ref} is the time of the start of the TS0 in the reference BTS. This field is mandatory.

Usable range of Rough RTD value is 0 - 1249. The Rough RTD value 1250 SHALL NOT be encoded by the transmitting entity and SHALL be treated by the receiving entity as 0.

Accurate RTD values are needed for UE-based E-OTD, i.e. when the target calculates its own position. The scale factor is 1 GSM bit.

OMA-LPpe-EOTD-ExpectedOTD

** ASN1START

OMA-LPpe-EOTD-ExpectedOTD ::= SEQUENCE {
 expectedOTD INTEGER(0..1250),
 expOTDUncertainty INTEGER(0..7),
 ...
}

** ASN1STOP

OMA-LPpe-EOTD-ExpectedOTD field descriptions

OMA-LPpe-EOTD-ExpectedOTD

This field indicates the expected OTD value between this BTS and reference BTS. The target calculates its own position based on the Expected OTD value. The Expected OTD value is calculated using the Multiframe Offset and the Rough RTD values.

The scale factor is 1 GSM bit.
OMA-LPpe-EOTD-ExpectedOTD field descriptions

expectedOTD
This field indicates the OTD value that the target is expected to measure between this BTS and reference BTS in its current estimated location. The server can estimate target's location roughly e.g. based on serving BTS coordinates, TA, and possibly some other information.

This OTD value is the OTD value of TS0s (i.e. the difference in starting of TS0), not only the OTD between starts of bursts. The OTD is defined as \(T_{BTS} - T_{Ref} \), where \(T_{BTS} \) is the time of the start of TS0 in the BTS in question, and \(T_{Ref} \) is the time of the start of the TS0 in the reference BTS. The server SHALL send this element to the target supporting UE-Assisted or UE-Based E-OTD.

Usable range of Expected OTD value is 0 - 1249. The Expected OTD value 1250 SHALL NOT be encoded by the transmitting entity and SHALL be treated by the receiving entity as 0.

The scale factor is 1 GSM bit.

expOTDUncertainty
This field indicates the uncertainty in Expected OTD value. The uncertainty is related to server’s estimation of target’s location. The uncertainty defines following search window for the target, which window the target can use to speed up the OTD measurements:

\[
\text{Expected OTD} - \text{Uncertainty} < \text{measured OTD} < \text{Expected OTD} + \text{Uncertainty}.
\]

Range is 0 - 7 with following encoding:
- ‘0’ 0 < uncertainty <= 2 bits;
- ‘1’ 2 < uncertainty <= 4 bits;
- ‘2’ 4 < uncertainty <= 8 bits;
- ‘3’ 8 < uncertainty <= 12 bits;
- ‘4’ 12 < uncertainty <= 16 bits;
- ‘5’ 16 < uncertainty <= 22 bits;
- ‘6’ 22 < uncertainty <= 30 bits;
- ‘7’ uncertainty > 30 bits.

NOTE: If uncertainty in UE’s location is x bits, uncertainty in Expected OTD is 2^x (in the worst case). When the uncertainty is given with value ‘7’ no upper bound exists for the uncertainty.

OMA-LPpe-EOTD-ModuloTimeSlot

```asn1
OMA-LPpe-EOTD-ModuloTimeSlot ::= INTEGER(0..3)
```

OMA-LPpe-EOTD-ModuloTimeSlot field descriptions

OMA-LPpe-EOTD-ModuloTimeSlot
This field indicates the time slot modulo 4.

6.5.4 OTDOA-UTRA Positioning

6.5.4.1 OTDOA-UTRA Assistance Data

OMA-LPpe-OTDOA-UTRA-ProvideAssistanceData

The **OMA-LPpe-OTDOA-UTRA-ProvideAssistanceData** is used to provide assistance for UE-based and UE-assisted
OTDOA-UTRA -based methods.

```
OMA-LPPe-UTRA-ProvideAssistanceData ::= SEQUENCE {
  referenceCellInfo  OMA-LPPe-UTRA-ReferenceCellInfo OPTIONAL,
  neighborCellList  OMA-LPPe-UTRA-NeighborCellList OPTIONAL,
  otdoaUtraError  OMA-LPPe-UTRA-Error OPTIONAL,
  ... }```

**OMA-LPPe-UTRA-ProvideAssistanceData field descriptions**

- **referenceCellInfo**
  This field defines the reference cell information.

- **neighborCellList**
  This field lists the neighbor cells.

- **otdoaUtraError**
  This field provides the OTDOA-UTRA assistance data error.

### 6.5.4.2 OTDOA-UTRA Assistance Data Elements

#### OMA-LPPe-UTRA-ReferenceCellInfo

The OMA-LPPe-UTRA-ReferenceCellInfo information element contains the data related to the reference cell.

```
OMA-LPPe-UTRA-ReferenceCellInfo ::= SEQUENCE {
 sfm INTEGER(0..4095) OPTIONAL,
 modeSpecificInfo CHOICE {
 fdd SEQUENCE {
 primaryCPICH-info OMA-LPPe-UTRA-PrimaryCPICH-Info
 },
 tdd SEQUENCE {
 cellAndChannelIdentity OMA-LPPe-UTRA-CellAndChannelIdentity
 }},
 frequencyInfo OMA-LPPe-UTRA-FrequencyInfo OPTIONAL,
 refPosAssist OMA-LPPe-UTRA-RefPosAssist OPTIONAL, --Cond UE-based
 ipdl-parameters OMA-LPPe-UTRA-IPDL-Parameters OPTIONAL,
 ... }
```
### Conditional presence | Explanation
---|---
UE-based | The field is mandatory present if UE-based OTDOA positioning is used.

#### OMA-LPpe-OTDOA-UTRA-ReferenceCellInfo field descriptions

**sfn**
- Time stamp (SFN of Reference Cell) of the SFN-SFN relative time differences and SFN-SFN drift rates. Included if any SFN-SFN drift value is included in IE OMA-LPpe-OTDOA-UTRA-ReferenceCellInfo.

**primaryCPICH-info**
- Primary scrambling code for FDD.

**cellAndChannelIdentity**
- Identifies the channel to be measured on (TDD).

**frequencyInfo**
- Default value is the existing value of frequency information.

**refPosAssist**
- This field contains the information related to the reference cell, needed for the UE-based OTDOA positioning.

**ipdl-parameters**
- If this element is not included there are no idle periods present.

**cellPosition**
- Defines the reference cell antenna position.

**roundTripTime**
- Round trip time in chips.
- Scale factor 0.0625 chips.
- The actual value of the round-trip-time is given by: \( RTT = IE \text{ value} \times 0.0625 + 876 \text{ chips} \).

**roundTripTimeExtension**
- Round trip time extension in chips. Default =0.
- Round trip time = IE “roundTripTime” + IE “roundTripTimeExtension”
- Scale factor 0.0625 chips.
- Range [0..4392.125] chips.

---

#### OMA-LPpe-OTDOA-UTRA-NeighborCellList

The OMA-LPpe-OTDOA-UTRA-NeighborCellList IE lists the neighbor cell information.

```asn1
OMA-LPpe-OTDOA-UTRA-NeighborCellList ::= SEQUENCE (SIZE (1..utra-maxCellMeas)) OF OMA-LPpe-OTDOA-UTRA-NeighborCellInfo

OMA-LPpe-OTDOA-UTRA-NeighborCellInfo ::= SEQUENCE {
 modeSpecificInfo CHOICE {
 fdd SEQUENCE {
 primaryCPICH-info OMA-LPpe-OTDOA-UTRA-PrimaryCPICH-Info,
 },
 tdd SEQUENCE {
 cellAndChannelIdentity OMA-LPpe-OTDOA-UTRA-CellAndChannelIdentity
 },
 },
 frequencyInfo OMA-LPpe-UTRA-FrequencyInfo OPTIONAL,
 ipdl-parameters OMA-LPpe-OTDOA-UTRA-IPDL-Parameters OPTIONAL,
 sfn-SFN-relTimeDifference OMA-LPpe-OTDOA-UTRA-SFN-SFN-RelTimeDifference1, sfn-offsetValidity OMA-LPpe-OTDOA-UTRA-SFN-SFN-OffsetValidity OPTIONAL,
 sfn-SFN-drift OMA-LPpe-OTDOA-UTRA-SFN-SFN-Drift OPTIONAL,
 searchWindowSize OMA-LPpe-OTDOA-UTRA-SearchWindowSize,
 positioningAssistance OMA-LPpe-OTDOA-UTRA-PositioningAssistance OPTIONAL, --Cond UEbased
 ...}

OMA-LPpe-OTDOA-UTRA-SFN-SFN-RelTimeDifference1 ::= SEQUENCE {
 sfn-offset INTEGER (0..4095),
}
```
OMA-LPPe-OTDOA-UTRA-Positioning\nAssistance ::= SEQUENCE {
  relativeNorth INTEGER \(-20000..20000\),
  relativeEast INTEGER \(-20000..20000\),
  relativeAltitude INTEGER \(-4000..4000\) OPTIONAL,
  fineSFN-SFN OMA-LPPe-OTDOA-UTRA-fineSFN-SFN,
  roundTripTime INTEGER \(0..32766\) OPTIONAL,
  roundTripTimeExtension INTEGER \(0..70274\) OPTIONAL,
...
}

utra-maxCellMeas INTEGER ::= 32

OMA-LPPe-OTDOA-UTRA-SFN-OffsetValidity ::= ENUMERATED { false }

OMA-LPPe-OTDOA-UTRA-SFN-SFN-Drift ::= ENUMERATED {
  sfnsfndrift0, sfnsfndrift1, sfnsfndrift2,
  sfnsfndrift3, sfnsfndrift4, sfnsfndrift5,
  sfnsfndrift8, sfnsfndrift10, sfnsfndrift15,
  sfnsfndrift25, sfnsfndrift35, sfnsfndrift50,
  sfnsfndrift65, sfnsfndrift80, sfnsfndrift100,
  sfnsfndrift-1, sfnsfndrift-2, sfnsfndrift-3,
  sfnsfndrift-4, sfnsfndrift-5, sfnsfndrift-8,
  sfnsfndrift-10, sfnsfndrift-15, sfnsfndrift-25,
  sfnsfndrift-35, sfnsfndrift-50, sfnsfndrift-65,
  sfnsfndrift-80, sfnsfndrift-100,
  ... }

OMA-LPPe-OTDOA-UTRA-SearchWindowSize ::= ENUMERATED { c20, c40, c80, c160, c320,
  c640, c1280, moreThan1280, ... }

OMA-LPPe-OTDOA-UTRA-fineSFN-SFN ::= INTEGER \(0..15\)

---\n
<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>UE-based</td>
<td>The field is mandatory present if the UE-based OTDOA positioning is used. Otherwise it is not present.</td>
</tr>
</tbody>
</table>

**OMA-LPPe-OTDOA-UTRA-NeighborCellList field descriptions**

- **primaryCPICH-info**
  Primary scrambling code for FDD.

- **cellAndChannelIdentity**
  Identifies the channel to be measured on for TDD.

- **frequencyInfo**
  Default value is the existing value of frequency information.

- **ipdl-parameters**
  If this element is not included there are no idle periods present.

- **sfn-SFN-relTimeDifference**
  Consists of SFN offset and SFN-SFN relative time difference.

- **sfn-offsetValidity**
  Absence of this element means SFN offset is valid. FALSE means SFN offset is not valid.

- **sfn-sfn-drift**
  Drift value in 1/256 chips per second.

- **searchWindowSize**
  Search window size in chips. If the value is X then the expected SFN-SFN observed time difference is in the range \[RTD-X, RTD+X\] where RTD is the value of the field SFN-SFN relative time difference.

- **positioningAssistance**
  This field contains the information related to the neighbor cell, needed for the UE-based OTDOA positioning.
### OMA-LPPe-OTDOA-UTRA-NeighborCellList field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sfnOffset</td>
<td>Define SFNref as the system frame number of the reference cell. Let the system frame number of the neighbour cell be SFNnc. Then SFNnc=SFNref-SFNoffset modulo 4096.</td>
</tr>
<tr>
<td>sfn-sfnRelTimeDifference</td>
<td>Gives the relative timing compared to the reference cell. Equal to floor ( (Tnc – Tref)<em>(3.84</em>10^6)). In chips, Tnc = the time of beginning of a system frame from the neighbour cell, Tref = the time of beginning of a system frame from the reference cell.</td>
</tr>
<tr>
<td>relativeNorth</td>
<td>Relative position compared to reference cell. Scale factor 0.03/3600 degrees, range [-600..600] 1/3600 degrees.</td>
</tr>
<tr>
<td>relativeEast</td>
<td>Relative position compared to reference cell. Scale factor 0.03/3600 degrees, range [-600..600] 1/3600 degrees.</td>
</tr>
<tr>
<td>relativeAltitude</td>
<td>Relative altitude compared to reference cell. Scale factor 1m, range [-4000..4000] meters</td>
</tr>
<tr>
<td>fineSFN-SFN</td>
<td>Gives finer resolution. Scale factor 0.0625 chips, range [0..0.9375] chips.</td>
</tr>
<tr>
<td>roundTripTime</td>
<td>Round trip time in chips. Included if cell is in active set. The round-trip-time may be recovered from the IE value by: RTT = IE value * 0.0625 + 876 chips. Scale factor 0.0625 chips, range [876.00..2923.875] chips.</td>
</tr>
<tr>
<td>roundTripTimeExtension</td>
<td>Round trip time extension in chips. Included if cell is in active set. Default =0. Round trip time = IE “roundTripTime” + IE “roundTripTimeExtension” Scale factor 0.0625 chips, range [0..4392.125] chips.</td>
</tr>
</tbody>
</table>

### OMA-LPPe-OTDOA-UTRA-IPDL-parameters

The OMA-LPPe-OTDOA-UTRA-IPDL-parameters introduces the IPDL parameters. For reference on all the fields, see [25.214] and [25.224].

```asn1
OMA-LPPe-OTDOA-UTRA-IPDL-Parameters ::= SEQUENCE {
 modeSpecificInfo CHOICE {
 fdd SEQUENCE {
 ip-spacing OMA-LPPe-OTDOA-UTRA-IP-Spacing,
 ip-length OMA-LPPe-OTDOA-UTRA-IP-Length,
 ip-Offset INTEGER (0..9),
 seed INTEGER (0..63),
 burstModeParameters OMA-LPPe-OTDOA-UTRA-BurstModeParameters OPTIONAL,
 },
 tdd SEQUENCE {
 ip-spacing-tdd OMA-LPPe-OTDOA-UTRA-IP-Spacing-TDD,
 ip-slot INTEGER (0..14),
 ip-start INTEGER (0..4095),
 ip-PCCPCH OMA-LPPe-OTDOA-UTRA-IP-PCCPCH OPTIONAL,
 burstModeParameters OMA-LPPe-OTDOA-UTRA-BurstModeParameters OPTIONAL,
 }
 }
}
OMA-LPPe-OTDOA-UTRA-IP-Spacing ::= ENUMERATED { e5, e7, e10, e15, e20, e30, e40, e50 }
OMA-LPPe-OTDOA-UTRA-IP-Length ::= ENUMERATED { ipl5, ipl10 }
OMA-LPPe-OTDOA-UTRA-IP-Spacing-TDD ::= ENUMERATED { e30, e40, e50, e70, e100 }
```
OMA-LPpe-OTDOA-UTRA-IP-PCCPCH ::= BOOLEAN

OMA-LPpe-OTDOA-UTRA-BurstModeParameters ::= SEQUENCE {
  burstStart  INTEGER (0..15),
  burstLength  INTEGER (10..25),
  burstFreq  INTEGER (1..16)
}

-- ASN1STOP

6.5.4.3 OTDOA-UTRA Assistance Data Request

– OMA-LPpe-OTDOA-UTRA-RequestAssistanceData

The OMA-LPpe-OTDOA-UTRA-RequestAssistanceData is used to request assistance for UE-based and UE-assisted OTDOA-UTRA-based methods.

-- ASN1START

OMA-LPpe-OTDOA-UTRA-RequestAssistanceData ::= SEQUENCE {
  otdoaUtraAssistanceReq  BIT STRING { UEassisted (0), UEbased (1) } (SIZE(1..8)),
  ...
}

-- ASN1STOP

OMA-LPpe-OTDOA-UTRA-RequestAssistanceData field descriptions

otdoaUtraAssistanceReq
If bit 0 is set, assistance for UE-assisted OTDOA-UTRA positioning is requested.
If bit 1 is set, assistance for UE-based OTDOA-UTRA positioning is requested.

6.5.4.4 OTDOA-UTRA Location Information

– OMA-LPpe-OTDOA-UTRA-ProvideLocationInformation

The purpose of the OMA-LPpe-OTDOA-UTRA-ProvideLocationInformation element is to provide measurements of signals sent from the reference and neighbor base stations.

-- ASN1START

OMA-LPpe-OTDOA-UTRA-ProvideLocationInformation ::= SEQUENCE {
  otdoaUtraMeasurement  OMA-LPpe-OTDOA-UTRA-Measurement OPTIONAL,
  otdoaUtraError  OMA-LPpe-OTDOA-UTRA-Error OPTIONAL,
  timeStampData  OMA-LPpe-OTDOA-UTRA-TimeStampData OPTIONAL, --Cond UE-based
  ...
}

-- ASN1STOP

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>UE-based</td>
<td>The field is mandatory present if the UE-based OTDOA positioning is used. Otherwise it is not present.</td>
</tr>
</tbody>
</table>

OMA-LPpe-OTDOA-UTRA-ProvideLocationInformation field descriptions

otdoaUtraMeasurement
This field specifies the UTRA OTDOA measurements.

otdoaUtraError
This field specifies the UTRA OTDOA errors.
### OTDOA-UTRA-ProvideLocationInformation field descriptions

**timeStampData**
This field specifies the time of the location estimate.

#### 6.5.4.5 OTDOA-UTRA Location Information Elements

**OMA-LPPe-OTDOA-UTRA-Measurement**

The **OMA-LPPe-OTDOA-UTRA-Measurement** consists of the OTDOA-UTRA location information measurements provided by the target to the server.

```asn1
-- ASN1START
OMA-LPPe-OTDOA-UTRA-Measurement ::= SEQUENCE {
 sfn INTEGER (0..4095),
 modeSpecificInfoMeas CHOICE {
 fdd SEQUENCE {
 referenceCellIdentity OMA-LPPe-OTDOA-UTRA-PrimaryCPICH-Info,
 ue-RX-TX-TimeDifferenceType2Info OMA-LPPe-OTDOA-UTRA-UE-RX-TX-TimeDifferenceType2Info,
 ...
 },
 tdd SEQUENCE {
 cellAndChannelIdentity OMA-LPPe-OTDOA-UTRA-CellAndChannelIdentity,
 ...
 },
 neighborList OMA-LPPe-OTDOA-UTRA-NeighborList OPTIONAL,
 ...
 }
}
OMA-LPPe-OTDOA-UTRA-UE-RX-TX-TimeDifferenceType2Info ::= SEQUENCE {
 ue-RX-TX-timeDifferenceType2 OMA-LPPe-OTDOA-UTRA-TimeDifferenceType2,
 neighborQuality OMA-LPPe-OTDOA-UTRA-NeighborQuality
}
OMA-LPPe-OTDOA-UTRA-TimeDifferenceType2 ::= INTEGER(0..8191)
OMA-LPPe-OTDOA-UTRA-NeighborList ::= SEQUENCE (SIZE (1..utra-maxCellMeas)) OF
OMA-LPPe-OTDOA-UTRA-Neighbor
OMA-LPPe-OTDOA-UTRA-Neighbor ::= SEQUENCE {
 modeSpecificInfo CHOICE {
 fdd SEQUENCE {
 neighborIdentity OMA-LPPe-OTDOA-UTRA-PrimaryCPICH-Info OPTIONAL,
 ue-RX-TX-TimeDifferenceType2Info OMA-LPPe-OTDOA-UTRA-UE-RX-TX-TimeDifferenceType2Info OPTIONAL,
 ...
 },
 tdd SEQUENCE {
 cellAndChannelIdentity OMA-LPPe-OTDOA-UTRA-CellAndChannelIdentity OPTIONAL,
 uarfcn ARFCN-ValueUTRA OPTIONAL,
 ...
 },
 neighborQuality OMA-LPPe-OTDOA-UTRA-NeighborQuality,
 sfn-sfn-ObsTimeDifference2 OMA-LPPe-OTDOA-UTRA- SFN-SFN-ObsTimeDifference2,
 ...
 }
}
OMA-LPPe-OTDOA-UTRA-NeighborQuality ::= SEQUENCE {
 quality OMA-LPPe-OTDOA-UTRA-Quality,
 ...
}
OMA-LPPe-OTDOA-UTRA-SFN-SFN-ObsTimeDifference2 ::= INTEGER (0..65535)
OMA-LPPe-OTDOA-UTRA-Quality ::= SEQUENCE {
 stdResolution BIT STRING (SIZE (2)),
 numberOfOTDOA-Measurements BIT STRING (SIZE (3)),
 stdOfOTDOA-Measurements BIT STRING (SIZE (5)),
 ...

-- ASN1END
```
### OMA-LPPe-OTDOA-UTRA-Measurement field descriptions

**sfn**
SFN during which the last measurement was performed.

**modeSpecificInfoMeas**
This field contains TDD- and FDD- specific information.

**referenceCellIdentity**
Identifies reference cell.

**ue-RX-TX-TimeDifferenceType2Info**
The difference in time between the uplink and downlink and the quality of measurements.

**cellAndChannelIdentity**
Identifies the channel to be measured.

**neighborList**
Lists the neighbor cell measurements.

**ue-RX-TX-TimeDifferenceType2**
The difference in time between the UE uplink DPCCH/DPDCH frame transmission and the first detected path (in time), of the downlink DPCH or F-DPCH frame from the measured radio link.

**neighborQuality**
Quality of the SFN-SFN observed time difference type 2 measurement from the reference cell.

**modeSpecificInfo**
This field contains TDD- and FDD- specific information.

**neighborIdentity**
Identifies neighbour cell.

**sfn-sfn-ObsTimeDifference2**
This field specifies the timing relative to the reference cell. For further information see [25.214] and [25.224]

**quality**
Specifies standard deviation and resolution of standard deviation of the measurements and number of measurements.

**stdResolution**
Std Resolution field includes the resolution used in Std of OTDOA Measurements field. Encoding on two bits as follows:
- ‘00’   10 meters
- ‘01’   20 meters
- ‘10’   30 meters
- ‘11’   Reserved

**numberOFOTDOA-Measurements**
This field indicates how many OTDOA measurements have been used in the UE to determine the sample standard deviation of the measurements. Following 3 bit encoding is used:
- ‘001’  5-9
- ‘002’  10-14
- ‘011’  15-24
- ‘100’  25-34
- ‘101’  35-44
- ‘110’  45-54
- ‘111’  55 or more

Special case:
- '000': In this case the field 'Std of OTDOA measurements' contains the std of the reported SFN-SFN otd value = sqrt(E[(x-μ)²]), where x is the reported value and μ = E[x] is the expectation value (i.e. the true value) of x. This std can be used irrespective of the number of measurements and reporting of the number of measurements is not needed. Also other measurements such as Ec/No or Rx levels can be utilised in this case to evaluate the 'Std of OTDOA measurements'
**OMA-LPPe-OTDOA-UTRA-Measurement** field descriptions

<table>
<thead>
<tr>
<th>stdOfOTDOA-Measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std of OTDOA Measurements field includes sample standard deviation of OTDOA measurements (when number of measurements is reported in 'Number of OTDOA measurements field') or standard deviation of the reported SFN-SFN otd value $= \sqrt{\text{E}[(x-\mu)^2]}$, where $x$ is the reported value and $\mu = \text{E}[x]$ is the expectation value (i.e. the true value) of $x$ (when '000' is given in 'Number of OTDOA measurements' field). Following linear 5 bit encoding is used:</td>
</tr>
<tr>
<td>'00000' 0 - (R*1-1) meters</td>
</tr>
<tr>
<td>'00001' R<em>1 - (R</em>2-1) meters</td>
</tr>
<tr>
<td>'00010' R<em>2 - (R</em>3-1) meters</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>'11111' R*31 meters or more</td>
</tr>
<tr>
<td>where R is the resolution defined by Std Resolution field. E.g. R=20 m corresponds to 0-19 m, 20-39 m,...,620+ m.</td>
</tr>
</tbody>
</table>

**OMA-LPPe-OTDOA-UTRA-TimeStampData**

The **OMA-LPPe-OTDOA-UTRA-TimeStampData** consists of the OTDOA-UTRA frame information that can be used to time stamp the position estimate in UE-based case.

---

```asn1
OMA-LPPe-OTDOA-UTRA-TimeStampData ::= SEQUENCE {
 sfn INTEGER(0..4095),
 utraCellGlobalID CellGlobalIdEUTRA-AndUTRA,
 frequencyInfo OMA-LPPe-UTRA-FrequencyInfo OPTIONAL,
 nonUniqueCellID CHOICE {
 primaryScramblingCode OMA-LPPe-OTDOA-UTRA-PrimaryScramblingCode, --FDD
 cellParametersId OMA-LPPe-UTRA-UTRA-CellParametersID, --TDD
 },
 ...,
}
```

---

**OMA-LPPe-OTDOA-UTRA-TimeStampData** field descriptions

| sfn |
| SFN during which the measurement was performed. |

| utraCellGlobalID |
| This field identifies the UTRAN cell ID to which the SFN refers to. |

| frequencyInfo |
| This field gives information on the frequency. |

| nonUniqueCellID |
| This field identifies the primary scrambling code for FDD or cell parameters ID for TDD. |

6.5.4.6 **OTDOA-UTRA Location Information Request**

---

**OMA-LPPe-OTDOA-UTRA-RequestLocationInformation**

The **OMA-LPPe-OTDOA-UTRA-RequestLocationInformation** is used to request OTDOA-UTRA-based position estimate (UE-based) and measurements (UE-assisted).
6.5.4.7 OTDOA-UTRA Capability Information

– OMA-LPpe-OTDOA-UTRA-ProvideCapabilities

The OMA-LPpe-OTDOA-UTRA-ProvideCapabilities is used by the target to provide its OTDOA-UTRA capabilities to the server.

```asn1
OMA-LPpe-OTDOA-UTRA-ProvideCapabilities ::= SEQUENCE {
 ueBasedSupported BOOLEAN,
 ueAssistedSupported BOOLEAN,
 ipdlSupported BOOLEAN,
 ...
}
```

**OMA-LPpe-OTDOA-UTRA-ProvideCapabilities field descriptions**

- **ueBasedSupported**
  This field indicates whether the UE supports UE based OTDOA (TRUE) or not (FALSE)

- **ueAssistedSupported**
  This field indicates whether the UE supports UE assisted OTDOA (TRUE) or not (FALSE)

- **ipdlSupported**
  This field indicates whether the UE supports IPDL (TRUE) or not (FALSE)

6.5.4.8 OTDOA-UTRA Capability Information Request

– OMA-LPpe-OTDOA-UTRA-RequestCapabilities

The OMA-LPpe-OTDOA-UTRA-RequestCapabilities is used to request OTDOA-UTRA capabilities information from the target.

```asn1
OMA-LPpe-OTDOA-UTRA-RequestCapabilities ::= SEQUENCE {
 ...
}
```

6.5.4.9 OTDOA-UTRA Error Elements

– OMA-LPpe-OTDOA-UTRA-Error

The OMA-LPpe-OTDOA-UTRA-Errors is used by the location server or target device to provide OTDOA-UTRA error reasons to the target device or location server, respectively.

```asn1
OMA-LPpe-OTDOA-UTRA-Error ::= CHOICE {
 locationServerErrorCauses OMA-LPpe-OTDOA-UTRA-LocationServerErrorCauses,
 targetDeviceErrorCauses OMA-LPpe-OTDOA-UTRA-TargetDeviceErrorCauses,
 ...
}
```
The **OMA-LPPe-OTDOA-UTRA-LocationServerErrorCauses** is used by the location server to provide OTDOA-UTRA error reasons to the target device.

```asn1
OMA-LPPe-OTDOA-UTRA-LocationServerErrorCauses ::= SEQUENCE {
 cause ENUMERATED{
 undefinedError,
 assistanceDataForUEbasedOTDOAnotAvailable,
 assistanceDataForUEassistedOTDOAnotAvailable,
 ...
 },
 ...
}
```

The **OMA-LPPe-OTDOA-UTRA-TargetDeviceErrorCauses** is used by the target device to provide OTDOA-UTRA error reasons to the location server.

```asn1
OMA-LPPe-OTDOA-UTRA-TargetDeviceErrorCauses ::= SEQUENCE {
 cause ENUMERATED{
 undefinedError,
 notEnoughOTDOA-cells,
 assistanceDataMissing,
 referenceCellNotServingCell,
 otdoaMeasurementsNotSupported,
 otdoaMeasurementsNotAvailable,
 uebasedOTDOAnotSupported,
 ...
 },
 ...
}
```

### 6.5.4.10 OTDOA-UTRA Common Elements

**OMA-LPPe-OTDOA-UTRA-PrimaryCPICH-Info**

```asn1
OMA-LPPe-OTDOA-UTRA-PrimaryCPICH-Info ::= SEQUENCE {
 primaryScramblingCode OMA-LPPe-OTDOA-UTRA-PrimaryScramblingCode
}
```

**OMA-LPPe-OTDOA-UTRA-PrimaryScramblingCode**

```asn1
OMA-LPPe-OTDOA-UTRA-PrimaryScramblingCode ::= INTEGER (0..511)
```
6.5.5 LTE Enhanced Cell ID Positioning

6.5.5.1 LTE ECID Assistance Data

– OMA-LPpe-ECID-LTE-ProvideAssistanceData

The OMA-LPpe-ECID-LTE-ProvideAssistanceData is used to provide assistance for UE-based and UE-assisted LTE ECID based methods.

6.5.5.2 LTE ECID Assistance Data Elements

– OMA-LPpe-ECID-LTE-NetworkData

The IE OMA-LPpe-ECID-LTE-NetworkData is used by the location server to provide eNodeB and HeNB information for one LTE network as part of LTE ECID assistance data.
-- ASN1START

OMA-LPPe-ECID-LTE-NetworkData ::= SEQUENCE {
  plmn-Identity SEQUENCE {
    mcc  SEQUENCE (SIZE (3)) OF INTEGER (0..9),
    mnc  SEQUENCE (SIZE (2..3)) OF INTEGER (0..9),
    ...
  },
  multiple-PLMNs BOOLEAN,
  reference-location OMA-LPPe-ReferencePoint OPTIONAL, --Cond eNBlocations
  ecid-lte-eNodeB-list SEQUENCE (SIZE (1..maxLTEeNBs)) OF OMA-LPPe-ECID-LTE-eNodeBData,
  ecid-lte-HeNB-list SEQUENCE (SIZE (1..maxLTEHeNBs)) OF OMA-LPPe-ECID-LTE-HeNBData OPTIONAL,
  ...
} maxLTEeNBs INTEGER ::= 32
maxLTEHeNBs INTEGER ::= 128
-- ASN1STOP

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>eNBlocations</td>
<td>The field is mandatory when one or more eNodeB or HeNB locations are provided for the network and a default reference point is not provided in LPPe common IEs.</td>
</tr>
</tbody>
</table>

**OMA-LPPe-ECID-LTE-NetworkData field descriptions**

**plmn-Identity**
This field identifies the PLMN as defined in [23.003]. For a network supporting multiple PLMNs, this field identifies the first listed (i.e. primary) PLMN.

**multiple-PLMNs**
This field indicates whether the network supports multiple PLMNs (true) or not (false).

**reference-location**
This field specifies an arbitrary reference location for the LTE network. If this field is absent, the reference location is provided by the default reference point in LPPe common IEs.

**ecid-lte-eNodeB-list**
This parameter provides information for one or more eNodeBs belonging to the indicated LTE network. Either ecid-lte-eNodeB-list or ecid-lte-HeNB-list or both SHALL be included.

**ecid-lte-HeNB-list**
This parameter provides information for one or more HeNBs belonging to the indicated LTE network. Either ecid-lte-eNodeB-list or ecid-lte-HeNB-list or both SHALL be included.

---

**OMA-LPPe-ECID-LTE-eNodeBData**
The IE **OMA-LPPe-ECID-LTE-eNodeBData** is used by the location server to provide information for one LTE eNodeB or several collocated eNodeBs as part of LTE ECID assistance data.

-- ASN1START

OMA-LPPe-ECID-LTE-eNodeBData ::= SEQUENCE {
  relative-location OMA-LPPe-RelativeLocation OPTIONAL,
  ecid-lte-eNodeB-CellData SEQUENCE (SIZE (1..maxLTEMacroCells)) OF OMA-LPPe-ECID-LTE-CellData,
  ...
} maxLTEMacroCells INTEGER ::= 8
-- ASN1STOP
**OMA-LPpe-ECID-LTE-eNodeBData field descriptions**

**relative-location**
This field provides the location and optional uncertainty in location of the antenna of the eNodeB relative to the reference location for the network. For an eNodeB with multiple antennas or a set of collocated eNodeBs, the location can be averaged. This field SHALL be provided if requested and available.

**ecid-lte-eNodeB-CellData**
This field provides information for one or more LTE macro or pico cells sharing a common eNodeB antenna or using antennas in close proximity to one another.

---

**OMA-LPpe-ECID-LTE-HeNBData**

The IE OMA-LPpe-ECID-LTE-HeNBData is used by the location server to provide information for one LTE HeNB as part of LTE ECID assistance data.

```asn1
OMA-LPpe-ECID-LTE-HeNBData ::= SEQUENCE {
 relative-location OMA-LPpe-RelativeLocation OPTIONAL,
 location-reliability INTEGER (1..100) OPTIONAL,
 coverageArea OMA-LPpe-WLANFemtoCoverageArea OPTIONAL,
 ecid-lte-HeNB-CellData OMA-LPpe-ECID-LTE-CellData,
 ...}
```

---

**OMA-LPpe-ECID-LTE-HeNBData field descriptions**

**relative-location**
This field provides the location and optional uncertainty in location of the antenna of the HeNB relative to the reference location for the network.

**location-reliability**
The field provides the reliability R of the HeNB location. The probability that the HeNB location has not changed is given as a percentage. R may be based on historic change or persistence of the HeNB location over a period of time and the time interval since the HeNB location was last provided to or verified by the server. Note that location reliability is distinct from location accuracy and refers to the possibility of an HeNB having been moved to a new location. This field SHALL be provided if requested and available.

**coverageArea**
This parameter provides the coverage area of the HeNB. This parameter SHALL be provided if requested and available.

**ecid-lte-HeNB-CellData**
This field provides information for the HeNB femtocell.

---

**OMA-LPpe-ECID-LTE-CellData**

The IE OMA-LPpe-ECID-LTE-CellData is used by the location server to provide information for one LTE macro, pico or femto cell as part of LTE ECID assistance data.

```asn1
OMA-LPpe-ECID-LTE-CellData ::= SEQUENCE {
 physCellId INTEGER (0..503) OPTIONAL,
 cellIdentity BIT STRING (SIZE (28)) OPTIONAL,
 dl-CarrierFreq ARFCN-ValueEUTRA,
 rs-transmit-power INTEGER (-127..128) OPTIONAL,
 antennaPortConfig ENUMERATED {port1, ports2, ports4, ...} OPTIONAL,
 antenna-gain INTEGER (-127..128) OPTIONAL,
 beam-width INTEGER (1..360) OPTIONAL,
 ...}
```

---
transmit-direction INTEGER (0..360), OPTIONAL,
frequency-accuracy INTEGER (0..100),
...
dl-CarrierFreq-ext ARFCN-ValueEUTRA-v9a0 OPTIONAL -- Cond EARFCN-ext

-- ASN1STOP

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>EARFCN-ext</td>
<td>This field is mandatory present if the value of E-UTRA ARFCN is greater than 65535. Otherwise this field is not present.</td>
</tr>
<tr>
<td>AtLeastOne</td>
<td>At least one of the fields with the condition “AtLeastOne” MUST be present.</td>
</tr>
</tbody>
</table>

**OMA-LPPe-ECID-LTE-CellData field descriptions**

**physCellId**
This field specifies the physical cell identity, as defined in [36.331].

**cellIdentity**
This field defines the identity of the cell within the context of the PLMN as defined in [36.331].

**dl-CarrierFreq**
This field specifies the value of E-UTRA ARFCN of the cell as defined in [36.101]. If the value of E-UTRA ARFCN is greater than 65535, this field SHALL be set to 65535.

**dl-CarrierFreq** range: (0..65535).

**rs-transmit-power**
This field specifies the downlink reference signal transmit power for the cell in dBm as defined in [36.314]. The RS EPRE can be derived from this as defined in [36.213]. This field SHALL be provided if requested and available.

**antennaPortConfig**
This field specifies whether 1, 2 or 4 antenna ports are used for downlink cell reference signals. This field SHALL be provided if requested and available.

**antenna-gain**
This field specifies the antenna gain in dBi. This field is applicable to a macro or pico cell only and SHALL be provided if requested and available.

**beam-width**
This field specifies the engineered horizontal width of the antenna beam in degrees. This field is applicable to a macro or pico cell only and SHALL be provided if requested and available.

**transmit-direction**
This field specifies the direction of the center of the main downlink transmission lobe in degrees clockwise from true north (0-359). A value of 360 indicates omnidirectional transmission. This field is applicable to a macro or pico cell only and SHALL be provided if requested and available.

**frequency-accuracy**
This field specifies the minimum frequency accuracy of the cell in units of 0.005 ppm. A value of zero indicates frequency accuracy is outside the provided range.

**dl-CarrierFreq-Ext**
This field specifies the value of E-UTRA ARFCN of the cell as defined in [36.101], if an extended value is used i.e., if the value of E-UTRA ARFCN is > 65535. In this case, this parameter SHALL be sent and set to the value of E-UTRA ARFCN.

**dl-CarrierFreq-Ext** t range: (65536..262143).

**6.5.5.3 LTE ECID Assistance Data Request**

**OMA-LPPe-ECID-LTE-RequestAssistanceData**

The OMA-LPPe-ECID-LTE-RequestAssistanceData is used to request assistance for UE-based and UE-assisted LTE ECID based methods.

-- ASN1START
**OMA-LPpe-ECID-LTE-RequestAssistanceData field descriptions**

**eNBrequestedAD**
This parameter specifies the LTE E-CID assistance data requested for eNodeBs associated with macro and pico cells. This is represented by a bit string, with a one-value at the bit position means the particular assistance data is requested; a zero-value means not requested. If this parameter is absent, no assistance data is requested for macro or pico cells. The following assistance data types are included:

- **bslist**: include mandatory eNodeB and cell information
- **bslocation**: include the location of each eNodeB if available
- **transmit-power**: include the downlink transmit power for each cell if available
- **antennaPortConfig**: include the antenna port configuration for the downlink RS
- **antenna-gain**: include the antenna gain for each cell if available
- **beam-width**: include the beam width for each cell if available
- **transmit-direction**: include the transmit direction for each cell if available
- **frequency-accuracy**: include the frequency accuracy for each cell if available
- **non-serving**: include information for non-serving LTE networks in addition to the serving LTE network (or include information for multiple LTE networks if the serving network is either unknown or not LTE)

**heNBrequestedAD**
This parameter specifies the LTE E-CID assistance data requested for HeNBs associated with femto cells. This is represented by a bit string, with a one-value at the bit position means the particular assistance data is requested; a zero-value means not requested. If this parameter is absent, no assistance data is requested for femto cells. The following assistance data types are included:

- **bslist**: include mandatory HeNB and cell information
- **bslocation**: include the location of each HeNB if available
- **locationreliability**: include the reliability of HeNB location if available
- **transmit-power**: include the transmit power for each cell if available
- **antennaPortConfig**: include the antenna port configuration for the downlink RS
- **frequency-accuracy**: include the frequency accuracy for each cell if available
- **coveragearea**: include the coverage area for each HeNB if available
- **non-serving**: include information for non-serving LTE networks in addition to the serving LTE network (or include information for multiple LTE networks if the serving network is either unknown or not LTE)

**6.5.5.4 LTE ECID Location Information**

**OMA-LPpe-ECID-LTE-ProvideLocationInformation**

The **OMA-LPpe-ECID-LTE-ProvideLocationInformation** is used to provide ECID measurements (UE-assisted) for LTE.
access networks at both current and historic times. Assuming the target device supports LPP E-CID measurement reporting, the target device SHALL use LPP and not LPpe to report LTE E-CID measurements to the server if either of the following conditions apply:

(a) The server sends an LPP Request Location Information message to the target containing an LPP request for E-CID measurements and the target is served by an LTE network.

(b) The target sends an unsolicited LPP Provide Location Information message to the server carrying current but not historic E-CID measurements for a serving LTE network and the target is either aware that the server supports LPP E-CID location information or is both not aware of the level of server LPP E-CID support and not aware that the server supports LPpe E-CID location information.

For all other cases of E-CID reporting for LTE, the target SHALL use LPpe and not LPP.

```ASN1
OMA-LPpe-ECID-LTE-ProvideLocationInformation ::= SEQUENCE {
 ecid-LTE-CombinedLocationInformation SEQUENCE (SIZE (1..maxLTEECIDSize))
 OF OMA-LPpe-ECID-LTE-LocationInformationList OPTIONAL,
 ecid-LTE-Error OMA-LPpe-ECID-LTE-Error OPTIONAL,
 ... }

OMA-LPpe-ECID-LTE-LocationInformationList ::= SEQUENCE {
 ecid-LTE-LocationInformation OMA-LPpe-ECID-LTE-LocationInformation,
 relativeTimeStamp INTEGER (0..65535) OPTIONAL,
 servingFlag BOOLEAN,
 ... }

maxLTEECIDSize INTEGER ::= 64
```

### OMA-LPpe-ECID-LTE-ProvideLocationInformation field descriptions

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ecid-LTE-CombinedLocationInformation</td>
<td>This parameter provides E-CID measurements for one or more LTE access networks at the current time and/or for historic times. This parameter supports part of the Location ID and Multiple Location IDs parameters in SUPL 2.0.</td>
</tr>
<tr>
<td>ecid-LTE-Error</td>
<td>This parameter provides error information when not all requested LTE E-CID measurements can be reported. This parameter should be included when some but not all requested measurements are reported and SHALL be included when no requested measurements are reported.</td>
</tr>
<tr>
<td>relativeTimeStamp</td>
<td>This parameter SHALL be included for historic LTE E-CID measurements and provides the time of the historic measurements relative to current time in units of 0.01 seconds. If absent, current time is implied which is equivalent to a relativeTimeStamp of zero. Current time refers to the time when the target sends LTE E-CID measurements to the server.</td>
</tr>
<tr>
<td>servingFlag</td>
<td>This parameter indicates whether a set of E-CID measurements were obtained for a serving LTE access network (TRUE) or non-serving LTE access network (FALSE). A target device with multiple radio support may indicate more than one type of serving access network for the same time instant.</td>
</tr>
</tbody>
</table>

### 6.5.5.5 LTE ECID Location Information Elements

- **OMA-LPpe-ECID-LTE-LocationInformation**

The IE **OMA-LPpe-ECID-LTE-LocationInformation** is used by the target device to provide E-CID measurements for a serving or non-serving LTE network to the server.
OMA-LPpe-ECID-LTE-LocationInformation ::= SEQUENCE {
  lpp-ECID-SignalMeasurementInformation  ECID-SignalMeasurementInformation,
  ...
}

OMA-LPpe-ECID-LTE-RequestLocationInformation ::= SEQUENCE {
  requestedMeasurements  BIT STRING {
    rsrp    (0),
    rsrq    (1),
    ueRxTx  (2),
    non-serving (3),
    historic (4)  (SIZE(1..8)),
  ...
}

OMA-LPpe-ECID-LTE-RequestLocationInformation field descriptions

requestedMeasurements
This field specifies the LTE E-CID measurements requested. This is represented by a bit string, with a one-value at the bit position means the particular measurement is requested; a zero-value means not requested. The following measurement requests can be included.

- rsrp: RSRP
- rsrq: RSRQ
- ueRxTx: UE Rx-Tx time difference measurement
- non-serving: E-CID measurements for non-serving LTE networks (in addition to a serving LTE network)
- historic: historic LTE E-CID measurements (in addition to current measurements)

OMA-LPpe-ECID-LTE-ProvideCapabilities ::= SEQUENCE {
  ecid-lte-MeasSupported  BIT STRING {
    rsrp    (0),
    rsrq    (1),
    ueRxTx  (2),
    non-serving (3),
    historic (4)  (SIZE(1..8)),
  ecid-lte-eNodeB-ADSupported BIT STRING  {bslist  (0),
...

OMA-LPpe-ECID-LTE-LocationInformation field descriptions

lpp-ECID-SignalMeasurementInformation
This parameter provides E-CID measurements for a serving or non-serving LTE access network.

6.5.5.6 LTE ECID Location Information Request

OMA-LPpe-ECID-LTE-RequestLocationInformation
The OMA-LPpe-ECID-LTE-RequestLocationInformation is used to request ECID measurements (UE-assisted).

6.5.5.7 LTE ECID Capability Information

OMA-LPpe-ECID-LTE-ProvideCapabilities
The OMA-LPpe-ECID-LTE-ProvideCapabilities is used by the target to provide its ECID capabilities to the server.
bslocation (1),
transmit-power (2),
antennaPortConfig (3),
antenna-gain (4),
beam-width (5),
transmit-direction (6),
frequency-accuracy (7),
non-serving (8) (SIZE(1..16)),

ecid-utra-HeNB-ADSUPPORTED BIT STRING
  (bslist (0),
   bslocation (1),
   locationreliability (2),
   transmit-power (3),
   antennaPortConfig (4),
   frequency-accuracy (5),
   coveragearea (6),
   non-serving (?)) (SIZE(1..16)),

...
### OMA-LPpe-ECID-LTE-ProvideCapabilities field descriptions

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ecid-lte-HeNB-ADSupported)</td>
<td>This field specifies the E-CID assistance data supported by the target device for LTE HeNBs. This is represented by a bit string, with a one-value at the bit position means the particular assistance data is supported; a zero-value means not supported. A zero-value in all bit positions or absence of this field means no assistance data is supported. The following bits are assigned for the indicated assistance data.</td>
</tr>
<tr>
<td>bslist</td>
<td>mandatory HeNB and cell information</td>
</tr>
<tr>
<td>bslocation</td>
<td>location of each HeNB</td>
</tr>
<tr>
<td>locationreliability</td>
<td>location reliability of each HeNB</td>
</tr>
<tr>
<td>transmit-power</td>
<td>transmit power for each cell</td>
</tr>
<tr>
<td>antennaportconfig</td>
<td>antenna port configuration for downlink RS</td>
</tr>
<tr>
<td>frequency-accuracy</td>
<td>frequency accuracy for each cell</td>
</tr>
<tr>
<td>coveragearea</td>
<td>coverage area for each HeNB</td>
</tr>
<tr>
<td>non-serving</td>
<td>information for non-serving LTE networks in addition to the serving LTE network (or information for multiple LTE networks if the serving network is not LTE)</td>
</tr>
</tbody>
</table>

### 6.5.5.8 LTE ECID Capability Information Request

#### OMA-LPpe-ECID-LTE-RequestCapabilities

The **OMA-LPpe-ECID-LTE-RequestCapabilities** is used to request ECID capabilities information from the target.

```asn1
OMA-LPpe-ECID-LTE-RequestCapabilities ::= SEQUENCE {
 ...}
```

### 6.5.5.9 LTE ECID Error Element

#### OMA-LPpe-ECID-LTE-Error

The IE **OMA-LPpe-ECID-LTE-Error** is used by the location server or target device to provide LTE E-CID error reasons to the target device or location server, respectively.

```asn1
OMA-LPpe-ECID-LTE-Error ::= CHOICE {
 locationServerErrorCauses OMA-LPpe-ECID-LTE-LocationServerErrorCauses,
 targetDeviceErrorCauses OMA-LPpe-ECID-LTE-TargetDeviceErrorCauses,
 ...}
```

#### OMA-LPpe-ECID-LTE-LocationServerErrorCauses

The IE **OMA-LPpe-ECID-LTE-LocationServerErrorCauses** is used by the location server to provide LTE E-CID error reasons to the target device.

```asn1
OMA-LPpe-ECID-LTE-LocationServerErrorCauses ::= SEQUENCE {
 cause ENUMERATED { undefined,
 requestedADNotAvailable,
 notAllrequestedADAvailable,
 ...}}
```
OMA-LPpe-ECID-LTE-LocationServerErrorCauses field descriptions

**cause**
This field provides a LTE ECID specific error cause for the server applicable to provision of assistance data. If the cause value is ‘requestedADNotAvailable’, none of the requested assistance data could be provided and no further information needs to be included. If the cause value is ‘notAllRequestedADAvailable’, the server was able to provide some but not all requested LTE ECID assistance data. In this case, the server should include any of the specific error indications as applicable. Note that inclusion of these fields is applicable when some of the associated information can be provided for some base stations or cells but not for all base stations and cells.

OMA-LPpe-ECID-LTE-TargetDeviceErrorCauses

The IE OMA-LPpe-ECID-LTE-TargetDeviceErrorCauses is used by the target device to provide LTE E-CID error reasons to the location server.

OMA-LPpe-ECID-LTE-TargetDeviceErrorCauses field descriptions

**cause**
This field provides an LTE ECID specific error cause. If the cause value is ‘requestedMeasurementsNotAvailable’, none of the requested measurements could be provided and no further information needs to be included. If the cause value is ‘notAllRequestedMeasurementsPossible’, the target device was able to provide some but not all requested LTE ECID measurements. In this case, the target device should include any of the other fields, as applicable.
6.5.6 GSM Enhanced Cell ID Positioning

This section defines support for GSM ECID.

6.5.6.1 GSM ECID Assistance Data

-- OMA-LPpe-ECID-GSM-ProvideAssistanceData

The OMA-LPpe-ECID-GSM-ProvideAssistanceData is used to provide assistance for UE-based and UE-assisted GSM ECID based methods.

```
OMA-LPpe-ECID-GSM-ProvideAssistanceData ::= SEQUENCE {
 ecid-gsm-NetworkData SEQUENCE (SIZE (1..maxGSMNetworks))
 OF OMA-LPpe-ECID-GSM-NetworkData OPTIONAL,
 ecid-gsm-Error OMA-LPpe-ECID-GSM-Error OPTIONAL,
 ... -- ASN1STOP

maxGSMNetworks INTEGER ::= 8
```

6.5.6.2 GSM ECID Assistance Data Elements

-- OMA-LPpe-ECID-GSM-NetworkData

The IE OMA-LPpe-ECID-GSM-NetworkData is used by the location server to provide base station information for one GSM network as part of GSM ECID assistance data.

```
OMA-LPpe-ECID-GSM-NetworkData ::= SEQUENCE {
 plmn-Identity SEQUENCE {
 mcc SEQUENCE (SIZE (3)) OF INTEGER (0..9),
 mnc SEQUENCE (SIZE (2..3)) OF INTEGER (0..9)
 },
 reference-location OMA-LPpe-ReferencePoint OPTIONAL, -- Cond BSlocations
 base-station-list SEQUENCE (SIZE (1..maxGSMBaseStations))
 OF OMA-LPpe-ECID-GSM-BaseStationData,
 ... -- ASN1STOP

maxGSMBaseStations INTEGER ::= 32
```

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSlocations</td>
<td>The field is mandatory when one or more base station locations are provided for the network and a default reference point is not provided in LPpe common IEs.</td>
</tr>
</tbody>
</table>

**OMA-LPpe-ECID-GSM-NetworkData field descriptions**

- **plmn-Identity**
  This field identifies the PLMN as defined in [23.003].

- **reference-Location**
  This field defines an arbitrary reference location for the GSM network. If this field is absent, the reference location is provided by the default reference point in LPpe common IEs.

- **base-station-list**
  This parameter provides information for one or more base stations belonging to the indicated GSM network.
– **OMA-LPpe-ECID-GSM-BaseStationData**

The IE *OMA-LPpe-ECID-GSM-BaseStationData* is used by the location server to provide information for one GSM base station as part of GSM ECID assistance data.

```asn1
OMA-LPpe-ECID-GSM-BaseStationData ::= SEQUENCE {
 relative-location OMA-LPpe-RelativeLocation OPTIONAL,
 ecid-gsm-CellData SEQUENCE (SIZE (1..maxGSMCells)) OF OMA-LPpe-ECID-GSM-CellData,
 ...
}
maxGSMCells INTEGER ::= 8
```

**OMA-LPpe-ECID-GSM-BaseStationData field descriptions**

**relative-location**
This field provides the location and optional uncertainty in location of the antenna of the GSM base station relative to the reference location for the network. For a base station with multiple antennas or a set of collocated base stations, the location can be averaged. This field SHALL be provided if requested and available.

**ecid-gsm-CellData**
This field provides information for one or more GSM cells sharing a common base station antenna or using antennas in close proximity to one another.

– **OMA-LPpe-ECID-GSM-CellData**

The IE *OMA-LPpe-ECID-GSM-CellData* is used by the location server to provide information for one GSM Cell as part of GSM ECID assistance data.

```asn1
OMA-LPpe-ECID-GSM-CellData ::= SEQUENCE {
 cellNonUniqueIDGERAN OMA-LPpe-CellNonUniqueIDGERAN OPTIONAL, --Cond AtLeastOne
 cellLocalIDGERAN OMA-LPpe-CellLocalIdGERAN OPTIONAL, --Cond AtLeastOne
 transmit-power INTEGER (-127..128) OPTIONAL,
 antenna-gain INTEGER (-127..128) OPTIONAL,
 beam-width INTEGER (1..360) OPTIONAL,
 transmit-direction INTEGER (0..360) OPTIONAL,
 frequency-accuracy INTEGER (0..100) OPTIONAL,
 ...
}
```

**OMA-LPpe-ECID-GSM-CellData field descriptions**

**cellNonUniqueIDGERAN**
This field provides the BCCH and BSIC for the GSM cell, as defined in [23.003] and [45.001].

**cellLocalIDGERAN**
This field provides the location area and cell ID of the GSM cell. This field SHALL be provided if available.

---

2020 Open Mobile Alliance. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
OMA-LPPe-ECID-GSM-CellData field descriptions

**transmit-power**
This field specifies the transmit power used for the BCCH in dBm. This field SHALL be provided if requested and available.

**antenna-gain**
This field specifies the antenna gain in dBi. This field SHALL be provided if requested and available.

**beam-width**
This field specifies the engineered horizontal width of the antenna beam in degrees. This field SHALL be provided if requested and available.

**transmit-direction**
This field specifies the direction of the center of the main transmission lobe in degrees clockwise from true north (0-359). A value of 360 indicates omnidirectional transmission. This field SHALL be provided if requested and available.

**frequency-accuracy**
This field specifies the minimum frequency accuracy of the cell in units of 0.005 ppm. A value of zero indicates frequency accuracy is outside the provided range.

### 6.5.6.3 GSM ECID Assistance Data Request

**OMA-LPPe-ECID-GSM-RequestAssistanceData**

The OMA-LPPe-ECID-GSM-RequestAssistanceData is used to request assistance for UE-based and UE-assisted GSM ECID based methods.

```asn1
OMA-LPPe-ECID-GSM-RequestAssistanceData ::= SEQUENCE {
 requestedAD BIT STRING {
 bslist (0),
 bslocation (1),
 transmit-power (2),
 antenna-gain (3),
 beam-width (4),
 transmit-direction (5),
 frequency-accuracy (6),
 non-serving (7)
 } SIZE(1..16),
 ...}
```

**OMA-LPPe-ECID-GSM-RequestAssistanceData field descriptions**

**requestedAD**
This parameter specifies the GSM E-CID assistance data requested. This is represented by a bit string, with a one-value at the bit position means the particular assistance data is requested; a zero-value means not requested. The following assistance data types are included:

- bslist: include base station and cell information
- bslocation: include the location of each base station if available
- transmit-power: include the transmit power for each cell if available
- antenna-gain: include the antenna gain for each cell if available
- beam-width: include the beam width for each cell if available
- transmit-direction: include the transmit direction for each cell if available
- frequency-accuracy: include the frequency accuracy for each cell if available
- non-serving: include information for non-serving GSM networks in addition to the serving GSM network (or include information for multiple GSM networks if the serving network is either unknown or not GSM)
6.5.6.4  GSM ECID Location Information

–  OMA-LPpe-ECID-GSM-ProvideLocationInformation

The OMA-LPpe-ECID-GSM-ProvideLocationInformation is used to provide ECID measurements (UE-assisted) for one or more GSM access types and at both current and historic times.

```asn1
OMA-LPpe-ECID-GSM-ProvideLocationInformation ::= SEQUENCE {
 ecid-GSM-CombinedLocationInformation SEQUENCE (SIZE (1..maxGSMECIDSize)) OF OMA-LPpe-ECID-GSM-LocationInformationList OPTIONAL,
 ecid-GSM-Error OMA-LPpe-ECID-GSM-Error OPTIONAL,
 ... }

OMA-LPpe-ECID-GSM-LocationInformationList ::= SEQUENCE {
 ecid-GSM-LocationInformation OMA-LPpe-ECID-GSM-LocationInformation,
 relativeTimeStamp INTEGER (0..65535) OPTIONAL,
 servingFlag BOOLEAN,
 ... }

maxGSMECIDSize INTEGER ::= 64
```

---

**OMA-LPpe-ECID-GSM-ProvideLocationInformation field descriptions**

**ecid-GSM-CombinedLocationInformation**

This parameter provides E-CID measurements for one or more GSM networks at the current time and/or for historic times. This parameter supports part of the Location ID and Multiple Location IDs parameters in SUPL 2.0.

**ecid-GSM-Error**

This parameter provides error information when not all requested GSM E-CID measurements can be reported. This parameter should be included when some but not all requested measurements are reported and SHALL be included when no requested measurements are reported.

**relativeTimeStamp**

This parameter SHALL be included for historic GSM E-CID measurements and provides the time of the historic measurements relative to current time in units of 0.01 seconds. If absent, current time is implied which is equivalent to a relativeTimeStamp of zero. Current time refers to the time when the target sends GSM E-CID measurements to the server.

**servingFlag**

This parameter indicates whether a set of E-CID measurements were obtained for a serving GSM access network (TRUE) or a non-serving GSM access network (FALSE). A target device capable of multiple radio support may indicate more than one type of serving access network for the same time instant.

6.5.6.5  GSM ECID Location Information Elements

–  OMA-LPpe-ECID-GSM-LocationInformation

The IE OMA-LPpe-ECID-GSM-LocationInformation is used by the target device to provide E-CID measurements for a serving or non-serving GSM network to the server.

```asn1
OMA-LPpe-ECID-GSM-LocationInformation ::= SEQUENCE {
 cellGlobalIdGERAN CellGlobalIdGERAN,
 rxLevel INTEGER (0..63) OPTIONAL,
 tA INTEGER(0..255) OPTIONAL,
 ... }
```

2020 Open Mobile Alliance. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
nMR-GERAN  OMA-LPPe-NMR-GERAN  OPTIONAL,
...
}  

OMA-LPPe-NMR-GERAN ::= SEQUENCE (SIZE (1..15)) OF SEQUENCE {
  cellNonUniqueIDGERAN  OMA-LPPe-CellNonUniqueIDGERAN,
  cellLocalIDGERAN  OMA-LPPe-CellLocalIdGERAN  OPTIONAL,
  rxLevel  INTEGER (0..63),
  ...
}  

OMA-LPPe-ECID-GSM-LocationInformation field descriptions

cellGlobalIdGERAN
This field provides the GERAN global cell ID of the measured cell which is either the serving cell or a cell in a non-
serving GSM network that is treated like a serving cell for the purpose of reporting measurements.

rxLevel
This field specifies the received signal level for a measured cell. Rx-level is encoded according to [45.008] as:

<table>
<thead>
<tr>
<th>Rx Level</th>
<th>Signal Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>&lt; -110 dBm</td>
</tr>
<tr>
<td>1</td>
<td>-110 dBm to  -109 dBm</td>
</tr>
<tr>
<td>2</td>
<td>-109 dBm to  -108 dBm</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>-49 dBm to   -48 dBm</td>
</tr>
<tr>
<td>63</td>
<td>&gt;= -48 dBm</td>
</tr>
</tbody>
</table>

tA
This field specifies the timing advance of the measured cell in units of 48/13µs (length of a GSM bit). This provides an
approximation for the round trip propagation time between the target and the base station of the measured cell.

nMR-GERAN
This field provides the GERAN Network Measurements Report for up to 15 cells.

cellNonUniqueIDGERAN
This field provides the BSIC and BCCH for a measured cell.

cellLocalIDGERAN
This field provides the location area and cell ID of a measured cell and SHALL be included if available.

OMA-LPPe-ECID-GSM-RequestLocationInformation

The OMA-LPPe-ECID-GSM-RequestLocationInformation is used to request GSM ECID measurements (UE-assisted).
**OMA-LPPe-ECID-GSM-RequestLocationInformation field descriptions**

*requestedMeasurements*

This field specifies the GSM E-CID measurements requested. This is represented by a bit string, with a one-value at the bit position means the particular measurement is requested; a zero-value means not requested. The following measurement requests can be included.

- rxLevel: RX level
- tA: timing advance
- nMR-GERAN: network measurement report for neighboring cells
- non-serving: E-CID measurements for non-serving GSM networks (in addition to a serving GSM network)
- historic: historic GSM E-CID measurements

---

### 6.5.6.6 GSM ECID Capability Information

#### OMA-LPPe-ECID-GSM-ProvideCapabilities

The *OMA-LPPe-ECID-GSM-ProvideCapabilities* is used by the target to provide its GSM ECID capabilities to the server.

```asn1
OMA-LPPe-ECID-GSM-ProvideCapabilities ::= SEQUENCE {
 ecid-gsm-MeasSupported BIT STRING {
 rxLevel (0),
 tA (1),
 nMR-GERAN (2),
 non-serving (3),
 historic (4) } (SIZE(1..8)),
 ecid-gsm-ADSupported BIT STRING {
 bslist (0),
 bslocation (1),
 transmit-power (2),
 antenna-gain (3),
 beam-width (4),
 transmit-direction (5),
 frequency-accuracy (6),
 non-serving (7) } (SIZE(1..16)),
 ...
}
```

---

**OMA-LPPe-ECID-GSM-ProvideCapabilities field descriptions**

*ecid-gsm-MeasSupported*

This field specifies the E-CID measurements supported by the target device for GSM. This is represented by a bit string, with a one-value at the bit position means the particular measurement is supported; a zero-value means not supported. A zero-value in all bit positions in the bit string means only the basic Cell ID positioning method is supported by the target device for GSM. The following bits are assigned for the indicated measurements.

- rxLevel: RX level
- tA: timing advance
- nMR-GERAN: network measurement report for neighboring cells
- non-serving: E-CID measurements for non-serving GSM networks (in addition to a serving GSM network)
- historic: historic GSM E-CID measurements
### OMA-LPPe-ECID-GSM-ProvideCapabilities field descriptions

**ecid-gsm-ADSupported**
This field specifies the E-CID assistance data supported by the target device for GSM. This is represented by a bit string, with a one-value at the bit position means the particular assistance data is supported; a zero-value means not supported. A zero-value in all bit positions or absence of this field means no assistance data is supported. The following bits are assigned for the indicated assistance data.

- **bslist:** base station and cell information
- **bslocation:** location of each base station
- **transmit-power:** transmit power for each cell
- **antenna-gain:** antenna gain for each cell
- **beam-width:** beam width for each cell
- **transmit-direction:** transmit direction for each cell
- **frequency-accuracy:** frequency accuracy for each cell
- **non-serving:** information for non-serving GSM networks in addition to the serving GSM network (or information for multiple GSM networks if the serving network is not GSM)

### 6.5.6.7 GSM ECID Capability Information Request

#### OMA-LPPe-ECID-GSM-RequestCapabilities

The **OMA-LPPe-ECID-GSM-RequestCapabilities** is used to request GSM ECID capabilities information from the target.

```
-- ASN1START
OMA-LPPe-ECID-GSM-RequestCapabilities ::= SEQUENCE {
 ...}
-- ASN1STOP
```

### 6.5.6.8 GSM ECID Error Element

#### OMA-LPPe-ECID-GSM-Error

The IE **OMA-LPPe-ECID-GSM-Error** is used by the location server or target device to provide GSM E-CID error reasons to the target device or location server, respectively.

```
-- ASN1START
OMA-LPPe-ECID-GSM-Error ::= CHOICE {
 locationServerErrorCauses OMA-LPPe-ECID-GSM-LocationServerErrorCauses,
 targetDeviceErrorCauses OMA-LPPe-ECID-GSM-TargetDeviceErrorCauses,
 ...}
-- ASN1STOP
```

#### OMA-LPPe-ECID-GSM-LocationServerErrorCauses

The IE **OMA-LPPe-ECID-GSM-LocationServerErrorCauses** is used by the location server to provide GSM E-CID error reasons to the target device.

```
-- ASN1START
OMA-LPPe-ECID-GSM-LocationServerErrorCauses ::= SEQUENCE {
 cause ENUMERATED { undefined,
 requestedADNotAvailable,
 notAllRequestedADAvailable,
 ...}
-- ASN1STOP
```
The IE OMA-LPpe-ECID-GSM-TargetDeviceErrorCauses is used by the target device to provide GSM E-CID error reasons to the location server.

```
OMA-LPpe-ECID-GSM-TargetDeviceErrorCauses ::= SEQUENCE {
 cause ENUMERATED {
 undefined,
 requestedMeasurementsNotAvailable,
 notAllrequestedMeasurementsPossible,
 ...,
 rxLevelMeasurementNotPossible NULL OPTIONAL,
 taMeasurementNotPossible NULL OPTIONAL,
 nMRMeasurementNotPossible NULL OPTIONAL,
 non-servingMeasurementsNotAvailable NULL OPTIONAL,
 historicMeasurementsNotAvailable NULL OPTIONAL,
 ...
 }
}
```

**OMA-LPpe-ECID-GSM-TargetDeviceErrorCauses field descriptions**

*cause*

This field provides a GSM ECID specific error cause. If the cause value is 'requestedMeasurementsNotAvailable', none of the requested measurements could be provided and no further information needs to be included. If the cause value is 'notAllrequestedMeasurementsPossible', the target device was able to provide some but not all requested GSM ECID measurements. In this case, the target device should include any of the 'rxLevelMeasurementNotPossible', 'taMeasurementNotPossible', 'nMRMeasurementNotPossible', 'non-servingMeasurementsNotAvailable' or 'historicMeasurementsNotAvailable' fields, as applicable.

**6.5.7 UTRA Enhanced Cell ID Positioning**

This section defines support for UTRA ECID.
6.5.7.1 UTRA ECID Assistance Data

– OMA-LPPe-ECID-UTRA-ProvideAssistanceData

The IE OMA-LPPe-ECID-UTRA-ProvideAssistanceData is used to provide assistance for UE-based and UE-assisted UTRA ECID based methods.

```
OMA-LPPe-ECID-UTRA-ProvideAssistanceData ::= SEQUENCE {
 ecid-UTRA-NetworkData SEQUENCE (SIZE (1..maxUTRANetworks)) OPTIONAL,
 ecid-UTRA-Error OMA-LPPe-ECID-UTRA-Error OPTIONAL,
 ...}
maxUTRANetworks INTEGER ::= 8
```

6.5.7.2 UTRA ECID Assistance Data Elements

– OMA-LPPe-ECID-UTRA-NetworkData

The IE OMA-LPPe-ECID-UTRA-NetworkData is used by the location server to provide Node B and/or HNB information for one UTRA network as part of UTRA ECID assistance data.

```
OMA-LPPe-ECID-UTRA-NetworkData ::= SEQUENCE {
 plmn-Identity SEQUENCE {
 mcc SEQUENCE (SIZE (3)) OF INTEGER (0..9),
 mnc SEQUENCE (SIZE (2..3)) OF INTEGER (0..9),
 },
 multiple-PLMNs BOOLEAN,
 reference-location OMA-LPPe-ReferencePoint OPTIONAL, --Cond nodeBlocations
 ecid-utra-nodeB-list SEQUENCE (SIZE (1..maxUTRANodeBs)) OF OMA-LPPe-ECID-UTRA-NodeBData OPTIONAL,
 ecid-utra-HNB-list SEQUENCE (SIZE (1..maxUTRAHNBs)) OF OMA-LPPe-ECID-UTRA-HNBData OPTIONAL,
 ...}
maxUTRANodeBs INTEGER ::= 32
maxUTRAHNBs INTEGER ::= 128
```

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>nodeBlocations</td>
<td>The field is mandatory when one or more Node B or HNB locations are provided for the network and a default reference point is not provided in LPPe common IEs.</td>
</tr>
</tbody>
</table>

**OMA-LPPe-ECID-UTRA-NetworkData field descriptions**

**plmn-Identity**
This field identifies the PLMN as defined in [23.003]. For a network supporting multiple PLMNs, this field identifies the first listed (i.e. primary) PLMN.

**multiple-PLMNs**
This field indicates whether the network supports multiple PLMNs (true) or not (false).

**reference-Location**
This field specifies an arbitrary reference location for the UTRA network. If this field is absent, the reference location is provided by the default reference point in LPPe common IEs.
**OMA-LPPe-ECID-UTRA-NetworkData field descriptions**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ecid-utra-nodeB-list</td>
<td>This parameter provides information for one or more Node Bs belonging to the indicated UTRA network. Either ecid-utra-nodeB-list or ecid-utra-HNB-list or both SHALL be included.</td>
</tr>
<tr>
<td>ecid-utra-HNB-list</td>
<td>This parameter provides information for one or more HNBs belonging to the indicated UTRA network. Either ecid-utra-nodeB-list or ecid-utra-HNB-list or both SHALL be included.</td>
</tr>
</tbody>
</table>

---

**OMA-LPPe-ECID-UTRA-NodeBData**

The IE **OMA-LPPe-ECID-UTRA-NodeBData** is used by the location server to provide information for one UTRA Node B or several collocated Node Bs as part of UTRA ECID assistance data.

```asn1
OMA-LPPe-ECID-UTRA-NodeBData ::= SEQUENCE {
 relative-location OMA-LPPe-RelativeLocation OPTIONAL,
 ecid-utra-nodeB-CellData SEQUENCE (SIZE (1..maxUTRAMacroCells)) OF OMA-LPPe-ECID-UTRA-CellData,
 ...}
```

**OMA-LPPe-ECID-UTRA-NodeBData field descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>relative-location</td>
<td>This field provides the location and optional uncertainty in location of the antenna of the UTRA Node B relative to the reference location for the network. For a Node B with multiple antennas or a set of collocated Node Bs, the location can be averaged. This field SHALL be provided if requested and available.</td>
</tr>
<tr>
<td>ecid-utra-nodeB-CellData</td>
<td>This field provides information for one or more UTRA macro or pico cells sharing a common Node B antenna or using antennas in close proximity to one another.</td>
</tr>
</tbody>
</table>

---

**OMA-LPPe-ECID-UTRA-HNBData**

The IE **OMA-LPPe-ECID-UTRA-HNBData** is used by the location server to provide information for one UTRA HNB as part of UTRA ECID assistance data.

```asn1
OMA-LPPe-ECID-UTRA-HNBData ::= SEQUENCE {
 relative-location OMA-LPPe-RelativeLocation OPTIONAL,
 location-reliability INTEGER (1..100) OPTIONAL,
 coverageArea OMA-LPPe-WLANFemtoCoverageArea OPTIONAL,
 ecid-utra-HNB-CellData OMA-LPPe-ECID-UTRA-CellData,
 ...}
```

**OMA-LPPe-ECID-UTRA-HNBData field descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>relative-location</td>
<td>This field provides the location and optional uncertainty in location of the antenna of the UTRA Node B relative to the reference location for the network. For a Node B with multiple antennas or a set of collocated Node Bs, the location can be averaged. This field SHALL be provided if requested and available.</td>
</tr>
<tr>
<td>ecid-utra-HNB-CellData</td>
<td>This field provides information for one or more UTRA macro or pico cells sharing a common Node B antenna or using antennas in close proximity to one another.</td>
</tr>
</tbody>
</table>
**OMA-LPPe-ECID-UTRA-HNBData field descriptions**

**relative-location**
This field provides the location and optional uncertainty in location of the antenna of the HNB relative to the reference location for the network.

**location-reliability**
The field provides the reliability R of the HNB location. The probability that the HNB location has not changed is given as a percentage. R may be based on historic change or persistence of the HNB location over a period of time and the time interval since the HNB location was last provided to or verified by the server. Note that location reliability is distinct from location accuracy and refers to the possibility of an HNB having been moved to a new location. This field **SHALL** be provided if requested and available.

**coverageArea**
This parameter provides the coverage area of the HNB. This parameter **SHALL** be provided if requested and available.

**ecid-utra-HNB-CellData**
This field provides information for the HNB femtocell.

---

**OMA-LPPe-ECID-UTRA-CellData**

The IE *OMA-LPPe-ECID-UTRA-CellData* is used by the location server to provide information for one UTRA macro, pico or femto cell as part of UTRA ECID assistance data.

```asn1
OMA-LPPe-ECID-UTRA-CellData ::= SEQUENCE {
 cellIdentity BIT STRING (SIZE (32)) OPTIONAL, --Cond AtLeastOne
 modeSpecificInfo CHOICE {
 fdd SEQUENCE {
 primaryCPICH-Scrambling-Code OMA-LPPe-OTDOA-UTRA-PrimaryScramblingCode,
 primaryCPICH-Tx-Power INTEGER (-127..128) OPTIONAL,
 uarfcn-dl ARFCN-ValueUTRA,
 ... },
 tdd SEQUENCE {
 cellParametersID OMA-LPPe-OTDOA-UTRA-CellParametersID,
 primaryCCPCH-Tx-Power INTEGER (-127..128) OPTIONAL,
 uarfcn-nt ARFCN-ValueUTRA,
 ... } OPTIONAL, --Cond AtLeastOne
 antenna-gain INTEGER (-127..128) OPTIONAL,
 beam-width INTEGER (1..360) OPTIONAL,
 transmit-direction INTEGER (0..360) OPTIONAL,
 frequency-accuracy INTEGER (0..100) OPTIONAL,
 ... }
}
```

---

**Conditional presence**	**Explanation**
AtLeastOne | At least one of the fields with the condition “AtLeastOne” **MUST** be present.

**OMA-LPPe-ECID-UTRA-CellData field descriptions**

**cellIdentity**
This field defines the identity of the cell within the context of the PLMN as defined in [25.331]. The size of the bit string allows for the 32-bit extended UTRAN cell ID; in case the cell ID is shorter, the first bits of the string are set to 0.
**OMA-LPPe-ECID-UTRA-CellData** field descriptions

**primaryCPICH-Scrambling-Code**
This field provides the scrambling code for the primary CPICH and is applicable to FDD only.

**primaryCPICH-Tx-Power**
This field specifies the transmit power for the primary CPICH in dBm and is applicable to FDD only. This field SHALL be provided if requested and available.

**uarfcn-dl**
This field provides the downlink UARFCN for FDD and is encoded as defined in [25.101].

**cellParametersID**
This field provides the cell parameter ID (0-127) for TDD as defined in [25.331].

**primaryCCPCH-Tx-Power**
This field provides the transmit power for the primary CCPCH for TDD as defined in [25.331]. This field SHALL be provided if requested and available.

**uarfcn-nt**
This field provides the UARFCN for TDD and is encoded as defined in [25.102].

**antenna-gain**
This field specifies the antenna gain in dBi. This field is applicable to a macro or pico cell only and SHALL be provided if requested and available.

**beam-width**
This field specifies the engineered horizontal width of the antenna beam in degrees. This field is applicable to a macro or pico cell only and SHALL be provided if requested and available.

**transmit-direction**
This field specifies the direction of the center of the main transmission lobe in degrees clockwise from north (0-359). A value of 360 indicates omnidirectional transmission. This field is applicable to a macro or pico cell only and SHALL be provided if requested and available.

**frequency-accuracy**
This field specifies the minimum frequency accuracy of the cell in units of 0.005 ppm. A value of zero indicates frequency accuracy is outside the provided range.

### 6.5.7.3 UTRA ECID Assistance Data Request

---

**OMA-LPPe-ECID-UTRA-RequestAssistanceData**

The **OMA-LPPe-ECID-UTRA-RequestAssistanceData** is used to request assistance for UE-based and UE-assisted UTRA ECID based methods.

```asn1
OMA-LPPe-ECID-UTRA-RequestAssistanceData ::= SEQUENCE {
 nBrequestedAD BIT STRING {
 bslist (0),
 blocation (1),
 transmit-power (2),
 antenna-gain (3),
 beam-width (4),
 transmit-direction (5),
 frequency-accuracy (6),
 non-serving (7) } (SIZE(1..16)) OPTIONAL,

 hNBrequestedAD BIT STRING {
 bslist (0),
 blocation (1),
 locationreliability (2),
 transmit-power (3),
 frequency-accuracy (4),
 coveragearea (5),
 non-serving (6) } (SIZE(1..16)) OPTIONAL,

 ...
}
```
**OMA-LPpe-ECID-UTRA-RequestAssistanceData field descriptions**

- **nBrequestedAD**
  This parameter specifies the UTRA E-CID assistance data requested for node Bs associated with macro and pico cells. This is represented by a bit string, with a one-value at the bit position means the particular assistance data is requested; a zero-value means not requested. If this parameter is absent, no assistance data is requested for macro or pico cells. The following assistance data types are included:

  - bslist: include mandatory Node B and cell information
  - blocation: include the location of each Node B if available
  - transmit-power: include the transmit power for each cell if available
  - antenna-gain: include the antenna gain for each cell if available
  - beam-width: include the beam width for each cell if available
  - transmit-direction: include the transmit direction for each cell if available
  - frequency-accuracy: include the frequency accuracy for each cell if available
  - non-serving: include information for non-serving UTRA networks in addition to the serving UTRA network (or include information for multiple UTRA networks if the serving network is either unknown or not UTRA)

- **hNBrequestedAD**
  This parameter specifies the UTRA E-CID assistance data requested for HNBs associated with femto cells. This is represented by a bit string, with a one-value at the bit position means the particular assistance data is requested; a zero-value means not requested. If this parameter is absent, no assistance data is requested for femto cells. The following assistance data types are included:

  - bslist: include mandatory HNB and cell information
  - blocation: include the location of each HNB if available
  - locationreliability: include the reliability of HNB location if available
  - transmit-power: include the transmit power for each cell if available
  - frequency-accuracy: include the frequency accuracy for each cell if available
  - coveragearea: include the coverage area for each HNB if available
  - non-serving: include information for non-serving UTRA networks in addition to the serving UTRA network (or include information for multiple UTRA networks if the serving network is either unknown or not UTRA)

---

**6.5.7.4 UTRA ECID Location Information**

---

**OMA-LPpe-ECID-UTRA-ProvideLocationInformation**

The **OMA-LPpe-ECID-UTRA-ProvideLocationInformation** is used to provide ECID measurements (UE-assisted) for one or more UTRA access networks and at both current and historic times.

```asn1
OMA-LPpe-ECID-UTRA-ProvideLocationInformation ::= SEQUENCE {
 ecid-UTRA-CombinedLocationInformation SEQUENCE (SIZE (1..maxECIDUTRASize))
 OF OMA-LPpe-ECID-UTRA-LocationInformationList OPTIONAL,
 ecid-Error OMA-LPpe-ECID-UTRA-Error OPTIONAL,
 ... }

OMA-LPpe-ECID-UTRA-LocationInformationList ::= SEQUENCE {
 ecid-utra-LocationInformation OMA-LPpe-ECID-UTRA-LocationInformation,
 relativeTime Stamp INTEGER (0..65535) OPTIONAL,
 servingFlag BOOLEAN,
 ... }

maxECIDUTRASize INTEGER ::= 64
```

---
**OMA-LPpe-ECID-UTRA-ProvideLocationInformation field descriptions**

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ecid-UTRA-CombinedLocationInformation</strong></td>
<td>This parameter provides E-CID measurements for one or more UTRA access networks at the current time and/or for historic times. This parameter supports part of the Location ID and Multiple Location IDs parameters in SUPL 2.0.</td>
</tr>
<tr>
<td><strong>ecid-Error</strong></td>
<td>This parameter provides error information when not all requested UTRA E-CID measurements can be reported. This parameter should be included when some but not all requested measurements are reported and SHALL be included when no requested measurements are reported.</td>
</tr>
<tr>
<td><strong>relativeTimeStamp</strong></td>
<td>This parameter SHALL be included for historic UTRA E-CID measurements and provides the time of the historic measurements relative to current time in units of 0.01 seconds. If absent, current time is implied which is equivalent to a relativeTimeStamp of zero. Current time refers to the time when the target sends UTRA E-CID measurements to the server.</td>
</tr>
<tr>
<td><strong>servingFlag</strong></td>
<td>This parameter indicates whether a set of E-CID measurements were obtained for a serving UTRA access network (TRUE) or non-serving access network (FALSE). A target device with multiple radio support may indicate more than one type of serving access network for the same time instant.</td>
</tr>
</tbody>
</table>

### 6.5.7.5 UTRA ECID Location Information Elements

**OMA-LPpe-ECID-UTRA-LocationInformation**

The IE *OMA-LPpe-ECID-UTRA-LocationInformation* is used by the target device to provide E-CID measurements for a serving or non-serving UTRA network to the server.

```asn1
OMA-LPpe-ECID-UTRA-LocationInformation ::= SEQUENCE {
 cellGlobalIdUTRA CellGlobalIdETRAN-AnyUTRA,
 frequencyInfo OMA-LPpe-UTRA-FrequencyInfo OPTIONAL,
 primaryScramblingCode OMA-LPpe-OTDOA-UTRA-PrimaryScramblingCode OPTIONAL, --Cond FDD
 measuredResultsList OMA-LPpe-ECID-UTRA-MeasuredResultsList OPTIONAL,
 cellParametersId OMA-LPpe-OTDOA-UTRA-CellParametersId OPTIONAL, --Cond TDD
 utratimingAdvance OMA-LPpe-ECID-UTRA-UTRATimingAdvance OPTIONAL, --Cond TDD
 ... }

OMA-LPpe-ECID-UTRA-UTRATimingAdvance ::= SEQUENCE {
 tA INTEGER (0..8191),
 tAResolution OMA-LPpe-ECID-UTRA-TAResolution OPTIONAL, --Cond FDD
 ChipRate OMA-LPpe-ECID-UTRA-ChipRate OPTIONAL,
 ... }

OMA-LPpe-ECID-UTRA-TAResolution ::= ENUMERATED {
 res1=0chip,
 res0-5chip,
 res0-125chip,
 ... }

OMA-LPpe-ECID-UTRA-ChipRate ::= ENUMERATED {
 tdd128,
 tdd384,
 tdd768,
 ... }

OMA-LPpe-UTRA-FrequencyInfo ::= SEQUENCE {
 modeSpecificInfo OMA-UTRA-ModeSpecificInfo,
 ... }
```
OMA-LPPe-UTRA-ModeSpecificInfo ::= CHOICE {
  fdd     OMA-LPPe-UTRA-FrequencyInfoFDD,
  tdd     OMA-LPPe-UTRA-FrequencyInfoTDD,
  ...
}

OMA-LPPe-UTRA-FrequencyInfoFDD ::= SEQUENCE {
  uarfcn-UL  ARFCN-ValueUTRA  OPTIONAL,
  uarfcn-DL  ARFCN-ValueUTRA,
  ...
}

OMA-LPPe-UTRA-FrequencyInfoTDD ::= SEQUENCE {
  uarfcn-Nt  ARFCN-ValueUTRA,
  ...
}

OMA-LPPe-ECID-UTRA-MeasuredResultsList ::= SEQUENCE (SIZE (1..maxFreq)) OF OMA-LPPe-ECID-UTRA-MeasuredResults

OMA-LPPe-ECID-UTRA-MeasuredResults ::= SEQUENCE {
  frequencyInfo  OMA-LPPe-UTRA-FrequencyInfo,
  utra-CarrierRSSI  OMA-LPPe-ECID-UTRA-CarrierRSSI  OPTIONAL,
  cellMeasuredResultsList  OMA-LPPe-ECID-UTRA-CellMeasuredResultsList  OPTIONAL,
  ...
}

OMA-LPPe-ECID-UTRA-CellMeasuredResultsList ::= SEQUENCE (SIZE (1..utra-maxCellMeas)) OF OMA-LPPe-ECID-UTRA-CellMeasuredResults

OMA-LPPe-ECID-UTRA-CarrierRSSI ::= INTEGER(0..127)

OMA-LPPe-ECID-UTRA-CellMeasuredResults ::= SEQUENCE {
  cellIdentity  BIT STRING (SIZE (32))  OPTIONAL,
  modeSpecificInfo  CHOICE {
    fdd      SEQUENCE {
      primaryCPICH-Info  OMA-LPPe-OTDOA-UTRA-PrimaryScramblingCode,
      cpich-Ec-N0  OMA-LPPe-ECID-UTRA-CPICH-Ec-N0  OPTIONAL,
      cpich-RSCP  OMA-LPPe-ECID-UTRA-CPICH-RSCP  OPTIONAL,
      pathloss  OMA-LPPe-ECID-UTRA-Pathloss  OPTIONAL,
      ...
    },
    tdd      SEQUENCE {
      cellParametersID  OMA-LPPe-OTDOA-UTRA-CellParametersID,
      primaryCCPCH-RSCP  OMA-LPPe-ECID-UTRA-PrimaryCCPCH-RSCP  OPTIONAL,
      pathloss  OMA-LPPe-ECID-UTRA-Pathloss  OPTIONAL,
      ...
    }
  },
  ...
}

OMA-LPPe-ECID-UTRA-PrimaryCCPCH-RSCP ::= INTEGER(0..127)

OMA-LPPe-ECID-UTRA-CPICH-Ec-N0 ::= INTEGER(0..63)

OMA-LPPe-ECID-UTRA-CPICH-RSCP ::= INTEGER(0..127)

OMA-LPPe-ECID-UTRA-Pathloss ::= INTEGER(46..173)

maxFreq INTEGER ::= 8

-- ASN1STOP
### Conditional presence

<table>
<thead>
<tr>
<th></th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDD</td>
<td>The field may optionally be included for FDD. The field SHALL be omitted for TDD.</td>
</tr>
<tr>
<td>TDD</td>
<td>The field may optionally be included for TDD. The field SHALL be omitted for FDD.</td>
</tr>
</tbody>
</table>

### OMA-LPpe-ECID-UTRA-LocationInformation field descriptions

**cellGlobalIdUTRA**
This field provides the UTRAN global cell ID of the measured cell which is either the serving cell or a cell in a non-serving UTRA network that is treated like a serving cell for the purpose of reporting measurements.

**frequencyInfo**
For FDD, this parameter provides the downlink and optionally the uplink UARFCN which is encoded as defined in [25.101]. For TDD, this parameter provides the UARFCN which is encoded as defined in [25.102]. This information should be provided if available.

**primaryScramblingCode**
This field provides the scrambling code for the primary CPICH and is applicable to FDD only. This information should be provided if applicable.

**measuredResultsList**
This parameter provides the inter-frequency measured results list information as defined in [25.331]. It contains the following information.

- List of 1 to 8 frequencies with the following optional parameters included for each frequency:
  - frequencyInfo: if missing this is the same as reported for the measured cell in OMA-LPpe-ECID-UTRA-LocationInformation
  - utra-CarrierRSSI: UTRA Carrier RSSI level value in the range 0-76 as defined and encoded in [25.133] for FDD and [25.123] for TDD. Values over 76 are spare (not used).
  - cellMeasuredResultsList: measurement results for 1 to 32 other cells
**OMA-LPPe-ECID-UTRA-LocationInformation field descriptions**

**cellMeasuredResultsList**
This parameter provides the following measurements for one UTRA cell.

- **Cell identity** (28 or 32 bits, first 4 bits set to zero for a 28 bit cell ID)
- For FDD the following:
  - **primaryCPICH-Info:** scrambling code (0-511) of the primary CPICH
  - **cpich-Ec-N0:** encoded value for CPICH_Ec/Io. This is the ratio of the received energy per PN chip for the CPICH to the total received power spectral density at the UE antenna connector. For a UE that is able to simultaneously receive signals from more than 1 carrier, CPICH_Ec/Io is defined for each carrier individually. The encoding is as defined in [25.133]. The value range for this field is 0-63, but values over 49 are not used. This field is optional.
  - **cpich-RSCP:** encoded value for the CPICH RSCP. Encoding is based on [25.331] and [25.133] as follows:
    - cpich-RSCP = 123  CPICH RSCP < -120 dBm
    - cpich-RSCP = 124  -120 ≤ CPICH RSCP < -119 dBm
    - cpich-RSCP = 125  -119 ≤ CPICH RSCP < -118 dBm
    - cpich-RSCP = 126  -118 ≤ CPICH RSCP < -117 dBm
    - cpich-RSCP = 127  -117 ≤ CPICH RSCP < -116 dBm
    - cpich-RSCP = 0    -116 ≤ CPICH RSCP < -115 dBm
    - cpich-RSCP = 1    -115 ≤ CPICH RSCP < -114 dBm
    - ...  ...  ...
    - cpich-RSCP = 89  -27 ≤ CPICH RSCP < -26 dBm
    - cpich-RSCP = 90  -26 ≤ CPICH RSCP < -25 dBm
    - cpich-RSCP = 91  -25 ≤ CPICH RSCP  dB

  Value range of this field is 0-127 with values in the range 92-122 not used. This parameter is optional.

- **Pathloss:** path loss in the range 46-158 dB. Values above 158 are spare. This field is optional.

For TDD the following:

- **cellParametersID:** the cell parameter ID (0-127) as defined in [25.331]
- **primaryCCPCH-RSCP:** encoded value for the primary CCPCH RSCP. Encoding is based on [25.331] and [25.123] as follows:
  - cpich-RSCP = 123  CPICH RSCP < -120 dBm
  - cpich-RSCP = 124  -120 ≤ CPICH RSCP < -119 dBm
  - cpich-RSCP = 125  -119 ≤ CPICH RSCP < -118 dBm
  - cpich-RSCP = 126  -118 ≤ CPICH RSCP < -117 dBm
  - cpich-RSCP = 127  -117 ≤ CPICH RSCP < -116 dBm
  - cpich-RSCP = 0    -116 ≤ CPICH RSCP < -115 dBm
  - cpich-RSCP = 1    -115 ≤ CPICH RSCP < -114 dBm
  - ...  ...  ...
  - cpich-RSCP = 89  -27 ≤ CPICH RSCP < -26 dBm
  - cpich-RSCP = 90  -26 ≤ CPICH RSCP < -25 dBm
  - cpich-RSCP = 91  -25 ≤ CPICH RSCP  dB

  Value range of this field is 0-127 with values in the range 92-122 not used. This parameter is optional.

- **pathloss:** path loss in the range 46-158 dB. Values above 158 are spare. This field is optional.
### OMA-LPpe-ECID-UTRA-LocationInformation field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cellParametersId</td>
<td>This field provides the cell parameter ID (0-127) as defined in [25.331]. This is optional for TDD and not applicable for FDD.</td>
</tr>
<tr>
<td>utraTimingAdvance</td>
<td>This field may only be included for TDD and provides the timing advance used by the UE. This is measured as defined in [25.225] for 1.28Mcps TDD (though applies also to 3.84 and 7.68 Mcps). Encoding uses the following fields:</td>
</tr>
<tr>
<td>tA</td>
<td>timing advance in the range 0-8191</td>
</tr>
<tr>
<td>tAResolution</td>
<td>units for tA</td>
</tr>
<tr>
<td>res1-0chip</td>
<td>1.0 chips</td>
</tr>
<tr>
<td>res0-5chip</td>
<td>0.5 chips</td>
</tr>
<tr>
<td>res0-125chip</td>
<td>0.125 chips (default value if absent)</td>
</tr>
<tr>
<td>chipRate</td>
<td>chip rate</td>
</tr>
<tr>
<td>tdd128</td>
<td>1.28 Mcps (default if absent)</td>
</tr>
<tr>
<td>tdd384</td>
<td>3.84 Mcps</td>
</tr>
<tr>
<td>tdd768</td>
<td>7.68 Mcps</td>
</tr>
</tbody>
</table>

---

## 6.5.7.6 UTRA ECID Location Information Request

The **OMA-LPpe-ECID-UTRA-RequestLocationInformation** is used to request UTRA ECID measurements (UE-assisted).

```asn1
OMA-LPpe-ECID-UTRA-RequestLocationInformation ::= SEQUENCE {
 requestedMeasurements BIT STRING {
 measuredResultsList (0),
 tdd-timingAdvance (1),
 mRL-utra-CarrierRSSI (2),
 mRL-FDD-cpich-Ec-N0 (3),
 mRL-FDD-cpich-RSCP (4),
 mRL-FDD-pathloss (5),
 mRL-TDD-primaryCCPCH-RSCP (6),
 mRL-TDD-pathloss (7),
 non-serving (8),
 historic (9) } (SIZE(1..16)),
 ...}
```

---

2020 Open Mobile Alliance. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
OMA-LPPe-ECID-UTRA-RequestLocationInformation field descriptions

requestedMeasurements
This field specifies the UTRA E-CID measurements requested. This is represented by a bit string, with a one-value at the bit position means the particular measurement is requested; a zero-value means not requested. The following measurement requests can be included.

- measuredResultsList: inter-frequency measured results list information as defined in [25.331]
- tdd-timingAdvance: timing advance for TDD
- mRLutra-CarrierRSSI: UTRA Carrier RSSI level in the measured results list
- mRL-FDD-cpich-Ec-N0: CPICH Ec/Io value for FDD in the measured results list
- mRL-FDD-cpich-RSCP: CPICH RSCP for FDD in the measured results list
- mRL-FDD-pathloss: pathloss for FDD in the measured results list
- mRL-TDD-primaryCCPCH-RSCP: primary CPICH RSCP for TDD in the measured results list
- mRL-TDD-pathloss: pathloss for TDD in the measured results list
- non-serving: E-CID measurements for non-serving UTRA networks (in addition to a serving network)
- historic: historic UTRA E-CID measurements (in addition to current measurements)

6.5.7.7 UTRA ECID Capability Information

OMA-LPPe-ECID-UTRA-ProvideCapabilities

The OMA-LPPe-ECID-UTRA-ProvideCapabilities is used to provide the UTRA ECID capabilities of the target.

```asn1
OMA-LPPe-ECID-UTRA-ProvideCapabilities ::= SEQUENCE {
 ecidutra-MeasSupported BIT STRING {
 measuredResultsList (0),
 tdd-timingAdvance (1),
 mRLutra-CarrierRSSI (2),
 mRL-FDD-cpich-Ec-N0 (3),
 mRL-FDD-cpich-RSCP (4),
 mRL-FDD-pathloss (5),
 mRL-TDD-primaryCCPCH-RSCP (6),
 mRL-TDD-pathloss (7),
 non-serving (8),
 historic (9) },

 ecidutra-nodeB-ADSupported BIT STRING {
 bslist (0),
 blocation (1),
 transmit-power (2),
 antenna-gain (3),
 beam-width (4),
 transmit-direction (5),
 frequency-accuracy (6),
 non-serving (7) },

 ecidutra-HNB-ADSupported BIT STRING {
 bslist (0),
 blocation (1),
 locationreliability (2),
 transmit-power (3),
 frequency-accuracy (4),
 coveragearea (5),
 non-serving (6) },

...}
```

-- ASN1STOP
### OMA-LPPe-ECID-UTRA-ProvideCapabilities field descriptions

#### ecidutra-MeasSupported
This field specifies the E-CID measurements supported by the target device for UTRA. This is represented by a bit string, with a one-value at the bit position means the particular measurement is supported; a zero-value means not supported. A zero-value in all bit positions in the bit string means only the basic Cell ID positioning method is supported by the target device for UTRA. The following bits are assigned for the indicated measurements.

- `measuredResultsList`: inter-frequency measured results list information as defined in [25.331]
- `tdd-timingAdvance`: timing advance for TDD
- `mRL-ultra-CarrierRSSI`: UTRA Carrier RSSI level in the measured results list
- `mRL-FDD-cpich-Ec-N0`: CPICH Ec/Io value for FDD in the measured results list
- `mRL-FDD-cpich-RSCP`: CPICH RSCP for FDD in the measured results list
- `mRL-FDD-pathloss`: pathloss for FDD in the measured results list
- `mRL-TDD-primaryCCPCH-RSCP`: primary CPICH RSCP for TDD in the measured results list
- `mRL-TDD-pathloss`: pathloss for TDD in the measured results list
- `non-serving`: E-CID measurements for non-serving UTRA networks (in addition to a serving network)
- `historic`: historic UTRA E-CID measurements

#### ecidutra-nodeB-ADSupported
This field specifies the E-CID assistance data supported by the target device for UTRA node Bs. This is represented by a bit string, with a one-value at the bit position means the particular assistance data is supported; a zero-value means not supported. A zero-value in all bit positions or absence of this field means no assistance data is supported. The following bits are assigned for the indicated assistance data.

- `bslist`: mandatory node B and cell information
- `bslocation`: location of each node B
- `transmit-power`: transmit power for each cell
- `antenna-gain`: antenna gain for each cell
- `beam-width`: beam width for each cell
- `transmit-direction`: transmit direction for each cell
- `frequency-accuracy`: frequency accuracy for each cell
- `non-serving`: information for non-serving UTRA networks in addition to the serving UTRA network (or information for multiple UTRA networks if the serving network is not UTRA)

#### ecidutra-HNB-ADSupported
This field specifies the E-CID assistance data supported by the target device for UTRA HNBs. This is represented by a bit string, with a one-value at the bit position means the particular assistance data is supported; a zero-value means not supported. A zero-value in all bit positions or absence of this field means no assistance data is supported. The following bits are assigned for the indicated assistance data.

- `bslist`: mandatory HNB and cell information
- `bslocation`: location of each HNB
- `locationreliability`: location reliability of each HNB
- `transmit-power`: transmit power for each cell
- `frequency-accuracy`: frequency accuracy for each cell
- `coveragearea`: coverage area for each HNB
- `non-serving`: information for non-serving UTRA networks in addition to the serving UTRA network (or information for multiple UTRA networks if the serving network is not UTRA)

### 6.5.7.8 UTRA ECID Capability Information Request

#### OMA-LPPe-ECID-UTRA-RequestCapabilities
The `OMA-LPPe-ECID-UTRA-RequestCapabilities` is used to request UTRA ECID capabilities information from the target.
6.5.7.9 UTRA ECID Error Element

- OMA-LPpe-ECID-UTRA-Error

The IE OMA-LPpe-ECID-UTRA-Error is used by the location server or target device to provide UTRA E-CID error reasons to the target device or location server, respectively.

- OMA-LPpe-ECID-UTRA-LocationServerErrorCauses

The IE OMA-LPpe-ECID-UTRA-LocationServerErrorCauses is used by the location server to provide UTRA E-CID error reasons to the target device.
### OMA-LPpe-ECID-UTRA-LocationServerErrorCauses field descriptions

**cause**
This field provides a UTRA ECID specific error cause for the server applicable to provision of assistance data. If the cause value is 'requestedADNotAvailable', none of the requested assistance data could be provided and no further information needs to be included. If the cause value is 'notAllRequestedADAvailable', the server was able to provide some but not all requested UTRA ECID assistance data. In this case, the server should include any of the specific error indications as applicable. Note that inclusion of these fields is applicable when some of the associated information can be provided for some node Bs or HNBs but not for all node Bs and HNBs.

---

### OMA-LPpe-ECID-UTRA-TargetDeviceErrorCauses

The IE **OMA-LPpe-ECID-UTRA-TargetDeviceErrorCauses** is used by the target device to provide UTRA E-CID error reasons to the location server.

```asn1
OMA-LPpe-ECID-UTRA-TargetDeviceErrorCauses ::= SEQUENCE {
 cause ENUMERATED {
 undefined,
 requestedMeasurementsNotAvailable,
 notAllRequestedMeasurementsPossible,
 ...
 },
 mRLMeasurementsNotPossible NULL OPTIONAL,
 tdd-timingAdvanceMeasurementNotPossible NULL OPTIONAL,
 mRL-ultra-CarrierRSSIMeasurementNotPossible NULL OPTIONAL,
 mRL-FDD-cpich-Ec-N0MeasurementNotPossible NULL OPTIONAL,
 mRL-FDD-cpich-RSCPMeasurementNotPossible NULL OPTIONAL,
 mRL-FDD-pathlossMeasurementNotPossible NULL OPTIONAL,
 mRL-TDD-primaryCCPCH-RSCPMeasurementNotPossible NULL OPTIONAL,
 mRL-TDD-pathlossMeasurementNotPossible NULL OPTIONAL,
 non-servingMeasurementsNotAvailable NULL OPTIONAL,
 historicMeasurementsNotAvailable NULL OPTIONAL,
 ...
}
```

---

### OMA-LPpe-ECID-UTRA-TargetDeviceErrorCauses field descriptions

**cause**
This field provides a UTRA ECID specific error cause. If the cause value is 'requestedMeasurementsNotAvailable', none of the requested measurements could be provided and no further information needs to be included. If the cause value is 'notAllRequestedMeasurementsPossible', the target device was able to provide some but not all requested UTRA ECID measurements. In this case, the target device should include any of the other fields as applicable. An error cause SHALL NOT be included for omission of TDD measurements for an FDD cell or omission of FDD measurements for a TDD cell since these are not considered to be errors.

### 6.5.8 WLAN Enhanced Cell ID Positioning

This section defines support for positioning using measurements related to a WLAN AP.

#### 6.5.8.1 WLAN AP Assistance Data

- **OMA-LPpe-WLAN-AP-ProvideAssistanceData**

The **OMA-LPpe-WLAN-AP-ProvideAssistanceData** is used to provide assistance for UE-based and UE-assisted WLAN AP based methods.
OMA-LPpe-WLAN-AP-ProvideAssistanceData ::= SEQUENCE {
    wlan-DataSet   SEQUENCE (SIZE (1..maxWLANDataSets)) OF OMA-LPpe-WLAN-DataSet OPTIONAL,
    wlan-AP-Error  OMA-LPpe-WLAN-AP-Error OPTIONAL,
    ...,
-- version 2.0 extension elements
    ver2-0=WLAN-Group-Data  SEQUENCE (SIZE (1..ver2-0-maxWLANGroups)) OF OMA-LPpe-ver2-0=WLAN-Group-Data OPTIONAL,
    ver2-0=server-tracking NULL OPTIONAL
} maxWLANDataSets INTEGER ::= 8
ver2-0-maxWLANGroups INTEGER ::= 64
-- ASN1STOP

OMA-LPpe-AP-ProvideAssistanceData field descriptions

wlan-DataSet
This parameter provides data for up to 8 sets of WLAN APs, This parameter is optional.

wlan-AP-Error
This parameter provides error information and may be included when an LPPe Provide Assistance Data is sent in response to an LPPe Request Assistance Data. It is allowed to include both a wlan-DataSet parameter and a wlan-AP-Error parameter (e.g. when only some requested WLAN assistance data is provided). This parameter is optional.

ver2-0=WLAN-Group-Data
This parameter applies only to LPPe 2.0 and provides one or more sets of WLAN group data. The provided WLAN group data may apply to one or more WLAN APs provided via the wlan-DataSet parameter as indicated by inclusion of one or WLAN group IDs in the data provided for these APs. This parameter is optional. A target SHALL use the included WLAN group ID in each set of group data to identify whether it already has group data with the same WLAN Group ID. Any previous group data with the same WLAN group ID SHALL be deleted.

ver2-0=server-tracking
This parameter indicates whether the server tracks WLAN assistance data sent to a target. A target need not indicate to a server its possession of any assistance data received previously that is tracked when sending an LPPe Request Assistance Data for WLAN APs. This parameter is optional and encoded as a null value. Inclusion of the parameter indicates the server tracks data for WLAN APs and omission indicates the server does not.

6.5.8.2 WLAN AP Assistance Data Elements

-- OMA-LPpe-WLAN-DataSet

The IE OMA-LPpe-WLAN-DataSet is used by the location server to provide WLAN AP information for one set of WLAN APs.

-- ASN1START

OMA-LPpe-WLAN-DataSet ::= SEQUENCE {
    plmn-Identity SEQUENCE {
        mcc         SEQUENCE (SIZE (3)) OF INTEGER (0..9),
        mnc         SEQUENCE (SIZE (2..3)) OF INTEGER (0..9),
    } OPTIONAL,
    reference-point OMA-LPpe-ReferencePoint OPTIONAL, --Cond APlocations
    supported-channels-11a Supported-Channels-11a OPTIONAL,
    supported-channels-11bg Supported-Channels-11bg OPTIONAL,
    wlan-ap-list   SEQUENCE (SIZE (1..maxWLANAPs)) OF OMA-LPpe-WLAN-AP-Data,
    ...,
-- version 2.0 extension elements
    ver2-0=defaultVendorOrOperator OMA-LPpe-VendorOrOperatorID OPTIONAL,
    ver2-0=WLAN-Group-IDs  SEQUENCE (SIZE (1..ver2-0-maxWLANGroupIDs)) OF OMA-LPpe-ver2-0=WLAN-GroupID OPTIONAL,
    ver2-0=validity-period OMA-LPpe-ValidityPeriod OPTIONAL,
    ver2-0= purge-time INTEGER (1..4096) OPTIONAL
}
maxWLANAPs INTEGER ::= 128
ver2-0-maxWLANGroupIDs INTEGER ::= 16

Supported-Channels-11a ::= SEQUENCE {
    ch34 BOOLEAN,
    ch36 BOOLEAN,
    ch38 BOOLEAN,
    ch40 BOOLEAN,
    ch42 BOOLEAN,
    ch44 BOOLEAN,
    ch46 BOOLEAN,
    ch48 BOOLEAN,
    ch52 BOOLEAN,
    ch56 BOOLEAN,
    ch60 BOOLEAN,
    ch64 BOOLEAN,
    ch149 BOOLEAN,
    ch153 BOOLEAN,
    ch157 BOOLEAN,
    ch161 BOOLEAN
}

Supported-Channels-11bg ::= SEQUENCE {
    ch1 BOOLEAN,
    ch2 BOOLEAN,
    ch3 BOOLEAN,
    ch4 BOOLEAN,
    ch5 BOOLEAN,
    ch6 BOOLEAN,
    ch7 BOOLEAN,
    ch8 BOOLEAN,
    ch9 BOOLEAN,
    ch10 BOOLEAN,
    ch11 BOOLEAN,
    ch12 BOOLEAN,
    ch13 BOOLEAN,
    ch14 BOOLEAN
}

-- ASN1STOP

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>APlocations</td>
<td>The field is mandatory when one or more WLAN AP locations are provided for the WLAN AP set and a default reference point is not provided in LPPe common IEs.</td>
</tr>
</tbody>
</table>

**OMA-LPPe-WLAN-DataSet field descriptions**

**plmn-Identity**
This field identifies any PLMN operator who manages the WLAN APs via any wide area PLMN owned by the operator and accessible from each of the WLAN APs. PLMN ID is defined in [23.003]. This field is optional.

**reference-point**
This field specifies a reference location for the locations of the WLAN APs in the data set. If this field is absent, the reference location is provided by the default reference point in LPPe common IEs.

**supported-Channels-11a**
This parameter defines the superset of all channels supported by all WLAN APs in the data set of type 801.11a. This parameter is optional.

**supported-Channels-11bg**
This parameter defines the superset of all channels supported by all WLAN APs in the data set of type 801.11b or 802.11g. This parameter is optional.

**wlan-ap-list**
This parameter provides information for one or more WLAN APs in the data set.
OMA-LPPe-WLAN-DataSet field descriptions

ver2-0-defaultVendorOrOperator
This parameter applies only to LPpe 2.0 and provides the vendor or operator who is the source for all WLAN related data provided by the OMA-LPPe-WLAN-DataSet. This parameter is optional.

ver2-0-WLAN-Group-IDs
This parameter applies only to LPpe 2.0 and provides up to 16 WLAN group IDs identifying corresponding sets of WLAN group data that apply to all WLAN APs identified in the wlan-ap-list parameter. The different sets of WLAN group data may have been provided in the OMA-LPPe-WLAN-AP-ProvideAssistanceData and/or may already be known to a target from previous WLAN assistance data. This parameter is optional.

ver2-0-validityPeriod
This parameter applies only to LPPe 2.0 and provides the validity period for the provided WLAN data.

ver2-0-purgePeriod
This parameter applies only to LPPe 2.0 and provides a period after which all WLAN data provided in the OMA-LPPe-WLAN-DataSet data type SHALL be purged from the target. The period starts at receipt of the data and is defined in units of 15 minutes in the range 1 to 4096 (corresponding to just over 39 days).

– OMA-LPPe-WLAN-AP-Data

The IE OMA-LPPe-WLAN-AP-Data is used by the location server to provide information for one WLAN AP as part of WLAN AP assistance data.

-- ASN1START
OMA-LPPe-WLAN-AP-Data ::= SEQUENCE {
  wlan-ap-id                OMA-LPPe-WLAN-AP-ID,
  relative-location        OMA-LPPe-RelativeLocation OPTIONAL,
  location-reliability     INTEGER (1..100) OPTIONAL,
  wlan-ap-Type-Data        SEQUENCE (SIZE (1..maxWLANTypes)) OF OMA-LPPe-WLAN-AP-Type-Data,
  coverageArea             OMA-LPPe-WLANFemtocoverageArea OPTIONAL, --Cond Oneonly
  ...
  -- version 2.0 extension elements
  ver2-0-propagation       OMA-LPPe-ver2-0-RF-Propagation OPTIONAL, -- Cond Oneonly
  ver2-0-locationSource    OMA-LPPe-ver2-0-AP-LocationSource OPTIONAL,
  ver2-0-WLAN-Group-IDs    SEQUENCE (SIZE (1..ver2-0-maxWLANTypeGroupIDs)) OF OMA-LPPe-ver2-0-WLAN-GroupID OPTIONAL
}
maxWLANTypes               INTEGER ::= 5
-- ASN1STOP

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oneonly</td>
<td>The field SHALL be provided when requested and available but SHALL be provided once only – either in OMA-LPPe-WLAN-AP-Data (applicable to all WLAN types) or in OMA-LPPe-WLAN-AP-Type-Data (applicable to each distinct WLAN type) but not in both</td>
</tr>
</tbody>
</table>

OMA-LPPe-WLAN-AP-Data field descriptions

relative-location
This field provides the location and optional uncertainty in location of the WLAN AP relative to the reference point for this data set. This field SHALL be provided if requested and available.

location-reliability
The field provides the reliability R of the WLAN AP location. The probability that the WLAN AP location has not changed given as a percentage. R may be based on both historic change or persistence of the AP location over a period of time and the time interval since the AP location was last provided to or verified by the server. Note that location reliability is distinct from location accuracy and refers to the possibility of a WLAN AP having been moved to a new location. This field SHALL be provided if requested and available.
### OMA-LPPe-WLAN-AP-Data field descriptions

**wlan-ap-Type-Data**
This field provides information for one or more WLAN AP types (e.g. for a multi-band and/or multimode device) sharing a common physical AP.

**coverageArea**
This parameter provides the coverage area of the WLAN AP for each WLAN type supported

**ver2-0-propagation**
This field applies only to LPPe 2.0 and indicates the radio propagation characteristics of the WLAN AP for a particular WLAN type.

**ver2-0-locationSource**
This parameter applies only to LPPe 2.0 and provides the source of the AP location and an indication (via the locationType) of its reliability and accuracy. sourceVendorOrOperator: this field identifies the source vendor or operator for the AP location.

**ver2-0-WLAN-Group-IDs**
This parameter applies only to LPPe 2.0 and provides up to 16 WLAN group IDs identifying corresponding sets of WLAN group data that apply to the particular WLAN AP identified by the wlan-ap-id parameter. The different sets of WLAN group data may have been provided in the OMA-LPPe-WLAN-AP-ProvideAssistanceData and/or may already be known to a target from previous WLAN assistance data. This parameter is optional.

### OMA-LPPe-ver2-0-AP-LocationSource

The IE OMA-LPPe-ver2-0-AP-LocationSource applies only to LPPe 2.0 and is used by a location server to provide the source of an AP location and an indication of its reliability and accuracy.

```
-- ASN1START

OMA-LPPe-ver2-0-AP-LocationSource ::= SEQUENCE {
 locationType ENUMERATED {undefined (0), survey (1), crowdsourcing (2), drive-by (3), mixed (4), ...},
 sourceVendorOrOperator OMA-LPPe-VendorOrOperatorID OPTIONAL,
 ...
}
-- ASN1STOP
```

### OMA-LPPe-ver2-0-AP-LocationSource field descriptions

**locationType**
This field indicates how an AP location was obtained. Permitted values are: undefined, survey (accuracy may be high but also subject to human error), crowdsourcing, drive-by and mixed (meaning 2 or more methods and likely to be of high accuracy).

**sourceVendorOrOperator**
This field identifies the source vendor or operator for an AP location.

### OMA-LPPe-WLAN-AP-Type-Data

The IE OMA-LPPe-WLAN-AP-Type-Data is used by the location server to provide information for a particular type of WLAN AP.

```
-- ASN1START
```
OMA-LPpe-WLAN-AP-Type-Data ::= SEQUENCE {
  wlan-AP-Type  OMA-LPpe-WLAN-AP-Type,  
  transmit-power  INTEGER {-127..128},  OPTIONAL,  
  antenna-gain  INTEGER {-127..128},  OPTIONAL,  
  coverageArea  OMA-LPpe-WLANFemtoCoverageArea  OPTIONAL,  --Cond Oneonly
  ...
  -- version 2.0 extension elements
  ver2-0-propagation  OMA-LPpe-ver2-0-RF-Propagation  OPTIONAL,  -- Cond Oneonly
  ver2-0-operatingClass  INTEGER (0..255)  OPTIONAL,  
  ver2-0-channelNumber  INTEGER (0..255)  OPTIONAL,  
  ver2-0-rtt-map  OMA-LPpe-ver2-0-RF-HeatMap  OPTIONAL
}

-- ASN1STOP

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oneonly</td>
<td>The field SHALL be provided when requested and available but SHALL be provided once only – either in OMA-LPpe-WLAN-AP-Data (applicable to all WLAN types) or in OMA-LPpe-WLAN-AP-Type-Data (applicable to each distinct WLAN type) but not in both</td>
</tr>
</tbody>
</table>

**OMA-LPpe-WLAN-AP-Type-Data field descriptions**

**wlan-AP-Type**
This field provides the type of the WLAN AP.

**transmit-power**
This field specifies the transmit power of the WLAN AP for a beacon frame, probe response frame or measurement pilot frame in dBm. This field SHALL be provided if requested and available.

**antenna-gain**
This field specifies the antenna gain in dBi. This field SHALL be provided if requested and available.

**coverageArea**
This parameter provides the coverage area of the WLAN AP for a particular WLAN type.

**ver2-0-propagation**
This parameter applies only to LPe 2.0. This field indicates the propagation characteristics of the WLAN AP for a particular WLAN type.

**ver2-0-operatingClass**
This parameter applies only to LPe 2.0 and defines the Operating Class for this type of WLAN AP as defined in [IEEE 802.11 Rev. MC]. This parameter SHALL be provided if available.

**ver2-0-channelNumber**
This parameter applies only to LPe 2.0 and provides the channel number for which the transmit-power parameter applies. This parameter may be included by a server if transmit-power is included. If this parameter is not included, a target may assume that transmit-power applies to all channels supported by the AP for the operating class (if included) and AP type.

**ver2-0-rtt-map**
This parameter applies only to LPe 2.0 and provides RF heat map data for the WLAN AP in the form of signal strength and/or RTT data. This parameter is optional. A target that receives new RSSI or RTT heat map data for an AP of a particular type SHALL delete any previously received RSSI or RTT heat map data, respectively, for this AP and AP type.

---

**OMA-LPpe-ver2-0-RF-Propagation**

The IE **OMA-LPpe-ver2-0-RF-Propagation** is used by the location server to provide the propagation model for a particular type of transmitter.

-- ASN1START

OMA-LPpe-ver2-0-RF-Propagation ::= CHOICE {
  propModel-1  OMA-LPpe-ver2-0-RF-CircularPropagation,
  ...
}

---
**OMA-LPPe-ver2-0-RF-Propagation field descriptions**

*propModel1*
Selected propagation model of type 1

---

**OMA-LPPe-ver2-0-RF-CircularPropagation**

The IE **OMA-LPPe-ver2-0-RF-CircularPropagation** is used by the location server to provide the propagation model for a particular transmitter expressed using circular contours with a window of applicability that defines where the model applies.

---

**OMA-LPPe-ver2-0-RF-CircularPropagation field descriptions**

*propModelx*
This field gives the x (easterly) offset of the location of the transmitter assumed by the propagation model for this transmitter, with respect to the reference transmitter location (metres). Zero is assumed if this field is omitted.

*propModely*
This field gives the y (northerly) offset of the location of the transmitter assumed by the propagation model for this transmitter, with respect to the reference transmitter location (metres). Zero is assumed if this field is omitted.

*applicability*
This field defines the area over which the model is applicable. If this field is omitted, the model is applied everywhere.

*startRssi*
the received signal strength represented by the first contour, in dBm

*stepSize*
the received signal strength difference between each successive contour, in dB

*propagationModel*
This field defines the propagation model itself

*stddev*
standard deviation of fit of contour pattern to estimated propagation pattern (<2*n dB for values 1 to 7 or 8 for 14 dB or more)

---

**OMA-LPPe-ver2-0-RF-ApplicabilityWindow**

The IE **OMA-LPPe-ver2-0-RF-ApplicabilityWindow** gives the window of applicability of a propagation model for a transmitter.
**OMA-LP-Pe-ver2-0-RF-ApplicabilityWindow** ::= SEQUENCE {
  cornerx     INTEGER {-1024..1023},
  cornery     INTEGER {-1024..1023},
  directiononly BOOLEAN OPTIONAL,
  baseMagnitude INTEGER (1..512),
  baseAngle   INTEGER (0..359),
  width       INTEGER (0..511),
  zoneSizeXPrime INTEGER (1..512),
  zoneSizeYPrime INTEGER (1..512),
  rleList     OMA-LP-Pe-AppRleList OPTIONAL,
...
}

**OMA-LP-Pe-AppRleList** ::= SEQUENCE (SIZE(1..65535)) OF INTEGER (0..511)

```asn1
-- ASN1STOP
```

---

**OMA-LP-Pe-ver2-0-RF-ApplicabilityWindow field descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cornerx</td>
<td>This field gives the x (easterly) offset of the location of applicability window, with respect to the point represented by ((propModelx, propModely)) (metres)</td>
</tr>
<tr>
<td>cornery</td>
<td>This field gives the y (northerly) offset of the location of applicability window, with respect to the point represented by ((propModelx, propModely)) (metres)</td>
</tr>
<tr>
<td>directiononly</td>
<td>If this value is included and set to true, the contours are treated as straight lines perpendicular to the ((\text{cornerx, cornery})) vector (see Figure 24).</td>
</tr>
<tr>
<td>baseMagnitude</td>
<td>Length of base vector of applicability window (metres).</td>
</tr>
<tr>
<td>baseAngle</td>
<td>Angle ((\alpha)) of base vector of applicability window (metres), wrt. W-E axis (in units of degrees).</td>
</tr>
<tr>
<td>width</td>
<td>Width of applicability window (metres) in the direction perpendicular (90 degrees anticlockwise) to the base vector</td>
</tr>
<tr>
<td>zoneSizeXPrime</td>
<td>This parameter defines the width of the zones used in the applicability window (expressed as number per base vector length), along the base vector</td>
</tr>
<tr>
<td>zoneSizeYPrime</td>
<td>This parameter defines the width of the zones used in the applicability window (expressed as number per width), in the direction perpendicular (90 degrees anticlockwise) to the base vector</td>
</tr>
<tr>
<td>rleList</td>
<td>This parameter indicates the zones within the window that are applicable to the propagation model using the run-length encoding scheme as described in C1, except that in this case the coding runs in the direction of the base vector, from the top left of the rectangle to the bottom right (i.e. with increasing rle number) and the zones are in units of zoneSize metres, has a range up to 511. A valid rle region indicates a good zone (e.g. large number of training samples have been used to confirm the coverage model; a non-valid rle region indicates a bad zone (e.g. where very few training samples have verified the coverage model)</td>
</tr>
</tbody>
</table>
Figure 16 Example mapping of applicability bits for 4x4 rectangle

**OMA-LPPe-ver2-0-RF-PropContourModel**

The IE **OMA-LPPe-ver2-0-RF-PropModel** gives the propagation model that is applicable to the transmitter, expressed as a set of contours of equal mean RSSI.

```
-- ASN1START
OMA-LPPe-ver2-0-RF-PropContourModel ::= SEQUENCE {
 contourRadius INTEGER(0..2047),
 ...}
-- ASN1STOP
```

**OMA-LPPe-ver2-0-RF-PropContourModel** field descriptions

`contourRadius`
Estimated mean radial distance (in metres) from (propmodelx, propmodely) where the signal strength is equal to startRSSI-(stepSize*numCntr) dBm, where numCntr is the index (starting from 0) of the contour within the propagation model array.

6.5.8.3 WLAN AP Assistance Data Request

**OMA-LPPe-WLAN-AP-RequestAssistanceData**

The **OMA-LPPe-WLAN-AP-RequestAssistanceData** is used to request assistance for UE-based and UE-assisted WLAN AP location methods.

```
-- ASN1START
OMA-LPPe-WLAN-AP-RequestAssistanceData ::= SEQUENCE {
 requestedAD BIT STRING {
 aplist (0),
 aplocation (1),
 locationreliability (2),
 transmit-power (3),
 antenna-gain (4),
 coveragearea (5),
 non-serving (6),
 ver2-0-propagation (7),
 ver2-0-rssiHeatMap (8),
 }
-- ASN1STOP
```
used for the particular assistance data is requested; a zero value means not requested. The following assistance data types are included:

- apilist: include mandatory WLAN AP information
- application: include the location of each WLAN AP if available
- locationreliability: include the reliability of the WLAN AP location if available
- transmit-power: include the transmit power for each WLAN AP if available
- antenna-gain: include the antenna gain for each WLAN AP if available
- coveragearea: include the coverage area for each WLAN AP if available
- non-serving: include information for WLAN APs belonging to different operators than the serving WLAN AP in addition to WLAN APs belonging to the same operator (or include information for multiple WLAN AP data sets if the serving WLAN AP is not associated with a PLMN operator or if the target device is not served by a WLAN AP)

- propagation: include propagation estimation for each WLAN AP if available. This bit only applies to LPPe 2.0.
- rssiHeatMap: include an RSSI heat map for each WLAN AP if available and, optionally, group data containing a reference grid. This bit only applies to LPPe 2.0.
- rttHeatMap: include an RTT heat map for each WLAN AP if available and, optionally, group data containing a reference grid. This bit only applies to LPPe 2.0.
- locationAreaGroup: include location area group information if available. This bit only applies to LPPe 2.0.

This parameter lists the WLAN AP types for which assistance data is requested.
**OMA-LPPe-WLAN-AP-RequestAssistanceData** field descriptions

**ver2-0-propModel**
This parameter applies only to LPPe 2.0 and specifies the propagation estimation model required, when propagation estimation is requested.

**ver2-0-visible-APs**
This parameter applies only to LPPe 2.0 and enables a target to indicate to a server the identities of up to 16 currently visible WLAN APs. This may assist a server to provide assistance data for WLAN APs nearby to the target. A target SHALL provide visible APs in order of received signal strength with the AP with the highest signal strength provided first. This parameter is optional.

**ver2-0-AP-Data**
This parameter applies only to LPPe 2.0 and enables a target to indicate to a server the identities of WLAN APs for which the target has assistance data received previously from this server. This may enable a server to avoid resending data for the same APs. This parameter is optional. A target need not include this parameter if a server included the ver2-0-server-tracking field in the OMA-LPPe-WLAN-AP-ProvideAssistanceData data type for all AP data provided by this server. Otherwise, a target should include this parameter for any APs for which data was previously received and indicated as not tracked by the server if the target is requesting data for additional APs.

**ver2-0-AP-Group-Data**
This parameter applies only to LPPe 2.0 and enables a target to indicate to a server the identities of WLAN groups for which group assistance data was previously received from this server. This may enable a server to avoid resending data for the same WLAN groups. This parameter is optional. A target need not include this parameter if a server included the ver2-0-server-tracking field in the OMA-LPPe-WLAN-AP-ProvideAssistanceData data type for all group data provided by this server. Otherwise, a target should include this parameter for any previously received group data indicated as not tracked by the server if the target is requesting additional group data from the server.

**ver2-0-AP-HeatMaps**
This parameter applies only to LPPe 2.0 and enables a target to indicate to a server the identities of all RF heap maps previously received from this server for WLAN APs. This may enable a server to avoid resending the same heat maps. This parameter is optional. A target need not include this parameter if a server included the ver2-0-server-tracking field in the OMA-LPPe-WLAN-AP-ProvideAssistanceData data type for all RF heap maps provided by this server for WLAN APs. Otherwise, a target should include this parameter for any previously received RSSI or RTT heat maps for WLAN APs that were indicated as not tracked by the server if the target is requesting additional RSSI or RTT heatmaps, respectively, from the server for WLAN APs.

**ver2-0-AP-HeatMapUpdateReq**
This parameter applies only to LPPe 2.0 and provides the ID of a heat map and an index of a reference grid point within the heat map that has triggered an update request for new assistance data when the target estimates its position at or near to this grid point. The heat map and the reference grid point would have been provided earlier to the target via the updateReqGridPoints parameter in the OMA-LPPe-ver2-0-RF-HeatMap IE. Appendix G.5 contains more information on this update request. Optionally, the target may also send its heading and velocity information. This parameter is optional.

### 6.5.8.4 WLAN AP Location Information

- **OMA-LPPe-WLAN-AP-ProvideLocationInformation**

The OMA-LPPe-WLAN-AP-ProvideLocationInformation is used to provide measurements (UE-assisted) for one or more WLAN APs and at both current and historic times.

```asn1
-- ASN1START

OMA-LPPe-WLAN-AP-ProvideLocationInformation ::= SEQUENCE {
 wlan-AP-CombinedLocationInformation SEQUENCE (SIZE (1..maxWLANAPSize)) OF
 OMA-LPPe-WLAN-AP-LocationInformationList OPTIONAL,
 wlan-AP-Error OMA-LPPe-WLAN-AP-LocationInformationList OPTIONAL,
 ...
}

OMA-LPPe-WLAN-AP-LocationInformationList ::= SEQUENCE {
 wlan-AP-LocationInformation OMA-LPPe-WLAN-AP-LocationInformation,
 relativeTimeStamp INTEGER (0..65535) OPTIONAL,
 servingFlag BOOLEAN,
 ...
}

-- ASN1END
```

2020 Open Mobile Alliance. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
maxWLANAPSize INTEGER ::= 64

OMA-LPPe-WLAN-AP-ProvideLocationInformation field descriptions

wlan-AP-CombinedLocationInformation
This parameter provides measurements for one or more WLAN APs at the current time and/or for historic times. This parameter supports part of the Location ID and Multiple Location IDs parameters in SUPL 2.0.

wlan-AP-Error
This parameter provides error information when not all requested WLAN AP measurements can be reported. This parameter should be included when some but not all requested measurements are reported and SHALL be included when no requested measurements are reported.

relativeTimeStamp
This parameter SHALL be included for historic WLAN AP measurements and provides the time of the historic measurements relative to current time in units of 0.01 seconds. If absent, current time is implied which is equivalent to a relativeTimeStamp of zero. Current time refers to the time when the target sends WLAN AP measurements to the server.

servingFlag
This parameter indicates whether a set of WLAN AP measurements were obtained for a serving WLAN AP (TRUE) or a non-serving WLAN AP (FALSE). A target device with multiple radio support may indicate more than one type of serving access for the same time instant.

6.5.8.5 WLAN AP Location Information Elements

OMA-LPPe-WLAN-AP-LocationInformation

The IE OMA-LPPe-WLAN-AP-LocationInformation is used by the target device to provide measurements to the server for a serving or non-serving WLAN AP. Measurements are based on those defined in [IEEE 802.11].

OMA-LPPe-WLAN-AP-LocationInformation ::= SEQUENCE {
  apMACAddress OMA-LPPe-WLAN-ID,
  apSSID OCTET STRING (SIZE (1..32)) OPTIONAL,
  apSignaltoNoise INTEGER(-127..128) OPTIONAL,
  apDeviceType OMA-LPPe-WLAN-AP-Type OPTIONAL,
  apPHYtype OMA-LPPe-WLAN-AP-PHY-Type OPTIONAL,
  apChannelFrequency INTEGER(-127..128) OPTIONAL,
  apRoundTripDelay OMA-LPPe-WLAN-RTD OPTIONAL,
  ueTransmitPower INTEGER(-127..128) OPTIONAL,
  ueAntennaGain INTEGER (-127..128) OPTIONAL,
  apReportedLocation OMA-LPPe-WLAN-ReportedLocation OPTIONAL,
  apTransmitPower INTEGER (-127..128) OPTIONAL,
  apAntennaGain INTEGER (-127..128) OPTIONAL,
  ueSignaltoNoise INTEGER (-127..128) OPTIONAL,
  ueSignalStrength INTEGER (-127..128) OPTIONAL,
  apSignalStrengthDelta INTEGER (0..1) OPTIONAL,
  apSignaltoNoiseDelta INTEGER (0..1) OPTIONAL,
  apSignalStrengthDelta OPTIONAL,
  ueSignaltoNoiseDelta INTEGER (0..1) OPTIONAL,
  operatingClass INTEGER (0..255) OPTIONAL,
  ueMacAddress BIT STRING (SIZE (48)) OPTIONAL
}

OMA-LPPe-WLAN-AP-PHY-Type ::= ENUMERATED { unknown, any, fhss, dsss, irbaseband, ofdm, hrdsss, erp, ht, ihv, ... }

2020 Open Mobile Alliance. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
OMA-LPPe-WLAN-RTD ::= SEQUENCE {
  rTDValue     INTEGER(0..16777215),
  rTDUnits     OMA-LPPe-WLAN-RTDUtisns,
  rTDAccuracy  INTEGER(0..255)  OPTIONAL,
  ...
}

OMA-LPPe-WLAN-RTDUtisns ::= ENUMERATED {
  microseconds,
  hundredsofnanoseconds,
  tensofnanoseconds,
  nanoseconds,
  tenthssofnanoseconds,
  ...
}

OMA-LPPe-WLAN-ReportedLocation ::= SEQUENCE {
  locationDataLCI OMA-LPPe-WLAN-LocationDataLCI  OPTIONAL,
  ...
}

OMA-LPPe-WLAN-LocationDataLCI ::= SEQUENCE {
  latitudeResolution  BIT STRING (SIZE (6)),
  latitude            BIT STRING (SIZE (34)),
  longitudeResolution BIT STRING (SIZE (6)),
  longitude           BIT STRING (SIZE (34)),
  altitudeType       BIT STRING (SIZE (4)),
  altitudeResolution BIT STRING (SIZE (6)),
  altitude            BIT STRING (SIZE (30)),
  datum               BIT STRING (SIZE (8)),
  ...
}

Conditional presence	Explanation
APSSDelta            | This parameter is conditional and may be used if the apSignalStrength IE is used. Otherwise this parameter MUST NOT be used.
UESSDelta            | This parameter is conditional and may be used if the ueSignalStrength IE is used. Otherwise this parameter MUST NOT be used.
APSNDelta            | This parameter is conditional and may be used if the apSignaltoNoiseIE is used. Otherwise this parameter MUST NOT be used.
UESNDelta            | This parameter is conditional and may be used if the ueSignaltoNoise IE is used. Otherwise this parameter MUST NOT be used.

OMA-LPPe-WLAN-AP-LocationInformation field descriptions

apMACAddress
This field provides the 48 bit MAC address of the reported WLAN AP (which is identical to the BSSID of the AP).

apSSID
This field provides the SSID of the wireless network served by the AP.

apSignaltoNoise
This field provides the AP signal to noise ratio of a beacon, probe response or measurement pilot frame in dB as measured at the target.

apDeviceType
This field provides the AP device type – 802.11a, 802.11b, 802.11g, 802.11n 802.11ac or 802.11ad. The AP device type refers to the device type being used for signalling as opposed to the capability of the AP (for instance an 802.11n capable AP in e.g., 802.11a signalling mode).
### OMA-LPPe-WLAN-AP-LocationInformation field descriptions

**apPHYtype**

This field provides the IEEE 802.11 PHY and media type. The enumerated values are as follows:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>unknown</td>
<td>specifies an unknown or uninitialized PHY type.</td>
</tr>
<tr>
<td>any</td>
<td>specifies any PHY type.</td>
</tr>
<tr>
<td>fhss</td>
<td>specifies a frequency-hopping spread-spectrum (FHSS) PHY.</td>
</tr>
<tr>
<td>dsss</td>
<td>specifies a direct sequence spread spectrum (DSSS) PHY type.</td>
</tr>
<tr>
<td>irbaseband</td>
<td>specifies an infrared (IR) baseband PHY type.</td>
</tr>
<tr>
<td>ofdm</td>
<td>specifies an orthogonal frequency division multiplexing (OFDM) PHY type.</td>
</tr>
<tr>
<td>hrddss</td>
<td>specifies a high-rate DSSS (HRDSSS) PHY type.</td>
</tr>
<tr>
<td>erp</td>
<td>specifies an extended rate PHY type (ERP).</td>
</tr>
<tr>
<td>ht</td>
<td>specifies the 802.11n PHY type.</td>
</tr>
<tr>
<td>ihv</td>
<td>specifies a PHY type that is developed by an independent hardware vendor (IHV).</td>
</tr>
</tbody>
</table>

**apSignalStrength**

This field provides the AP signal strength (RSSI) of a beacon frame, probe response frame or measurement pilot frame measured at the target in dBm on the channel indicated by *apChannelFrequency* field.

**apChannelFrequency**

This field provides the AP channel number identification of the reported WLAN AP.

**apRoundTripDelay**

This field provides the measured round trip delay between the target and WLAN AP and optionally the accuracy expressed as the standard deviation of the delay. Units for each of these are 1000ns, 100ns, 10ns, 1ns or 0.1ns.

**ueTransmitPower**

This field provides the transmit power used by the target to access the WLAN AP in dBm.

**.ueAntennaGain**

This field provides the antenna gain of the target in dBi for transmission to the WLAN AP.

**apReportedLocation**

This field provides the location of the WLAN AP.
### OMA-LPPe-WLAN-AP-LocationInformation field descriptions

**locationDataLCI**

This field provides the reported location of the AP in form of the Location Configuration Information (LCI) defined in [IEEE 802.11][RFC 3825] and includes the following subfields:

- **latitudeResolution**: 6-bits indicating the number of valid bits in the fixed-point value of latitude. (This value is the number of high-order Latitude bits that should be considered valid. Any bits entered to the right of this limit should not be considered valid. Values above decimal 34 are undefined and reserved.)

- **latitude**: A 34-bits fixed point value consisting of 9-bits of integer and 25-bits of fraction indicating the Latitude (+/- 90 degrees) of the AP.

- **longitudeResolution**: 6-bits indicating the number of valid bits in the fixed-point value of longitude. (This value is the number of high-order Longitude bits that should be considered valid. Any bits entered to the right of this limit should not be considered valid. Values above decimal 34 are undefined and reserved.)

- **longitude**: A 34-bits fixed point value consisting of 9-bits of integer and 25-bits of fraction indicating the Longitude (+/- 180 degrees) of the AP.

- **altitudeType**: Defines the altitude type. Codes defined are:
  1: Meters of altitude.
  2: Building floors of altitude. altitude value 0.0 represents the floor level associated with ground level.

- **altitudeResolution**: 6-bits indicating the number of valid bits in the altitude. (This value is the number of high-order Altitude bits that should be considered valid. Any bits entered to the right of this limit should not be considered valid. Values above decimal 30 are undefined and reserved.)

- **altitude**: A 30-bit fixed point value consisting of 22-bits of integer and 8-bits of fraction indicating the Altitude of the AP in units defined by altitudeType.

- **datum**: Defines the map datum used for the coordinates. Codes defined are:
  1: World Geodetic System 1984 (WGS-84)
  3: North American Datum 1983 (NAD-83) with Mean Lower Low Water (MLLW) vertical datum.

**apTransmitPower**

This field provides the power the AP transmits on a beacon, probe response or measurement pilot frame in dBm.

**apAntennaGain**

This field provides the antenna gain of the AP in dBi

**ueSignaltoNoise**

This field provides the target’s signal to noise ratio measured at the AP in dB.

**ueSignalStrength**

This field provides the target’s signal strength (RSSI) measured at the AP on the channel indicated by the apChannelFrequency field in dBm.

**apSignalStrengthDelta**

This parameter is used when the AP’s signal strength (measured at the target) resolution is 0.5 dB (as opposed to 1.0 dB when this parameter is not used). Range: INTEGER (0..1), Units: 0.5 dB

The AP signal strength is then: \((apSignalStrength + apSignalStrengthDelta)\).

**ueSignalStrengthDelta**

This parameter is used when the target’s signal strength (measured at the AP) resolution is 0.5 dB (as opposed to 1.0 dB when this parameter is not used). Range: INTEGER (0..1), Units: 0.5 dB

The target signal strength is then: \((ueSignalStrength + ueSignalStrengthDelta)\).
**OMA-LPPe-WLAN-AP-LocationInformation field descriptions**

**apSignaltoNoiseDelta**
This parameter is used when the AP’s signal to noise ratio (measured at the target) resolution is 0.5 dB (as opposed to 1.0 dB when this parameter is not used). Range: INTEGER (0..1), Units: 0.5 dB
The AP signal to noise ratio is then: \((apSignaltoNoise + apSignaltoNoiseDelta)\).

**ueSignaltoNoiseDelta**
This parameter is used when the target’s signal to noise ratio (measured at the AP) resolution is 0.5 dB (as opposed to 1.0 dB when this parameter is not used). Range: INTEGER (0..1), Units: 0.5 dB
The target signal to noise ratio is then: \((ueSignaltoNoise + ueSignaltoNoiseDelta)\).

**operatingClass**
This parameter defines the Operating Class as defined in [IEEE 802.11].

**ueMacAddress**
This parameter defines the target’s MAC address.

### 6.5.8.6 WLAN AP Location Information Request

**OMA-LPPe-WLAN-AP-RequestLocationInformation**
The IE *OMA-LPPe-WLAN-AP-RequestLocationInformation* is used to request WLAN AP measurements (UE-assisted).

```asn1
OMA-LPPe-WLAN-AP-RequestLocationInformation ::= SEQUENCE {
 requestedMeasurements BIT STRING {
 apSSID (0),
 apSN (1),
 apDevType (2),
 apPhyType (3),
 apRSSI (4),
 apChanFreq (5),
 apRTD (6),
 ueTP (7),
 ueAG (8),
 apRepLoc (9),
 non-servig (10),
 historic (11),
 apTP (12),
 apAG (13),
 ueSN (14),
 ueRSSI (15) (SIZE(1..16)),
 },
 additionalRequestedMeasurements BIT STRING {
 oc (0),
 ueMacAddr (1) (SIZE(1..16)) OPTIONAL
 }
}
```

-- ASN1STOP
**OMA-LPpe-WLAN-AP-RequestLocationInformation field descriptions**

**requestedMeasurements**
This field specifies the WLAN AP measurements requested. This is represented by a bit string, with a one-value at the bit position means the particular measurement is requested; a zero-value means not requested. The following measurement requests can be included.

- `apSSID`: SSID of the WLAN
- `apSN`: AP S/N received at the target
- `apDevType`: AP Device type
- `apPhyType`: AP PHY type
- `apRSSI`: AP signal strength at the target
- `apChanFreq`: AP channel/frequency of Tx/Rx
- `apRTD`: Round Trip Delay between target and AP
- `ueTP`: target transmit power
- `ueAG`: target antenna gain
- `apRepLoc`: AP Location as reported by AP
- `non-serving`: measurements for non-serving WLAN APs (in addition to a serving WLAN AP)
- `historic`: historic WLAN AP measurements (in addition to current measurements)
- `apTP`: AP transmit power
- `apAG`: AP antenna gain
- `ueSN`: UE S/N received at the AP
- `ueRSSI`: target signal strength at the AP

**additionalRequestedMeasurements**
This field specifies additional WLAN AP measurements that are requested. This is represented by a bit string, with a one-value at the bit position means the particular measurement is requested; a zero-value means not requested. The following measurement requests can be included.

- `oc`: operating class
- `ueMacAddr`: UE MAC address

---

### 6.5.8.7 WLAN AP Capability Information

**OMA-LPpe-WLAN-AP-ProvideCapabilities**

The IE `OMA-LPpe-WLAN-AP-ProvideCapabilities` is used by the target to provide its capabilities for WLAN AP positioning to the server.

```asn1
OMA-LPpe-WLAN-AP-ProvideCapabilities ::= SEQUENCE {
 wlan-ecid-MeasSupported BIT STRING {
 apSSID (0),
 apSN (1),
 apDevType (2),
 apPhyType (3),
 apRSSI (4),
 apChanFreq (5),
 apRTD (6),
 ueTP (7),
 ueAG (8),
 apRepLoc (9),
 non-serving (10),
 historic (11),
 apTP (12),
 apAG (13),
 ueSN (14),
 ueRSSI (15)) (SIZE(1..16)),
 wlan-types-Supported OMA-LPpe-WLAN-AP-Type-List OPTIONAL,
 ap-Capability OMA-LPpe-WLAN-AP-Capability OPTIONAL,
 wlan-ap-ADSupported BIT STRING {
 aplist (0),
 aplocation (1),
 }
}
```
locationreliability (2),
transmit-power (3),
antenna-gain (4),
coveragearea (5),
non-serving (6),
ver2-0-propagation (7),
ver2-0-rssiHeatMap (8),
ver2-0-rttHeatMap (9),
ver2-0-jpeg (10),
ver2-0-reorientation (11),
ver2-0-run-lengths (12),
ver2-0-update-required-grid-points (13),
ver2-0-locationAreaGroup (14),
ver2-0-transmitterPropertiesGroup (15) \(\text{SIZE(1..16)}\),

...,

-- version 2.0 extension elements

additional-wlan-ecid-MeasSupported BIT STRING {
  oc (0),
  ueMacAddr (1) \(\text{SIZE(1..16)}\) OPTIONAL,
}

OMA-LPPe-WLAN-AP-Capability ::= SEQUENCE {
  apSSID OMA-LPPe-WLAN-ID,
  apSN: OMA-LPPe-WLAN-AP-Type-List,
  ...
}

OMA-LPPe-ver2-0-RF-Propagation-Capability ::= SEQUENCE {
  propModel-1 NULL OPTIONAL, -- Circular Propagation Model
  ...
}

-- ASN1STOP

**OMA-LPPe-WLAN-AP-ProvideCapabilities field descriptions**

**wlan-ecid-MeasSupported**

This field specifies the E-CID measurements supported by the target device when accessing a WLAN AP. This is represented by a bit string, with a one-value at the bit position means the particular measurement is supported; a zero-value means not supported. A zero-value in all bit positions in the bit string means only the basic WLAN positioning method is supported by the target device which is reporting of the WLAN AP identity. The following bits are assigned for the indicated measurements.

- **apSSID**: SSID of the WLAN
- **apSN**: AP S/N received at the target
- **apDevType**: AP Device type
- **apPhyType**: AP PHY type
- **apRSSI**: AP signal strength at the target
- **apChanFreq**: AP channel/frequency of Tx/Rx
- **apRTD**: Round Trip Delay between target and AP
- **ueTP**: target transmit power
- **ueAG**: target antenna gain
- **apRepLoc**: AP Location as reported by AP
- **non-serving**: measurements for a non-serving WLAN AP (in addition to a serving WLAN AP)
- **historic**: historic WLAN AP measurements
- **apTP**: AP transmit power
- **apAG**: AP antenna gain
- **ueSN**: UE S/N received at the AP
- **ueRSSI**: target signal strength at the AP
**OMA-LPPe-WLAN-AP-ProvideCapabilities field descriptions**

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>wlan-types-Supported</strong></td>
<td>This field provides the WLAN AP types supported by the target device when functioning as a WLAN station. This is represented by a bit string, with a one-value at the bit position means the particular WLAN type is supported; a zero-value means not supported. This field SHALL be provided if the supported WLAN AP types are available.</td>
</tr>
<tr>
<td><strong>ap-Capability</strong></td>
<td>This parameter if present indicates that the target can function as a WLAN AP (e.g. as a mobile broadband router). The parameter provides the MAC address of the target and the WLAN types supported when functioning as an AP.</td>
</tr>
<tr>
<td><strong>wlan-ap-ADSupported</strong></td>
<td>This field specifies the WLAN AP assistance data supported by the target device. This is represented by a bit string, with a one-value at the bit position means the particular assistance data is supported; a zero-value means not supported. A zero-value in all bit positions or absence of this field means no assistance data is supported. The following bits are assigned for the indicated assistance data.</td>
</tr>
<tr>
<td>aplist: mandatory WLAN AP data</td>
<td></td>
</tr>
<tr>
<td>alocation: location of each WLAN AP</td>
<td></td>
</tr>
<tr>
<td>locationreliability: reliability of WLAN AP location</td>
<td></td>
</tr>
<tr>
<td>transmit-power: transmit power for each WLAN AP</td>
<td></td>
</tr>
<tr>
<td>antenna-gain: antenna gain for each WLAN AP</td>
<td></td>
</tr>
<tr>
<td>coveragearea: coverage area for each WLAN AP</td>
<td></td>
</tr>
<tr>
<td>non-serving: information for multiple WLAN AP data sets if the serving WLAN AP is not associated with a PLMN operator or if the target device is not served by a WLAN AP</td>
<td></td>
</tr>
<tr>
<td>ver2-0-propagation: propagation estimation for each WLAN AP</td>
<td></td>
</tr>
<tr>
<td>ver2-0-rssiHeatMap: RSSI heat map for an AP and reference grid group data. This bit only applies to LPPe 2.0</td>
<td></td>
</tr>
<tr>
<td>ver2-0-rttHeatMap: RTT heat map for an AP and reference grid group data. This bit only applies to LPPe 2.0</td>
<td></td>
</tr>
<tr>
<td>ver2-0-jpeg: compression of a heat map using JPEG. This bit only applies to LPPe 2.0</td>
<td></td>
</tr>
<tr>
<td>ver2-0-reorientation: reorientation of a heat map as in Appendix G.4.1. This bit only applies to LPPe 2.0.</td>
<td></td>
</tr>
<tr>
<td>ver2-0-run-lengths: heat maps with arbitrary shape via run lengths as in Appendix G.4.2. This bit only applies to LPPe 2.0.</td>
<td></td>
</tr>
<tr>
<td>ver2-0-update-required-grid-points: heat maps containing grid points that trigger a target request for new assistance data when a target is near such a grid point. This bit only applies to LPPe 2.0.</td>
<td></td>
</tr>
<tr>
<td>ver2-0-locationAreaGroup: location area group data for APs. This bit only applies to LPPe 2.0</td>
<td></td>
</tr>
<tr>
<td>ver2-0-transmitterPropertiesGroup: transmitter properties group data. This bit only applies to LPPe 2.0</td>
<td></td>
</tr>
<tr>
<td><strong>additional-wlan-e cid-MeasSupported</strong></td>
<td>This field specifies the additional E-CID measurements supported by the target device when accessing a WLAN AP. This is represented by a bit string, with a one-value at the bit position means the particular measurement is supported; a zero-value means not supported. A zero-value in all bit positions in the bit string means only the basic WLAN positioning method is supported by the target device which is reporting the WLAN AP identity. The following bits are assigned for the indicated measurements.</td>
</tr>
<tr>
<td>oc: operating class</td>
<td></td>
</tr>
<tr>
<td>ueMacAddr: UE MAC address</td>
<td></td>
</tr>
<tr>
<td><strong>ver2-0-propModel-Capability</strong></td>
<td>This parameter only applies to LPPe 2.0 and defines the types of RF propagation model supported by the target for WLAN APs.</td>
</tr>
<tr>
<td><strong>ver2-0-sta-Capability</strong></td>
<td>This parameter only applies to LPPe 2.0 and provides the MAC address of the target and the WLAN types supported when functioning as an STA. This parameter is optional. If the target includes the ap-Capability parameter and uses the same MAC address and supports the same WLAN types when functioning as both an AP and an STA, then the ver2-0-sta-Capability parameter need not be included.</td>
</tr>
</tbody>
</table>
6.5.8.8 WLAN AP Capability Information Request

OMA-LPpe-WLAN-AP-RequestCapabilities

The IE *OMA-LPpe-WLAN-AP-RequestCapabilities* is used to request WLAN AP positioning capabilities information from the target.

```asn1
OMA-LPpe-WLAN-AP-RequestCapabilities ::= SEQUENCE {
 ...
}
```

6.5.8.9 WLAN AP Error Element

OMA-LPpe-WLAN-AP-Error

The IE *OMA-LPpe-WLAN-AP-Error* is used by the location server or target device to provide error reasons for WLAN AP positioning to the target device or location server, respectively.

```asn1
OMA-LPpe-WLAN-AP-Error ::= CHOICE {
 locationServerErrorCauses OMA-LPpe-WLAN-AP-LocationServerErrorCauses,
 targetDeviceErrorCauses OMA-LPpe-WLAN-AP-TargetDeviceErrorCauses,
 ...
}
```

### WLAN-AP-LocationServerErrorCauses

The IE *WLAN-AP-LocationServerErrorCauses* is used by the location server to provide error reasons for WLAN AP positioning to the target device.

```asn1
OMA-LPpe-WLAN-AP-LocationServerErrorCauses ::= SEQUENCE {
 cause ENUMERATED {
 undefined,
 requestedADNotAvailable,
 notAllrequestedADAvailable,
 ...
 },
 apMandatoryDataUnavailable NULL OPTIONAL,
 apLocationsUnavailable NULL OPTIONAL,
 apLocationReliabilityUnavailable NULL OPTIONAL,
 apTransmitPowerUnavailable NULL OPTIONAL,
 apAntennaGainUnavailable NULL OPTIONAL,
 apCoverageAreaUnavailable NULL OPTIONAL,
 nonservingADUnavailable NULL OPTIONAL,
 ...
}
```

---

2020 Open Mobile Alliance. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
OMA-LPpe-WLAN-AP-LocationServerErrorCauses field descriptions

<table>
<thead>
<tr>
<th>cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>This field provides a WLAN AP specific error cause for the server applicable to provision of assistance data. If the cause value is 'requestedADNotAvailable', none of the requested assistance data could be provided and no further information needs to be included. If the cause value is 'notAllRequestedADAvaliable', the server was able to provide some but not all requested WLAN AP assistance data. In this case, the server should include any of the specific error indications as applicable. Note that inclusion of these fields is applicable when some of the associated information can be provided for some WLAN APs but not for all WLAN APs.</td>
</tr>
</tbody>
</table>

WLAN-AP-TargetDeviceErrorCauses

The IE WLAN-AP-TargetDeviceErrorCauses is used by the target device to provide error reasons for WLAN AP positioning to the location server.

```
-- ASN1START
OMA-LPpe-WLAN-AP-TargetDeviceErrorCauses ::= SEQUENCE {
 cause ENUMERATED {
 undefined,
 requestedMeasurementsNotAvailable,
 notAllRequestedMeasurementsPossible,
 ...
 },
 apSSIDnotAvailable NULL OPTIONAL,
 apSNMeasurementNotPossible NULL OPTIONAL,
 apDevTypeNotAvailable NULL OPTIONAL,
 ap PhyTypeNotAvailable NULL OPTIONAL,
 apRSSIMeasurementNotPossible NULL OPTIONAL,
 apChanFreqNotAvailable NULL OPTIONAL,
 apRTDMeasurementNotPossible NULL OPTIONAL,
 ueTPNotAvailable NULL OPTIONAL,
 ueAGNtAvailable NULL OPTIONAL,
 apRecLocNotAvailable NULL OPTIONAL,
 non-servingMeasurementsNotAvailable NULL OPTIONAL,
 historicMeasurementsNotAvailable NULL OPTIONAL,
 ...
,
 apTPNotAvailable NULL OPTIONAL,
 apAGNtAvailable NULL OPTIONAL,
 ueSNNotAvailable NULL OPTIONAL,
 ueRSSINotAvailable NULL OPTIONAL,
 ocNotAvailable NULL OPTIONAL,
 ueMACAddressNotAvailable NULL OPTIONAL
}
-- ASN1STOP
```

OMA-LPpe-WLAN-AP-TargetDeviceErrorCauses field descriptions

<table>
<thead>
<tr>
<th>cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>This field provides a WLAN AP specific error cause. If the cause value is 'requestedMeasurementsNotAvailable', none of the requested measurements could be provided and no further information needs to be included. If the cause value is 'notAllRequestedMeasurementsPossible', the target device was able to provide some but not all requested WLAN AP measurements. In this case, the target device should indicate those measurements that could not be obtained.</td>
</tr>
</tbody>
</table>

6.5.9 WiMax Enhanced Cell ID Positioning

This section defines support for WiMax ECID.

6.5.9.1 WiMax ECID Location Information

OMA-LPpe-ECID-WiMax-ProvideLocationInformation

The OMA-LPpe-ECID-WiMax-ProvideLocationInformation is used to provide ECID measurements (UE-assisted) for one or
more WiMax access networks and at both current and historic times.

```asn1
OMA-LPpe-ECID-WiMax-ProvideLocationInformation ::= SEQUENCE {
 ecid-wimax-CombinedLocationInformation OMA-LPpe-ECID-WiMax-LocationInformationList OPTIONAL,
 ecid-wimax-Error OMA-LPpe-ECID-WiMax-Error OPTIONAL,
 ...
}
OMA-LPpe-ECID-WiMax-LocationInformationList ::= SEQUENCE {
 ecid-wimax-LocationInformation OMA-LPpe-ECID-WiMax-LocationInformation,
 relativeTimeStamp INTEGER (0..65535) OPTIONAL,
 servingFlag BOOLEAN,
 ...
}
maxWiMaxECIDSize INTEGER ::= 1264
```

**OMA-LPpe-ECID-WiMax-ProvideLocationInformation field descriptions**

**ecid-wimax-CombinedLocationInformation**

This parameter provides E-CID measurements for one or more WiMax networks at the current time and/or for historic times. This parameter supports part of the Location ID and Multiple Location IDs parameters in SUPL 2.0.

**ecid-wimax-Error**

This parameter provides error information when not all requested WiMax E-CID measurements can be reported. This parameter should be included when some but not all requested measurements are reported and SHALL be included when no requested measurements are reported.

**relativeTimeStamp**

This parameter SHALL be included for historic WiMax E-CID measurements and provides the time of the historic measurements relative to current time in units of 0.01 seconds. If absent, current time is implied which is equivalent to a relativeTimeStamp of zero. Current time refers to the time when the target sends WiMax E-CID measurements to the server.

**servingFlag**

This parameter indicates whether a set of E-CID measurements were obtained for a serving WiMax access network (TRUE) or a non-serving WiMax access network (FALSE). A target device with multiple radio support may indicate more than one type of serving access network for the same time instant.

### 6.5.9.2 WiMax ECID Location Information Elements

**OMA-LPpe-ECID-WiMax-LocationInformation**

The IE *OMA-LPpe-ECID-WiMax-LocationInformation* is used by the target device to provide E-CID measurements for a serving or non-serving WiMax network to the server.

```asn1
OMA-LPpe-ECID-WiMax-LocationInformation ::= SEQUENCE {
 wimaxBsID OMA-LPpe-ECID-WiMax-WimaxBsID,
 wimaxRTD OMA-LPpe-ECID-WiMax-WimaxRTD OPTIONAL,
 wimaxNMRList OMA-LPpe-ECID-WiMax-WimaxNMRList OPTIONAL,
 ...
}
```

```asn1
OMA-LPpe-ECID-WiMax-WimaxBsID ::= SEQUENCE {
 bsID-MSB BIT STRING (SIZE(24)) OPTIONAL,
}
bsID-LSB BIT STRING (SIZE(24)),

OMA-LPpe-ECID-WiMax-WimaxRTD ::= SEQUENCE {
 rTD INTEGER (0..65535),
 rTDststd INTEGER (0..1023) OPTIONAL,

OMA-LPpe-ECID-WiMax-WimaxNMRList ::= SEQUENCE (SIZE (1..maxWimaxBSMeas)) OF
 OMA-LPpe-ECID-WiMax-WimaxNMR

OMA-LPpe-ECID-WiMax-WimaxNMR ::= SEQUENCE {
 wimaxBsID OMA-LPpe-ECID-WiMax-WimaxBsID,
 relDelay INTEGER (-32768..32767) OPTIONAL,
 relDelaystd INTEGER (0..1023) OPTIONAL,
 rSSI INTEGER (0..255) OPTIONAL,
 rSSIstd INTEGER (0..63) OPTIONAL,
 bSTxPower INTEGER (0..255) OPTIONAL,
 cINR INTEGER(0..255) OPTIONAL,
 cINRstd INTEGER (0..63) OPTIONAL,
 bSLocation OMA-LPpe-WLAN-ReportedLocation OPTIONAL,

maxWimaxBSMeas INTEGER ::= 32

-- ASN1STOP

OMA-LPpe-ECID-WiMax-LocationInformation field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>wimaxBsID</td>
<td>This field provides the identifier for the primary WiMax base station for which measurements are being reported. The ID contains 48 bits. The least significant 24 bits (bsID-LSB) are provided and optionally the most significant 24 bits (bsID-MSB). If not provided, bsID-MSB is assumed to be identical to that for the current serving BS or camped on network value.</td>
</tr>
<tr>
<td>wimaxRTD</td>
<td>This field provides the Round Trip Delay (rTD) between the target device and the WiMax BS in units of 10 ns and with a range of 0-65535. The field also optionally includes the Standard deviation of the Round Trip Delay measurement (rTDstd) in units of 10 ns and with a range of 0-1023.</td>
</tr>
</tbody>
</table>
OMA-LPPe-ECID-WiMax-LocationInformation field descriptions

wimaxNMRList

This field provides a network measurement report for up to 32 other neighbour WiMax base stations. For each neighbour base station, the following parameters can be included:

- **wimaxBsID**: base station ID encoded as for wimaxBsID above. This parameter is mandatory.
- **relDelay**: Relative Delay as measured by the target device between the neighboring BS and the primary BS in units of 10 ns. This measurement is not applicable for the primary BS. The range is -32768 to 32767. This parameter is optional.
- **relDelaystd**: Standard deviation of the Relative delay in units of 10 ns, range 0-1023. This parameter is optional.
- **rSSI**: received signal strength of the neighbour BS at the target device in dBm. This is expressed in steps of 0.25 dBm, starting from -103.75 dBm. Encoded range is 0-255. This parameter is optional.
- **rSSIstd**: standard deviation of the BS signal strength received at the target device in dB. Range is 0-63.
- **bSTxPower**: the equivalent isotropic transmit power of the neighbour BS in steps of 0.25 dBm and starting from -103.75 dBm. Encoded range is 0-255. This parameter is optional.
- **cINR**: Carrier to Noise and Interference Ratio in dB of the neighbour BS as received at the target device. Range is 0-255. This parameter is optional.
- **cINRstd**: standard deviation in dB of the BS Carrier to Noise and Interference Ratio as received at the target device. Range is 0-63.
- **bSLocation**: Location of the neighbour BS as reported by the neighbour BS. This is optional and contains the following fields.
 - **locationEncodingDescriptor**: either LCI as in [RFC3825] or ASN.1 as in [X.694]
 - **locationData**: location value in the format defined in locationEncodingDescriptor and optional location accuracy in units of 0.1 meters.

6.5.9.3 WiMax ECID Location Information Request

OMA-LPPe-ECID-WiMax-RequestLocationInformation

The **OMA-LPPe-ECID-WiMax-RequestLocationInformation** is used to request WiMax ECID measurements (UE-assisted).

```asn1
OMA-LPPe-ECID-WiMax-RequestLocationInformation ::= SEQUENCE {
  requestedMeasurements BIT STRING {
    rTD (0),
    rTDstd (1),
    nMR (2),
    nMRrelDelay (3),
    nMRrelDelaystd (4),
    nMRrSSI (5),
    nMRrSSItstd (6),
    nMRbSTxPower (7),
    nMRcINR (8),
    nMRcINRstd (9),
    nMRbSLocation (10),
    non-serving (11),
    historic (12) } (SIZE(1..16)),
  ...
}
```

-- ASN1STOP
OMA-LPPe-ECID-WiMax-RequestLocationInformation field descriptions

requestedMeasurements

This field specifies the WiMax E-CID measurements requested. This is represented by a bit string, with a one-value at the bit position means the particular measurement is requested; a zero-value means not requested. The following measurement requests can be included.

- rTD: round trip delay to a primary (e.g. serving) BS
- rTDstd: standard deviation of round trip delay
- nMR: network measurement report for neighbouring BSs
- nMRrelDelay: Relative Delay between the neighboring BS and the primary BS
- nMRrelDelaystd: Standard deviation of the Relative delay
- nMRrSSI: received signal strength of the neighbour BS
- nMRrSSIsd: standard deviation of BS signal strength
- nMRbSTxPower: transmit power of the neighbour BS
- nMRcINR: Carrier to Noise and Interference Ratio of the neighbour BS
- nMRcINRstd: standard deviation of the BS Carrier to Noise and Interference Ratio
- bSLocation: Location of the neighbour BS as reported by the neighbour BS
- non-serving: E-CID measurements for non-serving WiMax base stations (in addition to a serving base station)
- historic: historic WiMax E-CID measurements (in addition to current measurements)

6.5.9.4 WiMax ECID Capability Information

OMA-LPPe-ECID-WiMax-ProvideCapabilities

The **OMA-LPPe-ECID-WiMax-ProvideCapabilities** is used by the target to provide its WiMax ECID capabilities to the server.

```asn1
OMA-LPPe-ECID-WiMax-ProvideCapabilities ::= SEQUENCE { ecid-wimax-MeasSupported BIT STRING { rTD (0), rTDstd (1), nMR (2), nMRrelDelay (3), nMRrelDelaystd (4), nMRrSSI (5), nMRrSSIsd (6), nMRbSTxPower (7), nMRcINR (8), nMRcINRstd (9), nMRbSLocation (10), non-serving (11), historic (12) } {SIZE{1..16}} }
```

```asn1
-- ASN1STOP
```
OMA-LPPe-ECID-WiMax-ProvideCapabilities field descriptions

ecid-wimax- MeasSupported

This field specifies the E-CID measurements supported by the target device for WiMax. This is represented by a bit string, with a one-value at the bit position means the particular measurement is supported; a zero-value means not supported. A zero-value in all bit positions in the bit string means only the basic Cell ID positioning method is supported by the target device for WiMax. The following bits are assigned for the indicated measurements.

- **rTD**: round trip delay to a primary (e.g. serving) BS
- **rTDstd**: standard deviation of round trip delay
- **nMR**: network measurement report for neighbouring BSs
- **nMRrelDelay**: Relative Delay between the neighboring BS and the primary BS
- **nMRrelDelaystd**: Standard deviation of the Relative delay
- **nMRrSSI**: received signal strength of the neighbour BS
- **nMRrSSIdst**: standard deviation of BS signal strength
- **nMRbSTxPower**: transmit power of the neighbour BS
- **nMRcINR**: Carrier to Noise and Interference Ratio of the neighbour BS
- **nMRcINRstd**: standard deviation of the BS Carrier to Noise and Interference Ratio
- **nMRbLocation**: Location of the neighbour BS as reported by the neighbour BS
- **non-serving**: E-CID measurements for non-serving WiMax base stations (in addition to a serving base station)
- **historic**: historic WiMax E-CID measurements

6.5.9.5 WiMax ECID Capability Information Request

- **OMA-LPPe-ECID-WiMax-RequestCapabilities**

The **OMA-LPPe-ECID-WiMax-RequestCapabilities** is used to request WiMax ECID capabilities information from the target.

```asn1
OMA-LPPe-ECID-WiMax-RequestCapabilities ::= SEQUENCE {
    ...
}
```

6.5.9.6 WiMax ECID Error Element

- **OMA-LPPe-ECID-WiMax -Error**

The IE **OMA-LPPe-ECID-WiMax -Error** is used by the location server or target device to provide WiMax E-CID error reasons to the target device or location server, respectively.

```asn1
OMA-LPPe-ECID-WiMax-Error ::= CHOICE {
    locationServerErrorCauses OMA-LPPe-ECID-WiMax-LocationServerErrorCauses,
    targetDeviceErrorCauses OMA-LPPe-ECID-WiMax-TargetDeviceErrorCauses,
    ...
}
```

- **OMA-LPPe-ECID-WiMax-LocationServerErrorCauses**

The IE **OMA-LPPe-ECID-WiMax-LocationServerErrorCauses** is used by the location server to provide WiMax E-CID error reasons to the target device.
OMA-LPPe-ECID-WiMax-TargetDeviceErrorCauses

The IE *OMA-LPPe-ECID-WiMax-TargetDeviceErrorCauses* is used by the target device to provide WiMax E-CID error reasons to the location server.

cause

This field provides a WiMax ECID specific error cause. If the cause value is 'requestedMeasurementsNotAvailable', none of the requested measurements could be provided and no further information needs to be included. If the cause value is 'notAllRequestedMeasurementsPossible', the target device was able to provide some but not all requested WiMax measurements. In this case, the target device should indicate the requested measurements that could not be provided.

6.5.10 Sensor Positioning

6.5.10.1 Sensor Assistance Data

OMA-LPPe-Sensor-ProvideAssistanceData

The *OMA-LPPe-Sensor-ProvideAssistanceData* is used to provide assistance for sensor-based methods.
OMA-LPPe-Sensor-ProvideAssistanceData field descriptions

atmosphericPressureAD
This field is used to provide reference atmospheric pressure at nominal sea level, [EGM96] to the target.

ver2-0-gmf-DataSet
This parameter provides data for up to 8 sets of geomagnetic fields. This parameter is optional.

ver2-0-sensorError
This field is used to provide Sensor error causes related to the assistance data requests.

ver2-0-server-tracking
This parameter indicates whether the server tracks Sensor assistance data sent to a target. A target need not indicate to a server its possession of any assistance data received previously for Sensors that is tracked when sending an LPPe Request Assistance Data for Sensors. This parameter is optional and encoded as a null value. Inclusion of the parameter indicates the server tracks data for Sensors and omission indicates the server does not.

6.5.10.2 Sensor Assistance Data Elements

OMA-LPPe-AtmosphericPressureAD.

The OMA-LPPe-AtmosphericPressureAD is used to provide reference atmospheric pressure at nominal sea level, [EGM96] to the target.

OMA-LPPe-AtmosphericPressureAD ::= SEQUENCE {
 referencePressure INTEGER (-20000..10000),
 period SEQUENCE {
 pressureValidityPeriod OMA-LPPe-ValidityPeriod,
 referencePressureRate INTEGER (-128..127) OPTIONAL,
 ... OPTIONAL,
 } OPTIONAL,
 area SEQUENCE {
 pressureValidityArea OMA-LPPe-PressureValidityArea,
 gN-pressure INTEGER (-128..127) OPTIONAL,
 gE-pressure INTEGER (-128..127) OPTIONAL,
 ... OPTIONAL,
 } OPTIONAL,
 ... }
OMA-LPPe-AtmosphericPressureAD field descriptions

referencePressure
This field specifies the atmospheric pressure (Pa) at nominal sea level, [EGM96] to the target. If pressureValidityArea is provided, the referencePressure applies to the center of the pressureValidityArea. The pressure within the pressureValidityArea outside the center can be calculated using the pressure gradients (gN-pressure and gE-pressure) if provided. If no northward and eastward pressure gradients are provided, the pressure is assumed to be constant throughout the pressureValidityArea. If no referencePressureRate is provided, the pressure is assumed to be constant at each location throughout the pressureValidityPeriod. The scale factor is 1 Pa. The value is added to the nominal pressure of 101325 Pa.

pressureValidityPeriod
This field specifies the start time and duration of the reference pressure validity period. If this parameter is not present, the atmospheric pressure assistance data is valid only at precisely the time the assistance data is received at the target.

referencePressureRate
This field specifies the rate of change of pressure. When this field is included, the referencePressure applies only at the start of the pressureValidityPeriod. The scale factor is 10 Pa/hour.

pressureValidityArea
This field specifies the area within which the provided atmospheric reference pressure is valid. If this field is not present, the provided atmospheric reference pressure is only valid at the target’s position at the moment the atmospheric reference pressure is provided.

The pressure validity area is a rectangle defined by its Center Point (centerPoint), width (validityAreaWidth) and height (validityAreaHeight). Width is measured from the center along the latitude and height is measured from the center along the longitude. Width and height are measured as the total width and height of the rectangle. The scale factor is Km.

gN-pressure
This field specifies the northward gradient of the reference pressure calculated from the center of the pressureValidityArea. The scale factor is 10 Pa/Km. If this field is not provided, the gradient is assumed to be zero.

gE-pressure
This field specifies the eastward gradient of the reference pressure calculated from the center of the pressureValidityArea. The scale factor is 10 Pa/Km. If this field is not provided, the gradient is assumed to be zero.

OMA-LPPe-ver2-0-GMF-DataSet

The IE OMA-LPPe-ver2-0-GMF-DataSet is used by the location server to provide geomagnetic field information.

```asn1
OMA-LPPe-ver2-0-GMF-DataSet ::= SEQUENCE {
  ver2-0-gmf-heatmap OMA-LPPe-ver2-0-GMF-HeatMap OPTIONAL
}
```

OMA-LPPe-ver2-0-GMF-HeatMap field descriptions

ver2-0-gmf-heatmap
This parameter applies only to LPPe 2.0 and provides GMF heat map data in the form of geomagnetic field strength and/or declination angle and/or inclination angle data. This parameter is optional. A target that receives new GMF heat map data SHALL delete any previously received GMF heat map data.

OMA-LPPe-ver2-0-GMF-HeatMap

The IE OMA-LPPe-ver2-0-GMF-HeatMap is used only in LPPe 2.0 and provides geomagnetic field heat map information expressed by true northward, eastward and downward components. Refer to Appendix G for more information.
OMA-LPPe-ver2-0-GMF-HeatMap ::= SEQUENCE {
heatMap-ID OMA-LPPe-ver2-0-GMF-HeatMap-ID,
validity-period OMA-LPPe-ValidityPeriod OPTIONAL,
referenceGrid OMA-LPPe-ver2-0-ReferenceGrid OPTIONAL,
heatMap-Source OMA-LPPe-ver2-0-HeatMap-Source OPTIONAL,
x-offset INTEGER (-32768..32767) OPTIONAL,
y-offset INTEGER (-32768..32767) OPTIONAL,
x-length INTEGER (1..4096),
y-length INTEGER (1..4096),
compression ENUMERATED {none (0), jpeg (1), ...},
reorientation SEQUENCE {
 orientation-angle INTEGER (-900..900),
 shifting ENUMERATED {x-direction (0), y-direction (1)},
...
} OPTIONAL,
run-lengths OMA-LPPe-RleList OPTIONAL,
updateReqGridPoints OMA-LPPe-RleList OPTIONAL,
gmf-map SEQUENCE {
 gmf-N-mean-value OCTET STRING,
 gmf-E-mean-value OCTET STRING,
 gmf-D-mean-value OCTET STRING,
 gmf-N-standard-deviation OCTET STRING OPTIONAL,
 gmf-E-standard-deviation OCTET STRING OPTIONAL,
 gmf-D-standard-deviation OCTET STRING OPTIONAL,
 range SEQUENCE {
 gmf-minimum INTEGER (-128..-10),
 gmf-range INTEGER (10..256)
 } OPTIONAL,
...
} OPTIONAL,
declAngle-map SEQUENCE {
 declination-angle-mean-value OCTET STRING,
 declination-angle-standard-deviation OCTET STRING OPTIONAL,
 range SEQUENCE {
 da-minimum INTEGER (-180..-10),
 da-range INTEGER (10..360)
 } OPTIONAL,
...
} OPTIONAL,
inclAngle-map SEQUENCE {
 inclination-angle-mean-value OCTET STRING,
 inclination-angle-standard-deviation OCTET STRING OPTIONAL,
 range SEQUENCE {
 ia-minimum INTEGER (-90..-10),
 ia-range INTEGER (10..180)
 } OPTIONAL,
...
} OPTIONAL
}

OMA-LPPe-ver2-0-GMF-HeatMap field descriptions

heatmap-ID
This parameter provides a unique ID for the heat map.

validity-period
This parameter defines the validity period for a heat map and, if present, overrides any other validity period provided by a server for any assistance data that may contain the heat map. A target that receives a heat map should only make use of the heat map during the validity period. This parameter is optional.
OMA-LPPe-ver2-0-GMF-HeatMap field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>referenceGrid</td>
<td>This parameter defines the origin, orientation and grid spacing for a reference grid relative to which the heat map is defined. This parameter is optional. If included, the provided reference grid overrides any default reference grid provided by means of common group parameters (e.g. for a WLAN AP or SRN AP). If absent, a reference grid is taken from common group parameters (e.g. for a WLAN AP or SRN AP).</td>
</tr>
<tr>
<td>heatMap-Source</td>
<td>This parameter defines the source of the heat map and may provide information associated with the source. This parameter is optional. If absent, the source is undefined.</td>
</tr>
<tr>
<td>x-offset</td>
<td>This parameter provides the x coordinate offset relative to the reference frame origin for the corner of the heat map rectangular area that has minimum X and Y coordinates. This parameter is encoded as an integer with range -32768 to 32767 which expresses a length in units of the grid spacing. This parameter is optional. If not present, the x-offset is zero.</td>
</tr>
<tr>
<td>y-offset</td>
<td>This parameter provides the y coordinate offset relative to the reference frame origin for the corner of the heat map rectangular area that has minimum X and Y coordinates. This parameter is encoded as an integer with range -32768 to 32767 which expresses a length in units of the grid spacing. This parameter is optional. If not present, the y-offset is zero.</td>
</tr>
<tr>
<td>x-length</td>
<td>This parameter defines the length of the rectangular area for the heat map in the X direction in units of the grid spacing. This is encoded as an integer in the range 1 to 4096.</td>
</tr>
<tr>
<td>y-length</td>
<td>This parameter defines the length of the rectangular area for the heat map in the Y direction in units of the grid spacing. This is encoded as an integer in the range 1 to 4096.</td>
</tr>
<tr>
<td>compression</td>
<td>This parameter defines the method used to compress the included heat maps. Possible values are none (meaning no compression) and JPEG (meaning JPEG compression).</td>
</tr>
</tbody>
</table>
| **reorientation** | This parameter enables a heat map area to be reoriented at an angle θ (-90° ≤ θ ≤ 90°) to the local Y axis as described in Appendix G.7.1. The reorientation is defined by the following fields:
 - *orientation-angle* gives the angle θ in units of one tenth of a degree
 - *shifting* defines whether rows of grid points are shifted in the positive X direction or columns of grid points are shifted in the positive Y direction as defined in Appendix G.4.1.

This parameter is optional and is only included when reorientation is used. |
| **run-lengths** | This parameter enables a heat map area to fit an arbitrary shape by defining alternating run lengths of excluded and included grid points as defined in Appendix G.4.2. The parameter contains a sequence of integers I1, I2, I3, I4 etc. with values between 0 and 255 where integers in odd positions (I1, I3, I5 etc.) define a consecutive sequence of excluded grid points and integers in even positions (I2, I4 etc.) define a consecutive sequence of included grid points. The total number of all included and excluded grid points SHALL be less than or equal to the total number of original grid points. When the former is less than the latter, all remaining grid points (not so far included or excluded) SHALL be assumed by a receiver to be excluded. This parameter is optional and SHALL only be included when run lengths are used to create an arbitrary heat map area. |
OMA-LPPe-ver2-0-GMF-HeatMap field descriptions

updateReqGridPoints
This parameter provides a set of grid points for triggering a request for new transmitter assistance data from a target if the target estimates its position near to one of these grid points. This parameter is optional, but if this parameter is provided by the server, the server may send this information only for one of the grouped transmitter heat maps (and not for all of the heat maps). The parameter contains a sequence of integers I1, I2, I3, I4 etc. with values between 0 and 255 where integers in odd positions (I1, I3, I5 etc.) define a consecutive sequence of grid points that do not trigger updates and integers in even positions (I2, I4 etc.) define a consecutive sequence of grid points that do trigger updates. The total number of all included and excluded grid points SHALL be less than or equal to the total number of original grid points. When the former is less than the latter, all remaining grid points (not so far included or excluded) SHALL be assumed by a receiver to not trigger an update. The selection of update grid points is out-of-scope of this specification. Refer to Appendix G.5 for more information.

gmf-map
This parameter provides a sequence of true northward, eastward and downward mean geomagnetic field strength values and an optional sequence of true northward, eastward and downward geomagnetic field strength standard deviations for successive included grid points within the heat map area as defined in Appendix G. Each mean geomagnetic field strength values are encoded as integers in the range 0 to 2550 as follows:

- **encoded value = 0**: true (northward, eastward or downward) mean geomagnetic field strength ≤ gmf-minimum
- **encoded value = 1-2549**: true (northward, eastward or downward) mean geomagnetic field strength = (gmf-minimum + (encoded value / 2550)*gmf-range)
- **encoded value = 2550**: true (northward, eastward or downward) mean geomagnetic field strength > gmf-minimum + gmf-range

where: gmf-minimum = minimum geomagnetic field strength in units of μT (default is -128 μT)

gmf-range = range of geomagnetic field strength in units of μT (default is 255 μT)

Each geomagnetic field strength standard deviations are encoded as integers in the range 0 to 2550 as follows:

true (northward, eastward or downward) gmf strength standard deviation = (encoded value / 10) μT

Successive geomagnetic field strength values appear according to a scan order of grid points as defined in Appendix G. When JPEG compression is used, this parameter contains an octet string that results from JPEG compression of the original encoded geomagnetic field strength values. When JPEG compression is used with run-lengths, dummy geomagnetic field strength values are included for all grid points defined to be excluded by the run-lengths parameter.

declAngle-map
This parameter provides a sequence of mean declination angle values and an optional sequence of declination angle standard deviations for successive included grid points within the heat map area as defined in Appendix G. Declination angle is defined by the angle on the horizontal plane between magnetic north and true north.

Mean declination angle values are encoded as integers in the range 0 to 3599 as follows:

- **encoded value = 0**: mean declination angle ≤ da-minimum
- **encoded value = 1-3598**: mean declination angle = (da-minimum + (encoded value / 3600)*da-range)
- **encoded value = 3599**: mean declination angle > (da-minimum + da-range)

where: da-minimum = minimum declination angle in units of degree (default is -180 degree)

da-range = range of declination angle in units of degree (default is 360 degree)

Declination angle standard deviations are encoded as integers in the range 0 to 3599 as follows:

Declination angle standard deviation = (encoded value / 10) degree

Successive declination angle values appear according to a scan order of grid points as defined in Appendix G. When JPEG compression is used, this parameter contains an octet string that results from JPEG compression of the original encoded declination angle values. When JPEG compression is used with run-lengths, dummy declination angle values are included for all grid points defined to be excluded by the run-lengths parameter.
inclAngle-map

This parameter provides a sequence of mean inclination angle values and an optional sequence of inclination angle standard deviations for successive included grid points within the heat map area as defined in Appendix G. Inclination angle is defined by the angle between the horizontal plane and the total geomagnetic field vector, measured positive into Earth.

Mean inclination angle values are encoded as integers in the range 0 to 1799 as follows:

- encoded value = 0 : mean inclination angle <= ia-minimum
- encoded value = 1-1798 : mean inclination angle = (ia-minimum + (encoded value / 3600)*ia-range)
- encoded value = 1799 : mean inclination angle >= (ia-minimum + ia-range)

where: ia-minimum = minimum inclination angle in units of degree (default is -90 degree)
da-range = range of inclination angle in units of degree (default is 180 degree)

Inclination angle standard deviations are encoded as integers in the range 0 to 1799 as follows:

- Inclination angle standard deviation = (encoded value / 10) degree

Successive inclination angle values appear according to a scan order of grid points as defined in Appendix G. When JPEG compression is used, this parameter contains an octet string that results from JPEG compression of the original encoded inclination angle values. When JPEG compression is used with run-lengths, dummy inclination angle values are included for all grid points defined to be excluded by the run-lengths parameter.

OMA-LPPe-ver2-0-GMF-HeatMap-ID

The IE **OMA-LPPe-ver2-0-GMF-HeatMap-ID** is used only in LPPe 2.0 and provides a unique ID for a geomagnetic field heat map.

```asn1
-- ASN1START
OMA-LPPe-ver2-0-GMF-HeatMap-ID ::= SEQUENCE {
  vendorOrOperator OMA-LPPe-VendorOrOperatorID,
  heatmap-ID OCTET STRING (SIZE (1..16)),
  ...
}
-- ASN1STOP
```
OMA-LPPe-ver2-0-GMF-HeatMap-ID field descriptions

vendorOrOperator
This parameter defines the vendor or operator who has assigned the heat map ID. This parameter is mandatory.

heatmap-ID
This parameter defines the heat map ID for the particular vendor or operator. The heat map ID may contain a version or timestamp using proprietary encoding. The heatmap-ID should change whenever a heatmap is updated. The heatmap-ID is encoded as an octet string of length 1 to 16 octets. This parameter is mandatory.

6.5.10.3 Sensor Assistance Data Request

OMA-LPPe-Sensor-RequestAssistanceData

The *OMA-LPPe-Sensor-RequestAssistanceData* is used to request assistance for sensor-based methods.

```asn1
OMA-LPPe-Sensor-RequestAssistanceData ::= SEQUENCE {
  ...,
  pressureSensorAD               OMA-LPPe-PressureSensorAD OPTIONAL,
  -- version 2.0 extension elements
  ver2-0-geoMagneticFieldAD     BIT STRING {
    ver2-0-gmfHeatMap            (0),
    ver2-0-declAngleHeatMap      (1),
    ver2-0-inclAngleHeatMap      (2) (SIZE(1..8)) OPTIONAL,
  }
  ver2-0-GMF-HeatMaps           SEQUENCE (SIZE 1..ver2-0-maxGMFHeatMaps) OF OMA-LPPe-ver2-0-GMF-HeatMap-ID OPTIONAL,
  ver2-0-GMF-HeatMapUpdateReq  SEQUENCE {
    heatMap-ID                   OMA-LPPe-ver2-0-GMF-HeatMap-ID,
    updatingIndex                INTEGER (1..16777216),
    targetHeading                OMA-LPPe-HighAccuracy3DVelocity OPTIONAL,
    ...}
}
```

OMA-LPPe-Sensor-RequestAssistanceData field descriptions

ver2-0-geoMagneticFieldAD
This parameter specifies the geomagnetic field assistance data requested. This is represented by a bit string, with a one-value at the bit position means the particular assistance data is requested; a zero-value means not requested. The following assistance data types are included:

- **ver2-0-gmfHeatMap**: include an geomagnetic field strength heat map if available and, optionally, group data containing a reference grid. This bit only applies to LPPe 2.0.
- **ver2-0-declAngleHeatMap**: include a declination angle heat map if available and, optionally, group data containing a reference grid. This bit only applies to LPPe 2.0.
- **ver2-0-inclAngleHeatMap**: include an inclination angle heat map if available and, optionally, group data containing a reference grid. This bit only applies to LPPe 2.0.

ver2-0-GMF-HeatMaps
This parameter applies only to LPPe 2.0 and enables a target to indicate to a server the identities of all GMF heap maps previously received from this server for geomagnetic field. This may enable a server to avoid resending the same heat maps. This parameter is optional. A target need not include this parameter if a server included the ver2-0-server-tracking field in the OMA-LPPe-Sensor-ProvideAssistanceData data type for all RF heat maps provided by this server for geomagnetic field. Otherwise, a target should include this parameter for any previously received GMF heat maps for geomagnetic field that were indicated as not tracked by the server if the target is requesting additional GMF heatmaps from the server for geomagnetic field.
OMA-LPPe-Sensor-RequestAssistanceData field descriptions

ver2-0-AP-HeatMapUpdateReq

This parameter applies only to LPPe 2.0 and provides the ID of a heat map and an index of a reference grid point within the heat map that has triggered an update request for new assistance data when the target estimates its position at or near to this grid point. The heat map and the reference grid point would have been provided earlier to the target via the *updateReqGridPoints* parameter in the OMA-LPPe-ver2-0-GMF-HeatMap IE. Appendix G.5 contains more information on this update request. Optionally, the target may also send its heading and velocity information. This parameter is optional.

6.5.10.4 Sensor Assistance Data Request Elements

OMA-LPPe-PressureSensorAD

The OMA-LPPe-PressureSensorAD is used to request atmospheric reference pressure assistance data.

```asn1
-- ASN1START
OMA-LPPe-PressureSensorAD ::= SEQUENCE { 
  ... 
} -- ASN1STOP
```

6.5.10.5 Sensor Location Information

OMA-LPPe-Sensor-ProvideLocationInformation

The OMA-LPPe-Sensor-ProvideLocationInformation is used to provide location information for sensor-based methods.

```asn1
-- ASN1START
OMA-LPPe-Sensor-ProvideLocationInformation ::= SEQUENCE { 
  motionStateList OMA-LPPe-Sensor-MotionStateList OPTIONAL, 
  sensorError OMA-LPPe-Sensor-Error OPTIONAL, 
  ..., 
  atmosphericPressure OMA-LPPe-AtmosphericPressure OPTIONAL 
} -- ASN1STOP
```
OMA-LPPe-Sensor-ProvideLocationInformation field descriptions

motionStateList
This field is used to provide one or more motion states to the server. The motion state may indicate e.g. that the target is stationary or that it is moving in a car.

sensorError
This field is used to provide error information on the sensor location information.

atmosphericPressure
This field is used to provide the atmospheric pressure as measured by the target’s pressure sensor. This field SHALL be included if requested and available.

6.5.10.6 Sensor Location Information Elements

OMA-LPPe-Sensor-MotionStateList

The **OMA-LPPe-Sensor-MotionStateList** carries target motion state information. The list allows for reporting up to eight motion state elements. Each element contains one primary motion state (the one with the highest sustained velocity) and optionally multiple secondary motion states in order to be able to describe, say, that the person carrying the target is walking (secondary motion) in a train (primary motion). The confidence represents the confidence of the primary motion state if no secondary motion state is included or the combination of primary+secondary, in case the secondary motion state is included.

```asn1
OMA-LPPe-Sensor-MotionStateList ::= SEQUENCE (SIZE (1..8)) OF OMA-LPPe-Sensor-MotionStateElement

OMA-LPPe-Sensor-MotionStateElement ::= SEQUENCE {
  primaryMotionState   ENUMERATED {
    unknown,
    stationary,
    pedestrian,
    running,
    cycling,
    car,
    train,
    aeroplane,
    boat,
    fidgeting,
    ...
  },
  confidence            INTEGER (0..99),
  secondaryMotionState  BIT STRING {
    stationary   (0),
    pedestrian  (1),
    running      (2),
    cycling      (3),
    car          (4),
    train        (5),
    aeroplane    (6),
    boat         (7),
    fidgeting    (8),
  },
  -- version 2.0 extension elements
  ver2-0-hold     (9),
  ver2-0-onear    (10),
  ver2-0-inpocket (11),
  ver2-0-swing    (12),
  ver2-0-elevator (13),
  ver2-0-escalator (14)  (SIZE (1..16)) OPTIONAL,
  ...
}
```

-- ASN1STOP
OMA-LPPe-Sensor-MotionStateList field descriptions

primaryMotionState
This field specifies the primary motion state, i.e. the one with the highest sustained speed.

confidence
This field specifies the confidence that the target is in the indicated motion state (primary+secondary).

Confidence is encoded as a truncated percentage. An encoded value of 0 therefore represents a confidence C where 0% ≤ C < 1% percent. An encoded value of 1 represents a confidence C where 1% ≤ C < 2%, and so on. An encoded value of 99 represents a confidence C where 99% ≤ C < 100%.

secondaryMotionState
This field specifies one or more secondary motion states. Secondary motion states are indicated by the bit string, in which each bit position indicates a distinct secondary motion. The presence of two or more secondary motion states indicates that all occur simultaneously – e.g. fidgeting while stationary on a train.

Note: a secondary motion state which is set to false implies that the target is asserting that the motion state is not in effect.

Note: The following bits indicate secondary motion states applicable to the pedestrian primary motion state.

- **hold**: identifies a motion state where a pedestrian holds the UE while viewing the screen.
- **onear**: identifies a motion state where a pedestrian holds the UE to his ear.
- **in pocket**: identifies a motion state where a pedestrian has the UE close to his body (e.g. in his pocket).
- **swing**: identifies a motion state where a pedestrian swings the UE in his hands while walking.
- **elevator**: identifies a motion state where a pedestrian is in a moving elevator.
- **escalator**: identifies a motion state where a pedestrian is on a moving escalator.

OMA-LPPe-AtmosphericPressure
The **OMA-LPPe-AtmosphericPressure** represents the atmospheric pressure measured by the target.

```asn1
-- ASN1START

OMA-LPPe-AtmosphericPressure ::= SEQUENCE {
  pressureMeasurement OMA-LPPe-PressureMeasurement,
  pressureStats PressureStats OPTIONAL,
  calibrationPoints CalibrationPoints OPTIONAL,
  ...
}

PressureStats ::= SEQUENCE {
  sensorMeanPressure INTEGER (30000..115000),
  sensorStddevPressure INTEGER (0..2000) OPTIONAL,
  duration INTEGER (5..40),
  ...
}

CalibrationPoints ::= SEQUENCE (SIZE (1..10)) OF SEQUENCE {
  pressure OMA-LPPe-PressureMeasurement,
  time UTCTime,
  location EllipsoidPointWithAltitudeAndUncertaintyEllipsoid,
  motionState OMA-LPPe-Sensor-MotionStateList OPTIONAL,
  velocity Velocity OPTIONAL,
  locationSource OMA-LPPe-LocationSource OPTIONAL,
  ...
}

-- ASN1STOP
```

OMA-LPPe-AtmosphericPressure field descriptions

pressureMeasurement
This field provides an instantaneous current atmospheric pressure at the target.
OMA-LPPe-AtmosphericPressure field descriptions

pressureStats
This field corresponds to the mean and (optional) standard deviation of the sensor(s) pressure measurement without any added or subtracted adjustment that prevailed for a time period (duration) immediately before the pressure measurement reported by the target was obtained. The scale factor for mean and standard deviation is 1 Pa. Time units are in seconds. For the pressureStats to be reported, the duration MUST be at least 5 seconds (maximum duration is 40 seconds). This field enables a server to remove noise from the current pressure measurement through averaging and evaluate the stability of the current pressure measurement (e.g. whether increasing or decreasing). A target may obtain the statistics while performing any other measurements requested by the server. The current pressure measurement (in pressureMeasurement) should be obtained exactly at the end of the duration for pressureStats.

calibrationPoints
This parameter provides a sequence of up to 10 calibration points for the target where both a 3D location and a pressure measurement were obtained by the target. Each calibration point includes the following mandatory and conditional fields.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pressure</td>
<td>the measured pressure in units of Pa (mandatory)</td>
</tr>
<tr>
<td>time</td>
<td>UTC time (mandatory)</td>
</tr>
<tr>
<td>location</td>
<td>location of the target which MUST have been obtained without use of either the pressure measurement or a terrain map (mandatory)</td>
</tr>
<tr>
<td>motionState</td>
<td>the motion state of the target (mandatory if available)</td>
</tr>
<tr>
<td>velocity</td>
<td>the velocity of the target (mandatory if available)</td>
</tr>
<tr>
<td>locationSource</td>
<td>the source(s) of the reported location (mandatory if available)</td>
</tr>
</tbody>
</table>

This parameter enables the server to calibrate the barometric sensor for the target and/or estimate its accuracy and stability. This parameter is compiled from historic pressure and location data stored in the target prior to reporting an atmospheric pressure measurement to the server. The parameter SHALL be included when calibration points are available. If possible, one calibration point should be reported for each of the last 10 days starting with the current day and should each correspond to the 3D location with minimum uncertainty volume obtained each day which may be approximated by the product of the X, Y and Z uncertainty values. A target that is unable to report 10 calibration points over a 10 day period should report up to 10 calibration points over a shorter or longer period in the same manner. If possible, a target that is environmentally aware (e.g. via use of other sensor data) should not report calibration points that appear to correspond to indoor or in vehicle locations when other calibration points are available that appear to correspond to outdoor locations.

OMA-LPPe-PressureMeasurement

The **OMA-LPPe-PressureMeasurement** is used to define an atmospheric pressure measurement.

```asn1
OMA-LPPe-PressureMeasurement ::= SEQUENCE {
  sensorMeasurement INTEGER (30000..115000),
  adjustment INTEGER (-5000..5000) OPTIONAL,
  uncertainty SEQUENCE {
    range INTEGER (0..1000),
    confidence INTEGER (1..100)
  } OPTIONAL,
  temperature INTEGER (-100..150) OPTIONAL,
  ...
}
```

OMA-LPPe-PressureMeasurement field descriptions

sensorMeasurement
This field specifies the measured atmospheric pressure in units of Pa (corresponding to a numerical altitude resolution of about 0.1m at sea level). This field SHALL be obtained from the measured atmospheric pressure output of one or more sensors on the target prior to any adjustment made externally to the sensor(s).
OMA-LPPe-PressureMeasurement field descriptions

adjustment
This field specifies any adjustment in units of Pa applied by a target to the output of the sensor(s) to produce a more accurate atmospheric pressure. The adjustment may be enabled by previous calibration by the target of the sensor output using a known reference atmospheric pressure for a known location and altitude, by more accurate temperature related calibration data from the vendor of the sensor or by other means. The more accurate atmospheric pressure is obtained as follows and is not reported directly but only via the measurement and adjustment components:

\[
\text{accurate atmospheric pressure} = \text{sensorMeasurement} + \text{adjustment}
\]

The adjustment SHALL be provided whenever applied. If there is no adjustment, a target may omit the adjustment field. When omitted, a server SHALL assume a value of zero for the adjustment.

uncertainty
This field provides the expected range for the pressure measurement and the confidence as a percentage that the true pressure lies in a range of \((\text{measurement} + \text{adjustment} - \text{range})\) to \((\text{measurement} + \text{adjustment} + \text{range})\). This field is optional and SHALL be provided if available.

temperature
This field provides the temperature in degrees Celsius associated with the sensor(s) used for the pressure measurement and SHALL be provided if available. Note that the sensor temperature is internal to the target and may differ from the temperature outside the target if a different sensor is used to measure outside temperature.

6.5.10.7 Sensor Location Information Request

- **OMA-LPPe-Sensor-RequestLocationInformation**

The **OMA-LPPe-Sensor-RequestLocationInformation** is used to request location information for sensor-based methods.

```asn1
OMA-LPPe-Sensor-RequestLocationInformation ::= SEQUENCE {
  motionStateReq OMA-LPPe-Sensor-MotionStateRequest OPTIONAL,"--Cond MotionStateReq
  ...,
  atmosphericPressureReq OMA-LPPe-AtmosphericPressureRequest OPTIONAL --Cond AtmosphericPressureReq
}
```

Conditional presence

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>MotionStateReq</td>
<td>The field is mandatory present if the server requests for primary motion state measurements; otherwise it is not present.</td>
</tr>
<tr>
<td>AtmosphericPressureReq</td>
<td>The field is mandatory present if the server requests for atmospheric pressure measurements; otherwise it is not present.</td>
</tr>
</tbody>
</table>

6.5.10.8 Sensor Location Information Request Elements

- **OMA-LPPe-Sensor-MotionStateRequest**

The **OMA-LPPe-Sensor-MotionStateRequest** is used to request motion state information.
secondaryMotionStateRequest NULL OPTIONAL,

-- ASN1STOP

OMA-LPPe-Sensor-MotionStateRequest field descriptions

secondaryMotionStateRequest

This field is used to request the secondary motion state of the target.

OMA-LPPe-AtmosphericPressureRequest

The *OMA-LPPe-AtmosphericPressureRequest* is used to request atmospheric pressure (as measured by the target) information.

6.5.10.9 Sensor Capability Information

OMA-LPPe-Sensor-ProvideCapabilities

The *OMA-LPPe-Sensor-ProvideCapabilities* is used to provide capabilities for sensor-based methods.

Conditional presence

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>MotionStateSupport</td>
<td>The field is mandatory present if the target supports motion state measurements; otherwise it is not present.</td>
</tr>
<tr>
<td>SecondarySupport</td>
<td>The field is mandatory present if the target supports secondary motion state measurements; otherwise it is not present.</td>
</tr>
<tr>
<td>AtmosphericPressureADSupport</td>
<td>The field is mandatory present if the target supports atmospheric pressure assistance data; otherwise it is not present.</td>
</tr>
<tr>
<td>AtmosphericPressureSupport</td>
<td>The field is mandatory present if the target supports atmospheric pressure measurements; otherwise it is not present.</td>
</tr>
</tbody>
</table>

OMA-LPPe-Sensor-ProvideCapabilities field descriptions
OMA-LPPe-Sensor-Field descriptions

ver2-0-geomagneticfieldADSupport

This field specifies the geomagnetic field assistance data supported by the target device. This is represented by a bit string, with a one-value at the bit position means the particular assistance data is supported; a zero-value means not supported. A zero-value in all bit positions or absence of this field means no assistance data is supported. The following bits are assigned for the indicated assistance data.

- `ver2-0-gmfHeatMap`: geomagnetic field heatmap
- `ver2-0-declAngleHeatMap`: declination angle heatmap
- `ver2-0-inclAngleHeatMap`: inclination angle heatmap

6.5.10.10 Sensor Capability Information Elements

Void.

6.5.10.11 Sensor Capability Information Request

- **OMA-LPPe-Sensor-RequestCapabilities**

 The `OMA-LPPe-Sensor-RequestCapabilities` is used to provide capabilities for sensor-based methods.

  ```
  -- ASN1START
  OMA-LPPe-Sensor-RequestCapabilities ::= SEQUENCE {
    ...  
  }
  -- ASN1STOP
  ```

6.5.10.12 Sensor Error Elements

- **OMA-LPPe-Sensor-Error**

 The `OMA-LPPe-Sensor-Error` is used to provide Sensor Error Reasons to the server.

  ```
  -- ASN1START
  OMA-LPPe-Sensor-Error ::= CHOICE {
    targetError OMA-LPPe-Sensor-TargetError, ...
    -- version 2.0 extension elements
    ver2-0-LocationServerError OMA-LPPe-Sensor-LocationServerError
  }
  OMA-LPPe-Sensor-TargetError ::= SEQUENCE {
    motionStateError ENUMERATED { primaryMotionStateNotAvailable, primaryMotionStateNotSupported, ... } OPTIONAL,
    secondaryMotionStateError ENUMERATED { secondaryMotionStateNotAvailable, secondaryMotionStateNotSupported, ... } OPTIONAL,
    ..., atmosphericPressureError ENUMERATED { pressureNotAvailable, pressureNotSupported, ... } OPTIONAL,
    -- version 2.0 extension elements
    ver2-0-gmfNotAvailable NULL OPTIONAL,
    ver2-0-declAngleNotAvailable NULL OPTIONAL,
    ver2-0-inclAngleNotAvailable NULL OPTIONAL
  }
  OMA-LPPe-Sensor-LocationServerError ::= SEQUENCE {
    ver2-0-gmfHeatMapsUnavailable NULL OPTIONAL,
  }
  ```
OMA-LPPe-Sensor-Error field descriptions

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>targetError</td>
<td>This field is used to provide target error information to the server.</td>
</tr>
<tr>
<td>motionStateError</td>
<td>This field is used to provide error information on the motion state measurement to the server.</td>
</tr>
<tr>
<td>ver2-0-gmfUnavailable</td>
<td>This field applies to LPPe 2.0 only. When present it indicates that a geomagnetic field in a target device is not available.</td>
</tr>
<tr>
<td>ver2-0-declAngleUnavailable</td>
<td>This field applies to LPPe 2.0 only. When present it indicates that a declination angle in a target device is not available.</td>
</tr>
<tr>
<td>ver2-0-inclAngleUnavailable</td>
<td>This field applies to LPPe 2.0 only. When present it indicates that an inclination angle in a target device is not available.</td>
</tr>
</tbody>
</table>

6.5.10.13 Common Sensor Information Elements

Void.

6.5.11 Short Range Node Positioning

This section defines support for positioning using measurements related to a Short Range Nodes (SRNs).

6.5.11.1 Short Range Node Assistance Data

OMA-LPPe-SRN-ProvideAssistanceData

The **OMA-LPPe-SRN-ProvideAssistanceData** is used to provide assistance data for SRN (Short Range Node) UE-based and UE-assisted positioning.

```asn1
OMA-LPPe-SRN-ProvideAssistanceData ::= SEQUENCE {
  srnGroup CHOICE {
    srnGroupList OMA-LPPe-SRN-SRNgrouplist,
    srnGroupUpdateResponse OMA-LPPe-SRN-SRNgrouppupdateResponse,
    ...
  } OPTIONAL,
  antennaPattern OMA-LPPe-SRN-AntennaPattern OPTIONAL,  --Cond AntennaPattReq
  snrError OMA-LPPe-SRN-SnrError OPTIONAL,
  ...
} version 2.0 extension elements

ver2-0-server-tracking NULL OPTIONAL
}
```

© 2020 Open Mobile Alliance. All Rights Reserved. Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
OMA-LPPe-SRN-ProvideAssistanceData field descriptions

srnGroupList
This field is used to provide information on the relative locations and optionally orientations of the SRNs. This choice SHALL be included, if the target device requests for SRN group information and this information is available at the server.

srnGroupUpdateResponse
This field is used to provide response to the target’s SRN group information update request. This choice SHALL be included if the target device requests for SRN group information update and this information is available at the server.

antennaResponse
This field is used to provide the spatial response for a certain SRN antenna type.

srnError
This field is used to provide SRN error causes related to the assistance data requests.

6.5.11.2 Short Range Node Assistance Data Elements

OMA-LPPe-SRN-SRNgroupList
The IE OMA-LPPe-SRN-SRNgroupList is used to provide assistance data for one or more groups of positioning SRNs in the local area. For example, one SRN group might consist of all the SRNs located in one floor of a building. Up to 64 groups can be provided in the same IE.

OMA-LPPe-SRN-SRNgroupList ::= SEQUENCE {
 incompleteFlag BOOLEAN,
 defaultReferencePoint OMA-LPPe-ReferencePoint OPTIONAL, --Cond IfNoRefPoint
 groupList SEQUENCE (SIZE (1..64)) OF OMA-LPPe-SRN-SRNgroup,
 ...
}

OMA-LPPe-SRN-SRNinfo ::= SEQUENCE {
 srnID OMA-LPPe-SRNid,
 srnType OMA-LPPe-SRN-SRNtype OPTIONAL, --Cond NotDefaultType
 relativePosition OMA-LPPe-RelativeLocation,
 orientation OMA-LPPe-Orientation OPTIONAL,
 ...
}

OMA-LPPe-SRN-HeatMap ::= SEQUENCE {
 srnGroupList ::= SEQUENCE
 srnGroupID OMA-LPPe-SRN-SRNgroupUniqueID OPTIONAL,
 defaultSRNtype OMA-LPPe-SRN-SRNtype OPTIONAL,
 referencePoint OMA-LPPe-ReferencePoint OPTIONAL,
 globalOrientation NULL OPTIONAL,
 srnsInGroupList SEQUENCE (SIZE (1..1024)) OF OMA-LPPe-SRN-SRN,
 ...
}

OMA-LPPe-SRN-Propagation ::= SEQUENCE {
 srnGroupList ::= SEQUENCE
 srnGroupID OMA-LPPe-SRN-SRNgroupUniqueID OPTIONAL,
 defaultSRNtype OMA-LPPe-SRN-SRNtype OPTIONAL,
 referencePoint OMA-LPPe-ReferencePoint OPTIONAL,
 globalOrientation NULL OPTIONAL,
 srnsInGroupList SEQUENCE (SIZE (1..1024)) OF OMA-LPPe-SRN-SRN,
 ...
}

OMA-LPPe-SRN-LocationAreaData ::= SEQUENCE {
 srnGroupList ::= SEQUENCE
 srnGroupID OMA-LPPe-SRN-SRNgroupUniqueID OPTIONAL,
 defaultSRNtype OMA-LPPe-SRN-SRNtype OPTIONAL,
 referencePoint OMA-LPPe-ReferencePoint OPTIONAL,
 globalOrientation NULL OPTIONAL,
 srnsInGroupList SEQUENCE (SIZE (1..1024)) OF OMA-LPPe-SRN-SRN,
 ...
}

OMA-LPPe-SRN-TransmitterProperties ::= SEQUENCE {
 srnGroupList ::= SEQUENCE
 srnGroupID OMA-LPPe-SRN-SRNgroupUniqueID OPTIONAL,
 defaultSRNtype OMA-LPPe-SRN-SRNtype OPTIONAL,
 referencePoint OMA-LPPe-ReferencePoint OPTIONAL,
 globalOrientation NULL OPTIONAL,
 srnsInGroupList SEQUENCE (SIZE (1..1024)) OF OMA-LPPe-SRN-SRN,
 ...
}

OMA-LPPe-SRN-ReferenceGrid ::= SEQUENCE {
 srnGroupList ::= SEQUENCE
 srnGroupID OMA-LPPe-SRN-SRNgroupUniqueID OPTIONAL,
 defaultSRNtype OMA-LPPe-SRN-SRNtype OPTIONAL,
 referencePoint OMA-LPPe-ReferencePoint OPTIONAL,
 globalOrientation NULL OPTIONAL,
 srnsInGroupList SEQUENCE (SIZE (1..1024)) OF OMA-LPPe-SRN-SRN,
 ...
}

OMA-LPPe-SRN-TransmitterData ::= SEQUENCE {
 srnGroupList ::= SEQUENCE
 srnGroupID OMA-LPPe-SRN-SRNgroupUniqueID OPTIONAL,
 defaultSRNtype OMA-LPPe-SRN-SRNtype OPTIONAL,
 referencePoint OMA-LPPe-ReferencePoint OPTIONAL,
 globalOrientation NULL OPTIONAL,
 srnsInGroupList SEQUENCE (SIZE (1..1024)) OF OMA-LPPe-SRN-SRN,
 ...
}
Conditional presence

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>NotDefaultType</td>
<td>The field is mandatory present, if the SRN is of different type than the <code>defaultSRNtype</code> IE, otherwise the field is not present.</td>
</tr>
<tr>
<td>IfNoRefPoint</td>
<td>The field is mandatory present, if any of the groups is missing a reference point. Otherwise it is not present.</td>
</tr>
</tbody>
</table>

OMA-LPPe-SRN-SRNGroupList field descriptions

`incompleteFlag`
This field specifies, if the server was able to provide all the groups to the target the server would have wanted to (TRUE) or not (FALSE). For example, it might happen that when the target requests for groups near to a geographic position, there are more groups nearby than can be carried in a single message if AD segmentation is not supported.

`defaultReferencePoint`
This field specifies the default reference location for the location of all SRNs in the `groupList` IE, if the `groupList` IE does not contain any reference point. If this field is absent, the default reference location is provided by the default reference point in LPPe common IEs.

`groupList`
This field specifies the assistance data for one or more SRN groups.

`srnGroupID` and `defaultSRNType`
This field identifies the SRN group and specifies the type of all SRNs in `srnsInGroupList` IE.

`referencePoint`
This field, if present, specifies the reference point for this SRN group. If this field is absent, the `defaultReferencePoint` IE in OMA-LPPe-SRN-SRNGroupList defines the reference point.

`globalOrientation`
This field, if present, indicates that the orientation given in the field orientation (in `OMA-LPPe-SRN-SRNIinfo`) is with respect to the global coordinate system (see Appendix C.9.2). Otherwise, if this field is absent, the orientation information in `OMA-LPPe-SRN-SRNIinfo` (if any) can only be used to deduce the relative orientation information of the SRNs.

`srnsInGroupList`
This field is used to provide the relative positions and optionally orientations of the SRNs in the group.

`ver2-0-referenceGrid`
This parameter applies only to LPPe 2.0 and provides a default reference grid applicable to RF heat maps for all SRNs APs in the SRN group.

`ver2-0-location-area`
This parameter applies only to LPPe 2.0 and provides common location characteristics for all SRN APs in the SRN group.

`ver2-0-srn-properties`
This parameter applies only to LPPe 2.0 and provides common properties for all SRN APs in the SRN group.

`srnID`
This field identifies the SRN.

`srnType`
This field specifies the type of the SRNs.

`relativePosition`
This field specifies the relative position of the SRN relative to the reference point.

`orientation`
This field, if present, specifies the orientations of the SRN.

In case the `orientation` field is missing in all the records of the `srnsInGroupList` sequence, the orientation is assumed to be the same for all the SRNs, or no orientation information is provided.

In case `globalOrientation` is included and only the first item in the `srnsInGroupList` sequence includes the orientation, all the SRNs are assumed to have the same global orientation.
OMA-LPPe-SRN-SRNgroupList field descriptions

ver2-0-propagation
This field applies only to LPpe 2.0 and indicates the radio propagation characteristics of the SRN AP.

ver2-0-locationSource
This parameter applies only to LPPe 2.0 and provides the source of the SRN AP location and an indication of its reliability and accuracy.

ver2-0-rf-heatmap
This parameter applies only to LPPe 2.0 and provides RF heat map data for the SRN AP in the form of signal strength and/or RTT data. This parameter is optional. A target that receives new RSSI or RTT heat map data for an SRN AP SHALL delete any previously received RSSI or RTT heat map data, respectively, for this AP.

OMA-LPPe-SRN-SRNgroupUpdateResponse

The IE **OMA-LPPe-SRN-SRNgroupUpdateResponse** is used only as a response to the SRN group data update request.

```asn1
OMA-LPPe-SRN-SRNgroupUpdateResponse ::= SEQUENCE (SIZE (1..8)) OF
  OMA-LPPe-SRN-SRNgroupUpdateResponseElement

OMA-LPPe-SRN-SRNgroupUpdateResponseElement ::= SEQUENCE {
  srnGroupID          OMA-LPPe-SRN-SRNgroupUniqueID          OPTIONAL,
  targetDataValidity  ENUMERATED{ targetDataValid,
                                  targetDataInValidAndUpdatedDataWillBeProvided,
                                  targetDataInValidButServerWillNotProvideNewData,
                                  ... },
  updatedSRNgroup     OMA-LPPe-SRN-SRNgroup OPTIONAL, --Cond InvalidAndNewDataAvailable
  ...
}
```

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>InvalidAndNewDataAvailable</td>
<td>The field is mandatory present if the target data is out-of-date and the server provides updated data, otherwise the field is not present.</td>
</tr>
</tbody>
</table>

OMA-LPPe-SRN-SRNgroupUpdateResponse field descriptions

srnGroupID
This field specifies the group ID of which validity data is being provided. The group ID SHALL match with that in the request.

targetDataValidity
This field indicates if the target data is valid (value 0) or that the data is out-of-date and new data will be provided (value 1). Value 2 indicates that data is invalid but no new data will be provided – this may be due to the server not having the new data or because in the request the target indicated that the target only wishes to receive an indication that the data is invalid (provideIndicationOnly-field in the IE **OMA-LPPe-SRN-SRNGroupUpdateRequest**).

updatedSRNgroup
This field provides the latest SRN group information in the case the target’s current SRN group information is not valid and the server can provide up-to-date information. The updated group information overrides the previous group data. This may include replacing the previous srnGroupID parameter in the **OMA-LPPe-SRN-SRNgroup** with a new parameter (i.e. new group ID).

OMA-LPPe-SRN-AntennaPattern

The IE **OMA-LPPe-SRN-AntennaPattern** is used for providing the target with the complex-valued antenna response. The
coordinate system definition is SRN-specific.

```
-- ASN1START
OMA-LPpe-SRN-AntennaPattern ::= SEQUENCE (SIZE (1..8)) OF OMA-LPpe-SRN-AntennaPatternElement
OMA-LPpe-SRN-AntennaPatternElement ::= SEQUENCE {
    identification SEQUENCE {
        vendorOrOperator OMA-LPpe-VendorOrOperatorID,
        antennaPatternID INTEGER(0..65535),
        ...}
    antennaData CHOICE {
        antennaPattern OMA-LPpe-SRN-AntennaPatternForChannels,
        antennaContainer OCTET STRING,
        ...
    },
    ...
}
OMA-LPpe-SRN-AntennaPatternForChannels ::= SEQUENCE {
    evenGrid SEQUENCE {
        inAzimuth INTEGER(1..200),
        inElevation INTEGER(1..150)
    } OPTIONAL, --Cond EvenGrid
    patternList SEQUENCE (SIZE (1..maxChannels)) OF OMA-LPpe-SRN-ChannelResponse,
    ...
}
OMA-LPpe-SRN-ChannelResponse ::= SEQUENCE {
    channelNumber INTEGER(1..maxChannels),
    responseInElevation SEQUENCE (SIZE (7..901)) OF OMA-LPpe-SRN-ResponseInElevation,
    ...
}
OMA-LPpe-SRN-ResponseInElevation ::= SEQUENCE {
    elevation INTEGER(0..900) OPTIONAL, --Cond NotEven
    responseInAzimuth SEQUENCE (SIZE (18..3601)) OF OMA-LPpe-SRN-ResponseInAzimuth,
    ...
}
OMA-LPpe-SRN-ResponseInAzimuth ::= SEQUENCE {
    azimuth INTEGER(0..3599) OPTIONAL, --Cond NotEven
    response OMA-LPpe-ComplexNumber,
    ...
}
OMA-LPpe-ComplexNumber ::= SEQUENCE {
    amplitude INTEGER(0..1000),
    phase INTEGER(-1800..1799)
}
maxChannels INTEGER ::= 512
-- ASN1STOP
```

Conditional presence

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>EvenGrid</td>
<td>The field is mandatory present if the antenna response grid spacing is even, otherwise the field is not present.</td>
</tr>
<tr>
<td>NotEven</td>
<td>The field is mandatory present if the antenna response grid spacing is not even, otherwise the field is not present.</td>
</tr>
</tbody>
</table>

OMA-LPpe-SRN-AntennaResponse field descriptions
OMA-LPPe-SRN-AntennaResponse field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>identification</td>
<td>This field specifies for which SRN or group of SRNs the antenna pattern is given. It specifies the vendor specific unique antenna response ID. If the OMA-LPPe-SRN-AntennaResponse is provided as a response to a request, the identification SHALL match with the identification in the request.</td>
</tr>
<tr>
<td>antennaData</td>
<td>This field specifies the antenna data for the given identification IE.</td>
</tr>
<tr>
<td>evenGrid</td>
<td>This field defines the antenna response grid in the case that an evenly-spaced grid is used for providing the spatial response.</td>
</tr>
<tr>
<td>inAzimuth</td>
<td>This field defines the grid resolution in azimuth in case the antenna response is given in an evenly-spaced grid. Scale factor 0.1 degrees.</td>
</tr>
<tr>
<td>inElevation</td>
<td>This field defines the grid resolution in elevation in case the antenna response is given in an evenly-spaced grid. Scale factor is 0.1 degrees.</td>
</tr>
<tr>
<td>patternList</td>
<td>This field specifies the spatial antenna response.</td>
</tr>
<tr>
<td>channelNumber</td>
<td>This field indicates the channel for which the response is given.</td>
</tr>
<tr>
<td>responseInElevation</td>
<td>This field specifies the response at a given elevation angle.</td>
</tr>
<tr>
<td>elevation</td>
<td>In the case of a non-even grid, this field defines the elevation angle of the antenna response. Scale factor 0.1 degrees.</td>
</tr>
<tr>
<td>responseInAzimuth</td>
<td>This field specifies the response at a given azimuth.</td>
</tr>
<tr>
<td>azimuth</td>
<td>In the case of a non-even grid, this field defines the azimuth angle of the antenna response. Scale factor 0.1 degrees.</td>
</tr>
<tr>
<td>response</td>
<td>This field defines the complex-valued antenna response at the defined azimuth and elevation angles.</td>
</tr>
<tr>
<td>amplitude</td>
<td>This field specifies the gain in the linear scale. Normalized so that the highest amplitude is 1000 over all the channels and spatial directions.</td>
</tr>
<tr>
<td>phase</td>
<td>This field specifies the phase. The phase is normalized so that phase zero occurs coincides with the amplitude response of 1000 - all the other phase response values over all the channels and spatial directions are relative to this reference value. Scale factor 0.1 degrees.</td>
</tr>
</tbody>
</table>

6.5.11.3 Short Range Node Assistance Data Request

- **OMA-LPPe-SRN-RequestAssistanceData**

The IE OMA-LPPe-SRN-RequestAssistanceData is used to request assistance for SRN-based positioning.
OMA-LPPe-SRN-RequestAssistanceData field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>srnGroup</td>
<td>This parameter indicates the type of SRN data request which can either be to receive new SRN group data or to verify and optionally update previously received SRN group data.</td>
</tr>
<tr>
<td>antennaPatternRequest</td>
<td>This parameter indicates a request for SRN antenna data.</td>
</tr>
<tr>
<td>ver2-0-requestedAD</td>
<td>This parameter only applies only to LPPe 2.0. It specifies the SRN assistance data requested. This is represented by a bit string, with a one-value at the bit position means the particular assistance data is requested; a zero-value means not requested. The following assistance data types are included:</td>
</tr>
<tr>
<td>ver2-0-propModel</td>
<td>This parameter applies only to LPPe 2.0 and specifies the propagation estimation model required, when propagation estimation is requested.</td>
</tr>
<tr>
<td>ver2-0-visible-SRN-APs</td>
<td>This parameter applies only to LPPe 2.0 and enables a target to indicate to a server the identities of up to 16 currently visible SRN APs. This may assist a server to provide assistance data for SRN APs nearby to the target. A target SHALL provide visible SRN APs in order of received signal strength with the SRN AP with the highest signal strength provided first. This parameter is optional.</td>
</tr>
<tr>
<td>ver2-0-SRN-Data</td>
<td>This parameter applies only to LPPe 2.0 and enables a target to indicate to a server the identities of SRN APs for which the target has assistance data received previously from this server. This may enable a server to avoid resending data for the same APs. This parameter is optional. A target need not include this parameter if a server included the ver2-0-server-tracking field in the OMA-LPPe-SRN-ProvideAssistanceData data type for all SRN AP data provided by this server. Otherwise, a target should include this parameter for any SRN APs for which data was previously received and indicated as not tracked by the server if the target is requesting data for additional APs.</td>
</tr>
</tbody>
</table>

```
OMA-LPPe-SRN-RequestAssistanceData {
    srnGroup CHOICE {
        srnGroupRequest OMA-LPPe-SRN-SRNGroupRequest,
        srnGroupUpdateRequest OMA-LPPe-SRN-SRNGroupUpdateRequest,
        ... } OPTIONAL,
    antennaPatternRequest OMA-LPPe-SRN-AntennaPatternRequest OPTIONAL,
    ...,
    -- version 2.0 extension elements
    ver2-0-requestedAD BIT STRING { ver2-0-propagation (0),
        ver2-0-rssiHeatMap (1),
        ver2-0-rttHeatMap (2) } (SIZE(1..16)),
    ver2-0-propModel OMA-LPPe-ver2-0-RF-PropagationTypes OPTIONAL,
    ver2-0-visible-SRN-APs SEQUENCE (SIZE (1..ver2-0-maxVisibleAPs)) OF OMA-LPPe-SRN-SRNid OPTIONAL,
    ver2-0-SRN-Data SEQUENCE (SIZE (1..ver2-0-maxKnownAPs)) OF OMA-LPPe-SRN-SRNid OPTIONAL,
    ver2-0-SRN-HeatMaps SEQUENCE (SIZE (1..ver2-0-maxHeatMaps)) OF OMA-LPPe-ver2-0-RF-HeatMap-ID OPTIONAL,
    ver2-0-SRN-HeatMapUpdateReq SEQUENCE {
        heatMap-ID OMA-LPPe-ver2-0-RF-HeatMap-ID,
        updatingIndex INTEGER (1..16777216),
        targetHeading OMA-LPPe-HighAccuracy3DVelocity OPTIONAL,
        ... } OPTIONAL,
}
-- ASN1STOP
```
oma-lppe-srn-requestassistanceData field descriptions

srnGroup
This parameter indicates the type of SRN data request which can either be to receive new SRN group data or to verify and optionally update previously received SRN group data.

antennaPatternRequest
This parameter indicates a request for SRN antenna data.

ver2-0-SRN-HeatMaps
This parameter applies only to LPPe 2.0 and enables a target to indicate to a server the identities of all RF heap maps previously received from this server for SRN APs. This may enable a server to avoid resending the same heat maps. This parameter is optional. A target need not include this parameter if a server included the ver2-0-server-tracking field in the OMA-LPPe-SRN-ProvideAssistanceData data type for all RF heat maps provided by this server for SRN APs. Otherwise, a target should include this parameter for any previously received RSSI or RTT heat maps for SRN APs that were indicated as not tracked by the server if the target is requesting additional RSSI or RTT heatmaps, respectively, from the server for SRN APs.

ver2-0-SRN-HeatMapUpdateReq
This parameter applies only to LPPe 2.0 and provides the ID of a heat map and an index of a reference grid point within the heat map that has triggered an update request for new assistance data when the target estimates its position at or near to this grid point. The heat map and the reference grid point would have been provided earlier to the target via the updateReqGridPoints parameter in the OMA-LPPe-ver2-0-RF-HeatMap IE. Appendix G.5 contains more information on this update request. Optionally, the target may also send its heading and velocity information. This parameter is optional.

6.5.11.4 Short Range Node Assistance Data Request Elements

— OMA-LPPe-SRN-SRNGroupRequest

The OMA-LPPe-SRN-SRNGroupRequest is used to request the relative positions and optionally orientations of the SRNs in the local SRN group. For the assistance data request purposes the target may (a) provide its approximate location to the server in either the OMA-LPPe-CommonIEsRequestAssistanceData parameter or in a separate the Provide Location Information –message or (b) provide a list of observed SRN IDs in a Provide Location Information message. In case both the location and the observed SRN IDs are provided, the server SHALL primarily consider the SRN IDs. Note that it is recommended to provide the server information on the target SRN capabilities prior to the SRN assistance data request especially, if SRN assistance data is requested based on target position information.

-- ASN1START

OMA-LPPe-SRN-SRNGroupRequest ::= SEQUENCE {
 doNotProvideList OMA-LPPe-SRN-SRNProvideList OPTIONAL,
 doProvideList OMA-LPPe-SRN-SRNProvideList OPTIONAL,
 ...
}

OMA-LPPe-SRN-SRNProvideList ::= SEQUENCE {
 groupList SEQUENCE (SIZE (1..256)) OF OMA-LPPe-SRN-SRNGroupUniqueID OPTIONAL,
 categoryList SEQUENCE (SIZE (1..16)) OF OMA-LPPe-SRN-Category OPTIONAL,
 ...
}

-- ASN1STOP

OMA-LPPe-SRN-SRNGroupRequest field descriptions

doNotProvideList
This field specifies the list of SRN group IDs and/or SRN categories for which the target does not wish to receive assistance data. If this field and the doProvideList IE are both absent, the request is applicable to all groups available at the target location.

doProvideList
This field specifies the list of SRN group IDs and/or SRN categories for which the target requests assistance data. If this field and the doNotProvideList IE are both absent, the request is applicable to all groups available at the target location.

© 2020 Open Mobile Alliance. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
-- **OMA-LPPe-SRN-SRNgroupUpdateRequest**

The IE **OMA-LPPe-SRN-SRNgroupUpdateRequest** is used for checking if the target’s current SRN group information is valid.

```asn1
OMA-LPPe-SRN-SRNgroupUpdateRequest ::= SEQUENCE (SIZE (1..64)) OF
OMA-LPPe-SRN-SRNgroupUpdateRequestElement

OMA-LPPe-SRN-SRNgroupUpdateRequestElement ::= SEQUENCE {
srnGroupID OMA-LPPe-SRN-SRNgroupUniqueID,
provideIndicationOnly NULL OPTIONAL,
inTheGroup SEQUENCE (SIZE (1..1024)) OF OMA-LPPe-SRN-SRNid OPTIONAL,
...
}
```

OMA-LPPe-SRN-SRNgroupUpdateRequest field descriptions

- **srnGroupID**
 This field specifies the SRN group of interest.

- **provideIndicationOnly**
 This field indicates, if included, that in case the target has out-of-date data, the target only wishes to receive an indication that the current target data is out-of-date, not updated data.

- **inTheGroup**
 This field specifies a subset of the SRN IDs within the group. The field can be used in the server end to check that the group ID definitions in the target and server match.

-- **OMA-LPPe-SRN-AntennaPatternRequest**

The **OMA-LPPe-SRN-AntennaPatternRequest** is used to request the complex-valued antenna response information.

```asn1
OMA-LPPe-SRN-AntennaPatternRequest ::= SEQUENCE (SIZE (1..8)) OF
OMA-LPPe-SRN-AntennaPatternRequestElement

OMA-LPPe-SRN-AntennaPatternRequestElement ::= SEQUENCE {
antennaPatternID SEQUENCE {
vendorOrOperator OMA-LPPe-VendorOrOperatorID,
antennaPatternID INTEGER(0..65535),
...
}
...
}
```

OMA-LPPe-SRN-AntennaPatternRequest field descriptions

- **antennaPatternID**
 This field specifies the ID of the antenna pattern requested.
6.5.11.5 Short Range Node Location Information

– **OMA-LPPe-SRN-ProvideLocationInformation**

The **OMA-LPPe-SRN-ProvideLocationInformation** is used to provide positioning SRN measurements. Measurements can be provided for up to 64 SRNs.

```
-- ASN1START
OMA-LPPe-SRN-ProvideLocationInformation ::= SEQUENCE {
  srnMeasurementList SEQUENCE (SIZE (1..64)) OF OMA-LPPe-SRN-MeasurementElement OPTIONAL,
  srnError OMA-LPPe-SRN-Error OPTIONAL,
  ... }
-- ASN1STOP
```

OMA-LPPe-SRN-ProvideLocationInformation field descriptions

- **srnMeasurementList**
 This field provides the SRN measurements at the current time and/or for historic times.

- **srnError**
 This field provides the SRN measurement error information when not all requested SRN measurements can be reported. This field should be included when some but not all requested measurements are reported and **SHALL** be included when no requested measurements are reported.

6.5.11.6 Short Range Node Location Information Elements

– **OMA-LPPe-SRN-MeasurementElement**

The **OMA-LPPe-SRN-MeasurementElement** is used to provide the server with the SRN measurements made by the target. Target may provide up to 64 sets of data per SRN. The target may decide the number of sets, for example, based on the movement information.

```
-- ASN1START
OMA-LPPe-SRN-MeasurementElement ::= SEQUENCE {
  srnID OMA-LPPe-SRN-SRNid,
  srnCategory OMA-LPPe-SRN-Category OPTIONAL, --Cond IfKnown
  srnGroupID OMA-LPPe-SRN-SRNgroupUniqueID OPTIONAL, --Cond IfKnown
  measurementList SEQUENCE (SIZE (1..64)) OF OMA-LPPe-SRN-srnMeasurementElement OPTIONAL,
  ... }
OMA-LPPe-SRN-srnMeasurementElement ::= SEQUENCE {
  relativeTimeStamp INTEGER(0..1000) OPTIONAL, --Cond IfNotFirst
  rssi INTEGER(-128..127) OPTIONAL,
  rtd OMA-LPPe-WLAN-RTD OPTIONAL,
  ... }
-- ASN1STOP
```

Conditional presence

| **IfKnown** | The field is mandatory present if the target has the information; otherwise the field is not present. |
| **IfNotFirst** | The field is mandatory present if the measurement is not the first of the sequence; otherwise the field is not present. |

OMA-LPPe-SRN-MeasurementElement field descriptions
OMA-LPPe-SRN-MeasurementElement field descriptions

srnID
This field identifies the SRN.

srnCategory
This field specifies the category of the SRN being measured.

srnGroupID
This field specifies the group of the SRN being measured.

measurementList
This field includes up to 64 measurement sets.

relativeTimeStamp
This parameter SHALL be included for historic SRN measurements and provides the time of the historic measurements relative to current time in units of 0.01 seconds. If absent, current time is implied which is equivalent to a relativeTimeStamp of zero.

rssi
This field provides the Received Signal Strength Indicator. The interpretation and the scale are SRN-type specific.

rtd
This field provides the measured round trip delay between the target and SRN, and optionally the accuracy expressed as the standard deviation of the delay.

6.5.11.7 Short Range Node Location Information Request

-- OMA-LPPe-SRN-RequestLocationInformation

The **OMA-LPPe-SRN-RequestLocationInformation** is used to request SRN measurements.

```asn1
OMA-LPPe-SRN-RequestLocationInformation ::= SEQUENCE {
    requestInfo    SEQUENCE (SIZE (1..16)) OF OMA-LPPe-SRN-ReqLocInfo-Category,
    ...
}

OMA-LPPe-SRN-ReqLocInfo-Category ::= SEQUENCE {
    category    OMA-LPPe-SRN-Category,
    multipleMeasurements ENUMERATED{ forbidden(0),
                                        allowed(1),
                                        requested(2), ... }  OPTIONAL,
    allowedMeasurements OMA-LPPe-SRN-MeasurementMask  OPTIONAL,
    historicMeasurementsRequested    NULL  OPTIONAL,
    ...
}
```

-- ASN1STOP

OMA-LPPe-SRN-RequestLocationInformation field descriptions

requestInfo
This field specifies the requested measurement information, e.g., allowed SRN categories.

category
This field specifies the SRN category.

multipleMeasurements
This field specifies if the target is forbidden, allowed, or requested to provide multiple measurement sets per SRN.

allowedMeasurements
This field specifies the allowed SRN measurements.

historicMeasurementsRequested
This field indicates, if the target should return historic SRN measurements.

6.5.11.8 Short Range Node Location Information Request Elements

Void.
6.5.11.9 Short Range Node Capability Information

– OMA-LPPe-SRN-ProvideCapabilities

The OMA-LPPe-SRN-ProvideCapabilities is used by the target to provide its LPPe SRN positioning capabilities to the server. Inclusion of an empty OMA-LPPe-SRN-ProvideCapabilities indicates the target does not support SRN positioning for either target assisted or target based mode.

```asn1
OMA-LPPe-SRN-ProvideCapabilities ::= SEQUENCE {
  capabilitiesPerSRNCategory SEQUENCE (SIZE (1..16)) OF
    OMA-LPPe-SRN-ProvideCapabilitiesElement OPTIONAL,
  ...
}

OMA-LPPe-SRN-ProvideCapabilitiesElement ::= SEQUENCE {
  srnCategory OMA-LPPe-SRN-Category,
  supportedMeasurements OMA-LPPe-SRN-MeasurementMask OPTIONAL,
  supportedAssistanceData BIT STRING {
    srnGroup (0),
    antennaPattern (1),
    ver2-0-propagation (2),
    ver2-0-rssiHeatMap (3),
    ver2-0-rttHeatMap (4),
    ver2-0-jpeg (5),
    ver2-0-reorientation (6),
    ver2-0-run-lengths (7),
    ver2-0-update-required-grid-points (8),
    ver2-0-locationAreaData (9),
    ver2-0-transmitterProperties (10)
} (SIZE (1..16)),
  historicMeasurementsSupported NULL OPTIONAL,
  ...
  -- version 2.0 extension elements
  ver2-0-propModel-Capability OMA-LPPe-ver2-0-RF-Propagation-Capability OPTIONAL
}
```

OMA-LPPe-SRN-ProvideCapabilitiesElement field descriptions

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>capabilitiesPerSRNCategory</td>
<td>This field specifies the target capabilities for each supported SRN category.</td>
</tr>
<tr>
<td>srnCategory</td>
<td>This field specifies the supported SRN category. When capabilities are provided for two SRN categories A and B where B is a subset of A (e.g. A defines SRN technology only and B defines the same SRN technology and a vendor ID), the capabilities for B prevail over those for A in the case of B.</td>
</tr>
<tr>
<td>supportedMeasurements</td>
<td>This field specifies the SRN measurements the target can provide. The field SHALL be included in case target-assisted mode is supported for the SRN category.</td>
</tr>
<tr>
<td>OMA-LPPe-SRN-ProvideCapabilitiesElement field descriptions</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>supportedAssistanceData</td>
<td></td>
</tr>
<tr>
<td>This field specifies the SRN assistance data types supported by the target device for target based mode. This is represented by a bit string, with a one value at the bit position means the particular assistance data type is supported; a zero value means not supported. The following bits are assigned for the indicated assistance data.</td>
<td></td>
</tr>
<tr>
<td>srgroup: SRN group data</td>
<td></td>
</tr>
<tr>
<td>antennaPattern: SRN antenna pattern data</td>
<td></td>
</tr>
<tr>
<td>ver2-0-propagation: propagation estimation for each SRN AP. This bit only applies to LPPe 2.0.</td>
<td></td>
</tr>
<tr>
<td>ver2-0-rssiHeatMap: RSSI heat map for an SRN AP and default reference grid. This bit only applies to LPPe 2.0.</td>
<td></td>
</tr>
<tr>
<td>ver2-0-rttHeatMap: RTT heat map for an SRN AP and default reference grid. This bit only applies to LPPe 2.0.</td>
<td></td>
</tr>
<tr>
<td>ver2-0-jpeg: compression of a heat map using JPEG. This bit only applies to LPPe 2.0.</td>
<td></td>
</tr>
<tr>
<td>ver2-0-reorientation: reorientation of a heat map as in Appendix G.4.1. This bit only applies to LPPe 2.0.</td>
<td></td>
</tr>
<tr>
<td>ver2-0-run-lengths: heat maps with arbitrary shape via run lengths as in Appendix G.4.2. This bit only applies to LPPe 2.0.</td>
<td></td>
</tr>
<tr>
<td>ver2-0-update-required-grid-points: heat maps containing grid points that trigger a target request for new assistance data when a target is near such a grid point. This bit only applies to LPPe 2.0.</td>
<td></td>
</tr>
<tr>
<td>ver2-0-locationAreaData: location area data for SRN APs. This bit only applies to LPPe 2.0</td>
<td></td>
</tr>
<tr>
<td>ver2-0-transmitterProperties: transmitter properties for SRN APs. This bit only applies to LPPe 2.0.</td>
<td></td>
</tr>
<tr>
<td>historicMeasurementsSupported</td>
<td></td>
</tr>
<tr>
<td>This field, if included, indicates support for reporting historic measurements.</td>
<td></td>
</tr>
<tr>
<td>ver2-0-propModel-Capability</td>
<td></td>
</tr>
<tr>
<td>This parameter only applies to LPPe 2.0 and defines the types of RF propagation model supported by the target for SRN APs.</td>
<td></td>
</tr>
</tbody>
</table>

6.5.11.10 Short Range Node Capability Information Elements

Void.

6.5.11.11 Short Range Node Capability Information Request

– OMA-LPPe-SRN-RequestCapabilities

The IE *OMA-LPPe-SRN-RequestCapabilities* is used to request LPPe SRN capabilities information from the target.

```asn1
OMA-LPPe-SRN-RequestCapabilities ::= SEQUENCE {
  capabilitiesRequestedFor SEQUENCE (SIZE (1..16)) OF OMA-LPPe-SRN-Category OPTIONAL,
  ...
}
```

-- ASN1STOP
OMA-LPPe-SRN-RequestCapabilitiesElement field descriptions

capabilitiesRequestedFor

This field specifies the SRN categories for which the target capabilities are requested. If this field is absent, the capabilities for all SRN categories supported by the target are requested.

6.5.11.12 Short Range Node Error Elements

-- **OMA-LPPe-SRN-Error**

The IE **OMA-LPPe-SRN-Error** is used by the target or server to provide SRN Error Reasons.

```asn1
OMA-LPPe-SRN-Error ::= CHOICE {
  srnLocationServerErrorCauses      OMA-LPPe-SRN-LocationServerErrorCauses,
  srnTargetDeviceErrorCauses        OMA-LPPe-SRN-TargetDeviceErrorCauses,
  ...}
```

-- **ASN1STOP**

OMA-LPPe-SRN-Error field descriptions

srnLocationServerErrorCause

This field specifies the server error cause.

srnLocationTargetDeviceErrorCauses

This field specifies the target error cause.

-- **OMA-LPPe-SRN-LocationServerErrorCauses**

The IE **OMA-LPPe-SRN-LocationServerErrorCauses** is used by the server to provide SRN Error Reasons to the target in the IE **OMA-LPPe-SRN-ProvideAssistanceData**.

```asn1
OMA-LPPe-SRN-LocationServerErrorCauses ::= SEQUENCE {
  groupErrors        ENUMERATED {
    undefined,
    allGroupOrCategoryOrSRNidUnknownOrUnsupported,
    allGroupAndCategoryOrSRNidUnknownOrUnsupported,
    noSRNGroupsNearby,
    ...} OPTIONAL,

  groupUpdateErrors   ENUMERATED {
    undefined,
    allSRNgroupIDsUnknown,
    allSRNgroupIDsUnknownButSomeSRNGroupVersionsUnknown,
    allSRNgroupIDsUnknownAndAllSRNGroupVersionsUnknown,
    someSRNGroupIDsUnknown,
    someSRNGroupVersionsUnknownAndAllSRNGroupVersionsUnknown,
    someSRNGroupIDsAndSomeSRNGroupVersionsUnknown,
    inTheGroupInformationDoesNotMatchWithGroupID,
    ...} OPTIONAL,

  srnAntennaErrors    ENUMERATED {
    undefined,
    someAntennaPatternIDsUnknown,
    allAntennaPatternIDsUnknown,
    ...} OPTIONAL,

  ...}
```

-- **version 2.0 extension elements**

```asn1
ver2-0-propagationModelUnavailable   NULL OPTIONAL,
ver2-0-rssiHeatMapsUnavailable      NULL OPTIONAL,
ver2-0-rttHeatMapsUnavailable       NULL OPTIONAL
```

-- **ASN1STOP**
OMA-LPPe-SRN-LocationServerErrorCauses field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>groupErrors</td>
<td>This field specifies the server error causes related to the SRN group request.</td>
</tr>
<tr>
<td>groupUpdateErrors</td>
<td>This field specifies the server error causes related to the SRN group update request.</td>
</tr>
<tr>
<td>srnAntennaErrors</td>
<td>This field specifies the server error causes related to the SRN antenna pattern assistance.</td>
</tr>
<tr>
<td>ver2-0-propagationModelUnavailable</td>
<td>This field applies to LPPe 2.0 only. When present it indicates that a propagation model for SRNs is not available.</td>
</tr>
<tr>
<td>ver2-0-rssiHeatMapsUnavailable</td>
<td>This field applies to LPPe 2.0 only. When present it indicates that an RSSI Heat Map for SRNs is not available.</td>
</tr>
<tr>
<td>ver2-0-rttHeatMapsUnavailable</td>
<td>This field applies to LPPe 2.0 only. When present it indicates that an RTT Heat Map for SRNs is not available.</td>
</tr>
</tbody>
</table>

OMA-LPPe-SRN-TargetDeviceErrorCauses

The IE `OMA-LPPe-SRN-TargetDeviceErrorCauses` is used by the target to provide SRN Error Reasons to the server in the IE `OMA-LPPe-SRN-ProvideLocationInformation`.

```asn1
OMA-LPPe-SRN-TargetDeviceErrorCauses ::= SEQUENCE {  
  srnErrorsPerCategory  SEQUENCE (SIZE (1..16)) OF OMA-LPPe-SRN-TargetDeviceError,  
  ...  
}
OMA-LPPe-SRN-TargetDeviceError ::= SEQUENCE {  
  category   OMA-LPPe-SRN-Category,  
  srnErrors  ENUMERATED{  
    undefined,  
    requestedMeasurementsNotAvailable,  
    notAllrequestedMeasurementsPossible,  
    categoryNotSupported,  
    ...},  
  rssiNotAvailable       NULL OPTIONAL,  
  rtdNotAvailable        NULL OPTIONAL,  
  multipleSetsNotAvailable NULL OPTIONAL,  
  historicMeasurementsNotAvailable NULL OPTIONAL,  
  ...  
}
```

OMA-LPPe-SRN-LocationServerErrorCauses field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>srnErrors</td>
<td>This field specifies the target error cause. If the srnErrors value is 'requestedMeasurementsNotAvailable', none of the requested measurements could be provided and no further information needs to be included. If the srnErrors value is 'notAllrequestedMeasurementsPossible', the target device was able to provide some but not all requested SRN measurements. In this case, the target device should indicate those measurements that could not be obtained.</td>
</tr>
</tbody>
</table>

6.5.11.13 Short Range Node Common Elements

Specifies SRN common elements.

OMA-LPPe-SRN-SRNGroupUniqueID

The IE `OMA-LPPe-SRN-SRNGroupUniqueID` provides a unique ID for a SRN group.
-- ASN1START
OMA-LPpe-SRN-SRNgroupUniqueID ::= SEQUENCE {
 providerID OMA-LPpe-VendorOrOperatorID,
 providerAssignedID OCTET STRING,
 srnDataVersion INTEGER (0..4294967295) OPTIONAL,
 ...
}
-- ASN1STOP

OMA-LPpe-SRN-SRNgroupUniqueID field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>providerID</td>
<td>This field identifies the vendor or operator or other service provider for the SRN group.</td>
</tr>
<tr>
<td>providerAssignedID</td>
<td>This field provides a unique ID relative to the particular provider.</td>
</tr>
<tr>
<td>srnDataVersion</td>
<td>This field identifies the version of the SRN group data. The change in the version indicates the change in the group (removed SRNs, added SRNs, moved SRNs, modified SRNs).</td>
</tr>
</tbody>
</table>

OMA-LPpe-SRN-SRNtype

The IE **OMA-LPpe-SRN-SRNtype** provides information about a particular SRN category and can be considered to be a specific instance of an SRN category.

-- ASN1START
OMA-LPpe-SRN-SRNtype ::= SEQUENCE {
 srnCategory OMA-LPpe-SRN-Category,
 srnERP INTEGER(-300..500) OPTIONAL,
 srnAntennaInfo SEQUENCE {
 antennaPatternID INTEGER(0..65535),
 switchingPatternID INTEGER(0..65535) OPTIONAL,
 ...
 } OPTIONAL,
 ...
}
-- ASN1STOP

OMA-LPpe-SRN-SRNtype field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>srnCategory</td>
<td>This field identifies the SRN category.</td>
</tr>
<tr>
<td>srnERP</td>
<td>This field specifies the effective radiated power. Scale factor 0.1 dB ref 1 mW.</td>
</tr>
<tr>
<td>srnAntennaInfo</td>
<td>This field provides information about the SRN antenna type.</td>
</tr>
<tr>
<td>antennaPatternID</td>
<td>This field provides a unique ID relative to the srnVendorInformation for the antenna pattern.</td>
</tr>
<tr>
<td>switchingPatternID</td>
<td>This field provides a unique ID relative to the srnVendorInformation for the antenna switching pattern.</td>
</tr>
</tbody>
</table>

OMA-LPpe-SRN-Category

The IE **OMA-LPpe-SRN-Category** identifies a particular SRN technology and where relevant an associated vendor. Vendors associated information can be used to further qualify the SRN technology type (e.g. in the case of "other") or indicate a
specific SRN technology type supported in SRNs supplied by a particular vendor.

```asn1
OMA-LPPe-SRN-Category ::= SEQUENCE {
    srnTechnologyType OMA-LPPe-SRN-Technologies,
    srnVendorInformation SEQUENCE {
        vendor OMA-LPPe-VendorOrOperatorID,
        vendorInfo OCTET STRING OPTIONAL,
        ...
    } OPTIONAL, --Cond other
    ...
}
```

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>other</td>
<td>The field is mandatory present if <code>srnTechnologyType</code> IE is set to value ‘other’. Otherwise it may optionally be present.</td>
</tr>
</tbody>
</table>

`OMA-LPPe-OMA-LPPe-SRN-SRNType` field descriptions

- **srnTechnologyType**
 This field identifies the SRN RF technology.

- **srnVendorInformation**
 This field provides information about an associated SRN vendor.

OMA-LPPe-SRN-SRNId

The IE `OMA-LPPe-SRN-SRNId` provides an identity for a particular SRN.

```asn1
OMA-LPPe-SRN-SRNId ::= SEQUENCE {
    srn-id CHOICE {
        mac BIT STRING(SIZE(48)),
        nfc SEQUENCE {
            manufacturer BIT STRING(SIZE(8)),
            uniqueNumber BIT STRING(SIZE(48)),
            ...
        },
        mobileCode SEQUENCE {
            registryID BIT STRING(SIZE(12)),
            remainingPart OCTET STRING(SIZE(1..16)),
            resolutionIdentifier OCTET STRING(SIZE(1..18)),
            ...
        },
        other OCTET STRING,
        ...
    }
}
```

`OMA-LPPe-SRN-SRNId` field descriptions

- **srn-id**
 This field defines the SRN ID for a particular SRN.
OMA-LPPe-SRN-SRNd field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mac</td>
<td>This field defines the MAC address of the SRN for BT and BT LE as per [IEEE 802.15.1]</td>
</tr>
<tr>
<td>nfc</td>
<td>This field defines the Manufacturer and Unique Number of the SRN for NFC as per [NFC1] and [NFC2].</td>
</tr>
<tr>
<td>mobileCode</td>
<td>This field defines the Mobile Code Identifier (ICI) of the SRN for OMA Mobile Codes as defined in [OMA-MC].</td>
</tr>
<tr>
<td>other</td>
<td>This field defines a vendor or operator specific SRN ID. The meaning of this field may be inferred from the SRN group ID (OMA-LPPe-SRN-SRNgrouplUniqueID) and/or the SRN category (OMA-LPPe-SRN-Category).</td>
</tr>
</tbody>
</table>

OMA-LPPe-SRN-Technologies

The IE OMA-LPPe-SRN-Technologies defines a particular SRN technology type.

```asn1
OMA-LPPe-SRN-Technologies ::= SEQUENCE {
  srnTechnologies    ENUMERATED{ bt, btle, nfc, mobileCode, other, ... },
  ...}
```

OMA-LPPe-SRN-Technologies field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>srnTechnologies</td>
<td>This field specifies the particular SRN technology: bt: specifies the SRN technology is Bluetooth [IEEE 802.15.1]; btle: specifies the SRN technology is Bluetooth Low Energy [IEEE 802.15.1]; nfc: specifies the SRN technology is Near Field Communications [NFC1], [NFC2]; mobileCode: specifies the SRN technology is OMA Mobile Codes [OMA-MC]; other: specifies an vendor or operator specific SRN type that can be further defined in OMA-LPPe-SRN-Category.</td>
</tr>
</tbody>
</table>

OMA-LPPe-SRN-MeasurementMask

The IE OMA-LPPe-SRN-MeasurementMask defines SRN measurement types.

```asn1
OMA-LPPe-SRN-MeasurementMask ::= SEQUENCE {
  srnMeasurements    BIT STRING({
    rssi(0),
    rtd (1) } (SIZE(1..16))),
  ...}
```

OMA-LPPe-SRN-MeasurementMask field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>srnMeasurements</td>
<td>This field specifies a particular SRN measurement type. This is represented by a bit string, with a one value at the bit position means the particular measurement type is addressed (e.g., requested or supported); a zero value means not addressed (e.g., not requested or not supported).</td>
</tr>
</tbody>
</table>
6.5.12 Pedestrian Dead Reckoning Positioning

This section defines support for positioning using assistance data and measurements related to Pedestrian Dead Reckoning Positioning (PDR).

6.5.12.1 PDR Assistance Data

-- OMA-LPPe-ver2-0-PDR -ProvideAssistanceData

The OMA-LPPe-ver2-0-PDR-ProvideAssistanceData is used to provide assistance for PDR-based methods.

-- ASN1START

OMA-LPPe-ver2-0-PDR-ProvideAssistanceData ::= SEQUENCE {
 ver2-0-stepLengthEstimationModelAD SEQUENCE (SIZE(1.. maxStepLengthEstimationModelSets)) OF OMA-LPPe-ver2-0-PDR-StepLengthEstimationModelList
 OPTIONAL,
 ver2-0-pdrError OMA-LPPe-ver2-0-PDR-Error OPTIONAL,
 ...
}

maxStepLengthEstimationModelSets INTEGER ::= 16

-- ASN1STOP

OMA-LPPe-ver2-0-PDR-ProvideAssistanceData field descriptions

ver2-0-stepLengthEstimationModelAD
This field is used to provide step length estimation model list to the target. The list can consist of up to 16 model lists.

ver2-0-pdrError
This field provides the step length estimation model error information when not all requested step length estimation models can be reported. This field should be included when some but not all requested step length estimation models are reported and SHALL be included when no requested step length estimation models are reported.

6.5.12.2 PDR Assistance Data Elements

-- OMA-LPPe-ver2-0-PDR-StepLengthEstimationModelList

The OMA-LPPe-ver2-0-PDR-StepLengthEstimationModelList is used by the location server to provide parameters to model the step length estimation. The step frequency-user’s height model is supported with the fields for the parameters which relate variables to step length. This model is simple and appropriate for the target at which the step frequency information is only available.

The linear sensor combination model, on the other hand, is supported with the fields with the coefficients and nominal value of various sensors which related to step length. Proper use of this model allows the target to provide more accurate step length if the various sensors is supported.

-- ASN1START

OMA-LPPe-ver2-0-PDR-StepLengthEstimationModelList ::= CHOICE {
 sfHeightModel OMA-LPPe-ver2-0-PDR-StepFrequencyHeightModelList,
 linearSensorCombiModel OMA-LPPe-ver2-0-PDR-LinearSensorCombinationModelList,
 ...
}

-- ASN1STOP
The **OMA-LPPe-ver2-0-PDR-StepFrequencyHeightModelList** consists of each step length estimation model. Each step length estimation model set includes pedestrian state and associated step length estimation parameters. For instance, three subsequent models, each with different pedestrian state, would result in totally three different pedestrian applicable step length estimation models. For more detail, see the Appendix C.10.

OMA-LPPe-ver2-0-PDR-StepFrequencyHeightModelList field descriptions

pedestrianMotionState
This field specifies the pedestrian motion state for which the step length estimation models are applicable.

alpha
This field specifies the coefficient of step frequency times user’s height which linearly relates the change of step frequency to the change of step length user’s height in the given pedestrian state.
Scale factor 10^{-2} 1/Hz. Range [-1.28, 1.28) 1/Hz.

beta
This field specifies the coefficient of step frequency which linearly relates the change of step frequency to the change of step length in the given pedestrian state.
Scale factor 10^{-2} m/Hz. Range [-1.28, 1.28) m/Hz.

gamma
This field specifies the coefficient of bias in the given pedestrian state.
Scale factor 10^{-2} m. Range [-1.28, 1.28) m.

The **OMA-LPPe-ver2-0-PDR-LinearSensorCombinationModelList** consists of each step length estimation model. Each step length estimation model set includes pedestrian state and its associated step length estimation parameters. For instance, three subsequent models, each with different pedestrian state, would result in totally three different pedestrian applicable step length estimation models. For more detail, see the Appendix C.10.
OMA-LPpe-ver2-0-PDR-LineareSensorCombinationModelList field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pedestrianMotionState</td>
<td>This field specifies the pedestrian motion state for which the step length estimation models are applicable.</td>
</tr>
<tr>
<td>stepfreqCoeff</td>
<td>This field specifies the step frequency coefficient which linearly relates the change of step frequency to the change of step length from the nominal value of step frequency in the given pedestrian state.</td>
</tr>
<tr>
<td>Scale factor 10⁻² m/Hz. Range [0, 1.28) m/Hz.</td>
<td></td>
</tr>
<tr>
<td>stepfreqNominalVal</td>
<td>This field specifies the nominal value of step frequency in the given pedestrian state.</td>
</tr>
<tr>
<td>Scale factor 10⁻² Hz. Range [0, 5.12) Hz.</td>
<td></td>
</tr>
<tr>
<td>peakdiffAccelCoeff</td>
<td>This field specifies the peak difference of 3-axis acceleration norm coefficient which linearly relates the change of peak difference of 3-axis acceleration norm to the change of step length from the nominal value of peak difference of 3-axis acceleration norm in the given pedestrian state.</td>
</tr>
<tr>
<td>Scale factor 10⁻¹ m/(m/s²). Range [0, 0.256) m/(m/s²).</td>
<td></td>
</tr>
<tr>
<td>peakdiffAccelNominalVal</td>
<td>This field specifies the nominal value of peak difference of 3-axis acceleration norm in the given pedestrian state.</td>
</tr>
<tr>
<td>Scale factor 10⁻¹ m/s². Range [0, 25.6) m/s².</td>
<td></td>
</tr>
<tr>
<td>varAccelCoeff</td>
<td>This field specifies the variance of 3-axis acceleration norm coefficient which linearly relates the change of the variance of 3-axis acceleration norm to the change of step length from the nominal value of the variance of 3-axis acceleration norm in the given pedestrian state.</td>
</tr>
<tr>
<td>Scale factor 10⁻³ m/(m/s²)². Range [0, 0.256) m/(m/s²)².</td>
<td></td>
</tr>
<tr>
<td>varAccelNominalVal</td>
<td>This field specifies the nominal value of the variance of 3-axis acceleration norm in the given pedestrian state.</td>
</tr>
<tr>
<td>Scale factor 1 (m/s²)². Range [0, 256) (m/s²)²</td>
<td></td>
</tr>
<tr>
<td>peakGyroCoeff</td>
<td>This field specifies the peak of 3-axis gyro norm coefficient which linearly relates the change of peak of 3-axis gyro norm to the change of step length from the nominal value of peak of 3-axis gyro norm in the given pedestrian state.</td>
</tr>
<tr>
<td>Scale factor 10⁻³ m/(rad/s). Range [0, 4.096) m/(rad/s).</td>
<td></td>
</tr>
<tr>
<td>peakGyroNominalVal</td>
<td>This field specifies the nominal value of peak of 3-axis gyro norm in the given pedestrian state.</td>
</tr>
<tr>
<td>Scale factor 10⁻² m/(rad/s). Range [0, 5.12) rad/(s).</td>
<td></td>
</tr>
<tr>
<td>varGyroCoeff</td>
<td>This field specifies the variance of 3-axis gyro norm coefficient which linearly relates the change of the variance of 3-axis gyro norm to the change of step length from the nominal value of the variance of 3-axis gyro norm in the given pedestrian state.</td>
</tr>
<tr>
<td>Scale factor 10⁻¹ m/(rad/s)². Range [0, 102.3) m/(rad/s)².</td>
<td></td>
</tr>
<tr>
<td>varGyroNominalVal</td>
<td>This field specifies the nominal value of the variance of 3-axis gyro norm in the given pedestrian state.</td>
</tr>
<tr>
<td>Scale factor 10⁻² (rad/s)². Range [0, 10.23) (rad/s)².</td>
<td></td>
</tr>
</tbody>
</table>
6.5.12.3 PDR Assistance Data Request

– **OMA-LPPe-ver2-0-PDR-RequestAssistanceData**

The **OMA-LPPe-ver2-0-PDR-RequestAssistanceData** is used to request assistance for PDR-based methods.

```
-- ASN1START
OMA-LPPe-ver2-0-PDR-RequestAssistanceData ::= SEQUENCE {
  ver2-0-stepLengthEstimationModelReq OMA-LPPe-ver2-0-PDR-StepLengthEstimationModelAD OPTIONAL,
  ...
}
-- ASN1STOP
```

6.5.12.4 PDR Assistance Data Request Elements

– **OMA-LPPe-ver2-0-PDR-StepLengthEstimationModelAD**

The IE **OMA-LPPe-ver2-0-PDR-StepLengthEstimationModelAD** is used by the target to request for the step length estimation model which is available in the target.

```
-- ASN1START
OMA-LPPe-ver2-0-PDR-StepLengthEstimationModelAD ::= SEQUENCE {
  genderreq ENUMERATED {male (0), female (1), ...} OPTIONAL,
  weightreq INTEGER (1..256) OPTIONAL,
  agereq INTEGER (1..128) OPTIONAL,
  stepLengthEstModelreq BIT STRING {sfHeightModel (0), linearSensorCombiModel (1) } (SIZE (1..8)),
  ...
}
-- ASN1STOP
```

OMA-LPPe-ver2-0-PDR-StepLengthEstimationModelAD field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>genderreq</td>
<td>This parameter defines the gender of a UE user. Possible values are male and female.</td>
</tr>
<tr>
<td>weightreq</td>
<td>This parameter provides the weight of a UE user. The weight is encoded as integers in the range 1 to 256 in units of 1 kilogram.</td>
</tr>
<tr>
<td>agereq</td>
<td>This parameter provides the age of a UE user. The age is encoded as integers in the range 1 to 128 in units of 1 year.</td>
</tr>
<tr>
<td>stepLengthEstModelreq</td>
<td>This field specifies, which step length estimation models are being requested for. If bit 0 is set, the step frequency-user’s height model, as specified in OMA-LPPe-ver2-0-PDR-StepFrequencyHeightModelList, is requested. If bit 1 is set, the linear sensor combination model, as specified in OMA-LPPe-ver2-0-PDR-LinearSensorCombinationModelList, is requested.</td>
</tr>
</tbody>
</table>

6.5.12.5 PDR Location Information

– **OMA-LPPe-ver2-0-PDR-ProvideLocationInformation**

The **OMA-LPPe-ver2-0-PDR-ProvideLocationInformation** is used to provide location information for UE-assisted motion sub-state positioning and UE-assisted PDR.

```
-- ASN1START
OMA-LPPe-ver2-0-PDR-ProvideLocationInformation ::= SEQUENCE {
  ...
}
-- ASN1STOP
```
OMA-LPPe-ver2-0-PDR-ProvideLocationInformation field descriptions

ver2-0-pdrMeasurementList
This field provides the sensor measurements for UE-assisted motion sub-state positioning and UE-assisted PDR at the current time and/or for historic times.

ver2-0-pdrMeasurementError
This field provides the sensor measurement error information for UE-assisted motion sub-state positioning and UE-assisted PDR when not all requested sensor measurements can be reported. This field should be included when some but not all requested measurements are reported and SHALL be included when no requested measurements are reported.

6.5.12.6 PDR Location Information Elements

OMA-LPPe-ver2-0-PDR-MeasurementList

The **OMA-LPPe-ver2-0-PDR-MeasurementList** is used to provide the server with the list of sensor measurements for UE-assisted motion sub-state positioning and UE-assisted PDR, made by the target. Target may provide up to 8 sets of each sensor data according to its axis (the combination of 3-axis).

```asn1
OMA-LPPe-ver2-0-PDR-MeasurementList ::= SEQUENCE {
  sensorID OMA-LPPe-ver2-0-PDR-SensorId OPTIONAL, --Cond IfKnown
  sensorCategory OMA-LPPe-ver2-0-PDR-SensorCategory OPTIONAL, --Cond IfKnown
  sensorMeasurement  SEQUENCE (SIZE (1..64)) OF OMA-LPPe-ver2-0-PDR-sensorMeasurementElement

  ... }

OMA-LPPe-ver2-0-PDR-sensorMeasurementElement ::= SEQUENCE {
  stepFreq INTEGER(0..63) OPTIONAL, --Cond IfStep
  accelVal SEQUENCE (SIZE(1..8)) OF
    cond IfAccel
    SEQUENCE {
      gyroVal SEQUENCE (SIZE(1..8)) OF
        cond IfGyro
        SEQUENCE {
          magVal SEQUENCE (SIZE(1..8)) OF
            cond IfMagnetometer
            SEQUENCE {
              inclVal SEQUENCE (SIZE(1..8)) OF
                cond IfInclino
                SEQUENCE {
                  proxVal BOOLEAN OPTIONAL, --Cond IfProx

                  ... }

    cond IfBaro
                SEQUENCE {
                  ... }

    cond IfNclino
                SEQUENCE {
                  ... }

OMA-LPPe-ver2-0-PDR-sensorMeasurementValue ::= SEQUENCE {
  relativeTimeStamp INTEGER(0..1000) OPTIONAL,
  usedAxis BIT STRING {
    x (0),
    y (1),
    z (2),
    xy (3),
    yz (4),
    zx (5),
    xyz (6) } (SIZE(1..8 )) OPTIONAL,
  maxValue INTEGER(0..4095) OPTIONAL,
  minValue INTEGER(0..4095) OPTIONAL,
  meanValue INTEGER(0..4095) OPTIONAL,
  stdDevValue INTEGER(0..4095) OPTIONAL,

... }
```

© 2020 Open Mobile Alliance. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
If Known

The field is mandatory present if the target has the information; otherwise the field is not present.

If Step

The field is mandatory present if the sensorTechnologies in OMA-LPPe-ver2-0-PDR-SensorCategory is accel or step and has the information on the step frequency; otherwise the field is not present.

If Accel

The field is mandatory present if the sensorTechnologies in OMA-LPPe-ver2-0-PDR-SensorCategory is accel and has the information on accelerometer; otherwise the field is not present.

If Gyro

The field is mandatory present if the sensorTechnologies in OMA-LPPe-ver2-0-PDR-SensorCategory is gyro and has the information on gyroscope; otherwise the field is not present.

If Magneto

The field is mandatory present if the sensorTechnologies in OMA-LPPe-ver2-0-PDR-SensorCategory is magneto and has the information on magnetometer; otherwise the field is not present.

If Baro

The field is mandatory present if the sensorTechnologies in OMA-LPPe-ver2-0-PDR-SensorCategory is baro and has the information on barometer; otherwise the field is not present.

If Inclino

The field is mandatory present if the sensorTechnologies in OMA-LPPe-ver2-0-PDR-SensorCategory is inclino and has the information on inclinometer; otherwise the field is not present.

If Prox

The field is mandatory present if the sensorTechnologies in OMA-LPPe-ver2-0-PDR-SensorCategory is prox and has the information on proximity sensor; otherwise the field is not present.

OMA-LPPe-ver2-0-PDR-MeasurementList field descriptions

sensorID
This field identifies the sensor.

sensorCategory
This field specifies the category of the sensor being measured.

sensorMeasurement
This field includes up to 64 sensor measurement sets.

stepFreq
This field includes the step frequency of the target device’s user. The value indicates the step frequency from multi-axis accelerometer and/or step sensor each sampling time between last successive pedestrian steps at the current time. Scale factor:10^-1 Hz. Range: [0, 6.4) Hz.

accelVal
This field includes up to 8 measurement sets of multiple-axis accelerometer. Multiple-axis means one axis or any combination of up to 3-axis. The value indicates the norm of specific force from multiple-axis accelerometer each sampling time between last successive pedestrian steps at the current time. The statistic field of value sets is defined in the sensor measurement value (OMA-LPPe-ver2-0-PDR-sensorMeasurementValue). Scale factor and range of each field are described as follows.

- **maxValue** : the maximum of all accelerometer values [Scale factor: 5x10^2. Bias: 0. Range: [-102.4, 102.4) (unit: m/s²)]
- **minValue** : the minimum of all accelerometer values [Scale factor: 5x10^2. Bias: 0. Range: [-102.4, 102.4) (unit: m/s²)]
- **meanValue** : the mean of all accelerometer values [Scale factor: 5x10^2. Bias: 0. Range: [-102.4, 102.4) (unit: m/s²)]
- **stdValue** : the standard deviation of all accelerometer values [Scale factor: 2.5x10^-2. Bias: 0. Range: [0, 102.4) (unit: m/s²)]
OMA-LPPe-ver2-0-PDR-MeasurementList field descriptions

gyroVal

This field includes up to 8 measurement sets of multiple-axis gyroscope. Multiple-axis means one axis or any combination of up to 3-axis. The value indicates the norm of angular rate from multiple-axis gyroscope each sampling time between last successive pedestrian steps at the current time. A positive value of particular axis indicates that the device rotates in the counter-clockwise direction of the axis. The statistic field of value sets is defined in the sensor measurement value (OMA-LPPe-ver2-0-PDR-sensorMeasurementValue). Scale factor and range of each field are described as follows.

- **maxValue**: the maximum of all gyroscope values [Scale factor: 2.5x10^-3. Bias: -5.12. Range: [-5.12, 5.12] (unit: rad/s)]
- **minValue**: the minimum of all gyroscope values [Scale factor: 2.5x10^-3. Bias: -5.12. Range: [-5.12, 5.12] (unit: rad/s)]
- **meanValue**: the mean of all gyroscope values [Scale factor: 2.5x10^-3. Bias: -5.12. Range: [-5.12, 5.12] (unit: rad/s)]
- **stdValue**: the standard deviation of all gyroscope values [Scale factor: 1.25x10^-3. Bias: 0. Range: [0, 5.12] (unit: rad/s)]

magVal

This field includes up to 8 measurement sets of multiple-axis magnetometer. Multiple-axis means one axis or any combination of up to 3-axis. The value indicates the norm of magnetic field from multiple-axis magnetometer each sampling time between last successive pedestrian steps at the current time. A positive value of particular axis indicates that the device rotates in the counter-clockwise direction of the axis. The statistic field of value sets is defined in the sensor measurement value (OMA-LPPe-ver2-0-PDR-sensorMeasurementValue). Scale factor and range of each field are described as follows.

- **maxValue**: the maximum of all magnetometer values [Scale factor: 5x10^-2. Bias: -102.4. Range: [-102.4, 102.4] (unit: μT)]
- **minValue**: the minimum of all magnetometer values [Scale factor: 5x10^-2. Bias: -102.4. Range: [-102.4, 102.4] (unit: μT)]
- **meanValue**: the mean of all magnetometer values [Scale factor: 5x10^-2. Bias: -102.4. Range: [-102.4, 102.4] (unit: μT)]
- **stdValue**: the standard deviation of all magnetometer values [Scale factor: 2.5x10^-2. Bias: 0. Range: [0, 102.4] (unit: μT)]

Informational Note: Magnetometer senses the Earth’s magnetic field intensity and it can be used to estimate the orientation (roll, pitch and heading) of the target. If the magnetometer is aligned with the local horizontal plane (roll and pitch are zeros), the heading would be calculated as follows.

\[\text{heading} = \arctan(\text{magY}/\text{magX}) \]

where magX and magY represent the horizontal magnetic field component of the Earth

baroVal

This field includes up to 8 measurement sets of multiple-axis barometer. Multiple-axis means one axis or any combination of up to 3-axis. The value indicates the target’s atmospheric pressure from multiple-axis barometer each sampling time between last successive pedestrian steps at the current time. The statistic field of value sets is defined in the sensor measurement value (OMA-LPPe-ver2-0-PDR-sensorMeasurementValue). Scale factor and range of each field are described as follows.

- **maxValue**: the maximum of all barometer values [Scale factor: 1.25x10^-1. Bias: 588. Range: [588, 1100] (unit: hPa)]
- **minValue**: the minimum of all barometer values [Scale factor: 1.25x10^-1. Bias: 588. Range: [588, 1100] (unit: hPa)]
- **meanValue**: the mean of all barometer values [Scale factor: 1.25x10^-1. Bias: 588. Range: [588, 1100] (unit: hPa)]
- **stdValue**: the standard deviation of all barometer values [Scale factor: 6.25x10^-2. Bias: 0. Range: [0, 5.12] (unit: hPa)]

Informational Note: Standard atmospheric pressure at sea level is 1013.25 hPa. The highest atmospheric pressure recorded was 1084 hPa in Siberia. The lowest atmospheric pressure, 870 hPa, was recorded in a typhoon in the Pacific Ocean. Also the atmospheric pressure range from 588 hPa to 1100 hPa approximately covers altitude range from 0 to 4000m above mean sea level.
OMA-LPPe-ver2-0-PDR-MeasurementList field descriptions

inclVal
This field includes up to 8 measurement sets of multiple-axis inclinometer. Multiple-axis means one axis or any combination of up to 3-axis. The value indicates the pedestrian's inclination angle from multiple-axis inclinometer each sampling time between last successive pedestrian steps at the current time. A positive value of particular axis indicates that the device goes up the incline toward its positive direction of the axis. The statistic field of value sets is defined in the sensor measurement value (OMA-LPPe-ver2-0-PDR-sensorMeasurementValue). Scale factor and range of each field are described as follows.

- **maxValue**: the maximum of all inclinometer values [Scale factor: 2.5x10^{-3}. Bias: 0. Range: [-5.12, 5.12) (unit: rad)]
- **minValue**: the minimum of all inclinometer values [Scale factor: 2.5x10^{-3}. Bias: 0. Range: [-5.12, 5.12) (unit: rad)]
- **meanValue**: the mean of all inclinometer values [Scale factor: 2.5x10^{-3}. Bias: 0. Range: [-5.12, 5.12) (unit: rad)]
- **stdValue**: the standard deviation of all inclinometer values [Scale factor: 1.25x10^{-3}. Bias: 0. Range: [0, 5.12) (unit: rad)]

proxVal
This field is set to true if the proximity sensor detects the presence of a nearby target without any physical contact. If false, the presence of target is not detected.

Informational Note: the proximity sensor measures the proximity of an object in cm relative to the view screen of a device. This sensor is typically used to determine whether a device is being held up to a user’s ear.

relativeTimeStamp
This parameter SHALL be included for historic sensor measurements and provides the time of the historic measurements relative to current time in units of 0.01 seconds. If absent, current time is implied which is equivalent to a relativeTimeStamp of zero.

usedAxis
This field specifies one used axes from which sensor measurements are measured. A used axis is present if the associated bit is set to one and absent if set to zero.

maxValue
This field specifies the maximum value of sensor measurements. The scale factor, bias and range of values depend on the sensor type.

minValue
This field specifies the minimum value of sensor measurements. The scale factor, bias and range of values depend on the sensor type.

meanValue
This field specifies the mean of sensor measurements. The scale factor, bias and range of values depend on the sensor type.

stdValue
This field specifies the standard deviation of sensor measurements. The scale factor, bias and range of values depend on the sensor type.

6.5.12.7 PDR Location Information Request

OMA-LPPe-ver2-0-PDR-RequestLocationInformation

The OMA-LPPe-ver2-0-PDR-RequestLocationInformation is used to request location information for UE-assisted motion sub-state positioning and UE-assisted PDR.

```asn1
OMA-LPPe-ver2-0-PDR-RequestLocationInformation ::= SEQUENCE {
  sensorMeasurementReq SEQUENCE (SIZE (1..16)) OF OMA-LPPe-ver2-0-PDR-SensorMeasurementRequest OPTIONAL, --Cond SensorMeasurementReq
  ...
}
```

```asn1
OMA-LPPe-ver2-0-PDR-SensorMeasurementRequest ::= SEQUENCE {
  category OMA-LPPe-ver2-0-PDR-SensorCategory,
  ...
}
```
Conditional presence	Explanation
SensorMeasurementReq | The field is mandatory present if the server requests for sensor measurements; otherwise it is not present

OMA-LPPe-ver2-0-PDR-RequestLocationInformation field descriptions

sensorMeasurementReq
This field specifies the requested sensor measurement information.

category
This field specifies the sensor category.

requestedUsedAxis
This field specifies a list of one or more used axes requested. A used axis is present if the associated bit is set to one and absent if set to zero. The following figure shows the positive direction of x, y and z axis. The positive roll is defined when a UE starts by lying flat on a table and the positive z axis begins to tilt towards the positive x axis. The positive pitch is defined when a UE starts by lying flat on a table and the positive z axis begins to tilt towards the positive y axis. The positive yaw is defined by the angle from the magnetic north to the positive y axis.

6.5.12.8 PDR Capability Information

OMA-LPPe-ver2-0-PDR-ProvideCapabilities

The **OMA-LPPe-ver2-0-PDR-ProvideCapabilities** is used to provide capabilities for PDR-based methods.
Conditional presence

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>StepLengthEstimationModelSupport</td>
<td>The field is mandatory present if the target supports step length estimation model assistance data; otherwise it is not present.</td>
</tr>
<tr>
<td>AccelMeasSupport</td>
<td>The field is mandatory present if the target supports accelerometer measurements; otherwise it is not present.</td>
</tr>
<tr>
<td>GyroMeasSupport</td>
<td>The field is mandatory present if the target supports gyroscope measurements; otherwise it is not present.</td>
</tr>
<tr>
<td>MagnetoMeasSupport</td>
<td>The field is mandatory present if the target supports magnetometer measurements; otherwise it is not present.</td>
</tr>
<tr>
<td>BaroMeasSupport</td>
<td>The field is mandatory present if the target supports barometer measurements; otherwise it is not present.</td>
</tr>
<tr>
<td>StepMeasSupport</td>
<td>The field is mandatory present if the target supports step sensor measurements; otherwise it is not present.</td>
</tr>
<tr>
<td>InclinoMeasSupport</td>
<td>The field is mandatory present if the target supports inclinometer measurements; otherwise it is not present.</td>
</tr>
<tr>
<td>ProxMeasSupport</td>
<td>The field is mandatory present if the target supports proximity sensor measurements; otherwise it is not present.</td>
</tr>
</tbody>
</table>

6.5.12.9 PDR Capability Information Elements

Void.

6.5.12.10 PDR Capability Information Request

– **OMA-LPPe-ver2-0-PDR-RequestCapabilities**

The *OMA-LPPe-ver2-0-PDR-RequestCapabilities* is used to provide capabilities for PDR-based methods.

```asn1
OMA-LPPe-ver2-0-PDR-RequestCapabilities ::= SEQUENCE {
    ... }
```

6.5.12.11 PDR Error Elements

– **OMA-LPPe-ver2-0-PDR-Error**

The *OMA-LPPe-ver2-0-PDR-Error* is used to provide PDR Error Reasons to the server.

```asn1
OMA-LPPe-ver2-0-PDR-Error ::= CHOICE {
    locationServerError OMA-LPPe-ver2-0-PDR-LocationServerError,
    targetError OMA-LPPe-ver2-0-PDR-TargetError,
    ... }
```

```asn1
OMA-LPPe-ver2-0-PDR-LocationServerError ::= SEQUENCE {
    stepLengthModelErrors ENUMERATED {undefined,
        someStepLengthModelUnknown,
        allStepLengthModelUnknown,
        ... } OPTIONAL,
    ... }
```
```asn1
OMA-LPPe-ver2-0-PDR-TargetDeviceError ::= SEQUENCE {
  category OMA-LPPe-ver2-0-PDR-SensorCategory,
  sensorErrors ENUMERATED{
    undefined,
    requestedMeasurementsNotAvailable,
    notAllrequestedMeasurementsPossible,
    categoryNotSupported,
    ...
  },
  historicMeasurementsNotAvailable NULL OPTIONAL,
  ...
}
```

OMA-LPPe-ver2-0-PDR-Error field descriptions

stepLengthModelError
This field specifies the server error causes related to the step length estimation model assistance.

ver2-0-sensorErrorsPerCategory
This field is used to provide error information on the sensor measurement per sensor category to the server.

sensorErrors
This field specifies the target’s sensor error cause. If the `sensorErrors` value is ‘`requestedMeasurementsNotAvailable`’, none of the requested measurements could be provided and no further information needs to be included. If the `sensorErrors` value is ‘`notAllrequestedMeasurementsPossible`’, the target device was able to provide some but not all requested sensor measurements. In this case, the target device should indicate those measurements that could not be obtained.

6.5.12.12 Common PDR Information Elements

|-- **OMA-LPPe-ver2-0-PDR-SensorCategory**

The IE `OMA-LPPe-ver2-0-PDR-SensorCategory` identifies a particular Sensor technology and where relevant an associated vendor. Vendors associated information can be used to further qualify the Sensor technology type (e.g. in the case of "other") or indicate a specific Sensor technology type supported in Sensors supplied by a particular vendor.

```
OMA-LPPe-ver2-0-PDR-SensorCategory ::= SEQUENCE {
  sensorTechnologyType OMA-LPPe-ver2-0-PDR-SensorTechnologies,
  sensorVendorInformation SEQUENCE {
    vendor OMA-LPPe-VendorOrOperatorID,
    vendorInfo OCTET STRING OPTIONAL,
    ...
  } OPTIONAL, --Cond other
}
```

Conditional presence

<table>
<thead>
<tr>
<th>Other</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>other</code></td>
<td>The field is mandatory present if <code>sensorTechnologyType</code> IE is set to value ‘other’. Otherwise it may optionally be present.</td>
</tr>
</tbody>
</table>

OMA-LPPe-ver2-0-PDR-Category field descriptions
OMA-LPPe-ver2-0-PDR-Category field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sensorTechnologyType</td>
<td>This field identifies the Sensor technology.</td>
</tr>
<tr>
<td>sensorVendorInformation</td>
<td>This field provides information about an associated Sensor vendor.</td>
</tr>
</tbody>
</table>

OMA-LPPe-ver2-0-PDR-Sensorid

The IE `OMA-LPPe-ver2-0-PDR-Sensorid` provides an identity for a particular Sensor.

```asn1
OMA-LPPe-ver2-0-PDR-Sensorid ::= SEQUENCE {
  sensor-id CHOICE {
    accelerometer OCTET STRING,
    gyroscope OCTET STRING,
    magnetometer OCTET STRING,
    barometer OCTET STRING,
    stepsensor OCTET STRING,
    inclinometer OCTET STRING,
    proximity OCTET STRING,
    other OCTET STRING,
    ...
  }
}
```

OMA-LPPe-ver2-0-PDR-Sensorid field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sensor-id</td>
<td>This field defines the Sensor ID for a particular Sensor.</td>
</tr>
<tr>
<td>accelerometer</td>
<td>This field defines a vendor or operator specific accelerometer ID. The meaning of this field may be inferred from the Sensor category (<code>OMA-LPPe-ver2-0-PDR-SensorCategory</code>).</td>
</tr>
<tr>
<td>gyroscope</td>
<td>This field defines a vendor or operator specific gyroscope ID. The meaning of this field may be inferred from the Sensor category (<code>OMA-LPPe-ver2-0-PDR-SensorCategory</code>).</td>
</tr>
<tr>
<td>magnetometer</td>
<td>This field defines a vendor or operator specific magnetometer ID. The meaning of this field may be inferred from the Sensor category (<code>OMA-LPPe-ver2-0-PDR-SensorCategory</code>).</td>
</tr>
<tr>
<td>barometer</td>
<td>This field defines a vendor or operator specific barometer ID. The meaning of this field may be inferred from the Sensor category (<code>OMA-LPPe-ver2-0-PDR-SensorCategory</code>).</td>
</tr>
<tr>
<td>stepsensor</td>
<td>This field defines a vendor or operator specific step sensor ID. The meaning of this field may be inferred from the Sensor category (<code>OMA-LPPe-ver2-0-PDR-SensorCategory</code>).</td>
</tr>
<tr>
<td>inclinometer</td>
<td>This field defines a vendor or operator specific inclinometer ID. The meaning of this field may be inferred from the Sensor category (<code>OMA-LPPe-ver2-0-PDR-SensorCategory</code>).</td>
</tr>
<tr>
<td>proximity</td>
<td>This field defines a vendor or operator specific proximity sensor ID. The meaning of this field may be inferred from the Sensor category (<code>OMA-LPPe-ver2-0-PDR-SensorCategory</code>).</td>
</tr>
<tr>
<td>other</td>
<td>This field defines a vendor or operator specific other Sensor ID. The meaning of this field may be inferred from the Sensor category (<code>OMA-LPPe-ver2-0-PDR-SensorCategory</code>).</td>
</tr>
</tbody>
</table>
OMA-LPPe-ver2-0-PDR-SensorTechnologies

The IE OMA-LPPe-ver2-0-PDR-SensorTechnologies defines a particular Sensor technology type.

--- ASN1START
OMA-LPPe-ver2-0-PDR-SensorTechnologies ::= SEQUENCE {
 sensorTechnologies ENUMERATED{ accel, gyro, magneto, baro, step, inclino, prox, other, ... },
 ...
}

--- ASN1STOP

OMA-LPPe-ver2-0-PDR-SensorTechnologies field descriptions

sensorTechnologies
This field specifies the particular Sensor technology:
- accel: specifies the Sensor technology is accelerometer;
- gyro: specifies the Sensor technology is gyroscope;
- magneto: specifies the Sensor technology is magnetometer;
- baro: specifies the Sensor technology is barometer;
- step: specifies the Sensor technology is step sensor;
- inclino: specifies the Sensor technology is inclinometer;
- prox: specifies the Sensor technology is proximity;
- other: specifies an vendor or operator specific Sensor type that can be further defined in OMA-LPPe-ver2-0-PDR-SensorCategory

6.5.13 Image Recognition Based Positioning (Version 2.0)

This section defines the functional messaging format for positioning using measurements related to Image Recognition Based Positioning (IRB).

6.5.13.1 IRB Assistance Data

OMA-LPPe-ver2-0-IRB-ProvideAssistanceData

The OMA-LPPe-ver2-0-IRB-ProvideAssistanceData is used to provide assistance for IRB-based methods.

--- ASN1START
OMA-LPPe-ver2-0-IRB-ProvideAssistanceData ::= SEQUENCE {
 ...
}

--- ASN1STOP

6.5.13.2 IRB Assistance Data Request

OMA-LPPe-ver2-0-IRB-RequestAssistanceData

The OMA-LPPe-ver2-0-IRB-RequestAssistanceData is used to request assistance data for IRB UE-assisted method.

--- ASN1START
OMA-LPPe-ver2-0-IRB-RequestAssistanceData ::= SEQUENCE {
 ...
}

--- ASN1STOP
6.5.13.3 IRB Location Information

OMA-LLPe-ver2-0-IRB-ProvideLocationInformation

The OMA-LLPe-ver2-0-IRB-ProvideLocationInformation is used to provide IRB measurements (UE-assisted) at current and historic times. Assuming that the target device supports IRB measurement reporting, the target device uses LPPe to report IRB measurements to the server. As an option, the target can transmit the whole picture compressed according to jpeg standard, video mode compression and/or differential picture encoding schemas are FFS.

Note: IRB measurements can be a sequence of image key points that the target sends to the server. Images are taken in a photo mode, or video-shooting mode. Key points are tracked frame by frame, and image features from stable key points tracked in several frames are selected and sent to the server.

```
-- ASN1START
OMA-LLPe-ver2-0-IRB-ProvideLocationInformation ::= SEQUENCE {
    irb-MeasurementList SEQUENCE (SIZE (1..300))
        OF OMA-LLPe-ver2-0-IRB-MeasurementElement OPTIONAL,
    irb-JpFile OCTET STRING (SIZE (1..2000000)),
    irb-Error OMA-LLPe-ver2-0-IRB-Error OPTIONAL,
    ...
}
-- ASN1STOP
```

OMA-LLPe-ver2-0-IRB-ProvideLocationInformation field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>irb-MeasurementList</td>
<td>This field provides the IRB measurements at the current time and/or for historic times.</td>
</tr>
<tr>
<td>Irb-JpFile</td>
<td>This field provides the image to be processed in the server for IRB positioning, compressed according to the jpeg file format [JPEG]</td>
</tr>
<tr>
<td>irb-Error</td>
<td>This field provides the IRB measurement error information when not all requested IRB measurements can be reported. This field should be included when some but not all requested measurements are reported and SHALL be included when no requested measurements are reported.</td>
</tr>
</tbody>
</table>

6.5.13.4 IRB Location Information Elements

OMA-LLPe-ver2-0-IRB-MeasurementElement

The OMA-LLPe-ver2-0-IRB-MeasurementElement is used to provide the server with the IRB measurements made by the target. The target may decide the number of sets, for example, based on the movement information or camera resolution.

```
-- ASN1START
OMA-LLPe-ver2-0-IRB-MeasurementElement ::= SEQUENCE {
    irbID INTEGER(0..65535),
    xCoordinate INTEGER(0..4095),
    yCoordinate INTEGER(0..4095),
    irbTechnology OMA-LLPe-ver2-0-IRB-TransferTechnology,
    relativeTimeStamp INTEGER(0..1000) OPTIONAL,
    vectorIndicator BOOLEAN,
    irbFeatureVector BIT STRING (SIZE (512)) OPTIONAL,
    ...
}
-- ASN1STOP
```
OMA-LPPe-ver2-0-IRB-MeasurementElement field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>irbID</td>
<td>This field identifies the IRB Feature Point.</td>
</tr>
<tr>
<td>xCoordinate</td>
<td>This field specifies x coordinate of the feature point in the image (this coordinate is relative to top-left origin and is in pixels).</td>
</tr>
<tr>
<td>yCoordinate</td>
<td>This field specifies y coordinate of the feature point in the image (this coordinate is relative to top-left origin and is in pixels).</td>
</tr>
<tr>
<td>irbTechnology</td>
<td>This field specifies the IRB technology being used for measurements.</td>
</tr>
<tr>
<td>relativeTimeStamp</td>
<td>This parameter SHALL be included for historic IRB measurements and provides the time of the historic measurements relative to current time in units of 0.01 seconds. If absent, current time is implied which is equivalent to a relativeTimeStamp of zero.</td>
</tr>
<tr>
<td>vectorIndicator</td>
<td>This field is set to true if a feature vector is present in this measurement. If false, there is no feature vector associated with this feature point.</td>
</tr>
<tr>
<td>irbFeatureVector</td>
<td>This field provides a feature vector (Data Measurements) of 512-bit (64 Byte data consisting of 512 binary elements for BRIEF or ORB).</td>
</tr>
</tbody>
</table>

6.5.13.5 IRB Location Information Request

OMA-LPPe-ver2-0-IRB-RequestLocationInformation

The **OMA-LPPe-ver2-0-IRB-RequestLocationInformation** is used to request location information for IRB UE-assisted method.

```asn1
OMA-LPPe-ver2-0-IRB-RequestLocationInformation ::= CCHOICE {
  featuresExtractionApproach  OMA-LPPe-ver2-0-IRB-FeaturesExtractionParameter,
  imageCompressionApproach    OMA-LPPe-ver2-0-IRB-CompressingParameter,
  ...                         }

OMA-LPPe-ver2-0-IRB-FeaturesExtractionParameter ::= SEQUENCE {
  featuresType      ENUMERATED {orb, brief, mpeg7_cdvs, ...},
  mode              ENUMERATED {complete, difference, common, ...},
  ...               }

OMA-LPPe-ver2-0-IRB-CompressingParameter ::= SEQUENCE {
  compressionStd     ENUMERATED {jpeg, jpeg2000, ...},
  dimPixelX         INTEGER{1..3000},
  dimPixelY         INTEGER{1..3000},
  ...               }
```

OMA-LPPe-ver2-0-IRB-RequestLocationInformation field descriptions

featuresExtractionApproach
This field is present when the features extraction on the target approach is selected: the features technology and the mode (photo or video) are specified

- **featuresType** defines the technology used for features extraction. The following algorithms are defined:
 - ORB,
 - BRIEF,
 - MPEG7-CDVS

- **mode** specifies if image features are transmitted as a set, difference of features or common features of sequenced images
 - if mode is set to ‘complete’ for an image, the whole set of features of that image is transmitted to the server,
 - if mode is set to ‘difference’, for an image, image n, only features (descriptors and coordinates) not present in an earlier image, image n-1, are transmitted,
 - if mode is set to ‘common’, for common features in images n and n-1 only coordinates of common features are transmitted

imageCompressionApproach
This field is present when the server requests from the target the whole image compressed according to JPEG or JPEG2000 standard

- **compressionStd** specifies if the image has to be compressed with JPEG or JPEG2000 standard,
 - JPEG
 - JPEG2000

- **dimPixelX** this field represents the reference number of pixels in the horizontal axis

- **dimPixelY** this field represents the reference number of pixel in the vertical axis

The reference dimension of the image provide information to the target how to compress the image, as the resolution of the reference DB image and the query image MUST be the same for optimal in image processing. The application will be aware of bandwidth availability and requested resolution and will set compressing parameter for the required approach (JPEG or JPEG2000).

6.5.13.6 IRB Capability

OMA-LPPe-ver2-0-IRB-ProvideCapabilities

The OMA-LPPe-ver2-0-IRB-ProvideCapabilities is used to provide capabilities for IRB-based methods.

```
-- ASN1START
OMA-LPPe-ver2-0-IRB-ProvideCapabilities ::= SEQUENCE {
  irb-transferMode  OMA-LPPe-ver2-0-IRB-TransferTechnology,
  irb-featureExtractionMode  OMA-LPPe-ver2-0-IRB-CameraModes OPTIONAL,
  irb-cameraParameters  OMA-LPPe-ver2-0-IRB-CameraParameters OPTIONAL,
  irb-minFeaturePerFrame  INTEGER (1..300) OPTIONAL,
  irb-maxFeaturePerFrame  INTEGER (1..300) OPTIONAL,
  ..
}

OMA-LPPe-ver2-0-IRB-TransferTechnology ::= SEQUENCE {
  features-mode  BIT STRING {
    brief   (0),
    orb   (1),
    mpeg-7   (2) } {SIZE (1..8)} OPTIONAL,
  compressing-mode  BIT STRING {
    jpeg   (0),
    jpeg2000   (1) } {SIZE (1..8)} OPTIONAL,
  ..
}

OMA-LPPe-ver2-0-IRB-CameraModes ::= SEQUENCE {
  ..
}
```

© 2020 Open Mobile Alliance. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
mode BIT STRING {
 photo-mode (0),
 video-mode (1) (SIZE (1..8)),
 ...
}

OMA-LPPe-ver2-0-IRB-CameraParameters ::= SEQUENCE {
 sensor-param SEQUENCE {
 nPixelX INTEGER(1..10000),
 nPixelY INTEGER(1..10000),
 pixelSizeX INTEGER(1..2000),
 pixelSizeY INTEGER(1..2000),
 ...
 } OPTIONAL,
 principal-distance INTEGER(1..10000) OPTIONAL,
 principal-point-coordinates SEQUENCE {
 xCoordinate INTEGER(0..10000),
 yCoordinate INTEGER(0..10000),
 ...
 } OPTIONAL,
 perspective-distortion ENUMERATED {
 wide-angle-distortion,
 narrow-angle-distortion,
 }
 distortion-parameters OMA-LPPe-ver2-0-IRB-Camera-Distortion-Parameters OPTIONAL,
 ...
}

OMA-LPPe-ver2-0-IRB-Camera-Distortion-Parameters ::= SEQUENCE {
 ...
}

-- ASN1STOP

OMA-LPPe-ver2-0-IRB-ProvideCapabilities field descriptions

irb-transferMode
This field specifies the image processing technology supported to transfer information from the target to the server.

- **features-mode**: for feature extraction, Orb, Brief, MPEG7 CDVS technologies can be used.
- **compressing-mode**: for whole image compression JPEG [JPEG] and JPEG2000 [JP2000] can be supported by the target.

irb-featureExtractionMode
This parameter indicates which feature extraction mode the target supports. The bit map indicates the supported mode (photo, or video). '1' value at the bit position indicates support and a '0' value no support. This field is present only if **irb-transferMode** field is present.
irb-cameraParameters

This parameter is needed to use a correct scale to correct object size on an image. The size depends on the characteristics of the lens used. Object sizes on a screen become small for wide-angle lenses and large for narrow-angle lenses. The size of objects is normalized by using the scale parameter so that the size becomes the same when the distance between cameras and objects are the same.

- **sensor-parameters**
 - \(n_{\text{PixelX}}, n_{\text{PixelY}} \) represent the number of pixels of the sensor for each dimension respectively;
 - \(\text{pixelSizeX}, \text{pixelSizeY} \), represent the dimension of each pixel of the sensor expressed in hundredth of micron

- **principal-distance** represents the distance between the centre of view and the sensor plane. It is expressed in micron

- **principal-point-coordinates**
 - \(x_{\text{Coordinate}}, y_{\text{Coordinate}} \) represent the position of the Principal Point, that is the projection of the centre of view on the sensor plane, in the sensor coordinates system (coordinates are relative to top-left origin of the sensor). The coordinates are expressed in pixels with a resolution of a tenth of pixel.

- **perspective-distortion** (PD): is determined by the relative distances at which the image is captured and viewed, and is due to the angle of view of the image (as captured) being either wider or narrower than the angle of view at which the image is viewed, hence the apparent relative distances differing from what is expected. The choices are wide-angle-distortion (with an angle of view wider than a normal lens) and narrow-angle-distortion (with an angle of view narrower than a normal lens).

- **distortion-parameters** (DP): it is a parameter that represents the image distortion.

irb-minFeaturePerFrame

This field represents the minimum number of feature points in a frame.

irb-maxFeaturePerFrame

This field represents the maximum number of feature points in a frame.

6.5.13.7 **IRB Capability Request**

OMA-LPPe-ver2-0-IRB-RequestCapabilities

The **OMA-LPPe-ver2-0-IRB-RequestCapabilities** is used to request capabilities for IRB-based methods.

```asn1
OMA-LPPe-ver2-0-IRB-RequestCapabilities ::= SEQUENCE {
  featureSupportedReq        NULL OPTIONAL,
  featureExtractionModeReq   NULL OPTIONAL,
  cameraParametersReq        NULL OPTIONAL,
  minMaxFeaturePerFrameReq   NULL OPTIONAL,
  ...
}
```

```asn1start
--

**OMA-LPPe-ver2-0-IRB-RequestCapabilities ::= SEQUENCE {**

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>featureSupportedReq</td>
<td>NULL</td>
<td>OPTIONAL</td>
</tr>
<tr>
<td>featureExtractionModeReq</td>
<td>NULL</td>
<td>OPTIONAL</td>
</tr>
<tr>
<td>cameraParametersReq</td>
<td>NULL</td>
<td>OPTIONAL</td>
</tr>
<tr>
<td>minMaxFeaturePerFrameReq</td>
<td>NULL</td>
<td>OPTIONAL</td>
</tr>
</tbody>
</table>

```
<table>
<thead>
<tr>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>featureSupportedReq</td>
</tr>
<tr>
<td>This field is used to request the image processing approach available on the terminal, features extraction.</td>
</tr>
<tr>
<td>featureExtractionModeReq</td>
</tr>
<tr>
<td>This field is used to request the supported mode.</td>
</tr>
<tr>
<td>cameraParametersReq</td>
</tr>
<tr>
<td>This field is used to request camera parameters.</td>
</tr>
<tr>
<td>minMaxFeaturePerFrameReq</td>
</tr>
<tr>
<td>This field is used to request the minimum-maximum number of frame feature.</td>
</tr>
</tbody>
</table>

6.5.13.8 IRB Error Elements

OMA-LPPe-ver2-0-IRB-Error

The OMA-LPPe-IRB-Error is used to provide IRB Error causes to the server.

```asn1
OMA-LPPe-ver2-0-IRB-Error ::= CHOICE {
  locationServerErrorCauses  OMA-LPPe-ver2-0-IRB-LocationServerErrorCauses,
  targetDeviceErrorCauses    OMA-LPPe-ver2-0-IRB-TargetDeviceErrorCauses,
  ...}
```

OMA-LPPe-ver2-0-IRB-LocationServerErrorCauses

The IE OMA-LPPe-IRB-LocationServerErrorCauses is used by the location server to provide IRB Positioning error reasons to the target device.

```asn1
OMA-LPPe-ver2-0-IRB-LocationServerErrorCauses ::= SEQUENCE {
  cause ENUMERATED {undefined, queryImageWithInadequateNumberOfFeatures, refImageNotFound,
  refDbImageWithLowLevelOfSimilarity, three-DSpatialInfoNotReliable, ...},
  ...}
```

OMA-LPPe-ver2-0-IRB-TargetDeviceErrorCauses

The IE OMA-LPPe-IRB-TargetDeviceErrorCauses is used by the target device to provide IRB error reasons to the location server.

```asn1
OMA-LPPe-ver2-0-IRB-TargetDeviceErrorCauses ::= SEQUENCE {
  cause ENUMERATED {undefined, imageNotAvailable, queryImageWithInadequateNumberOfFeatures, ...},
  ...}
```
6.5.14 Crowdsourcing (version 2.0)

This section defines support for crowdsourcing of location measurements from a target to a server and is applicable only to LPPe version 2.0.

6.5.14.1 Crowdsourcing Location Information

– **OMA-LPPe-ver2-0-Crowdsourcing-ProvideLocationInformation**

The **OMA-LPPe-ver2-0-Crowdsourcing-ProvideLocationInformation** is used by a target to confirm or reject a request from a server to provide crowdsourcing measurements, to provide the status of crowdsourcing following a query from a server and to provide crowdsourcing measurements to a server.

```asn1
-- ASN1START
OMA-LPPe-ver2-0-Crowdsourcing-ProvideLocationInformation ::= CHOICE {
    crowdsourcingConfirm OMA-LPPe-ver2-0-CrowdsourcingConfirm,
    crowdsourcingReject   OMA-LPPe-ver2-0-CrowdsourcingReject,
    crowdsourcingData     OMA-LPPe-ver2-0-CrowdsourcingData,
    crowdsourcingStatus   OMA-LPPe-ver2-0-CrowdsourcingStatus,
    ...                 
}

OMA-LPPe-ver2-0-CrowdsourcingConfirm ::= SEQUENCE {
    sessionID-Confirm        OMA-LPPe-ver2-0-CrowdsourcingSessionID,
    crowdsourcingControlParameters OMA-LPPe-ver2-0-CrowdsourcingControlParameters,
    measurementParameters    CHOICE {
        basicCrowdsourcingParameters OMA-LPPe-ver2-0-BasicCrowdsourcingParameters,
        advancedCrowdsourcingParameters OMA-LPPe-ver2-0-AdvancedCrowdsourcingParameters
    },
    proprietaryCrowdsourcingParameters OMA-LPPe-LocationInformationContainer OPTIONAL,
    ...                     
}

OMA-LPPe-ver2-0-CrowdsourcingReject ::= SEQUENCE {
    rejectCause             OMA-LPPe-ver2-0-Crowdsourcing-TargetCause,
    ...                     
}

OMA-LPPe-ver2-0-CrowdsourcingData ::= SEQUENCE {
    sessionID-Data          OMA-LPPe-ver2-0-CrowdsourcingSessionID,
    crowdsourcingMeasurements OMA-LPPe-ver2-0-CrowdsourcingMeasurements OPTIONAL,
    proprietaryCrowdsourcingMeasurements OMA-LPPe-LocationInformationContainer OPTIONAL,
    crowdsourcingTermination OMA-LPPe-ver2-0-CrowdsourcingTermination OPTIONAL,
    ...                     
}

OMA-LPPe-ver2-0-CrowdsourcingStatus ::= CHOICE {
    sessionActive             SEQUENCE {
        sessionID-Status        OMA-LPPe-ver2-0-CrowdsourcingSessionID,
        controlServer           OMA-LPPe-ver2-0-ServerAddress OPTIONAL, --Cond NotControlServer
        dataServer               OMA-LPPe-ver2-0-ServerAddress OPTIONAL,
        controlParameters       OMA-LPPe-ver2-0-CrowdsourcingControlParameters,
        measurements            CHOICE {
            basicCrowdsourcingMeasurements OMA-LPPe-ver2-0-BasicCrowdsourcingParameters,
            advancedCrowdsourcingMeasurements OMA-LPPe-ver2-0-AdvancedCrowdsourcingParameters
        },
        proprietaryCrowdsourcing OMA-LPPe-LocationInformationContainer OPTIONAL,
        statistics              SEQUENCE {
            startTime               UTCTime OPTIONAL,
            numberOfMeasurementSets INTEGER (0..16777215) OPTIONAL,
            numberOfReports         INTEGER (0..16777215) OPTIONAL,
            ...                     
        } OPTIONAL,
        sessionNotActive         SEQUENCE {
            ...                     
        },
    }
    ...                     
}
```

© 2020 Open Mobile Alliance. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
OMA-LPpe-ver2-0-ServerAddress ::= CHOICE {
 ipv4Address OCTET STRING (SIZE (4)),
 ipv6Address OCTET STRING (SIZE (16)),
 fqdn VisibleString (FROM ("a".."z" | "A".."Z" | "0".."9" | ".")) (SIZE (1..256)),
}

OMA-LPpe-ver2-0-CrowdsourcingTermination ::= SEQUENCE {
 terminationCause OMA-LPpe-ver2-0-Crowdsourcing-TargetCause,
 ...
}

OMA-LPpe-ver2-0-CrowdsourcingSessionID ::= SEQUENCE {
 provider-ID OMA-LPpe-VendorOrOperatorID OPTIONAL,
 server-ID OCTET STRING (SIZE(1..4)) OPTIONAL,
 session-code OCTET STRING (SIZE(4)),
 ...
}

--- ASN1STOP

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>NotControlServer</td>
<td>This parameter is conditional and SHALL be included only when the data server for crowdsourcing is not the same as the control server.</td>
</tr>
</tbody>
</table>

OMA-LPpe-ver2-0-Crowdsourcing-ProvideLocationInformation field descriptions

crowdsourcingConfirm
This parameter provides a confirmation by a target of a request for crowdsourcing from a control server.

crowdsourcingReject
This parameter indicates a rejection by a target of a request for crowdsourcing from a control server.

crowdsourcingData
This parameter provides crowdsourcing measurements and/or an indication of the termination of crowdsourcing from a target to a data server.

crowdsourcingStatus
This parameter provides the status of a crowdsourcing session in reply to a query from a control server or data server.

sessionID-Confirm
This parameter provides the session ID for a confirmed crowdsourcing session and comprises an optional provider ID, an optional server ID and a mandatory session code. The sessionID-Confirm SHALL either contain the same session ID received from the control server in a crowdsourcing request or indicate anonymous crowdsourcing by omitting the provider and server IDs and setting the session code to a binary value of all zeroes.

crowdsourcingControlParameters
This parameter provides the control parameters agreed to by a target. The control parameters SHALL either be the same as those requested by the control server or a subset. In the case of a subset, requested parameters may be omitted or may be set to values that reduce either the duration or the frequency of deactivation, measurement and/or reporting of crowdsourcing.

measurementParameters
This parameter indicates the measurements the target agrees to provide for crowdsourcing. The measurements SHALL either be the same as those requested by the control server or a subset.

basicCrowdsourcingParameters
This parameter indicates the measurements for basic crowdsourcing that the target agrees to provide. The granularity of agreement is on a position method basis – i.e. the target can indicate for which position methods basic crowdsourcing measurements will be provided but cannot indicate the specific measurements.
OMA-LPPe-ver2-0-Crowdsourcing-ProvideLocationInformation field descriptions

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>advancedCrowdsourcingParameters</td>
<td>This parameter indicates the measurements for advanced crowdsourcing that the target agrees to provide.</td>
</tr>
<tr>
<td>proprietaryCrowdsourcingParameters</td>
<td>This parameter provides proprietary control parameters agreed to by the target.</td>
</tr>
<tr>
<td>rejectCause</td>
<td>This parameter provides the reason for a crowdsourcing rejection.</td>
</tr>
<tr>
<td>sessionID-Data</td>
<td>This parameter provides the crowdsourcing session ID associated with reported crowdsourcing measurements.</td>
</tr>
<tr>
<td>crowdsourcingMeasurements</td>
<td>This parameter provides crowdsourcing measurement data obtained by the target.</td>
</tr>
<tr>
<td>proprietaryCrowdsourcingMeasurements</td>
<td>This parameter provides proprietary crowdsourcing measurements.</td>
</tr>
<tr>
<td>crowdsourcingTermination</td>
<td>This parameter may be included to indicate termination of a crowdsourcing session.</td>
</tr>
<tr>
<td>sessionActive</td>
<td>This parameter is included when the target is able to verify an active crowdsourcing session with a control server in response to a query.</td>
</tr>
<tr>
<td>sessionID-Status</td>
<td>This parameter provides the session ID for an active crowdsourcing session.</td>
</tr>
<tr>
<td>controlServer</td>
<td>This parameter provides the address of the control server for an active crowdsourcing session. The control server address can be an IP4v address, an IPv6 address or a fully qualified domain name.</td>
</tr>
<tr>
<td>dataServer</td>
<td>This parameter provides the address of the data server for an active crowdsourcing session. The data server address can be an IP4v address, an IPv6 address or a fully qualified domain name. This parameter is optional and is included only when the data and control servers are different.</td>
</tr>
<tr>
<td>controlParameters</td>
<td>This parameter provides the control parameters previously agreed by a target for an active crowdsourcing session.</td>
</tr>
<tr>
<td>measurements</td>
<td>This parameter provides the measurement parameters previously agreed by a target for an active crowdsourcing session.</td>
</tr>
<tr>
<td>proprietaryCrowdsourcing</td>
<td>This parameter provides any proprietary control parameters previously agreed by a target for an active crowdsourcing session.</td>
</tr>
<tr>
<td>statistics</td>
<td>This parameter provides statistics for an active crowdsourcing session comprising the start time, the number of separate measurement sets that have been obtained (where the occurrence of any trigger event for crowdsourcing measurements is counted as producing one measurement set if at least some measurements were obtained and reported to the data server) and the number of separate measurement reports that have been sent (where a single measurement report includes all Provide Location Information messages sent to a server within the same LPP transaction). This parameter and its sub-fields are optional and SHALL be included if available.</td>
</tr>
<tr>
<td>sessionNotActive</td>
<td>This parameter is included when the target is not able to verify an active crowdsourcing session with a control server or data server in response to a query.</td>
</tr>
<tr>
<td>terminationCause</td>
<td>This parameter provides the reason for terminating crowdsourcing at a target.</td>
</tr>
</tbody>
</table>
6.5.14.2 Crowdsourcing Location Information Request

OMA-LPHe-ver2-0-Crowdsourcing-RequestLocationInformation

The IE OMA-LPHe-ver2-0-Crowdsourcing-RequestLocationInformation is used by a server to request or query crowdsourcing at a target and to provide measurement indications and control parameters related to obtaining and reporting measurements.

OMA-LPHe-ver2-0-Crowdsourcing-RequestLocationInformation ::= CHOICE {
 crowdsourcingRequest OMA-LPHe-ver2-0-CrowdsourcingRequest,
 crowdsourcingQuery OMA-LPHe-ver2-0-CrowdsourcingQuery,
 ...
}

OMA-LPHe-ver2-0-CrowdsourcingRequest ::= SEQUENCE {
 sessionID Request OMA-LPHe-ver2-0-CrowdsourcingSessionID,
 dataServer OMA-LPHe-ver2-0-CrowdSourceAddress OPTIONAL,
 NotControlServer crowdsourcingControlParameters OMA-LPHe-ver2-0-CrowdsourcingControlParameters,
 advancedCrowdsourcingParameters OMA-LPHe-ver2-0-AdvancedCrowdsourcingParameters OPTIONAL,
 proprietaryCrowdsourcingParameters OMA-LPHe-LocationInformationContainer OPTIONAL,
 ...
}

OMA-LPHe-ver2-0-CrowdsourcingQuery ::= SEQUENCE {
 sessionID Query OMA-LPHe-ver2-0-CrowdsourcingSessionID OPTIONAL,
 ...
}

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>NotControlServer</td>
<td>This parameter is conditional and SHALL be included only when the data server for crowdsourcing is not the same as the control server.</td>
</tr>
<tr>
<td>AdvancedCrowdsourcing</td>
<td>This parameter is conditional and SHALL be included when and only when advanced crowdsourcing is requested.</td>
</tr>
</tbody>
</table>

OMA-LPHe-ver2-0-Crowdsourcing-RequestLocationInformation field descriptions

- **crowdsourcingRequest**
 This parameter is included by a control server to indicate a request for crowdsourcing at a target.

- **crowdsourcingQuery**
 This parameter is included by a control server or data server to indicate a query for crowdsourcing at a target.

- **sessionID-Request**
 This parameter provides the crowdsourcing session ID assigned by a control server.

- **dataServer**
 This parameter provides the address of the data server for a crowdsourcing session. This parameter is optional and is only included when the control and data servers are different.

- **crowdsourcingControlParameters**
 This parameter provides the control parameters requested by a control server for a new crowdsourcing session.

- **advancedCrowdsourcingParameters**
 This parameter provides measurement related parameters applicable to advanced crowdsourcing requested by a control server. This parameter is optional and SHALL be provided only for advanced crowdsourcing.
OMA-LPPe-ver2-0-Crowdsourcing-RequestLocationInformation field descriptions

proprietarCrowdsourcingParameters
This parameter provides proprietary crowdsourcing parameters and is optional. A target device may ignore this parameter if not recognized.

serviceID-Query
This parameter provides the session ID for a crowdsourcing session whose status is queried by a control server or data server. This parameter is optional and SHALL NOT be included if the control server or data server is not aware of an active crowdsourcing session with the target.

6.5.14.3 Crowdsourcing Location Information Elements

OMA-LPPe-ver2-0-CrowdsourcingControlParameters
The IE OMA-LPPe-ver2-0-CrowdsourcingControlParameters is used by a server to define required measurement and reporting characteristics for crowdsourcing and by a target to define accepted measurement and reporting characteristics for crowdsourcing.

-- ASN1START
OMA-LPPe-ver2-0-CrowdsourcingControlParameters ::= SEQUENCE {
 activationTriggers OMA-LPPe-ver2-0-crowdsourcingActivationTriggers OPTIONAL,
 measurementTriggers OMA-LPPe-ver2-0-crowdsourcingMeasurementTriggers OPTIONAL,
 reportingTriggers OMA-LPPe-ver2-0-crowdsourcingReportingTriggers OPTIONAL,
 durationParameters OMA-LPPe-ver2-0-crowdsourcingDurationParameters OPTIONAL,
 locationPrecision INTEGER (1..1024) OPTIONAL,
 ...
}
OMA-LPPe-ver2-0-crowdsourcingActivationTriggers ::= SEQUENCE {
 geographicArea OMA-LPPe-ver2-0-crowdsourcingActivationArea OPTIONAL,
 country-network BIT STRING {
 inCoverageOfHomeNetwork (0),
 inHomeCountryOutsideHomeNetwork (1),
 notInHomeCountry (2) } (SIZE (1..8)) OPTIONAL,
 minimumDetectedTransmitters INTEGER (1..20) OPTIONAL,
 targetMotionState BIT STRING {
 unknown (0),
 stationary (1),
 walking (2),
 running (3),
 cycling (4),
 car (5),
 train (6),
 boat (7),
 otherState (8) } (SIZE (1..16)) OPTIONAL,
 environment BIT STRING {
 unknown (0),
 indoors (1),
 outdoors (2) } (SIZE (1..8)) OPTIONAL,
 logicalTriggerCombination ENUMERATED {or, and, ...} OPTIONAL,
 activationDelay INTEGER (1..256) OPTIONAL,
 deactivationDelay INTEGER (1..256) OPTIONAL,
 ...
}
OMA-LPPe-ver2-0-crowdsourcingMeasurementTriggers ::= SEQUENCE {
 measurementPeriodicity INTEGER (1..512),
 measurementMovement INTEGER (1..256) OPTIONAL,
 measurementFloorChange NULL OPTIONAL,
 measurementChangeOfServingCellOrAP NULL OPTIONAL,
 logicalMeasurementCombination ENUMERATED {or, and, ...} OPTIONAL,
 ...
}
OMA-LPpe-ver2-0-crowdsourcingReportingTriggers ::= CHOICE {
 realTime OMA-LPpe-ver2-0-crowdsourcingRealTimeParameters,
 quasiRealTime OMA-LPpe-ver2-0-crowdsourcingQuasiRealTimeParameters,
 batch OMA-LPpe-ver2-0-crowdsourcingBatchParameters,
 ...
}

OMA-LPpe-ver2-0-crowdsourcingRealTimeParameters ::= SEQUENCE {
 ...
}

OMA-LPpe-ver2-0-crowdsourcingQuasiRealTimeParameters ::= SEQUENCE {
 ...
}

OMA-LPpe-ver2-0-crowdsourcingBatchParameters ::= SEQUENCE {
 batchReportPeriodicity INTEGER (1..672),
 batchReportMovement INTEGER (1..256) OPTIONAL,
 batchReportOnChangeOfServingNetwork NULL OPTIONAL,
 batchAccessNetworkRestriction BIT STRING {
 homeCellularNetwork (0),
 otherCellularNetworkInHomeCountry (1),
 cellularNetworkInForeignCountry (2),
 wlanNetwork (3),
 srnNetwork (4),
 userSpecified (5) (SIZE (1..16)) OPTIONAL,
 }
 batchStorageOverflow SEQUENCE {
 send ENUMERATED {send, doNotSend, ...},
 discard ENUMERATED {discardNewMeasurements, discardOldestMeasurements, ...}
 },
 ...
}

OMA-LPpe-ver2-0-crowdsourcingDurationParameters ::= SEQUENCE {
 crowdsourcingStartTime INTEGER (1..672) OPTIONAL,
 crowdsourcingDuration INTEGER (1..2880) OPTIONAL,
 ...
}

-- ASN1STOP

OMA-LPpe-ver2-0-CrowdsourcingControlParameters field descriptions

activationTriggers
This parameter indicates the trigger conditions for activating and deactivating crowdsourcing. If crowdsourcing has been activated, a target obtains measurements according to the measurementTriggers parameter and reports them according to the reportingTriggers parameter. While crowdsourcing is deactivated, a target ceases measurements but continues to report any previous measurements not yet sent according to the reportingTriggers parameter. Crowdsourcing is activated by the detection of required activation trigger conditions and is deactivated either when required activation trigger conditions are no longer detected or when any deactivation trigger condition is detected regardless of activation trigger conditions. This parameter is optional and if not included indicates (as a default) that crowdsourcing is always activated.

measurementTriggers
This parameter indicates the trigger conditions for obtaining a new set of measurements. This parameter is optional and if not included indicates (as a default) that measurements should be obtained at periodic intervals of 15 minutes.

reportingTriggers
This parameter indicates the trigger conditions for reporting each new set of measurements to the data server. This parameter is optional and if not included indicates (as a default) that quasi-real time reporting SHALL be used where a target is allowed to decide when to send reports to the server (either in real time or in batches).
OMA-LPPe-ver2-0-CrowdsourcingControlParameters field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>durationParameters</td>
<td>This parameter indicates the duration of crowdsourcing. This parameter is optional and if not included indicates (as a default) an unlimited duration starting immediately. Note that an unlimited duration may later be terminated by the server or target.</td>
</tr>
<tr>
<td>locationPrecision</td>
<td>This parameter provides the maximum distance in meters that a target may move while performing consecutive crowdsourcing measurements that will be included in the same measurement subset. For advanced crowdsourcing, each measurement subset is defined by the advanced-measurement-subsets parameter in the OMA-LPPe-ver2-0-Crowdsourcing-AdvancedMeasurements data type. For basic crowdsourcing, each measurement subset is contained in a separate LPP Provide Location Information message. When performing measurements, a target should monitor its location (e.g. using sensors) and divide measurements into subsets that satisfy this requirement. The parameter may be used by a server to control the location precision for crowdsourcing measurements within each subset. This parameter is optional and when omitted indicates that a target may determine any location precision itself – although it is recommended that a target attempt to employ a high precision if possible.</td>
</tr>
<tr>
<td>geographicArea</td>
<td>This parameter provides a set of geographic areas within which crowdsourcing should be activated or deactivated. This parameter is optional and if omitted indicates that there are no geographic area conditions.</td>
</tr>
<tr>
<td>activationArea</td>
<td>This parameter provides one or more geographic areas within which crowdsourcing should be activated by a target.</td>
</tr>
<tr>
<td>deactivationArea</td>
<td>This parameter provides one or more geographic areas within which crowdsourcing SHALL be deactivated by a target.</td>
</tr>
<tr>
<td>country-network</td>
<td>This parameter indicates whether a target needs to be within certain network coverage or within a particular country in order for crowdsourcing to be activated. The parameter is encoded as a bit string with each network or country condition represented by a different bit. A bit is set to one to indicate that crowdsourcing should be activated when the corresponding network or country condition is detected. A bit is set to zero to indicate that crowdsourcing SHALL be deactivated for the corresponding network or country condition. A bit that is not included indicates that the associated network or country condition can be ignored. This parameter is optional and if not included indicates that network and country conditions do not affect crowdsourcing.</td>
</tr>
<tr>
<td>detectedTransmitters</td>
<td>This parameter provides a count of the minimum number of transmitters visible to a target at the same time that are needed to activate crowdsourcing. The parameter is not used to explicitly deactivate crowdsourcing when the minimum number of transmitters is not detected. The transmitters SHALL only include transmitters for which crowdsourcing measurements have been requested. For example, if a target receives signals from 5 WiFi APs, 3 LTE eNode Bs and 4 UTRA node Bs and crowdsourcing was requested for WiFi and LTE but not for UTRA, the number of detected transmitters would be 8. This parameter is optional and if omitted indicates that the number of detected transmitters is not a condition for crowdsourcing.</td>
</tr>
<tr>
<td>targetMotionState</td>
<td>This parameter provides a set of target motion states that may activate crowdsourcing. The parameter is encoded as a bit string with each motion state represented by a different bit. A bit is set to one to indicate that crowdsourcing should be activated when the corresponding motion state is detected. A bit is set to zero to indicate that crowdsourcing SHALL be deactivated for the corresponding motion state. A bit that is not included indicates that the associated motion state can be ignored. The parameter may be used to help ensure high target location accuracy during crowdsourcing by restricting target motion states to those with low velocity. This parameter is optional and if not included indicates that the target motion state does not affect crowdsourcing.</td>
</tr>
<tr>
<td>environment</td>
<td>This parameter indicates a set of environments that may activate crowdsourcing. The parameter is encoded as a bit string with each environment represented by a different bit. A bit is set to one to indicate that crowdsourcing should be activated when the corresponding environment is detected. A bit is set to zero to indicate that crowdsourcing SHALL be deactivated when the corresponding environment is detected. A bit that is not included indicates that the associated environment can be ignored. This parameter is optional and if not included indicates that the environment does not affect crowdsourcing.</td>
</tr>
</tbody>
</table>
OMA-LPPe-ver2-0-CrowdsourcingControlParameters field descriptions

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>logicalTriggerCombination</td>
<td>This parameter indicates how the other activation triggers are to be combined. If set to the value “or”, triggers are combined via logical OR such that crowdsourcing is activated if and only if at least one condition for activation is detected and provided no condition for deactivation is detected. If set to the value “and”, triggers are combined via logical AND such that crowdsourcing is activated if and only if any parameters that are included for activation (from among geographicArea, country-network, detectedTransmitters, targetMotionState and environment) all indicate activation and provided no condition for deactivation is detected. This parameter is optional and if not included has the default value “and”. Note that deactivation triggers take precedence over activation triggers such that crowdsourcing is deactivated if any one deactivation trigger is detected. Furthermore, crowdsourcing SHALL be deactivated when activation triggers (as combined using OR or AND) are no longer detected.</td>
</tr>
<tr>
<td>activationDelay</td>
<td>This parameter provides the minimum duration in units of 5 seconds for which trigger conditions that activate crowdsourcing MUST continuously persist before crowdsourcing is activated by a target. This parameter can help avoid unnecessary transient crowdsourcing when a target is at a location where crowdsourcing is generally not needed. This parameter is optional and has the default value zero when not included.</td>
</tr>
<tr>
<td>deactivationDelay</td>
<td>This parameter provides the minimum duration in units of 5 seconds for which trigger conditions that deactivate crowdsourcing MUST continuously persist before crowdsourcing is deactivated by a target. This parameter can help avoid unnecessary transient deactivation of crowdsourcing when a target is at a location where crowdsourcing is generally needed. This parameter is optional and has the default value zero when not included.</td>
</tr>
<tr>
<td>measurementPeriodicity</td>
<td>This parameter provides the periodicity in units of 10 seconds for obtaining new sets of crowdsourcing measurements when crowdsourcing is activated. A periodicity condition is detected once the period since the last set of crowdsourcing measurements attains or exceeds the measurementPeriodicity value.</td>
</tr>
<tr>
<td>measurementMovement</td>
<td>This parameter provides the minimum distance in units of 5 meters that a target MUST move before a new set of measurements may be obtained. Movement should equate to the distance (or an estimate of the distance) between a previous and new target location. This parameter is optional and when omitted indicates target movement is not a factor in determining measurements.</td>
</tr>
<tr>
<td>measurementFloorChange</td>
<td>This parameter when present indicates that a target should make a new set of measurements when the target can determine that it is indoors and has changed floor level. To guard against transient floor levels (e.g. for a target inside an elevator), a target should wait until its floor level appears stable before making new measurements. This parameter is optional and when omitted indicates that change of floor level is not a direct factor in determining measurements. As an option, a target may wait for some short random period (e.g. 0 to 30 seconds) before obtaining measurements due to this trigger in order to avoid measurements being made at the same locations by all targets (e.g. at the entrance to an elevator or escalator).</td>
</tr>
<tr>
<td>measurementChangeOfServingCellOrAP</td>
<td>This parameter when present indicates that a new set of measurements should be obtained whenever a target changes its current serving cell or serving access point or changes to or from cellular access (e.g. from or to a WLAN AP or SRN AP). This parameter is optional and if not present indicates that change of serving cell or AP is not a factor in determining measurements.</td>
</tr>
<tr>
<td>logicalMeasurementCombination</td>
<td>This parameter indicates how other measurement triggers are to be combined. If set to the value “or”, triggers are combined via logical OR such that a new set of crowdsourcing measurements is obtained if and only if at least one condition for obtaining measurements is detected. If set to the value “and”, triggers are combined via logical AND such that a new set of crowdsourcing measurements is obtained if and only if all conditions that are included for measurements are detected at the same time. For the “and” value, conditions MUST be concurrently detected (e.g. a condition that was previously detected but no longer applies counts as not being detected). This parameter is optional and if not included has the default value “or”.</td>
</tr>
<tr>
<td>Field Description</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>realTime</td>
<td>The presence of this parameter indicates that reporting of crowdsourcing measurements to a data server SHALL occur in real time. In this case, a target SHALL attempt to send each new set of crowdsourcing measurements to the data server as soon as the complete set has been obtained. If this is not possible (e.g., a connection to the server cannot be established or is inhibited by a user preference to use only certain access networks to reduce billing) then the measurements SHALL be discarded. A target may verify some of the conditions for being able to access the data server (e.g., the availability of a suitable access network) before making crowdsourcing measurements to avoid wasting resources in unnecessary measurement.</td>
</tr>
<tr>
<td>quasiRealTime</td>
<td>The presence of this parameter indicates that reporting of crowdsourcing measurements to a data server SHALL occur in quasi-real time. In this case, a target SHALL attempt to send each new set of crowdsourcing measurements to the data server as soon as the complete set has been obtained. If this is not possible (e.g., a connection to the server cannot be established or is inhibited by a user preference to use only certain access networks to reduce billing) then the measurements SHALL be stored and sent at a later time (e.g., along with other deferred measurement sets) when a connection to the data server is again possible. If storage for measurements is completely filled before the measurements can be reported, the oldest measurements SHALL be discarded in order to store new measurements.</td>
</tr>
<tr>
<td>batch</td>
<td>The presence of this parameter indicates that reporting of crowdsourcing measurements to a data server SHALL occur only at certain times indicated by a set of reporting triggers. In this case, a target SHALL store each set of crowdsourcing measurements and send all stored sets only when allowed by the reporting triggers. The reporting triggers are combined by a logical “OR” operation except for the accessNetwork restriction. Once a batch report is sent, the initial conditions for each reporting trigger are reset – e.g., any periodicity or determination of target movement begins again.</td>
</tr>
<tr>
<td>batchPeriodicity</td>
<td>This parameter indicates the periodicity of batch reporting in units of 15 minutes and in the range of 15 minutes to 7 days. Batch reports SHALL be sent with at least this periodicity except when precluded by the accessNetwork condition.</td>
</tr>
<tr>
<td>batchMovement</td>
<td>This parameter provides the maximum distance in units of 1 kilometer that a target may move before a new batch report should be sent. Movement should equate to the distance (or an estimate of the distance) between a previous and new target location. This parameter is optional and when omitted indicates target movement is not a factor in determining reporting.</td>
</tr>
<tr>
<td>batchOnChangeOfServingNetwork</td>
<td>The inclusion of this parameter indicates that a batch report should be sent each time that a target changes from one cellular serving network to another. Changes to and from WLAN or SRN networks are not counted but a change from one cellular network to another with some WLAN or SRN access in between is counted.</td>
</tr>
<tr>
<td>batchAccessNetworkRestriction</td>
<td>This parameter provides restrictions on batch reporting associated with the access network via which batch reports would be sent. This parameter is encoded as a bit string with each type of access network represented by a different bit. A bit is set to one to indicate that batch reporting is not allowed via the corresponding access network. A bit is set to zero or is omitted to indicate that batch reporting is allowed via the corresponding access network. The userSpecified bit indicates whether the user may or may not define certain allowed and/or disallowed networks that, in the case of a conflict, would override any server preferences. This parameter is optional and if not included indicates that any access network may be used for reporting.</td>
</tr>
<tr>
<td>batchStorageOverflow</td>
<td>This parameter indicates whether a target should send or not send a batch report when storage for crowdsourcing measurements would otherwise overflow. The parameter also indicates whether the target SHALL discard new measurements or the oldest measurements when storage overflow does occur due to a requirement not to send or an inability to send. This parameter is optional and if omitted indicates that a target may employ an implementation specific preference.</td>
</tr>
<tr>
<td>crowdsourcingStartTime</td>
<td>This parameter indicates when crowdsourcing SHALL begin relative to the time of receipt of a crowdsourcing request in units of 15 minutes. This parameter is optional and if omitted indicates a start time at the current time.</td>
</tr>
</tbody>
</table>
OMA-LPPe-ver2-0-CrowdsourcingControlParameters field descriptions

crowdsourcingDuration

This parameter provides the duration of crowdsourcing in units of 15 minutes. This parameter is optional and if not included indicates an unlimited duration.

OMA-LPPe-ver2-0-BasicCrowdsourcingParameters

The IE *OMA-LPPe-ver2-0-BasicCrowdsourcingParameters* is used by a target to define accepted measurement types for basic crowdsourcing. The granularity of acceptance is on an LPP and LPPe position method basis with individual measurements for each accepted position method not being indicated. LPP and LPPe position methods are represented using a bit string with one bit corresponding to each position method. A bit is set to one to indicate that measurements for the corresponding position method will be provided and is set to zero or omitted when they will not.

```asn1
OMA-LPPe-ver2-0-BasicCrowdsourcingParameters ::= SEQUENCE {
  measurement-types BIT STRING {
    lpp-otdoa (0),
    lpp-ecid (1),
    otdoa (2),
    eotd (3),
    otdoa-utra (4),
    lte-ecid (5),
    gsm-ecid (6),
    utra-ecid (7),
    wlan-ap (8),
    wimax (9),
    sensor (10),
    srn (11),
    pdr (12),
    irb (13)} (SIZE (1..32)),
...
}
```

OMA-LPPe-ver2-0-AdvancedCrowdsourcingParameters

The IE *OMA-LPPe-ver2-0-AdvancedCrowdsourcingParameters* is used by a server to define required measurement types for advanced crowdsourcing and by a target to define accepted measurement types for advanced crowdsourcing. Measurement types are indicated using bit strings with one bit assigned to each measurement type where a one value indicates a measurement is requested by a server or agreed by a target and a zero value or omission of a bit indicates a measurement is not requested by a server or not agreed by a target.

```asn1
OMA-LPPe-ver2-0-AdvancedCrowdsourcingParameters ::= SEQUENCE {
  wlan-ap-measurements OMA-LPPe-ver2-0-Crowdsourcing-WLAN-AP-Parameters OPTIONAL,
  lte-measurements OMA-LPPe-ver2-0-Crowdsourcing-LTE-Parameters OPTIONAL,
  utra-measurements OMA-LPPe-ver2-0-Crowdsourcing-UTRA-Parameters OPTIONAL,
  gsm-measurements OMA-LPPe-ver2-0-Crowdsourcing-GSM-Parameters OPTIONAL,
  srn-measurements OMA-LPPe-ver2-0-Crowdsourcing-SRN-Parameters OPTIONAL,
  sensor-measurements OMA-LPPe-ver2-0-Crowdsourcing-Sensor-Parameters OPTIONAL,
...
}
OMA-LPPe-ver2-0-Crowdsourcing-WLAN-AP-Parameters ::= SEQUENCE {
  frequency INTEGER (1..256) OPTIONAL,
  measurements BIT STRING {
...
```
OMA-LPPe-ver2-0-Crowdsourcing-LTE-Parameters ::= SEQUENCE {
 frequency INTEGER (1..256) OPTIONAL,
 measurements BIT STRING {
 eNBEstimatedLocation (0),
 rsrp (1),
 rsrq (2),
 ueRxTx (3),
 non-serving-cell (4),
 non-serving-plmn (5) {SIZE (1..16)},
 }
}

OMA-LPPe-ver2-0-Crowdsourcing-UTRA-Parameters ::= SEQUENCE {
 frequency INTEGER (1..256) OPTIONAL,
 measurements BIT STRING {
 nBestimatedLocation (0),
 utra-carrier-RSSI (1),
 fdd-cpich-Ec-NO (2),
 fdd-cpich-RSCP (3),
 fdd-pathloss (4),
 tdd-primary-ccpch-RSCP (5),
 tdd-pathloss (6),
 tdd-timingadvance (7),
 non-serving-cell (8),
 non-serving-plmn (9) {SIZE (1..16)},
 }
}

OMA-LPPe-ver2-0-Crowdsourcing-GSM-Parameters ::= SEQUENCE {
 frequency INTEGER (1..256) OPTIONAL,
 measurements BIT STRING {
 bts-estimatedLocation (0),
 rxLevel (1),
 timingAvance (2),
 non-serving-cell (3),
 non-serving-plmn (4) {SIZE (1..8)},
 }
}

OMA-LPPe-ver2-0-Crowdsourcing-SRN-Parameters ::= SEQUENCE {
 frequency INTEGER (1..256) OPTIONAL,
 srn-Categories SEQUENCE {SIZE (1..16)} OF OMA-LPPe-SRN-Category,
 measurements BIT STRING {
 apReportedLocation (0),
 apEstimatedLocation (1),
 rssi (2),
 rtd (3) {SIZE (1..16)},
 }
}

OMA-LPPe-ver2-0-Crowdsourcing-Sensor-Parameters ::= SEQUENCE {
 frequency INTEGER (1..256) OPTIONAL,
 measurements BIT STRING {
 apSSID (0),
 operatingClass (1),
 apDeviceType (2),
 apReportedLocation (3),
 apEstimatedLocation (4),
 apChannel (5),
 apAntennaGain (6),
 ueAntennaGain (7),
 apTransmitPower (8),
 apSignaltoNoise (9),
 apSignalStrength (10),
 apRoundTripDelay (11),
 ueTransmitPower (12),
 ueSignaltoNoise (13),
 ueSignalStrength (14) {SIZE (1..32)},
 }
}
OMA-LPPe-ver2-0-AdvancedCrowdsourcingParameters field descriptions

frequency
The frequency parameter for each measurement type defines for which measurement sets the measurement type is requested by a server or accepted by a target. A value of N for the frequency field indicates that measurements SHALL only be obtained by a target for measurement sets N, 2N, 3N, 4N etc. where measurement set 1 is the first measurement set triggered for a particular crowdsourcing session, 2 is the second, 3 is the third etc. A frequency of more than one allows measurements to be reduced for a particular measurement type by skipping measurement sets. Use of a frequency N1 for one type of measurement and a frequency of N2 for another type of measurement where N1 and N2 are coprime also minimizes the number of measurement sets for which both measurement types are obtained. The frequency parameter may be used to reduce resource usage for sending and receiving crowdsourcing measurements. The parameter is optional and has the default value of one when not included. Note that when all measurements for a particular measurement set are skipped, no information regarding the measurement set should be provided to the server.

wlan-ap-measurements
This parameter defines the requested or accepted WLAN AP related measurements. Requested or accepted measurements are defined using a bit string with one bit corresponding to each type of measurement. A bit setting of one indicates that a measurement is requested by a server or accepted by a target and a bit setting of zero or omission of a bit indicates a measurement is not requested or not accepted.

lte-measurements
This parameter defines the requested or accepted LTE related measurements. Requested or accepted measurements are defined using a bit string with one bit corresponding to each type of measurement. A bit setting of one indicates that a measurement is requested by a server or accepted by a target and a bit setting of zero or omission of a bit indicates a measurement is not requested or not accepted.

utra-measurements
This parameter defines the requested or accepted UTRA related measurements. Requested or accepted measurements are defined using a bit string with one bit corresponding to each type of measurement. A bit setting of one indicates that a measurement is requested by a server or accepted by a target and a bit setting of zero or omission of a bit indicates a measurement is not requested or not accepted.

gsm-measurements
This parameter defines the requested or accepted GSM related measurements. Requested or accepted measurements are defined using a bit string with one bit corresponding to each type of measurement. A bit setting of one indicates that a measurement is requested by a server or accepted by a target and a bit setting of zero or omission of a bit indicates a measurement is not requested or not accepted.

srn-measurements
This parameter defines the requested or accepted SRN related measurements. Requested or accepted measurements are defined using a bit string with one bit corresponding to each type of measurement. A bit setting of one indicates that a measurement is requested by a server or accepted by a target and a bit setting of zero or omission of a bit indicates a measurement is not requested or not accepted.

srn-Categories
This parameter defines the SRN technologies and/or SRN vendors for which SRN measurements are requested by a server or accepted by a target.
OMA-LPPe-ver2-0-AdvancedCrowdsourcingParameters field descriptions

sensor-measurements
This parameter defines the requested or accepted sensor related measurements. Requested or accepted measurements are defined using a bit string with one bit corresponding to each type of measurement. A bit setting of one indicates that a measurement is requested by a server or accepted by a target and a bit setting of zero or omission of a bit indicates a measurement is not requested or not accepted. Sensor measurements may be used to help determine environmental conditions associated with other crowdsourcing measurements such as being indoors, outdoors, in a subway, tall building etc.

OMA-LPPe-ver2-0-CrowdsourcingMeasurements
The IE **OMA-LPPe-ver2-0-CrowdsourcingMeasurements** is used by a target to report crowdsourcing measurements to a server. The IE applies to both basic crowdsourcing and advanced crowdsourcing.

```asn1
OMA-LPPe-ver2-0-CrowdsourcingMeasurements ::= SEQUENCE {
  crowdsourcingCommonData OMA-LPPe-ver2-0-Crowdsourcing-CommonData OPTIONAL, --Cond
  FirstMessage
    sequence-number INTEGER (0..255) OPTIONAL, -- Cond MoreThanOneMessage
    measurements CHOICE {
      basicMeasurements OMA-LPPe-ver2-0-Crowdsourcing-BasicMeasurements,
      advancedMeasurements OMA-LPPe-ver2-0-Crowdsourcing-AdvancedMeasurements,
      ...
    } OPTIONAL,
  error OMA-LPPe-ver2-0-Crowdsourcing-TargetCause OPTIONAL,
  ...
}

OMA-LPPe-ver2-0-Crowdsourcing-BasicMeasurements ::= SEQUENCE {
  basicMeasurementSubset OMA-LPPe-ver2-0-Crowdsourcing-MeasurementSubset,
  ...
}

OMA-LPPe-ver2-0-Crowdsourcing-AdvancedMeasurements ::= SEQUENCE {
  advanced-measurement-subsets SEQUENCE (SIZE (1..ver2-0-maxMeasurements)) OF OMA-LPPe-ver2-0-Crowdsourcing-MeasurementSubset,
  wlan-ap-measurements OMA-LPPe-ver2-0-Crowdsourcing-WLAN-AP-Measurements OPTIONAL,
  lte-measurements OMA-LPPe-ver2-0-Crowdsourcing-LTE-Measurements OPTIONAL,
  utra-measurements OMA-LPPe-ver2-0-Crowdsourcing-UTRA-Measurements OPTIONAL,
  gsm-measurements OMA-LPPe-ver2-0-Crowdsourcing-GSM-Measurements OPTIONAL,
  srn-measurements OMA-LPPe-ver2-0-Crowdsourcing-SRN-Measurements OPTIONAL,
  sensor-measurements OMA-LPPe-ver2-0-Crowdsourcing-Sensor-Measurements OPTIONAL,
  ...
}

-- Temporary Editorial Note: the LTE, UTRA and GSM crowdsourcing support will be added in a later CR
ver2-0-maxMeasurements INTEGER ::= 512
```

-- ASN1STOP
Conditional presence

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>FirstMessage</td>
<td>This parameter is conditional and may only be included in the first or only LPP Provide Location Information sent as part of a single LPP transaction to provide crowdsourcing measurements to a data server.</td>
</tr>
<tr>
<td>MoreThanOneMessage</td>
<td>This parameter is conditional and SHALL be included when more then one LPP Provide Location Information message is sent as part of a single LPP transaction to provide crowdsourcing measurements to a data server.</td>
</tr>
</tbody>
</table>

OMA-LPPe-ver2-0-CrowdsourcingMeasurements

crowdsourcingCommonData
This parameter is used to provide data that is common to all basic or advanced crowdsourcing measurements reported by the target.

sequence-number
This parameter provides a sequence number for each LPP Provide Location Information message sent as part of the same LPP transaction to report crowdsourcing measurements. The sequence number starts at 0 and is incremented by 1 modulo 256 in each succeeding message. A server may use the sequence-number to detect message loss and in some cases message duplication.

measurements
This parameter indicates whether basic or advanced crowdsourcing measurements are provided and provides common data for each case and, in the case of advanced crowdsourcing, the measurements themselves. This parameter is optional and may be excluded when no measurements were obtained – e.g. in order to report an error condition to the server.

basicMeasurements
This parameter provides common data for a basic crowdsourcing measurement subset. The basic measurements themselves for the subset are provided in separate LPP and LPPe position method containers within the same LPP message in the same way as measurements for target positioning. Each LPP Provide Location Information message is restricted to providing one subset of measurements which will be part of or all of one measurement set (instigated by one instance of measurement triggers).

advancedMeasurements
This parameter provides one or more subsets of advanced measurements.

error
This parameter may be included to report error information concerning a target inability to obtain or report certain measurements. This parameter may be included with or without measurements, although it is suggested to only sparingly send an error without any measurements to reduce load on the server. The inclusion of this parameter does not indicate the termination of a crowdsourcing session.

basicMeasurementSubset
This parameter provides common data for one basic measurement subset.

advanced-measurement-subsets
This parameter references up to 512 successive measurement subsets for advanced crowdsourcing. The measurement subsets may belong either to the same measurement set (comprising measurements obtained due to one measurement trigger event) or to more than one measurement set. The measurement subsets SHALL be included and referenced in the order they were obtained and are indexed from 1 for the first subset to N (N ≤ 512) for the last subset where the index for any measurement subset corresponds to its position in the SEQUENCE OF data type.

wlan-ap-measurements
This parameter contains advanced crowdsourcing measurements for WLAN APs. The measurements are contained in measurement subsets that are referred to using the measurement subset indices defined for the advanced-measurement-subsets parameter,
OMA-LPPe-ver2-0-CrowdsourcingMeasurements

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lte.measurements</td>
<td>This parameter contains advanced crowdsourcing measurements for LTE. The measurements are contained in measurement subsets that are referred to using the measurement subset indices defined for the advanced-measurement-subsets parameter.</td>
</tr>
<tr>
<td>utra.measurements</td>
<td>This parameter contains advanced crowdsourcing measurements for UTRA. The measurements are contained in measurement subsets that are referred to using the measurement subset indices defined for the advanced-measurement-subsets parameter.</td>
</tr>
<tr>
<td>gsm.measurements</td>
<td>This parameter contains advanced crowdsourcing measurements for GSMN. The measurements are contained in measurement subsets that are referred to using the measurement subset indices defined for the advanced-measurement-subsets parameter.</td>
</tr>
<tr>
<td>srn.measurements</td>
<td>This parameter contains advanced crowdsourcing measurements for SRN. The measurements are contained in measurement subsets that are referred to using the measurement subset indices defined for the advanced-measurement-subsets parameter.</td>
</tr>
<tr>
<td>sensor.measurements</td>
<td>This parameter contains advanced crowdsourcing measurements for sensors. The measurements are contained in measurement subsets that are referred to using the measurement subset indices defined for the advanced-measurement-subsets parameter.</td>
</tr>
</tbody>
</table>

OMA-LPPe-ver2-0-Crowdsourcing-MeasurementSubset

The IE **OMA-LPPe-ver2-0-Crowdsourcing-MeasurementSubset** is used by a target to provide common data for a measurement subset for either basic crowdsourcing or advanced crowdsourcing. Each measurement subset should contain measurements obtained for the same (or almost the same) target location. Measurements in a measurement set (triggered by one instance of measurement triggers in crowdsourcing control parameters) may all be included in one measurement subset if all the measurements were obtained at the same (or nearly the same) target location but should be included in multiple measurement subsets if the target location changed while the measurements were being made. A server may control the precision of location for each measurement subset using the locationPrecision parameter in the OMA-LPPe-ver2-0-CrowdsourcingControlParameters data type.

```
-- ASN1START
OMA-LPPe-ver2-0-Crowdsourcing-MeasurementSubset ::= SEQUENCE {
  measurementLocation OMA-LPPe-ver2-0-Crowdsourcing-Location OPTIONAL,
  measurementTime OMA-LPPe-ver2-0-Crowdsourcing-Time OPTIONAL,
  endOfMeasurementSet NULL OPTIONAL,
  anchorPoint NULL OPTIONAL,
  ...
}
-- ASN1STOP
```

measurementLocation

This parameter provides an absolute and/or a relative target location at which the measurements reported for this measurement subset were obtained. This parameter is optional and SHALL be included if available. If the parameter is not included, the target location is considered to be unknown.
OMA-LPPe-ver2-0-Crowdsourcing-MeasurementSubset

measurementTime
This parameter provides an absolute or a relative time at which the measurements reported for this measurement subset were obtained. This parameter is optional and SHALL be included if available. If the parameter is not included, the time is considered to be unknown.

endOfMeasurementSet
This parameter is included to indicate the end of a measurement set and enables different measurement sets to be distinguished and the measurement subsets belonging to each measurement set to be identified. By convention, a new measurement set is assumed to begin in the first measurement subset reported by a target as part of one LPP transaction and a measurement set is assumed to end in the last measurement subset reported by a target as part of one LPP transaction.

anchorPoint
This presence of this optional parameter indicates that the target location for this measurement subset may be used as an anchor point to define a relative target location for one or more subsequent measurement subsets. Even if the absolute target location for an anchor point is unknown, target locations relative to the anchor point may still be usefully provided to enable a server to infer some information about the transmitters being reported such as their locations relative to one another. It is recommended that whenever absolute location is available for some measurement subsets, that anchor points only be defined for the measurement subsets for which absolute location is explicitly provided. This can increase the accuracy of absolute location derivation for the measurement subsets whose locations are defined relative to an anchor point by avoiding the need to chain a sequence of two or more relative locations back to a measurement subset for which an absolute location is provided. Note that each time that a relative location is combined with a previous location, to obtain the cumulative location estimate, the errors expressed by any location uncertainty and confidence need to be combined, resulting in a greater uncertainty and greater corresponding error. Minimizing the number of relative and absolute locations that need to be combined can thereby reduce error.

OMA-LPPe-ver2-0-Crowdsourcing-Location

The IE OMA-LPPe-ver2-0-Crowdsourcing-Location is used by a target to report the absolute and/or relative target location corresponding to one subset of measurements for either advanced or basic crowdsourcing.

```
-- ASN1START

OMA-LPPe-ver2-0-Crowdsourcing-Location ::= SEQUENCE {
  absoluteLocation    SEQUENCE {
    geodeticLocation    CHOICE {
      location2D          EllipsoidPointWithUncertaintyEllipse,
      location3D          EllipsoidPointWithAltitudeAndUncertaintyEllipsoid,
      highaccuracy3D      OMA-LPPe-HighAccuracy3Dposition,
      ...                
    },
    relativeAltitude     OMA-LPPe-RelativeAltitude OPTIONAL, 
    absoluteLocationSource OMA-LPPe-LocationSource OPTIONAL, 
    ...                  
  },
  relativeLocation     SEQUENCE {
    location             OMA-LPPe-RelativeLocation,                  
    relativeLocationSource OMA-LPPe-LocationSource OPTIONAL, 
    ...                  
  } OPTIONAL,    --Cond NotFirstSubset
  locationPrecision    INTEGER (1..1024) OPTIONAL,
  ...                
}

-- ASN1STOP
```
<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>NotFirstSubset</td>
<td>This parameter is conditional and may be included for any measurement subset except the first subset reported by a target in any LPP transaction.</td>
</tr>
</tbody>
</table>
OMA-LPPe-ver2-0-Crowdsourcing-Location

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>absoluteLocation</td>
<td>This parameter provides the absolute location of the target corresponding to one measurement subset. This parameter is optional and SHALL be provided for the first measurement subset reported by a target in any LPP transaction for which an absolute location is available. Thereafter, a target shall report subsequent absolute locations if this will provide better absolute location accuracy than that inferred using the relativeLocation parameter. When absolute location accuracy for the absoluteLocation parameter would be roughly comparable to the absolute location accuracy inferred from one or more instances of the relativeLocation parameter, a target shall report only the relativeLocation parameter to reduce signaling. The uncertainty and confidence for an absolute location SHALL be as precise as possible and refer to the target location at some point during the measurement subset.</td>
</tr>
<tr>
<td>geodeticLocation</td>
<td>This parameter provides an absolute geodetic location for the target for one measurement subset. The geodetic location can be provided as a 2-D, 3-D or high accuracy 3-D absolute location with uncertainty and confidence.</td>
</tr>
<tr>
<td>relativeAltitude</td>
<td>This parameter provides the target altitude relative to ground level. This parameter and a 3-D geodeticLocation, if both are present, refer to the same altitude. This parameter is optional and SHALL be included when available.</td>
</tr>
<tr>
<td>absoluteLocationSource</td>
<td>This parameter indicates the source or sources of an absolute location. This parameter is optional and SHALL be included when available.</td>
</tr>
<tr>
<td>relativeLocation</td>
<td>This parameter provides the target location relative to a previous target location (whether known or unknown) for a previous measurement subset that is either the most recent measurement subset marked as an anchor point or the immediately preceding measurement subset if no anchor points were defined. The previous target location SHALL coincide with any absolute and/or relative location that was provided for the previous measurement subset that is referenced in order that the relative location can be accurately combined with the previous relative or absolute location (e.g. to infer an accurate absolute location for the current measurement subset). The accuracy of the relativeLocation SHALL be the accuracy of the relative location estimate itself, i.e. not including any uncertainty attributable to the point to which the relativeLocation is relative. This means that the accuracy and confidence for the relativeLocation MUST be combined with those for the referenced location when obtaining either an absolute location or a location relative to an earlier measurement subset for the current measurement subset. It should be noted that the relativeLocation parameter may have a higher or lower location accuracy than the absoluteLocation parameter. As an example of higher location accuracy, the absolute location of a target may be known with an expected error of 100 meters (e.g. based on A-GNSS) while the relative location of the target with respect to its location 5 minutes earlier may have an expected error of only 2 meters (e.g. if sensors detected the user was nearly stationary). As an example of lower location accuracy, a very precise absolute location may be obtained after a target has moved by a distance with a high level of uncertainty. It should be noted that relativeLocation for some measurement subset A given relative to the location for a previous measurement subset B may be used to infer the absolute location for either measurement subset A or measurement subset B depending on whether absolute location is provided or can be inferred (e.g. using additional relativeLocation values) for measurement subset B or measurement subset A, respectively. This enables later as well as earlier absolute locations to be used to infer absolute location for measurement subsets for which an absolute location is not provided. A target SHALL provide relativeLocation when available either when the absoluteLocation parameter is not provided or when absoluteLocation is provided and a relative location may be needed to infer the location of one or more previous measurement subsets. When both a relative and an absolute location type are reported for the same measurement subset, they SHALL both refer to the same target location and be obtained at the same time.</td>
</tr>
<tr>
<td>relativeLocationSource</td>
<td>This parameter indicates the source or sources of a relative location. This parameter is optional and SHALL be included when available.</td>
</tr>
</tbody>
</table>
OMA-LPPe-ver2-0-Crowdsourcing-Location

locationPrecision

This parameter provides the maximum straight line distance that the target may have moved while obtaining measurements for the reported measurement subset. The parameter may be approximated by the distance between the target locations for the first and last measurements reported. The parameter may also be measured using sensors. The distance D moved by the target is encoded as an integer N in the range 1 to 1024 where:

\[D \leq N \text{ meters for } N < 1024 \]
\[D > 1023 \text{ meters for } N = 1024 \]

OMA-LPPe-ver2-0-Crowdsourcing-Time

The IE *OMA-LPPe-ver2-0-Crowdsourcing-Location* is used by a target to report the absolute and/or relative target location corresponding to one subset of measurements for either advanced or basic crowdsourcing.

```asn1
OMA-LPPe-ver2-0-Crowdsourcing-Time ::= SEQUENCE {
    time CHOICE {
        absoluteTime UTCTime,
        relativeTime INTEGER (0..86400)
    },
    duration INTEGER (1..1024) OPTIONAL,
    locationTime INTEGER (0..1023) OPTIONAL,
    ...
}
```

OMA-LPPe-ver2-0-Crowdsourcing-Time

absoluteTime

This parameter provides the absolute UTC time corresponding to one measurement subset in seconds if available and otherwise in minutes. This parameter SHALL be provided for the first measurement subset reported by a target in one LPP transaction for which absolute time is available. Thereafter, a target may report time using the *relativeTime* parameter. The absolute time should preferably refer to the midpoint of a measurement subset.

relativeTime

This parameter provides the time in seconds for a measurement subset relative to the time for the last measurement subset.

duration

This parameter provides the duration of a measurement subset in seconds rounded up to the nearest second except for a value of 1024 which indicates a duration of more than 1023 seconds. Duration is measured from the time of the first measurement in a measurement subset to the time the last measurement in the measurement subset is obtained. This parameter is optional and SHALL be provided if available.

locationTime

This parameter provides the time in seconds at which an absolute location and/or a relative location was/were obtained for the measurement subset relative to the start of (i.e. first measurement for) the measurement subset. This parameter is optional and SHALL be provided if available.

OMA-LPPe-ver2-0-Crowdsourcing-CommonData

The IE *OMA-LPPe-ver2-0-Crowdsourcing-CommonData* is used by a target to provide common data for crowdsourcing.
OMA-LPpe-ver2-0-Crowdsourcing-CommonData

deviceType
This optional parameter identifies the oem vendor and optionally the oem model and version for the target device. The parameter may also identify the vendor, model and version for each wireless baseband chip in the target device. This parameter should be included when available.

reportNumber
This optional parameter provides the report number which SHALL start at one for the first crowdsourcing report and increase by one for each successive report. Should the maximum value be reached, all successive reports SHALL indicate the maximum number. This parameter is optional and may be omitted for anonymous crowdsourcing to help protect user privacy.

lastReportingTime
This optional parameter provides the time of the last crowdsourcing measurement report to the data server. This may be used by a server to compile statistics on the frequency of reporting by a particular target or by all targets. This parameter is optional and may be omitted for anonymous crowdsourcing to help protect user privacy.

OMA-LPpe-ver2-0-Crowdsourcing-WLAN-AP-Measurements

The IE **OMA-LPpe-ver2-0-Crowdsourcing-WLAN-AP-Measurements** is used by a target to report advanced crowdsourcing measurements for WLAN APs. The measurements for each AP are compressed by including measurements only for measurement subsets where measurements for the particular AP were obtained. The measurement subsets for which such measurements were obtained are referred to using the measurement subset index defined for the parameter advanced-measurement-subsets for the **OMA-LPpe-ver2-0-CrowdsourcingMeasurements** data type.

```asn1
-- ASN1START
OMA-LPpe-ver2-0-Crowdsourcing-WLAN-AP-Measurements ::= SEQUENCE (SIZE (1..ver2-maxAPs)) OF OMA-LPpe-ver2-0-Crowdsourcing-WLAN-AP-Measurements
ver2-maxAPs INTEGER ::= 1024
OMA-LPpe-ver2-0-Crowdsourcing-WLAN-AP-Measurements ::= SEQUENCE { apMACAddress OMA-LPpe-WLAN-AP-ID, apMeasurements SEQUENCE (SIZE (1..ver2-maxMeasurements)) OPTIONAL, startIndex INTEGER (1..ver2-maxMeasurements) OPTIONAL, arePresent NULL, notPresent NULL, static-ap-measurements OMA-LPpe-ver2-0-Crowdsourcing-WLAN-AP-Measurements OPTIONAL, dynamic-ap-measurements OMA-LPpe-ver2-0-Crowdsourcing-WLAN-AP-Measurements OPTIONAL, DynamicMeasurements OPTIONAL, StaticMeasurements OPTIONAL, --Cond OnlyIfDifferentPerAP apSSID OCTET STRING (SIZE (1..32)) OPTIONAL, --Cond OnlyIfDifferentPerAP operatingClass INTEGER (0..255) OPTIONAL, --Cond OnlyIfDifferentPerAP }...
OMA-LPpe-ver2-0-Crowdsourcing-WLAN-AP-StaticMeasurements ::= SEQUENCE { apSSID OCTET STRING (SIZE (1..32)) OPTIONAL, --Cond OnlyIfDifferentPerAP operatingClass INTEGER (0..255) OPTIONAL, --Cond OnlyIfDifferentPerAP }
-- ASN1STOP
```
OMA-LPPe-ver2-0-Crowdsourcing-WLAN-AP-DynamicMeasurements ::= SEQUENCE {
 apSignaltoNoise INTEGER (0..255) OPTIONAL,
 apSignalStrength INTEGER (0..255) OPTIONAL,
 apRoundTripDelay OMA-LPPe-WLAN-RTD OPTIONAL,
 ueSignaltoNoise INTEGER (0..255) OPTIONAL,
 ueSignalStrength INTEGER (0..255) OPTIONAL,
 ...
}

--- ASN1STOP

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>OnlyIfDifferentPerAP</td>
<td>This parameter is conditional and SHALL be included for the first measurement subset in which measurements for each WLAN AP are included and for any subsequent measurement subset for the same WLAN AP for which the parameter content has changed. The parameter SHALL NOT be included for any subsequent measurement subset for the same WLAN AP for which the parameter content is unchanged.</td>
</tr>
</tbody>
</table>

OMA-LPPe-ver2-0-Crowdsourcing-WLAN-AP-Measurements

apMACAddress
This parameter provides the MAC address for a WLAN AP for which crowdsourcing measurements are provided.

startIndex
This parameter provides the index in the range 1-512 of the first measurement subset for which measurements for the AP are provided. If omitted, this parameter has the default value of 1.

apMeasurements
This parameter provides measurements for the WLAN AP for a sequence of consecutive measurement subsets starting with the measurement subset with index given by startIndex. The number of measurement subsets for which measurements are provided plus (startIndex – 1) SHALL NOT exceed 512. The AP measurements for each measurement subset are provided as a CHOICE, where the parameter notPresent indicates that no measurements for the AP are present for this subset and the parameter arePresent indicates that measurements are present.

static-ap-measurements
This parameter provides static measurements for the WLAN AP for one measurement subset. Static measurements refer to measurements that seldom or never change. This parameter SHALL be included if requested and available for the first measurement subset and for any subsequent measurement subset in which one or more of the contained measurements have changed.

dynamic-ap-measurements
This parameter provides dynamic measurements for the WLAN AP for one measurement subset. Dynamic measurements refer to measurements that normally change. This parameter SHALL be included if requested and available for each measurement subset.

apSSID
This parameter provides the SSID of the wireless network served by the AP.

operatingClass
This parameter defines the Operating Class as defined in [IEEE 802.11].
OMA-LPPe-ver2-0-Crowdsourcing-WLAN-AP-Measurements

apDeviceType
This parameter provides the AP device type – 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac or 802.11ad. The AP device type refers to the device type being used for signalling as opposed to the capability of the AP (for instance an 802.11n capable AP in e.g., 802.11a signalling mode).

APReportedLocation
This parameter provides the reported location of the AP in the form of the Location Configuration Information (LCI) defined in [IEEE 802.11][RFC 3825] and includes the following subfields:

- **latitudeResolution**: 6-bits indicating the number of valid bits in the fixed-point value of *latitude*. (This value is the number of high-order Latitude bits that should be considered valid. Any bits entered to the right of this limit should not be considered valid. Values above decimal 34 are undefined and reserved.)

- **latitude**: A 34-bits fixed point value consisting of 9-bits of integer and 25-bits of fraction indicating the Latitude (+/- 90 degrees) of the AP.

- **longitudeResolution**: 6-bits indicating the number of valid bits in the fixed-point value of *longitude*. (This value is the number of high-order Longitude bits that should be considered valid. Any bits entered to the right of this limit should not be considered valid. Values above decimal 34 are undefined and reserved.)

- **longitude**: A 34-bits fixed point value consisting of 9-bits of integer and 25-bits of fraction indicating the Longitude (+/- 180 degrees) of the AP.

- **altitudeType**: Defines the altitude type. Codes defined are:
 - 1: Meters of altitude.
 - 2: Building floors of altitude.

- **altitude**: A 30-bit fixed point value consisting of 22-bits of integer and 8-bits of fraction indicating the Altitude of the AP in units defined by *altitudeType*.

- **datum**: Defines the map datum used for the coordinates. Codes defined are:
 - 1: World Geodetic System 1984 (WGS-84)
 - 3: North American Datum 1983 (NAD-83) with Mean Lower Low Water (MLLW) vertical datum.

apEstimatedLocation
This parameter provides the estimated location of the AP as estimated by the target based on measurements of the AP. The location is expressed as a location relative to the target location for either (a) the most recent measurement subset (including the current subset) that is marked as an anchor point or (b) the current measurement subset if no anchor points were defined. The accuracy of the estimated location refers only to the accuracy of the relative location estimate itself, i.e. not including any uncertainty attributable to the reference location for the point to which the estimated location is relative. This means that the accuracy and confidence for the estimated location MUST be combined with those for the reference location when obtaining either an absolute location for the AP or a relative location for the AP relative to an earlier measurement subset. The parameter SHALL be included if requested and available.

apChannel
This parameter provides the AP channel number identification of the reported WLAN AP.

apAntennaGain
This parameter provides the antenna gain of the AP in dBi.

ueAntennaGain
This parameter provides the antenna gain of the target in dBi for transmission to the WLAN AP.
OMA-LPPe-ver2-0-Crowdsourcing-WLAN-AP-Measurements

apTransmitPower
This parameter provides the power the AP transmits on a beacon, probe response or measurement pilot frame in dBm.

apSignaltoNoise
This parameter provides the AP signal to noise ratio (S/N) of a beacon, probe response or measurement pilot frame as measured at the target. The encoded value in the range 0-255 provides the S/N in the range -10 to 117.5 dB as follows:

\[
S/N = \frac{\text{encoded value}}{2} - 10
\]

The parameter SHALL be included if requested and available.

apSignalStrength
This parameter provides the AP signal strength (RSSI) of a beacon, probe response frame or measurement pilot frame measured at the target in dBm on the channel indicated by the \textit{apChannel} parameter. The encoded value in the range 0-255 provides the RSSI in the range -112.5 to 15 dBm as follows:

\[
\text{RSSI} = \frac{\text{encoded value}}{2} - 112.5
\]

The parameter SHALL be included if requested and available.

apRoundTripDelay
This parameter provides the measured round trip delay between the target and WLAN AP and optionally the accuracy expressed as the standard deviation of the delay. Units for each of these are 1000ns, 100ns, 10ns, 1ns or 0.1ns. The parameter SHALL be included if requested and available.

ueTransmitPower
This parameter provides the transmit power used by the target to access the WLAN AP in dBm. The parameter SHALL be included if requested and available.

ueSignaltoNoise
This parameter provides the target’s signal to noise ratio (S/N) measured at the AP in dB. The encoded value in the range 0-255 provides the S/N in the range -10 to 117.5 dB as follows:

\[
S/N = \frac{\text{encoded value}}{2} - 10
\]

The parameter SHALL be included if requested and available.

ueSignalStrength
This field provides the target’s signal strength (RSSI) measured at the AP on the channel indicated by the \textit{apChannel} field in dBm. The encoded value in the range 0-255 provides the RSSI in the range -112.5 to 15 dBm as follows:

\[
\text{RSSI} = \frac{\text{encoded value}}{2} - 112.5
\]

The parameter SHALL be included if requested and available.

OMA-LPPe-ver2-0-Crowdsourcing-LTE-Measurements

The IE \textit{OMA-LPPe-ver2-0-Crowdsourcing-LTE-Measurements} is used by a target to report advanced crowdsourcing measurements for LTE cells. The measurements for each cell are compressed by including measurements only for measurement subsets where measurements for the particular cell were obtained. The measurement subsets for which such measurements were obtained are referred to using the measurement subset index defined for the parameter advanced-measurement-subsets for the \textit{OMA-LPPe-ver2-0-CrowdsourcingMeasurements} data type.

```asn1
-- ASN1START
OMA-LPPe-ver2-0-Crowdsourcing-LTE-Measurements ::= SEQUENCE (SIZE (1..ver2-0-maxLTECells)) OF OMA-LPPe-ver2-0-Crowdsourcing-LTE-Single-Cell-Measurements
ver2-0-maxLTECells INTEGER ::= 1024
OMA-LPPe-ver2-0-Crowdsourcing-LTE-Single-Cell-Measurements ::= SEQUENCE {
  plmn-Information SEQUENCE {
    plmn-Identity SEQUENCE {
      mcc SEQUENCE (SIZE (3)) OF INTEGER (0..9),
    }
  }
}
-- ASN1END
```
```
-- OMA-LPPe-ver2-0-Crowdsourcing-LTE-StaticMeasurements ::= SEQUENCE {
  arfcnEUTRA                SEQUENCE {
    arfcn         ARFCN-ValueEUTRA,       OPTIONAL, --Cond EARFCN-max
    arfcn-extension ARFCN-ValueEUTRA-v9a0 OPTIONAL --Cond EARFCN-max
  },
  eNBEstimatedLocation OMA-LPPe-RelativeLocation OPTIONAL, --Cond OnlyIfDifferentPerCell
  ...                      }

-- OMA-LPPe-ver2-0-Crowdsourcing-LTE-DynamicMeasurements ::= SEQUENCE {
  primaryCell     BOOLEAN,             --ASN1STOP
  rsrp-Result     INTEGER (0..97)     OPTIONAL, --ASN1STOP
  rsrq-Result     INTEGER (0..34)     OPTIONAL, --ASN1STOP
  ue-RxTxTimeDiff INTEGER (0..4095)   OPTIONAL, --ASN1STOP
  ...                      }
```

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>OnlyIfDifferentPerReport</td>
<td>This parameter is conditional and SHALL be included only for the first reported cell in OMA-LPPe-ver2-0-Crowdsourcing-LTE-Measurements and for any subsequent reported cell where the parameter is different to that for the previous reported cell.</td>
</tr>
<tr>
<td>EARFCN-max</td>
<td>The field is mandatory present if the corresponding arfcn (i.e. without suffix) is set to maxEARFCN (65535). Otherwise the field is not present.</td>
</tr>
<tr>
<td>OnlyIfDifferentPerCell</td>
<td>This parameter is conditional and SHALL be included for the first measurement subset in which measurements for each LTE cell are included and for any subsequent measurement subset for the same cell for which the parameter content has changed. The parameter SHALL NOT be included for any subsequent measurement subset for the same cell for which the parameter content is unchanged.</td>
</tr>
</tbody>
</table>

OMA-LPPe-ver2-0-Crowdsourcing-LTE-Measurements

plmn-Information

This parameter provides the PLMN identity for an LTE cell and indicates whether the cell supports more than PLMN. For a cell that supports more than one PLMN, the PLMN identity is for the primary PLMN.

physCellId

This field specifies the physical cell identity of the reported cell.

cellId

This field specifies the cell ID of the reported LTE cell.
OMA-LPPe-ver2-0-Crowdsourcing-LTE-Measurements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>startIndex</td>
<td>This parameter provides the index in the range 1-512 of the first measurement subset for which measurements for the LTE cell are provided. If omitted, this parameter has the default value of 1.</td>
</tr>
<tr>
<td>lteMeasurements</td>
<td>This parameter provides measurements for the LTE cell for a sequence of consecutive measurement subsets starting with the measurement subset with index given by startIndex. The number of measurement subsets for which measurements are provided plus (startIndex – 1) SHALL NOT exceed 512. The LTE cell measurements for each measurement subset are provided as a CHOICE, where the parameter notPresent indicates that no measurements for the LTE cell are present for this subset and the parameter arePresent indicates that measurements are present.</td>
</tr>
<tr>
<td>static-lte-measurements</td>
<td>This parameter provides static measurements for the LTE cell for one measurement subset. Static measurements refer to measurements that seldom or never change. This parameter SHALL be included for the first measurement subset and for any subsequent measurement subset in which one or more of the contained measurements have changed.</td>
</tr>
<tr>
<td>dynamic-lte-measurements</td>
<td>This parameter provides dynamic measurements for the LTE cell for one measurement subset. Dynamic measurements refer to measurements that normally change. This parameter SHALL be included if requested and available for each measurement subset.</td>
</tr>
<tr>
<td>arfcnEUTRA</td>
<td>This field specifies the ARFCN of the measured E-UTRA carrier frequency, as used in [LPP].</td>
</tr>
<tr>
<td>eNBEstimatedLocation</td>
<td>This parameter provides the estimated location of the eNB antenna for the reported cell as estimated by the target based on measurements of the cell. The location is expressed as a location relative to the target location for either (a) the most recent measurement subset (including the current subset) that is marked as an anchor point or (b) the current measurement subset if no anchor points were defined. The accuracy of the estimated location refers only to the accuracy of the relative location estimate itself, i.e. not including any uncertainty attributable to the reference location for the point to which the estimated location is relative. This means that the accuracy and confidence for the estimated location MUST be combined with those for the reference location when obtaining either an absolute location for the eNB or a relative location for the eNB relative to an earlier measurement subset. The parameter SHALL be included if requested and available.</td>
</tr>
<tr>
<td>primaryCell</td>
<td>This parameter indicates if the reported cell is the primary serving cell for the target when the measurements are made.</td>
</tr>
<tr>
<td>rscp-Result</td>
<td>This field specifies the reference signal received power (RSRP) measurement, as defined in [36.331] and [36.214]. The parameter SHALL be included if requested and available.</td>
</tr>
<tr>
<td>rsrq-Result</td>
<td>This field specifies the reference signal received quality (RSRQ) measurement, as defined in [36.331] amd [36.214]. The parameter SHALL be included if requested and available.</td>
</tr>
<tr>
<td>ue-RxTxTimeDiff</td>
<td>This field specifies the target Rx–Tx time difference measurement, as defined in [36.214]. It is provided only for measurements on the target’s primary cell. Measurement report mapping is according to [36.133]. The parameter SHALL be included if requested and available.</td>
</tr>
</tbody>
</table>

OMA-LPPe-ver2-0-Crowdsourcing-UTRA-Measurements

The IE OMA-LPPe-ver2-0-Crowdsourcing-UTRA-Measurements is used by a target to report advanced crowdsourcing measurements for UTRA cells. The measurements for each cell are compressed by including measurements only for measurement subsets where measurements for the particular cell were obtained. The measurement subsets for which such measurements were obtained are referred to using the measurement subset index defined for the parameter advanced-measurement-subsets for the OMA-LPPe-ver2-0-CrowdsourcingMeasurements data type.
OMA-LPPe-ver2-0-Crowdsourcing-UTRA-Measurements ::= SEQUENCE { SIZE (1..ver2-0-maxUTRACells) } OF OMA-LPPe-ver2-0-Crowdsourcing-UTRA-Single-Cell-Measurements

ver2-0-maxUTRACells INTEGER ::= 512

OMA-LPPe-ver2-0-Crowdsourcing-UTRA-Single-Cell-Measurements ::= SEQUENCE {
 plmn-Information SEQUENCE {
 plmn-Identity SEQUENCE {
 mcc SEQUENCE (SIZE (3)) OF INTEGER (0..9),
 mnc SEQUENCE (SIZE (2..3)) OF INTEGER (0..9),
 ...
 },
 multiple-PLMNs BOOLEAN OPTIONAL, --Cond OnlyIfDifferentPerReport
 cellId BIT STRING (SIZE (32)),
 startIndex INTEGER (1..ver2-0-maxMeasurements) OPTIONAL,
 utraMeasurements SEQUENCE (SIZE (1..ver2-0-maxMeasurements)) OF CHOICE {
 notPresent NULL,
 arePresent SEQUENCE {
 static-UTRA-measurements OMA-LPPe-ver2-0-Crowdsourcing-UTRA-
 StaticMeasurements OPTIONAL, --Cond OnlyIfDifferentPerCell
 dynamic-UTRA-measurements OMA-LPPe-ver2-0-Crowdsourcing-UTRA-
 DynamicMeasurements OPTIONAL
 }
 }
 }
}

OMA-LPPe-ver2-0-Crowdsourcing-UTRA-StaticMeasurements ::= SEQUENCE {
 uarfcn CHOICE {
 fdd-ARFCN-ValueUTRA, tdd-ARFCN-ValueUTRA
 } OPTIONAL, --Cond OnlyIfDifferentPerCell
 physicalID CHOICE {
 fdd OMA-LPPe-OTDOA-UTRA-PrimaryScramblingCode,
 tdd OMA-LPPe-OTDOA-UTRA-CellParametersID
 } OPTIONAL, --Cond OnlyIfDifferentPerCell
 nBestimatedLocation OMA-LPPe-RelativeLocation OPTIONAL, --Cond OnlyIfDifferentPerCell
}

OMA-LPPe-ver2-0-Crowdsourcing-UTRA-DynamicMeasurements ::= SEQUENCE {
 servingCell BOOLEAN,
 modeSpecificInfo CHOICE {
 fdd SEQUENCE {
 cpich-Ec-N0 OMA-LPPe-ECID-UTRA-CPICH-Ec-N0 OPTIONAL,
 cpich-RSCP OMA-LPPe-ECID-UTRA-CPICH-RSCP OPTIONAL,
 fdd-pathloss OMA-LPPe-ECID-UTRA-Pathloss OPTIONAL
 },
 tdd SEQUENCE {
 primaryCCPCH-RSCP OMA-LPPe-ECID-UTRA-PrimaryCCPCH-RSCP OPTIONAL,
 tdd-pathloss OMA-LPPe-ECID-UTRA-Pathloss OPTIONAL,
 utratimingAdvance OMA-LPPe-ECID-UTRA-UTRATimingAdvance OPTIONAL
 }
 },
 ...
}

-- ASN1STOP
<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>OnlyIfDifferentPerReport</td>
<td>This parameter is conditional and SHALL be included only for the first reported cell in OMA-LPPe-ver2-0-Crowdsourcing-UTRA-Measurements and for any subsequent reported cell where the parameter is different to that for the previous reported cell.</td>
</tr>
<tr>
<td>FirstOnly</td>
<td>The parameter is conditional and SHALL be included if available only for the first reported cell in each measurement subset measured by the target using a particular UARFCN.</td>
</tr>
<tr>
<td>OnlyIfDifferentPerCell</td>
<td>This parameter is conditional and SHALL be included for the first measurement subset for any UTRA cell in which measurements for the cell are included and for any subsequent measurement subset for the same cell for which the parameter content has changed. The parameter SHALL NOT be included for any subsequent measurement subset for the cell for which the parameter content is unchanged.</td>
</tr>
</tbody>
</table>

OMA-LPPe-ver2-0-Crowdsourcing-UTRA-Measurements

plmn-Information
This parameter provides the PLMN identity for an UTRA cell and indicates whether the cell supports more than PLMN. For a cell that supports more than one PLMN, the PLMN identity is for the primary PLMN.

cellId
This field specifies cell ID of the reported UTRA cell.

startIndex
This parameter provides the index in the range 1-512 of the first measurement subset for which measurements for the LTE cell are provided. If omitted, this parameter has the default value of 1.

utraMeasurements
This parameter provides measurements for the UTRA cell for a sequence of consecutive measurement subsets starting with the measurement subset with index given by startIndex. The number of measurement subsets for which measurements are provided plus (startIndex – 1) SHALL NOT exceed 512. The UTRA cell measurements for each measurement subset are provided as a CHOICE, where the parameter notPresent indicates that no measurements for the UTRA cell are present for this subset and the parameter arePresent indicates that measurements are present.

static-utra-measurements
This parameter provides static measurements for the UTRA cell for one measurement subset. Static measurements refer to measurements that seldom or never change. This parameter SHALL be included for the first measurement subset and for any subsequent measurement subset in which one or more of the contained measurements have changed.

dynamic-utra-measurements
This parameter provides dynamic measurements for the UTRA cell for one measurement subset. Dynamic measurements refer to measurements that normally change. This parameter SHALL be included if requested and available for each measurement subset.

uarfcn
This field specifies the UARFCN for which measurements were made – either the downlink UARFCN for FDD as specified in [25.101] or the UARFCN for TDD as specified in [25.102].

physicalID
For FDD, this field provides the scrambling code (0-511) for the primary CPICH. For TDD, this field provides the cell parameter ID (0-127).

nBestimatedLocation
This parameter provides the estimated location of the Node B antenna for the reported cell as estimated by the target based on measurements of the cell. The location is expressed as a location relative to the target location for either (a) the most recent measurement subset (including the current subset) that is marked as an anchor point or (b) the current measurement subset if no anchor points were defined. The accuracy of the estimated location refers only to the accuracy of the relative location estimate itself, i.e. not including any uncertainty attributable to the reference location for the point to which the estimated location is relative. This means that the accuracy and confidence for the estimated location MUST be combined with those for the reference location when obtaining either an absolute location for the Node B or a relative location for the Node B relative to an earlier measurement subset. The parameter SHALL be included if requested and available.
utra-CarrierRSSI
This parameter provides the UTRA Carrier RSSI level for the UARFCN measured for the cell in the range 0-76 as defined and encoded in [25.133] for FDD and [25.123] for TDD. Values over 76 are spare (not used). This parameter **SHALL** be included if requested and available for the first reported cell for the UARFCN being measured.

servingCell
This parameter indicates if the reported cell is a serving cell for the target when the measurements are made.

cpich-Ec-N0
This parameter is applicable only to FDD and provides an encoded value for CPICH_Ec/Io. This is the ratio of the received energy per PN chip for the CPICH to the total received power spectral density at the UE antenna connector. For a target that is able to simultaneously receive signals from more than 1 carrier, CPICH_Ec/Io is defined for each carrier individually. The encoding is as defined in [25.133]. The value range for this field is 0-63, but values over 49 are not used. This parameter **SHALL** be provided if requested and available.

cpich-RSCP
This parameter provides an encoded value for the CPICH RSCP. The encoding is based on [25.331] and [25.133] as follows:

<table>
<thead>
<tr>
<th>cpich-RSCP</th>
<th>CPICH RSCP range</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>< -120 dBm</td>
</tr>
<tr>
<td>124</td>
<td>-120 ≤ CPICH RSCP < -119 dBm</td>
</tr>
<tr>
<td>125</td>
<td>-119 ≤ CPICH RSCP < -118 dBm</td>
</tr>
<tr>
<td>126</td>
<td>-118 ≤ CPICH RSCP < -117 dBm</td>
</tr>
<tr>
<td>127</td>
<td>-117 ≤ CPICH RSCP < -116 dBm</td>
</tr>
<tr>
<td>0</td>
<td>-116 ≤ CPICH RSCP < -115 dBm</td>
</tr>
<tr>
<td>1</td>
<td>-115 ≤ CPICH RSCP < -114 dBm</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>89</td>
<td>-27 ≤ CPICH RSCP < -26 dBm</td>
</tr>
<tr>
<td>90</td>
<td>-26 ≤ CPICH RSCP < -25 dBm</td>
</tr>
<tr>
<td>91</td>
<td>-25 ≤ CPICH RSCP dB</td>
</tr>
</tbody>
</table>

The value range of this parameter is 0-127 with values in the range 92-122 not used. This parameter **SHALL** be provided if requested and available.

fdd-pathloss
The parameter provides the path loss for FDD in the range 46-158 dB. Values above 158 are spare. This parameter **SHALL** be provided if requested and available.
primaryCCPCH-RSCP

This parameter provides the encoded value for the primary CCPCH RSCP for TDD. Encoding is based on [25.331] and [25.123] as follows:

- \(\text{cpich-RSCP} = 123 \) \(\text{CPICH RSCP} < -120 \text{ dBm} \)
- \(\text{cpich-RSCP} = 124 \) \(-120 \leq \text{CPICH RSCP} < -119 \text{ dBm} \)
- \(\text{cpich-RSCP} = 125 \) \(-119 \leq \text{CPICH RSCP} < -118 \text{ dBm} \)
- \(\text{cpich-RSCP} = 126 \) \(-118 \leq \text{CPICH RSCP} < -117 \text{ dBm} \)
- \(\text{cpich-RSCP} = 127 \) \(-117 \leq \text{CPICH RSCP} < -116 \text{ dBm} \)
- \(\text{cpich-RSCP} = 0 \) \(-116 \leq \text{CPICH RSCP} < -115 \text{ dBm} \)
- \(\text{cpich-RSCP} = 1 \) \(-115 \leq \text{CPICH RSCP} < -114 \text{ dBm} \)
- \(\text{cpich-RSCP} = 89 \) \(-27 \leq \text{CPICH RSCP} < -26 \text{ dBm} \)
- \(\text{cpich-RSCP} = 90 \) \(-26 \leq \text{CPICH RSCP} < -25 \text{ dBm} \)
- \(\text{cpich-RSCP} = 91 \) \(-25 \leq \text{CPICH RSCP} < -24 \text{ dBm} \)

The value range of this parameter is 0-127 with values in the range 92-122 not used. This parameter SHALL be provided if requested and available.

tdd-pathloss

This parameter provides the path loss for TDD in the range 46-158 dB. Values above 158 are spare. This parameter SHALL be provided if requested and available.

utraTimingAdvance

This parameter provides the timing advance for TDD. This is measured as defined in [25.225] for 1.28Mcps TDD (though applies also to 3.84 and 7.68 Mcps). Encoding uses the following fields:

- \(tA \): timing advance in the range 0-8191
- \(tA\text{Resolution} \): units for \(tA \)
 - \(\text{res1-0chip} \): 1.0 chips
 - \(\text{res0-5chip} \): 0.5 chips
 - \(\text{res0-125chip} \): 0.125 chips (default value if absent)
- \(\text{chipRate} \): chip rate
 - \(\text{tdd128} \): 1.28 Mcps (default if absent)
 - \(\text{tdd384} \): 3.84 Mcps
 - \(\text{tdd768} \): 7.68 Mcps

This parameter SHALL be provided for a serving cell if requested and available.

OMA-LPPe-ver2-0-Crowdsourcing-GSM-Measurements

The IE **OMA-LPPe-ver2-0-Crowdsourcing-GSM-Measurements** is used by a target to report advanced crowdsourcing measurements for GSM cells. The measurements for each cell are compressed by including measurements only for measurement subsets where measurements for the particular cell were obtained. The measurement subsets for which such measurements were obtained are referred to using the measurement subset index defined for the parameter advanced-measurement-subsets for the **OMA-LPPe-ver2-0-CrowdsourcingMeasurements** data type.
OMA-LPPe-ver2-0-Crowdsourcing-GSM-Single-Cell-Measurements ::= SEQUENCE {
 plmn-Identity SEQUENCE {
 mcc SEQUENCE (SIZE (3)) OF INTEGER (0..9),
 mnc SEQUENCE (SIZE (2..3)) OF INTEGER (0..9),
 ... OPTIONAL, --Cond OnlyIfDifferentPerReport
 } OPTIONAL, --Cond OnlyIfDifferentPerReport
 locationAreaCode BIT STRING (SIZE (16)) OPTIONAL, --Cond OnlyIfDifferentPerReport
 cellId BIT STRING (SIZE (16)),
 bsic-bcch OMA-LPPe-CellNonUniqueGERAN,
 startIndex INTEGER (1..ver2-0-maxMeasurements) OPTIONAL,
 gsmMeasurements SEQUENCE (SIZE (1..ver2-0-maxMeasurements)) OF CHOICE {
 notPresent NULL,
 arePresent SEQUENCE {
 static-GSM-measurements OMA-LPPe-ver2-0-Crowdsourcing-GSM-
 StaticMeasurements OPTIONAL, --Cond OnlyIfDifferentPerCell
 dynamic-GSM-measurements OMA-LPPe-ver2-0-Crowdsourcing-GSM-
 DynamicMeasurements OPTIONAL
 },
 ... }
}

OMA-LPPe-ver2-0-Crowdsourcing-GSM-StaticMeasurements ::= SEQUENCE {
 btsEstimatedLocation OMA-LPPe-RelativeLocation : OPTIONAL, --Cond OnlyIfDifferentPerCell
 ... }

OMA-LPPe-ver2-0-Crowdsourcing-GSM-DynamicMeasurements ::= SEQUENCE {
 servingCell BOOLEAN,
 rxLevel INTEGER (0..63) OPTIONAL,
 tA INTEGER (0..255) OPTIONAL,
 ... }

-- ASN1STOP

Conditional presence

<table>
<thead>
<tr>
<th>OnlyIfDifferentPerReport</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>OnlyIfDifferentPerReport</td>
<td>This parameter is conditional and SHALL be included only for the first reported cell in OMA-LPPe-ver2-0-Crowdsourcing-GSM-Measurements and for any subsequent reported cell where the parameter is different to that for the previous reported cell.</td>
</tr>
<tr>
<td>OnlyIfDifferentPerCell</td>
<td>This parameter is conditional and SHALL be included for the first measurement subset for any GSM cell in which measurements for the cell are included and for any subsequent measurement subset for the same cell for which the parameter content has changed. The parameter SHALL NOT be included for any subsequent measurement subset for the cell for which the parameter content is unchanged.</td>
</tr>
</tbody>
</table>

OMA-LPPe-ver2-0-Crowdsourcing-GSM-Measurements

plmn-Identity

This parameter provides the PLMN identity for the reported GSM cell.

locationAreaCode

This parameter provides the location area code for the reported GSM cell.

cellId

This parameter provides the cell ID for the reported GSM cell.

bsic-bcch

This parameter provides the BSIC and BCCH ARFCN for the reported GSM cell.
OMA-LPPe-ver2-0-Crowdsourcing-GSM-Measurements

startIndex
This parameter provides the index in the range 1-512 of the first measurement subset for which measurements for the GSM cell are provided. If omitted, this parameter has the default value of 1.

gsmMeasurements
This parameter provides measurements for the GSM cell for a sequence of consecutive measurement subsets starting with the measurement subset with index given by startIndex. The number of measurement subsets for which measurements are provided plus (startIndex – 1) SHALL NOT exceed 512. The GSM cell measurements for each measurement subset are provided as a CHOICE, where the parameter notPresent indicates that no measurements for the GSM cell are present for this subset and the parameter arePresent indicates that measurements are present.

static-gsm-measurements
This parameter provides static measurements for the GSM cell for one measurement subset. Static measurements refer to measurements that seldom or never change. This parameter SHALL be included for the first measurement subset and for any subsequent measurement subset in which one or more of the contained measurements have changed.

dynamic-gsm-measurements
This parameter provides dynamic measurements for the GSM cell for one measurement subset. Dynamic measurements refer to measurements that normally change. This parameter SHALL be included if requested and available for each measurement subset.

btsEstimatedLocation
This parameter provides the estimated location of the BTS antenna for the reported cell as estimated by the target based on measurements of the cell. The location is expressed as a location relative to the target location for either (a) the most recent measurement subset (including the current subset) that is marked as an anchor point or (b) the current measurement subset if no anchor points were defined. The accuracy of the estimated location refers only to the accuracy of the relative location estimate itself, i.e. not including any uncertainty attributable to the reference location for the point to which the estimated location is relative. This means that the accuracy and confidence for the estimated location MUST be combined with those for the reference location when obtaining either an absolute location for the BTS or a relative location for the BTS relative to an earlier measurement subset. The parameter SHALL be included if requested and available.

servingCell
This parameter indicates if the reported cell is the serving cell for the target when the measurements are made.

rxLevel
This field specifies the received signal level for a measured cell. Rx-level is encoded according to [45.008] as:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>< –110 dBm</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-110 dBm to -109 dBm</td>
<td>0dBm</td>
</tr>
<tr>
<td>2</td>
<td>-109 dBm to -108 dBm</td>
<td>1 0 dBm</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>-49 dBm to -48 dBm</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>>= -48 dBm</td>
<td></td>
</tr>
</tbody>
</table>

This field SHALL be included if requested and available.

tA
This field specifies the timing advance of a serving cell in units of 48/13µs (length of a GSM bit). This provides an approximation for the round trip propagation time between the target and the base station of the measured cell. This field SHALL be included if requested and available.

OMA-LPPe-ver2-0-Crowdsourcing-SRN-Measurements

The IE OMA-LPPe-ver2-0-Crowdsourcing-SRN-Measurements is used by a target to report advanced crowdsourcing measurements for SRN access points. The measurements for each SRN AP are compressed by including measurements only for measurement subsets where measurements for the particular AP were obtained. The measurement subsets for which such measurements were obtained are referred to using the measurement subset index defined for the parameter advanced-measurement-subsets for the OMA-LPPe-ver2-0-CrowdsourcingMeasurements data type.
OMA-LPPe-ver2-0-Crowdsourcing-SRN-Measurements ::= SEQUENCE (SIZE (1..ver2-0-maxSRNAPs)) OF OMA-LPPe-ver2-0-Crowdsourcing-SRN-AP-Measurements

ver2-0-maxSRNAPs INTEGER ::= 1024

OMA-LPPe-ver2-0-Crowdsourcing-SRN-AP-Measurements ::= SEQUENCE {
 srnID OMA-LPPe-SRN-SRNId,
 srnCategory OMA-LPPe-SRN-Category OPTIONAL,
 startIndex INTEGER (1..ver2-0-maxMeasurements) OPTIONAL,
 srnMeasurements SEQUENCE (SIZE (1..ver2-0-maxMeasurements)) OF CHOICE {
 notPresent NULL,
 arePresent SEQUENCE {
 static-SRN-measurements OMA-LPPe-ver2-0-Crowdsourcing-SRN-StaticMeasurements OPTIONAL,
 dynamic-SRN-measurements OMA-LPPe-ver2-0-Crowdsourcing-SRN-DynamicMeasurements OPTIONAL,
 }
 }
}

OMA-LPPe-ver2-0-Crowdsourcing-SRN-StaticMeasurements ::= SEQUENCE {
 apReportedLocation OMA-LPPe-ver2-0-SRN-ReportedLocation OPTIONAL,
 aPestimatedLocation OMA-LPPe-RelativeLocation OPTIONAL,
 srnID Conditional OnlyIfDifferentPerReport
 srnCategory Conditional OnlyIfDifferentPerReport
 startIndex Conditional OnlyIfDifferentPerReport
 srnMeasurements Conditional OnlyIfDifferentPerReport
}

OMA-LPPe-ver2-0-Crowdsourcing-SRN-DynamicMeasurements ::= SEQUENCE {
 rssI INTEGER(-128..127) OPTIONAL,
 rtd OMA-LPPe-WLAN-RTD OPTIONAL,
 srnID Conditional OnlyIfDifferentPerAP
 srnCategory Conditional OnlyIfDifferentPerAP
 startIndex Conditional OnlyIfDifferentPerAP
 srnMeasurements Conditional OnlyIfDifferentPerAP
}

Conditional presence

<table>
<thead>
<tr>
<th>OnlyIfDifferentPerReport</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>This parameter is conditional and SHALL be included only for the first reported SRN AP in OMA-LPPe-ver2-0-Crowdsourcing-SRN-Measurements and for any subsequent reported SRN AP where the parameter is different to that for the previous reported SRN AP.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OnlyIfDifferentPerAP</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>This parameter is conditional and SHALL be included for the first measurement subset in which measurements for any SRN AP are included and for any subsequent measurement subset for the same AP for which the parameter content has changed. The parameter SHALL NOT be included for any subsequent measurement subset for the same AP for which the parameter content is unchanged.</td>
<td></td>
</tr>
</tbody>
</table>

OMA-LPPe-ver2-0-Crowdsourcing-SRN-Measurements

<table>
<thead>
<tr>
<th>srnID</th>
<th>This field identifies the SRN AP.</th>
</tr>
</thead>
<tbody>
<tr>
<td>srnCategory</td>
<td>This field identifies the SRN technology and may indicate an SRN vendor.</td>
</tr>
</tbody>
</table>
OMA-LPPe-ver2-0-Crowdsourcing-SRN-Measurements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>startIndex</td>
<td>This parameter provides the index in the range 1-512 of the first measurement subset for which measurements for the SRN AP are provided. If omitted, this parameter has the default value of 1.</td>
</tr>
<tr>
<td>srnMeasurements</td>
<td>This parameter provides measurements for the SRN AP for a sequence of consecutive measurement subsets starting with the measurement subset with index given by startIndex. The number of measurement subsets for which measurements are provided plus (startIndex – 1) SHALL NOT exceed 512. The SRN AP measurements for each measurement subset are provided as a CHOICE, where the parameter notPresent indicates that no measurements for the SRN AP are present for this subset and the parameter arePresent indicates that measurements are present.</td>
</tr>
<tr>
<td>static-srn-measurements</td>
<td>This parameter provides static measurements for the SRN AP for one measurement subset. Static measurements refer to measurements that seldom or never change. This parameter SHALL be included for the first measurement subset and for any subsequent measurement subset in which one or more of the contained measurements have changed.</td>
</tr>
<tr>
<td>dynamic-srn-measurements</td>
<td>This parameter provides dynamic measurements for the SRN AP for one measurement subset. Dynamic measurements refer to measurements that normally change. This parameter SHALL be included if requested and available for each measurement subset.</td>
</tr>
<tr>
<td>apReportedLocation</td>
<td>This parameter provides the location of the AP as reported by the AP. The target should report the location using a precision at least equal to that reported by the AP. This parameter SHALL be included if requested and available.</td>
</tr>
<tr>
<td>apEstimatedLocation</td>
<td>This parameter provides the estimated location of the SRN AP as estimated by the target based on measurements of the SRN AP. The location is expressed as a location relative to the target location for either (a) the most recent measurement subset (including the current subset) that is marked as an anchor point or (b) the current measurement subset if no anchor points were defined. The accuracy of the estimated location refers only to the accuracy of the relative location estimate itself, i.e. not including any uncertainty attributable to the reference location for the point to which the estimated location is relative. This means that the accuracy and confidence for the estimated location MUST be combined with those for the reference location when obtaining either an absolute location for the SRN AP or a relative location for the SRN AP relative to an earlier measurement subset. The parameter SHALL be included if requested and available.</td>
</tr>
<tr>
<td>rssi</td>
<td>This field provides the Received Signal Strength Indicator. The interpretation and the scale are SRN-type specific.</td>
</tr>
<tr>
<td>rtd</td>
<td>This field provides the measured round trip delay between the target and the SRN AP, and optionally the accuracy expressed as the standard deviation of the delay.</td>
</tr>
</tbody>
</table>

OMA-LPPe-ver2-0-Crowdsourcing-Sensor-Measurements

The IE **OMA-LPPe-ver2-0-Crowdsourcing-Sensor-Measurements** is used by a target to report advanced crowdsourcing measurements derived from sensors. The measurements are compressed by including measurements only for measurement subsets where measurements were obtained. The measurement subsets for which such measurements were obtained are referred to using the measurement subset index defined for the parameter advanced-measurement-subsets for the **OMA-LPPe-ver2-0-CrowdsourcingMeasurements** data type.

```
-- ASN1START
OMA-LPPe-ver2-0-Crowdsourcing-Sensor-Measurements ::= SEQUENCE {
    startIndex       INTEGER (1..ver2-0-maxMeasurements) OPTIONAL,
    sensorMeasurements SEQUENCE (SIZE (1..ver2-0-maxMeasurements)) OF CHOICE {
        notPresent       NULL,
        arePresent       SEQUENCE {
            ...}}

-- ASN1END
```
This parameter is conditional and SHALL be included for the first measurement subset in which static sensor measurements are available and for any subsequent measurement subset for which the parameter content has changed. The parameter SHALL NOT be included for any subsequent measurement subset for which the parameter content is unchanged.

Conditional presence	**Explanation**
OnlyIfDifferent | This parameter is conditional and SHALL be included for the first measurement subset in which static sensor measurements are available and for any subsequent measurement subset for which the parameter content has changed. The parameter SHALL NOT be included for any subsequent measurement subset for which the parameter content is unchanged.

OMA-LPPe-ver2-0-Crowdsourcing-Sensor-Measurements

startIndex

This parameter provides the index in the range 1-512 of the first measurement subset for which sensor measurements are provided. If omitted, this parameter has the default value of 1.

sensorMeasurements

This parameter provides sensor measurements for a sequence of consecutive measurement subsets starting with the measurement subset with index given by startIndex. The number of measurement subsets for which measurements are provided plus (startIndex – 1) SHALL NOT exceed 512. The sensor measurements for each measurement subset are provided as a CHOICE, where the parameter notPresent indicates that no sensor measurements are present for this subset and the parameter arePresent indicates that measurements are present.

static-sensor-measurements

This parameter provides static sensor measurements for one measurement subset. Static measurements refer to measurements that seldom or never change. In LPPe version 2.0, this parameter is a placeholder and SHALL NOT be included by a target.

dynamic-sensor-measurements

This parameter provides dynamic sensor measurements for one measurement subset. Dynamic measurements refer to measurements that normally change. This parameter SHALL be included if requested and available. The parameter need only be provided for one measurement subset for each measurement set.

motionState

This parameter provides the motion state of the target during the measurement subset. This parameter SHALL be included if requested and available.

atmosphericPressure

This parameter provides the atmospheric pressure in units of Pa. This parameter SHALL be included if requested and available.
temperature
This parameter provides the temperature at the target in degrees Celsius. This parameter SHALL be included if requested and available.

humidity
This parameter provides the humidity as a percentage. This parameter SHALL be included if requested and available.

soundLevel
This parameter provides the average sound level during all or part of a measurement set in units of dB relative to a standard sound pressure of 20 µPa. This parameter SHALL be included if requested and available.

illuminance
This parameter provides the average illuminance at the target during all or part of a measurement set. The parameter is expressed as 10 Log₁₀(I) rounded to the nearest integer where I is the average illuminance measured in lux. This parameter SHALL be included if requested and available.

6.5.14.4 Crowdsourcing Capability Information

- OMA-LPPe-ver2-0-Crowdsourcing-ProvideCapabilities

The IE OMA-LPPe-Crowdsourcing-ProvideCapabilities is used by a target to provide its capabilities for crowdsourcing to a server. The IE is not included when a target does not support crowdsourcing.

```asn1
OMA-LPPe-ver2-0-Crowdsourcing-ProvideCapabilities ::= SEQUENCE {
    basicCrowdsourcingCapabilities } OPTIONAL,
advancedCrowdsourcingCapabilities SEQUENCE {
    advancedControlParameterCapabilities } OPTIONAL,
    advancedMeasurementCapabilities } OPTIONAL,
    crowdsourcing-session OMA-LPPe-ver2-0-CrowdsourcingSessionID OPTIONAL, --Cond ActiveSession
}

OMA-LPPe-ver2-0-Crowdsourcing-ControlParameterCapabilities ::= SEQUENCE {
    controlParameters } BIT STRING {
        locationPrecision (0),
        geographicArea (1),
        country-network (2),
        detectedTransmitters (3),
        targetMotionState (4),
        environment (5),
        logicalTriggerCombination (6),
        activationDelay (7),
        deactivationDelay (8),
        measurementPeriodicity (9),
        measurementMovement (10),
        measurementFloorChange (11),
        measurementChangeOfServingCellOrAP (12),
        logicalMeasurementCombination (13),
        realTimeReporting (14),
        quasiRealTimeReporting (15),
        batchReporting (16),
        batchReportPeriodicity (17),
        batchReportMovement (18),
        batchReportOnChangeOfServingNetwork (19),
```
OMA-LPPe-ver2-0-Crowdsourcing-BasicMeasurementCapabilities ::= SEQUENCE {
 basicPosMethods BIT STRING {
 lpp-okdoa (0),
 lpp-ecid (1),
 otdoa (2),
 eotd (3),
 otdoa-ultra (4),
 lte-ecid (5),
 gsm-ecid (6),
 ultra-ecid (7),
 wlan-ap (8),
 wimax (9),
 sensor (10),
 snr (11),
 pdr (12),
 irb (13) } (SIZE(1..32)),
 basicSupportedMeasurements ENUMERATED {
 sameAsPositioning, subsetOfPositioning, ...
 }
}

OMA-LPPe-ver2-0-Crowdsourcing-AdvancedMeasurementCapabilities ::= SEQUENCE {
 wlan-ap-advancedMeasurements OMA-LPPe-ver2-0-Crowdsourcing-WLAN-AP-MeasurementCapabilities OPTIONAL,
 lte-advancedMeasurements OMA-LPPe-ver2-0-Crowdsourcing-LTE-MeasurementCapabilities OPTIONAL,
 ultra-advancedMeasurements OMA-LPPe-ver2-0-Crowdsourcing-UTRA-MeasurementCapabilities OPTIONAL,
 gsm-advancedMeasurements OMA-LPPe-ver2-0-Crowdsourcing-GSM-MeasurementCapabilities OPTIONAL,
 snr-advancedMeasurements OMA-LPPe-ver2-0-Crowdsourcing-SRN-MeasurementCapabilities OPTIONAL,
 sensor-advancedMeasurements OMA-LPPe-ver2-0-Crowdsourcing-Sensor-MeasurementCapabilities OPTIONAL,
 ...
}

-- ASN1STOP

Conditional presence

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ActiveSession</td>
<td>This parameter is conditional and SHALL be included if and only if there is an ongoing crowdsourcing session with the target for which the server is the control server or data server (or both).</td>
</tr>
</tbody>
</table>

OMA-LPPe-ver2-0-Crowdsourcing-ProvideCapabilities field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>basicCrowdsourcingCapabilities</td>
<td>This parameter specifies target capabilities for basic crowdsourcing. This parameter is optional and if not included indicates that a target does not support basic crowdsourcing.</td>
</tr>
<tr>
<td>basicControlParameterCapabilities</td>
<td>This parameter specifies the control parameters supported by a target for basic crowdsourcing.</td>
</tr>
<tr>
<td>basicMeasurementCapabilities</td>
<td>This parameter specifies the measurements supported by a target for basic crowdsourcing.</td>
</tr>
<tr>
<td>advancedCrowdsourcingCapabilities</td>
<td>This parameter specifies target capabilities for advanced crowdsourcing. This parameter is optional and if not included indicates that a target does not support advanced crowdsourcing.</td>
</tr>
<tr>
<td>advancedControlParameterCapabilities</td>
<td>This parameter specifies the control parameters supported by a target for advanced crowdsourcing.</td>
</tr>
</tbody>
</table>
OMA-LPPe-ver2-0-Crowdsourcing-ProvideCapabilities field descriptions

<table>
<thead>
<tr>
<th>advancedMeasurementCapabilities</th>
<th>This parameter specifies the measurements supported by a target for advanced crowdsourcing.</th>
</tr>
</thead>
<tbody>
<tr>
<td>crowdsourcing-session</td>
<td>This parameter provides the crowdsourcing session ID for any ongoing crowdsourcing session between the target and the server. This parameter is optional and if not included indicates that there is no ongoing crowdsourcing session between the target and the server. A server may use the query procedure to discover the control parameters and measurements in use for any reported crowdsourcing session – e.g. if the server does not record these.</td>
</tr>
<tr>
<td>controlParameters</td>
<td>This parameter indicates the control parameters supported by the target for either basic or advanced crowdsourcing. The parameter is encoded as a bit string with each control parameter represented by a different bit. A bit is set to one to indicate that the corresponding control parameter is supported by the target. A bit is set to zero or omitted to indicate that the corresponding control parameter is not supported by the target. A target SHALL minimally support the default requirements for absence of control parameters for activation triggers, measurement triggers, reporting triggers and/or duration parameters in a crowdsourcing request from a control server. This enables a control server to set up default crowdsourcing in a target even when the target supports few or no control parameters.</td>
</tr>
<tr>
<td>basicPosmethods</td>
<td>This parameter indicates the positioning methods for which a target supports basic crowdsourcing measurements. The parameter is encoded as a bit string with each positioning method represented by a different bit. A bit is set to one to indicate that crowdsourcing measurements for the corresponding positioning method are supported by the target. A bit is set to zero or omitted to indicate that crowdsourcing measurements for the corresponding positioning method are not supported by the target.</td>
</tr>
<tr>
<td>basicSupportedMeasurements</td>
<td>This parameter indicates whether a target supports the same measurements for crowdsourcing for each positioning method for which basic crowdsourcing is supported as the target supports for positioning. The choices are an indication of the same measurements for all position methods, a subset of measurements for some or all position methods (where measurements may be the same for some position methods and a subset for others), a superset of measurements (where measurements may be the same for some position methods and a superset for others) or some other relationship (e.g. a mixture of subsets and supersets).</td>
</tr>
<tr>
<td>wlan-ap-advancedMeasurements</td>
<td>This parameter indicates the WLAN AP advanced crowdsourcing measurements supported by a target. This parameter is optional and if not included indicates that a target does not support advanced crowdsourcing for WLAN APs.</td>
</tr>
<tr>
<td>lte-advancedMeasurements</td>
<td>This parameter indicates the LTE advanced crowdsourcing measurements supported by a target. This parameter is optional and if not included indicates that a target does not support advanced crowdsourcing for LTE.</td>
</tr>
<tr>
<td>utra-advancedMeasurements</td>
<td>This parameter indicates the UTRA advanced crowdsourcing measurements supported by a target. This parameter is optional and if not included indicates that a target does not support advanced crowdsourcing for UTRA.</td>
</tr>
<tr>
<td>gsm-advancedMeasurements</td>
<td>This parameter indicates the GSM advanced crowdsourcing measurements supported by a target. This parameter is optional and if not included indicates that a target does not support advanced crowdsourcing for GSM.</td>
</tr>
<tr>
<td>srn-advancedMeasurements</td>
<td>This parameter indicates the SRN advanced crowdsourcing measurements supported by a target. This parameter is optional and if not included indicates that a target does not support advanced crowdsourcing for SRN.</td>
</tr>
<tr>
<td>sensor-advancedMeasurements</td>
<td>This parameter indicates the sensor advanced crowdsourcing measurements supported by a target. This parameter is optional and if not included indicates that a target does not support advanced crowdsourcing for sensors.</td>
</tr>
</tbody>
</table>
6.5.14.5 Crowdsourcing Capability Information Request

- **OMA-LPPe-ver2-0-Crowdsourcing-RequestCapabilities**

The IE **OMA-LPPe-ver2-0-Crowdsourcing-RequestCapabilities** is used to request crowdsourcing capabilities information from the target.

```
-- ASN1START
OMA-LPPe-ver2-0-Crowdsourcing-RequestCapabilities ::= SEQUENCE {
  ... }
-- ASN1STOP
```

6.5.14.6 Crowdsourcing Capability Information Elements

- **OMA-LPPe-ver2-0-Crowdsourcing-WLAN-AP-MeasurementCapabilities**

The IE **OMA-LPPe-ver2-0-Crowdsourcing-WLAN-AP-MeasurementCapabilities** is used by a target to provide its capabilities for advanced crowdsourcing of WLAN AP measurements to a server.

```
-- ASN1START
OMA-LPPe-ver2-0-Crowdsourcing-WLAN-AP-MeasurementCapabilities ::= SEQUENCE {
  measurements  BIT STRING {
    apSSID  (0),
    operatingClass  (1),
    apDeviceType  (2),
    apReportedLocation  (3),
    apEstimatedLocation  (4),
    apChannel  (5),
    apAntennaGain  (6),
    ueAntennaGain  (7),
    apTransmitPower  (8),
    apSignaltoNoise  (9),
    apSignalStrength  (10),
    apRoundTripDelay  (11),
    ueTransmitPower  (12),
    ueSignaltoNoise  (13),
    ueSignalStrength  (14)} (SIZE (1..32)),
  ... }
-- ASN1STOP
```

<table>
<thead>
<tr>
<th>OMA-LPPe-ver2-0-Crowdsourcing-WLAN-AP-MeasurementCapabilities field descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>measurements</td>
</tr>
</tbody>
</table>

- **OMA-LPPe-ver2-0-Crowdsourcing-LTE-MeasurementCapabilities**

The IE **OMA-LPPe-ver2-0-Crowdsourcing-LTE-MeasurementCapabilities** is used by a target to provide its capabilities for advanced crowdsourcing of LTE measurements to a server.
OMA-LPpe-ver2-0-Crowdsourcing-LTE-MeasurementCapabilities ::= SEQUENCE {
 measurements BIT STRING {
 enNBEstimatedLocation (0),
 rsrp (1),
 rsrq (2),
 ueRxTx (3),
 non-serving-cell (4),
 non-serving-plmn (5) (SIZE (1..16)),
 ...
 }
}

--- ASN1STOP

OMA-LPpe-ver2-0-Crowdsourcing-LTE-MeasurementCapabilities field descriptions

Measurements

This parameter specifies the LTE measurements supported by a target for advanced crowdsourcing. The parameter is encoded as a bit string with each LTE measurement capability represented by a different bit. A bit is set to one to indicate that the corresponding LTE measurement capability is supported by the target. A bit is set to zero or omitted to indicate that the corresponding LTE measurement capability is not supported by the target.

OMA-LPpe-ver2-0-Crowdsourcing-UTRA-MeasurementCapabilities

The IE **OMA-LPpe-ver2-0-Crowdsourcing-UTRA-MeasurementCapabilities** is used by a target to provide its capabilities for advanced crowdsourcing of UTRA measurements to a server.

--- ASN1START

OMA-LPpe-ver2-0-Crowdsourcing-UTRA-MeasurementCapabilities ::= SEQUENCE {
 measurements BIT STRING {
 nBestimatedLocation (0),
 utra-carrier-RSSI (1),
 fdd-cpich-Ec-No (2),
 fdd-cpich-RSCP (3),
 fdd-pathloss (4),
 tdd-primary-cpich-RSCP (5),
 tdd-pathloss (6),
 tdd-timing-advance (7),
 non-serving-cell (8),
 non-serving-plmn (9) (SIZE (1..16)),
 ...
 }
}

--- ASN1STOP

OMA-LPpe-ver2-0-Crowdsourcing-UTRA-MeasurementCapabilities field descriptions

measurements

This parameter specifies the UTRA measurements supported by a target for advanced crowdsourcing. The parameter is encoded as a bit string with each UTRA measurement capability represented by a different bit. A bit is set to one to indicate that the corresponding UTRA measurement capability is supported by the target. A bit is set to zero or omitted to indicate that the corresponding UTRA measurement capability is not supported by the target.

OMA-LPpe-ver2-0-Crowdsourcing-GSM-MeasurementCapabilities

The IE **OMA-LPpe-ver2-0-Crowdsourcing-GSM-MeasurementCapabilities** is used by a target to provide its capabilities for advanced crowdsourcing of GSM measurements to a server.
OMA-LPpe-ver2-0-Crowdsourcing-GSM-MeasurementCapabilities ::= SEQUENCE {
 measurements BIT STRING {
 bts-estimatedLocation (0),
 rxLevel (1),
 timingAdvance (2),
 non-serving-cell (3),
 non-serving-plmn (4)) (SIZE (1..8)),
 }
}

OMA-LPpe-ver2-0-Crowdsourcing-GSM-MeasurementCapabilities field descriptions

Measurements
This parameter specifies the GSM measurements supported by a target for advanced crowdsourcing. The parameter is encoded as a bit string with each GSM measurement capability represented by a different bit. A bit is set to one to indicate that the corresponding GSM measurement capability is supported by the target. A bit is set to zero or omitted to indicate that the corresponding GSM measurement capability is not supported by the target.

OMA-LPpe-ver2-0-Crowdsourcing-SRN-MeasurementCapabilities

The IE OMA-LPpe-ver2-0-Crowdsourcing-SRN-MeasurementCapabilities is used by a target to provide its capabilities for advanced crowdsourcing of SRN measurements to a server.

OMA-LPpe-ver2-0-Crowdsourcing-SRN-MeasurementCapabilities ::= SEQUENCE {
 measurements BIT STRING {
 apReportedLocation (0),
 apEstimatedLocation (1),
 rssi (2),
 rtd (3)) (SIZE (1..16)),
 }
}

OMA-LPpe-ver2-0-Crowdsourcing-SRN-MeasurementCapabilities field descriptions

Measurements
This parameter specifies the SRN measurements supported by a target for advanced crowdsourcing. The parameter is encoded as a bit string with each SRN measurement capability represented by a different bit. A bit is set to one to indicate that the corresponding SRN measurement capability is supported by the target. A bit is set to zero or omitted to indicate that the corresponding SRN measurement capability is not supported by the target.

OMA-LPpe-ver2-0-Crowdsourcing-Sensor-MeasurementCapabilities

The IE OMA-LPpe-ver2-0-Crowdsourcing-Sensor-MeasurementCapabilities is used by a target to provide its capabilities for advanced crowdsourcing of sensor measurements to a server.
measurements BIT STRING {
 motionState (0),
 atmosphericPressure (1),
 temperature (2),
 humidity (3),
 soundLevel (4),
 illuminance (5) (SIZE (1..16)),
...
}
-- ASN1STOP

OMA-LPPe-ver2-0-Crowdsourcing-Sensor-MeasurementCapabilities field descriptions

Measurements
This parameter specifies the sensor measurements supported by a target for advanced crowdsourcing. The parameter is encoded as a bit string with each sensor measurement capability represented by a different bit. A bit is set to one to indicate that the corresponding sensor measurement capability is supported by the target. A bit is set to zero or omitted to indicate that the corresponding sensor measurement capability is not supported by the target.

6.5.14.7 Crowdsourcing Abort

OMA-LPPe-ver2-0-Crowdsourcing-Abort

The IE *OMA-LPPe-ver2-0-Crowdsourcing-Abort* is used by a control server or data server to abort a crowdsourcing session with a target device and to provide a reason for the abort.

```asn1
OMA-LPPe-ver2-0-Crowdsourcing-Abort ::= SEQUENCE {
  sessionID OMA-LPPe-ver2-0-CrowdsourcingSessionID OPTIONAL,
  cause OMA-LPPe-ver2-0-Crowdsourcing-ServerCause,
...  
}
-- ASN1STOP
```

OMA-LPPe-ver2-0-Crowdsourcing-Abort field descriptions

session-ID
This parameter specifies the session ID for the crowdsourcing session to be aborted. This parameter is optional and if omitted indicates that the target SHALL abort any crowdsourcing session that is currently ongoing with the server in the role of either a control server or data server.

cause
This parameter provides the reason for the abort.

6.5.14.8 Crowdsourcing Cause Elements

OMA-LPPe-ver2-0-Crowdsourcing-TargetCause
The IE *OMA-LPPe-ver2-0-Crowdsourcing-TargetCause* is used by the target device to provide cause information to the server related to termination of crowdsourcing or inability to provide certain measurements.

```asn1
OMA-LPPe-ver2-0-Crowdsourcing-TargetCause ::= SEQUENCE {
  cause ENUMERATED { undefined,
    normalTermination,
    crowdsourcingStoppedByUser,
    insufficientTargetResources,
...  
}
-- ASN1STOP
```
networkPrivacyRestriction,
someRequestedMeasurementsNotObtainable,
temporaryInabilityToConnectToDataServer,
crowdsourcingNotAllowedByHomeOperator,
crowdsourcingNotAllowedByUser,
dataServerNotAuthorized,
sessionAlreadyEstablishedToTheDataServer,
crowdsourcingNotSupportedForTemporaryReasons,
crowdsourcingNotSupportedForPermanentReasons,
controlParametersNotAcceptible,
controlParametersNotSupported,
measurementsNotAcceptible,
measurementsNotSupported,
networkBandwidthRestrictedOrInsufficient,
networkBandwidthTooCostly,
targetControlInformationCorrupted,
...,
},
...
} -- ASN1STOP

OMA-LPPe-ver2-0-Crowdsourcing-ServerCause

The IE *OMA-LPPe-ver2-0-Crowdsourcing-ServerCause* is used by a server to provide cause information to a target related to termination of crowdsourcing.

```asn1
OMA-LPPe-ver2-0-Crowdsourcing-ServerCause ::= SEQUENCE {
  cause ENUMERATED {
    undefined,
    terminatedByOperator,
    serverCongestion,
    serverShutDown,
    errorsInCrowdsourcingReports,
    sessionNoLongerNeeded,
    sessionNeedsToBeChanged,
    ...
  },
  ...
}
```

6.6 (End of ASN.1 definition)

6.6.1 End of LPPE-PDU-Definitions

```asn1
END
```
Appendix A. Change History (Informative)

A.1 Approved Version History

<table>
<thead>
<tr>
<th>Reference</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>n/a</td>
<td>No prior version</td>
</tr>
</tbody>
</table>

A.2 Draft/Candidate Version 2.0 History

<table>
<thead>
<tr>
<th>Document Identifier</th>
<th>Date</th>
<th>Sections</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMA-TS-LPPe-V2_0</td>
<td>26 Sep 2013</td>
<td>2.1, 6.3, 6.4.1, 6.4.2, 6.5.8.2, 6.5.8.3, 6.5.8.5, 6.5.8.6, 6.5.8.7, 6.5.8.9, 6.5.10.6, 6.5.12, Appendix C.10, C11</td>
<td>Incorporated CRs: OMA-LOC-2013-0122R01-CR_LPPe_2.0_WLAN_AP_Location_Information_Corrections, OMA-LOC-2013-0123R02-CR_LPPe20_TS_step_length_estimation_model_AD_for_UE_base_PDR, OMA-LOC-2013-0124R02-CR_LPPe2.0_TS_UUE_motion_sub_state_request_provision, OMA-LOC-2013-0148-CR_LPPe_2.0_Protocol_Layer_PTP_Extension, OMA-LOC-2013-0180R03-CR_LPPe2.0_TS_UE_assisted_motion_sub_state_positioning, OMA-LOC-2013-0181-CR_LPPe2.0_TS_PDR_bugfix</td>
</tr>
<tr>
<td></td>
<td>25 Nov 2013</td>
<td>2.1, 2.2, 6.3.5, 6.3.6, 6.4.1, 6.5.8, 6.5.12, 6.5.13, Appendix G</td>
<td>Incorporated CRs: OMA-LOC-2013-0113R01-CR_LPPe_2.0_WLAN_AP_Heat_Maps_and_Group_Data, OMA-LOC-2013-0176-CR_LPPe_2.0_Image_Recognition_Based_Positioning, OMA-LOC-2013-0180R03-CR_LPPe2.0_TS_UE_assisted_motion_sub_state_positioning, OMA-LOC-2013-0181-CR_LPPe2.0_TS_PDR_bugfix</td>
</tr>
<tr>
<td></td>
<td>16 Jan 2014</td>
<td>6.4.1, 6.5.6.3, 6.5.8.7, Appendix G.4, Appendix G.5</td>
<td>Incorporated CRs: OMA-LOC-2014-0003-CR_LPPe_2.0_Temporal_Heatmaps_Extension</td>
</tr>
<tr>
<td></td>
<td>27 Feb 2014</td>
<td>5.2.6, 6.2.1, 6.3, 6.5.14, Appendix H</td>
<td>Incorporated CRs: OMA-LOC-2013-0171R02-CR_LPPe_2.0_Crowdsourcing</td>
</tr>
<tr>
<td></td>
<td>25 Mar 2014</td>
<td>6.2.2.1, 6.5.8.1, 6.5.8.2</td>
<td>Incorporated CRs: OMA-LOC-2014-0054-CR_LPPe_2.0_ASN.1_Corrections</td>
</tr>
<tr>
<td></td>
<td>23 Apr 2014</td>
<td>5.2.1.1, 6.4.1, 6.4.2, 6.5.2.3, 6.5.5.2</td>
<td>Incorporated CRs: OMA-LOC-2014-0070-CR_LPPe_2.0_ASN.1_Corrections, OMA-LOC-2014-0072-CR_LPPe_2.0_Corrections</td>
</tr>
<tr>
<td></td>
<td>28 Aug 2014</td>
<td>2.1, 5.2.6, 6.2.1, 6.4.1, 6.5.8, 6.5.10, 6.5.11, 6.5.14, Appendix G</td>
<td>Incorporated CRs: OMA-LOC-2014-0149R01-CR_LPPe_2.0_Pressure_Measurements, OMA-LOC-2014-0150R01-CR_LPPe_2.0_Crowdsourcing, OMA-LOC-2014-0069R05-CR_LPPe_2.0_Addition_of_rns_to_rf_coverage_maps</td>
</tr>
<tr>
<td>Document Identifier</td>
<td>Date</td>
<td>Sections</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------</td>
<td>-----------------------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| | 06 Nov 2014| Throughout the document | As per comments received during consistency review and agreed proposed solutions documented in OMA-CONRR-LPPe-V2_0-20141105-D
Incorporated CRs:
OMA-LOC-2014-0162-CR_LPPe_2.0_TS_ASN.1_Corrections
OMA-LOC-2014-0163-CR_LPPe_2.0_TS_Static_Conformance_Requirements_Updates
OMA-LOC-2014-0182-CR_LPPe_2.0_Correction_of_RF_Heat_Map_Reorientation
OMA-LOC-2014-0185R02-CR_Resolution_ofReviewComment_B041_ofLPPe_2.0_CONR_repo rt
OMA-LOC-2014-0186-CR_LPPe_2.0_Barometric_and_Atmospheric_Pressure
OMA-LOC-2014-0187R01-CR_Resolution_of_NEC_s_technical_comments_for_LPPe_2.0_TS_sp ec |
| Candidate Version | 02 Dec 2014| n/a | Status changed to Candidate by TP
TP Ref # OMA-TP-2014-0269-INP_LPPe_V2_0_ERP_and_ETR_forCandidateApproval |
| Draft Versions | 13 Nov 2015| 6.4.2, 6.5.8.5, 6.5.12.2, 6.5.13.4, 6.5.14.1, 6.5.14.3 | OMA-LOC-2015-0045-CR_LPPe_2.0_ASN.1_Corrections, OMA-LOC-2015-0047-CR_LPPe_2.0_Clarification |
| Draft Versions | 25 Jul 2016| 6.4.1, 6.5.1.8, 6.5.8.5, 6.5.8.6, 6.5.8.7, 6.5.8.9 | OMA-LOC-2016-0032-CR_LPPe_2.0_Indoor_Positioning_Correction_Part_I
OMA-LOC-2016-0033-CR_LPPe_2.0_Indoor_Positioning_Correction_Part_II_Option_1 |
| Draft Versions | 8 Feb 2017 | 2.1, 6.5.10, 6.5.12.7, Appendix G | OMA-LOC-2017-0001-CR_LPPe_2.0_Supporting_Geomagnetic_Field_Heat_map
OMA-LOC-2017-0009-CR_LPPe_2.0_TS_UE_orientation_corrections
OMA-LOC-2017-0012-CR_LPPe_2.0_EGM96_reference |
| Draft Versions | 19 Apr 2017| 6.5 | OMA-LOC-2017-0016R01-CR_LPPe_2.0_Editorial_Corrections |
| Draft Versions | 30 Jun 2020| 2.1, 3.3, 6.4.1, 6.4.2 | OMA-LOC-2020-0015R01-CR_LPPe_2.0_Civic_Location |
| Candidate Version | 04 Aug 2020| n/a | OMA-LOC-2020-0020-INP_LPPe_Extensions_2.0_forCandidateApproval |
Appendix B. Static Conformance Requirements (Normative)

The notation used in this appendix is specified in [SCRRULES].

B.1 SCR for LPe Client

B.1.1 LPe messages

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPe-MSG-C-001-M</td>
<td>Support message extension header</td>
<td>TS 6.2.2</td>
</tr>
<tr>
<td>LPe-MSG-C-002-M</td>
<td>Support version adaptation based on version and compatibility level</td>
<td>TS 4.4</td>
</tr>
<tr>
<td>LPe-MSG-C-003-M</td>
<td>Support of the extension to LPP Request Capabilities message</td>
<td>TS 6.2.2</td>
</tr>
<tr>
<td>LPe-MSG-C-004-M</td>
<td>Support of the extension to LPP Provide Capabilities message</td>
<td>TS 6.2.2</td>
</tr>
<tr>
<td>LPe-MSG-C-005-M</td>
<td>Support of the extension to LPP Request Assistance Data message</td>
<td>TS 6.2.2</td>
</tr>
<tr>
<td>LPe-MSG-C-006-M</td>
<td>Support of the extension to LPP Provide Assistance Data message</td>
<td>TS 6.2.2</td>
</tr>
<tr>
<td>LPe-MSG-C-007-M</td>
<td>Support of the extension to LPP Request Location Information message</td>
<td>TS 6.2.2</td>
</tr>
<tr>
<td>LPe-MSG-C-008-M</td>
<td>Support of the extension to LPP Provide Location Information message</td>
<td>TS 6.2.2</td>
</tr>
<tr>
<td>LPe-MSG-C-009-M</td>
<td>Support of the extension to LPP Error message</td>
<td>TS 6.2.2</td>
</tr>
<tr>
<td>LPe-MSG-C-010-M</td>
<td>Support of the extension to LPP Abort message</td>
<td>TS 6.2.2</td>
</tr>
<tr>
<td>LPe-MSG-C-011-M</td>
<td>Support reversed mode for Capability Exchange</td>
<td>TS 5.3</td>
</tr>
<tr>
<td>LPe-MSG-C-012-M</td>
<td>Support reversed mode for Location Information Exchange</td>
<td>TS 5.3</td>
</tr>
<tr>
<td>LPe-MSG-C-013-O</td>
<td>Support Broadcast Message Extensions</td>
<td>TS 6.2.2.2</td>
</tr>
</tbody>
</table>

B.1.2 LPe procedures

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPe-PRO-C-001-O</td>
<td>Support of periodic assistance data</td>
<td>TS 5.2.1</td>
<td>LPe-PRO-C-001-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 5.2.1.1</td>
<td></td>
</tr>
<tr>
<td>LPe-PRO-C-002-O</td>
<td>Support target update of periodic assistance data delivery parameters</td>
<td>TS 5.2.1.2</td>
<td></td>
</tr>
</tbody>
</table>

© 2020 Open Mobile Alliance. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
B.1.3 LPPe Assistance Data

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPPe-AD-C-001-O</td>
<td>Support of validity area</td>
<td>TS 6.4.1</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-C-002-O</td>
<td>Support of validity period</td>
<td>TS 6.4.1</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-C-003-O</td>
<td>Support of generic assistance container</td>
<td>TS 6.4.1</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-C-004-O</td>
<td>Support of geographical coverage areas</td>
<td>TS 6.4.1</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-C-005-O</td>
<td>Support of common AGNSS assistance data</td>
<td>TS 6.5.1.1</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-C-006-O</td>
<td>Support of generic AGNSS assistance data</td>
<td>TS 6.5.1.1</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-C-007-O</td>
<td>Support of local Klobuchar ionosphere model</td>
<td>TS 6.5.1.2</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-C-008-O</td>
<td>Support of ionosphere storm indication</td>
<td>TS 6.5.1.2</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-C-009-O</td>
<td>Support of wide area ionosphere surface</td>
<td>TS 6.5.1.2</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-C-010-O</td>
<td>Support troposphere delay</td>
<td>TS 6.5.1.2</td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Function</td>
<td>Reference</td>
<td>Requirement</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>LPPe-AD-C-011-O</td>
<td>Support of troposphere surface parameters</td>
<td>TS 6.5.1.2 TS 6.5.1.4</td>
<td>LPPe-AD-C-001-O LPPe-AD-C-002-O LPPe-AD-C-012-O</td>
</tr>
<tr>
<td>LPPe-AD-C-012-O</td>
<td>Support of mapping function</td>
<td>TS 6.5.1.2 TS 6.5.1.4</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-C-013-O</td>
<td>Support of altitude assistance</td>
<td>TS 6.5.1.2 TS 6.5.1.4</td>
<td>LPPe-AD-C-001-O LPPe-AD-C-002-O</td>
</tr>
<tr>
<td>LPPe-AD-C-014-O</td>
<td>Support of SV mechanics assistance</td>
<td>TS 6.5.1.2 TS 6.5.1.4</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-C-015-O</td>
<td>Support of SV differential code biases</td>
<td>TS 6.5.1.2 TS 6.5.1.4</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-C-016-O</td>
<td>Support of navigation model degradation models</td>
<td>TS 6.5.1.2 TS 6.5.1.4</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-C-017-O</td>
<td>Support CCP assistance</td>
<td>TS 6.5.1.2 TS 6.5.1.4</td>
<td>LPPe-AD-C-001-O LPPe-PRO-C-001-O LPPe-PRO-C-002-O LPPe-PRO-C-003-O LPPe-AD-C-019-O</td>
</tr>
<tr>
<td>LPPe-AD-C-018-O</td>
<td>Support change of CCP reference station</td>
<td>TS 6.5.1.2 TS 6.5.1.4</td>
<td>LPPe-AD-C-017-O</td>
</tr>
<tr>
<td>LPPe-AD-C-019-O</td>
<td>Support of antenna information</td>
<td>TS 6.5.1.13</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-C-020-O</td>
<td>Support of coordinate-based navigation model</td>
<td>TS 6.5.1.2 TS 6.5.1.4</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-C-021-O</td>
<td>Support assistance for UE-based LTE OTDOA</td>
<td>TS 6.5.2.1 TS 6.5.2.2 TS 6.5.2.3</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-C-022-O</td>
<td>Support assistance for UE-based EOTD</td>
<td>TS 6.5.3.1 TS 6.5.3.2 TS 6.5.3.3</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-C-023-O</td>
<td>Support assistance for UE-assisted EOTD</td>
<td>TS 6.5.2.1 TS 6.5.2.2 TS 6.5.2.3</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-C-024-O</td>
<td>Support assistance for UE-based OTDOA-UTRA</td>
<td>TS 6.5.4.1 TS 6.5.4.2 TS 6.5.4.3</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-C-025-O</td>
<td>Support assistance for UE-assisted OTDOA-UTRA</td>
<td>TS 6.5.4.1 TS 6.5.4.2 TS 6.5.4.3</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-C-026-O</td>
<td>Support assistance for UE-based LTE ECID for eNodeBs</td>
<td>TS 6.5.5.1 TS 6.5.5.2 TS 6.5.5.3</td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Function</td>
<td>Reference</td>
<td>Requirement</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>--------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>LPPe-AD-C-027-O</td>
<td>Support assistance for UE-based LTE ECID for Home eNodeBs</td>
<td>TS 6.5.5.1, TS 6.5.5.2, TS 6.5.5.3</td>
<td>LPPe-AD-C-004-O</td>
</tr>
<tr>
<td>LPPe-AD-C-028-O</td>
<td>Support assistance for UE-based GSM ECID</td>
<td>TS 6.5.6.1, TS 6.5.6.2, TS 6.5.6.3</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-C-029-O</td>
<td>Support assistance for UE-based UTRA ECID for Node Bs</td>
<td>TS 6.5.7.1, TS 6.5.7.2, TS 6.5.7.3</td>
<td>LPPe-AD-C-004-O</td>
</tr>
<tr>
<td>LPPe-AD-C-030-O</td>
<td>Support assistance for UE-based UTRA ECID for Home Node Bs</td>
<td>TS 6.5.7.1, TS 6.5.7.2, TS 6.5.7.3</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-C-031-O</td>
<td>Support assistance for UE-based WLAN ECID</td>
<td>TS 6.5.8.1, TS 6.5.8.2, TS 6.5.8.3</td>
<td>LPPe-AD-C-004-O</td>
</tr>
<tr>
<td>LPPe-AD-C-032-O</td>
<td>Support assistance for UE-based BT (E)CID</td>
<td>TS 6.5.11.1, TS 6.5.11.2, TS 6.5.11.3, TS 6.5.11.4</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-C-033-O</td>
<td>Support assistance data validity checking of assistance data for UE-based BT (E)CID</td>
<td>TS 6.5.11.1, TS 6.5.11.2, TS 6.5.11.3, TS 6.5.11.4</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-C-034-O</td>
<td>Support assistance for UE-based BTLE (E)CID</td>
<td>TS 6.5.11.1, TS 6.5.11.2, TS 6.5.11.3, TS 6.5.11.4</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-C-035-O</td>
<td>Support assistance data validity checking of assistance data for UE-based BTLE (E)CID</td>
<td>TS 6.5.11.1, TS 6.5.11.2, TS 6.5.11.3, TS 6.5.11.4</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-C-036-O</td>
<td>Support assistance for UE-based NFC (E)CID</td>
<td>TS 6.5.11.1, TS 6.5.11.2, TS 6.5.11.3, TS 6.5.11.4</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-C-037-O</td>
<td>Support assistance data validity checking of assistance data for UE-based NFC (E)CID</td>
<td>TS 6.5.11.1, TS 6.5.11.2, TS 6.5.11.3, TS 6.5.11.4</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-C-038-O</td>
<td>Support assistance data for UE-based atmospheric pressure based altitude determination</td>
<td>TS 6.5.10.1, TS 6.5.10.2, TS 0, TS 0</td>
<td></td>
</tr>
</tbody>
</table>
Item Function Reference Requirement

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Reference</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LPPe-AD-C-039-O</td>
<td>Support assistance data for UE-assisted atmospheric pressure based altitude determination</td>
<td>TS 6.5.10.1, TS 6.5.10.2, TS 0, TS 0</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-C-040-O</td>
<td>Support of Assistance Data Broadcast</td>
<td>TS 6.4.1</td>
<td>LPPe-MSG-C-013-O</td>
</tr>
<tr>
<td>LPPe-AD-C-041-O</td>
<td>Support assistance data for UE-based PDR</td>
<td>TS 6.5.12.1, TS 6.5.12.2, TS 6.5.12.3, TS 6.5.12.4</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-C-042-O</td>
<td>Support assistance data for UE-assisted PDR</td>
<td>TS 6.5.12.1, TS 6.5.12.2, TS 6.5.12.3, TS 6.5.12.4</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-C-043-O</td>
<td>Support for UE-assisted IRB</td>
<td>TS 6.5.13.1, TS 6.5.12.2</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-C-044-O</td>
<td>Support for WLAN RF Heat Maps</td>
<td>TS 6.4.1, TS 6.5.8.2, TS 6.5.8.3</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-C-045-O</td>
<td>Support for SRN RF Heat Maps</td>
<td>TS 6.4.1, TS 6.5.11.2, TS 6.5.11.3</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-C-046-O</td>
<td>Support assistance data for UE-assisted IRB</td>
<td>TS 6.5.13.1, TS 6.5.13.2</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-C-047-O</td>
<td>Support assistance data for UE-assisted PDR</td>
<td>TS 6.5.12.1, TS 6.5.12.2, TS 6.5.12.3, TS 6.5.12.4</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-C-048-O</td>
<td>Support assistance data for UE-based PDR</td>
<td>TS 6.5.12.1, TS 6.5.12.2, TS 6.5.12.3, TS 6.5.12.4</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-C-049-O</td>
<td>Support assistance data for RF Propagation for WLAN</td>
<td>TS 6.5.8.1, TS 6.5.8.2</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-C-050-O</td>
<td>Support assistance data for RF Propagation for SRN</td>
<td>TS 6.5.11.1, TS 6.5.11.2</td>
<td></td>
</tr>
</tbody>
</table>

B.1.4 LPPe Location Information

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPPe-LOC-C-001-O</td>
<td>Support high accuracy position representation</td>
<td>TS 6.4.1</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-C-002-O</td>
<td>Support high accuracy velocity representation</td>
<td>TS 6.4.1</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-C-003-O</td>
<td>Support IP address reporting</td>
<td>TS 6.4.2</td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Function</td>
<td>Reference</td>
<td>Requirement</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>LPPe-LOC-C-004-O</td>
<td>Support location information container</td>
<td>TS 6.4.2</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-C-005-O</td>
<td>Support relative location change</td>
<td>TS 6.4.2</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-C-006-O</td>
<td>Support ionosphere observations</td>
<td>TS 6.5.1.6</td>
<td>LPPe-PRO-C-004-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LPPe-PRO-C-005-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LPPe-PRO-C-006-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LPPe-AD-C-018-O</td>
</tr>
<tr>
<td>LPPe-LOC-C-007-O</td>
<td>Support surface observations</td>
<td>TS 6.5.1.6</td>
<td>LPPe-LOC-C-001-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LPPe-LOC-C-002-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LPPe-AD-C-017-O</td>
</tr>
<tr>
<td>LPPe-LOC-C-008-O</td>
<td>Support HA GNSS measurements</td>
<td>TS 6.5.1.5</td>
<td>LPPe-LOC-C-001-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LPPe-LOC-C-002-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LPPe-AD-C-017-O</td>
</tr>
<tr>
<td>LPPe-LOC-C-009-O</td>
<td>Support UE-based high accuracy GNSS positioning</td>
<td>TS 6.5.1.8</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-C-010-O</td>
<td>Support UE-based LTE OTDOA</td>
<td>TS 6.5.2.4</td>
<td>LPPe-AD-C-021-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-C-011-O</td>
<td>Support UE-based EOTD</td>
<td>TS 6.5.3.4</td>
<td>LPPe-AD-C-022-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-C-012-O</td>
<td>Support UE-assisted EOTD</td>
<td>TS 6.5.3.4</td>
<td>LPPe-AD-C-023-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-C-013-O</td>
<td>Support UE-based OTDOA-UTRA</td>
<td>TS 6.5.4.4</td>
<td>LPPe-AD-C-024-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-C-014-O</td>
<td>Support UE-assisted OTDOA-UTRA</td>
<td>TS 6.5.4.4</td>
<td>LPPe-AD-C-025-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-C-015-O</td>
<td>Support UE-based LTE ECID</td>
<td>TS 6.5.5.4</td>
<td>LPPe-AD-C-026-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LPPe-AD-C-027-O</td>
</tr>
<tr>
<td>LPPe-LOC-C-016-O</td>
<td>Support historic reporting of LTE ECID measurements</td>
<td>TS 6.5.5.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-C-017-O</td>
<td>Support UE-based GSM ECID</td>
<td>TS 6.5.6.4</td>
<td>LPPe-AD-C-028-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-C-018-O</td>
<td>Support UE-assisted GSM ECID</td>
<td>TS 6.5.6.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-C-019-O</td>
<td>Support historic reporting of GSM ECID measurements</td>
<td>TS 6.5.6.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-C-020-O</td>
<td>Support UE-based UTRA ECID</td>
<td>TS 6.5.7.4</td>
<td>LPPe-AD-C-029-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LPPe-AD-C-030-O</td>
</tr>
<tr>
<td>Item</td>
<td>Function</td>
<td>Reference</td>
<td>Requirement</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>-----------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>LPPe-LOC-C-021-O</td>
<td>Support UE-assisted UTRA ECID</td>
<td>TS 6.5.7.4, 6.5.7.5, 6.5.7.6</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-C-022-O</td>
<td>Support historic reporting of UTRA ECID measurements</td>
<td>TS 6.5.7.4, 6.5.7.5, 6.5.7.6</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-C-023-O</td>
<td>Support UE-based WLAN ECID</td>
<td>TS 6.5.8.4, 6.5.8.5, 6.5.8.6</td>
<td>LPPe-AD-C-031-O</td>
</tr>
<tr>
<td>LPPe-LOC-C-024-O</td>
<td>Support UE-assisted WLAN ECID</td>
<td>TS 6.5.8.4, 6.5.8.5, 6.5.8.6</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-C-025-O</td>
<td>Support historic reporting of WLAN ECID measurements</td>
<td>TS 6.5.8.4, 6.5.8.5, 6.5.8.6</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-C-026-O</td>
<td>Support UE-assisted WiMax ECID</td>
<td>TS 6.5.7.1, 6.5.7.2, 6.5.7.3</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-C-027-O</td>
<td>Support historic reporting of WiMax ECID measurements</td>
<td>TS 6.5.7.4, 6.5.7.5, 6.5.7.6</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-C-028-O</td>
<td>Support motion state</td>
<td>TS 6.5.10.5, 6.5.10.6, 6.5.10.7</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-C-029-O</td>
<td>Support UE-based BT (E)CID</td>
<td>TS 6.5.11.5, 6.5.11.6, 6.5.11.7, 6.5.11.8</td>
<td>LPPe-AD-C-032-O, LPPe-AD-C-033-O</td>
</tr>
<tr>
<td>LPPe-LOC-C-030-O</td>
<td>Support UE-assisted BT (E)CID</td>
<td>TS 6.5.11.5, 6.5.11.6, 6.5.11.7, 6.5.11.8</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-C-031-O</td>
<td>Support UE-based BTLE (E)CID</td>
<td>TS 6.5.11.5, 6.5.11.6, 6.5.11.7, 6.5.11.8</td>
<td>LPPe-AD-C-034-O, LPPe-AD-C-035-O</td>
</tr>
<tr>
<td>LPPe-LOC-C-032-O</td>
<td>Support UE-assisted BTLE (E)CID</td>
<td>TS 6.5.11.5, 6.5.11.6, 6.5.11.7, 6.5.11.8</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-C-033-O</td>
<td>Support UE-based NFC (E)CID</td>
<td>TS 6.5.11.5, 6.5.11.6, 6.5.11.7, 6.5.11.8</td>
<td>LPPe-AD-C-036-O, LPPe-AD-C-037-O</td>
</tr>
<tr>
<td>Item</td>
<td>Function</td>
<td>Reference</td>
<td>Requirement</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>LPPe-LOC-C-034-O</td>
<td>Support UE-assisted NFC (E)CID</td>
<td>TS 6.5.11.5, TS 6.5.11.6,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.11.7, TS 6.5.11.8</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-C-035-O</td>
<td>Support UE-assisted Mobile Code –based positioning</td>
<td>TS 6.5.11.5, TS 6.5.11.6,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.11.7, TS 6.5.11.8</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-C-036-O</td>
<td>Support historic measurement reporting for BT (E)CID</td>
<td>TS 6.5.11.5, TS 6.5.11.6,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.11.7, TS 6.5.11.8</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-C-037-O</td>
<td>Support historic measurement reporting for BTLE (E)CID</td>
<td>TS 6.5.11.5, TS 6.5.11.6,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.11.7, TS 6.5.11.8</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-C-038-O</td>
<td>Support historic measurement reporting for NFC (E)CID</td>
<td>TS 6.5.11.5, TS 6.5.11.6,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.11.7, TS 6.5.11.8</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-C-039-O</td>
<td>Support historic measurement reporting for Mobile Codes</td>
<td>TS 6.5.11.5, TS 6.5.11.6,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.11.7, TS 6.5.11.8</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-C-040-O</td>
<td>Support UE-assisted atmospheric pressure altitude determination</td>
<td>TS 6.5.10.5, TS 6.5.10.6,</td>
<td>LPPe-LOC-C-040-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.10.7, TS 6.5.10.8</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-C-041-O</td>
<td>Support UE-based atmospheric pressure altitude determination</td>
<td>TS 6.5.10.5, TS 6.5.10.6,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.10.7, TS 6.5.10.8</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-C-042-O</td>
<td>Support Atmospheric Pressure measurements</td>
<td>TS 6.5.10.6, TS 6.5.10.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LPPe-LOC-C-040-O</td>
</tr>
<tr>
<td>LPPe-LOC-C-043-O</td>
<td>Support Sensor Motion State measurements</td>
<td>TS 6.5.10.6, TS 6.5.10.7</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-C-044-O</td>
<td>Support UE-assisted PDR</td>
<td>TS 6.5.12.5, TS 6.5.12.6,</td>
<td>LPPe-LOC-C-044-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.12.7</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-C-045-O</td>
<td>Support PDR measurements</td>
<td>TS 6.5.12.5, TS 6.5.12.6,</td>
<td>LPPe-LOC-C-044-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.12.7</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-C-046-O</td>
<td>Support UE-based PDR</td>
<td>TS 6.5.12.5, TS 6.5.12.6,</td>
<td>LPPe-LOC-C-044-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.12.7</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-C-047-O</td>
<td>Support UE-assisted IRB</td>
<td>TS 6.5.13.3, TS 6.5.13.4,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.13.5</td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Function</td>
<td>Reference</td>
<td>Requirement</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>----------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>LPPe-LOC-C-048-O</td>
<td>Support IRB measurements</td>
<td>TS 6.5.13.3</td>
<td>LPPe-LOC-C-047-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.13.4</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-C-049-O</td>
<td>Support Crowdsourcing Basic Measurements</td>
<td>TS 6.5.14</td>
<td>LPPe-PRO-C-010-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-C-050-O</td>
<td>Support Crowdsourcing Advanced Measurements</td>
<td>TS 6.5.14</td>
<td>LPPe-PRO-C-011-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-C-051-O</td>
<td>Support Crowdsourcing of WLAN AP Measurements</td>
<td>TS 6.5.14.2</td>
<td>LPPe-LOC-C-049-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.14.3</td>
<td>LPPe-LOC-C-050-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-C-052-O</td>
<td>Support Crowdsourcing of LTE Measurements</td>
<td>TS 6.5.14.2</td>
<td>LPPe-LOC-C-049-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.14.3</td>
<td>LPPe-LOC-C-050-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-C-053-O</td>
<td>Support Crowdsourcing of UTRA Measurements</td>
<td>TS 6.5.14.2</td>
<td>LPPe-LOC-C-049-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.14.3</td>
<td>LPPe-LOC-C-050-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-C-054-O</td>
<td>Support Crowdsourcing of GSM Measurements</td>
<td>TS 6.5.14.2</td>
<td>LPPe-LOC-C-049-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.14.3</td>
<td>LPPe-LOC-C-050-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-C-055-O</td>
<td>Support Crowdsourcing of SRN Measurements</td>
<td>TS 6.5.14.2</td>
<td>LPPe-LOC-C-049-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.14.3</td>
<td>LPPe-LOC-C-050-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-C-056-O</td>
<td>Support Crowdsourcing of Sensor Measurements</td>
<td>TS 6.5.14.2</td>
<td>LPPe-LOC-C-049-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.14.3</td>
<td>LPPe-LOC-C-050-O</td>
</tr>
</tbody>
</table>

B.2 SCR for LPPe Server

B.2.1 LPPe messages

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPPe-MSG-S-001-M</td>
<td>Support message extension header</td>
<td>TS 6.2.2</td>
<td></td>
</tr>
<tr>
<td>LPPe-MSG-S-002-M</td>
<td>Support version adaptation based on version and compatibility level</td>
<td>TS 4.4</td>
<td></td>
</tr>
<tr>
<td>LPPe-MSG-S-003-M</td>
<td>Support of the extension to LPP Request Capabilities message</td>
<td>TS 6.2.2</td>
<td></td>
</tr>
<tr>
<td>LPPe-MSG-S-004-M</td>
<td>Support of the extension to LPP Provide Capabilities message</td>
<td>TS 6.2.2</td>
<td></td>
</tr>
<tr>
<td>LPPe-MSG-S-005-M</td>
<td>Support of the extension to LPP Request Assistance Data message</td>
<td>TS 6.2.2</td>
<td></td>
</tr>
<tr>
<td>LPPe-MSG-S-006-M</td>
<td>Support of the extension to LPP Provide Assistance Data message</td>
<td>TS 6.2.2</td>
<td></td>
</tr>
<tr>
<td>LPPe-MSG-S-007-M</td>
<td>Support of the extension to Request Location Information message</td>
<td>TS 6.2.2</td>
<td></td>
</tr>
<tr>
<td>LPPe-MSG-S-008-M</td>
<td>Support of the extension to Provide Location Information message</td>
<td>TS 6.2.2</td>
<td></td>
</tr>
<tr>
<td>LPPe-MSG-S-009-M</td>
<td>Support of the extension to LPP Error message</td>
<td>TS 6.2.2</td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Function</td>
<td>Reference</td>
<td>Requirement</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>LPPe-MSG-S-010-M</td>
<td>Support of the extension to LPP Abort message</td>
<td>TS 6.2.2</td>
<td></td>
</tr>
<tr>
<td>LPPe-MSG-S-011-M</td>
<td>Support reversed mode for Capability Exchange</td>
<td>TS 5.3</td>
<td></td>
</tr>
<tr>
<td>LPPe-MSG-S-012-M</td>
<td>Support reversed mode for Location Information Exchange</td>
<td>TS 5.3</td>
<td></td>
</tr>
<tr>
<td>LPPe-MSG-S-013-O</td>
<td>Support Broadcast Message Extensions</td>
<td>TS 6.2.2.2</td>
<td></td>
</tr>
</tbody>
</table>
B.2.2 LPPe procedures

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPPe-PRO-S-001-O</td>
<td>Support of periodic assistance</td>
<td>TS 5.2.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 5.2.1.1</td>
<td></td>
</tr>
<tr>
<td>LPPe-PRO-S-002-O</td>
<td>Support target update of periodic assistance</td>
<td>TS 5.2.1.2</td>
<td>LPPe-PRO-S-001-O</td>
</tr>
<tr>
<td></td>
<td>parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPPe-PRO-S-003-O</td>
<td>Support server update of periodic assistance</td>
<td>TS 5.2.1.3</td>
<td>LPPe-PRO-S-001-O</td>
</tr>
<tr>
<td></td>
<td>parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPPe-PRO-S-004-O</td>
<td>Support of periodic measurements</td>
<td>TS 5.2.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 5.2.2.1</td>
<td></td>
</tr>
<tr>
<td>LPPe-PRO-S-005-O</td>
<td>Support target update of periodic measurement</td>
<td>TS 5.2.2.3</td>
<td>LPPe-PRO-S-004-O</td>
</tr>
<tr>
<td></td>
<td>parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPPe-PRO-S-006-O</td>
<td>Support server update of periodic measurement</td>
<td>TS 5.2.2.2</td>
<td>LPPe-PRO-S-004-O</td>
</tr>
<tr>
<td></td>
<td>parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPPe-PRO-S-007-O</td>
<td>Support assistance data segmentation procedures</td>
<td>TS 5.2.3</td>
<td></td>
</tr>
<tr>
<td>LPPe-PRO-S-008-O</td>
<td>Support location information segmentation procedures</td>
<td>TS 5.2.4</td>
<td></td>
</tr>
<tr>
<td>LPPe-PRO-S-009-O</td>
<td>Support broadcast of assistance data</td>
<td>TS 5.2.5</td>
<td></td>
</tr>
<tr>
<td>LPPe-PRO-S-010-O</td>
<td>Support basic crowdsourcing</td>
<td>TS 5.2.6</td>
<td></td>
</tr>
<tr>
<td>LPPe-PRO-S-011-O</td>
<td>Support advanced crowdsourcing</td>
<td>TS 5.2.6</td>
<td></td>
</tr>
</tbody>
</table>

B.2.3 LPPe assistance data

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPPe-AD-S-001-O</td>
<td>Support of validity area</td>
<td>TS 6.4.1</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-S-002-O</td>
<td>Support of validity period</td>
<td>TS 6.4.1</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-S-003-O</td>
<td>Support of generic assistance container</td>
<td>TS 6.4.1</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-S-004-O</td>
<td>Support of geographical coverage areas</td>
<td>TS 6.4.1</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-S-005-O</td>
<td>Support of common AGNSS assistance data</td>
<td>TS 6.5.1.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.1.3</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-S-006-O</td>
<td>Support of generic AGNSS assistance data</td>
<td>TS 6.5.1.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.1.3</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-S-007-O</td>
<td>Support of local Klobuchar ionosphere model</td>
<td>TS 6.5.1.2</td>
<td>LPPe-AD-S-001-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.1.4</td>
<td>LPPe-AD-S-002-O</td>
</tr>
<tr>
<td>LPPe-AD-S-008-O</td>
<td>Support of ionosphere storm indication</td>
<td>TS 6.5.1.2</td>
<td>LPPe-AD-S-001-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.1.4</td>
<td>LPPe-AD-S-002-O</td>
</tr>
<tr>
<td>LPPe-AD-S-009-O</td>
<td>Support of wide area ionosphere surface</td>
<td>TS 6.5.1.2</td>
<td>LPPe-AD-S-001-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.1.4</td>
<td>LPPe-AD-S-002-O</td>
</tr>
<tr>
<td>Item</td>
<td>Function</td>
<td>Reference</td>
<td>Requirement</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>--------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LPPe-AD-S-001-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LPPe-AD-S-002-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LPPe-AD-S-003-O</td>
</tr>
<tr>
<td>LPPe-AD-S-010-O</td>
<td>Support troposphere delay</td>
<td>TS 6.5.1.2</td>
<td>LPPe-AD-S-001-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LPPe-AD-S-002-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LPPe-AD-S-012-O</td>
</tr>
<tr>
<td>LPPe-AD-S-011-O</td>
<td>Support of troposphere surface parameters</td>
<td>TS 6.5.1.2</td>
<td>LPPe-AD-S-001-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LPPe-AD-S-002-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LPPe-AD-S-012-O</td>
</tr>
<tr>
<td>LPPe-AD-S-012-O</td>
<td>Support of mapping function</td>
<td>TS 6.5.1.2</td>
<td>LPPe-AD-S-001-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LPPe-AD-S-002-O</td>
</tr>
<tr>
<td>LPPe-AD-S-013-O</td>
<td>Support of altitude assistance</td>
<td>TS 6.5.1.2</td>
<td>LPPe-AD-S-001-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LPPe-AD-S-002-O</td>
</tr>
<tr>
<td>LPPe-AD-S-014-O</td>
<td>Support of SV mechanics assistance</td>
<td>TS 6.5.1.2</td>
<td>LPPe-AD-S-001-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LPPe-AD-S-002-O</td>
</tr>
<tr>
<td>LPPe-AD-S-015-O</td>
<td>Support of SV differential code biases</td>
<td>TS 6.5.1.2</td>
<td>LPPe-AD-S-001-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LPPe-AD-S-002-O</td>
</tr>
<tr>
<td>LPPe-AD-S-016-O</td>
<td>Support of navigation model degradation</td>
<td>TS 6.5.1.2</td>
<td>LPPe-AD-S-001-O</td>
</tr>
<tr>
<td></td>
<td>models</td>
<td></td>
<td>LPPe-AD-S-002-O</td>
</tr>
<tr>
<td>LPPe-AD-S-017-O</td>
<td>Support CCP assistance</td>
<td>TS 6.5.1.2</td>
<td>LPPe-AD-S-001-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LPPe-AD-S-002-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LPPe-AD-S-003-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LPPe-AD-S-019-O</td>
</tr>
<tr>
<td>LPPe-AD-S-018-O</td>
<td>Support change of CCP reference station</td>
<td>TS 6.5.1.2</td>
<td>LPPe-AD-S-017-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LPPe-AD-S-001-O</td>
</tr>
<tr>
<td>LPPe-AD-S-019-O</td>
<td>Support of antenna information</td>
<td>TS 6.5.1.13</td>
<td>LPPe-AD-S-001-O</td>
</tr>
<tr>
<td>LPPe-AD-S-020-O</td>
<td>Support of coordinate-based navigation model</td>
<td>TS 6.5.1.2</td>
<td>LPPe-AD-S-001-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LPPe-AD-S-002-O</td>
</tr>
<tr>
<td>LPPe-AD-S-021-O</td>
<td>Support assistance for UE-based LTE OTDOA</td>
<td>TS 6.5.2.1</td>
<td>LPPe-AD-S-001-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LPPe-AD-S-002-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LPPe-AD-S-003-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LPPe-AD-S-019-O</td>
</tr>
<tr>
<td>LPPe-AD-S-022-O</td>
<td>Support assistance for UE-based EOTD</td>
<td>TS 6.5.3.1</td>
<td>LPPe-AD-S-001-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LPPe-AD-S-002-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LPPe-AD-S-003-O</td>
</tr>
<tr>
<td>LPPe-AD-S-023-O</td>
<td>Support assistance for UE-assisted EOTD</td>
<td>TS 6.5.2.1</td>
<td>LPPe-AD-S-001-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LPPe-AD-S-002-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LPPe-AD-S-003-O</td>
</tr>
<tr>
<td>LPPe-AD-S-024-O</td>
<td>Support assistance for UE-based OTDOA-UTRA</td>
<td>TS 6.5.4.1</td>
<td>LPPe-AD-S-001-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LPPe-AD-S-002-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LPPe-AD-S-003-O</td>
</tr>
<tr>
<td>LPPe-AD-S-025-O</td>
<td>Support assistance for UE-assisted OTDOA-UTRA</td>
<td>TS 6.5.4.1</td>
<td>LPPe-AD-S-001-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LPPe-AD-S-002-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LPPe-AD-S-003-O</td>
</tr>
<tr>
<td>LPPe-AD-S-026-O</td>
<td>Support assistance for</td>
<td>TS 6.5.5.1</td>
<td>LPPe-AD-S-001-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LPPe-AD-S-002-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LPPe-AD-S-003-O</td>
</tr>
</tbody>
</table>

© 2020 Open Mobile Alliance. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UE-based LTE ECID for eNodeBs</td>
<td>TS 6.5.5.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.5.3</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-S-027-O</td>
<td>Support assistance for UE-based LTE ECID for Home eNodeBs</td>
<td>TS 6.5.5.1</td>
<td>LPPe-AD-S-004-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.5.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.5.3</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-S-028-O</td>
<td>Support assistance for UE-based GSM ECID</td>
<td>TS 6.5.6.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.6.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.6.3</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-S-029-O</td>
<td>Support assistance for UE-based UTRA ECID for Node Bs</td>
<td>TS 6.5.7.1</td>
<td>LPPe-AD-S-004-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.7.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.7.3</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-S-030-O</td>
<td>Support assistance for UE-based UTRA ECID for Home Node Bs</td>
<td>TS 6.5.7.1</td>
<td>LPPe-AD-S-004-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.7.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.7.3</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-S-031-O</td>
<td>Support assistance for UE-based WLAN ECID</td>
<td>TS 6.5.8.1</td>
<td>LPPe-AD-S-004-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.8.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.8.3</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-S-032-O</td>
<td>Support assistance for UE-based BT (E)CID</td>
<td>TS 6.5.11.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.11.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.11.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.11.4</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-S-033-O</td>
<td>Support assistance data validity checking of assistance data for UE-based BT (E)CID</td>
<td>TS 6.5.11.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.11.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.11.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.11.4</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-S-034-O</td>
<td>Support assistance for UE-based BTLE (E)CID</td>
<td>TS 6.5.11.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.11.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.11.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.11.4</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-S-035-O</td>
<td>Support assistance data validity checking of assistance data for UE-based BTLE (E)CID</td>
<td>TS 6.5.11.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.11.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.11.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.11.4</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-S-036-O</td>
<td>Support assistance for UE-based NFC (E)CID</td>
<td>TS 6.5.11.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.11.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.11.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.11.4</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-S-037-O</td>
<td>Support assistance data validity checking of assistance data for UE-based NFC (E)CID</td>
<td>TS 6.5.11.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.11.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.11.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.11.4</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-S-038-O</td>
<td>Support assistance data for UE-based atmospheric pressure based altitude determination</td>
<td>TS 6.5.10.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.10.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 0</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-S-039-O</td>
<td>Support assistance data for UE-assisted</td>
<td>TS 6.5.10.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.10.2</td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Function</td>
<td>Reference</td>
<td>Requirement</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>---------------</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td>atmospheric pressure based altitude determination</td>
<td>TS 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 0</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-S-040-O</td>
<td>Support of Assistance Data Broadcast</td>
<td>TS 6.4.1</td>
<td>LPPe-MSG-S-013-O</td>
</tr>
<tr>
<td>LPPe-AD-S-041-O</td>
<td>Support assistance data for UE-based PDR</td>
<td>TS 6.5.12.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.12.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.12.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.12.4</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-S-042-O</td>
<td>Support assistance data for UE-assisted PDR</td>
<td>TS 6.5.12.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.12.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.12.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.12.4</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-S-043-O</td>
<td>Support for UE-assisted IRB</td>
<td>TS 6.5.13.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.12.2</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-S-044-O</td>
<td>Support for WLAN RF Heat Maps</td>
<td>TS 6.4.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.8.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.8.3</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-S-045-O</td>
<td>Support for SRN RF Heat Maps</td>
<td>TS 6.4.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.11.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.11.3</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-S-046-O</td>
<td>Support assistance data for UE-assisted IRB</td>
<td>TS 6.5.13.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.13.2</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-S-047-O</td>
<td>Support assistance data for UE-assisted PDR</td>
<td>TS 6.5.12.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.12.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.12.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.12.4</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-S-048-O</td>
<td>Support assistance data for UE-based PDR</td>
<td>TS 6.5.12.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.12.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.12.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.12.4</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-S-049-O</td>
<td>Support assistance data for RF Propagation for WLAN</td>
<td>TS 6.5.8.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.8.2</td>
<td></td>
</tr>
<tr>
<td>LPPe-AD-S-050-O</td>
<td>Support assistance data for RF Propagation for SRN</td>
<td>TS 6.5.11.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.11.2</td>
<td></td>
</tr>
</tbody>
</table>

B.2.4 LPPe location information

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPPe-LOC-S-001-O</td>
<td>Support high accuracy position representation</td>
<td>TS 6.4.1</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-S-002-O</td>
<td>Support high accuracy velocity representation</td>
<td>TS 6.4.1</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-S-003-O</td>
<td>Support IP address reporting</td>
<td>TS 6.4.2</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-S-004-O</td>
<td>Support location information container</td>
<td>TS 6.4.2</td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Function</td>
<td>Reference</td>
<td>Requirement</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>-------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>LPPe-LOC-S-005-O</td>
<td>Support relative location change</td>
<td>TS 6.4.2</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-S-006-O</td>
<td>Support ionosphere observations</td>
<td>TS 6.5.1.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.1.8</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-S-007-O</td>
<td>Support surface observations</td>
<td>TS 6.5.1.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.1.8</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-S-008-O</td>
<td>Support HA GNSS measurements</td>
<td>TS 6.5.1.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.1.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LPPe-PRO-S-004-O</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LPPe-PRO-S-005-O</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LPPe-PRO-S-006-O</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LPPe-AD-S-018-O</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-S-009-O</td>
<td>Support UE-based high accuracy GNSS positioning</td>
<td>TS 6.5.1.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LPPe-LOC-S-001-O</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LPPe-LOC-S-002-O</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LPPe-AD-S-017-O</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-S-010-O</td>
<td>Support UE-based LTE OTDOA</td>
<td>TS 6.5.2.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.2.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.2.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LPPe-AD-S-021-O</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-S-011-O</td>
<td>Support UE-based EOTD</td>
<td>TS 6.5.3.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.3.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.3.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LPPe-AD-S-022-O</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-S-012-O</td>
<td>Support UE-assisted EOTD</td>
<td>TS 6.5.3.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.3.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.3.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LPPe-AD-S-023-O</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-S-013-O</td>
<td>Support UE-based OTDOA-UTRA</td>
<td>TS 6.5.4.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.4.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.4.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LPPe-AD-S-024-O</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-S-014-O</td>
<td>Support UE-assisted OTDOA-UTRA</td>
<td>TS 6.5.4.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.4.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.4.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LPPe-AD-S-025-O</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-S-015-O</td>
<td>Support UE-based LTE ECID</td>
<td>TS 6.5.5.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.5.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.5.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LPPe-AD-S-026-O</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LPPe-AD-S-027-O</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-S-016-O</td>
<td>Support historic reporting of LTE ECID</td>
<td>TS 6.5.5.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>measures</td>
<td>TS 6.5.5.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.5.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LPPe-AD-S-028-O</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-S-017-O</td>
<td>Support UE-based GSM ECID</td>
<td>TS 6.5.6.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.6.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LPPe-AD-S-029-O</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-S-018-O</td>
<td>Support UE-assisted GSM ECID</td>
<td>TS 6.5.6.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.6.5</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-S-019-O</td>
<td>Support historic reporting of GSM ECID</td>
<td>TS 6.5.6.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>measures</td>
<td>TS 6.5.6.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LPPe-AD-S-030-O</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-S-020-O</td>
<td>Support UE-based UTRA ECID</td>
<td>TS 6.5.7.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.7.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.7.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LPPe-AD-S-029-O</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LPPe-AD-S-030-O</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-S-021-O</td>
<td>Support UE-assisted UTRA ECID</td>
<td>TS 6.5.7.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.7.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.7.6</td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Function</td>
<td>Reference</td>
<td>Requirement</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>----------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>LPPe-LOC-S-022-O</td>
<td>Support historic reporting of UTRA ECID measurements</td>
<td>TS 6.5.7.4, TS 6.5.7.5, TS 6.5.7.6</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-S-023-O</td>
<td>Support UE-based WLAN ECID</td>
<td>TS 6.5.8.4, TS 6.5.8.5, TS 6.5.8.6</td>
<td>LPPe-AD-S-031-O</td>
</tr>
<tr>
<td>LPPe-LOC-S-024-O</td>
<td>Support UE-assisted WLAN ECID</td>
<td>TS 6.5.8.4, TS 6.5.8.5, TS 6.5.8.6</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-S-025-O</td>
<td>Support historic reporting of WLAN ECID measurements</td>
<td>TS 6.5.8.4, TS 6.5.8.5, TS 6.5.8.6</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-S-026-O</td>
<td>Support UE-assisted WiMax ECID</td>
<td>TS 6.5.7.1, TS 6.5.7.2, TS 6.5.7.3</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-S-027-O</td>
<td>Support historic reporting of WiMax ECID measurements</td>
<td>TS 6.5.7.4, TS 6.5.7.5, TS 6.5.7.6</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-S-028-O</td>
<td>Support motion state</td>
<td>TS 6.5.10.5, TS 6.5.10.6, TS 6.5.10.7</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-S-029-O</td>
<td>Support UE-based BT (E)CID</td>
<td>TS 6.5.11.5, TS 6.5.11.6, TS 6.5.11.7, TS 6.5.11.8</td>
<td>LPPe-AD-S-032-O, LPPe-AD-S-033-O</td>
</tr>
<tr>
<td>LPPe-LOC-S-030-O</td>
<td>Support UE-assisted BT (E)CID</td>
<td>TS 6.5.11.5, TS 6.5.11.6, TS 6.5.11.7, TS 6.5.11.8</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-S-031-O</td>
<td>Support UE-based BTLE (E)CID</td>
<td>TS 6.5.11.5, TS 6.5.11.6, TS 6.5.11.7, TS 6.5.</td>
<td>LPPe-AD-S-034-O, LPPe-AD-S-035-O</td>
</tr>
<tr>
<td>LPPe-LOC-S-032-O</td>
<td>Support UE-assisted BTLE (E)CID</td>
<td>TS 6.5.11.5, TS 6.5.11.6, TS 6.5.11.7, TS 6.5.</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-S-033-O</td>
<td>Support UE-based NFC (E)CID</td>
<td>TS 6.5.11.5, TS 6.5.11.6, TS 6.5.11.7, TS 6.5.</td>
<td>LPPe-AD-S-036-O, LPPe-AD-S-037-O</td>
</tr>
<tr>
<td>LPPe-LOC-S-034-O</td>
<td>Support UE-assisted NFC (E)CID</td>
<td>TS 6.5.11.5, TS 6.5.11.6, TS 6.5.11.7, TS 6.5.</td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Function</td>
<td>Reference</td>
<td>Requirement</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
<td>--------------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>LPPe-LOC-S-035-O</td>
<td>Support UE-assisted Mobile Code –based positioning</td>
<td>TS 6.5.11.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.11.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.11.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-S-036-O</td>
<td>Support UE-assisted atmospheric pressure altitude determination</td>
<td>TS 6.5.10.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.10.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.10.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.10.8</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-S-037-O</td>
<td>Support UE-based atmospheric pressure altitude determination</td>
<td>TS 6.5.10.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.10.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.10.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.10.8</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-S-038-O</td>
<td>Support Atmospheric Pressure measurements</td>
<td>TS 6.5.10.6</td>
<td>LPPe-LOC-S-036-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.10.7</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-S-039-O</td>
<td>Support Sensor Motion State measurements</td>
<td>TS 6.5.10.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.10.7</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-S-040-O</td>
<td>Support UE-assisted PDR</td>
<td>TS 6.5.12.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.12.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.12.7</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-S-041-O</td>
<td>Support PDR measurements</td>
<td>TS 6.5.12.5</td>
<td>LPPe-LOC-S-040-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.12.6</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-S-042-O</td>
<td>Support UE-based PDR</td>
<td>TS 6.5.12.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.12.6</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-S-043-O</td>
<td>Support UE-assisted IRB</td>
<td>TS 6.5.13.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.13.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.13.5</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-S-044-O</td>
<td>Support IRB measurements</td>
<td>TS 6.5.13.3</td>
<td>LPPe-LOC-S-043-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.13.4</td>
<td></td>
</tr>
<tr>
<td>LPPe-LOC-S-045-O</td>
<td>Support Crowdsourcing Basic Measurements</td>
<td>TS 6.5.14</td>
<td>LPPe-PRO-S-010-O</td>
</tr>
<tr>
<td>LPPe-LOC-S-046-O</td>
<td>Support Crowdsourcing Advanced Measurements</td>
<td>TS 6.5.14</td>
<td>LPPe-PRO-S-011-O</td>
</tr>
<tr>
<td>LPPe-LOC-S-047-O</td>
<td>Support Crowdsourcing of WLAN AP Measurements</td>
<td>TS 6.5.14.2</td>
<td>LPPe-LOC-S-045-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.14.3</td>
<td>LPPe-LOC-S-046-O</td>
</tr>
<tr>
<td>LPPe-LOC-S-048-O</td>
<td>Support Crowdsourcing of LTE Measurements</td>
<td>TS 6.5.14.2</td>
<td>LPPe-LOC-S-045-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.14.3</td>
<td>LPPe-LOC-S-046-O</td>
</tr>
<tr>
<td>LPPe-LOC-S-049-O</td>
<td>Support Crowdsourcing of UTRA Measurements</td>
<td>TS 6.5.14.2</td>
<td>LPPe-LOC-S-045-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.14.3</td>
<td>LPPe-LOC-S-046-O</td>
</tr>
<tr>
<td>LPPe-LOC-S-050-O</td>
<td>Support Crowdsourcing of GSM Measurements</td>
<td>TS 6.5.14.2</td>
<td>LPPe-LOC-S-045-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.14.3</td>
<td>LPPe-LOC-S-046-O</td>
</tr>
<tr>
<td>LPPe-LOC-S-051-O</td>
<td>Support Crowdsourcing of SRN Measurements</td>
<td>TS 6.5.14.2</td>
<td>LPPe-LOC-S-045-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.14.3</td>
<td>LPPe-LOC-S-046-O</td>
</tr>
<tr>
<td>LPPe-LOC-S-052-O</td>
<td>Support Crowdsourcing of Sensor Measurements</td>
<td>TS 6.5.14.2</td>
<td>LPPe-LOC-S-045-O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TS 6.5.14.3</td>
<td>LPPe-LOC-S-046-O</td>
</tr>
</tbody>
</table>
Appendix C. Use of Information Elements (Informative)

C.1 Use of Validity Area Parameters

RLE (Run-Length Encoding) is an efficient method to encode areas. The building element of the area definition is a region of the grid. The size of the region, i.e. the number of degrees on each side of the region, is defined by $10/\text{RegionSizeInv}$, where \text{RegionSizeInv} is given in the ValidityArea IE. Regions are rectangular in spherical coordinates, i.e. as many degrees in the north-south direction as in the east-west direction. A single region is described as a red box Figure 17.

The area to be described is fixed in the global coordinate system by expressing the coordinates of the north-west corner of the area. Let RS be the size of the grid region in degrees. Then

$$\text{regionSizeInv} = \frac{10}{RS}$$

And

North-West corner latitude in degrees = RS * \text{codedLatOfNWCorner} – 90 degrees

North-West corner longitude in degrees = RS * \text{codedLonOfNWCorner} – 180 degrees

And vice versa

$$\text{codedLatOfNWCorner} = \text{floor} \left(\frac{(\text{North-West corner latitude in degrees} + 90 \text{ degrees})}{\text{RS}} \right)$$

$$\text{codedLonOfNWCorner} = \text{floor} \left(\frac{(\text{North-West corner longitude in degrees} + 180 \text{ degrees})}{\text{RS}} \right)$$

The latitude in degrees is expressed in range [-90, 90] degrees and longitude in range [-180, 180) degrees.

Further, the width of the area is expressed in terms of how many regions fit into the area, i.e.

$$\text{areaWidth} = \frac{\text{Area Width in degrees}}{\text{RS}}$$

NOTE: This assumes that the area width has been chosen appropriately so that it is divisible by RS.
In the example of Figure 17 RS = 1 degree, i.e. regionSizeInv = 10 / 1 = 10.

And the areaWidth = 8 degrees / RS = 8.

codedLatOfNWCorner = floor ((-15°+90°)/1°)=75. codedLonOfNWCorner = floor ((83°+180°)/1°) = 263.

The final aspect of the RLE encoding is to describe, in which regions the provided data is valid. In the case illustrated in Figure 17 the provided data is valid in regions marked with green dots. The blue line shows the order, in which the area is run through, i.e. always from left to right and starting from the upper left corner.

The rleList SHALL begin with the number of regions for which the data is not valid. Therefore, the first element in the rleList is “1”. Note that if the data was valid in the first region (the region in the left upper corner), the first element would be “0”.

Next, there are five regions for which the data is valid. Hence, the second element is “5”. Next, there are four regions for which the data is not valid. Thus the next element is “4”. Note that the knowing the width of the area in regions allows changing the line at the correct place. After this there are nine regions for which data is valid and the next element is “9”.

The full rleList, therefore, is: 1 ; 5 ; 4 ; 9 ; 1 ; 3 ; 2 ; 6 ; 1.

In case there are more than 255 regions for which data is valid/non-valid, one can present this by “255 ; 0 ; x” denoting that there are 255+x regions for which data is valid/non-valid.

Finally, Figure 18 shows another example for which the rleList reads 0 ; 6 ; 4 ; 6 ; 1 ; 2 ; 1 ; 3 ; 2 ; 6 ; 1.
C.2 Use of Ionospheric storm indications

The ionospheric storm indications are used for alerting the user on possible performance degradation due to high ionospheric activity. The storms tend to have high dynamics, and thus, the prediction may need to be divided in short validity periods, e.g. one hour periods. The prediction periods for the same area are listed in the IE StormList. The elements of StormList, OMA-LPpe-AGNSS-StormElement, comprise of the validity period and the rleListIono that indicates the ionospheric activity during the validity period, in each region in the area.

The area coding is carried out using a RLE list as above with the validity area. In this case, however, each region is assigned with an ionospheric index instead of Boolean valid/non-valid values. For example, if the first rleIonElement in the rleListIono has the ionoIndex value G2 and regionCount value 11, it means that in the 11 first regions in the area, starting from the North-West corner as explained above, the ionospheric activity level is G2, which means negligible effect on satellite navigation.

The NOAA ionospheric storm grading is as follows: G5 is an “extreme” storm, G4 “severe” and G3 “strong”. There are also G1 (minor) and G2 (moderate). Storms G3-G5 affect satellite navigation. G1 and G2 have negligible effect on satellite navigation. The values “unknown” and “none” describe the cases when there is no ionospheric data available or there is no activity, respectively. The NOAA storm definitions are available at http://www.swpc.noaa.gov/NOAAscales and from American Geophysical Union’s Eos (weekly newspaper of geophysics) Vol. 81, No. 29, July 18, 2000, Pages 322-328.

As an example, consider the case in Figure 19. In this scenario, the field rleListIono in the IE OMA-LPpe-AGNSS-StormElement would read \{1,G3\} ; \{4,G4\} ; \{2,unknown\} ; \{1,G4\} ; \{2,G5\} ; \{1,G4\} ; \{2,G3\} ; \{1,G4\} ; \{1,G5\} ; \{6,G4\} ; \{2,G3\} ; \{1,none\}.
C.3 Use of periodic wide area ionosphere corrections

The ionosphere slant delay D_i in the units of TECU (10^{16} e/m2) for the SV i at the target location can be given by

$$D_i = a_0 + e_1 \cdot \Delta e + n_1 \cdot \Delta n + e_2 \cdot (\Delta e)^2 + n_2 \cdot (\Delta n)^2 + e_n \cdot \Delta e \cdot \Delta n,$$

where a_0, e_1, n_1, e_2, n_2 and e_n are the model coefficients. Further, Δe and Δn are the distances from the model reference position to the target position in the east and north directions expressed in kilometres, respectively. The distances are calculated along the surface of the geoid.

C.4 Troposphere Delay Model

The tropospheric delay is divided into two components, hydrostatic (dry) and non-hydrostatic (wet). Atmospheric gases that are in hydrostatic equilibrium cause the hydrostatic delay. This is usually the case for the dry gases and part of the water vapour. The wet delay, caused by water vapour that is not in hydrostatic equilibrium, varies widely, both spatially and temporally. Although the wet component is much smaller than the hydrostatic component, the uncertainties in the wet tropospheric delay modelling limit the achievable performance of the high precision GNSS applications given that carrier phase measurements themselves have an accuracy of a few millimeters.

Each of these components can be expressed as the product of the delay experienced by the radio signals in the zenith direction, the zenith delay, and a mapping function, which models the elevation angle dependence of the tropospheric delay:

$$\Delta(h_{user}) = \Delta_{zh}(h_{user}) \cdot m_h (\varepsilon) + \Delta_{zw}(h_{user}) \cdot m_w (\varepsilon),$$

where $\Delta(h_{user})$ is the tropospheric delay at a given SV elevation angle ε and user altitude h_{user}, $\Delta_{zh}(h_{user})$ and $\Delta_{zw}(h_{user})$ are, respectively, the hydrostatic and wet zenith delays at the user altitude, and $m_h (\varepsilon)$ and $m_w (\varepsilon)$ are the hydrostatic and wet mapping functions, respectively.

C.4.1 Mapping Zenith Delays to Target Altitude

The hydrostatic and wet zenith delays can be determined based on numerical weather predictions or some other meteorological data. Parameters for the troposphere zenith delay model are then determined by e.g. least-squares-fit of the computed zenith delay profiles. The model parameters are referred to the reference altitude h_{ref}. The zenith delays can be scaled to the user altitude as follows:

$$\Delta_{h,z}(h_{user}) = zh_0(h_{ref}) \cdot \exp(-e_h \cdot (h_{user} - h_{ref}))$$

$$\Delta_{w,z}(h_{user}) = zw_0(h_{ref}) \cdot \exp(-e_w \cdot (h_{user} - h_{ref}))$$

where $\Delta_{h,z}(h_{user})$ is hydrostatic and $\Delta_{w,z}(h_{user})$ wet zenith delays in meters at the user altitude h_{user}. The user altitude h_{user} is calculated with respect to the nominal sea level [EGM96]. The terms $zh_0(h_{ref})$ and $zw_0(h_{ref})$ are the hydrostatic and wet zenith delays at the reference altitude given in the IE OMA-LPPe-AGNSS-LocalTroposphereDelayTimeElement.

Finally, the terms e_h and e_w are the exponential fit parameters for the hydrostatic and wet zenith delays.

C.4.1.1 Gradient Parameters

The total tropospheric delay can be considered as a combination of the azimuthally symmetric and asymmetric parts.

© 2020 Open Mobile Alliance. All Rights Reserved.

Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
Consequently, the notation for the neutral delay becomes

\[
\Delta(\varepsilon, \phi, h_{\text{user}}) = \Delta_{z,h}(h_{\text{user}}) m_h(\varepsilon) + \Delta_{z,w}(h_{\text{user}}) m_w(\varepsilon) + m_a(\varepsilon) \cot \varepsilon [G_N \cos \phi + G_E \sin \phi]
\]

where the tropospheric delay is first modelled into zenith direction and then projected into the direction of the satellite using a mapping function that is not only a function of the elevation angle, but also of azimuth angle \(\phi \), the angle counted clockwise from the true north. The \(m_a \), which is a specific mapping function for the gradient terms can be chosen equal to \(m_h \). The asymmetric components are determined by a horizontal gradient model, where \(G_N \) and \(G_E \) are the path delay gradient parameters in the North and East direction, respectively, from the I.E. OMA-LPPe-AGNSS-LocalTroposphereDelayTimeElement. These terms describe the total horizontal gradients, including both hydrostatic and wet components.

Horizontal gradients in the refractivity field result from pressure, temperature, and humidity gradients. Path delay exhibits thus both hydrostatic and wet gradients, though of different spatial scales and temporal correlation. Gradient parameters can be modelled either deterministically or stochastically as random walks in the estimation algorithm. Typically gradients are smaller than 1mm in zenith direction, which translates to a delay of a few centimeters at 10 degrees elevation. The importance of accounting for the azimuthal asymmetry increases, when the satellite elevation angle mask, i.e. the minimum elevation angle from which the measurements are accepted, decreases. This is because then the distance travelled in the troposphere increases.

C.4.2 Mapping Function

The tropospheric delay in the direction of zenith is scaled to lower elevation angles by using a mapping function defined by:

\[
m(\varepsilon) = \frac{\Delta(\varepsilon)}{\Delta_z},
\]

where \(\varepsilon \) is the elevation angle of the observed satellite from the horizon, \(m(\varepsilon) \) is the mapping function, \(\Delta_z \) is the zenith delay and \(\Delta(\varepsilon) \) the slant delay. \(\Delta_z \) is either computed from the surface parameters in the I.E. OMA-LPPe-AGNSS-LocalSurfaceParameterList or given as a parameter in the I.E. OMA-LPPe-AGNSS-LocalTroposphereDelay.

The approach taken here assumes a horizontally stratified atmosphere with separated mapping functions for the hydrostatic and the wet part. The total slant delay thus becomes:

\[
\Delta(\varepsilon, h_{\text{user}}) = \Delta_{z,h}(h_{\text{user}}) m_h(\varepsilon) + \Delta_{z,w}(h_{\text{user}}) m_w(\varepsilon)
\]

where the mapping functions are presented in the continued fraction expansion form proposed by Herring (Herring, T.A. 1992. Modeling Atmospheric Delays in the Analysis of Space Geodetic Data. In proceedings of the Symposium: Refraction of the Transatmospheric Signals in Geodesy, Hague, The Netherlands):

\[
m(\varepsilon) = \frac{1 + \frac{a}{b}}{1 + \frac{1 + c}{\sin(\varepsilon) + \frac{a}{\sin(\varepsilon) + \frac{b}{c}}}}
\]

Three coefficients \(a, b, \) and \(c \) are enough to map zenith delays down to elevations of 3 degrees. The values for the hydrostatic and wet mapping functions can be derived from numerical weather prediction (NWP) models. The mapping function is independent of the target altitude.
The mapping function m_h is obtained using the mapping function parameters ah, bh and ch from the IE OMA-LPPe-AGNSS-MappingFunctionParameters. Likewise, m_w is obtained using the mapping function parameters aw, bw and cw from the IE OMA-LPPe-AGNSS-MappingFunctionParameters.

C.5 Satellite body-fixed coordinate frame

The satellite body fixed coordinate frame is defined as follows:

$$e_z = -\frac{r_{sat}}{|r_{sat}|}, \quad e_y = \frac{e_z \times e_{sun}}{|e_z \times e_{sun}|}, \quad e_x = \frac{e_y \times e_z}{|e_y \times e_z|},$$

where $e_{sun} = \frac{r_{sun} - r_{sat}}{|r_{sun} - r_{sat}|}$ is the unit vector from the satellite to the sun. The vectors r_{sun} and r_{sat} are the sun and satellite positions in Earth-centered reference frame.

Figure 20 shows the resulting Satellite-fixed coordinate system. The unit vector e_z points from the satellite center of mass to the center of the Earth. The unit vector e_y is perpendicular to both e_z and e_{sun}. The e_x thus (right-hand convention) points away from the plane. Finally, e_x is perpendicular to both e_y and e_z and thus lies in the plane.

![Figure 20: Satellite-fixed coordinate system](image)

C.6 Navigation Degradation Models

C.6.1 Clock model Degradation Model

The clock model degradation at time t is modelled with the first-order polynomial

$$RMS_{CLOCK}(t) = cRMS_0 + cRMS_1(t - t_{ref}),$$
where \(t_{oe} \) is the time of ephemeris given in the Navigation Model parameters.

C.6.2 Orbit Model Degradation Model

The orbit model degradation at time \(t \) is modelled with the first-order polynomial

\[
RMS_{ORBIT}(t) = oRMS_0 + oRMS_1(t - t_{oe}),
\]

where \(t_{oe} \) is the time of ephemeris given in the Navigation Model parameters.

C.7 Solar radiation pressure

The acceleration \(a_{solar} \) due to the solar radiation experienced by the SV can be computed from

\[
a_{solar} \sim P_{solar} \cdot (eA)_{eff} \cdot \frac{1}{m},
\]

where \(P_{solar} \) is the solar radiation intensity at the Earth orbit, and \((eA)_{eff}\) the effective combined reflectivity and area. Lastly, \(m \) is the SV mass.

C.8 CRC16-IBM

The CRC16-IBM is calculated from an array of bytes using the polynomial \(x^{16}+x^{15}+x^2+1 \). The following code (in C) shows the reference implementation for calculating the CRC16-IBM.

```c
#define WIDTH 16 /* Width of polynomial */
#define POLY 0x8005 /* Polynomial Bit #16 is set and hidden */
#define BYTE_BITS 8 /* Number of bits in byte */
#define TABLE_SIZE (1 << BYTE_BITS) /* Size of table */
#define MSB_MASK (1 << (WIDTH - 1)) /* Mask for high order bit in a word */

/* Table generated by `crc16init()` */
typedef uint16 Crc16;
static Crc16 table[TABLE_SIZE];

/* Initializes the table. Should be called once before the first call to `crc16()` */
void crc16init(void)
{
    Crc16 i;
    int j;
}
```
for(i = 0; i < TABLE_SIZE; ++i)
{
 Crc16 val = i << (WIDTH - BYTE_BITS);
 for (j = 0; j < BYTE_BITS; ++j)
 val = (val << 1) ^ ((val & MSB_MASK) ? POLY : 0);
 table[i] = val;
}

/* Calculates CRC16 of 'cnt' bytes from 'src' and returns result */
/* Initial value of CRC16 is supplied by caller in 'crc' */
Crc16 crc16(Crc16 crc, void const* src, int cnt)
{
 unsigned char const* s = (unsigned char const*)src;
 while(cnt--)
 crc = (crc << BYTE_BITS)^ table[(crc >> (WIDTH - BYTE_BITS)) ^ *s++];
 return crc;
}

C.9 Antenna information

LPPe allows for defining the antenna orientation with respect to the Earth-Fixed system with Euler Angles (\(\alpha\), \(\beta\) and \(\gamma\)).

C.9.1 Antenna reference frame

Figure 21 shows the reference coordinate system associated with the antenna. The coordinate system is defined so that the Z-axis co-incidences with the Antenna Plane normal vector and the Y-axis co-incidences with the Antenna Reference Direction. The X-axis is chosen so that the resulting X-Y-Z system is right-handed.

The plane and reference direction definitions are antenna vendor-specific.
C.9.2 Euler angles

Figure 22 shows the Euler Angles α, β and γ and their positive counter clock-wise directions (right-hand convention) with respect to the Earth-fixed East-North-Up right-handed coordinate system (blue axes).

The β denotes the counter-clockwise angle between the vertical direction and the antenna plane normal vector (Z). The β ranges from 0º (Vertical and Z parallel) to 180º (Vertical and Z anti-parallel).

The α denotes the counter-clockwise angle between East and Line of Nodes. The α ranges from 0º (East and Line of Nodes parallel) to 359º.

The γ denotes the counter-clockwise angle between X and Line of Nodes. The γ ranges from 0º (X and Line of Nodes parallel) to 359º.

Line of Nodes is shown in Figure 22 as being the line of intersection for the horizontal and antenna planes. Line of Nodes is perpendicular to both Vertical and Z axes.
Going from global coordinate system (East, True North, Vertical) to XYZ system in Figure 22 (extrinsic rotations):

- Rotate XYZ system about Vertical by γ. The X axis now makes angle γ with the East axis.
- Rotate XYZ system about the East axis by β. The Z-axis now makes angle β with the Vertical.
- Rotate XYZ system about the Vertical by α.

Alternatively, going from global coordinate system (East, True North, Vertical) to XYZ system in Figure 22 (intrinsic rotations):

- Rotate XYZ system about the Z-axis by α. The X-axis now lies on the Line of Nodes.
- Rotate XYZ system about the now-rotated X-axis by β. The Z-axis is now in its final direction. The X-axis is still on the Line of Node.
- Rotate the XYZ system about the new Z-axis by γ.

Note that in the gimbal lock situation (Z parallel or anti-parallel to β) the values of α and γ are not meaningful (non-unique) by themselves, but one considers the value of $\alpha + \gamma$ (when Z parallel to β) or $\alpha - \gamma$ (when Z anti-parallel to β), which are uniquely defined, respectively.

C.10 Use of step length estimation models

One exemplary step frequency-user’s height model in the units of meter for the i-th motion state at the target can be given by

$$SL_i(k) = h \cdot (\alpha_1 \cdot SF(k) + \beta_1) + \gamma_i$$
where h is the user’s height, $SF(k)$ is the step frequency at time k and \{ $\alpha_i, \beta_i, \gamma_i$ \} is a set of model parameters according to the i-th motion state. This step length estimation model can be used not only to provide immediate step length at the arbitrary target but also to give a first approximation for any calibration filter that would offer tuning functionality of these model parameters.

The linear sensor combination model is modelled with the linear combination of one or more walking characteristics such as step frequency, peak difference of accelerometer, variance of accelerometer, peak of gyroscope, variance of gyroscope etc. One exemplary step length estimation model using three walking characteristics inputs from both 3-axis accelerometer and 3-axis gyroscope can be expressed as follows.

$$SL^i(k) = SL_0 + \frac{1}{3} \sum_{i=1}^{3} \left\{ \alpha^i \cdot (SF(k) - SF_n^i) \cdot WF_1 + \beta^i \cdot (PA(k) - PA_n^i) \cdot WF_2 + \gamma^i \cdot (PG(k) - PG_n^i) \cdot WF_3 \right\},$$

where $SL^i(k)$ is the step length at time k for the i-th motion state, SL_0 is the initial step length and SF_n^i, PA_n^i, PG_n^i are, respectively, the nominal value of step frequency, peak difference of 3-axis acceleration norm and peak difference of 3-axis gyroscope for the i-th motion state. $SF(k), PA(k), PG(k)$ are, respectively, the measurement of step frequency, peak difference of 3-axis acceleration norm, peak difference of 3-axis gyroscope at time k. $\alpha^i, \beta^i, \gamma^i$ are, respectively, the coefficients of step frequency, peak difference of 3-axis acceleration norm and peak difference of 3-axis gyroscope for the i-th motion state. WF_i is the i-th weight factor of all available walking characteristics and $\sum_{i=1}^{3} WF_i = 1$. Note that the combination of available walking characteristics is dependent on the available sensors at the target.

C.11 Propagation model descriptions

C.11.1 Circular Contour with Applicability area

The relationship between a circular contour propagation model and area of applicability is exemplified in Figure 23.
Figure 23 Usage of Propagation and applicability area parameters
Figure 24 Usage of Propagation and applicability area parameters (corner x,y values defining direction only)
Appendix D. Example flows (informative)

D.1 Exemplary periodic data flows

D.1.1 CCP Assistance Data Transfer procedure – nominal case

![Diagram of Assistance data transfer – nominal case]

1. LPP Request Assistance Data
 - Transaction ID=1, AD CP(AD Session ID=1, Type=initialRequest)
 - CCP CP(dur, rate, pos, QoR), CCP AD(GNSS signals)

2. (alt 1) LPP Abort (end transaction)
 - Cause::PeriodicADprocedureNotSupported

2. (alt 2) LPP Provide Assistance Data (end transaction)
 - Transaction ID=1, AD CP(AD Session ID=1, Type=responseToInitialRequest)
 - AGNSS-Error::CCP not supported by server

2. (alt 3) LPP Provide Assistance Data (end transaction)
 - Transaction ID=1, AD CP(AD Session ID=1, Type=responseToInitialRequest)
 - AGNSS-Error::CCP not supported in the target area, CCP CP(supportArea)

2. (alt 4) LPP Provide Assistance Data (end transaction)
 - Transaction ID=1, AD CP(AD Session ID=1, Type=responseToInitialRequest)
 - AGNSS-Error::CCP not supported for any requested signal, CCP CP(supportArea)

2. (alt 5) LPP Provide Assistance Data (end transaction)
 - Transaction ID=1, AD CP(AD Session ID=1, Type=responseToInitialRequest)
 - AGNSS-Error::QoR cannot be met

2. (alt 6) LPP Provide Assistance Data (end transaction)
 - Transaction ID=1, AD CP(AD Session ID=1, Type=responseToInitialRequest)
 - CCP CP(dur, rate, infoRS1)

3. LPP Provide Assistance Data (unsolicited)
 - Transaction ID=2, AD CP(AD Session ID=1, Type=providePeriodicAD)
 - CCP AD(refTime, RS1)

4. LPP Provide Assistance Data (unsolicited)
 - Transaction ID=2, AD CP(AD Session ID=1, Type=providePeriodicAD)
 - CCP AD(refTime, RS1)
 -
 -
 -

K. LPP Provide Assistance Data (end transaction)
 - Transaction ID=2, AD CP(AD Session ID=1, Type=providePeriodicAD)
 - CCP AD(refTime, RS1)

Figure 25: Assistance data transfer – nominal case
1. The target requests for the periodic AD and within that CCP assistance. The request contains the Periodic AD session ID in the AD control parameters (AD CP) and the requested duration, rate, QoR (quality-of-reference-station) and the target position in the CCP-specific control parameters (CCP CP). Furthermore, the generic part of the AGNSS AD request carries the information for which GNSS signals the CCP AD is being requested.

 The Periodic AD session ID (1 in this flow) in the AD CP allows for modifying the periodic AD session parameters (stopping, changing duration and rate of delivery) as well as changing reference stations within the CCP assistance session. The Periodic AD session ID binds the messaging associated with the single Periodic AD session together by making the Periodic AD session-related message exchange independent of the LPP transaction handling.

2. (alternative 1) In case the server does not support periodic AD, the server shall abort the ongoing procedure.

3. (alternative 2) In case the server does not support CCP assistance, the server shall send back LPP Provide Assistance Data with AGNSS error code “CCP not supported by server”. The transaction gets terminated.

4. (alternative 3) In case the server does not support CCP assistance for the target area, the server shall send back LPP Provide Assistance Data with AGNSS error code “CCP not supported in the target area” as well as the CCP support area assistance. The transaction gets terminated.

5. (alternative 4) In case the server cannot provide the target with a CCP assistance for any requested GNSS signal, the server shall send back LPP Provide Assistance Data with AGNSS error code “CCP not supported for any requested signal”. The transaction gets terminated.

6. (alternative 5) In case the server cannot provide the target with a CCP assistance at the requested QoR, the server shall send back LPP Provide Assistance Data with AGNSS error code “QoR cannot be met”. The transaction gets terminated.

7. (alternative 6) The server sends LPP Provide AD message with the AD CP as well as the CCP-specific control parameters (CCP CP) in the common part of the AGNSS AD. The AD CP carries the periodic AD session ID. In the CCP CP the server provides back at least the duration, rate and information on the reference station RS1 for which CCP AD will be provided. The duration and rate may or may not be the same as requested. In case multi-reference support is indicated (in the capabilities), the server may provide CCP AD also for multiple reference stations.

8. Server starts to provide periodic CCP AD to the target for RS1. The common CCP AD carries the reference time and the generic CCP AD the assistance for the GNSS signals and for the reference stations in use.

 The actual CCP AD is provided to the target in a new transaction (ID=2). The AD session ID stays at ID=1.

9. The server continues to provide the target with periodic CCP AD.

K. Periodic session terminates, when the duration of the session expires.
Figure 26: CCP assistance data transfer – session stop

1 - 4. As in the previous flow.

K. The server continues to provide the target with periodic CCP AD.

K+1. (alt 1) The target aborts the session prematurely.

K+1. (alt 2) The server aborts the session prematurely.
D.1.3 CCP Assistance Data Transfer procedure - session modification (target)

1. LPP Request Assistance Data
 Transaction ID=1, AD CP(AD Session ID=1, Type=initialRequest)
 CCP CP(dur, rate, pos, QoR), CCP AD(GNSS signals)

2. LPP Provide Assistance Data (end transaction)
 Transaction ID=1, AD CP(AD Session ID=1, Type=responseToInitialRequest)
 CCP CP(dur, rate, infoRS1)

3. LPP Provide Assistance Data (unsolicited)
 Transaction ID=2, AD CP(AD Session ID=1, Type=providePeriodicAD)
 CCP AD(refTime, RS1)

4. LPP Provide Assistance Data (unsolicited)
 Transaction ID=2, AD CP(AD Session ID=1, Type=providePeriodicAD)
 CCP AD(refTime, RS1)

K. LPP Provide Assistance Data (unsolicited)
 Transaction ID=2, AD CP(AD Session ID=1, Type=providePeriodicAD)
 CCP AD(refTime, RS1)

K+1. LPP Request Assistance Data
 Transaction ID=3, AD CP(AD Session ID=1, Type=updateAndContinueIfUpdateFails)
 CCP CP(dur)

K+2. (alt 1) LPP Provide Assistance Data (end transaction)
 Transaction ID=3, AD CP(AD Session ID=1, Type=responseToTargetUpdateRequest)
 AGNSS-Error::CCP Unable to modify Control Parameters

K+2. (alt 2) LPP Provide Assistance Data (end transaction)
 Transaction ID=3, AD CP(AD Session ID=1, Type=responseToTargetUpdateRequest)
 CCP CP(dur)

K+3. LPP Provide Assistance Data (unsolicited)
 Transaction ID=2, AD CP(AD Session ID=1Type=providePeriodicAD)
 CCP AD(refTime, RS1)

K+4. LPP Provide Assistance Data (unsolicited)
 Transaction ID=2, AD CP(AD Session ID=1Type=providePeriodicAD)
 CCP AD(refTime, RS1)

L. LPP Provide Assistance Data (end transaction)
 Transaction ID=2, AD CP(AD Session ID=1, Type=providePeriodicAD)
 CCP AD(refTime, RS1)

Figure 27: CCP assistance data transfer – session parameter modification (target)
I - K. As in the previous flow.

K+1. The target requests the modification of the CCP CP (duration in this example). The request launches a new LPP transaction (ID=3), but the period AD session ID does not change (ID=1).

K+2. (alt 1) In case the server is unable to modify the CCP CP, the server shall return the error code “Unable to modify control parameters”.

Note that in case the target had indicated “updateAndAbortIfUpdateFails” the provision of AD would have been aborted by server without any further Provide AD (or Abort/Error) messages.

K+2. (alt 2) The server sends LPP Provide AD message with the modified CCP Control Parameter (duration). The modified duration may or may not be the same as requested by the target.

K+3. The server continues to provide the target with periodic CCP AD in the transaction with ID=2 and periodic session ID=1.

K+4. The server continues to provide the target with periodic CCP AD in the transaction with ID=2 and periodic session ID=1.

L. The session terminates, when the duration expires.
D.1.4 CCP Assistance Data Transfer procedure - session modification (server)

1. **LPP Request Assistance Data**
 - Transaction ID=1, AD CP(AD Session ID=1, Type=initialRequest)
 - CCP CP(dur, rate, pos, QoR), CCP AD(GNSS signals)

2. **LPP Provide Assistance Data (end transaction)**
 - Transaction ID=1, AD CP(AD Session ID=1, Type=responseToInitialRequest)
 - CCP CP(dur, rate, infoRS1)

3. **LPP Provide Assistance Data (unsolicited)**
 - Transaction ID=2, AD CP(AD Session ID=1, Type=providePeriodicAD)
 - CCP AD(refTime, RS1)

4. **LPP Provide Assistance Data (unsolicited)**
 - Transaction ID=2, AD CP(AD Session ID=1, Type=providePeriodicAD)
 - CCP AD(refTime, RS1)

 K. **LPP Provide Assistance Data (unsolicited)**
 - Transaction ID=2, AD CP(AD Session ID=1, Type=providePeriodicAD)
 - CCP AD(refTime, RS1)

 K+1. **LPP Provide Assistance Data (unsolicited, end of transaction)**
 - Transaction ID=3, AD CP(AD Session ID=1, Type=serverUpdate)
 - CCP CP(dur)

 K+2. **LPP Provide Assistance Data (unsolicited)**
 - Transaction ID=2, AD CP(AD Session ID=1, Type=providePeriodicAD)
 - CCP AD(refTime, RS1)

 K+3. **LPP Provide Assistance Data (unsolicited)**
 - Transaction ID=2, AD CP(AD Session ID=1, Type=providePeriodicAD)
 - CCP AD(refTime, RS1)

 L. **LPP Provide Assistance Data (end transaction)**
 - Transaction ID=2, AD CP(AD Session ID=1, Type=providePeriodicAD)
 - CCP AD(refTime, RS1)

Figure 28: CCP assistance data transfer – session parameter modification (server)

1 - K. As in the previous flow.
K+1. The server sends LPP Provide AD message with the new CCP Control Parameters (duration in this example). The new duration overrides the previous duration.

The new duration is provided in a new LPP transaction (ID=3), but the periodic AD session ID does not change (ID=1).

K+2. The server continues to provide the target with periodic CCP AD in the transaction with ID=2 and periodic AD session ID=1.

K+3. The server continues to provide the target with periodic CCP AD in the transaction with ID=2 and periodic AD session ID=1.

L. The session terminates, when the duration expires.
D.1.5 CCP Assistance Data Transfer procedure - change of reference station

Figure 29: CCP assistance data transfer – change of reference station
1 - K. As in the previous flow

K+1. The target provides its current location to the server in the new transaction with ID=3

K+2. The target request for the neighbor list in the new transaction with ID=4

K+3. (alternative 1) The server indicates that the neighbor list is not supported. The session continues, but the target does not obtain the neighbor list. Note that in the further steps shown it is assumed that the target did receive the neighbor list, i.e. the rest of the call flow assumes alternative 2 in the step K+3.

Note that in case the target had indicated “updateAndAbortIfUpdateFails” the provision of AD would have been aborted by server without any further Provide AD (or Abort/Error) messages.

K+3. (alternative 2) The server provides the neighbor list

K+4. The target request for CCP AD for the RS2 in the new transaction with ID=5

K+5. The server provides the reference station information for the RS1 and RS2. This indicates that the server starts provide AD for the both reference stations.

Note that the call flow assumes that the AD update request is a successful one. See D.1.6 for a failure case.

K+6. The server provides CCP AD for RS1 and RS2

(target performs operations required to change the reference station)

L. The server provides CCP AD for RS1 and RS2

L+1. The target request for killing the CCP AD delivery for the RS1 in the new transaction with ID=6

L+2. The server confirms the change by providing the RS information only for the RS2 in the CCP CP

L+3. The server provides CCP AD for RS2 in the transaction with ID=2. The periodic AD session ID has stayed the same throughout the session.

M. The periodic AD assistance session terminates, when the duration expires.
D.1.6 CCP Assistance Data Transfer procedure - change of reference station (fail)

1. LPP Request Assistance Data
 - Transaction ID=1, AD CP(AD Session ID=1, Type=initialRequest)
 - CCP CP(dur, rate, pos, QoR), CCP AD(GNSS signals)

2. LPP Provide Assistance Data (end transaction)
 - Transaction ID=1, AD CP(AD Session ID=1, Type=responseToInitialRequest)
 - CCP CP(dur, rate, infoRS1)
 -
 -

K+1. LPP Provide Assistance Data (unsolicited)
 - Transaction ID=2, AD CP(AD Session ID=1, Type=providePeriodicAD)
 - CCP AD(refTime, RS1)

K+1. LPP Request Assistance Data
 - Transaction ID=3, AD CP(AD Session ID=1, Type=updateAndContinueIfUpdateFails)
 - CCP CP (req RS2)

K+2. LPP Provide Assistance Data (end transaction)
 - Transaction ID=3, AD CP(AD Session ID=1, Type=responseToTargetUpdate)
 - AGNSS-Error::Multi – reference station not supported

K+3. LPP Provide Assistance Data (unsolicited)
 - Transaction ID=2, AD CP(AD Session ID=1, Type=providePeriodicAD)
 - CCP AD(RS1)
 -
 -

L. LPP Provide Assistance Data (unsolicited)
 - Transaction ID=2, AD CP(AD Session ID=1, Type=providePeriodicAD)
 - CCP AD(RS1)

Figure 30: CCP assistance data transfer – failure in the change of reference station

1 - K. As in the previous flow

K+1. The target request for CCP AD for RS2 in the new transaction with ID=3

 Note that the target might have requested for the neighbor list as in the previous case prior to this step.

 In case the neighbor list is empty, the target may still request for another reference station based on position, i.e. the empty neighbor list does not indicate that the server is not capable of providing CCP AD for multiple reference stations.

K+2. The server responds with the AGNSS-Error “multi-reference station not supported” in LPP Provide AD indicating that the server cannot provide CCP AD for multiple reference stations at the same time.
Note that in case the target requested for the neighbor list and it was returned non-empty, the server may still be unable to provide CPP AD for multiple reference stations (see next step). In this case the target might decide to continue with the current reference station. Alternatively the target may abort the current session and start another CCP AD session based on the knowledge (from the neighbor list) that there are potential reference stations nearby.

Note that in case the target had indicated “updateAndAbortIfUpdateFails” the provision of AD would have been aborted by server without any further Provide AD (or Abort/Error) messages.

K+3. The server continues to provide CCP AD for RS1 in the transaction with ID=1 and periodic AD session ID=1

L. The periodic AD assistance session terminates, when the duration expires.
D.1.7 CCP Assistance Data Transfer procedure – unsolicited

1. LPP Provide Assistance Data (end transaction)
 - Transaction ID=1, AD CP (AD Session ID=1, Type=serverUpdate)
 - CCP CP (dur, rate, info RS1)

2. (alt 1) LPP Abort (end transaction)
 - Transaction ID=1, Periodic Session ID=1
 - Cause::Periodic AD procedure Not Supported

2. (alt 2) LPP Abort (end transaction)
 - Transaction ID=1, Periodic Session ID=1
 - AGNSS-Cause::CCP not supported

2. (alt 3) LPP Provide Assistance Data (unsolicited)
 - Transaction ID=2, AD CP (AD Session ID=1, Type=providePeriodicAD)
 - CCP AD (refTime, RS1)

3. (alt 1) LPP Abort (end transaction)
 - Transaction ID=2, Periodic Session ID=1
 - AGNSS-Cause::CCP not supported for the provided signals

3. (alt 2) LPP Provide Assistance Data (unsolicited)
 - Transaction ID=2, AD CP (AD Session ID=1, Type=providePeriodicAD)
 - CCP AD (refTime, RS1)

 ...

K. LPP Provide Assistance Data (end transaction)
 - Transaction ID=2, AD CP (AD Session ID=1, Type=providePeriodicAD)
 - CCP AD (refTime, RS1)

Figure 31: CCP assistance data transfer – unsolicited

1. The server sends LPP Provide AD message with the Periodic AD control parameters (AD CP) as well as the CCP-specific control parameters (CCP CP).

2. (alternative 1) The target aborts the session, because the target does not support periodic AD procedure.

3. (alternative 2) The target aborts the session, because the target does not support CCP AD.

4. (alternative 3) Server starts to provide periodic CCP AD to the target for RS1.

5. (alternative 1) The target aborts the session, because the target does not support CCP AD for the provided GNSS/signals.
6. (alternative 2) Server provides periodic CCP AD to the target for RS1

K. Periodic session terminates, when the duration of the session expires.

D.2 Periodic High Accuracy GNSS examples

D.2.1 Nominal case

1. LPP Request Location Information
 Transaction ID=1, LocInfo CP(session ID=1, Type=initialRequest)
 HAGNSS Request CP(dur, rate, antennaInfoReq, pressureInfoReq, signalReq)

2. (alt 1) LPP Abort (end transaction)
 Transaction ID=1, Periodic Session ID=1
 Cause::PeriodicLocInfoProcedureNotSupported

2. (alt 2) LPP Provide Location Information (end transaction)
 Transaction ID=1, LocInfo CP(session ID=1, Type=responseToInitialRequest)
 AGNSS-Error::HAGNSSNotSupportedByTarget

2. (alt 3) LPP Provide Location Information (end transaction)
 Transaction ID=1, LocInfo CP(session ID=1, Type=responseToInitialRequest)
 AGNSS-Error::HAGNSSUnavailableForAllRequestedSignals

2. (alt 4) LPP Provide Location Information (end transaction)
 Transaction ID=1, LocInfo CP(session ID=1, Type=responseToInitialRequest)
 HAGNSS Provide CP(dur, rate, antennaDescription)

3. LPP Provide Location Information (unsolicited)
 Transaction ID=2, LocInfo CP(session ID=1, Type=providePeriodicLocInfo)
 HAGNSS Provide Meas(pos, refTime, pressure, AntennaOrientation, signalMeas)

 :

 :

K. LPP Provide Location Information (end transaction)
 Transaction ID=2, LocInfo CP(session ID=1, Type=providePeriodicLocInfo)
 HAGNSS Provide Meas(pos, refTime, pressure, AntennaOrientation, signalMeas)

Figure 32: Periodic HA GNSS – nominal case

1. The server requests the periodic HA GNSS measurements from the target. The common part of the Location Information request carries the periodic session ID, which stays the same throughout the HA GNSS session.

 The HA GNSS CP (Control Parameter) request carries the requested duration of the session, rate of the measurement deliveries, information if pressure information is to be provided and GNSS signals requested. Moreover, the request also defines if the antenna information is to be provided.

2. (alternative 1) In case the target does not support periodic Location Information delivery, the target shall abort the session by the cause “Periodic Location Information Procedure Not Supported”.

3. (alternative 2) In case the target does not support HA GNSS, the target shall reply with the AGNSS Error “HA
GNSS Not Supported By Target”. The session gets terminated without further message exchange.

4. (alternative 3) In case the target does not support HA GNSS for any requested GNSS signal, the target shall reply with AGNSS Error “HA GNSS not unavailable for all requested signals”. The session gets terminated without further message exchange.

5. (alternative 4) In case the target can support the request the HA GNSS CP provide IE carries the confirmation for the duration of the session and the rate of the message deliveries. The duration and rate may or may not be the same as requested. In case antenna description was requested and supported, it shall be provided in the provide CP.

6. The target starts to provide Periodic Location Information messages from the server to the target in a new (unsolicited) transaction with ID=2. The provide message carry at least the signal measurements. The pressure information is carried, if requested and supported. The position and reference time information is carried unless forbidden by the LPP proper AGNSS measurement control. The antenna orientation information is provided, if requested and supported.

K. The session terminates, when the duration expires.
D.2.2 Server-side session modification

<table>
<thead>
<tr>
<th>Target</th>
<th>Server</th>
</tr>
</thead>
</table>
| 1. LPP Request Location Information
 Transaction ID=1, LocInfo CP(session ID=1, Type=initialRequest)
 HAgnss Request CP(dur, rate, antennaInfoReq, pressureInfoReq, signalReq) | |
| 2. LPP Provide Location Information (end transaction)
 Transaction ID=1, LocInfo CP(session ID=1, Type=responseToInitialRequest)
 HAgnss Provide CP(dur, rate, antennaDescription) | |
| 3. LPP Provide Location Information (unsolicited)
 Transaction ID=2, LocInfo CP(session ID=1, Type=providePeriodicLocInfo)
 HAgnss Provide Meas(pos, refTime, pressure, AntennaOrientation, signalMeas) | |
| | K. LPP Provide Location Information (unsolicited)
 Transaction ID=2, LocInfo CP(session ID=1, Type=providePeriodicLocInfo)
 HAgnss Provide Meas(pos, refTime, pressure, AntennaOrientation, signalMeas) | |
| | K+1. LPP Request Location Information
 Transaction ID=3, LocInfo CP(session ID=1, Type=updateAndContinueIfUpdateFails)
 HAgnss Request CP(dur) | |
| | K+2. (alt 1) LPP Provide Location Information (end transaction)
 Transaction ID=3, LocInfo CP(session ID=1, Type=responseToServerUpdateRequest) –→
 AGNSS-Error::HA GNSS Unable to modify Control Parameters | |
| | K+2. (alt 2) LPP Provide Location Information (end transaction)
 Transaction ID=3, LocInfo CP(session ID=1, Type=responseToServerUpdateRequest)
 HAgnss Provide CP(dur) | |
| | K+3. LPP Provide Location Information (unsolicited)
 Transaction ID=2, LocInfo CP(session ID=1, Type=providePeriodicLocInfo)
 HAgnss Provide Meas(pos, refTime, pressure, AntennaOrientation, signalMeas) | |
| | L. LPP Provide Location Information (end transaction)
 Transaction ID=2, LocInfo CP(session ID=1, Type=providePeriodicLocInfo)
 HAgnss Provide Meas(pos, refTime, pressure, AntennaOrientation, signalMeas) | |

Figure 33: Periodic HA GNSS – nominal case

1 - 3. As in the previous flow.

K. The target continues to provide periodic HA GNSS measurements to the server according to the control parameters.

K+1. The server requests for a new duration for the periodic HA GNSS in HA GNSS CP Request. The request launches a new transaction with ID=3.

K+2. (alternative 1) In case the target cannot update the HA GNSS CP, the target shall reply with the error code.
“Unable to Modify Control Parameters”. The session continues without abruption, because the server indicated in the request “Continue If Update Fails”. In case, however, the server indicated “Abort If Update Fails” then the target would have aborted the session without further messages to the server.

K+2. (alternative 2) The target confirms the new duration in the HA GNSS CP Provide. The duration may or may not be the same as requested by the server.

K+3. The target continues to provide HA GNSS measurements to the server in the transaction with ID=2 according to the updated control parameters.

L. The session terminates, when the duration expires.

D.2.3 Target/server-side abort

Figure 34: Periodic HA GNSS – abort

1 - 3. As in the previous flow.

K. (alternative 1) The target aborts the session with the cause Periodic Location Information Session Stop

K. (alternative 2) The server aborts the session with the cause Periodic Location Information Session Stop
D.3 Periodic wide area ionosphere corrections procedure

1. LPP Request Assistance Data
 - Transaction ID=1, AD CP(AD Session ID=1, Type=initialRequest)
 WAiono CP(duration, rate), WAiono AD(GNSSs)

2. (alt 1) LPP Abort (end transaction)
 - Transaction ID=1, AD CP(AD Session ID=1)
 Cause::PeriodicADprocedureNotSupported

2. (alt 2) LPP Provide Assistance Data (end transaction)
 - Transaction ID=1, AD CP(AD Session ID=1, Type=responseToInitialRequest)
 AGNSS-Error::WAiono not supported in the target area

2. (alt 3) LPP Provide Assistance Data (end transaction)
 - Transaction ID=1, AD CP(AD Session ID=1, Type=responseToInitialRequest)
 AGNSS-Error::WAiono not supported in the target area

2. (alt 4) LPP Provide Assistance Data (end transaction)
 - Transaction ID=1, AD CP(AD Session ID=1, Type=responseToInitialRequest)
 AGNSS-Error::WAiono not supported for any requested GNSS

2. (alt 5) LPP Provide Assistance Data (end transaction)
 - Transaction ID=1, AD CP(AD Session ID=1, Type=responseToInitialRequest)
 WAiono CP(duration, rate, validityArea, referencePos)

3. LPP Provide Assistance Data (unsolicited)
 - Transaction ID=2, AD CP(AD Session ID=1, Type=providePeriodicAD)
 WAiono AD(validityPeriod, corrections)

K. LPP Provide Assistance Data (end transaction)
 - Transaction ID=2, AD CP(AD Session ID=1, Type=providePeriodicAD)
 WAiono AD(validityPeriod, corrections)

Figure 35: Periodic procedure in the context of wide area ionosphere surface corrections

1. The target requests for the periodic AD for WA Ionosphere Surface AD. The request contains the requested WA Iono Control Parameters (duration, rate) and the list of GNSSs for which the corrections are being requested for.

2. (alternative 1) In case the server does not support periodic AD, the server shall abort the ongoing procedure.

3. (alternative 2) In case the server does not support WA Ionosphere Surface assistance, the server shall send back LPPe Provide Assistance Data with AGNSS error code “WA iono not supported by server”. The transaction gets terminated.
4. (alternative 3) In case the server does not support WA Ionosphere Surface assistance for the target area, the server shall send back LPPe Provide Assistance Data with AGNSS error code “WA iono not supported in the target area”. The transaction gets terminated.

5. (alternative 4) In case the server cannot provide the target with WA Ionosphere Surface assistance for any requested GNSS, the server shall send back LPP Provide Assistance Data with AGNSS error code “WA iono not supported for any requested GNSS”. The transaction gets terminated.

6. (alternative 5) The server sends LPP Provide AD message with the WA Iono Control. The first message carries the duration, rate, validity area and the model reference position. Note that the duration and/or rate may or may not be the same as requested by the target.

 All the control parameters may be updated in a later phase either unsolicited by server or based on the target request using the periodic AD update procedure.

7. Server starts to provide periodic WA Ionosphere Surface AD to the target. The actual WA Ionosphere Surface AD is provided to the target in a new transaction (ID=2). The AD session ID stays at ID=1.

K. Periodic session terminates, when the duration of the session expires.
Appendix E. Broadcast Restrictions and Labelling (Normative) – version 1.1

This appendix defines restrictions applicable to the content of broadcast assistance data and limitations on the areas within which certain types of assistance data may be broadcast. This appendix also provides a means of labelling different types of assistance data. The labels may be used both within LPPe and by a broadcast system to advertise support for particular types of assistance data and/or to provide broadcast scheduling information. The precise use of the labels by particular broadcast systems is outside the scope of this specification.

E.1 LPP Restrictions and Labels

Table 7 shows the different types of assistance data for LP that may be broadcast where each assistance data type is referred to using its ASN.1 parameter name. For each assistance data type, an area limitation is shown if the assistance data is only valid within a restricted area. A server may broadcast assistance data outside the area limitation if it is preferred to provide target devices with assistance data for a wider geographic area although there is no guarantee that the data will always be usable in that case. Other restrictions for assistance data are also shown where these exist – e.g. any restrictions on content. It is assumed that assistance data that is time sensitive (e.g. GNSS time, GNSS real time integrity, GNSS acquisition assistance) will be updated as needed by the server and that stale data will be removed. For assistance data that includes an explicit validity area, broadcast outside the validity area is allowed and a target is assumed to verify presence within the validity area before using the data.

The table also shows labels that may be used within LPPe and by a broadcast system to refer to particular types of assistance data – e.g. when indicating broadcast support for different types of assistance data within LPPe or when indicating which assistance data types are being broadcast by a broadcast system. A label is specified as a sequence of n (n = 1 to 4) numerical elements separated by periods – e.g. 2, 2.1, 2.1.3, 2.1.3.5 – where n is the nesting level of the labelled data item.

In the table, the nesting level of any assistance data type is indicated using a “>” symbol where the number of concatenated “>” symbols m shown for any data item and its associated label indicates that its nesting level is m+1 where m is in the range 0 to 3. The order of data items in the table follows the ASN.1 definition which means that the parent data item for any nested data item at level n is the closest preceding data item in the table at level n-1. Labels are shown in column 1 and show only the final elements, since preceding elements can be inferred from the final elements for the parent data items. As an example, the assistance data type otdoa-ProvideAssistanceData has a nesting level of 1 and label of 2; the data type otdoa-NeighbourCellInfo (which is nested within and one level deeper than otdoa-ProvideAssistanceData) has a nesting level of 2 and a label of 2.2; and the assistance data type gnss-DataBitAssistance has a nesting level of 4 and a label of 3.2.N.5 where N (N = 1 to 9) indicates the particular GNSS or SBAS system to which it applies.

<table>
<thead>
<tr>
<th>Label</th>
<th>ASN.1 Assistance Data Type</th>
<th>Area Limitation</th>
<th>Other Restrictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>commonIEsProvideAssistanceData</td>
<td>None</td>
<td>None (Note 1)</td>
</tr>
<tr>
<td>2</td>
<td>otdoa-ProvideAssistanceData</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 1</td>
<td>otdoa-ReferenceCellInfo</td>
<td>Limited to the area served by the provided neighbor cells and reference cell</td>
<td></td>
</tr>
<tr>
<td>Level 1</td>
<td>Level 2</td>
<td>Description</td>
<td>Note</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>> 2</td>
<td>> otdoa-NeighbourCellInfo</td>
<td>Limited to the area served by the provided neighbor cells and reference cell</td>
<td>expectedRSTD SHALL refer to a target at the midpoint between the reference cell and neighbor cell eNodeB antenna locations. expectedRSTD-Uncertainty SHALL allow for a target at any location where the neighbor and reference cells can both be measured.</td>
</tr>
<tr>
<td>3</td>
<td>a-gnss-ProvideAssistanceData</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 1</td>
<td>> gnss-CommonAssistData</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>> 1</td>
<td>>> gnss-ReferenceTime</td>
<td>Limited to the area served by the provided cells (up to 16) if GNSS-cell time is included. No restriction otherwise.</td>
<td>GNSS-cell time association, if provided for any cell, applies to the antenna location for the cell</td>
</tr>
<tr>
<td>>> 2</td>
<td>>> gnss-ReferenceLocation</td>
<td>None</td>
<td>The location uncertainty ellipsoid should encompass the area within which this assistance data is broadcast</td>
</tr>
<tr>
<td>>> 3</td>
<td>>> gnss-IonosphericModel</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>>> 4</td>
<td>>> gnss-EarthOrientationParameters</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>> 2</td>
<td>> gnss-GenericAssistData</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>> N</td>
<td>>> gnss-ID / sbas-ID</td>
<td>The label N indicates the GNSS or SBAS system as follow:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N=1: GPS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N=2: QZSS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N=3: Galileo</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N=4: Glonass</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N=5: WAAS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N=6: EGNOS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N=7: MSAS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N=8: GAGAN</td>
<td></td>
</tr>
<tr>
<td>>>> 1</td>
<td>>>> gnss-TimeModels</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>>>> 2</td>
<td>>>> gnss-DifferentialCorrections</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>>>> 3</td>
<td>>>> gnss-NavigationModel</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>>>> 4</td>
<td>>>> gnss-RealTimeIntegrity</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>>>> 5</td>
<td>>>> gnss-DataBitAssistance</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>
It is recommended to limit this data type to an area of 100 miles across or less. The server should ensure that the data is valid for all locations at which it may be received (e.g. by providing suitable values for Doppler uncertainty and Code Phase search window).

<table>
<thead>
<tr>
<th>Label</th>
<th>ASN.1 Assistance Data Type</th>
<th>Area Limitation</th>
<th>Other Restrictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>commonIEsProvideAssistanceData</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>> 1</td>
<td>> assistanceContainerList</td>
<td>Any area limitation is specific to the type of proprietary assistance data</td>
<td>checkOrUpdateOrError SHALL NOT be included dataResult SHALL contain OMA-LPPe-AssistanceContainerData</td>
</tr>
<tr>
<td>> 2</td>
<td>> providePeriodicADwithUpdate</td>
<td>Any area limitation is specific to the type of assistance data</td>
<td>A server SHALL follow the procedure defined in section 5.2.1.4 when including this parameter.</td>
</tr>
<tr>
<td>> 3</td>
<td>> segmentedADTransfer</td>
<td></td>
<td>Not used in this version of LPPe. A target SHALL ignore this parameter if included by a server.</td>
</tr>
<tr>
<td>> 4</td>
<td>> default-reference-point</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>> 5</td>
<td>> localCellInformation</td>
<td>Limited to the area served by the provided cells.</td>
<td>GNSS-cell time association, if provided for any cell, applies to the antenna location for the cell</td>
</tr>
<tr>
<td>2</td>
<td>gnss-ProvideAssistanceData</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 1</td>
<td>> commonAssistData</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>> 1</td>
<td>>> ionosphericModel</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>>> 2</td>
<td>>> troposphereModel</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Table 7: LPP Assistance Data Restrictions and Labels

Note 1: this AD parameter is empty in LPP Rel-9 through Rel-11 but is included as a placeholder for possible use in a later release of LPP.

E.2 LPPe Restrictions and Labels

Table 8 shows the different types of assistance data for LPPe 1.1 that may be broadcast, with associated area limitations and other restrictions, where each data type is referred to using using its ASN.1 parameter name. The conventions used to define nesting levels and labels are as described for LPP in section E.1.
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>>> 3</td>
<td>> altitudeAssistance</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>>> 4</td>
<td>> solarRadiation</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>>> 5</td>
<td>> ccpAssistCommonProvide</td>
<td>Limited to a geographic area supported by the provided reference stations.</td>
<td>ccpProvideControlParameters SHALL be included in ccpAssistCommonProvide only in the messages corresponding to steps 1 and 4 of the procedure in section 5.2.1.4.</td>
</tr>
<tr>
<td></td>
<td>> genericAssistData</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>> N</td>
<td>> gnss-ID</td>
<td>The label N indicates the GNSS or SBAS system as follow: N=1: GPS N=2: QZSS N=3: Galileo N=4: Glonass</td>
<td></td>
</tr>
<tr>
<td>>>> 1</td>
<td>>>> wideAreaIonoSurfacePerSVlist</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>>>> 2</td>
<td>>>> mechanicsForAllSVs</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>>>> 3</td>
<td>>>> dcbsForAllSVs</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>>>> 4</td>
<td>>>> navModelDegradationModel</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>>>> 5</td>
<td>>>> ccpAssistProvide</td>
<td>Limited to a geographic area supported by the provided reference stations.</td>
<td>This parameter SHALL be included only in messages corresponding to steps 2 and 3 in the procedure in section 5.2.1.4.</td>
</tr>
<tr>
<td>>>> 6</td>
<td>>>> navModelList</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>3</td>
<td>otdoa-ProvideAssistanceData</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>> otdoa-ReferenceCellInfo</td>
<td>Limited to the area served by the neighbor cells and reference cell</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>> otdoa-NeighbourCellInfo</td>
<td>Limited to the area served by the neighbor cells and reference cell</td>
<td>expectedRSTD SHALL refer to a target at the midpoint between the reference cell and neighbor cell eNodeB antenna locations. expectedRSTD-Uncertainty SHALL allow for a target at any location where the neighbor and reference cells can both be measured.</td>
</tr>
<tr>
<td>4</td>
<td>eotd-ProvideAssistanceData</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>> referenceBTS</td>
<td>Limited to the area served by the provided neighbor cells and reference cell</td>
<td>None</td>
</tr>
<tr>
<td>2</td>
<td>> msrAssistDataList</td>
<td>Limited to the area served by the provided neighbor cells and reference cell</td>
<td>expectedOTD SHALL refer to a target at the midpoint between the reference BTS and neighbor BTS antenna locations. expOTDUncertainty SHALL allow for a target at any location where the neighbor and reference BTSs can both be measured.</td>
</tr>
<tr>
<td>3</td>
<td>> systemInfoAssistDataList</td>
<td>Limited to the area served by the provided neighbor cells and reference cell</td>
<td>expectedOTD SHALL refer to a target at the midpoint between the reference BTS and neighbor BTS antenna locations. expOTDUncertainty SHALL allow for a target at any location where the neighbor and reference BTSs can both be measured.</td>
</tr>
<tr>
<td>5</td>
<td>otdoautra-ProvideAssistanceData</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>> referenceCellInfo</td>
<td>Limited to the area served by the provided neighbor cells and reference cell</td>
<td>roundTripTime and roundTripTimeExtension SHALL NOT be included and SHALL be ignored by a target if included.</td>
</tr>
<tr>
<td>2</td>
<td>> neighborCellList</td>
<td>Limited to the area served by the provided neighbor cells and reference cell</td>
<td>searchWindowSize SHALL allow for a target at any location where the reference and neighbor cells can both be measured. roundTripTime and roundTripTimeExtension SHALL NOT be included and SHALL be ignored by a target if included.</td>
</tr>
<tr>
<td>6</td>
<td>ecid-lte-ProvideAssistanceData</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>> ecid-LTE-NetworkData</td>
<td>Limited to the area served by the provided eNBs and HeNBs</td>
<td>None</td>
</tr>
<tr>
<td>7</td>
<td>ecid-gsm-ProvideAssistanceData</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>> ecid-gsm-NetworkData</td>
<td>Limited to the area served by the provided BTSs</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>ecidutra-ProvideAssistanceData</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>> ecid-UTRA-NetworkData</td>
<td>Limited to the area served by the provided Node Bs and HNBs</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Assistance Data Type</td>
<td>Restrictions</td>
<td>Labels</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>9</td>
<td>wlan-ap-ProvideAssistanceData</td>
<td>Limited to the area served by the provided WLAN APs</td>
<td>None</td>
</tr>
<tr>
<td>> 1</td>
<td>> wlan-DataSet</td>
<td>Limited to the area served by the provided WLAN APs</td>
<td>None</td>
</tr>
<tr>
<td>10</td>
<td>sensor-ProvideAssistanceData</td>
<td>None</td>
<td>None (Note 2)</td>
</tr>
<tr>
<td>11</td>
<td>srn-ProvideAssistanceData</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 1</td>
<td>> srnGroup</td>
<td>Limited to the area served by the provided SRNs</td>
<td>Shall provide srnGroupList and SHALL NOT provide srnGroupUpdateResponse</td>
</tr>
<tr>
<td>> 2</td>
<td>> antennaPattern</td>
<td>Limited to the area served by the referenced SRNs</td>
<td>None</td>
</tr>
</tbody>
</table>

Table 8: LPPe Assistance Data Restrictions and Labels

Note 2: this assistance data parameter is empty in LPPe 1.1 but is included as a placeholder for possible use in a later version of LPPe.
Appendix F. Broadcast Ciphering (Informative) – version 1.1

This appendix provides an informative level description of the algorithm used to cipher and decipher LPPe 1.1 broadcast assistance data messages. For a normative definition, refer to [AES] and [NIST-800-38A].

The algorithm uses AES ciphering with counter mode. AES is a block mode cipher algorithm that ciphers blocks of 128 bits at a time. However, Counter mode enables usage for a bit string that is not an exact multiple of 128 bits. Further, Counter mode enables a target (or a server) to perform most of the deciphering (or ciphersing) processing independently of receipt of the data to be deciphered (or ciphersed) which may enable more efficient processing. Provided counters are chosen in a non-repeating manner by the server (which is a requirement for Counter mode), every block of data will be ciphersed in a unique manner.

The algorithm makes use of a sequence of counters <C1, C2, C3, …> each containing 128 bits, where C1 is specified by the server and each subsequent counter (C2, C3 etc.) is obtained from the previous counter by adding one modulo 2^128. Each counter Ci is ciphersed using the AES algorithm with a common 128 bit key to produce an output block Oi of 128 bits. To perform ciphersing of a broadcast message, the LPP/LPPe message is divided into blocks B1, B2, … Bn of 128 bits each, except for the last block Bn which may contain fewer than 128 bits. The ciphersed message is obtained as a sequence of n blocks containing 128 bits each (except possibly for the last block) given by (O1 XOR B1), (O2 XOR B2), … (On XOR Bn), where XOR denotes bitwise exclusive OR. In the case of the last block, if Bn contains m bits (m<128), then the m most significant bits of On would be used for the exclusive OR. Deciphering is performed in the same way except that the blocks B1, B2, … Bn are now obtained from the ciphersed message and the result of the exclusive OR operations yields the original unciphersed message. Figure 36 provides an illustration of Counter mode for the generic case of an arbitrary block cipher algorithm CIPHk.

![Figure 36: Illustration of Block Ciphering with Counter Mode](image_url)
Appendix G. Encoding of RF Heat Maps (Normative) – version 2.0

This appendix applies only to LPPe 2.0 and defines how RF heat maps are encoded for a transmitter (e.g. an WLAN AP or SRN AP) using an octet string and with optional compression.

G.1 Reference Grid and Heat Map Area

RF heat maps are defined relative to a reference grid which comprises a two dimensional horizontal X,Y coordinate system with a given origin, orientation and grid point spacing as shown in Figure 37.

The origin of the X,Y coordinate system is defined relative to an LPPe reference point. The orientation \(\alpha \) gives the clockwise angle between North and the Y axis in units of degrees. X and Y coordinates are restricted to integers based on a common unit of X and Y length known as the grid spacing. The area for any heat map is always a rectangle with sides parallel to the X and Y axes. The location of the heat map is defined by the X and Y offsets of the corner of the rectangle with minimum X and Y coordinates and its size is defined by the length of each side in units of the common grid spacing. Figure 38 shows more details of a heat map area including the grid points that it contains.
In Figure 38, the X and Y lengths are N and M, respectively, meaning that the heat map area contains (N+1)*(M+1) grid points. Grid points align with integer X and Y coordinates in the reference grid and may be given local X,Y coordinates as shown in Figure 38 relative to the corner of the rectangle with minimum X,Y coordinates in the reference grid. Heat map data (e.g. mean RSSI, mean RTT) are specified for each separate grid point.

G.2 Encoding of heat map values without Compression

Heat map values are each encoded using a single octet encoding an integer value between 0 and 255. The relationship of each encoded value to some RF related statistic (e.g. mean RSSI or mean RTT) is defined as part of the ASN.1 previously.Encoded values are provided as an octet string for successive grid points using the scanning order shown in Figure 39.
Scanning begins at the grid point with minimum X and Y coordinates in the reference grid and proceeds to subsequent grid points along the local X axis. When the last grid point within the heat map area along the local X axis is reached, scanning resumes again from low X to high X for grid points with Y coordinate one greater than the previous set. This continues until grid points with maximum Y coordinate have been scanned from low X to high X. Scanning at each grid point involves encoding the RF statistic of interest as a single octet and adding the encoded value to the octet string. As an example, Figure 40 shows a heat map area of size 4 by 4 units, where the letter within each square represents the encoded value of one particular signal statistic (e.g. mean RSSI or mean RTT) at a grid point centered within the square. The octet string that would be produced following scanning of this particular grid area would be the alphabetic sequence A, B, C, D, … X, Y.

Figure 40: Example Heat map Encoding

G.3 Encoding of a Heat Map with Compression

A heat map is first encoded as an octet string as defined in G.2. In the case of JPEG compression, a standard JPEG compression library is used to compress the octet string using the known X and Y lengths of the heat map area. The resulting compressed octet string is then used. Decompression at a receiver also uses standard JPEG routines. There may be some loss (small errors) resulting from this so the compressing side is advised to limit the amount of compression.
G.4 Non-Rectangular Heat Maps

Non-rectangular heat maps may be used to more efficiently overlay areas that have arbitrary shapes and/or are not oriented with fixed X and Y directions for a rectangular grid. Two types of non-rectangular heat maps are supported in LPPe 2.0. One type enables reorientation of a rectangular area and the other type supports arbitrary shapes within a rectangular area. Both types enable use of a common reference grid with a common grid point spacing thereby avoiding multiple non-overlapping reference grids. Both types can be used separately or in combination and may be combined with compression of a heat map using JPEG.

G.4.1 Reorientation of a Heat Map

To support arbitrary reorientation of a heat map, an initial heat map area composed of a rectangular array of equally spaced grids points is first defined as before and as shown in Figure 38. Then a straight line through the local origin at a clockwise angle θ to the local Y axis is defined with $-90^\circ \leq \theta \leq 90^\circ$. Note that the straight line includes both a portion above the X axis and a portion below the X axis. Grid point rows (parallel to the local X axis) in the initial heat map area are then shifted in the positive X direction when θ is positive and in the negative X direction when θ is negative by an integer number of inter-grid points units of distance so that each row starts at a grid point that is either exactly on the line or just to the positive X side (i.e. right) of it. As an alternative, grid point columns (parallel to the local Y axis) may be shifted in the positive Y direction when θ is positive and in the negative Y direction when θ is negative by an integer number of inter-grid points units of distance so that each column starts at a grid point that is either exactly on the line or just to the positive Y side of it (i.e. above it). Both X and Y shifting alternatives are allowed (though only one can be used at any time) and are illustrated in Figure 41 and Figure 42. The new heat map area in each case is roughly a parallelogram and, while based on the original grid point array, has an orientation θ to the Y axis that may allow a better fit with areas with a similar orientation (e.g. such as a room or corridor in a building with the same orientation θ).
Heat map values (e.g. for RSSI) are assigned to each grid point in the new (reoriented) heat map area using a single octet to encode values between 0 and 255 as before. Heat map values (i.e. octets) may then be assembled into an uncompressed octet string by first shifting rows or columns of grid points in the new heat map area back into the initial rectangular heat map area (i.e. using a reverse transformation to that shown in Figure 41 and Figure 42). This transformed heat map is then scanned in the order described in section G.2 and illustrated in Figure 39 to provide an octet string of heat map values which may then be transferred to a target using LPpe. When JPEG compression is used as described in section G.3, the reoriented heat map area is again transformed into the initial rectangular heat map area which is then compressed using JPEG. To achieve high compression when JPEG is used without significant error, it is recommended that for values of \(\theta \) from \(-45^\circ\) to \(45^\circ\), the variant in which rows of grid points are shifted in the positive or negative X direction is used and that for values of \(\theta \) from \(-90^\circ\) to \(-45^\circ\) and from \(45^\circ\) to \(90^\circ\), the variant in which columns of grid are shifted in the positive or negative Y direction is used. This will keep neighbouring grid points close together after the shifting operation and thereby retain a high correlation of heat map values in the rectangular array to be compressed.

G.4.2 Arbitrary Shaped Heat Maps using Run Length Encoding

To support heat maps with arbitrary shape, alternating run lengths of consecutive excluded and included grid points are used. A rectangular heat map area is first defined as described in section G.1 and illustrated in Figure 38. The grid points in the rectangular heat map area are then scanned in the order described in section G.2 and illustrated in Figure 39. Based on this scan order, an alternating set of integer values \(V_1, V_2, V_3, V_4, V_5 \) etc., is defined where odd numbered values \((V_1, V_3, V_5 \) etc.) define a consecutive number of excluded grid points from the scan order and even numbered values \((V_2, V_4 \) etc.) define a consecutive number of included grid points from the scan order. A new heat map area is thereby created that contains just the included grid points. The values \(V_1, V_2, V_3 \) etc. are each encoded as a single octet with a value in the range 0-255. To encode values greater than 255, values of 255 (or less than 255) can be alternated with values of 0 (e.g. to encode a value of 522, the sequence could be 255, 0, 255, 0, 12).
Application of run length encoding to an irregular area is illustrated in Figure 43. Here the initial rectangular heat map area contains 99 grid points which is reduced to the 42 grid points (shown in red) that are contained in the yellow shaded area. To define the 42 grid points, the alternating sequence of run length values would be: 24, 9, 2, 9, 2, 9, 4, 7, 5, 6, 4, 8, 2, 4. This sequence of values would be provided to a target using LPPe in addition to the parameters defining the initial rectangular heat map area and the heat map values themselves.

![Figure 43: Application of Run Length Encoding to an Arbitrary Area](image)

When Run Length Encoding is used without compression or reorientation, heat map values (e.g. RSSI, RTT) are provided only for included grid points in the scan order of grid points for the initial rectangular heat map area. For example, in Figure 43, heat map values would be provided for the 42 included grid points starting with the grid point at the bottom left of the shaded area and ending with the grid point at the top right of the shaded area.

When run length encoding is used with reorientation but without compression, the reoriented (parallelogram shaped) area is first transformed back into the original rectangular heat map area as described in section G.4.1 and then run length encoding is applied to this area to define which grid points are to be included and excluded.

When run length encoding is used with compression and with or without reorientation, heat map values are provided for both included and excluded grid points to allow two dimensional JPEG compression of a complete rectangular array of heat map values. However, dummy values are assigned to all excluded grid points (e.g. constant values that will compress well). These dummy values are then removed at a receiver.

G.5 Encoding of Update-required Points of a Heat Map

The update-required points refer to a set of grid points where the heat map (or other assistance data) needs to be updated, for example, at or nearby to stairs in the given heat map coverage area or at a corridor at the edge of the given heat map where a target may be about to enter an area for which the target does not have assistance data. When a target locates itself at or nearby to such a grid point, the target is triggered to request new assistance data (e.g. a new RF heat map). To define which grid points should trigger a target request for new assistance data, a rectangular heat map area is used. This rectangular area is either (i) the heat map area defined in section G.1 and shown in Figure 38 when reorientation is not used or (ii) is the initial rectangular area into which a reoriented heat map area is transformed prior to scanning and encoding as described in section G.4.1 and as shown by the rectangular blue striped areas in Figure 41 and Figure 42 when reorientation is used. Use of run length encoding to create arbitrary non-rectangular shapes as described in Appendix G.4.2 may or may not be used but does...
not impact the definition and use of update-required grid points. Grid points in the rectangular heat map area are scanned in the order shown in Figure 39 and Figure 44 and the update-required grid points are defined using Run Length Encoding (RLE) whereby a sequence of integer values V1, V2, V3, V4,. V5 etc. each between 0 and 255 is defined where odd numbered values (V1, V3, V5) etc., define a consecutive sequence of grid points in the scan order that are not update-required points and even numbered values (V2, V4 etc.) define a consecutive sequence of grid points in the scan order that are update-required grid points. As an example, consider the case in Figure 44. Here, the shaded boxes indicate the update-required grid points of the heat map area and, based on the RLE encoding, the sequence of values to define these would be 0:1:1:2:1:1:3:2:3:1:3:1:2:1:3.

Grid points are also identified by indices with the index of each grid point given by its position in the scanning order – e.g. as illustrated by the indices shown for the rectangular heat map area in Figure 44.

When the target needs to send a request for updating assistance data due to being located at or nearby to an update-required grid point, the target sends the ID of the heat map area and the index of the update required grid point to the server. For instance, if the target is located at or nearby to the grid point that is labelled 15 in Figure 44, the target sends an assistance data request for updating assistance data with 15 as the index of the grid point.

\[
\text{Figure 44: Example Heat Map Update Required Point Encoding}
\]

G.6 RSSI Calibration Model

The RSSI calibration function which transforms RSSI values measured by a target device into corresponding RSSI values for a reference device associated with a heat map for RSSI is expressed by the following linear function.

\[
\text{RSSI}_{\text{ref}} = c_{1,i} \cdot \text{RSSI}_{\text{target},i} - c_{2,i}
\]

Here \(c_{1,i}\) and \(c_{2,i}\) are the slope and constant, respectively, of a linear function which transforms an RSSI value measured by a target device \(i\) into a RSSI value that would be measured by a reference device. A reference device can be any vendor or operator chosen device which includes a WLAN basedband chipset, e.g. notebook, table PC, smartphone, etc. A \((c_{1,i}, c_{2,i})\) pairs are uniquely defined according to the relationship between the reference device and/or a baseband chipset in the reference device and/or a baseband chipset in the target device and/or information about the respective OEM and/or chipset vendors. The following table shows exemplary mappings from a reference device to a series of target devices in the case of WLAN basedband chipsets.

<table>
<thead>
<tr>
<th>index</th>
<th>Device Vendor</th>
<th>Device model</th>
<th>WLAN baseband chipset Vendor</th>
<th>WLAN baseband chipset Model</th>
<th>(c_1)</th>
<th>(c_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (Ref device)</td>
<td>Lenovo</td>
<td>ThinkPad X200</td>
<td>Intel</td>
<td>5300</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>Motorola</td>
<td>RAZR</td>
<td>Texas Instrument</td>
<td>WiLink7.0</td>
<td>0.81</td>
<td>-20.69</td>
</tr>
<tr>
<td>2</td>
<td>Samsung</td>
<td>GalaxyS1</td>
<td>Broadcom</td>
<td>BCM4329</td>
<td>0.72</td>
<td>-8.23</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

© 2020 Open Mobile Alliance. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
Assume a target device and a sourcing device with index numbers i and j, respectively, where the sourcing device is used to generate an RSSI heat map and is not the same as the reference device for which calibration parameters are known (e.g. as in the above table). The following calculation shows how to derive the RSSI calibration model parameter pairs \((c_{1,\text{calib}}, c_{2,\text{calib}})\) which transform an RSSI value measured by the target device into an RSSI value measured by the sourcing device according to the RSSI heat map.

\[
RSSI_{\text{sourcing}} = c_{1,\text{calib}} \cdot RSSI_{\text{target}} - c_{2,\text{calib}}
\]

To obtain the calibration parameters above which relate RSSI values for the target and sourcing devices, the calibration for the reference device can be used (e.g. from the above table) as follows.

\[
RSSI_{\text{ref}} = c_{1,i} \cdot RSSI_{\text{target},i} - c_{2,i} = c_{1,i} \cdot RSSI_{\text{target}} - c_{2,i}
\]

\[
= c_{1,j} \cdot RSSI_{\text{target},j} - c_{2,j} = c_{1,j} \cdot RSSI_{\text{sourcing}} - c_{2,j}
\]

By rearranging the above expression, the RSSI calibration model parameters are expressed as follows.

\[
RSSI_{\text{sourcing}} = \frac{c_{1,i}}{c_{1,j}} \cdot RSSI_{\text{target}} - \left(\frac{c_{2,i} - c_{2,j}}{c_{1,j}} \right)
\]

\[
\therefore \quad c_{1,\text{calib}} = \frac{c_{1,i}}{c_{1,j}}, \quad c_{2,\text{calib}} = \frac{c_{2,i} - c_{2,j}}{c_{1,j}}
\]

G.7 Geomagnetic Field Information for a Heat map

G.7.1 Declination and Inclination Angle

The declination angle (D) is defined by the angle on the horizontal plane between magnetic north and true north. It can be given by

\[
D = AZ - \psi
\]

Where \(AZ\) is the Azimuth angle of a target or survey device. \(\psi\) is the yaw angle of a target or survey device.

The inclination angle (I) is defined by the angle between the horizontal plane and the total geomagnetic field vector, measured positive into Earth. It can be given by

\[
I = \frac{\pi}{2} - \arccos\left(\frac{M_{xyz} \cdot A_{xyz}}{|M_{xyz}| \cdot |A_{xyz}|} \right)
\]

Where \(A_{xyz}\) is the acceleration or gravity vector with respect to the body-fixed frame of a target or survey device, \(M_{xyz}\) is
the geomagnetic field vector with respect to the body-fixed frame of a target or survey device. \(\mathbf{A} \cdot \mathbf{B} \) is the inner product of vector \(\mathbf{A} \) and vector \(\mathbf{B} \). \(| \mathbf{A} | \) is the Euclidean norm of vector \(\mathbf{A} \).

G.7.2 Geomagnetic Field w.r.t true north navigation frame

To express the geomagnetic field vector of a target or survey device with respect to true north navigation frame, the declination angle as well as the inclination angle of a target or survey device are used as follows.

\[
M_N = |M_{xyz}| \cos(I) \cos(D) \\
M_E = |M_{xyz}| \cos(I) \sin(D) \\
M_D = -|M_{xyz}| \sin(I)
\]

![Figure 45: Geomagnetic Field w.r.t true north navigation frame](image)
Appendix H. Crowdsourcing with SUPL 2.x (Informative) – version 2.0

This appendix provides a brief informative level description of how crowdsourcing may be supported using SUPL 2.x (e.g. SUPL 2.0 or SUPL 2.1).

In order to request crowdsourcing from a target (e.g. perform steps 1 and 2 in Figure 14), a control server may initiate a new SUPL session to the target or make use of an existing session with the target and may first request the crowdsourcing capabilities of the target if not already known. The server may then send an LPP Request Location Information message within a SUPL POS message to the target to request crowdsourcing. The target may return a confirmation of crowdsourcing in an LPP Provide Location Information message in a SUPL POS message. The SUPL session may then be terminated by the server by sending of a SUPL END or may be continued to perform positioning and/or provide the target with assistance data.

In order to query crowdsourcing (e.g. perform steps 7 and 8 in Figure 14), a control server or data server may initiate a new SUPL session or make use of an existing session and may first request the crowdsourcing capabilities of the target (if not already known) which may indicate to the server whether there is already an ongoing crowdsourcing session between the server and the target. The server may then send an LPP Request Location Information message within a SUPL POS message to the target to query the status of crowdsourcing between the server and the target. The target may return any status response in an LPP Provide Location Information message in a SUPL POS message. The server may terminate the session if needed by sending an LPP Abort message to the target in a SUPL POS message. The SUPL session may then be terminated by the server by sending of a SUPL END or may be continued to perform positioning and/or provide the target with assistance data.

In order to report crowdsourcing measurements to a data server (e.g. perform steps 3 and 4 in Figure 14), a target may initiate a new SET initiated SUPL session to the data server or may make use of an existing session. If a new session is initiated, a target may indicate to the server that the purpose of the session is to transfer crowdsourcing measurements (see Editor’s Note). A target may send each LPP Provide Location Information message containing crowdsourcing measurements that are to be reported at the same time (and that thus form part of the same LPP transaction) in one or more SUPL POS messages to the data server. After the last LPP Provide Location Information message has been sent (which will terminate the LPP transaction), the data server may end the SUPL session by sending a SUPL END to the target, may query the status of the session by sending an LPP Request Location Information message to the target in a SUPL POS message and/or may terminate the session by sending an LPP Abort message to the target in a SUPL POS message.

Editor’s Note: A new parameter, field or parameter value could be added to a SUPL START message to indicate crowdsourcing (e.g. a new field in the QoP parameter) or the first LPP Provide Location Information message containing crowdsourcing measurements could be included within a SUPL POS message in the SUPL POS INIT message. This may need to be evaluated within the context of SUPL rather than LPPe.