
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

SSP – Server to Server Protocol

Semantics Document

V1.0

WV Internal Tracking Number: WV-013

The Wireless Village initiative: SSP v1.0 WV-013

ii
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

TABLE OF CONTENTS

1. DOCUMENT INFORMATION.. 11

1.1. DEFINITIONS...12
1.2. ABBREVIATIONS..12
1.3. REFERENCES ..13

2. OVERVIEW .. 15

2.1. SSP INTEROPERABILITY MODEL..15
2.2. SSP INTEROPERABILITY RULES..17
2.3. SSP SERVICE AGREEMENT AND ROUTING..18
2.4. SSP INTEROPERABILITY CASE STUDY...18

2.4.1. Case 1 – Two Users are Located in different Home Domains. Each Home Domain has
its own SE. Two Home Domains are Connected.. 19
2.4.2. Case 2 – Two Users are Located in the same Home Domain .. 19
2.4.3. Case 3 – Domain A and C have Direct SSP Connection while Domain C Provides A with
Complementary PSE ... 20
2.4.4. Case 4 – Two Users are Located in different Home Domains. Each Home Domain has
its complementary PSE. Two Home Domains are Connected ... 20
2.4.5. Special Case Processing... 21
Two Users are Located in different Home Domains. Both Home Domains Share the same PSE... 21

2.5. SSP PROTOCOL STACK ..22

3. PROTOCOL INTRODUCTION... 23

3.1. BASICS...23
3.1.1. Session ... 23
3.1.2. Transaction ... 23
3.1.3. Message ... 23
3.1.4. Primitive .. 23

3.2. SESSION PAIR VS CONNECTIONS...24
3.3. ADDRESSING..24

3.3.1. General SSP Addressing Schema .. 25
3.3.2. User Addressing and Global-User-ID.. 25
3.3.3. Contact List Addressing and Contact-List-ID... 26
3.3.4. Group Addressing and Group-ID.. 27
3.3.5. Content Addressing and Content-ID... 27
3.3.6. Client Addressing and Client-ID ... 27
3.3.7. Service Addressing and Service-ID... 28
3.3.8. Message and Message-ID... 28

3.4. DATA TYPES ..29
3.4.1. Char.. 29
3.4.2. Integer.. 29
3.4.3. String.. 29
3.4.4. Boolean .. 29
3.4.5. Enum... 29
3.4.6. DateTime.. 29
3.4.7. Structure.. 29

3.5. INFRASTRUCTURE ELEMENTS...29
3.5.1. Host-ID... 30
3.5.2. Redirect (Host) Name.. 30

3.6. FEATURES AND FUNCTIONS...30
3.6.1. Security .. 30

The Wireless Village initiative: SSP v1.0 WV-013

iii
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

3.6.2. Connection Management .. 31
3.6.3. Transaction Management ... 31
3.6.4. Session Management... 31
3.6.5. Service Management ... 31
3.6.6. User Profile Management .. 32
3.6.7. Service Relay .. 32

4. SECURITY.. 33

4.1. TRUST MODELS...33
4.2. ACCESS CONTROL...33
4.3. TRANSPORT SECURITY...33
4.4. INDIVIDUAL DOMAIN SECURITY...34

5. TRANSACTION MANAGEMENT.. 35

5.1. META-INFORMATION ...35
5.2. STATUS PRIMITIVE..36
5.3. ASYNCHRONOUS TRANSACTION...36
5.4. GENERAL EXCEPTION HANDLING ..36
5.5. INVALID TRANSACTION ...36
5.6. UNKNOWN TRANSACTION...37
5.7. GENERAL STATUS CODE ..37

6. SESSION MANAGEMENT.. 39

6.1. ACCESS CONTROL...39
6.1.1. Session Establishment... 39
6.1.2. Session Maintenance... 41
6.1.3. Session Termination .. 41
6.1.4. Session Re-establishment.. 42

6.2. PRIMITIVES...42
6.2.1. The "SendSecretToken" Primitive... 42
6.2.2. The “LoginRequest” Primitive.. 42
6.2.3. The “LoginResponse” Primitive ... 43
6.2.4. The “LogoutRequest” Primitive.. 44
6.2.5. The “Disconnect” Primitive... 44
6.2.6. The “KeepAliveRequest” Primitive.. 44
6.2.7. The “KeepAliveResponse” Primitive ... 45

6.3. TRANSACTIONS..45
6.3.1. The “Login” Transaction... 45
6.3.2. The “Logout” Transaction... 47
6.3.3. The “Disconnect” Transaction ... 47
6.3.4. The “KeepAlive” Transaction... 48

6.4. STATUS CODE ..49
6.4.1. “Login” Transaction... 49
6.4.2. “Logout” / “Disconnect” Transaction.. 49

7. SERVICE MANAGEMENT... 50

7.1. SERVICE STRUCTURE ..50
GENERAL ...50
SAP FEATURE ..50
COMMON IMPS FEATURE ...51
PRESENCE FEATURE ..52
IM FEATURE ...52
GROUP FEATURE ..53

The Wireless Village initiative: SSP v1.0 WV-013

iv
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

7.2. PRIMITIVES...53
7.2.1. The “GetServiceRequest” Primitive... 53
7.2.2. The “ServiceList” Primitive... 54
7.2.3. The “ServiceNegotiation” Primitive .. 54
7.2.4. The “ServiceAgreement” Primitive .. 54

7.3. TRANSACTIONS..55
7.3.1. The “GetAvailableService” Transaction... 55
7.3.2. The “ServiceIndication” Transaction.. 55
7.3.3. The “SetServiceAgreement” Transaction.. 56

7.4. STATUS CODE ..57

8. INTEROPERABILITY MANAGEMENT – USER PROFILE MANAGEMENT................... 58

8.1. USER PROFILE ...58
8.2. PRIMITIVES...59

8.2.1. The “GetUserProfileRequest” Primitive... 59
8.2.2. The “UserProfile” Primitive.. 60
8.2.3. The “UpdateUserProfileRequest” Primitive .. 60

8.3. TRANSACTIONS..60
8.3.1. The “GetUserProfile” Transaction.. 60
8.3.2. The “UpdateUserProfile” Transaction ... 61

8.4. STATUS CODE ..61

9. SERVICE RELAY – COMMON IMPS FEATURES ... 62

9.1. OVERVIEW ...62
9.2. PRIMITIVES...62

9.2.1. The “SearchRequest” Primitive.. 62
9.2.2. The “SearchResponse” Primitive ... 63
9.2.3. The “StopSearchRequest” Primitive.. 64
9.2.4. The “InviteRequest” Primitive .. 64
9.2.5. The “InviteResponse” Primitive.. 65
9.2.6. The “InviteUserRequest” Primitive.. 66
9.2.7. The “InviteUserResponse” Primitive... 67
9.2.8. The “CancelInviteRequest” Primitive.. 67
9.2.9. The “CancelInviteUserRequest” Primitive... 68
9.2.10. The “VerifyUseridRequest” Primitive.. 68
9.2.11. The “VerifyUseridResponse” Primitive... 69

9.3. TRANSACTIONS..69
9.3.1. The “GeneralSearch” Transaction .. 69
9.3.2. The “StopSearch” Transaction... 70
9.3.3. The “Invitation” Transaction.. 70
9.3.4. The “CancelInvitation” Transaction ... 73
9.3.5. The “VerifyUserid” Transaction .. 75

9.4. STATUS CODE ..76
9.4.1. “GeneralSearch” Transaction .. 76
9.4.2. “StopSearch” Transaction ... 76
9.4.3. “Invitation” Transaction.. 76
9.4.4. “CancelInvitation” Transaction ... 76

10. SERVICE RELAY – CONTACT LIST FEATURES... 77

10.1. OVERVIEW ...77
10.2. PRIMITIVES...78

10.2.1. The “CreateContactListRequest” Primitive ... 78
10.2.2. The “DeleteContactListRequest” Primitive.. 78

The Wireless Village initiative: SSP v1.0 WV-013

v
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

10.2.3. The “GetContactListRequest” Primitive... 79
10.2.4. The “GetContactListResponse” Primitive .. 79
10.2.5. The “GetListMemberRequest” Primitive... 79
10.2.6. The “AddListMemberRequest” Primitive.. 79
10.2.7. The “RemoveListMemberRequest” Primitive... 80
10.2.8. The “ContactListMemberResponse” Primitive.. 80
10.2.9. The “GetListPropsRequest” Primitive... 81
10.2.10. The “SetListPropsRequest” Primitive .. 81
10.2.11. The “ContactListPropsResponse” Primitive... 81
10.2.12. The “CreateAttrListRequest” Primitive ... 81
10.2.13. The “DeleteAttrListRequest” Primitive.. 82
10.2.14. The “GetAttrListRequest” Primitive ... 82
10.2.15. The “GetAttrListResponse” Primitive .. 83

10.3. TRANSACTIONS..83
10.3.1. The “CreateContactList” Transaction .. 83
10.3.2. The “DeleteContactList” Transaction... 84
10.3.3. The “GetContactList” Transaction.. 84
10.3.4. The “GetListMember” Transaction ... 85
10.3.5. The “AddListMember” Transaction... 85
10.3.6. The “RemoveListMember” Transaction.. 85
10.3.7. The “GetListProperties” Transaction ... 86
10.3.8. The “SetListProperties” Transaction .. 86
10.3.9. The “CreateAttributeList” Transaction... 87
10.3.10. The “DeleteAttrList” Transaction... 87
10.3.11. The “GetAttrList” Transaction.. 88

10.4. STATUS CODE ..88
10.4.1. Contact List Transactions... 88
10.4.2. Attribute List Transactions... 88

11. SERVICE RELAY – PRESENCE FEATURES ... 89

11.1. OVERVIEW ...89
11.2. PRIMITIVES...89

11.2.1. The “SubscribeRequest” Primitive... 89
11.2.2. The “AuthorizationRequest” Primitive.. 89
11.2.3. The “AuthorizationResponse” Primitive ... 90
11.2.4. The “UnsubscribeRequest” Primitive.. 90
11.2.5. The “PresenceNotification” Primitive... 91
11.2.6. The “GetWatcherListRequest” Primitive .. 91
11.2.7. The “GetWatcherListResponse” Primitive.. 91
11.2.8. The “GetPresenceRequest” Primitive.. 92
11.2.9. The “GetPresenceResponse” Primitive... 92
11.2.10. The “UpdatePresenceRequest” Primitive.. 92
11.2.11. The “CancelAuthRequest” Primitive.. 93

11.3. TRANSACTIONS..93
11.3.1. The “Subscribe” Transaction.. 93
11.3.2. The “ReactiveAuthorization” Transaction.. 94
11.3.3. The “Unsubscribe” Transaction ... 95
11.3.4. The “PresenceNotification” Transaction.. 95
11.3.5. The “GetWatcherList” Transaction ... 96
11.3.6. The “GetPresence” Transaction... 96
11.3.7. The “UpdatePresence” Transaction.. 97
11.3.8. The “CancelAuthorization” Transaction .. 97

11.4. STATUS CODE ..98

The Wireless Village initiative: SSP v1.0 WV-013

vi
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

11.4.1. “ReactiveAuthorization” Transaction ... 98
11.4.2. “GetPresence” Transaction .. 98
11.4.3. “UpdatePresence” Transaction.. 98
11.4.4. Other Presence Transactions... 98

12. SERVICE RELAY – INSTANT MESSAGING FEATURES .. 99

12.1. OVERVIEW ...99
12.2. PRIMITIVES...99

12.2.1. The “SendMessageRequest” Primitive.. 99
12.2.2. The “SendMessageResponse” Primitive ... 99
12.2.3. The “ForwardMessageRequest” Primitive...100
12.2.4. The “NewMessage” Primitive...100
12.2.5. The “MessageDelivered” Primitive..101
12.2.6. The “MessageNotification” Primitive..101
12.2.7. The “GetMessageRequest” Primitive...102
12.2.8. The “SetMessageDeliveryMethod” Primitive...102
12.2.9. The “GetMessageListRequest” Primitive..102
12.2.10. The “GetMessageListResponse” Primitive..103
12.2.11. The “RejectMessageRequest” Primitive ..103
12.2.12. The “DeliveryStatusReport” Primitive...104
12.2.13. The “BlockUserRequest” Primitive ..104
12.2.14. The “GetBlockedRequest” Primitive ..105
12.2.15. The “GetBlockedResponse” Primitive..105

12.3. TRANSACTIONS..106
12.3.1. The “SendMessage” Transaction...106
12.3.2. The “ForwardMessage” Transaction..106
12.3.3. The “PushMessage” Transaction...106
12.3.4. The “MessageNotification” Transaction...107
12.3.5. The “GetMessage” Transaction ...108
12.3.6. The “SetMessageDeliveryMethod” Transaction ...108
12.3.7. The “GetMessageList” Transaction...109
12.3.8. The “RejectMessage” Transaction...109
12.3.9. The “NotifyDeliveryStatusReport” Transaction ..110
12.3.10. The “BlockUser” Transaction ...110
12.3.11. The “GetBlockedList” Transaction...111

12.4. STATUS CODE ..111
12.4.1. “SendMessage” Transaction ...111
12.4.2. “SetMessageDeliveryMethod” Transaction ...111
12.4.3. “GetMessageList” Transaction ..112
12.4.4. “RejectMessage” Transaction ..112
12.4.5. “NewMessage” Transaction..112
12.4.6. “MessageNotification” Transaction ..112
12.4.7. “GetMessage” Transaction...112
12.4.8. “NotifyDeliveryStatusReport” Transaction..112
12.4.9. “ForwardMessage” Transaction..112
12.4.10. Block Transactions...113

13. SERVICE RELAY – GROUP FEATURES ..114

13.1. PRIMITIVES...114
13.1.1. The “CreateGroupRequest” Primitive...114
13.1.2. The “DeleteGroupRequest” Primitive ...114
13.1.3. The “JoinGroupRequest” Primitive...115
13.1.4. The “JoinGroupResponse” Primitive ..115

The Wireless Village initiative: SSP v1.0 WV-013

vii
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

13.1.5. The “LeaveGroupRequest” Primitive ..115
13.1.6. The “LeaveGroupIndication” Primitive..116
13.1.7. The “GetJoinedMemberRequest” Primitive ...116
13.1.8. The “GetJoinedMemberResponse” Primitive...116
13.1.9. The “GetGroupMemberRequest” Primitive..117
13.1.10. The “GetGroupMemberResponse” Primitive..117
13.1.11. The “AddGroupMemberRequest” Primitive..118
13.1.12. The “RemoveGroupMemberRequest” Primitive...118
13.1.13. The “MemberAccessRequest” Primitive ..118
13.1.14. The “GetGroupPropsRequest” Primitive ..119
13.1.15. The “GetGroupPropsResponse” Primitive..119
13.1.16. The “SetGroupPropsRequest” Primitive ...119
13.1.17. The “RejectListRequest” Primitive ...120
13.1.18. The “RejectListResponse” Primitive...120
13.1.19. The “SubscribeGroupChangeRequest” Primitive..120
13.1.20. The “UnsubscribeGroupChangeRequest” Primitive...121
13.1.21. The “GetGroupSubStatusRequest” Primitive ...121
13.1.22. The “GetGroupSubStatusResponse” Primitive...121
13.1.23. The “GroupChangeNotice” Primitive..122

13.2. TRANSACTIONS..122
13.2.1. The “CreateGroup” Transaction..122
13.2.2. The “DeleteGroup” Transaction..123
13.2.3. The “JoinGroup” Transaction..124
13.2.4. The “LeaveGroup” Transaction...124
13.2.5. The “ServerInitiatedLeaveGroup” Transaction ..124
13.2.6. The “GetJoinedMember” Transaction ..125
13.2.7. The “GetGroupMember” Transaction ..125
13.2.8. The “AddGroupMember” Transaction..126
13.2.9. The “RemoveGroupMember” Transaction...126
13.2.10. The “MemberAccess” Transaction...127
13.2.11. The “GetGroupProps” Transaction ...127
13.2.12. The “SetGroupProps” Transaction ..128
13.2.13. The “RejectList” Transaction ..128
13.2.14. The “SubscribeGroupChange” Transaction...129
13.2.15. The “UnsubscribeGroupChange” Transaction..129
13.2.16. The “GetGroupSubStatus” Transaction ..129
13.2.17. The “NotifyGroupChange” Transaction..130

13.3. STATUS CODE ..130
13.3.1. “CreateGroup” Transaction ...130
13.3.2. “DeleteGroup” Transaction..131
13.3.3. “JoinGroup” Transaction ..131
13.3.4. “LeaveGroup” Transaction...131
13.3.5. Group Membership Transactions...131
13.3.6. Group Properties Transactions...131
13.3.7. “RejectList” Transaction ...131
13.3.8. Group Change Transactions..132
13.3.9. “GetJoinedMember” Transaction..132

14. STATUS CODES AND DESCRIPTIONS ...133

14.1. 1XX – INFORMATIONAL ...133
14.1.1. 100 – Continue ...133
14.1.2. 101 – Queued..133
14.1.3. 102 – Started...133

The Wireless Village initiative: SSP v1.0 WV-013

viii
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

14.1.4. 104 – Server Queued...133
14.2. 2XX – SUCCESSFUL...133

14.2.1. 200 – Successful ...134
14.2.2. 201 – Partially Successful ..134
14.2.3. 202 – Accepted ...134

14.3. 4XX – CLIENT ERROR ...134
14.3.1. 400 – Bad Request ...134
14.3.2. 401 – Unauthorized...134
14.3.3. 402 – Bad Parameter ..134
14.3.4. 403 – Forbidden...134
14.3.5. 404 - Not Found...135
14.3.6. 405 – Service Not Supported..135
14.3.7. 410 – Unable to Delivery..135
14.3.8. 415 – Unsupported Media Type ..135
14.3.9. 420 – Invalid Transaction-ID...135
14.3.10. 422 – User-ID and Client-ID Does Not Match ...135
14.3.11. 423 – Invalid Invitation-ID..135
14.3.12. 424 – Invalid Search-ID ..135
14.3.13. 425 – Invalid Search-Index...135
14.3.14. 426 – Invalid Message-ID ...135
14.3.15. 431 – Unauthorized Group Membership..135

14.4. 5XX – SERVER ERROR...136
14.4.1. 500 – Internal Server Error..136
14.4.2. 501 – Not Implemented...136
14.4.3. 503 – Service Unavailable ...136
14.4.4. 504 – Invalid Timeout ...136
14.4.5. 505 – Version Not Supported...136
14.4.6. 506 – Service Not Agreed...136
14.4.7. 507 – Message Queue is Full...136
14.4.8. 516 – Domain Not Supported ..136
14.4.9. 521 – Unresponded Presence Request ...136
14.4.10. 522 – Unresponded Group Request ..137
14.4.11. 531 – Unknown User..137
14.4.12. 532 – Message Recipient Blocked the Sender ...137
14.4.13. 533 – Message Recipient Not Logged in ..137
14.4.14. 534 – Message Recipient Unauthorized ...137
14.4.15. 535 – Search Timed Out ..137
14.4.16. 536 – Unknown Transaction...137

14.5. 6XX – SESSION...137
14.5.1. 600 – Session Expired...137
14.5.2. 601 – Forced Logout ...137
14.5.3. 604 – Invalid Session / Not Logged In..137
14.5.4. 606 – Invalid Service-ID...138
14.5.5. 607 – Redirection Refused..138
14.5.6. 608 – Invalid Password ..138
14.5.7. 609 – Connection Expired ..138
14.5.8. 610 – Server Search Limit is Exceeded..138
14.5.9. 620 – Invalid Server Session..138

14.6. 7XX – PRESENCE AND CONTACT LIST ..138
14.6.1. 700 – Contact List Does Not Exist ..138
14.6.2. 701 – Contact List Already Exists...138
14.6.3. 702 – Invalid or Unsupported User Properties ..138
14.6.4. 750 – Invalid or Unsupported Presence Attributes..138
14.6.5. 751 – Invalid or Unsupported Presence Value...139

The Wireless Village initiative: SSP v1.0 WV-013

ix
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

14.6.6. 752 – Invalid or Unsupported Contact List Property..139
14.7. 8XX – GROUPS...139

14.7.1. 800 – Group Does Not Exist ..139
14.7.2. 801 – Group Already Exists ...139
14.7.3. 802 – Group is Open ...139
14.7.4. 803 – Group is Closed ..139
14.7.5. 804 – Group is Public ...139
14.7.6. 805 – Group Private..139
14.7.7. 806 – Invalid / Unsupported Group Properties..139
14.7.8. 807 – Group is Already Joined..139
14.7.9. 808 – Group is Not Joined ...140
14.7.10. 809 – Rejected...140
14.7.11. 810 – Not a Group Member..140
14.7.12. 811 – Screen Name Already in Use ...140
14.7.13. 812 – Private Messaging is Disabled for Group...140
14.7.14. 813 – Private Messaging is Disabled for User..140
14.7.15. 814 – The Maximum Number of Groups Has Been Reached for the User..................140
14.7.16. 815 – The Maximum Number of Groups Has Been Reached for the Server140
14.7.17. 816 – Insufficient Group Privileges ..140
14.7.18. 817 – The Maximum Number of Joined Users Has Been Reached..............................141
14.7.19. 821 – History is Not Supported ..141

The Wireless Village initiative: SSP v1.0 WV-013

10
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

The Wireless Village initiative: SSP v1.0 WV-013

11
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

Notice

Copyright © 2001-2002 Ericsson, Motorola and Nokia. All Rights Reserved.

Implementation of all or part of any Specification may require licenses under third party
intellectual property rights, including without limitation, patent rights (such a third party
may or may not be a Supporter). The Sponsors of the Specification are not responsible
and shall not be held responsible in any manner for identifying or failing to identify any or
all such third party intellectual property rights.

THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN ARE PROVIDED
ON AN "AS IS" BASIS WITHOUT WARRANTY OF ANY KIND AND ERICSSON,
MOTOROLA and NOKIA DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. IN NO EVENT SHALL ERICSSON, MOTOROLA or NOKIA BE LIABLE TO
ANY PARTY FOR ANY LOSS OF PROFITS, LOSS OF BUSINESS, LOSS OF USE OF
DATA, INTERRUPTION OF BUSINESS, OR FOR DIRECT, INDIRECT, SPECIAL
OR EXEMPLARY, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL DAMAGES OF
ANY KIND IN CONNECTION WITH THIS DOCUMENT OR THE INFORMATION
CONTAINED HEREIN, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH LOSS OR
DAMAGE. The above notice and this paragraph must be included on all copies of this
document that are made.

The Wireless Village initiative: SSP v1.0 WV-013

12
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

1. Document Information

1.1. Definitions

The following definitions define terms specific to the Wireless Village and general terms
that may have some special context within the documentation. These definitions are
provided to enhance the use of this documentation.

Home Domain refers to the home IMPS system, where the user subscribes to, and
is authenticated and authorized to use IMPS services

Primary Service Element refers to a Service Element of an IMPS service for a
client. PSE may be in the Home Domain of the
client, or in the other domain.

Complementary Service refers to the situation in which the Primary Service
Element (PSE) is NOT in the Home Domain.
Instead, the PSE is in another domain.

Provider Server the WV server, which provides the services for the Requestor
Server in the frame of a session after the successful service
agreement

Requestor Server the WV server, which requests the services from the Provider
Server in the frame of a session after the successful service
agreement

Service Request it is initiated from the Requestor Server to the Provider Server

Service Notification it is initiated from the Provider Server to the Requestor Server

The terms MAY, SHOULD, MUST are consistent with the definition in RFC 2119.

1.2. Abbreviations

For the purposes of this specification the following abbreviations apply.
ARPA Advanced Research Projects Agency

An agency of the United States Department of Defense, ARPA
underwrote the development of the Internet beginning in 1969. A
precursor to IETF.

DTD Document Type Definition
HTTP Hypertext Transfer Protocol
IANA Internet Assigned Number Authority
IETF Internet Engineering Task Force

A society of engineers and developers dedicated to designing and

The Wireless Village initiative: SSP v1.0 WV-013

13
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

advancing standards for internet use.
WAP Wireless Application Protocol

A specification for a set of communication protocols to standardize
the way that wireless devices, such as cellular telephones and radio
transceivers, can be used for Internet access

1.3. References

WVARCH “Wireless Village System Architecture Model v1.0”, February 2002
WVFEAT “Wireless Village Features and Functions v1.0”, February 2002
WVPA “Wireless Village Presence Attributes v1.0”, February 2002
WVCSPS “Wireless Village Client-Server Protocol – Session and Transactions

v1.0”, February 2002
WVSSPT “Wireless Village Server-Server Protocol – Transport Binding v1.0”,

February 2002
WVSSPSCR “Wireless Village Server-Server Protocol – Static Conformance

Requirement v1.0”, February 2002
[RFC822] “Standard for the Format of ARPA Internet Text Messages”, August

1982.
[RFC1321] “The MD5 Message-Digest Algorithm”, April 1992.
[RFC2045] Multipurpose Internet Mail Extensions (MIME) Part one: Format of

Internet Message Bodies. Section 6.8 “Base64 Content-Transfer-
Encoding”, November 1996

[RFC2046] Borenstein N., and N. Freed, "MIME (Multipurpose Internet Mail
Extensions) Part Two: Media Types", November 1996.

[RFC2119] “Keywords for using RFCs to Indicate Requirements levels”, March
1997

[RFC2616] “Hypertext Transfer Protocol – HTTP/1.1”, June 1999
[RFC2778] “A Model for Presence and Instant Messaging”, February 2000
[RFC2779] “Instant Messaging / Presence Protocol Requirements”, February

2000
[FIPS 180-1] “Secure Hash Standard”, April 1995
[IMPP-CPIM] “A Common Profile for Instant Messaging (CPIM)”, Internet Draft,

November 2000
[E.164] ITU-T Recommendation E.164 (05/97) The international Public

Telecommunication Numbering Plan
[TS 22.121] “Digital cellular telecommunications system (Phase 2+) (GSM);

Universal Mobile Telecommunications System (UMTS); Service
aspects; The Virtual Home Environment (3GPP TS 22.121 version
4.1.0 Release 4)”

[TS 23.127] “Universal Mobile Telecommunications System (UMTS); Virtual
Home Environment/Open Service Architecture (3GPP TS 23.127
version 4.2.0 Release 4)”

[WAPWAP] “Wireless Application Protocol Architecture Specification”, WAP
Forum, June 2000

[WAPWSP] “Wireless Session Protocol”, WAP Forum, June 2000

The Wireless Village initiative: SSP v1.0 WV-013

14
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

[WAPWTLS] “Wireless Transport Layer Security”, WAP Forum, June 2000
[WAPPush] “WAP Push Architectural Overview”, WAP Forum, June 2000
[XML] “Extensible Markup Language 1.0 (Second Edition)”, W3C

recommendation, 6-October-2000
[UUID] Steven Miller, “DEC/HP Network Computing Architecture Remote

Procedure Call Run-Time Extension Specification Version OSF
TX1.0.11”, July 23, 1992

The Wireless Village initiative: SSP v1.0 WV-013

15
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

2. Overview

Wireless Village (WV) Server-Server Protocol (SSP) provides the communication and
interaction means between different IMPS service domains. SSP allows the WV clients to
subscribe to the IMPS services provided by different service providers that are distributed
across the network. SSP allows the WV clients to communicate with existing proprietary
Instant Messaging networks through the Proprietary Gateway. The interoperability
between different devices and service providers is achieved in a way that a user one that
subscribes to Wireless Village services at Service Provider A can communicate with a
user two that is a client of Service Provider B. The goal of SSP is to support the
distributed interoperable complementary IMPS services across service provider domains.

2.1. SSP Interoperability Model

The term “Home Domain” is the domain where the client subscribes to, and is
authenticated and authorized to use the IMPS services.

The term “Primary Service Element” (PSE) is the primary SE of an IMPS service for a
client. PSE may be in the Home Domain of the client, or in a remote domain.

Figure 1. The SSP Minimum Interoperability Model

SSP supports server interoperability at different levels. At the lowest level, two users
located at two different home domains are able to communicate with each other, as
shown in Figure 1. At the highest level, SSP supports that a complete set of IMPS

Wireless Village Server - Domain A

Client 1

Client 2

CSP or CLP

Wireless Village Server - Domain B

CSP or CLP

SSP

IM Service

Service Access Point

Service Access Point

Group / Chat

IM Service

Presence Service Group / Chat

Shared Content

The Wireless Village initiative: SSP v1.0 WV-013

16
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

services are assembled from complementary IMPS services across service provider
domains, as shown in Figure 2. SSP defines the rules for the PSE to take appropriate
actions to achieve the interoperability and provide distributed IMPS services.

In order for the service providers to have the flexibility to choose the appropriate level of
interoperability and set up different service agreements between them, SSP mandates a
minimum set of interoperable features and functions. To guarantee interoperability it is
required that the two interacting servers provide the same subset of services.

In the example in Figure 1, client 1 is located in home domain A, and client 2 is located
in home domain B. Domain A implements IM and Group service elements, and domain B
implements the full set of Wireless Village service elements. The common subset of
services is IM and Group, i.e. client 1 and client 2 are interacting across domains via the
minimum set of interoperable IM and Group features and functions in SSP.

The full set of interoperability features includes the Interoperability Management and the
IMPS Service Relay. The Interoperability Management includes a Security Model,
Transaction Management, Session Management, Service Management and User Profile
Management. The IMPS Service Relay includes Common IMPS Features, Contact List
Features, Presence Features, Instant Messaging Features, Group Features and Shared
Content Features.

Figure 2. The SSP Full Interoperability Model

In the example in Figure 2, client 1 is located in home domain A, and Client 2 is located
in home domain B. Domain A implements the presence and group service elements and
domain B the IM and shared content service elements. The Wireless Village
interoperability model allows client 1 and 2 to utilize the complete set of features and
interact with each other via the SSP.

Wireless Village Server - Domain A

Client 1

Client 2

CSP or CLP

Group / Chat

Wireless Village Server - Domain B

CSP or CLP

SSP

Presence Service

Service Access Point

Service Access Point

IM Service Shared Content

The Wireless Village initiative: SSP v1.0 WV-013

17
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

In SSP Interoperability, the Home Domains must have direct SSP connection if they want
to interoperate with each other. However, SSP supports the routing of “Service Relay”
between the Home Domain and the PSE. The route from Home Domain B to its PSE is
shown in Figure 3, where the PSE domain that provides the actual service element, e.g.
IM service, is at the end of the route. All intermediate domains are relaying the service
request to the next hop. The intermediate nodes act the "logical" Service Provider role for
each downstream domain, and act the “logical” Service Requestor role for each upstream
domain.

Figure 3. The SSP Service Relay

At each Wireless Village server, the Service Access Point (SAP) should maintain a
Service Table that keeps track of the service agreements to appropriately relay the SSP
service request on a per-service basis and forward the SSP service result on a per-domain
basis. Being the “logical” Service Provider, the SAP should maintain a Session Record
for each Service Requestor. Being the “logical” Service Requestor, the SAP should
maintain a Transaction Record for each Service Provider. The SAP should maintain a
Transaction Table to map each requested transaction from its Service Requestor to the
initiated transaction to its Service Provider. The Transaction Table should be the uniquely
one-one match. Therefore, the Service Relay flow and Result Forward flow at each SAP
is clearly and uniquely identified by the transaction flows.

The SAP at Home Domain shall appropriately map the CSP/CLP service request from the
client to the SSP service request, and/or map the SSP service result to CSP/CLP service
result to the client.

2.2. SSP Interoperability Rules

In SSP Interoperability, the Home Domains must have direct SSP connection if they want
to interoperate with each other. However, SSP supports the routing of “Service Relay”
between the Home Domain and the PSE. The basic IOP rules are:

Rule 1: At the Home Domain, each user-initiated service request and the relayed service
request from another Home Domain shall be routed / relayed from this Home Domain to
its PSE for the first and primary processing. PSE is the primary and default service
element to provide the user with the service.

IM PSE
W V S

Provider

H(n)
W V S

Reques to rProvider

H(1)
W V S

Requestor

H o m e
Domain B

Client B

Home
Domain A

Client A

Upstream

Provider

The Wireless Village initiative: SSP v1.0 WV-013

18
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

Rule 2: If PSE needs more information from another SE in another Home Domain, but
the service agreement between them does not support such information exchange, the
PSE shall relay the service request to that Home Domain for further processing. Before a
service request is relayed to a SE in another Home Domain, all information elements of
local scope must be replaced with those of global scope. For example, a local User-ID is
replaced with a global User-ID. Moreover, if the information element is a reference to a
local object, it must be replaced by the actual information, e.g. a reference to a Contact-
List must be replaced by a list of global User-ID's.

Rule 3: At the PSE, each PSE-initiated transaction shall be routed / relayed from the PSE
back to its Home Domain, from which the PSE-initiated transaction is triggered (by the
user-initiated or relayed service request). The PSE-initiated transaction shall be next
relayed from the Home Domain to the destination Home Domain via the direct SSP
connection between them (e.g. Figure 7 in section 2.4.4). If two Home Domains provide
each other with the complementary PSE, the direct routing / relay is allowed from the
complementary PSE to the destination domain (e.g. Figure 6 in section 2.4.3).

An intermediate domain shall route / relay the service request to the PSE and from the
PSE based on its service agreement. A routing table is allowed in the intermediate
domain. The routing table shall be offline configured based on service agreement. If the
routing table is used in PSE, it shall override the routing Rule 3 (e.g. Figure 8 in section
2.4.5).

2.3. SSP Service Agreement and Routing

The exchange of messages between Wireless Village domains is normally performed in
one hop over an established direct SSP connection. However, Wireless Village does
support routing of messages between the Home Domain and the PSE. The SSP routing
between domains is based on the SSP IOP rules and the business agreements between the
domains. The business agreement must be established among all domains that are
involved in the handling of SSP service relays between two end points.

After the business agreements are made between the domains, each domain shall be able
to route and relay the services between the domains along the path. The routing table is
created based on the business and service agreement.

In conclusion, the SSP IOP routing is defined by offline business agreement and service
agreement that contains routing agreement and configuration. Each Wireless Village
Server (WVS) holds a static list of direct connected neighbors. The list specifies the
agreed domains that may be forwarded to one of the direct connected WVS’s.

2.4. SSP Interoperability Case Study

There are different situations in SSP interoperability. This section illustrates different
interoperability models and the transaction flows based on the IOP rules described in 2.2.

The Wireless Village initiative: SSP v1.0 WV-013

19
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

2.4.1. Case 1 – Two Users are Located in different Home Domains. Each Home
Domain has its own SE. Two Home Domains are Connected

Figure 4. The SSP IOP Case One

In the example in Figure 4, client 1 is located in home domain A, and client 2 is located
in home domain B. A’s IM PSE is located in Domain A, and B’s PSE is located in
Domain B. This is the minimal interoperability case. The transaction flow of sending a
message from client 1 to client2 is:

1. C1 -> DA: CSP-SendMessage
2. DA -> DB: SSP-SendMessage
3. DB -> C2, SSP-NewMessage (after checking block list etc.)

2.4.2. Case 2 – Two Users are Located in the same Home Domain

Figure 5. The SSP IOP Case Two

In the example in Figure 5, both client 1 and 2 are located in home domain A. The IM
PSE is located in Domain B. Domain A and B are connected via some intermediate
domains. The transaction flow of sending a message from client 1 to client2 is:

1. C1 -> DA: CSP-SendMessage
2. DA -> DB: SSP-SendMessage (through intermediate domains via routing)
3. DB -> DA, SSP-NewMessage (after checking block list etc.)
4. DA -> C2, CSP-NewMessage

If Domain A and Domain B are directly connected, there will be one SSP-SendMessage
from A to B, and one SSP-NewMessage from B to A.

User 2

User 1
Home Domain A

SAP

PSE Domain B

IMSE

SAP

Intermediate
Domains

CSP: SendMessage SSP: SendMessage

SSP: NewMessageCSP: NewMessage

User 2

User 1
Home Domain A

SAP IMSE

CSP: SendMessage

SSP: SendMessage

CSP: NewMessage

Home Domain B

SAP IMSE

The Wireless Village initiative: SSP v1.0 WV-013

20
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

If Domain A and Domain B are connected through several intermediate domains, there
will be several SSP-SendMessages from A to B, one for each hop. Each intermediate
domain will relay the SSP-SendMessage to the next hop. There will also be several SSP-
NewMessages from B to A, one for each hop. Each intermediate domain will forward the
SSP-NewMessage to the next hop.

2.4.3. Case 3 – Domain A and C have Direct SSP Connection while Domain C
Provides A with Complementary PSE

Figure 6. The SSP IOP Case Three

In the example in Figure 6, Domain A and C have direct SSP connection, and Domain C
provides A with complementary IM PSE in Domain B. The transaction flow of sending a
message from client 1 to client 2 is:

1. C1 -> DA: CSP-SendMessage
2. DA -> DC: SSP-SendMessage
3. DC -> DB: SSP-SendMessage (through intermediate domains via routing)
4. DB -> DC, SSP-NewMessage (after checking block list etc.)
5. DC -> C2, CSP-NewMessage

2.4.4. Case 4 – Two Users are Located in different Home Domains. Each Home
Domain has its complementary PSE. Two Home Domains are Connected

Figure 7. The SSP IOP Case Four

In the example in Figure 7, client 1 is located in home domain A, and client 2 is located
in home domain C. A’s IM PSE is located in Domain B, and C’s PSE is located in

User 2

User 1
Home Domain A

SAP PSE Domain B

IMSE

SAP

CSP: SendMessage SSP: SendMessage

SSP: NewMessageCSP: NewMessage

Home Domain C

SAP

SSP: SendMessage

User 2

User 1
Home Domain A

SAP

PSE Domain B

IMSE SAP
Intermediate

Domains

CSP: SendMessage

SSP: SendMessage

SSP: NewMessage

CSP: NewMessage

Home Domain C

SAP

PSE Domain D

IMSE SAP

SSP: SendMessage

SSP: SendMessage

SSP: SendMessage

The Wireless Village initiative: SSP v1.0 WV-013

21
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

Domain D. Home Domain A and Home Domain C are connected via some intermediate
domains. The transaction flow of sending a message from client 1 to client2 is:

1. C1 -> DA: CSP-SendMessage
2. DA -> DB: SSP-SendMessage (through intermediate domains via routing)
3. DB -> DA: SSP-SendMessage (through intermediate domains via routing)
4. DA -> DC: SSP-SendMessage
5. DC -> DD: SSP-SendMessage (through intermediate domains via routing)
6. DD -> DC, SSP-NewMessage (after checking block list etc.)
7. DC -> C2, CSP-NewMessage

2.4.5. Special Case Processing

The special cases include the situations that offline agreement overrides the IOP Rule 3.
The following example illustrates the processing for this type of special cases.

Two Users are Located in different Home Domains. Both Home Domains Share the same
PSE

Figure 8. The SSP IOP Special Case

In the example in Figure 8, client 1 is located in home domain A, and client 2 is located
in home domain C. Both Domain A and Domain C share the IM PSE located in Domain
B. Domain A and B are connected via some intermediate domains. Domain C and B are
connected via some intermediate domains. The transaction flow of sending a message
from client 1 to client2 is:

1. C1 -> DA: CSP-SendMessage
2. DA -> DB: SSP-SendMessage (through intermediate domains via routing)
3. DB -> DC, SSP-NewMessage (after checking block list etc.)
4. DC -> C2, CSP-NewMessage

Note that the transaction flow is based on the offline configuration in PSE Domain B,
which allows the direct relay from A to B to C without the direct SSP connection
between Home Domain A and C based on their off-line routing agreement. IOP Rule 3
does not apply to this case.

User 2

User 1
Home Domain A

SAP

PSE Domain B

IMSE

SAP

Intermediate
Domains

CSP: SendMessage SSP: SendMessage

SSP: NewMessageCSP: NewMessage

Home Domain C

SAP

The Wireless Village initiative: SSP v1.0 WV-013

22
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

If Domain A and Domain B are directly connected, there will be one SSP-SendMessage
from A to B. If Domain A and Domain B are connected through several intermediate
domains, there will be several SSP-SendMessages from A to B, one for each hop. Each
intermediate domain will relay the SSP-SendMessage to the next hop.

If Domain C and Domain B are directly connected, there will be one SSP-NewMessage
from B to C. If Domain C and Domain B are connected through several intermediate
domains, there will be several SSP-NewMessages from B to C, one for each hop. Each
intermediate domain will forward the SSP-NewMessage to the next hop.

2.5. SSP Protocol Stack

The SSP protocol stack is divided into three layers as follows.

Figure 9. The SSP Protocol Stack

SSP Semantics Layer defines the complete set of features and functions that SSP intends
to address in the full interoperability model among the WV domains. The nature of the
features and functions, i.e. mandatory or optional or conditional, is also defined in the
SSP Semantics Layer. The details of the features and functions are described in the
transactions, primitives and information elements in the SSP Semantics Layer.

SSP Syntax Layer defines the “communication language” for the WV SAP’s to
understand the information between each other and accomplish the interoperability of the
features and functions defined in SSP Semantics Layer. SSP Syntax Layer v1.0 is the set
of XML DTD specification.

SSP Transport Layer defines the “communication method” that conveys the
“communication language” between the WV SAP’s to achieve the interoperability. SSP
Transport Layer v1.0 is HTTP.

This document describes the SSP Semantics Layer.

The term “Server” in this document represents the logical server cluster in one service
provider domain. The term “Server” is interpreted as the single access point of the
domain, which may be physically a Local Director, or a Proxy, or a Routing Proxy, or
anything else that represents the domain. The term “Server” is not interpreted as any
physical server entity of the deployment within the domain.

SSP Semantics Layer – Features and Functions

SSP Syntax Layer – XML DTD

SSP Transport Layer – HTTP

The Wireless Village initiative: SSP v1.0 WV-013

23
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

3. Protocol Introduction

SSP is based on the architecture model described in the “System Architecture Model”
document [WVARCH] and focuses on the communication and interaction among the
WV domains. The semantics of SSP is consistent with the functional description of the
Service Access Point (SAP) in the architecture model. The semantics of SSP implements
the server interoperability described in the “Features and Functions” document
[WVFEAT]. The semantics of SSP supports the semantics of Client to Server Protocol
(CSP) [WVCSPS] in a distributed environment to achieve full interoperability.

3.1. Basics

3.1.1. Session

The server interoperability is accomplished in the frame of two SSP sessions. An SSP
session is the period during which the servers conduct interactions and interoperations for
the Service Provider to provide the Service Requestor with the negotiated IMPS services.

Each Provider Server maintains one session for each Requestor Server. There are two
sessions between two domains. Each server maintains one session to provide the other
with its own negotiated IMPS services.

3.1.2. Transaction

The SSP semantics are accomplished by “transactions”. An SSP transaction is the
sequence of interactions to complete a specific SSP feature or function. The SSP
transactions include one-way transactions, two-way transactions, and multi-way
transactions. A one-way transaction consists of a service request. A two-way transaction
consists of a service request and a service response. A multi-way transaction consists of a
sequence of service requests and responses.

3.1.3. Message

Both service requests and service responses are called SSP “messages”. An SSP message
is the syntax unit in one interaction.

An SSP message must contain some meta-information including the protocol information
(e.g. version), the session information (e.g. Session-ID), the transaction information (e.g.
Transaction-ID) and the attribute information (e.g. one-way / two-way, request /
response). The “response” message in a two-way transaction must contain the same
Transaction-ID as the corresponding “request” message. All transactions during one
session must contain the same Session-ID.

3.1.4. Primitive

Each SSP message includes one or more SSP “primitives” with appropriate parameters.
An SSP primitive is the semantics unit in one message.

The Wireless Village initiative: SSP v1.0 WV-013

24
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

Each service request message contains one functional primitive. Each service response
message includes a status primitive as well as the optional, one or more SSP primitive(s).

3.2. Session Pair vs Connections

There are two sessions between two domains. Each domain maintains one session to
provide the other with its own negotiated IMPS services. The two sessions are established
through session establishment.

There are at least two physical connections, namely the connection pair, to carry the
service traffic of the session pair. The servers may establish more than one connection
pairs to support the same session pair.

The physical connection carries the service requests from the Requestor server to the
Provider Server in one direction, and / or the notifications from the Provider Server to the
Requestor Server in the other direction.

Connections are reusable. Each session may use some or all of the connections to
transport its transactions. Each connection may be used by only one session, or reused by
both sessions.

An SSP transaction (request and response) must be completed using the same connection
pair.

Please refer to the SSP Transport Binding Document [WVSSPT] about how the
connection (pair) is bound to the underlying transport.

3.3. Addressing

SSP addressing schema uses the uniform Wireless Village addressing model in a unique
Wireless Village address space. SSP addressing schema is consistent with that in CSP.

The definition of SSP address is based on the URI [RFC 2396]. The addressable entities
are:

• User
• Contact List
• Group (public and private)
• Content (public and private)
• Message
• Service (SSP unique)

The other address spaces may be used to interoperate with other systems. But it is up to
the implementation and out of scope of Wireless Village.

The Wireless Village initiative: SSP v1.0 WV-013

25
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

3.3.1. General SSP Addressing Schema

The general SSP addressing schema is based on URI [RFC 2396]. The “wv” schema in
the URI indicates the Wireless Village address space. The generic syntax is defined as
follows:

WV-Address = Service-ID | Message-ID | Other-Address
Other-Address = “wv:” [User-ID] [“/” Resource] “@” Domain
Global-User-ID = User-ID “@” Domain
Resource = Group-ID | Contact-List-ID | Content-ID
Domain = sub-domain *(“.” sub-domain)

where User-ID refers to the identification of the Wireless Village user inside the domain.
Domain is a set of the Wireless Village entities that have the same “Domain” part in their
Wireless Village addresses. Domain identifies the point of the Wireless Village server
domain to which the IMPS service requests must be delivered if the requests refer to this
domain. Resource further identifies the public or private resource within the domain. The
sub-domain is defined in [RFC822]. The Service-ID is globally unique to identify a
Server (either a WV server or a Proprietary Gateway), which is defined in section 3.3.7.

According to the URI specification [RFC2396], the “/” is a reserved character. So it
cannot be used as a separator between User-ID and Resource address without encoding. It
has to be substituted by the escaped octet encoded as a character triplet consisting of the
percent character “%” followed by the two hexadecimal digits (2F) representing ACSII
code of the slash character “/”.

When the Global-User-ID is present without the Resource, the address refers to the user.
In SSP, the user is always identified in the global scope.

When the Global-User-ID is present with Resource, the address refers to the private
resource of the user. When the User-ID is not present, the Domain and the Resource must
always be present, and then the address refers to a public resource within the domain.

The domain must always be present in SSP addressing to globally identify the user or
resources, and used for address resolution of those network entities.

The addresses are case insensitive.

3.3.2. User Addressing and Global-User-ID

SSP uses User-ID’s to uniquely identify a WV User. The User-ID either refers to the
Internet-type address or to a mobile number of the user. If it refers to the mobile number
of the user, the user name always starts either with digit or with '+' sign. User name
referring to Internet-type address may not start with '+' sign or digit.

The syntax of the User-ID is defined as follows:

The Wireless Village initiative: SSP v1.0 WV-013

26
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

User-ID = Mobile-Identity | Internet-Identity
Internet-Identity = *alpha
Mobile-Identity = (digit | "+") *digit
digit = "0" | "1" | "2" |"3" |"4" |"5" |"6" |"7" |"8" | "9"
alpha = Any ISO 8859-1 character except specials
specials = "/" | "@" | "+" | " " | TAB

When the User-ID refers to the mobile number address, the User-ID preceded with ‘+’
sign refers to the international numbering in The International Public Telecommunication
Numbering Plan [E.164]. Without ‘+’ sign, it refers to the national numbering in the
[E.164].

Examples of the User-ID’s are:

Local-User-ID: wv:Jon.Smith
wv:+358503655121
wv:0503655121

Global-User-ID: wv:Jon.Smith@imps.com
wv:+358503655121@imps.com
wv:0503655121@imps.com

SSP always uses Global-User-ID to identify the users.

The users may also be identified by screen names, nicknames and aliases. These
identifiers explicitly and implicitly refer to the User-ID.

ScreenName – the combination of a name a user chooses in a group session, and the
Group-ID itself. The user may have different ScreenNames on different occasions as well
as on different groups. The ScreenName is always connected to a group.

NickName – A name that is used internally in a client to hide the UserID of contacts.
When ContactList is stored on the server, the NickName must have a space, but it is not
possible to address a NickName.

Alias – The name a user suggest others to use as NickName. Part of the User Presence.

The definition of User-ID in SSP is consistent with that in CSP.

3.3.3. Contact List Addressing and Contact-List-ID

SSP uses Contact-List-ID’s to uniquely identify any contact list of any user. The syntax
of Contact-List-ID is defined as follows:

Contact-List-ID = *alpha

Examples of the contact list address with Contact-List-ID are:

The Wireless Village initiative: SSP v1.0 WV-013

27
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

wv:john%2Fcolleagues@imps.com
wv:%2Fmanagers@imps.com

SSP always identifies the contact list globally.

The definition of Contact-List-ID in SSP is consistent with that in CSP.

3.3.4. Group Addressing and Group-ID

SSP uses Group-ID’s to uniquely identify any group. The syntax of the Group-ID is
defined as follows:

Group-ID = *alpha

Examples of the group address with Group-ID are:

wv:john%2Fmygroup@imps.com
wv:%2Ftechnical_forum@imps.com

SSP always identifies the group globally.

The definition of Group-ID in SSP is consistent with that in CSP.

3.3.5. Content Addressing and Content-ID

SSP uses Content-ID’s to uniquely identify any content. The syntax of the Content-ID is
defined as follows:

Content-ID = *alpha

Examples of the content address with the Content-ID are:

wv:john%2FWV_presentation@imps.com
wv:%2Fwvspec@imps.com

SSP always identifies the content globally.

The definition of Content-ID in SSP is consistent with that in CSP.

3.3.6. Client Addressing and Client-ID

The Client-ID uniquely identifies the WV client as an application as well as its
addressing that allows the access to the WV services. The client-ID is aimed to allow:

• Multiple accesses from the same user
• Direct application-to-application communication

The Wireless Village initiative: SSP v1.0 WV-013

28
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

The Client-ID consists of

• Optional application identifier such as a URL identifying the application and its
addressing,

• Optional mobile device identity (such as international mobile number [E.164]).

The definition of Client-ID in SSP is consistent with that in CSP.

3.3.7. Service Addressing and Service-ID

The Service-ID in SSP is equivalent in the semantic role to the User-ID in CSP. The
Service-ID in SSP uniquely identifies a Server. The syntax of Service-ID is defined as
follows.

Service-ID = “wv:”@ Domain

Domain is a set of the WV entities that have the same Domain part in their WV
addresses. The Domain is associated with one WV server (the unique access point) to
which the IMPS service requests must be delivered if the addressed network entities refer
to this Domain.

The Service-ID is used in the session establishment (refer to section 6.1.1, 6.2.2 and
6.3.1) and other SSP management functions.

The Service-ID is used as part of the meta-information in the SSP transactions (refer to
section 5.1).

An examples of the Service-ID is:

Service-ID: wv:imps.com

3.3.8. Message and Message-ID

The Message-ID in SSP is globally unique to identify a message. The syntax of Message-
ID is defined as follows.

Message-ID = Local-Message-ID “@” Domain

Where the “Local-Message-ID” uniquely identifies a message within the IMSE domain,
and subject to the implementation.

An example of the Message-ID is: 12345678@imps.com.

The definition of Message-ID in SSP is consistent with that in CSP.

The Wireless Village initiative: SSP v1.0 WV-013

29
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

3.4. Data Types

SSP defines four basic data types, namely “Char”, “Integer”, “String” and “Boolean”,
and three structured date types namely “Enum”, “DateTime” and “Structure”.

An information element is “String” type by default unless specified.

3.4.1. Char

A “Char” type element is a single character encoded in UTF-8.

3.4.2. Integer

An “Integer” type element is a 32-bit decimal number ranging in [0, 232 - 1].

3.4.3. String

A “String” type element is a sequence of “Char” elements.

3.4.4. Boolean

A “Boolean” type element is either “True” or “False”.

3.4.5. Enum

An “Enum” type element is one of the pre-defined set of values.

3.4.6. DateTime

A “DateTime” type element follows the ISO-8601 specification and is expressed as a
“String” type element. The date and time format shall be complete date and time using
the basic format. There shall be no time-zone indication, but the time may indicate if the
time is Coordinated Universal Time (UTC) or local time. The examples are:

Local time: 20011019T125031

UTC: 20011019T095031Z

3.4.7. Structure

A “Structure” type element is the combination of other types of elements as specified.

3.5. Infrastructure Elements

Infrastructure elements are required in the end-to-end solution of server interoperability.
Infrastructure elements may not be carried within information elements in SSP protocol.
However, the implementation shall be able to support the infrastructure elements to
ensure the server interoperability.

The Wireless Village initiative: SSP v1.0 WV-013

30
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

3.5.1. Host-ID

The Host-ID is the primary (Master) host address of the SAP of the WV server or
Proprietary Gateway. The Host-ID must be used for the session establishment with this
WV server or Proprietary Gateway.

The Host-ID is referenced in the form of DNS host name. The Host-ID may be stored
inside the environment for DNS A RR host address resolution, or may be retrieved from
the Service-ID by the DNS SRV RR based address resolution.

The Host-ID cannot be changed during a session.

The example of Host-ID is: host1.imps.com

3.5.2. Redirect (Host) Name

When the WV server in a domain can be accessed through several SAP’s distributed in
different physical hosts, this WV server may provide a list of those hosts for the other
WV server to share the load at the session establishment. This list is called Redirect List
and contains the redirect host DNS names. A Redirect (Host) Name in SSP uniquely
identifies a physical host in the WV Server or a Proprietary Gateway domain.

The Redirect (Host) Names may be configured statically based on offline agreement
between two domains. The Redirect (Host) Addresses may be notified dynamically
during session establishment over Master Connection Pair (6.1.1).

The example of a Redirect (Host) Address is: host2.serviceprovider.com.

3.6. Features and Functions

SSP supports the server interoperability features and functions defined and described in
features and functions document.

3.6.1. Security

The scope of security in the server interoperability is the server-to-server communication
at the IMPS application level, i.e. to ensure that the data sent and/or received on behalf of
an End User in a given IMPS domain is actually originating from and/or terminating to
the server in that domain.

SSP supports the security requirement in the server interoperability through the
CALLBACK connection establishment and access control across session management
and transaction management. Please refer to section 6.1.1 for details of CALLBACK
connection establishment.

The Wireless Village initiative: SSP v1.0 WV-013

31
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

SSP supports the security requirement in the server interoperability through the
underlying transport layer whenever possible.

The individual domain security enhances the overall security level in the server
interoperability.

3.6.2. Connection Management

SSP connection management ensures the authenticated connections to transport SSP
transactions during SSP sessions. Connection management includes connection
establishment, connection termination and connection maintenance.

SSP supports CALLBACK connection establishment.

SSP supports the implicit connection termination and connection maintenance through
session management. SSP session maintenance covers connection maintenance, and SSP
session termination covers connection termination. Connection termination causes the
session termination if no more connection exists.

3.6.3. Transaction Management

The transaction management defines the necessary common information elements in the
service requests and service responses at transaction level, regulates the behavior in the
transaction flows, and handles the exception and error conditions at transaction level.

3.6.4. Session Management

SSP supports the authentication among the WV SAP’s. The WV SAP’s must authenticate
each other before they can provide each other with the IMPS services.

SSP supports the authorization and access control among the WV SAP’s so that the
servers and the gateways are allowed to access the IMPS services provided by each other.

SSP session management includes session establishment, session termination and session
maintenance. The CALLBACK connection establishment shall be used in the session
establishment. The access control is supported in the whole session management.

3.6.5. Service Management

SSP supports service discovery among the WV domains. The services include Common
Services, Presence Service, Instant Messaging (IM) Service, Group Service and Shared
Content Service that are defined in “Features and Functions” document. However, those
services are discovered in the element level rather than the protocol level. SSP only
provides a protocol method and facilitates the message exchange to support the service
discovery.

The Wireless Village initiative: SSP v1.0 WV-013

32
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

SSP supports the service negotiation and agreement among the WV domains. The service
agreement may be made either online or offline. The service agreement must be made
before they can provide each other with the IMPS services.

3.6.6. User Profile Management

SSP supports the exchange of user profile information among the WV domains including
the list of services to which a user subscribes, the service status (active / inactive),
privacy status with regard to network service capabilities (e.g. user location, user
interaction), terminal capabilities, the user account status etc.

User Profile Management features can support various functions based on the exchange
of user profile information.

3.6.7. Service Relay

SSP supports the service relay among the WV domains including the functional relay of
the common IMPS features, presence features, IM features, group features and shared
content features that are defined in “Features and Functions” document. The goal of SSP
is to support the distributed interoperable complementary IMPS services across service
provider domains.

Because of the server interoperation nature, the SSP has its own requirement on meta-
information and information elements in the primitives at transaction level. The complete
primitives and transaction flows at SSP semantics level has been defined in the following
sections including functional relay services.

Please refer to the CSP document so as to conclude how to relay the complete IMPS
features from client-server interaction (CSP) to server-server interoperation (SSP).

The Wireless Village initiative: SSP v1.0 WV-013

33
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

4. Security

The scope of security in the server interoperability is the server-to-server communication
at the IMPS application level, i.e. to ensure that the data sent and/or received on behalf of
an End User in a given IMPS domain is actually originating from and/or terminating to
the servers in that domain.

4.1. Trust Models

A TRUST model is assumed between the WV SAP and the Service Elements within a
single IMPS domain.

A TRUST model is assumed for the network infrastructure such as DNS.

The TRUST model is mutual, i.e. A trusts B if and only if B trusts A.

The TRUST model is created between domain A and domain B if and only if they have
been authenticated and authorized by each other. A TRUST model must be created
between two domains before they can provide each other with interoperable
complementary IMPS services.

4.2. Access Control

The authentication and authorization between the servers in different domains are
accomplished by the access control at each server. The scope of access control covers
online session management, transaction management and offline configuration
agreement.

The online session management includes the initial CALLBACK connection
establishment, authentication and authorization to start a session, session maintenance
and session termination.

The transaction management supports the access control by the transaction authentication
based on the information elements specified in each service request and service response.

The offline configuration agreement includes, but not limited to, server identity
registration, Host-ID, account creation, password protection, configurable parameters,
SAP Service Routing Table, etc. through provisioning and / or administration interface.

4.3. Transport Security

The security requirement in the transport layer and other underlying layers, such as data
integrity and confidentiality, is out of the scope of SSP. However, whenever possible,
current security approach including SSL / TLS, PGP, PKI, digital certificates, etc. in the
underlying transport layer should be used to ensure the secure transmission in the

The Wireless Village initiative: SSP v1.0 WV-013

34
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

underlying layers to prevent from out-of-scope security issues. The deployed security
technology is negotiated between the service providers through the offline configuration
agreement.

4.4. Individual Domain Security

The security of individual domain enhances the inter-domain security. A single IMPS
domain is encouraged to use firewalls or other precautions to ensure the highest possible
level of security.

The Wireless Village initiative: SSP v1.0 WV-013

35
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

5. Transaction Management

The transaction management defines the necessary common information elements in the
service requests and service responses at transaction level, regulates the behaviour in the
transaction flows, and handles the exception and error conditions at transaction level.

5.1. Meta-Information

The SSP service requests must contain the meta-information as defined in table 1.

Information
Element

Req Type Description

Client-Originated M Boolean Indicates whether the request is originated from
the client (“True”) or from the service element
(“False”).

Session-ID M String Identifies the session managed by the Provider
Server.

Transaction-ID M String Identifies the transaction originated from the
transaction initiator (either requestor server, or
provider server).

Service-ID M String Identifies the initiator domain (and the service
element if needed).

User-ID C String Identifies the user represented by the requestor
server domain. It is present if the request is
originated from a client.

Client-ID O String Identifies the Client-ID of the user. It optionally
present if the request is originated from a client.

Table 1. Information elements in Meta-information primitive

The Session-ID is unique for each session at the Provider Server.

The Transaction-ID is unique for each transaction originated from the server that initiates
the transaction.

An SSP service response in a two-way transaction must contain the same Session-ID and
the Transaction-ID as those in the service request.

Some implementation notes are as follows.

1) The SAP at the service provider server should maintain a Session Record for each
service requestor.

2) The SAP at the service requestor should maintain a Transaction Record for each
service provider.

The Wireless Village initiative: SSP v1.0 WV-013

36
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

3) The SAP at each server should maintain a Transaction Table to map each requested
transaction from its Service Requestor to the initiated transaction to its Service
Provider. The Transaction Table should be the uniquely one-one match. Therefore,
the Service Relay flow and Result Forward flow at each hop is clearly and uniquely
identified by the transaction flows.

5.2. Status Primitive

The status primitive in the service response is defined as follows in table 2.

Information
Element

Req Type Description

Session-ID M String Identifies the session. It should be consistent
with the Session-ID in the Meta-Information
in the request.

Transaction-ID M String Identified the transaction. It should be
consistent with the Transaction-ID in the
Meta-Information in the request.

Status code M String Status code of the processing result.
Status description O String Textual description of the status.
Table 2. Information elements in Status primitive

5.3. Asynchronous Transaction

The server shall support asynchronous transactions.

5.4. General Exception Handling

In two-way transactions, after a transaction is initiated, the originating server is expecting
the response from the processing server. In multi-way transactions, after a transaction is
initiated, one server is expecting the response from the other server.

Whenever error happens, the processing server shall handle the exception based on its
own policy. In addition, the processing server shall inform the other server involved in
this transaction of such exception by sending the Status primitive with appropriate Status
Code and optional Status Description.

5.5. Invalid Transaction

A transaction is considered “valid” if the transaction completes within a reasonable
period. The transaction validity time is the sum of the network latency, transaction
processing time and an adjustable offset. Those three elements must be configurable at
each service domain by the operator. Each operator shall define and configure the
reasonable value of the three elements based on the network, hardware and software
capacity to ensure the quality and performance of the service as well as the security.

The Wireless Village initiative: SSP v1.0 WV-013

37
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

A transaction is considered “invalid” if the transaction cannot complete within the
validity time.

If an invalid transaction occurs, the service requestor shall not receive a response from
the provider domain. The service requestor shall repeat the transaction for reasonable
times until the transaction completes or the repeat times expire. If the transaction
completes, the session shall go on for the future transactions. If the repeat times expire,
the session shall be terminated by the requestor for security reason. In addition, the
requestor-maintained session, which provides the other side with its own service, shall be
terminated too.

The repeat times must be configurable at each service domain by the operator. Each
operator shall define and configure a reasonable value of repeat times to ensure the
quality and performance of the service as well as the security. The repeat times may be
zero (0) if the security is the major concern.

5.6. Unknown Transaction

A transaction is considered “unknown” if (1) the request message has syntactic error (e.g.
not XML well-formed, XML invalid, data value error); or (2) any of the information
elements of the Meta-Information is invalid; or (3) the service request refers to a service
which doesn't corresponds to the service agreement between the service requester and
provider; or (4) the service response cannot be associated with the original service
request.

If an unknown transaction happens in a service request, the provider domain shall return
a status code indicating an “Unknown Transaction” error. If the unknown transaction
happens frequently, the provider domain shall terminate the session as well as the session
maintained by the requestor for security reason.

The definition of “Unknown Transaction Frequency” is up to the server implementation.
However, the value of “Unknown Transaction Frequency” must be configurable at each
service domain by the operator. Each operator shall define and configure a reasonable
value of “Unknown Transaction Frequency” to ensure the quality and performance of the
service as well as the security. The server may terminate the sessions immediately after
an unknown transaction happens if the security is the major concern.

If an unknown transaction happens in a service response, the requestor shall perform the
same behavior as that in handling “invalid transaction”.

5.7. General Status Code

All SSP transactions may be return the following status codes

• Continue (100) – for all complementary transactions
• Queued (101) – for all complementary transactions

The Wireless Village initiative: SSP v1.0 WV-013

38
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

• Started (102) – for all complementary transactions
• Server queued (104)
• Bad Request (400)
• Service not supported (405) – for all complementary transactions
• Service Unavailable (503)
• Invalid Timeout (504)
• Service not agreed (506) – except transactions required for the service agreement
• Internal Server Error (500)
• Unknown transaction (536)
• Invalid server session (620) – except transactions allowed outside of a session

The Wireless Village initiative: SSP v1.0 WV-013

39
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

6. Session Management

SSP session management includes session establishment, session termination and session
maintenance. The CALLBACK connection establishment is used in the session
establishment. The access control is supported in the whole session management.

6.1. Access Control

6.1.1. Session Establishment

The session is established through the connection establishment, and initial authentication
and authorization between the servers in different domains.

The CALLBACK connection establishment is used in the session establishment. The
basic session establishment with the CALLBACK connection works as follows.

Prerequisites:

q A-Host-ID represents the unique access point to domain A.
q B-Host-ID represents the unique access point to domain B.
q Offline configuration agreement has been established between Server A and Server B.
q In Server A, Server B’s identity is registered with at least { B-Host-ID, B-Service-ID, B-

password } tuple
q In Server B, Server A’s identity is registered with at least { A-Host-ID, A-Service-ID, A-

password } tuple
q Both servers has registered and supported a common digest schema such as MD5 or SHA.

The basic steps are:

1. Server A originates a connection 1 to Server B based on its own registration record about
Server B, containing { A-Service-ID, A-secret-token} tuple.

2. Server B looks for { A-Service-ID} in its own registration record. If it is not found, Server B
closes the connection.

3. Server B initiates connection 2 to the Server A containing { B-Service-ID, B-secret-token }.
4. Server A looks for { B-Service-ID } in its own registration record. If it is not found, Server A

closes the connection.
5. Server A sends the LoginRequest to Server B through connection 1, containing { A Service-

ID, A-password-digest }. The “A-password-digest” is generated with A-password and B-
secret-token based on the common digest schema in the registration record.

6. Server B sends the LoginRequest to Server A through connection 2, containing { B-Service-
ID, B-password-digest }. The “B-password-digest” is generated with B-password and A-
secret-token based on the common digest schema in the registration record.

7. Server B verifies the A-password-digest. If the verification fails, it closes the connection.
8. Server B responses to Server A with the LoginResponse through connection 2, containing

the status of the transaction and the new session information maintained by Server B. The
LoginResponse may contain an optional list of Redirect (Host) Names. This is also called the
Redirect List.

9. Server A verifies the B-password-digest. If the verification fails, it closes the connection.
10. Server A responses to Server B with the LoginResponse through connection 1, containing

the status of the transaction and the new session information maintained by Server A. The

The Wireless Village initiative: SSP v1.0 WV-013

40
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

LoginResponse may contain an optional list of Redirect (Host) Names. This is also called the
Redirect List.

The secret-token is a random string generated by the connection originator at each server.

After step 10 succeeds, two domains are authenticated with each other. The session pair
between Server A and Server B are established with trust over two connections, i.e. the
connection pair. The connection pair (1 and 2) between A-Host-ID and B-Host-ID is
called “Master Connection Pair”.

The “Redirect List” reflects the server’s desire and capability to handle the redirect. If the
server does not include the “Redirect List” in its LoginResponse, the server does not
support the redirect, and the server intends to use the “Master Connection Pair” to
support the session. In this case, the other server shall not try the connection pair
establishment unless a new redirect process takes place. Therefore, even if the server
does not have its own “Redirect List”, but if the server supports the redirect of the other
server, it MUST provide a “Redirect” List in the LoginResponse. In this case, the
“Redirect List” contains its original Host-ID only.

If the “Redirect List” is included in both of the LoginResponses, i.e. in both Step 8 and
Step 10, the redirect takes place. Otherwise the Master Connection Pair (1 and 2) shall be
used to support the session.

If the “Redirect List” is included in the LoginResponse in Step 8 and Step 10, both of the
domains want to use the new “Redirect List” as the physical connections to support the
session. The connection pair(s) shall be handed over to the actual physical nodes, and the
Master Connection Pair (1 and 2) shall be disconnected. If there are more than one
Redirect (Host) Names in either of the “Redirect List”, a mesh of redirect connection
pairs shall be initiated to support the session pair.

After session establishment, there may be an optional online service negotiation and
service agreement depending on the offline agreement between two domains. If the
online service negotiation and service agreement is needed, it shall be the first
transactions in the session pair.

Two servers will provide each other with the IMPS services after the authorization (i.e.
online service negotiation and service agreement) if needed, or right after the session
establishment otherwise.

There are at least two connections, the connection pair, to carry the session pair. The
servers may establish more than one connection pairs to support the same session pair.
The redirect connection pair between two redirect physical hosts in two domains is
established through the same steps except that the redirect connection pair shall be bound
to the existing session pair between two domains. The “Redirect List” in Step 8 and Step
10 of session establishment may have set up a mesh of more than one redirect connection
pairs. Within the session, if additional (mesh of) redirect connection pair(s) is needed, the
same Session Establishment steps with the “Redirect List” in Step 8 and Step 10 shall be

The Wireless Village initiative: SSP v1.0 WV-013

41
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

repeated except that the Master Connection Pair shall be bound to the existing session
pair and no new session shall be created. The “Redirect List” shall initiate the
establishment of a new mesh of redirect connection pairs. Note that the “Redirect List” is
only allowed over Master Connection Pair. Also note that no new session shall be
established when setting up redirect connection pairs. There is always one session pair
between two domains no matter how many redirect connection pairs are created. In case
of creating redirect connection pairs, it is not allowed to make online service negotiation
and service agreement.

Connections are reusable. Each session may use some or all of the connections to
transport its transactions. Each connection may be used by only one session, or reused by
both sessions. In the simplest case, one possible situation is that Connection 1 will be
used for the service session provided and managed by Server B, and connection 2 will be
used for the service session provided and managed by Server A.

SSP Transport Binding document [WVSSPT] shall define how to bind session pair to
reusable connections by the underlying transport.

6.1.2. Session Maintenance

Server A and Server B shall maintain the session and keep the session alive by
exchanging the live traffic if needed during the session. The initial interval is negotiated
during session establishment. The interval may be adjusted by negotiating a new interval
when exchanging the live traffic.

The session maintenance may be required periodically in case that an intermediary (e.g.
proxy) may break the connection, which results in terminating the session, if there is no
data traffic for a reasonable time period. The session maintenance may also be required
periodically in case that the server policy requires the termination of the session if there is
no transaction activity for a reasonable time period. If session maintenance is required for
one session, it is usually also required for the other session.

The interval must be configurable at each service domain by the operator. The operators
shall define and configure a reasonable value of “interval” to ensure the quality and
performance of the service as well as the security. The interval configuration must be
adjustable on-the-fly.

The session maintenance shall be performed over all of the connections used by this
session, thus covers the connection maintenance.

6.1.3. Session Termination

The session shall be able to be terminated by either Server A or Server B at any time.
Both of the sessions managed by Server A and Server B must be terminated to ensure the
security.

The Wireless Village initiative: SSP v1.0 WV-013

42
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

A session may be terminated normally. For example, the service agreement expires, or
the session expires. If any of the service agreements expires, or any of the session
expires, both of the sessions are terminated.

A session may be terminated abnormally. For example, an invalid session occurs, or the
connection (due to the underlying transport) breaks. If all of the connections of one
session break, both of the sessions are terminated. However, even if some connections are
terminated due to load balancing or other reason, as long as there is at least one
connection for each session, the session pair SHALL NOT be terminated.

The session termination covers and implies the connection termination. Whenever the
session is terminated, all of the connections used by this session shall be terminated as
well.

6.1.4. Session Re-establishment

If the sessions are terminated, two servers may re-establish the session based on their
offline service agreement. The session re-establishment means creating a new session
pair, and follows the same steps in the session establishment.

6.2. Primitives

6.2.1. The "SendSecretToken" Primitive

The "SendSecretToken" primitive is issued by the requestor server to send the secret
token for the provider server as the first step of the CALLBACK connection
establishment.

Information Element Req Type Description
Message-Type M SendSecretToken Message identifier
Transaction-ID M String Identifies the transaction

originated from the initiating
provider server.

Service-ID M String Identifies the requestor server.
Protocol M “WV-SSP” SSP protocol.
Protocol-Version M “1.0” SSP protocol version.
SecretToken M String Secret token originated by the

requestor.
Table 3. Information elements in SendSecretToken Primitive

6.2.2. The “LoginRequest” Primitive

The “LoginRequest“ primitive is issued from the requestor server to create a new session
or a new connection pair inside the existing session with the provider server. The
“LoginRequest“ primitive specifies initial status of the requestor server. The
“LoginRequest“ primitive MAY also contain the “time-to-live“ attribute, which specifies

The Wireless Village initiative: SSP v1.0 WV-013

43
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

the time that the session or the connection will expire. If “time-to-live” attribute is
omitted, the requestor server requests an infinite session or connection until service
agreement expires.

Information Element Req Type Description
Message-Type M LoginRequest Message identifier
Session-ID C String Identifies the session. It is present

when creating additional redirect
connection pairs within the existing
session.

Transaction-ID M String Identifies the transaction. It should be
consistent with the Transaction-ID in
the SendSecretToken originated from
the provider server.

Service-ID M String Identifies the requestor server.
Password-Digest M String The password digest generated with

password and secret token based on a
common digest schema (MD5 or
SHA).

Time-To-Live O Integer in
Seconds

Interval for a valid session or
connection before expired. If omitted,
the requestor server requests an
infinite session or connection.

Table 4. Information elements in LoginRequest Primitive

6.2.3. The “LoginResponse” Primitive

The “LoginResponse” primitive is issued from the provider server to accept the session
creation or connection pair creation with the requestor server. In the response, the
provider server MAY specify the “time-to-live” of the current session. This “time-to-live”
may be different from that in the “LoginRequest” from the requestor server.

Information
Element

Req Type Description

Message-Type M LoginResponse Message identifier
Status-Info M Structure of

Status-Primitive
The necessary status information in a
service response defined in 5.2.

Time-To-Live O Integer in
Seconds

Interval for a valid session or
connection before expired. This time
may be any value other than zero.

List-of-Hosts O Structure “Redirect” list, which indicates the
actual connection addresses in its own
domain.

Table 5. Information elements in LoginResponse Primitive

The Wireless Village initiative: SSP v1.0 WV-013

44
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

6.2.4. The “LogoutRequest” Primitive

The “LogoutRequest“ primitive is used for the requestor server to close the session with
the provider server.

Information Element Req Type Description
Message-Type M LogoutRequest Message identifier
Session-ID M String Identifies the session.
Transaction-ID M String Identifies the transaction.
Table 6. Information elements in LogoutRequest

6.2.5. The “Disconnect” Primitive

The “Disconnect” primitive is used for the provider server to indicate that it accepts the
“LogoutRequest” from the requestor server and closes the session.

If the provider server does not receive any session maintenance update within the time-
to-live interval (see “KeepAlive“ primitive) from requestor server, the provider server will
also close this session by sending the “Disconnect“ message to the requestor server.

Information
Element

Req Type Description

Message-Type M Disconnect Message identifier
Session-ID C String Identifies the session. Present if the

provider server initiates the Disconnect.
Transaction-ID C String Identifies the transaction. Present if the

provider server initiates the Disconnect.
Status-Info C Structure of

Status-Primitive
The status information (see 5.2). Present
if the requestor server Logout.

Table 7. Information Elements in Disconnect Primitive

6.2.6. The “KeepAliveRequest” Primitive

The “KeepAliveRequest“ primitive is used for the requestor server to maintain the session
and update the time-to-live interval with the provider server. The session maintenance
shall be performed over all of the connections used by this session, thus implies and
covers the connection maintenance for each connection. The TTL may have different
value for different connection.

Information Element Req Type Description
Message-Type M KeepAliveRequest Message identifier
Session-ID M String Identifies the session.
Transaction-ID M String Identifies the transaction.
Time-to-live O Integer in Seconds Indicates the time-to-live of the

session over this connection.
Table 8. Information Elements in KeepAliveRequest Primitive

The Wireless Village initiative: SSP v1.0 WV-013

45
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

6.2.7. The “KeepAliveResponse” Primitive

The “KeepAliveResponse“ primitive is used for the provider server to maintain the
session and update the time-to-live interval with the requestor server. The session
maintenance shall be performed over all of the connections used by this session, thus
implies and covers the connection maintenance for each connection. The TTL may have
different value for different connection.

Information
Element

Req Type Description

Message-Type M KeepAliveResponse Message identifier
Status-Info M Structure of Status-

Primitive
The status information (see 5.2).

Time-to-live O Integer in Seconds Indicates the time-to-live of the
session over this connection.

Table 9. Information Elements in KeepAliveResponse Primitive

6.3. Transactions

6.3.1. The “Login” Transaction

Step 1: A sends A's SendSecretToken in Connection 1

Server A Server B

Step 3: B sends B's SendSecretToken in Connection 2

Step 5: A sends A's LoginRequest in Connection 1

Step 6: B sends B's LoginRequest in Connection 2

Step 8: B sends A's LoginResponse in Connection 2

Step 10: A sends B's LoginResponse in Connection 1

Figure 10. The “Login” Transaction

Session establishment and additional redirect connection establishment are achieved
through “Login” transaction.

The Server A performs Step 1 and sends A’s “SendSecretToken” to Server B through
Connection 1. After the Server B performs Step 2, the Server B performs Step 3 and
sends B’s “SendSecretToken” to Server A through Connection 2. After the Server A
performs Step 4, the Server A performs Step 5 and sends A’s “LoginRequest” to Server B
through Connection 1. The Server B performs Step 6 and sends B's "LoginRequest" to
Server A through Connection 2. Finally, the Server B performs Steps 7 & 8, and replies

The Wireless Village initiative: SSP v1.0 WV-013

46
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

with A’s “LoginResponse” to Server A through Connection 2, and A performs Steps 9 &
10 and replies with B’s “LoginResponse” to Server B through Connection 1.

Step 1, Step 6 and Step 10 shares the same Transaction-ID that is generated by Server A
in step 1.

Step 3, Step 5 and Step 8 shares the same Transaction-ID that is generated by Server B in
step 3.

After step 10 succeeds, two domains are authenticated with each other. The session pair
between Server A and Server B are established with trust over two connections, i.e. the
connection pair. The connection pair (1 and 2) between A-Host-ID and B-Host-ID is
called “Master Connection Pair”.

The “Redirect List” reflects the server’s desire and capability to handle the redirect. If the
server does not include the “Redirect List” in its LoginResponse, the server does not
support the redirect, and the server intends to use the “Master Connection Pair” to
support the session. In this case, the other server shall not try the connection pair
establishment unless a new redirect process takes place. Therefore, even if the server
does not have its own “Redirect List”, but if the server supports the redirect of the other
server, it MUST provide a “Redirect” List in the LoginResponse. In this case, the
“Redirect List” contains its original Host-ID only.

If the “Redirect List” is included in both of the LoginResponses, i.e. in both Step 8 and
Step 10, the redirect takes place. Otherwise the Master Connection Pair (1 and 2) shall be
used to support the session.

If the “Redirect List” is included in the LoginResponse in Step 8 and Step 10, both of the
domains want to use the new “Redirect List” as the physical connections to support the
session. The connection pair(s) shall be handed over to the actual physical nodes, and the
Master Connection Pair (1 and 2) shall be disconnected. If there are more than one
Redirect (Host) Names in either of the “Redirect List”, a mesh of redirect connection
pairs shall be initiated to support the session pair.

There are at least two connections, the connection pair, to carry the session pair. The
servers may establish more than one connection pairs to support the same session pair.
The redirect connection pair between two redirect physical hosts in two domains is
established through the same steps except that the redirect connection pair shall be bound
to the existing session pair between two domains. The “Redirect List” in Step 8 and Step
10 of session establishment may have set up a mesh of more than one redirect connection
pairs. Within the session, if additional (mesh of) redirect connection pair(s) is needed, the
same Session Establishment steps with the “Redirect List” in Step 8 and Step 10 shall be
repeated except that the Master Connection Pair shall be bound to the existing session
pair and no new session shall be created. The “Redirect List” shall initiate the
establishment of a new mesh of redirect connection pairs. Note that the “Redirect List” is
only allowed over Master Connection Pair. Also note that no new session shall be

The Wireless Village initiative: SSP v1.0 WV-013

47
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

established when setting up redirect connection pairs. There is always one session pair
between two domains no matter how many redirect connection pairs are created. In case
of creating redirect connection pairs, it is not allowed to make online service negotiation
and service agreement.

Primitive Direction
SendSecretToken Requestor Server ← Provider Server
LoginRequest Requestor Server → Provider Server
LoginResponse Requestor Server ← Provider Server
Table 10. Primitive Directions for Login Transaction

6.3.2. The “Logout” Transaction

LogoutRequest

Requestor
Server

Provider
Server

Disconnect

Disconnect (for the other session)

Figure 11. The “Logout” Transaction

Session termination is achieved through “Logout” and “Disconnect” transactions. All of
the connections used by this session shall be terminated as well after the session is
finished.

The requestor server can logout from the provider server and close the session through a
“Logout” transaction. In addition, the requestor also shall terminate the other session
through a “Disconnect” transaction that is illustrated in the dash line.

The requestor server sends a “LogoutRequest” request to the provider server. After the
provider server finishes processing the request, it sends a “Disconnect” response to the
requestor server to indicate the close of the session.

Primitive Direction
LogoutRequest Requestor Server → Provider Server
Disconnect Requestor Server ← Provider Server
Table 11. Primitive Directions for Logout Transaction

6.3.3. The “Disconnect” Transaction

The Wireless Village initiative: SSP v1.0 WV-013

48
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

Requestor
Server

Provider
Server

Disconnect

LogoutRequest (for the other session)

Disconnect (for the other session)

Figure 12. The “Disconnect” Transaction

The provider server may close the session through a “Disconnect” transaction. In
addition, the provider also shall terminate the other session through a “Logout”
transaction that is illustrated in the dash lines.

Primitive Direction
Disconnect Requestor Server ← Provider Server
Table 12. Primitive Directions for Disconnect Transaction

6.3.4. The “KeepAlive” Transaction

KeepAliveRequest

Requestor
Server

Provider
Server

KeepAliveResponse

Figure 13. The “KeepAlive” Transaction

Session maintenance is achieved through “KeepAlive” transaction. “KeepAlive”
transaction shall be performed over all of the connections used by this session, thus
implies and covers the connection maintenance for each connection. The TTL may have
different value for different connection.

The requestor server updates the time-to-live interval and keeps the session and the
connection(s) alive through the “KeepAlive” transaction(s).

The requestor server sends a “KeepAliveRequest” request to the provider server. After the
provider server finishes processing the request, it sends a “KeepAliveResponse” response
to the requestor server to indicate the status of the session over this connection. The
“KeepAliveRequest” may carry a new time-to-live interval. The time-to-live value
returned in the “KeepAliveResponse” response may differ from that in the request.

The “KeepAlive” transaction may be required periodically in case that an intermediary
(e.g. proxy) may break the connection, which results in terminating the session, if there is
no data traffic for a reasonable time period.

The Wireless Village initiative: SSP v1.0 WV-013

49
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

The “KeepAlive” transaction may be required periodically in case that the server policy
requires the termination of the session if there is no transaction activity for a reasonable
time period.

If “KeepAlive” is required for one session, it is usually also required for the other
session.

Primitive Direction
KeepAliveRequest Requestor Server → Provider Server
KeepAliveResponse Requestor Server ← Provider Server
Table 13. Primitive Directions for KeepAlive Transaction

6.4. Status Code

6.4.1. “Login” Transaction

• Unknown Service-ID (606)
• Redirection refused (607)
• Invalid password. (608)

6.4.2. “Logout” / “Disconnect” Transaction

• Session Expired (600)
• Connection expired (609)

The Wireless Village initiative: SSP v1.0 WV-013

50
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

7. Service Management

The service management in SSP enables the Wireless Village servers to mutually agree
on the usable Wireless Village services. The usable services offered by a server are
arranged in a negotiation tree.

7.1. Service Structure

The Wireless Village services are organized in a hierarchy:

Ø Features – a specific set of related functionality
Ø Functions – defines a set of related transactions for each feature
Ø Transactions – defines a set of related primitives for each function
Ø Information Elements – the lowest level building blocks of the transactions

A Wireless Village server may support all or a subset of the features. However, if a WV
server supports a feature, some functions and transactions must be supported to ensure
minimal interoperability [WVSSPSCR]. The remaining functions and transactions are
optional. Moreover, there are multiple choices in the semantics for some of the functions
and transactions, e.g. the general search transaction with search-type USER-ID is
mandatory while all other search types are optional.

The optional functions, transactions, and choices offered by a server are arranged in a
service tree, as shown in Figure 14. Each node in the tree specifies the functions,
transactions, and choices that must be supported by the server that includes that node in
its Service-List.

Each node in the service tree defines a group of one or several transactions or choices.
The content of each node and how the tree should be interpreted are described as follows.
The transactions that are not described are considered mandatory functions that must be
always supported in the servers.

General

If a Feature node is included in the Service-List, all mandatory requirements for that
specific feature must be supported as specified in [WVSSPSCR].

If a lower level node is included in the Service-List, all transactions or choices specified
by that node must be supported.

SAP Feature

• Service Negotiation node includes the following transactions
Ø GetAvailableService
Ø ServiceIndication

The Wireless Village initiative: SSP v1.0 WV-013

51
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

Ø SetServiceAgreement
• User Profile management node includes the following transactions
Ø GetUserProfile
Ø UpdateUserProfile

• Service Relay node indicates if the SAP supports service relay including routing

Figure 14: SSP Service tree

Common IMPS feature

• Invite node include the Invitation/Cancel-Invitation transactions
Ø All supported invite types must be included in the Service List (Presence, IM,

Shared Content, Group)
• Complementary Invite node includes the Complementary Invitation/Cancel-Invitation

transactions
Ø If the Complementary invite node is included in the Service-List, the Invite cases

node must be included as well.

WV SSP Services

Common IMPS
Feature

SAP
 Feature

IM
 Feature

Service
 negotiation

User Profile
 management

Invite cases

Presence
attributes

Shared
contents

Instant
messages

Group

Search

User

Group

Auth-
orization

Watcher List

Attribute List

Send
Message

Groups

Contacts

Push msg

Get msg

Notify msg

Delivery Mtd

Reject msg

Get msg list

Delivery Report

Group Mgmt

Get member

Member mgmt

Reject list

Group
Feature

Complement
Invite

Presence
 Feature

Contact List
Addr

Blocking

Contact List
Get

Contact List
Update

VerifyUser

Group History

Service Relay

Msg List

The Wireless Village initiative: SSP v1.0 WV-013

52
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

• Search node includes the optional choices for the GeneralSearch. All supported
search types must be included in the Service List i.e.
Ø User: Support Presence attributes criteria
Ø Group: Support Group related criteria

• VerifyUser node includes the following transactions:
Ø VerifyUserID

Presence Feature

• Contact List Get node includes the following transactions
Ø GetContactList
Ø GetListMember
Ø GetListProperties

• Contact List Update node includes the following transactions
Ø CreateContactList
Ø DeleteContactList
Ø AddListMember
Ø RemoveListMember
Ø SetListProperties

• Authorization node includes the following transactions
Ø ReactiveAuthorizarion
Ø CancelAuthorization

• Watcher List node includes the following transaction
Ø GetWatcherList

• Attribute List node includes the following transactions
Ø CreateAttributeList
Ø DeleteAttributeList
Ø GetAttributeList

• Contact List Addr node indicates if the contacts list is valid for addressing of users in
the following transactions
Ø Subscribe
Ø UnSubscribe
Ø GetPresence
Ø UpdatePresence

IM Feature

• Send Msg node includes the optional choices for the SendMessage and
ForwardMessage transactions. All supported ID types must be included in the Service
List i.e.
Ø Group-ID: Support recipient as Group-ID and addressing by screen name
Ø ContactList-ID: Support recipients listed by Contact List ID

• Push Msg node include the following transaction
Ø PushMessage

• Notify Msg node include the following transaction
Ø MessageNotification

The Wireless Village initiative: SSP v1.0 WV-013

53
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

• Get Msg node include the following transaction
Ø GetMessage

• Delivery Mtd node include the following transaction
Ø SetMessageDeliveryMethod

• Get Msg List node include the following transaction
Ø GetMessageList without group functionality

• Reject Msg node include the following transaction
Ø RejectMessage

• Delivery Report node include the following transaction
Ø NotifyDeliveryStatusReport

• Blocking node include the following transactions
Ø BlockUser
Ø GetBlockedList

• Group History node indicates if the IM service element supports group chat cashing
functionality.

• Msg List node includes the optional choices for the GetMessageList transaction
(Undelivered messages)

Group Feature

• Group Mgmt node include the following transactions
Ø CreateGroup
Ø DeleteGroup

• Get Member node include the following transaction
Ø GetJoinedMember

• Member mgmt node include the following transactions
Ø AddGroupMember
Ø GetGroupMember
Ø RemoveGroupMember
Ø MemberAccess

• Reject list node include the following transactions
Ø RejectList

7.2. Primitives

7.2.1. The “GetServiceRequest” Primitive

The “GetServiceRequest“ primitive is issued from the requestor server to discover the
available services provided by the provider server.

Information Element Req Type Description
Message-Type M GetServiceRequest Message identifier
Meta-Information M Structure of Meta-

information
The necessary meta-information in
a service request defined in 5.1.

Table 14. Information elements in GetServiceRequest Primitive

The Wireless Village initiative: SSP v1.0 WV-013

54
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

7.2.2. The “ServiceList” Primitive

The “ServiceList“ primitive is issued from the provider server to indicate its available
services.

Information
Element

Req Type Description

Message-Type M ServiceList Message identifier
Meta-
Information

C Structure of
Meta-
information

The necessary meta-information in a
service request defined in 5.1. Present if
the provider initiates ServiceIndication.

Status-Info C Structure of
Status-Primitive

The status information (see 5.2). Present if
the requestor initiates GetServiceRequest.

Service-List M Structure List of available services in a tree
structure.

Table 15. Information elements in ServiceList Primitive

7.2.3. The “ServiceNegotiation” Primitive

The “ServiceNegotiation“ primitive is issued from the requestor server to negotiate the
desired services that will be committed and provided by the provider server. The provider
server sends the “ServiceAgreement“ primitive to confirm the agreed services with the
requestor server.

Information
Element

Req Type Description

Message-Type M ServiceNegotiation Message identifier
Meta-Information M Structure of Meta-

information
The necessary meta-information in a
service request defined in 5.1.

Desired-Service-
List

M Structure List of desired services in a tree
structure

Desired-Sub-
Protocol

O String Desired sub-protocol and its version
for proprietary protocol extensions

Time-to-live O Integer in Seconds Indicates the desired time-to-live of
the service agreement

Table 16. Information elements in ServiceNegotiation Primitive

7.2.4. The “ServiceAgreement” Primitive

After the provider server receives the “ServiceNegotiation“ primitive from the requestor
server, the provider server shall send the “ServiceAgreement“ primitive to confirm the
agreed services with the requestor server.

Information Req Type Description

The Wireless Village initiative: SSP v1.0 WV-013

55
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

Element
Message-Type M ServiceAgreement Message identifier
Status-Info M Structure of

Status-Primitive
The status information (see 5.2).

Agreed-Service-
List

M Structure List of agreed services in a tree
structure

Agreed-Sub-
Protocol

O String Agreed sub-protocol and its version
for proprietary protocol extensions

Agreed-Time-to-
live

O Integer in Seconds Indicates the agreed time-to-live of
the service agreement

Table 17. Information elements in ServiceAgreement Primitive

7.3. Transactions

7.3.1. The “GetAvailableService” Transaction

GetServiceRequest

Requestor
Server

Provider
Server

ServiceList

Figure 15. The “GetAvailableService” Transaction

SSP supports service discovery among the WV domains. The services include Common
Features, Presence Service, Instant Messaging (IM) Service, Group Service and Shared
Content Service that are defined in “Features and Functions” document.

The requestor server discovers the available services provided by the provider server
through a “GetAvailableService” Transaction.

The requestor server sends a “GetServiceRequest” request to the provider server for the
available services. After the provider server finishes processing the request, it sends a
“ServiceList” response to the requestor server with the available service information.

Primitive Direction
GetServiceRequest Requestor Server → Provider Server
ServiceList Requestor Server ← Provider Server
Table 18. Primitive Directions for GetAvailableService Transaction

7.3.2. The “ServiceIndication” Transaction

The Wireless Village initiative: SSP v1.0 WV-013

56
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

Requestor
Server

Provider
Server

ServiceList

Figure 16. The “ServiceIndication” Transaction

The provider server also informs the requestor server of any change of the available
services through a “ServiceIndication” Transaction. It depends on the offline service
agreement between two domains to decide what are the following actions to be taken.

The provider server sends a “ServiceList” request to the requestor server and indicates the
available services on-the-fly.

Primitive Direction
ServiceList Requestor Server ← Provider Server
Table 19. Primitive Directions for ServiceIndication Transaction

7.3.3. The “SetServiceAgreement” Transaction

ServiceNegotiation

Requestor
Server

Provider
Server

ServiceAgreement

Figure 17. The “SetServiceAgreement” Transaction

The service agreement between the requestor and provider servers is established through
a “SetServiceAgreement” Transaction.

The “ServiceNegotiation“ request is issued from the requestor server to request and
negotiate the agreement on the services that will be committed and provided by the
provider server. The provider server sends the “ServiceAgreement“ response to confirm
the agreement with the requestor server.

After service agreement is confirmed, the servers may perform interoperable IMPS
services.

Primitive Direction
ServiceNegotiation Requestor Server → Provider Server
ServiceAgreement Requestor Server ← Provider Server
Table 20. Primitive Directions for SetServiceAgreement Transaction

The Wireless Village initiative: SSP v1.0 WV-013

57
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

7.4. Status Code

• Version Not Supported (505)

The Wireless Village initiative: SSP v1.0 WV-013

58
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

8. Interoperability Management – User Profile Management

These transactions are needed for the complementary services.

8.1. User Profile

User Profile consists of general user information and service-specific user information.
The general user information includes the services to which the user subscribes, the
service status (active / inactive), the privacy status with regard to network service
capabilities (e.g. user location, user interaction), terminal capabilities, user account status
etc. The service-specific user information includes the user-related information for each
specific service element.

The general user information is defined as follows:

General UP Attribute Value Description
User.Account.Status “ON” | “OFF” Status of user account – active or inactive
User.Privacy.Location “ON” | “OFF” Status of location privacy – private or not
User.Privacy.Interaction “ON” | “OFF” Status of Interaction privacy – private or not
Services.Common “YES” | “NO” Whether or not Common service is

subscribed
Services.Common.PSE Domain PSE of Common service. See 3.3.1 for

Domain definition.
Services.Common.Status “ON” | “OFF” Status of Common service – active or

inactive
Services.IM “YES” | “NO” Whether or not IM service is subscribed
Services.IM.PSE Domain PSE of IM service. See 3.3.1 for Domain

definition.
Services.IM.Status “ON” | “OFF” Status of IM service – active or inactive
Services.Presence “YES” | “NO” Whether or not Presence service is

subscribed
Services.Presence.PSE Domain PSE of Presence service. See 3.3.1 for

Domain definition.
Services.Presence.Status “ON” | “OFF” Status of Presence service – active or

inactive
Services.Group “YES” | “NO” Whether or not Group service is subscribed
Services.Group.PSE Domain PSE of Group service. See 3.3.1 for Domain

definition.
Services.Group.Status “ON” | “OFF” Status of Group service – active or inactive
Services.Content “YES” | “NO” Whether or not Content service is

subscribed
Services.Content.PSE Domain PSE of Content service. See 3.3.1 for

Domain definition.
Services.Content.Status “ON” | “OFF” Status of Content service – active or

inactive

The Wireless Village initiative: SSP v1.0 WV-013

59
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

Terminal.Delivery “PUSH” |
“NOTIFY”

Preferred message delivery method in client

Terminal.Content.type MIME {,
MIME }

Supported MIME types in client. See RFC
2045, RFC 2046 and WAP Forum for
standard MIME.

Terminal.Content.encodi
ng

encoding {,
encoding }

Supported transfer encoding in client. See
RFC 2045 for standard “transfer-encoding”.

Terminal.Content.length Integer in
Byte

Supported message size in client for
“PUSH”

Terminal.Content.protoc
ol

Protocol {,
Protocol }

Supported out-band protocol in client for
binary message retrieval.

x.key String A service provider may define new key-
values. These service provider specific keys
are prefixed with x[.].

Table 21. General User Profile

Each piece of user profile information is organized in a “(name, value)” pair. The General
User Profile is the list of “(name, value)” pairs, which are separated with “; ”. An
example of a General User Profile is as follows:

(User.Account.Status, ON); (Services.IM, ON); (Services.IM.PSE, im.wv.com);
(Services.IM.Status, ON); (Terminal.Delivery, PUSH); (Terminal.Content.type,
text/plain; charset=US-ASCII, text/xml; charset=UTF-8, image/wbmp);
(Terminal.Content.encoding, BASE64); (Terminal.Content.length, 256);
(Terminal.Content.protocol, HTTP, SIP, RTP, RTSP)); (x.MaxNumberOfConatctLists,
100)

8.2. Primitives

8.2.1. The “GetUserProfileRequest” Primitive

The “GetUserProfileRequest“ primitive is issued to discover the available user profile
information.

Information Element Req Type Description
Message-Type M GetUserProfileRequest Message identifier
Meta-Information M Structure of Meta-

information
The necessary meta-
information in a service
request defined in 5.1.

User-ID-List M Structure Identifies the users whose
User Profiles are requested.
If it is empty, all users’ User
Profiles are requested.

Table 22. Information elements in GetUserProfileRequest Primitive

The Wireless Village initiative: SSP v1.0 WV-013

60
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

8.2.2. The “UserProfile” Primitive

The “UserProfile“ primitive is issued from the provider server to provide the user profile
information.

Information
Element

Req Type Description

Message-Type M UserProfile Message identifier
Status-Info M Structure of

Status-Primitive
The status information (see 5.2).

User-Profile-List M Structure of
User-Profile

A list of User Profiles. Each User profile
contains User-ID and a list of (name,
value) pairs.

Table 23. Information elements in UserProfile Primitive

8.2.3. The “UpdateUserProfileRequest” Primitive

The “UpdateUserProfileRequest“ primitive is issued to update the user profile
information.

Information
Element

Req Type Description

Message-Type M UpdateUserProfileRequest Message identifier
Meta-Information M Structure of Meta-

Information
The meta-information (see
5.1).

Updated-User-
Profile-List

M Structure of User-Profile A list of User Profiles. Each
User profile contains User-
ID and a list of (name, value)
pairs.

Table 24. Information elements in UpdateUserProfileRequest Primitive

8.3. Transactions

8.3.1. The “GetUserProfile” Transaction

GetUserProfileRequest

Requestor
Server

Provider
Server

UserProfile

Figure 18. The “GetUserProfile” Transaction

SSP supports the exchange of user profile information among the WV domains including
the list of services to which a user subscribes, the service status (active / inactive),
privacy status with regard to network service capabilities (e.g. user location, user

The Wireless Village initiative: SSP v1.0 WV-013

61
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

interaction), terminal capabilities etc. The user profile information is discovered through
a “GetUserProfile” transaction.

The “GetUserProfileRequest“ request is issued from the requestor server to request the
user profile information from the provider server. The provider server sends the
“UserProfile” response to provide the requestor server with the user profile information.

Primitive Direction
GetUserProfileRequest Requestor Server → Provider Server
UserProfile Requestor Server ← Provider Server
Table 25. Primitive Directions for GetUserProfile Transaction

8.3.2. The “UpdateUserProfile” Transaction

Status

Requestor
Server

Provider
Server

UpdateUserProfile

Figure 19. The “UpdateUserProfile” Transaction

The requestor server may update the user profile information in the provider server
through an “UpdateUserProfile” Transaction.

The requestor server sends an “UpdateUserProfile” request to the provider server and
provides the updated user profile information. After the provider server finishes
processing the request, it sends a “Status” response to the requestor server and confirms
that it has updated the user profile information.

Primitive Direction
UpdateUserProfile Requestor Server → Provider Server
Status Requestor Server ← Provider Server
Table 26. Primitive Directions for UpdateUserProfile Transaction

8.4. Status Code

• Unknown user (531)

The Wireless Village initiative: SSP v1.0 WV-013

62
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

9. Service Relay – Common IMPS Features

SSP supports the service relay among the WV servers and the SSP Gateways including
the functional relay of the common IMPS features, contact list, presence features, IM
features, group features and shared content features that are defined in “Features and
Functions” document.

9.1. Overview

This chapter focuses on the functional relay of common IMPS features. Because of the
server interoperation nature, the SSP has its own requirement on meta-information and
information elements in the primitives at transaction level. The complete primitives and
transaction flows of common IMPS features at SSP semantics level has been defined in
the following two sections.

Please refer to the CSP document so as to conclude how to relay the common IMPS
features from client-server interaction (CSP) to server-server interoperation (SSP).

9.2. Primitives

9.2.1. The “SearchRequest” Primitive

The “SearchRequest“ primitive is used for a user to search for users or groups based on
different properties of the user or group. The user may limit the number of search results
retrieved at one time. The user may continue the search and go through all the results.

The search is performed using a list of one or more Search-Pairs. A Search-Pair consists
of a Search-Element and a Search-String. The Search-Element indicates which property
of the user / group shall be searched for the Search-String. When more than one search
pairs are specified in the primitive, logical AND operation is assumed between the
different pairs. Every Search-Element may be present only once within the same search
request.

The result of a user search is always user-ID. Similarly, the result of a group search is
always group-ID.

Search-Element for User Search (the result is always user-ID) is listed as follows:

Search-Element Description
USER_ID The Search-String is a substring of a user-ID.
USER_FIRST_NAME The Search-String is a substring of a user’s firstname.
USER_LAST_NAME The Search-String is a substring of a user’s lastname.
USER_EMAIL_ADDRESS The Search-String is a substring of a user’s e-mail

address.
USER_ALIAS The Search-String is a substring of a user’s alias.

The Wireless Village initiative: SSP v1.0 WV-013

63
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

USER_MOBILE_NUMBER The Search-String is a mobile number. [E.164].

Search-Element for Group Search (the result is always group-ID) is listed as follows:

Search-Element Description
GROUP_ID The Search-String is a substring of a group-ID.
GROUP_NAME The Search-String is a substring of a group’s name (part

of group properties).
GROUP_TOPIC The Search-String is a substring of a group’s topic (part

of group properties).
GROUP_USER_ID_JOINED The Search-String is a substring of a user-ID.

It is possible to search for any user or limit the search to users that are logged in to the
system, which is specified by the Search-Online-Status information element. This
element is ignored when there are no user related Search-Elements in the request. If the
element is missing while there are user related Search-Elements in the request, both
online and offline users are requested.

Information
Element

Req Type Description

Message-Type M SearchRequest Message identifier
Meta-Information M Structure of

Meta-Information
The meta-information (see 5.1).

Search-Pair-List C Structure Search criteria in terms of
properties. It is present only in the
1st search request.

Search-Online-
Status

C Boolean Retrieves only results for online
users if value is TRUE. Present only
in the 1st search request.

Search-Limit C Integer Indicates the number of maximum
search results that can be received at
one time. It is Present only in the 1st

search request.
Search-ID C String Uniquely identifies a search

transaction. The server assigns this
ID when the first search is
performed, thus it is not present in
the 1st search request.

Search-Index C Integer Indicates that the results shall be
sent starting from this particular
index. It is present only when the
search is continued.

Table 27. Information elements in SearchRequest Primitive

9.2.2. The “SearchResponse” Primitive

The Wireless Village initiative: SSP v1.0 WV-013

64
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

Information
Element

Req Type Description

Message-Type M SearchResponse Message identifier
Status-Info M Structure of

Status-Primitive
The status information (see 5.2).

Search-ID C String Uniquely identifies a search transaction.
The server assigns this ID when the 1st

search is performed successfully.
Search-Findings M Integer Indicates the number of current findings.
Search-Index M Integer Indicates the index of the last result.

This provides the user with the
information where to continue the next
search.

Search-Results C Structure Search results.
Table 28. Information elements in SearchResponse Primitive

9.2.3. The “StopSearchRequest” Primitive

The “StopSearchRequest“ primitive is used for a user in the requestor server to indicate to
the provider server that the search and / or its result is not needed any more from a
previously issued search request.

Information
Element

Req Type Description

Message-Type M StopSearchRequest Message identifier
Meta-Information M Structure of Meta-

Information
The meta-information (see 5.1).

Search-ID M String Identifies the search to be
invalidated.

Table 29. Information elements in StopSearchRequest Primitive

9.2.4. The “InviteRequest” Primitive

The “InviteRequest“ primitive is used for the user in the requestor server to invite a list of
other users to join a discussion / chat group, or to exchange messages, or to share
presence information, or to share content.

The invited user may be a single user identified by its User-ID or Screen-Name. A list of
users may be invited using a Contact-List-ID or Group-ID.

Information Element Req Type Description
Message-Type M InviteRequest Message identifier
Meta-Information M Structure of Meta-

Information
The meta-information (see 5.1).

Invite-ID M String Identifies this invitation.

The Wireless Village initiative: SSP v1.0 WV-013

65
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

Invite-Type M Enum {“GR”,
“IM”, “PR”, “SC”
}

Inviting for Group/chat (GR),
Messaging (IM), Presence (PR), or
Content (SC).

Inviting-User M Structure Identifies the requesting user who
sends the invitation (User-ID and /
or Screen-Name)

Invited-User M Structure Identifies the user(s) to be invited
(User-ID and / or Screen-Name, or
Contact-List-ID)

Invite-Group-ID C String Identifies the group. It is
mandatory if InviteGroup (GR).
Otherwise, not present.

Invite-Presence-
Attribute-List

CO Structure Identifies the Presence Attributes
that the inviter wants to share with
the invitees. It is optional if
InvitePresence (PR). Otherwise,
not present.

Invite-Content-ID-
List

CO Structure Identifies the related shared
content as a list of URLs. It is
optional if InviteContent (SC).
Otherwise, not present.

Invite-Reason O String Textual description of the
invitation.

Validity O Integer in seconds Indicates the interval in which the
invitation is valid.

Table 30. Information elements in InviteRequest Primitive

9.2.5. The “InviteResponse” Primitive

The “InviteResponse“ primitive is used for the provider server to return the result of the
invitation to the requestor server, which represents the inviting user.

Information
Element

Req Type Description

Message-Type M InviteResponse Message identifier.
Status-Info M Structure of

Status-Primitive
The status information (see 5.2).

Invite-ID M String Identifies this invitation.
Inviting-User M Structure Identifies the requesting user who

sends the invitation (User-ID and / or
Screen-Name)

Invite-Acceptance M Boolean Indicates if the user accepts the
invitation or not.

Responding-User M Structure Identifies the responding invited user
(User-ID and / or Screen-Name)

The Wireless Village initiative: SSP v1.0 WV-013

66
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

Invite-Response O String Textual description, why the invited
user accepted/rejected the invitation.

Table 31. Information elements in InviteResponse Primitive

Each tuple { Invite-Acceptance, Responding-User, Invite-Response } represents the
response from one invitee. There may be multiple tuples { Invite-Acceptance,
Responding-User, Invite-Response } in one “InviteResponse” primitive if the provider
server is able to collect the response from the invited users in a reasonable time and
combine the multiple responses in one primitive in order to reduce the traffic overhead
between the servers.

9.2.6. The “InviteUserRequest” Primitive

The “InviteUserRequest“ primitive is used for the provider server to invite the user(s) in
the requestor server to join a discussion / chat group, or to exchange messages, or to share
presence information, or to share content.

Information Element Req Type Description
Message-Type M InviteUserRequest Message identifier
Meta-Information M Structure of Meta-

Information
The meta-information (see 5.1).

Invite-ID M String Identifies this invitation.
Invite-Type M Enum { “GR”,

“IM”, “PR”, “SC”
}

Inviting for Group/chat (GR),
Messaging (IM), Presence (PR), or
Content (SC).

Inviting-User M Structure Identifies the requesting user who
sends the invitation (User-ID and /
or Screen-Name)

Invited-User M Structure Identifies the user(s) to be invited
(User-ID and / or Screen-Name, or
List-of-User-IDs)

Invite-Group-ID C String Identifies the group. It is
mandatory if InviteGroup (GR).
Otherwise, not present.

Invite-Presence-
Attribute-List

CO Structure Identifies the Presence Attributes
that the inviter wants to share with
the invitees. It is optional if
InvitePresence (PR). Otherwise,
not present.

Invite-Content-ID-
List

CO Structure Identifies the related shared
content as a list of URLs. It is
optional if InviteContent (SC).
Otherwise, not present.

Invite-Reason O String Textual description of the
invitation.

The Wireless Village initiative: SSP v1.0 WV-013

67
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

Validity O Integer in seconds Indicates the interval in which the
invitation is valid.

Table 32. Information elements in InviteUserRequest Primitive

9.2.7. The “InviteUserResponse” Primitive

The “InviteUserResponse“ primitive is used for the requestor server, which represents the
invited users, to return the result of the invitation to the provider server.

Information
Element

Req Type Description

Message-Type M InviteUserResponse Message identifier
Status-Info M Structure of Status-

Primitive
The status information (see 5.2).

Invite-ID M String Identifies this invitation.
Inviting-User M Structure Identifies the requesting user who

sends the invitation (User-ID,
Screen-Name)

Invite-Acceptance M Boolean Indicates if the user accepts the
invitation or not.

Responding-User M Structure Identifies the responding invited
user (User-ID and / or Screen-
Name)

Invite-Response O String Textual description, why the invited
user accepted/rejected the invitation.

Table 33. Information elements in InviteUserResponse Primitive

Each tuple { Invite-Acceptance, Responding-User, Invite-Response } represents the
response from one invitee. There may be multiple tuples { Invite-Acceptance,
Responding-User, Invite-Response } in one “InviteUserResponse” primitive if the
requestor server, which represents the invited users, is able to collect the response from
the invited users in a reasonable time and combine the multiple responses in one
primitive in order to reduce the traffic overhead between the servers.

9.2.8. The “CancelInviteRequest” Primitive

The “CancelInviteRequest“ primitive is used for the user in the requestor server to cancel
its previous invitation.

Information Element Req Type Description
Message-Type M CancelInviteReque

st
Message identifier

Meta-Information M Structure of Meta-
Information

The meta-information (see 5.1).

Invite-ID M String Identifies the invitation.

The Wireless Village initiative: SSP v1.0 WV-013

68
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

Canceling-User M Structure Identifies the requesting user
who cancels the invitation (User-
ID and / or Screen-Name)

Canceled-User M Structure Identifies the user(s) to whom
the invitation will be canceled
(User-ID and / or Screen-Name,
or Contact-List-ID)

Canceled-Content-ID-
List

C Structure Identifies the related shared
content as a list of URLs which
will be canceled.

Cancel-Reason O String Textual description of the
cancel.

Table 34. Information elements in CancelInviteRequest Primitive

9.2.9. The “CancelInviteUserRequest” Primitive

The “CancelInviteUserRequest“ primitive is used for the provider server to cancel its
previous invitation to the users in the requestor server.

Information Element Req Type Description
Message-Type M CancelInviteUserR

equest
Message identifier

Meta-Information M Structure of Meta-
Information

The meta-information (see 5.1).

Invite-ID M String Identifies the invitation.
Canceling-User M Structure Identifies the requesting user

who cancels the invitation (User-
ID and / or Screen-Name)

Canceled-User M Structure Identifies the user(s) to whom
the invitation will be canceled
(User-ID and / or Screen-Name,
or List-of-User-IDs)

Canceled-Content-ID-
List

C Structure Identifies the related shared
content as a list of URLs which
will be canceled.

Cancel-Reason O String Textual description of the
cancel.

Table 35. Information elements in CancelInviteUserRequest Primitive

9.2.10. The “VerifyUseridRequest” Primitive

The “VerfiyUseridRequest“ primitive is used for the requestor server to verify that
userid(s) are valid in the provider server.

Information Element Req Type Description

The Wireless Village initiative: SSP v1.0 WV-013

69
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

Message-Type M VeifyUseridRequest Message identifier
Meta-Information M Structure of Meta-

Information
The meta-information (see
5.1).

Verify-User-ID-List M Structure The list contains the User-ID’s
and optionally the time when
the userid was created

Table 36. Information elements in VerfifyUseridRequest Primitive

9.2.11. The “VerifyUseridResponse” Primitive

The “VerifyUseridResponse“ primitive is used for the provider server to return the valid
userid's.

Information
Element

Req Type Description

Message-Type M VerifyUseridResp
onse

Message identifier.

Status-Info M Structure of
Status-Primitive

The status information (see 5.2).

Verify-User-ID-
List

M Structure The list contains the userids that are
in use and the time when the userid
was created.

Table 37. Information elements in VerifyUseridResponse Primitive

9.3. Transactions

9.3.1. The “GeneralSearch” Transaction

SearchRequest (1st)

Requestor
Server

Provider
Server

SearchResponse

SearchRequest (continued)

SearchResponse

Figure 20. The “GeneralSearch” Transaction

The requestor server sends the “SearchRequest” message to the provider server including
the Search-Pair-List, the Search-Online-Status (T-Online, F-Offline, N/A-both), the type
of the search and the Search-Limit (maximum number of results at a time). The provider
server responds with the “SearchResponse” message, which includes the Status of the
search. If the search is successful, it includes the Search-ID, the Search-Index (a
continuation index to indicate where the search should be continued), the Search-

The Wireless Village initiative: SSP v1.0 WV-013

70
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

Findings (the number of items found that match the criteria so far), and the Search-
Results (the actual data).

The requestor server may continue the search. In this case the “SearchRequest” message
includes only the Search-ID and the Search-Index. The provider server responds with the
“SearchResponse”, but the message includes only the Result, the Search-Index, the
Search-Findings and the Search-Results.

The requestor server may modify the Search-Index value, so that the search may be
continued at a different place. The Search-Index is valid until a new search is performed
or the session ends (a previous search is invalidated when a new search is started).

Primitive Direction
SearchRequest Requestor Server → Provider Server
SearchResponse Requestor Server ← Provider Server
Table 38. Primitive Directions for GeneralSearch Transaction

9.3.2. The “StopSearch” Transaction

StopSearchRequest

Requestor
Server

Provider
Server

Status

Figure 21. The “StopSearch” Transaction

The “StopSearch” transaction is used for the requestor server to indicate to the provider
server that the search and / or the results are not needed any more from a previously
issued search request. The requestor server sends the “StopSearchRequest” message to
the provider server including the Search-ID. The provider server invalidates the indicated
search, and replies with a Status message. The invalidated Search-ID cannot be used after
invalidation.

Primitive Direction
StopSearchRequest Requestor Server → Provider Server
Status Requestor Server ← Provider Server
Table 39. Primitive Directions for StopSearch Transaction

9.3.3. The “Invitation” Transaction

A user may invite other user(s) to join a discussion / chat group, or to exchange
messages, or to share presence values list, or to share content.

There are two service models and the corresponding transaction flows.

The Wireless Village initiative: SSP v1.0 WV-013

71
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

9.3.3.1 Basic Invitation transaction

Figure 22. The “Basic Invitation” Transaction

The requestor server 1 is the Home Domain of the inviting user, the provider server is the
Home Domain of the invited user.

Primitive Direction
InviteRequest Requestor Server 1 → Provider Server
Status Requestor Server 1 ← Provider Server
InviteResponse Requestor Server 1 ← Provider Server
Status Requestor Server 1 → Provider Server
Table 40. Primitive Directions for Basic Invitation Transaction

9.3.3.2 Complementary Invitation transaction

Inviting
Client

Requestor
Server 1

Provider
Server

Invited
Client

InviteRequest/CSP

InviteRequest

InviteUserRequest/CSP

InviteResponse/CSP

InviteResponse

Status/CSP

InviteUserResponse/CSP

Status/CSP

Status/CSP

Status

Status

Status/CSP

The Wireless Village initiative: SSP v1.0 WV-013

72
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

InviteUserResponse

Status

Status

InviteResponse

InviteResponse/CSP

Status/CSP

Status/CSP

InviteRequest/CSP

Status InviteUserRequest

InviteUserRequest/CSP

Status/CSP

InviteUserResponse/CSP

Status/CSP

InviteRequest

Status

Inviting
Client

Requestor
Server 1

Provider
Server

Requestor
Server 2

Invited
Client

Figure 23. The “Complementary Invitation” Transaction

In this service model the requestor server 1 is the Home Domain of the inviting user, the
provider server is the PSE of the invited user in another Domain, and the requestor server
2 is the Home Domain of the invited user. The transaction flow is as follows.

Primitive Direction
InviteRequest Requestor Server 1 → Provider Server
Status Requestor Server 1 ← Provider Server
InviteUserRequest Provider Server → Requestor Server 2
Status Provider Server ← Requestor Server 2
InviteUserResponse Provider Server ← Requestor Server 2
Status Provider Server → Requestor Server 2
InviteResponse Requestor Server 1 ← Provider Server
Status Requestor Server 1 → Provider Server
Table 41. Primitive Directions for Complementary Invitation transaction

The general description of the transactions

The requestor server 1, which represents the inviting user, sends the provider server the
“InviteRequest” message with the ID of the invitation, the invitation type, the inviting
User-ID and/or Screen-Name, the list of user(s) to be invited specified by User-IDs
and/or Screen-Names, the ID of the subject, and optionally the reason for the invitation (a
short text).

The provider server responds the requestor server 1 with a Status message. The provider
server also sends “InviteUserRequest” message to every requestor server 2, which
represents one or several of the invited users. The “InviteUserRequest” message contains

The Wireless Village initiative: SSP v1.0 WV-013

73
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

the ID of the invitation, the invitation type, the inviting User-ID and/or Screen-Name, the
list of user(s) to be invited specified by User-IDs and/or Screen-Names, the ID of the
subject, and optionally the reason for the invitation (a short text).

Each requestor server 2 responds the provider server with a Status message.

The invited user may accept or reject the invitation, and the requestor server 2, which
represents the invited users, responds the provider server with the “InviteUserResponse”
message with the ID of the invitation, the acceptance indicator, the User-ID and/or
Screen-Name of the responding invited user, and optionally the short response text.

The provider server responds the requestor server 2 with a Status message. The provider
server will send the “InviteResponse” message to the requestor server 1, which represents
the inviting user. The “InviteResponse” message contains the ID of the invitation, the
acceptance indicator, the User-ID and/or Screen-Name of the responding invited user,
and optionally the short response text.

The requestor server 1 responds the provider server with a Status message.

Each tuple { Invite-Acceptance, Responding-User, Invite-Response } represents the
response from one invitee. There may be multiple tuples { Invite-Acceptance,
Responding-User, Invite-Response } in one “InviteUserResponse” or “InviteResponse”
primitive if the requestor server 2 or the provider server is able to collect the response
from the invited users in a reasonable time and combine the multiple responses in one
primitive in order to reduce the traffic overhead between the servers.

While in general there is no mandatory requirement about how an invited user shall act
according to the acceptance indicator within its response in the scope of this function, it is
recommended that the invited user should act consistently according to its response.

The subject of the invitation may be a group, messaging, a shared content, or presence. In
case of presence the user may include a list of presence attributes that he/she is willing to
share with the other party. Note that there is no actual presence attribute sharing that has
been done, the transaction is only informational. Similarly, in case of group, messaging,
or shared content invitations the actual action is not taken, it is up to the user to do it
manually (the invitation is only informational).

9.3.4. The “CancelInvitation” Transaction

A user may cancel any previous invitations.

9.3.4.1 Basic Cancel Invitation transaction

The Wireless Village initiative: SSP v1.0 WV-013

74
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

Cancellation
receiver Client

Cancellation
 sender Client

CancelInviteRequest/CSP

CancelInviteRequestStatus/CSP

Status CancelInviteUserRequest/CSP

Status/CSP

Provider
 Server

Requestor
 Server 1

Figure 24. The “Basic CancelInvitation” Transaction

The requestor server 1 is the Home Domain of the invitation canceling user, the provider
server is the Home Domain of the invitation cancellation receiver user.

Primitive Direction
CancelInviteRequest Requestor Server 1 → Provider Server
Status Requestor Server 1 ← Provider Server
Table 42. Primitive Directions for Basic CancelInvitation Transaction

9.3.4.2 Complementary Cancel Invitation transaction

CancelInviteRequest/CSP

CancelInviteRequest

CancelInviteUserRequest

CancelInviteUserRequest/CSP

Status/CSP

Status

Status

Status/CSP

Cancellation
 sender Client

Requestor
 Server 1

Provider
Server

Requestor
 Server 2

Cancellation
receiver Client

Figure 25. The “Complementary CancelInvitation” Transaction

In this service model the requestor server 1 is the Home Domain of the invitation
canceling user, the provider server is the PSE of the invitation cancellation recipient in
another Domain, and the requestor server 2 is the Home Domain of the invitation
cancellation recipient. The transaction flow is as follows.

Primitive Direction
CancelInviteRequest Requestor Server 1 → Provider Server
Status Requestor Server 1 ← Provider Server
CancelInviteUserRequest Provider Server → Requestor Server 2
Status Provider Server ← Requestor Server 2

The Wireless Village initiative: SSP v1.0 WV-013

75
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

Table 43. Primitive Directions for Complementary CancelInvitation
Transaction

The general description of the transactions

The requestor server 1, which represents the inviting user, sends the provider server the
“CancelnviteRequest” message with the ID of the invitation, the inviting User-ID and/or
Screen-Name, the list of user(s) to be notified about the cancellation specified by User-
IDs and/or Screen-Names, and optionally the reason for the cancellation (a short text).

The provider server responds the requestor server 1 with a Status message. The provider
server also sends “CancelnviteUserRequest” message to every requestor server 2, which
represents one or several of the invited users. The “CancelnviteUserRequest” message
contains the ID of the invitation, the inviting User-ID and/or Screen-Name, the list of
user(s) to be notified about the cancellation specified by User-IDs and/or Screen-Names,
and optionally the reason for the invitation (a short text).

The requestor server 2, which represents the canceled users, responds the provider server
with the Status message.

Note that the “CancelInvitation” transaction makes sense only for the scope of presence
sharing and content sharing invitations.

9.3.5. The “VerifyUserid” Transaction

Requestor
 Server

Provider
 Server

VerifyUseridRequest

VerifyUseridResponse

Figure 26. The “VerifyUserid” Transaction

The “VerifyUserid” transaction is used by the requestor server to verify that a User-ID is
in use at the provider server, i.e. the Home Domain of the User-ID. The transaction is
used before the User-ID is stored in the requestor sever to ensure that all locally stored
User-ID’s are valid. The VerifyUserid response contains the subset of User-ID’(s) in use
and the time when the User-ID was created. The time information is used to verify that
the locally stored User-ID belongs to the same end-user on both the requestor and
provider server or if it has been recycled on the provider side and given to a new end-
user. If the time is not present in the request it is assumed that the requestor server just
want to verify that the User-ID is in use.

Primitive Direction
VerifyUseridRequest Requestor Server → Provider Server
VerifyUseridResponse Requestor Server ← Provider Server

The Wireless Village initiative: SSP v1.0 WV-013

76
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

Table 44. Primitive Directions for the VerifyUserid Transaction

9.4. Status Code

9.4.1. “GeneralSearch” Transaction

• Unable to parse criteria. (Invalid Search-Element) (402)
• Service Not Supported (405)
• Initial search request was not sent (Invalid Search-ID) (424).
• Invalid Search-Index (out of range) (425)
• Search timeout (in case of continued search the subsequent request primitive is late).

(535)
• Server search limit is exceeded (610)

9.4.2. “StopSearch” Transaction

• Service Not Supported (405)
• Invalid Search-ID (424)

9.4.3. “Invitation” Transaction

• Invalid invitation type(402).
• Service Not Supported (405)
• Unknown user (ID or screen-name) (531).
• Not logged in (604)
• Group does not exist (800).

9.4.4. “CancelInvitation” Transaction

• Invalid invitation type (402).
• Service Not Supported (405)
• Invalid invitation ID (423).
• Unknown user (ID or screen-name) (531).
• Not logged in (604)

The Wireless Village initiative: SSP v1.0 WV-013

77
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

10. Service Relay – Contact List Features

10.1. Overview

A “contact list“ is a created and maintained by a User so that the User may send
messages to the “contact list“ as recipient. The message will be delivered to every
member in the particular “contact list”. However, except the owner User, the other
members of the “contact list” do not have any knowledge about the “contact list”. Nor do
they conduct any group functions.

In concept, the “contact list“ is a special case and subset of Private Group, and is also a
special case of Restricted Group. In practice, the “contact list“ means two cases:

• Address book – the “contact list“ contains a list of addresses, nicknames, and other
relevant information of family members, friends, colleagues or other frequently
contacted persons.

• Presence – the “contact list“ is closely tied to the presence service. It is used for
proactive presence authorization (the people on the list can get these presence
attributes), and presence update (presence attributes of the people on the list).

A user may have any number of contact lists, thus the contact lists has their own IDs. The
users do not know about (and cannot access at all) each other’s contact list(s).

There are two properties for Contact List:

• Display-Name: a free text string given by user that can be presented in the user
interface of the client

• Default: a Boolean set by user that indicates that the particular contact list is the
default contact list.

When the user creates his/her first contact list, the server automatically sets that contact
list as the default. The server may also create the first list automatically.

When the user has more than one contact lists in the system, the user may set any of
his/her contact lists as the default contact list. When the user sets “Default” property of a
contact list to “True”, the “Default” property of the previously default contact list must be
set to “False” automatically by the server.

Watchers list is a system defined contact list with the functionality limited to hold users
that have subscribed to presence information including the subscribed attributes.

All users that have subscribed to presence information are present in the Watchers list,
i.e. a user that is present in a contact list and has subscribed to one or more presence
attributes is always present in the watchers list. A user whose reactive authorization
request is accepted shall also be present in the watchers list. If the user does not indicate

The Wireless Village initiative: SSP v1.0 WV-013

78
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

specific attributes in his reactive authorization request, the Default Public Attribute List
will be used for this user. Otherwise, the specific attribute list shall be associated with the
subscriber.

The server shall maintain one Watcher List for each user.

This chapter focuses on the functional relay of Contac List features. Because of the server
interoperation nature, the SSP has its own requirement on meta-information and
information elements in the primitives at transaction level. The complete primitives and
transaction flows of Contact List features at SSP semantics level has been defined in the
following two sections.

Please refer to the CSP document so as to conclude how to relay the Contact List features
from client-server interaction (CSP) to server-server interoperation (SSP).

These transactions below belong to the complementary service.

10.2. Primitives

10.2.1. The “CreateContactListRequest” Primitive

The “CreateContactListRequest“ primitive is used to create a contact list.

In addition to the “Contact-List-ID” which identifies the contact list, the
“CreateContactListRequest“ primitive contains the initial properties (Display-Name,
Default) and a “User-List” which identifies the initial users to be added to the contact list
(User-ID, Nickname).

Information Element Req Type Description
Message-Type M CreateContactList

Request
Message identifier

Meta-Information M Structure of Meta-
Information

The meta-information (see 5.1).

Contact-List-ID M String Identifies the contact list.
Contact-List-Props O Structure The initial properties of the contact

list (Display-Name, Default).
User-List O Structure Identifies the initial users to be

added to the contact list (User-ID,
Nickname).

Table 45. Information elements in CreateContactListRequest Primitive

10.2.2. The “DeleteContactListRequest” Primitive

The “DeleteContactListRequest“ primitive is used to delete the contact list(s).

Information Element Req Type Description

The Wireless Village initiative: SSP v1.0 WV-013

79
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

Message-Type M DeleteContactList
Request

Message identifier

Meta-Information M Structure of Meta-
Information

The meta-information (see 5.1).

Contact-List-ID-List M Structure Identifies the contact list(s).
Table 46. Information elements in DeleteContactListRequest Primitive

10.2.3. The “GetContactListRequest” Primitive

The “GetContactListRequest“ primitive is used for a user in the requestor server to
retrieve the list of all Contact-List-IDs.

Information Element Req Type Description
Message-Type M GetContactListRequest Message identifier
Meta-Information M Structure of Meta-

Information
The meta-information (see
5.1).

Table 47. Information elements in GetContactListRequest Primitive

10.2.4. The “GetContactListResponse” Primitive

The “GetContactListResponse“ primitive returns a list of all Contact-List-IDs.

Information Element Req Type Description
Message-Type M GetContactListRes

ponse
Message identifier

Status-Info M Structure of Status-
Primitive

The status information (see 5.2).

Contact-List-ID-List C Structure The list of the Contact-List-IDs.
Default-C-List-ID C String Identifies the default contact list.
Table 48. Information elements in GetContactListResponse Primitive

10.2.5. The “GetListMemberRequest” Primitive

The “GetListMemberRequest“ primitive is used to retrieve the all members of a contact
list.

Information Element Req Type Description
Message-Type M GetListMemberRequest Message identifier
Meta-Information M Structure of Meta-

Information
The meta-information (see
5.1).

Contact-List-ID M String Identifies the contact list.
Table 49. Information elements in GetListMemberRequest Primitive

10.2.6. The “AddListMemberRequest” Primitive

The Wireless Village initiative: SSP v1.0 WV-013

80
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

The “AddListMemberRequest“ primitive is used to add the members to a contact list.

Information Element Req Type Description
Message-Type M AddListMemberR

equest
Message identifier

Meta-Information M Structure of Meta-
Information

The meta-information (see 5.1).

Contact-List-ID M String Identifies the contact list.
User-List M Structure Identifies the users to be added to

the contact list (User-ID,
Nickname).

Table 50. Information elements in AddListMemberRequest Primitive

10.2.7. The “RemoveListMemberRequest” Primitive

The “RemoveListMemberRequest“ primitive is used to remove the members from the
contact list.

Information
Element

Req Type Description

Message-Type M RemoveListMembe
rRequest

Message identifier

Meta-Information M Structure of Meta-
Information

The meta-information (see 5.1).

Contact-List-ID M String Identifies the contact list.
User-List M Structure Identifies the users to be removed

from the contact list (User-ID,
Nickname).

Table 51. Information elements in RemoveListMemberRequest Primitive

10.2.8. The “ContactListMemberResponse” Primitive

The “ContactListMemberResponse“ primitive returns a list of all members in the contact
list.

Information
Element

Req Type Description

Message-Type M ContactListMemberR
esponse

Message identifier

Status-Info M Structure of Status-
Primitive

Status information (see 5.2).

User-List M Structure Identifies the users in the contact
list (User-ID, Nickname).

Table 52. Information elements in ContactListMemberResponse Primitive

The Wireless Village initiative: SSP v1.0 WV-013

81
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

10.2.9. The “GetListPropsRequest” Primitive

The “GetListPropRequest“ primitive is used to retrieve the properties of a contact list.

Information Element Req Type Description
Message-Type M GetListPropsRequest Message identifier
Meta-Information M Structure of Meta-

Information
The meta-information (see
5.1).

Contact-List-ID M String Identifies the contact list.
Table 53. Information elements in GetListPropsRequest Primitive

10.2.10. The “SetListPropsRequest” Primitive

The “SetListPropRequest“ primitive is used to set the properties of a contact list.

Information Element Req Type Description
Message-Type M SetListPropsRequest Message identifier
Meta-Information M Structure of Meta-

Information
The meta-information (see
5.1).

Contact-List-ID M String Identifies the contact list.
Contact-List-Props M Structure The properties (Display-Name,

Default) to be set.
Table 54. Information elements in SetListPropsRequest Primitive

10.2.11. The “ContactListPropsResponse” Primitive

The “ContactListPropsResponse“ primitive returns a list of all members in the contact
list.

Information
Element

Req Type Description

Message-Type M ContactListPropsRes
ponse

Message identifier

Status-Info M Structure of Status-
Primitive

Status information (see 5.2).

Contact-List-
Props

M Structure The properties of the contact list
(Display-Name, Default).

Table 55. Information elements in ContactListPropsResponse Primitive

10.2.12. The “CreateAttrListRequest” Primitive

The “CreateAttrListRequest“ primitive is used to create an attribute list, and attach the
attribute list to some contact list(s) and / or user(s).

The Wireless Village initiative: SSP v1.0 WV-013

82
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

Information Element Req Type Description
Message-Type M CreateAttrListReq

uest
Message identifier

Meta-Information M Structure of Meta-
Information

The meta-information (see 5.1).

Presence-Attribute-
List

M Structure A list of presence attributes.

Default-List M “Yes” | “No” Indicates if the attributes are
targeted to the default attribute list
instead of a separate attribute list.

Contact-List-ID-List C Structure Contact list(s) which the attribute
list should be attached to.

User-ID-List C Structure User(s) which the attribute list
should be attached to.

Table 56. Information elements in CreateAttrListRequest Primitive

10.2.13. The “DeleteAttrListRequest” Primitive

The “DeleteAttrListRequest“ primitive is used to delete the attribute list(s).

Information
Element

Req Type Description

Message-Type M DeleteAttrListRequest Message identifier
Meta-Information M Structure of Meta-

Information
The meta-information (see 5.1).

Default-List M “Yes” | “No” Indicates if the default attribute
list should be cleared.

Contact-List-ID-
List

C Structure Identifies the contact list(s) to
remove the attribute list
association

User-ID-List C Structure Identifies the user(s) to remove
the attribute list association

Table 57. Information elements in DeleteAttrListRequest Primitive

10.2.14. The “GetAttrListRequest” Primitive

The “GeAttrListRequest“ primitive is used to retrieve the published or subscribed
attributes associated with specific contact list(s) and / or user(s). If the user(s) or contact
list(s) are not specified, the response shall include all user-specific and contact list-
specific attributes.

Information
Element

Req Type Description

Message-Type M GetAttrListRequest Message identifier
Meta-Information M Structure of Meta- The meta-information (see 5.1).

The Wireless Village initiative: SSP v1.0 WV-013

83
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

Information
Default-List M “Yes” | “No” Indicates if the default attribute list

should be retrieved (“YES”) or not.
Contact-List-ID-
List

O Structure Identifies the contact list(s) to
retrieve the attribute list association

User-ID-List O Structure Identifies the user(s) to retrieve the
attribute list association

Table 58. Information elements in GetAttrListRequest Primitive

10.2.15. The “GetAttrListResponse” Primitive

The “GetAttrListResponse“ primitive returns the presence attributes.

Information Element Req Type Description
Message-Type M GetAttrListResponse Message identifier
Status-Info M Structure of Status-

Primitive
The status information (see
5.2).

Attribute-
Association-List

O Structure A list of attribute list
associations with the user and /
or the contact list.

Default-Association-
List

O Structure The list of presence attributes
associated with the default list.

Table 59. Information elements in GetAttrListResponse Primitive

10.3. Transactions

10.3.1. The “CreateContactList” Transaction

CreateContactListRequest

Requestor
Server

Provider
Server

Status

Figure 27. The “CreateContactList” Transaction

The requestor server sends a “CreateContactListRequest” to the provider server. The
provider server shall create the contact list and respond with a Status message to the
requestor server.

A user is able to create more than one contact list. There may be system specific
limitations for the maximum number of lists per user. After the contact list is created, a
user may create an attribute list for the contact list.

Primitive Direction
CreateContactListRequest Requestor Server → Provider Server

The Wireless Village initiative: SSP v1.0 WV-013

84
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

Status Requestor Server ← Provider Server
Table 60. Primitive Directions for CreateContactList Transaction

10.3.2. The “DeleteContactList” Transaction

DeleteContactListRequest

Requestor
Server

Provider
Server

Status

Figure 28. The “DeleteContactList” Transaction

The requestor server sends a “DeleteContactListRequest” to the provider server. The
provider server shall delete the contact lists(s) and respond with a Status. The server
should not unsubscribe the members implicitly, which means that if a contact list which
has been subscribed to is deleted, the presence subscriptions should not be cancelled for
the particular users.

A user may delete more than one contact list at one time.

Primitive Direction
DeleteContactListRequest Requestor Server → Provider Server
Status Requestor Server ← Provider Server
Table 61. Primitive Directions for DeleteContactList Transaction

10.3.3. The “GetContactList” Transaction

GetContactListRequest

Requestor
Server

Provider
Server

GetContactListResponse

Figure 29. The “GetContactList” Transaction

The “GetContactList“ transaction is used for the requestor server to retrieve the list of all
Contact-List-IDs of the user. The requestor server sends a “GetContactListRequest“
request. The provider server returns a “GetContactListResponse“ primitive with a list of
all Contact-List-ID’s and the default contact list ID of the user.

Primitive Direction
GetContactListRequest Requestor Server → Provider Server
GetContactListResponse Requestor Server ← Provider Server
Table 62. Primitive Directions for GetContactList Transaction

The Wireless Village initiative: SSP v1.0 WV-013

85
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

10.3.4. The “GetListMember” Transaction

GetListMemberRequest

Requestor
Server

Provider
Server

ContactListMemberResponse

Figure 30. The “GetListMember” Transaction

The “GetListMember” transaction is used to retrieve all members of a contact list. The
requestor server sends a “GetListMemberRequest” to the provider server. The provider
responds with a “ContactListMemberResponse” to the requestor server containing the list
of all members of the contact list.

Primitive Direction
GetListMemberRequest Requestor Server → Provider Server
ContactListMemberResponse Requestor Server ← Provider Server
Table 63. Primitive Directions for GetListMember Transaction

10.3.5. The “AddListMember” Transaction

AddListMemberRequest

Requestor
Server

Provider
Server

ContactListMemberResponse

Figure 31. The “AddListMember” Transaction

The requestor server sends an “AddListMemberRequest” to the provider server to add one
or more members in a contact list. The provider server shall respond with a
“ContactListMemberResponse” to the requestor server containing the list of all members
of the contact list.

Primitive Direction
AddListMemberRequest Requestor Server → Provider Server
ContactListMemberResponse Requestor Server ← Provider Server
Table 64. Primitive Directions for AddListMember Transaction

10.3.6. The “RemoveListMember” Transaction

The Wireless Village initiative: SSP v1.0 WV-013

86
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

RemoveListMemberRequest

Requestor
Server

Provider
Server

ContactListMemberResponse

Figure 32. The “RemoveListMember” Transaction

The requestor server sends a “RemoveListMemberRequest” to the provider server. The
provider server shall delete the user(s) from the specified contact list, and returns the list
of all members of the contact list in the “ContactListMemberResponse”.

Primitive Direction
RemoveListMemberRequest Requestor Server → Provider Server
ContactListMemberResponse Requestor Server ← Provider Server
Table 65. Primitive Directions for RemoveListMember Transaction

10.3.7. The “GetListProperties” Transaction

GetListPropsRequest

Requestor
Server

Provider
Server

ContactListPropsResponse

Figure 33. The “GetListProperties” Transaction

The “GetListProperties” transaction is used to retrieve the properties of a contact list
(Display-Name, Default). The requestor server sends a “GetListPropsRequest” to the
provider server. The provider responds with a “ContactListPropsResponse” to the
requestor server containing the properties.

Primitive Direction
GetListPropsRequest Requestor Server → Provider Server
ContactListPropsResponse Requestor Server ← Provider Server
Table 66. Primitive Directions for GetListProperties Transaction

10.3.8. The “SetListProperties” Transaction

SetListPropsRequest

Requestor
Server

Provider
Server

ContactListPropsResponse

Figure 34. The “SetListProperties” Transaction

The Wireless Village initiative: SSP v1.0 WV-013

87
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

The “SetListProperties” transaction is used to set the properties of a contact list (Display-
Name, Default), i.e. to set the display name, or to set a default contact list. The requestor
server sends a “SetListPropsRequest” to the provider server. The provider responds with
a “ContactListPropsResponse” to the requestor server containing the new properties.

Primitive Direction
SetListPropsRequest Requestor Server → Provider Server
ContactListPropsResponse Requestor Server ← Provider Server
Table 67. Primitive Directions for SetListProperties Transaction

10.3.9. The “CreateAttributeList” Transaction

CreateAttrListRequest

Requestor
Server

Provider
Server

Status

Figure 35. The “CreateAttributeList” Transaction

A user may create a specific attribute list for a contact list, or a member in a contact list
through “CreateAttributeList” transaction. The requestor server sends a
“CreateAttrListRequest” to the provider server. The provider server shall create an
attribute list, and attach the attribute list to some contact list(s) and / or user(s).

In order to modify an attribute list, it can be simply overwritten by creating a new one for
the same user or contact list. (So it is not necessary to delete it first.)

Primitive Direction
CreateAttrListRequest Requestor Server → Provider Server
Status Requestor Server ← Provider Server
Table 68. Primitive Directions for CreateAttributeList Transaction

10.3.10. The “DeleteAttrList” Transaction

DeleteAttrListRequest

Requestor
Server

Provider
Server

Status

Figure 36. The “DeleteAttrList” Transaction

A user may delete an attribute list from a user and / or a contact list through
“DeleteAttrList” transaction. The requestor server sends a “DeleteAttrListRequest” to the

The Wireless Village initiative: SSP v1.0 WV-013

88
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

provider server. The provider server shall remove the associations of the attribute lists
with the contact list(s) and / or user(s). If an attribute list is not associated with any
contact list or user, it shall be cleared from the provider server (garbage collection).

Primitive Direction
DeleteAttrListRequest Requestor Server → Provider Server
Status Requestor Server ← Provider Server
Table 69. Primitive Directions for DeleteAttrList Transaction

10.3.11. The “GetAttrList” Transaction

GetAttrListRequest

Requestor
Server

Provider
Server

GetAttrListResponse

Figure 37. The “GetAttrList” Transaction

The “GetAttrList“ transaction is used to retrieve the published or subscribed attributes
associated with specific contact list(s) and / or user(s). The provider server returns the
requested attributes. If the user(s) or contact list(s) are not specified in the request, the
response shall include all user-specific and contact list-specific attributes.

Primitive Direction
GetAttrListRequest Requestor Server → Provider Server
GetAttrListResponse Requestor Server ← Provider Server
Table 70. Primitive Directions for GetAttrList Transaction

10.4. Status Code

10.4.1. Contact List Transactions

• Service Not Supported (405)
• Unknown user ID (531)
• Contact list does not exist (700)
• Contact list already exists (701)
• Invalid or unsupported contact list property. (752)

10.4.2. Attribute List Transactions

• Service Not Supported (405)
• Unknown user ID (531)
• Contact list does not exist (701).
• Unknown presence attribute (not defined in [WVPA]) (750).

The Wireless Village initiative: SSP v1.0 WV-013

89
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

11. Service Relay – Presence Features

11.1. Overview

This chapter focuses on the functional relay of Presence features. Because of the server
interoperation nature, the SSP has its own requirement on meta-information and
information elements in the primitives at transaction level. The complete primitives and
transaction flows of Presence features at SSP semantics level has been defined in the
following two sections.

Please refer to the CSP document so as to conclude how to relay the Presence features
from client-server interaction (CSP) to server-server interoperation (SSP).

11.2. Primitives

11.2.1. The “SubscribeRequest” Primitive

The “SubscribeRequest“ primitive is used to create subscriptions to obtain notification
about changes of the PRESENCE INFORMATION and attributes of other
PRINCIPALS. The scope of subscription is either a single user or a contact list which
refers to a list of users.

Information Element Re
q

Type Description

Message-Type M SubscribeRequest Message identifier
Meta-Information M Structure of

Meta-Information
The meta-information (see 5.1).

User-ID-List C Structure Identifies the IM users to be
subscribed.

Contact-List-ID-List C Structure Identifies the set of users.
Presence-Attribute-
List

O Structure A list of presence attributes to which
are subscribed. An empty list or
missing list indicates all presence
attributes are desired.

Table 71. Information elements in SubscribeRequest Primitive

11.2.2. The “AuthorizationRequest” Primitive

The “AuthorizationRequest“ primitive is used for the provider server to perform the
reactive authorization with the requestor server that represents the publishing users.

Information
Element

Req Type Description

Message-Type M AuthorizationRequest Message identifier
Meta-Information M Structure of Meta-

Information
The meta-information (see 5.1).

The Wireless Village initiative: SSP v1.0 WV-013

90
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

Authorizing-User-
ID

M String Identifies the user who can grant
the authorization to the
requesting users.

List-of-
Subscribing-User-
ID-and-Presence-
Attribute-List

M Structure A list of elements where each
node specifies the user-ID and
the presence attributes to which
are subscribed. An empty
attribute list indicates that all
presence attributes are desired.

Table 72. Information elements in AuthorizationRequest Primitive

There may be multiple tuples { Authorizing-User-ID, List-of-Subscribing-User-ID-and-
Presence-Attribute-List } in one “AuthorizationRequest” primitive if the provider server
is able to combine the multiple reactive authorizations in one primitive in order to reduce
the traffic overhead between the servers.

11.2.3. The “AuthorizationResponse” Primitive

The “AuthorizationResponse“ primitive returns the authorization result from the
responding authorizing users.

There may be multiple tuples { Authorizing-User-ID, Subscribing-User-IDs,
Authorization-Result } in one “AuthorizationResponse” primitive if the provider server is
able to collect the response from the authorizing users in a reasonable time and combine
the multiple responses in one primitive in order to reduce the traffic overhead between
the servers.

Information
Element

Req Type Description

Message-Type M AuthorizationResponse Message identifier
Meta-Information M Structure of Meta-

Information
The meta-information (see 5.1).

Authorizing-
User-ID

M String Identifies the user who can grant
the authorization to the
requesting users.

Subscribing-User-
ID-List

M Structure Identifies the requesting users
who want to subscribe

Authorization-
Result(s)

M “Yes” | “No” Authorization results from the
authorizing user per subscribing
user.

Table 73. Information elements in AuthorizationResponse Primitive

11.2.4. The “UnsubscribeRequest” Primitive

The “UnsubscribeRequest“ primitive is used to cancel the current subscription.

The Wireless Village initiative: SSP v1.0 WV-013

91
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

Information
Element

Req Type Description

Message-Type M UnsubscribeRequest Message identifier
Meta-Information M Structure of Meta-

Information
The meta-information (see 5.1).

User-ID-List C Structure Identifies the IM users to be
unsubscribed.

Contact-List-ID-
List

C Structure Identifies the set of users.

Table 74. Information elements in UnsubscribeRequest Primitive

11.2.5. The “PresenceNotification” Primitive

The “PresenceNotification“ primitive is used for the provider server to send the
notifications about changes of presence information to the requestor server.

Information Element Req Type Description
Message-Type M PresenceNotification Message identifier
Meta-Information M Structure of Meta-

Information
The meta-information (see
5.1).

Subscribing-User-ID-
List

M Structure Identifies the users who
subscribed to the presence
change.

Presence-Value-List M Structure List of User IDs and
corresponding presence values.

Table 75. Information elements in PresenceNotification Primitive

11.2.6. The “GetWatcherListRequest” Primitive

The “GetWatcherListRequest“ primitive is used for the requestor server to retrieve the list
of users that subscribed to its presence information.

Information
Element

Req Type Description

Message-Type M GetWatcherListRequest Message identifier
Meta-Information M Structure of Meta-

Information
The meta-information (see 5.1).

Table 76. Information elements in GetWatcherRequest Primitive

11.2.7. The “GetWatcherListResponse” Primitive

The “GetWatcherListResponse“ primitive is used for the provider server to return the
subscriber list to the requestor server.

Information Req Type Description

The Wireless Village initiative: SSP v1.0 WV-013

92
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

Element
Message-Type M GetWatcherListResponse Message identifier
Status-Info M Structure of Status-

Primitive
Status information (see 5.2).

User-ID-List C Structure Identifies the subscribers.
Table 77. Information elements in GetWatcherListResponse Primitive

11.2.8. The “GetPresenceRequest” Primitive

The “GetPresenceRequest“ primitive is used for the requestor server to retrieve the
updated presence information. If the presence attribute list is missing from the request,
the server sends all available presence information.

Information
Element

Req Type Description

Message-Type M GetPresenceRequest Message identifier
Meta-Information M Structure of Meta-

Information
The meta-information (see 5.1).

User-ID-List C Structure Identifies the publishing users.
Contact-List-ID-
List

C Structure Identifies the set of publishing
users.

Presence-Attribute-
List

O Structure A list of presence attributes to be
retrieved. An empty or missing list
indicates all presence attributes are
desired.

Table 78. Information elements in GetPresenceRequest Primitive

11.2.9. The “GetPresenceResponse” Primitive

The “GetPresenceResponse“ primitive is used for the provider server to send the updated
presence information to the requestor server.

Information
Element

Req Type Description

Message-Type M GetPresenceResponse Message identifier
Status-Info M Structure of Status-

Primitive
Status information (see 5.2).

Presence-Value-
List

O Structure List of User IDs and
corresponding presence values.

Table 79. Information elements in GetPresenceResponse Primitive

11.2.10. The “UpdatePresenceRequest” Primitive

The Wireless Village initiative: SSP v1.0 WV-013

93
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

The “UpdatePresenceRequest“ primitive is used for the requestor server to update
presence information for the publishing user. Only the updated attributes and their values
need to be carried in this primitive, the omitted attributes are not modified.

Information
Element

Req Type Description

Message-Type M UpdatePresenceRequest Message identifier
Meta-Information M Structure of Meta-

Information
The meta-information (see
5.1).

Presence-Value-
List

M Structure A list of presence values to
update.

Table 80. Information elements in UpdatePresenceRequest Primitive

11.2.11. The “CancelAuthRequest” Primitive

The “CancelAuthRequest“ primitive is used for the publishing user to cancel its previous
reactive authorizations, and remove the subscriber from its Watcher List.

Information
Element

Req Type Description

Message-Type M CancelAuthRequest Message identifier
Meta-Information M Structure of Meta-

Information
The meta-information (see 5.1).

Canceled-User-ID-
List

M Structure Identifies the users who will be
cancelled authorization.

Table 81. Information elements in CancelAuthRequest Primitive

11.3. Transactions

11.3.1. The “Subscribe” Transaction

SubscribeRequest

Requestor
Server

Provider
Server

Status

Figure 38. The “Subscribe” Transaction

The subscription to obtaining the notification about the changes of the presence
information is accomplished through a “Subscribe” transaction.

The requestor server sends a “SubscribeRequest” request to the provider server for
subscribing to the notification about the changes of the presence information of some
publishing users. The provider server shall determine whether or not the reactive
authorization is needed based on whether or not the subscribing user is proactively

The Wireless Village initiative: SSP v1.0 WV-013

94
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

authorized in the publishing user’s contact list. The provider server shall return a “Status”
message indicating that the provider server has accepted and processed the request.

The provider server shall perform “ReactiveAuthorization” transactions with the
publishing users if the individual reactive authorizations are needed.

If the subscription succeeds, the requestor server shall receive the current presence
information through a “PresenceNotification” transaction immediately. The requestor
server shall also receive the presence changes in the future.

The scope of the subscription is either a single user or a contact list referring to multiple
users. The requesting user may subscribe only part of the presence information and,
correspondingly, the user whose presence information is subscribed may allow only part
of the presence information to be delivered. The subscription may be persistent through
different sessions.

Primitive Direction
SubscribeRequest Requestor Server → Provider Server
Status Requestor Server ← Provider Server
Table 82. Primitive Directions for Subscribe Transaction

11.3.2. The “ReactiveAuthorization” Transaction

AuthorizationResponse

Requestor
Server

Provider
Server

AuthorizationRequest

Status

Status

Figure 39. The “ReactiveAuthorization” Transaction

If the reactive authorization is needed in the “Subscribe” transaction from the subscribing
user, the provider server shall perform the “ReactiveAuthorization” transactions with the
requestor servers that represent the publishing users. The publishing user may accept or
reject the request of authorization to subscribe to its presence information.

There may be multiple tuples { Authorizing-User-ID, List-of-Subscribing-User-ID-and-
Presence-Attribute-List } in one “AuthorizationRequest” primitive if the provider server
is able to combine the multiple reactive authorizations in one primitive in order to reduce
the traffic overhead between the servers.

There may be multiple tuples { Authorizing-User-ID, Subscribing-User-IDs,
Authorization-Result } in one “AuthorizationResponse” primitive if the provider server is

The Wireless Village initiative: SSP v1.0 WV-013

95
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

able to collect the response from the authorizing users in a reasonable time and combine
the multiple responses in one primitive in order to reduce the traffic overhead between
the servers.

A new authorization will overwrite the existing one.

This transaction belongs to the complementary service.

Primitive Direction
AuthorizationRequest Requestor Server ← Provider Server
Status Requestor Server → Provider Server
AuthorizationResponse Requestor Server → Provider Server
Status Requestor Server ← Provider Server
Table 83. Primitive Directions for ReactiveAuthorization Transaction

11.3.3. The “Unsubscribe” Transaction

UnsubscribeRequest

Requestor
Server

Provider
Server

Status

Figure 40. The “Unsubscribe” Transaction

The cancellation to current subscription is accomplished through an “Unsubscribe”
transaction. The provider server shall return a “Status” message indicating that the
provider server has accepted and processed the request.

Primitive Direction
UnsubscribeRequest Requestor Server → Provider Server
Status Requestor Server ← Provider Server
Table 84. Primitive Directions for Unsubscribe Transaction

11.3.4. The “PresenceNotification” Transaction

Requestor
Server

Provider
Server

PresenceNotification

Status

Figure 41. The “PresenceNotification” Transaction

The requestor server is informed of the change of the presence information through a
“PresenceNotification” transaction originated from the provider server.

The Wireless Village initiative: SSP v1.0 WV-013

96
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

Primitive Direction
PresenceNotification Requestor Server ← Provider Server
Status Requestor Server → Provider Server
Table 85. Primitive Directions for PresenceNotification Transaction

11.3.5. The “GetWatcherList” Transaction

GetWatcherListRequest

Requestor
Server

Provider
Server

GetWatcherListResponse

Figure 42. The “GetWatcherList” Transaction

The purpose of the “GetWatcherList“ transaction is for the requestor server to retrieve the
list of users that subscribed to its presence information.

The requestor server sends a “GetWatcherListRequest” to the provider server. A
“GetWatcherListResponse” message from the provider server contains a list of
subscribers.

This transaction belongs to the complementary service.

Primitive Direction
GetWatcherListRequest Requestor Server → Provider Server
GetWatcherListRespons
e

Requestor Server ← Provider Server

Table 86. Primitive Directions for GetWatcherList Transaction

11.3.6. The “GetPresence” Transaction

GetPresenceRequest

Requestor
Server

Provider
Server

GetPresenceResponse

Figure 43. The “GetPresence” Transaction

The purpose of the “GetPresence“ transaction is for the requestor server to retrieve the
presence information of other users.

The requestor server sends a “GetPresenceRequest” to the provider server for the updated
presence information of the publishing users. A “GetPresenceResponse” message from

The Wireless Village initiative: SSP v1.0 WV-013

97
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

the provider server will contain result code(s) and, if the request was successful, then it
will relay the requested PRESENCE INFORMATION.

Primitive Direction
GetPresenceRequest Requestor Server → Provider Server
GetPresenceResponse Requestor Server ← Provider Server
Table 87. Primitive Directions for GetPresence Transaction

11.3.7. The “UpdatePresence” Transaction

UpdatePresenceRequest

Requestor
Server

Provider
Server

Status

Figure 44. The “UpdatePresence” Transaction

An owner of the presence data or a user with sufficient privileges may update presence
attributes and their values through a “UpdatePresence” transaction.

The requestor server sends an “UpdatePresenceRequest” message to the provider server.
The provider server returns a Status response.

Primitive Direction
UpdatePresenceRequest Requestor Server → Provider Server
Status Requestor Server ← Provider Server
Table 88. Primitive Directions for UpdatePresence Transaction

11.3.8. The “CancelAuthorization” Transaction

CancelAuthRequest

Requestor
Server

Provider
Server

Status

Figure 45. The “CancelAuthorization” Transaction

A publishing user may cancel the reactive authorization and subscription, and remove the
subscriber from the Watcher List through “CancelAuthorization” transaction.

Please note that the proactive authorization is cancelled by removing the subscriber from
the contact list, or by removing the associated attribute list, or by making the associated
attribute list empty.

The Wireless Village initiative: SSP v1.0 WV-013

98
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

The requestor server sends a “CancelAuthRequest” message to the provider server. The
provider server returns a Status response.

This transaction belongs to the complementary service.

Primitive Direction
CancelAuthRequest Requestor Server → Provider Server
Status Requestor Server ← Provider Server
Table 89. Primitive Directions for CancelAuthorization Transaction

11.4. Status Code

11.4.1. “ReactiveAuthorization” Transaction

• Service Not Supported (405)
• Not logged in (604)
• Unknown presence attribute (not defined in [WVPA]). (750)

11.4.2. “GetPresence” Transaction

• Service Not Supported (405)
• Not logged in (604)
• Unknown presence attribute (not defined in [WVPA]) (750)
• Unknown presence value (not defined in [WVPA]) (751)

11.4.3. “UpdatePresence” Transaction

• Service Not Supported (405)
• Not logged in (604)
• Unknown presence attribute (not defined in [PresenceAttributes]) (750)
• Unknown presence value (not defined in [PresenceAttributes]) (751)

11.4.4. Other Presence Transactions

• Service Not Supported (405)
• Unknown user ID (531)
• Not logged in (604)
• Unknown contact list (700).
• Unknown presence attribute (not defined in [WVPA]). (750)
• Unknown presence value (not defined on the [WVPA])(751).

The Wireless Village initiative: SSP v1.0 WV-013

99
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

12. Service Relay – Instant Messaging Features

12.1. Overview

This chapter focuses on the functional relay of IM features. Because of the server
interoperation nature, the SSP has its own requirement on meta-information and
information elements in the primitives at transaction level. The complete primitives and
transaction flows of IM features at SSP semantics level has been defined in the following
two sections.

Please refer to the CSP document so as to conclude how to relay the IM features from
client-server interaction (CSP) to server-server interoperation (SSP).

12.2. Primitives

12.2.1. The “SendMessageRequest” Primitive

The “SendMessageRequest“ primitive is used for the requesting server to send the instant
messages to the users through the requested server.

Information
Element

Req Type Description

Message-Type M SendMessageRequest Message identifier
Meta-Information M Structure of Meta-

Information
The meta-information (see 5.1).

Delivery-Report-
Request

M “Yes” | “No” Indicates if the user wants delivery
report.

Message-Info M Structure Message information data,
including { Message-ID or
Message-URI, Content-type /
MIME, encoding, size, sender and
recipients (User-ID and/or Client-
ID and/or Screen-Name and/or
Group-ID and/or Contact-List-ID),
date and time, validity }. Message-
ID is NOT present if the request is
relayed from the user’s Home
Domain to its PSE. Otherwise,
Message-ID is present.

Content C String or Binary data The content of the instant message.
Table 90. Information elements in SendMessageRequest Primitive

12.2.2. The “SendMessageResponse” Primitive

The Wireless Village initiative: SSP v1.0 WV-013

100
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

The “SendMessageResponse“ primitive is used for the requested server to inform the
requesting server of the message sending result.

Information
Element

Req Type Description

Message-Type M SendMessageResponse Message identifier
Status-Info M Structure of Status-

Primitive
Status information (see 5.2).

Message-ID C String Server generated message id for
this message.

Table 91. Information elements in SendMessageResponse Primitive

12.2.3. The “ForwardMessageRequest” Primitive

The “ForwardMessageRequest“ primitive is used for the requesting server to forward the
non-retrieved instant messages.

Information
Element

Req Type Description

Message-Type M ForwardMessageRequest Message identifier
Meta-Information M Structure of Meta-

Information
The meta-information (see
5.1).

Message-ID M String Identifies the message (either
Message-ID or Message-URI).

Recipients M Structure Identifies the users to whom
the message is forwarded
(User-ID-List, Contact-List-
ID-List, Screen-Name-List and
Group-ID-List)

Table 92. Information elements in ForwardMessageRequest Primitive

12.2.4. The “NewMessage” Primitive

The “NewMessage“ primitive is used for the provider server to deliver the instant
message to the users through the requestor server.

Information
Element

Req Type Description

Message-Type M NewMessage Message identifier.
Meta-Information C Structure of

Meta-Information
The meta-information (see 5.1).
Present if in PushMessage transaction.

Status-Info C Structure of
Status-Primitive

Status information (see 5.2). Present if
in GetMessage transaction.

Recipient-User-
ID-List

M Structure Identifies the recipients with a list of
User-ID’s.

The Wireless Village initiative: SSP v1.0 WV-013

101
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

Message-Info M Structure Message information data, including {
Message-ID or Message-URI,
Content-type / MIME, encoding, size,
sender and recipients (User-ID and
optionally the Client-ID and/or
Screen-Name and/or Group-ID and/or
Contact-List-ID), date and time,
validity }.

Content M String or Binary
data

Message data.

Table 93. Information elements in NewMessage Primitive

12.2.5. The “MessageDelivered” Primitive

The “MessageDelivered“ primitive is used for the requestor server to confirm that the
message has been delivered.

Information
Element

Req Type Description

Message-Type M MessageDelivered Message identifier.
Meta-Information C Structure of Meta-

Information
The meta-information (see 5.1).
Present if in GetMessage transaction.

Status-Info C Structure of Status-
Primitive

Status information (see 5.2). Present if
in PushMessage transaction.

Message-ID M String ID of message that has been delivered
Table 94. Information elements in MessageDelivered Primitive

12.2.6. The “MessageNotification” Primitive

The “MessageNotification“ primitive is used for the provider server to notify the user of
the new messages through the requestor server.

Information
Element

Req Type Description

Message-Type M MessageNotification Message identifier
Meta-Information M Structure of Meta-

Information
The meta-information (see 5.1).

Recipient-User-
ID-List

M Structure Identifies the recipients with a list
of User-ID’s.

Message-Info M Structure Message information data,
including { Message-ID or
Message-URI, Content-type /
MIME, encoding, size, sender and
recipients (User-ID and optionally
the Client-ID and/or Screen-Name

The Wireless Village initiative: SSP v1.0 WV-013

102
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

and/or Group-ID and/or Contact-
List-ID), date and time, validity }.

Table 95. Information elements in MessageNotification Primitive

12.2.7. The “GetMessageRequest” Primitive

The “GetMessageRequest“ primitive is used for the requestor server to get the instant
message from the provider server.

Information Element Req Type Description
Message-Type M GetMessageRequest Message identifier
Meta-Information M Structure of Meta-

Information
The meta-information (see 5.1).

Message-ID M String ID of message to retrieve
Table 96. Information elements in GetMessageRequest Primitive

12.2.8. The “SetMessageDeliveryMethod” Primitive

The “SetMessageDeliveryMethod“ primitive is used for user in the requestor server to set
the instant message delivery method.

Information
Element

Req Type Description

Message-Type M SetMessageDeliv
eryMethod

Message identifier

Meta-Information M Structure of
Meta-Information

The meta-information (see 5.1).

Message-Delivery-
Method

M “Notify/Get” |
“Push”

Determines the type of message
delivery. Push means that complete
message is transferred in the
notification. Notify/Get means that
only the message-ID or message-URI
is transferred in the notification the
message is then retrieved using a
GetMessage transaction.

Accepted-Content-
Length

O Integer Maximum size of message that can be
pushed to the user.

Group-ID O String Group ID if Delivery method refers to
a group.

Table 97. Information elements in SetMessageDeliveryMethod Primitive

12.2.9. The “GetMessageListRequest” Primitive

The Wireless Village initiative: SSP v1.0 WV-013

103
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

If the provider server offers the space where messages are stored, the user can retrieve an
undelivered message list or group history list. The “GetMessageListRequest“ primitive is
used for the requestor server to get the stored Message-ID’s or Message-URI’s so that
they can be used in GetMessage or RejectMessage transactions. If “Group-ID” is present,
the user will have the group history list. Otherwise, the user will have the undelivered
message list.

Information
Element

Req Type Description

Message-Type M GetMessageListRequest Message identifier
Meta-Information M Structure of Meta-

Information
The meta-information (see
5.1).

Group-ID C String List the messages to the
group(s) (to retrieve the
history).

Message-Count O Integer The maximum number of
message-info structures to be
returned.

Table 98. Information elements in GetMessageListRequest Primitive

12.2.10. The “GetMessageListResponse” Primitive

The “GetMessageListResponse“ primitive is used for the provider server to return a list of
message information.

Information
Element

Req Type Description

Message-Type M GetMessageList
Response

Message identifier.

Status-Info M Structure of
Status-Primitive

Status information (see 5.2).

Message-Info-List M Structure Message information data, including {
Message-ID or Message-URI, Content-
type / MIME, encoding, size, sender and
recipients (User-ID and/or Client-ID
and/or Screen-Name and/or Group-ID
and/or Contact-List-ID), date and time,
validity }.

Table 99. Information elements in GetMessageListResponse Primitive

12.2.11. The “RejectMessageRequest” Primitive

The “RejectMessageRequest“ primitive is used for the requestor server to remove the
unwanted and / or stored messages in the provider server.

The Wireless Village initiative: SSP v1.0 WV-013

104
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

Information
Element

Req Type Description

Message-Type M RejectMessageRequest Message identifier
Meta-Information M Structure of Meta-

Information
The meta-information (see 5.1).

Message-ID-List M Structure Identifies the messages (either
Message-ID-List or Message-
URI-List).

Table 100. Information elements in RejectMessageRequest Primitive

12.2.12. The “DeliveryStatusReport” Primitive

The “DeliveryStatusReport“ primitive is used for the provider server to give the sender
the message delivery status report. The delivery report can also inform the client about an
unsuccessful delivery attempt due to detected error conditions on the receiving side.

Information
Element

Req Type Description

Message-Type M DeliveryStatusReport Message identifier.
Meta-Information M Structure of Meta-

Information
Meta-information (see 5.1).

Delivery-Result M Structure of Status-
Primitive

The delivery result shares the same
structure as Status (see 5.2).

Message-Info M Structure Message information data,
including { Message-ID or
Message-URI, Content-type /
MIME, encoding, size, sender and
recipients (User-ID and/or Client-
ID and/or Screen-Name and/or
Group-ID and/or Contact-List-ID),
date and time, validity }.

Table 101. Information elements in DeliveryStatusReport Primitive

12.2.13. The “BlockUserRequest” Primitive

The “BlockUserRequest“ primitive is used for the blocking user in the requesting server
to prevent from message delivery from certain users. The blocked users always see that
the blocking user is offline. None of the message from the blocked user will be delivered
to the blocking user.

Information Element Req Type Description
Message-Type M BlockUserRequest Message identifier
Meta-Information M Structure of Meta-

Information
The meta-information (see 5.1).

Block-User-ID-List O Structure A list of users to be added to the

The Wireless Village initiative: SSP v1.0 WV-013

105
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

block list.
Unblock-User-ID-
List

O Structure A list of users to be removed
from the block list.

Block-List-Status M “Active” |
“Inactive”

Indicates if the block list is in use
(“Active”) or not (“Inactive”).

Grant-User-ID-List O Structure The list of users to be added to
the grant list.

Ungrant-User-ID-List O Structure The list of users to be removed
from the grant list.

Grant-List-Status M “Active” |
“Inactive”

Indicates if the grant list is in use
(“Active”) or not (“Inactive”).

Table 102. Information elements in BlockUserRequest Primitive

12.2.14. The “GetBlockedRequest” Primitive

The “GetBlockedRequest“ primitive is used for the blocking user in the requestor server
to get its own list of blocked and granted users, and the status of the grant list and block
list.

Information Element Req Type Description
Message-Type M GetBlockedRequest Message identifier
Meta-Information M Structure of Meta-

Information
The meta-information (see 5.1).

Table 103. Information elements in GetBlockedRequest Primitive

12.2.15. The “GetBlockedResponse” Primitive

The “GetBlockedResponse“ primitive is used for the provider server to return a list of
blocked users and granted users, and the list status.

Information Element Req Type Description
Message-Type M GetBlockedResponse Message identifier
Status-Info M Structure of Status-

Primitive
Status information (see 5.2).

Block-User-ID-List C Structure The list of currently blocked
users.

Block-List-Status M “Active” | “Inactive” If the block list is in use
(“Active”) or not (“Inactive”).

Grant-User-ID-List C Structure The list of currently granted
users.

Grant-List-Status M “Active” | “Inactive” If the grant list is in use
(“Active”) or not (“Inactive”).

Table 104. Information elements in GetBlockedResponse Primitive

The Wireless Village initiative: SSP v1.0 WV-013

106
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

12.3. Transactions

12.3.1. The “SendMessage” Transaction

SendMessageRequest

Requestor
Server

Provider
Server

SendMessageResponse

Figure 46. The “SendMessage” Transaction

The purpose of “SendMessage” transaction is for the requestor server to send the instant
messages through the provider server. The user may send message to a group or to other
user(s) at any suitable time.

The requestor server sends a “SendMessageRequest” message to the provider server. The
provider server returns a “SendMessageRsponse” response containing the result and the
message ID.

Primitive Direction
SendMessageRequest Requestor Server → Provider Server
SendMessageResponse Requestor Server ← Provider Server
Table 105. Primitive Directions for SendMessage Transaction

12.3.2. The “ForwardMessage” Transaction

ForwardMessageRequest

Requestor
Server

Provider
Server

Status

Figure 47. The “ForwardMessage” Transaction

Primitive Direction
ForwardMessageRequest Requestor Server → Provider Server
Status Requestor Server ← Provider Server
Table 106. Primitive Directions for ForwardMessage Transaction

12.3.3. The “PushMessage” Transaction

The Wireless Village initiative: SSP v1.0 WV-013

107
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

MessageDelivered

Requestor
Server

Provider
Server

NewMessage

Figure 48. The “PushMessage” Transaction

The purpose of “PushMessage” transaction is for the provider server to deliver the
messages to users through the requestor server.

The provider server sends a “NewMessage” primitive to the requestor server. The
requestor server returns a “MessageDelivered” response containing the result and the
message ID.

This transaction belongs to the complementary service.

Primitive Direction
NewMessage Requestor Server ← Provider Server
MessageDelivered Requestor Server → Provider Server
Table 107. Primitive Directions for PushMessage Transaction

12.3.4. The “MessageNotification” Transaction

Status

Requestor
Server

Provider
Server

MessageNotification

Figure 49. The “MessageNotification” Transaction

The purpose of “MessageNotification” transaction is for the provider server to notify the
users of new messages through the requestor server.

The provider server sends a “MessageNotification” primitive to the requestor server. The
requestor server returns a “Status” response.

This transaction belongs to the complementary service.

Primitive Direction
MessageNotification Requestor Server ← Provider Server
Status Requestor Server → Provider Server
Table 108. Primitive Directions for MessageNotification Transaction

The Wireless Village initiative: SSP v1.0 WV-013

108
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

12.3.5. The “GetMessage” Transaction

GetMessageRequest

Requestor
Server

Provider
Server

NewMessage

MessageDelivered

Status

Figure 50. The “GetMessage” Transaction

The purpose of “GetMessage” transaction is for the requestor server to retrieves the new
messages from the provider server.

The requestor server sends a “GetMessageRequest” message with a message ID to the
provider server. The provider server returns a “NewMessage” response containing the
new message.

This transaction belongs to the complementary service.

Primitive Direction
GetMessageRequest Requestor Server → Provider Server
NewMessage Requestor Server ← Provider Server
MessageDelivered Requestor Server → Provider Server
Status Requestor Server ← Provider Server
Table 109. Primitive Directions for GetMessage Transaction

12.3.6. The “SetMessageDeliveryMethod” Transaction

SetMessageDeliveryMethod

Requestor
Server

Provider
Server

Status

Figure 51. The “SetMessageDeliveryMethod” Transaction

The purpose of “SetMessageDeliveryMethod” transaction is for the user in the requestor
server to set the appropriate message delivery method from the provider server.

The requestor server sends a “SetMessageDeliveryMethod” request to the provider server.
The provider server returns a “Status” response.

This transaction belongs to the complementary service.

The Wireless Village initiative: SSP v1.0 WV-013

109
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

Primitive Direction
SetMessageDeliveryMethod Requestor Server → Provider Server
Status Requestor Server ← Provider Server
Table 110. Primitive Directions for SetMessageDeliveryMethod
Transaction

12.3.7. The “GetMessageList” Transaction

GetMessageListRequest

Requestor
Server

Provider
Server

GetMessageListResponse

Figure 52. The “GetMessageList” Transaction

The purpose of “GetMessageList” transaction is for the requestor server to get the stored
Message-ID’s or Message-URI’s so that they can be used in GetMessage or
RejectMessage transactions. This transaction can be used to retrieve the message history
of the group if the GetMessageListRequest contains the Group ID.

The requestor server sends a “GetMessageListRequest” to the provider server. The
provider server returns a “GetMessageListResponse”.

This transaction belongs to the complementary service if the undelivered messages are
requested.

Primitive Direction
GetMessageListRequest Requestor Server → Provider Server
GetMessageListResponse Requestor Server ← Provider Server
Table 111. Primitive Directions for GetMessageList Transaction

12.3.8. The “RejectMessage” Transaction

RejectMessageRequest

Requestor
Server

Provider
Server

Status

Figure 53. The “RejectMessage” Transaction

This transaction belongs to the complementary service.

Primitive Direction

The Wireless Village initiative: SSP v1.0 WV-013

110
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

RejectMessageRequest Requestor Server → Provider Server
Status Requestor Server ← Provider Server
Table 112. Primitive Directions for RejectMessage Transaction

12.3.9. The “NotifyDeliveryStatusReport” Transaction

Requestor
Server

Provider
Server

DeliveryStatusReport

Status

Figure 54. The “NotifyDeliveryStatusReport” Transaction

Primitive Direction
DeliveryStatusReport Requestor Server ← Provider Server
Status Requestor Server → Provider Server
Table 113. Primitive Directions for NotifyDeliveryStatusReport
Transaction

12.3.10. The “BlockUser” Transaction

BlockUserRequest

Requestor
Server

Provider
Server

Status

Figure 55. The “BlockUser” Transaction

A user may block/un-block any other user at any suitable time. The purpose of
“BlockUser” transaction is for the blocking user in the requestor server to prevent from
getting the messages from the blocked users in the provider server.

The requestor server sends a “BlockUserRequest” request to the provider server
containing the list of users to be blocked / unblocked . The provider server returns a
“Status” response.

This transaction belongs to the complementary service.

Primitive Direction
BlockUserRequest Requestor Server → Provider Server
Status Requestor Server ← Provider Server
Table 114. Primitive Directions for BlockUser Transaction

The Wireless Village initiative: SSP v1.0 WV-013

111
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

12.3.11. The “GetBlockedList” Transaction

GetBlockedRequest

Requestor
Server

Provider
Server

GetBlockedResponse

Figure 56. The “GetBlockedList” Transaction

A user may get its own list of blocked users at any suitable time. The purpose of
“GetBlockedList” transaction is for the blocking user in the requestor server to get its
own list of blocked users and granted users.

The requestor server sends a “GetBlockedRequest” request to the provider server. The
provider server returns a “GetBlockedResponse” response containing the list of blocked
users.

This transaction belongs to the complementary service.

Primitive Direction
GetBlockedRequest Requestor Server → Provider Server
GetBlockedResponse Requestor Server ← Provider Server
Table 115. Primitive Directions for GetBlockedList Transaction

12.4. Status Code

12.4.1. “SendMessage” Transaction

• Service Not Supported (405)
• Unknown content-type (415)
• Message queue full (507)
• Recipient user does not exist. (531)
• Recipient user blocked the sender (532)
• Recipient user is not logged in (533)
• Not logged in (604)
• Contact list does not exist. (701)
• Recipient group does not exist (800)
• Sender has not joined the group (or kicked) (808)
• Private messaging is disabled in the group (812)
• Private messaging is disabled for the recipient (813)

12.4.2. “SetMessageDeliveryMethod” Transaction

• Service Not Supported (405)
• Not logged in (604)

The Wireless Village initiative: SSP v1.0 WV-013

112
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

• Group does not exist. (800)

12.4.3. “GetMessageList” Transaction

• Service Not Supported (405)
• Not logged in (604)
• Group does not exist. (800)
• Group is not joined (808)
• History is not supported (821)

12.4.4. “RejectMessage” Transaction

• Service Not Supported (405)
• Invalid Message-ID (426)
• Not logged in (604)

12.4.5. “NewMessage” Transaction

• Service Not Supported (405)
• Invalid Message-ID (426)
• Not logged in (604)

12.4.6. “MessageNotification” Transaction

• Service Not Supported (405)
• Not logged in (604)

12.4.7. “GetMessage” Transaction

• Service Not Supported (405)
• Invalid Message-ID (426)
• Not logged in (604)

12.4.8. “NotifyDeliveryStatusReport” Transaction

• Service Not Supported (405)
• Not logged in (604)

12.4.9. “ForwardMessage” Transaction

• Service Not Supported (405)
• Unknown content-type. (415)
• Message queue full. (507)
• Recipient user does not exist. (531)
• Recipient user blocked the sender. (532)
• Recipient user is not logged in. (533)
• Not logged in (604)
• Contact list does not exist. (700)

The Wireless Village initiative: SSP v1.0 WV-013

113
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

• Recipient group does not exist. (800)
• Sender has not joined the group (or kicked). (808)
• Private messaging is disabled in the group. (812)
• Private messaging is disabled for the recipient. (813)

12.4.10. Block Transactions

• Service Not Supported (405)
• Unknown user ID (531)
• Not logged in (604)
• Unknown group-ID (800)

The Wireless Village initiative: SSP v1.0 WV-013

114
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

13. Service Relay – Group Features

This chapter focuses on the functional relay of Group features. Because of the server
interoperation nature, the SSP has its own requirement on meta-information and
information elements in the primitives at transaction level. The complete primitives and
transaction flows of Group features at SSP semantics level has been defined in the
following two sections.

Please refer to the CSP document so as to conclude how to relay the Group features from
client-server interaction (CSP) to server-server interoperation (SSP).

13.1. Primitives

13.1.1. The “CreateGroupRequest” Primitive

The “CreateGroupRequest“ primitive is used for the user in the requestor server to create
a private user group at any suitable time. The “CreateGroupRequest “ primitive contains
the User-ID, Group-ID, and the initial properties of the group. The provider server creates
the group with the specified properties, and responds with a Status message.

Information Element Req Type Description
Message-Type M CreateGroupRequest Message identifier
Meta-Information M Structure of Meta-

Information
The meta-information (see 5.1).

Group-ID M String Identifies the group
Group-Props M Structure The properties of the group.
Table 116. Information elements in CreateGroupRequest Primitive

13.1.2. The “DeleteGroupRequest” Primitive

The “DeleteGroupRequest“ primitive is used for the user with sufficient access rights in
the requestor server to delete a private user group at any suitable time. The
“DeleteGroupRequest“ primitive contains the Group-ID. The provider server removes all
currently joined users from the group (ServerInitiatedLeaveGroup transaction), deletes
the specified group, and responds with a Status message.

Information Element Req Type Description
Message-Type M DeleteGroupRequest Message identifier
Meta-Information M Structure of Meta-

Information
The meta-information (see 5.1).

Group-ID M String Identifies the group
Table 117. Information elements in DeleteGroupRequest Primitive

The Wireless Village initiative: SSP v1.0 WV-013

115
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

13.1.3. The “JoinGroupRequest” Primitive

The “JoinGroupRequest“ primitive is used for the user in the requestor server to join a
discussion group at any suitable time. The “JoinGroupRequest“ primitive contains the
Group-ID, its screen name shown during the discussion, and the joined users’ list request.

Information Element Req Type Description
Message-Type M JoinGroupRequest Message identifier
Meta-Information M Structure of Meta-

Information
The meta-information (see 5.1).

Group-ID M String Identifies the group
Joined-Request M “Yes” | “No” Indicates if the user wants the list

of currently joined users (“Yes”)
or not (“No”).

Screen-Name O String Screen name of the user in the
group.

Table 118. Information elements in JoinGroupRequest Primitive

13.1.4. The “JoinGroupResponse” Primitive

The “JoinGroupResponse“ primitive is used for the provider server to return the
processing result with the list of currently joined users (if requested), and optionally a
welcome note.

Information Element Req Type Description
Message-Type M JoinGroupResponse Message identifier
Status-Info M Structure of Status-

Primitive
Status information (see 5.2).

Joined-User-Screen-
Name-List

C Structure The list of currently joined users
identified by their Screen-
Name’s. Present if it was
requested.

Welcome-Text O String A short text to be shown to the
user when he/she has joined the
group.

Table 119. Information elements in JoinGroupResponse Primitive

13.1.5. The “LeaveGroupRequest” Primitive

The “LeaveGroupRequest“ primitive is used for the user in the requestor server to leave a
discussion group at any suitable time. The “LeaveGroupRequest“ primitive contains the
Group-ID.

Information Element Req Type Description
Message-Type M LeaveGroupRequest Message identifier

The Wireless Village initiative: SSP v1.0 WV-013

116
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

Meta-Information M Structure of Meta-
Information

The meta-information (see 5.1).

Group-ID M String Identifies the group
Table 120. Information elements in LeaveGroupRequest Primitive

13.1.6. The “LeaveGroupIndication” Primitive

The “LeaveGroupIndication“ primitive is used for the provider server to return the group
leaving result requested from the requestor server. The “LeaveGroupIndication“
primitive is also used for the provider server to initiate the group leaving due to user
kickout, group deletion etc.

Information
Element

Req Type Description

Message-Type M LeaveGroupIndication Message identifier
Meta-Information C Structure of Meta-

Information
Meta-information (see 5.1).
Present if in
ServerInitiatedLeaveGroup
transaction

Status-Info C Structure of Status-
Primitive

Status information (see 5.2).
Present if in LeaveGroup
transaction.

Reason-text M String Indicate why the user has to leave.
Group-ID C String Identification of the group that has

been left. Present if in
ServerInitiatedLeaveGroup
transaction.

Table 121. Information elements in LeaveGroupIndication Primitive

13.1.7. The “GetJoinedMemberRequest” Primitive

The “GetJoinedMemberRequest“ primitive is used for the requestor server to retrieve the
joined member list of a group. This primitive (and transaction) has no corresponding CSP
primitive (and transaction).

Information Element Req Type Description
Message-Type M GetJoinedMemberRequest Message identifier
Meta-Information M Structure of Meta-

Information
The meta-information (see
5.1).

Group-ID M String Identifies the group
Table 122. Information elements in GetJoinedMemberRequest Primitive

13.1.8. The “GetJoinedMemberResponse” Primitive

The Wireless Village initiative: SSP v1.0 WV-013

117
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

The “GetJoinedMemberResponse“ primitive is used for the provider server to return the
result with a list of joined group members.

Information
Element

Req Type Description

Message-Type M GetJoinedMemberResponse Message identifier
Status-Info M Structure of Status-Primitive Status information (see

5.2).
Joined-User-List M Structure A list of joined members

identified by their { User-
ID, Screen-Name } pairs.

Table 123. Information elements in GetJoinedMemberResponse Primitive

13.1.9. The “GetGroupMemberRequest” Primitive

The “GetGroupMemberRequest“ primitive is used for the user with sufficient access
rights in the requestor server to retrieve the member list of a group. The
“GetGroupMemberRequest“ primitive contains the Group-ID.

Information Element Req Type Description
Message-Type M GetGroupMemberRequest Message identifier
Meta-Information M Structure of Meta-

Information
The meta-information (see
5.1).

Group-ID M String Identifies the group
Table 124. Information elements in GetGroupMemberRequest Primitive

13.1.10. The “GetGroupMemberResponse” Primitive

The “GetGroupMemberResponse“ primitive is used for the provider server to return the
result with a list of all group members.

Information
Element

Req Type Description

Message-Type M GetGroupMemberResponse Message identifier
Status-Info M Structure of Status-Primitive Status information (see

5.2).
User-ID-List-Adm O Structure The list of users that are in

the “Administrator” list.
User-ID-List-Mod O Structure The list of users that are in

the “Moderator” list.
User-ID-List O Structure The list of users that are

ordinary members.
Table 125. Information elements in GetGroupMemberResponse Primitive

The Wireless Village initiative: SSP v1.0 WV-013

118
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

13.1.11. The “AddGroupMemberRequest” Primitive

The “AddGroupMemberRequest“ primitive is used for the user with sufficient access
rights in the requestor server to add the other user(s) to a group. The
“AddGroupMemberRequest“ primitive contains the Group-ID and the list of user(s) to be
added. All of the newly added users are the ordinary members.

Information
Element

Req Type Description

Message-Type M AddGroupMemberRequest Message identifier
Meta-Information M Structure of Meta-

Information
The meta-information (see
5.1).

Group-ID M String Identifies the group
User-ID-List O Structure The list of users to be added.
Table 126. Information elements in AddGroupMemberRequest Primitive

13.1.12. The “RemoveGroupMemberRequest” Primitive

The “RemoveGroupMemberRequest“ primitive is used for the user with sufficient access
rights in the requestor server to remove some users from a group. The
“RemoveGroupMemberRequest“ primitive contains the Group-ID and the list of user(s)
to be removed.

Information
Element

Req Type Description

Message-Type M RemoveGroupMemberRequest Message identifier
Meta-Information M Structure of Meta-Information The meta-information

(5.1).
Group-ID M String Identifies the group
User-ID-List M Structure A list of removed users.
Table 127. Information elements in RemoveGroupMemberRequest Primitive

13.1.13. The “MemberAccessRequest” Primitive

The “MemberAccessRequest“ primitive is used for the user with sufficient access rights
in the requestor server to change the access privileges of other users.

Information
Element

Req Type Description

Message-Type M MemberAccessRequest Message identifier
Meta-Information M Structure of Meta-

Information
The meta-information
(5.1).

Group-ID M String Identifies the group
User-ID-List-Adm O Structure The list of users to be set in

the “Administrator” list.

The Wireless Village initiative: SSP v1.0 WV-013

119
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

User-ID-List-Mod O Structure The list of users to be set in
the “Moderator” list.

User-ID-List O Structure The list of users to be set as
ordinary members.

Table 128. Information elements in MemberAccessRequest Primitive

13.1.14. The “GetGroupPropsRequest” Primitive

The “GetGroupPropsRequest“ primitive is used for the user with sufficient access rights
in the requestor server to retrieve the properties of a group, and its own properties in that
particular group. The “GetGroupPropsRequest“ primitive contains the Group-ID.

Information Element Req Type Description
Message-Type M GetGroupPropsRequest Message identifier
Meta-Information M Structure of Meta-

Information
The meta-information (see
5.1).

Group-ID M String Identifies the group
Table 129. Information elements in GetGroupPropsRequest Primitive

13.1.15. The “GetGroupPropsResponse” Primitive

The “GetGroupPropsResponse“ primitive is used for the provider server to return the
result with a list of group properties and own properties of the specified group.

Information
Element

Req Type Description

Message-Type M GetGroupPropsResponse Message identifier
Status-Info M Structure of Status-

Primitive
Status information (see 5.2).

Group-Prop-List O Structure The list of group properties.
Own-Prop-List O Structure The list of the user’s properties

in that group.
Table 130. Information elements in GetGroupPropsResponse Primitive

13.1.16. The “SetGroupPropsRequest” Primitive

The “SetGroupPropsRequest“ primitive is used for the user with sufficient access rights
in the requestor server to update the properties of a group, and/or its own properties in
that particular group. The “SetGroupPropsRequest“ primitive contains the Group-ID, the
new properties of the group and/or the new user properties.

Information Element Req Type Description
Message-Type M SetGroupPropsRequest Message identifier
Meta-Information M Structure of Meta- The meta-information (see

The Wireless Village initiative: SSP v1.0 WV-013

120
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

Information 5.1).
Group-ID M String Identifies the group
Group-Prop-List O Structure The list of group properties.
Own-Prop-List O Structure The list of the user’s

properties in that group.
Table 131. Information elements in SetGroupPropsRequest Primitive

13.1.17. The “RejectListRequest” Primitive

The ”RejectListRequest“ primitive is used for the user with sufficient access rights in the
requestor server to retrieve / update the reject list of a group. Users on the reject list
cannot join the group.

Information Element Req Type Description
Message-Type M RejectListRequest Message identifier
Meta-Information M Structure of Meta-

Information
The meta-information (see 5.1).

Group-ID M String Identifies the group
Add-User-ID-List O Structure The list of users to be added to the

reject list
Remove-User-ID-List O Structure The list of users to be removed

from the reject list.
Table 132. Information elements in RejectListRequest Primitive

13.1.18. The “RejectListResponse” Primitive

The “RejectListResponse“ primitive is used for the provider server to return the reject list
of the group.

Information
Element

Req Type Description

Message-Type M RejectListResponse Message identifier
Status-Info M Structure of Status-

Primitive
Status information (see 5.2).

Reject-User-ID-
List

O Structure A list of users in the reject list.

Table 133. Information elements in RejectListResponse Primitive

13.1.19. The “SubscribeGroupChangeRequest” Primitive

The “SubscribeGroupChangeRequest“ primitive is used for the user in the requestor
server to subscribe to a group change notice whenever the other user leaves or joins the
group, or the group properties have been changed.

The Wireless Village initiative: SSP v1.0 WV-013

121
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

Information Element Req Type Description
Message-Type M SubscribeGroupCh

angeRequest
Message identifier

Meta-Information M Structure of Meta-
Information

The meta-information (see 5.1).

Group-ID M String Identifies the group
Table 134. Information elements in SubscribeGroupChangeRequest
Primitive

13.1.20. The “UnsubscribeGroupChangeRequest” Primitive

The “UnsubscribeGroupChangeRequest“ primitive is used to cancel the current
subscription.

Information Element Req Type Description
Message-Type M UnsubscribeGroup

ChangeRequest
Message identifier

Meta-Information M Structure of Meta-
Information

The meta-information (see 5.1).

Group-ID M String Identifies the group
Table 135. Information elements in UnsubscribeGroupChangeRequest
Primitive

13.1.21. The “GetGroupSubStatusRequest” Primitive

The “GetGroupSubStatusRequest“ primitive is used for the user in the requestor server to
retrieve its subscription status to the group change notice. The
“GetGroupSubStatusRequest“ primitive contains the Group-ID.

Information Element Req Type Description
Message-Type M GetGroupSubStatus

Request
Message identifier

Meta-Information M Structure of Meta-
Information

The meta-information (see 5.1).

Group-ID M String Identifies the group
Table 136. Information elements in GetGroupSubStatusRequest Primitive

13.1.22. The “GetGroupSubStatusResponse” Primitive

The “GetGroupSubStatusResponse“ primitive is used for the provider server to return the
result with its current subscription status to a group change notice.

Information Element Req Type Description
Message-Type M GetGroupSubStatus

Response
Message identifier

The Wireless Village initiative: SSP v1.0 WV-013

122
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

Status-Info M Structure of Status-
Primitive

Status information (see 5.2).

Group-ID M String Identifies the group
Subscription-Status M ’S’ | ‘U’ Indicates the subscription status

– subscribed (‘S’) or not (‘U’).
Table 137. Information elements in GetGroupSubStatusResponse Primitive

13.1.23. The “GroupChangeNotice” Primitive

The “GroupChangeNotice“ primitive is used for the provider server to send the
notifications to the subscribed users whenever some other user leaves or joins the group,
or the group properties have been changed.

Information Element Req Type Description
Message-Type M GroupChangeNotice Message identifier
Meta-Information M Structure of Meta-

Information
The meta-information (see
5.1).

Subscribing-User-ID-
List

M Structure Identifies the users who
subscribed to the group
change.

Group-ID M String Identification of the group.
Joined-User-Screen-
Name-List

O Structure A list of users that have joined
the group since last
notification. The users are
identified by their screen
names

Left-User-Screen-
Name-List

O Structure A list of users that have left
the group since last
notification. The users are
identified by their screen
names

Group-Prop-List O Structure The new properties of the
group.

Own-Props O Structure The new properties of the user
in the group.

Table 138. Information elements in GroupChangeNotice Primitive

13.2. Transactions

13.2.1. The “CreateGroup” Transaction

The Wireless Village initiative: SSP v1.0 WV-013

123
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

CreateGroupRequest

Requestor
Server

Provider
Server

Status

Figure 57. The “CreateGroup” Transaction

A user may create its own private group at any suitable time. The purpose of
“CreateGroup” transaction is for the user in the requestor server to create its own private
group.

The requestor server sends a “CreateGroupRequest” request to the provider server with
the specified properties. The provider server returns a “Status” response.

This transaction belongs to the complementary service.

Primitive Direction
CreateGroupRequest Requestor Server → Provider Server
Status Requestor Server ← Provider Server
Table 139. Primitive Directions for CreateGroup Transaction

13.2.2. The “DeleteGroup” Transaction

DeleteGroupRequest

Requestor
Server

Provider
Server

Status

Figure 58. The “DeleteGroup” Transaction

A user with sufficient access rights may delete a private user group at any suitable time.

The requestor server sends a “DeleteGroupRequest” request to the provider server with
the Group-ID. The provider server removes all currently joined users from the group
(ServerInitiatedLeaveGroup transaction), deletes the specified group, and responds with a
“Status” message.

This transaction belongs to the complementary service.

Primitive Direction
DeleteGroupRequest Requestor Server → Provider Server
Status Requestor Server ← Provider Server
Table 140. Primitive Directions for DeleteGroup Transaction

The Wireless Village initiative: SSP v1.0 WV-013

124
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

13.2.3. The “JoinGroup” Transaction

JoinGroupRequest

Requestor
Server

Provider
Server

JoinGroupResponse

Figure 59. The “JoinGroup” Transaction

A user may join a discussion group at any suitable time.

The requestor server sends a “JoinGroupRequest” request to the provider server with the
Group-ID, its screen name shown during the discussion, and the joined users’ list request.
The provider server returns a “JoinGroupResponse” response including the processing
result with the list of currently joined users (if requested), and optionally a welcome note.

After a user successfully joined the group, the user may receive / send messages from / to
the particular group.

Primitive Direction
JoinGroupRequest Requestor Server → Provider Server
JoinGroupResponse Requestor Server ← Provider Server
Table 141. Primitive Directions for JoinGroup Transaction

13.2.4. The “LeaveGroup” Transaction

LeaveGroupRequest

Requestor
Server

Provider
Server

LeaveGroupIndication

Figure 60. The “LeaveGroup” Transaction

A user may leave a discussion group at any suitable time.

The requestor server sends a “LeaveGroupRequest” request to the provider server with
the Group-ID. The provider server returns a “LeaveGroupIndication” response.

Primitive Direction
LeaveGroupRequest Requestor Server → Provider Server
LeaveGroupIndication Requestor Server ← Provider Server
Table 142. Primitive Directions for LeaveGroup Transaction

13.2.5. The “ServerInitiatedLeaveGroup” Transaction

The Wireless Village initiative: SSP v1.0 WV-013

125
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

Requestor
Server

Provider
Server

LeaveGroupIndication

Status

Figure 61. The “ServerInitiatedLeaveGroup” Transaction

A server may initiate a group leaving due to user kickout, group deletion etc.

The provider server sends a “LeaveGroupIndication” request to the requestor server.

Primitive Direction
LeaveGroupIndication Requestor Server ← Provider Server
Table 143. Primitive Directions for ServerInitiatedLeaveGroup
Transaction

13.2.6. The “GetJoinedMember” Transaction

GetJoinedMemberRequest

Requestor
Server

Provider
Server

GetJoinedMemberResponse

Figure 62. The “GetJoinedMember” Transaction

This transaction belongs to the complementary service.

Primitive Direction
GetJoinedMemberRequest Requestor Server → Provider Server
GetJoinedMemberResponse Requestor Server ← Provider Server
Table 144. Primitive Directions for GetJoinedMember Transaction

13.2.7. The “GetGroupMember” Transaction

GetGroupMemberRequest

Requestor
Server

Provider
Server

GetGroupMemberResponse

Figure 63. The “GetGroupMember” Transaction

A user with sufficient access rights may retrieve the member list of a group.

The Wireless Village initiative: SSP v1.0 WV-013

126
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

The requestor server sends a “GetGroupMemberRequest” request to the provider server
with the Group-ID. The provider server returns a “GetGroupMemberResponse” response
with the list of all group members.

This transaction belongs to the complementary service.

Primitive Direction
GetGroupMemberRequest Requestor Server → Provider Server
GetGroupMemberResponse Requestor Server ← Provider Server
Table 145. Primitive Directions for GetGroupMember Transaction

13.2.8. The “AddGroupMember” Transaction

AddGroupMemberRequest

Requestor
Server

Provider
Server

Status

Figure 64. The “AddGroupMember” Transaction

A user with sufficient access rights may add user(s) to the member list of a group.

The requestor server sends a “AddGroupMemberRequest” request to the provider server
with the Group-ID and the list(s) of users to be added. The provider server returns a
“Status” response.

This transaction belongs to the complementary service.

Primitive Direction
AddGroupMemberRequest Requestor Server → Provider Server
Status Requestor Server ← Provider Server
Table 146. Primitive Directions for AddGroupMember Transaction

13.2.9. The “RemoveGroupMember” Transaction

RemoveGroupMemberRequest

Requestor
Server

Provider
Server

Status

Figure 65. The “RemoveGroupMember” Transaction

A user with sufficient access rights may remove user(s) from the member list of a group.

The Wireless Village initiative: SSP v1.0 WV-013

127
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

The requestor server sends a “RemoveGroupMemberRequest” request to the provider
server with the Group-ID and the list(s) of users to be removed. The provider server
returns a “Status” response.

This transaction belongs to the complementary service.

Primitive Direction
RemoveGroupMemberRequest Requestor Server → Provider Server
Status Requestor Server ← Provider Server
Table 147. Primitive Directions for RemoveGroupMember Transaction

13.2.10. The “MemberAccess” Transaction

MemberAccessRequest

Requestor
Server

Provider
Server

Status

Figure 66. The “MemberAccess” Transaction

This transaction belongs to the complementary service.

Primitive Direction
MemberAccessRequest Requestor Server → Provider Server
Status Requestor Server ← Provider Server
Table 148. Primitive Directions for MemberAccess Transaction

13.2.11. The “GetGroupProps” Transaction

GetGroupPropsRequest

Requestor
Server

Provider
Server

GetGroupPropsResponse

Figure 67. The “GetGroupProps” Transaction

A user with sufficient access rights may retrieve the properties of a group, and its own
properties in that particular group.

The requestor server sends a “GetGroupPropsRequest” request to the provider server
with the Group-ID. The provider server returns a “GetGroupPropsResponse” response
with the list of group properties and own properties of the specified group.

The Wireless Village initiative: SSP v1.0 WV-013

128
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

Primitive Direction
GetGroupPropsRequest Requestor Server → Provider Server
GetGroupPropsResponse Requestor Server ← Provider Server
Table 149. Primitive Directions for GetGroupProps Transaction

13.2.12. The “SetGroupProps” Transaction

SetGroupPropsRequest

Requestor
Server

Provider
Server

Status

Figure 68. The “SetGroupProps” Transaction

A user with sufficient access rights may update the properties of a group, and/or its own
properties in that particular group.

The requestor server sends a “SetGroupPropsRequest” request to the provider server with
the Group-ID, the new properties of the group and/or the new user properties. The
provider server returns a “Status” response.

Primitive Direction
SetGroupPropsRequest Requestor Server → Provider Server
Status Requestor Server ← Provider Server
Table 150. Primitive Directions for SetGroupProps Transaction

13.2.13. The “RejectList” Transaction

RejectListRequest

Requestor
Server

Provider
Server

RejectListResponse

Figure 69. The “RejectList” Transaction

This transaction belongs to the complementary service.

Primitive Direction
RejectListRequest Requestor Server → Provider Server
RejectListResponse Requestor Server ← Provider Server
Table 151. Primitive Directions for RejectList Transaction

The Wireless Village initiative: SSP v1.0 WV-013

129
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

13.2.14. The “SubscribeGroupChange” Transaction

SubscribeGroupChangeRequest

Requestor
Server

Provider
Server

Status

Figure 70. The “SubscribeGroupChange” Transaction

A user may subscribe to a group change notice whenever the other user leaves or joins
the group, or the group properties have been changed.

The requestor server sends a “SubscribeGroupChangeRequest” request to the provider
server with the Group-ID and an optional subscription expiration time. The provider
server returns a “Status” response.

Primitive Direction
SubscribeGroupChangeRequest Requestor Server → Provider Server
Status Requestor Server ← Provider Server
Table 152. Primitive Directions for SubscribeGroupChange Transaction

13.2.15. The “UnsubscribeGroupChange” Transaction

UnsubscribeGroupChangeRequest

Requestor
Server

Provider
Server

Status

Figure 71. The “UnsubscribeGroupChange” Transaction

A user may cancel the subscription to the group change notice.

The requestor server sends a “UnsubscribeGroupChangeRequest” request to the provider
server with the Group-ID. The provider server returns a “Status” response.

Primitive Direction
UnsubscribeGroupChangeRequest Requestor Server → Provider Server
Status Requestor Server ← Provider Server
Table 153. Primitive Directions for UnsubscribeGroupChange Transaction

13.2.16. The “GetGroupSubStatus” Transaction

The Wireless Village initiative: SSP v1.0 WV-013

130
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

GetGroupSubStatusRequest

Requestor
Server

Provider
Server

GetGroupSubStatusResponse

Figure 72. The “GetGroupSubStatus” Transaction

A user may retrieve its subscription status to a group change notice.

The requestor server sends a “GetGroupSubStatusRequest” request to the provider server
with the Group-ID. The provider server returns a “GetGroupSubStatusResponse”
response with its current subscription status to a group change notice.

Primitive Direction
GetGroupSubStatusRequest Requestor Server → Provider Server
GetGroupSubStatusResponse Requestor Server ← Provider Server
Table 154. Primitive Directions for GetGroupSubStatus Transaction

13.2.17. The “NotifyGroupChange” Transaction

Requestor
Server

Provider
Server

GroupChangeNotice

Status

Figure 73. The “NotifyGroupChange” Transaction

The server may send group change notification(s) to the subscribed users whenever some
other user leaves or joins the group, or the group properties have been changed.

The provider server sends a “GroupChangeNotice” request to the requestor server with a
list of recently joined or left users, or the new properties of the group.

Primitive Direction
GroupChangeNotice Requestor Server ← Provider Server
Status Requestor Server → Provider Server
Table 155. Primitive Directions for NotifyGroupChange Transaction

13.3. Status Code

13.3.1. “CreateGroup” Transaction

• Service Not Supported (405)
• Not logged in (604)

The Wireless Village initiative: SSP v1.0 WV-013

131
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

• Group already exists (801)
• Invalid group attribute(s) (806)
• The maximum number of groups has been reached (user limit) (814)
• The maximum number of groups has been reached for the server (815)

13.3.2. “DeleteGroup” Transaction

• Service Not Supported (405)
• Not logged in (604)
• Group does not exist (800)
• Group is public (804)
• Insufficient group privileges (816)

13.3.3. “JoinGroup” Transaction

• Service Not Supported (405)
• Not logged in (604)
• Group does not exist (800)
• User already joined (807)
• Cannot join: “rejected”(809)
• Cannot join with the specified screen name; it is already in use (811)
• Insufficient group privileges (816)
• The maximum number of allowed users has been reached (817)

13.3.4. “LeaveGroup” Transaction

• Service Not Supported (405)
• Not logged in (604)
• Group was not joined before transaction (808)

13.3.5. Group Membership Transactions

• Service Not Supported (405)
• Unknown user (531)
• Not logged in (604)
• Group does not exist (800)
• Insufficient group privileges (816)

13.3.6. Group Properties Transactions

• Service Not Supported (405)
• Not logged in (604)
• Group does not exist (800).
• Invalid group attribute(s) (806).
• Insufficient group privileges (816).

13.3.7. “RejectList” Transaction

The Wireless Village initiative: SSP v1.0 WV-013

132
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

• Service Not Supported (405)
• User unknown (531).
• Not logged in (604)
• Group does not exist (800).
• Insufficient group privileges (816).

13.3.8. Group Change Transactions

• Service Not Supported (405)
• Not logged in (604)
• Group does not exist (800)

13.3.9. “GetJoinedMember” Transaction

• Group does not exist (800).

The Wireless Village initiative: SSP v1.0 WV-013

133
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

14. Status Codes and Descriptions

SSP uses the concept and paradigm of HTTP/1.1 response to define the status code.
However, there is no logical or semantic relationship between the status codes in SSP and
the status codes in HTTP. The following sections define the general categories as well as
each status code.

14.1. 1xx – Informational

The client or server MUST be prepared to accept one or more 1xx status codes prior to a
regular response even if the client does not expect a 100 “Continue” status code. A client
or server agent SHALL ignore unexpected 1xx status code. This category of the status
codes does not finish a transaction.

14.1.1. 100 – Continue

The client SHOULD continue with its request. The server has accepted the request for
processing, but the processing has not been completed. The request might or might not
eventually be successfully completed. The server MUST send a final response again upon
completing the request. The “100” response is used when time of completion will be too
long, possibly causing the server and client connection to break.

14.1.2. 101 – Queued

The client SHOULD continue with its request. The server has accepted the request, but
does not have resources to start processing. The request might or might not eventually be
successfully completed. The server MUST send a final response again upon completing
the request.

14.1.3. 102 – Started

The client SHOULD continue with its request. The server has accepted the request for
processing. The “102” response is used when server needs to start additional transactions
in order to process the request. The server MUST send a final response again upon
completing the request.

14.1.4. 104 – Server Queued

The client MAY continue with its next requests. The server has accepted the request, but
does not have resources to start processing. This status is used to indicate the overload of
the server and therefore it is expected, that the client will (re)direct the next requests to
other possible connections between the servers. The request processing will take place
and the server MUST send a final response again upon completing the request.

14.2. 2xx – Successful

The Wireless Village initiative: SSP v1.0 WV-013

134
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

The 2xx class of status codes indicates that the client’s request was successfully received,
understood and accepted.

14.2.1. 200 – Successful

This is used to indicate that the request succeeded.

14.2.2. 201 – Partially Successful

This is used to indicate that the request was successfully completed, but some parts were
not completed due to certain errors. The details of the error case(s) are indicated in the
response.

14.2.3. 202 – Accepted

This is used to indicate that server accepted the request, but not able to receive
acknowledgment about delivery to client device. The request might or might not
eventually be acted upon. There is no facility for re-sending a status code from an
asynchronous operation such as this.

14.3. 4xx – Client Error

The 4xx class of status codes is intended for cases in which the client seems to have
erred. The server SHOULD include the explanation of the error situation including
whether it is a temporary or permanent condition. The user agents should be able to
display the error description to the user.

14.3.1. 400 – Bad Request

The server could not understand the request due to the malformed syntax. The client
SHALL NOT repeat the request without modification.

14.3.2. 401 – Unauthorized

When an authorization request is expected, the presence server will respond with this
status code. Properties will contain details of available authorization schemes.

14.3.3. 402 – Bad Parameter

The server cannot understand one of the parameters in the request. The client SHALL
NOT repeat the request without modification.

14.3.4. 403 – Forbidden

The server understood the request, but the principal settings denied access to some of the
presence, contact information, or group. Authorization will not help and the request
SHOULD NOT be repeated. This type of response is also returned if user not login in the
network yet.

The Wireless Village initiative: SSP v1.0 WV-013

135
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

14.3.5. 404 - Not Found

The server cannot find anything matching the request. No indication is given of whether
the condition is temporary or permanent.

14.3.6. 405 – Service Not Supported

The server does not support the service method in the request.

14.3.7. 410 – Unable to Delivery

The server cannot deliver the request. The requested resource is no longer available at the
server and no forwarding address is known.

14.3.8. 415 – Unsupported Media Type

The server cannot deliver the request, because the client cannot support the format of the
entity that it requested.

14.3.9. 420 – Invalid Transaction-ID

The server encountered an invalid Transaction-ID.

14.3.10. 422 – User-ID and Client-ID Does Not Match

The User-ID and the Client-ID does not match in the request.

14.3.11. 423 – Invalid Invitation-ID

The server encountered an invalid invitation ID.

14.3.12. 424 – Invalid Search-ID

The server encountered an invalid search ID.

14.3.13. 425 – Invalid Search-Index

The server encountered an invalid search index.

14.3.14. 426 – Invalid Message-ID

The server encountered an invalid Message-ID.

14.3.15. 431 – Unauthorized Group Membership

The user agent is not an authorized member of the group.

The Wireless Village initiative: SSP v1.0 WV-013

136
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

14.4. 5xx – Server Error

The 5xx class of status codes is intended for cases in which the server is aware that it has
erred or is incapable of performing the request.

14.4.1. 500 – Internal Server Error

The provider server encountered an unexpected condition, which prevented it from
fulfilling the request.

14.4.2. 501 – Not Implemented

The server does not support the functionality required to fulfill the request. This is the
appropriate response when the server does not recognize the request method, and it is not
capable of supporting it for any resources.

14.4.3. 503 – Service Unavailable

The server is currently unable to handle the request due to a temporally overloading of
the server.

14.4.4. 504 – Invalid Timeout

The provider server has not returned the response within the repeat time.

14.4.5. 505 – Version Not Supported

The server does not support, or refuse to support, the request version that was used. The
response should contain the preferred supported version.

14.4.6. 506 – Service Not Agreed

The service request refers to a service which does not corresponds to the service
agreement between the service requestor and provider server. The requestor server
SHALL NOT repeat the request without a new service negotiation.

14.4.7. 507 – Message Queue is Full

The server cannot fulfill the request, because its message queue is full. The client MAY
repeat the request.

14.4.8. 516 – Domain Not Supported

The server does not support forwarding to different domain space.

14.4.9. 521 – Unresponded Presence Request

The Wireless Village initiative: SSP v1.0 WV-013

137
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

The presence information provider does not respond the presence service specified in the
request.

14.4.10. 522 – Unresponded Group Request

The group service provider does not respond the requested group transaction.

14.4.11. 531 – Unknown User

The specified user is unknown / User-ID is invalid.

14.4.12. 532 – Message Recipient Blocked the Sender

The recipient of the message blocked the sender.

14.4.13. 533 – Message Recipient Not Logged in

The recipient of the message is not logged in.

14.4.14. 534 – Message Recipient Unauthorized

The recipient of the message is not authorized.

14.4.15. 535 – Search Timed Out

The server has invalidated the requested search-request.

14.4.16. 536 – Unknown Transaction

In the request any of the information elements of the Meta-Information are invalid.

14.5. 6xx – Session

The 6xx class status code indicates the session-related status.

14.5.1. 600 – Session Expired

The server connection was disconnected because time-to-live parameter of provider
session has expired.

14.5.2. 601 – Forced Logout

The provider server has disconnected the requestor server.

14.5.3. 604 – Invalid Session / Not Logged In

There is no such session. (Previously not logged in, disconnected, or logged out.)

The Wireless Village initiative: SSP v1.0 WV-013

138
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

14.5.4. 606 – Invalid Service-ID

Unknown Service-ID.

14.5.5. 607 – Redirection Refused

The redirected connection is refused.

14.5.6. 608 – Invalid Password

The password provided by the requestor server was incorrect, it does not match with the
given Service-ID. The requestor SHALL NOT repeat the request without modification.

14.5.7. 609 – Connection Expired

The connection was disconnected because time-to-live parameter has expired. This is
NOT the last active connection pair.

14.5.8. 610 – Server Search Limit is Exceeded

The search limit exceeds the server limit.

14.5.9. 620 – Invalid Server Session

There is no such session. (Previously not logged in, disconnected, or logged out.) If only
the session-ID is invalid in the Meta-information, this error indication should be used
instead of Unknown transaction.

14.6. 7xx – Presence and contact list

The 7xx class indicates the presence and contact list related status codes.

14.6.1. 700 – Contact List Does Not Exist

The contact list specified in the request does not exist.

14.6.2. 701 – Contact List Already Exists

The contact list specified in the request already exists.

14.6.3. 702 – Invalid or Unsupported User Properties

The user properties specified in the request are invalid, or not supported.

14.6.4. 750 – Invalid or Unsupported Presence Attributes

The presence attributes specified in the request are invalid, or not supported.

The Wireless Village initiative: SSP v1.0 WV-013

139
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

14.6.5. 751 – Invalid or Unsupported Presence Value

The presence value(s) specified in the request are invalid, or not supported. The client
SHOULD NOT repeat the request without modification.

14.6.6. 752 – Invalid or Unsupported Contact List Property

One or more contact list properties specified in the request are invalid, or not supported.
The client SHOULD NOT repeat the request without modification.

14.7. 8xx – Groups

The 8xx class indicates the group-related status codes.

14.7.1. 800 – Group Does Not Exist

The group specified in the request does not exist.

14.7.2. 801 – Group Already Exists

The group specified in the request already exists.

14.7.3. 802 – Group is Open

The group specified in the request is an open group.

14.7.4. 803 – Group is Closed

The group specified in the request is a closed group.

14.7.5. 804 – Group is Public

The group specified in the request is public.

14.7.6. 805 – Group Private

The group specified in the request is private.

14.7.7. 806 – Invalid / Unsupported Group Properties

The group properties specified in the request are invalid or not supported.

14.7.8. 807 – Group is Already Joined

The group specified in the request is already joined. If the server does not allow the same
user to join a group more than once, this error code is used to indicate that the user is
already joined the particular group.

The Wireless Village initiative: SSP v1.0 WV-013

140
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

14.7.9. 808 – Group is Not Joined

The request cannot be processed, because it requires the user to be joined to the group.

14.7.10. 809 – Rejected

The user has been rejected from the particular group. He/she is forced to leave the group,
and cannot join.

14.7.11. 810 – Not a Group Member

The request cannot be processed, because the user is not a member of the specified closed
group.

14.7.12. 811 – Screen Name Already in Use

The screen name specified in the request is already in use. If the server does not allow the
same screen name to be used in a group more than once, then this error code is used to
indicate that the screen name is already in use. The requesting user may try to change
his/her screen name, and repeat the transaction.

14.7.13. 812 – Private Messaging is Disabled for Group

The client requested private message delivery, but the private messaging is disabled in
the particular group.

14.7.14. 813 – Private Messaging is Disabled for User

The client requested private message delivery, but the private messaging is disabled for
the particular user.

14.7.15. 814 – The Maximum Number of Groups Has Been Reached for the User

The server limits the maximum number of groups per user. The limit has been reached;
so additional groups cannot be created. The client SHOULD NOT repeat the request until
a group that belongs to the particular user has been deleted.

14.7.16. 815 – The Maximum Number of Groups Has Been Reached for the Server

The maximum number of groups is limited on the server. The server limit has been
reached; so additional groups cannot be created. The client MAY repeat the request.

14.7.17. 816 – Insufficient Group Privileges

The user does not have sufficient privileges in the particular group to perform the
requested operation. The client SHOULD NOT repeat the request until the user has been
authorized properly.

The Wireless Village initiative: SSP v1.0 WV-013

141
Copyright © 2001-2002 Ericsson, Motorola and Nokia. All rights reserved.

14.7.18. 817 – The Maximum Number of Joined Users Has Been Reached

The maximum number of joined users has been reached in the requested group. The
client MAY repeat the request.

14.7.19. 821 – History is Not Supported

The server does not support group message history caching.

